modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 06:29:04
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 06:28:51
card
stringlengths
11
1.01M
chrommium/rubert-base-cased-sentence-finetuned-headlines_X
chrommium
2021-09-16T00:34:06Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: rubert-base-cased-sentence-finetuned-headlines_X results: - task: name: Text Classification type: text-classification metrics: - name: Accuracy type: accuracy value: 0.952 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-base-cased-sentence-finetuned-headlines_X This model is a fine-tuned version of [DeepPavlov/rubert-base-cased-sentence](https://huggingface.co/DeepPavlov/rubert-base-cased-sentence) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2535 - Accuracy: 0.952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 157 | 0.2759 | 0.912 | | No log | 2.0 | 314 | 0.2538 | 0.936 | | No log | 3.0 | 471 | 0.2556 | 0.945 | | 0.1908 | 4.0 | 628 | 0.2601 | 0.95 | | 0.1908 | 5.0 | 785 | 0.2535 | 0.952 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
dhairya2303/bert-base-uncased-emotion_holler
dhairya2303
2021-09-15T21:26:03Z
5
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
{'sadness':0,'joy':1,'love':2,'anger':3,'fear':4,'surprise':5}
huggingartists/big-russian-boss
huggingartists
2021-09-15T16:41:55Z
15
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/big-russian-boss", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/big-russian-boss tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d66eeeef006738708df1e52b84c34c14.403x403x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Big Russian Boss</div> <a href="https://genius.com/artists/big-russian-boss"> <div style="text-align: center; font-size: 14px;">@big-russian-boss</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Big Russian Boss. Dataset is available [here](https://huggingface.co/datasets/huggingartists/big-russian-boss). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/big-russian-boss") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1ju9bqqi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Big Russian Boss's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3820n7qx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3820n7qx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/big-russian-boss') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/big-russian-boss") model = AutoModelWithLMHead.from_pretrained("huggingartists/big-russian-boss") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
Narshion/bert-base-multilingual-cased-urgency
Narshion
2021-09-15T12:27:00Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - null model-index: - name: bert-base-multilingual-cased-urgency results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-urgency This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/) on the mWACH NEO dataset. It achieves the following results on the evaluation set: - Loss: 2.2797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.1408 | 1.0 | 5659 | 3.6705 | | 2.8777 | 2.0 | 11318 | 2.5536 | | 2.561 | 3.0 | 16977 | 2.2740 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingartists/mikhail-gorshenev
huggingartists
2021-09-15T12:07:32Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/mikhail-gorshenev", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/mikhail-gorshenev tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/713c41590244f597dd6484bb61eacc5a.413x413x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Михаил Горшенев (Mikhail Gorshenev)</div> <a href="https://genius.com/artists/mikhail-gorshenev"> <div style="text-align: center; font-size: 14px;">@mikhail-gorshenev</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Михаил Горшенев (Mikhail Gorshenev). Dataset is available [here](https://huggingface.co/datasets/huggingartists/mikhail-gorshenev). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/mikhail-gorshenev") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3h9endcz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Михаил Горшенев (Mikhail Gorshenev)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1kdp29bz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1kdp29bz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/mikhail-gorshenev') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/mikhail-gorshenev") model = AutoModelWithLMHead.from_pretrained("huggingartists/mikhail-gorshenev") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/till-lindemann
huggingartists
2021-09-15T11:46:53Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/till-lindemann", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/till-lindemann tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/48d6ca7ca17a9dfc9ad3034e71533a89.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Till Lindemann</div> <a href="https://genius.com/artists/till-lindemann"> <div style="text-align: center; font-size: 14px;">@till-lindemann</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Till Lindemann. Dataset is available [here](https://huggingface.co/datasets/huggingartists/till-lindemann). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/till-lindemann") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2xh6fyqt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Till Lindemann's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/32ohf092) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/32ohf092/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/till-lindemann') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/till-lindemann") model = AutoModelWithLMHead.from_pretrained("huggingartists/till-lindemann") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/face
huggingartists
2021-09-15T11:08:11Z
5
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/face", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/face tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1dcb4e1dc4242207c27fe5cd0d4090e8.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">FACE</div> <a href="https://genius.com/artists/face"> <div style="text-align: center; font-size: 14px;">@face</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from FACE. Dataset is available [here](https://huggingface.co/datasets/huggingartists/face). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/face") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/xtozoqtm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on FACE's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/knkqp5iy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/knkqp5iy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/face') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/face") model = AutoModelWithLMHead.from_pretrained("huggingartists/face") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
blizrys/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1
blizrys
2021-09-15T08:14:01Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - null metrics: - accuracy model-index: - name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1 results: - task: name: Text Classification type: text-classification metrics: - name: Accuracy type: accuracy value: 0.7 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6660 - Accuracy: 0.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 57 | 0.8471 | 0.58 | | No log | 2.0 | 114 | 0.8450 | 0.58 | | No log | 3.0 | 171 | 0.7846 | 0.58 | | No log | 4.0 | 228 | 0.8649 | 0.58 | | No log | 5.0 | 285 | 0.7220 | 0.68 | | No log | 6.0 | 342 | 0.7395 | 0.66 | | No log | 7.0 | 399 | 0.7198 | 0.72 | | No log | 8.0 | 456 | 0.6417 | 0.72 | | 0.7082 | 9.0 | 513 | 0.6265 | 0.74 | | 0.7082 | 10.0 | 570 | 0.6660 | 0.7 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.0 - Tokenizers 0.10.3
huggingtweets/lilnasx
huggingtweets
2021-09-14T23:54:26Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/lilnasx/1631663662799/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1430901239110258696/1P0QZ5_7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MONTERO 🦋</div> <div style="text-align: center; font-size: 14px;">@lilnasx</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from MONTERO 🦋. | Data | MONTERO 🦋 | | --- | --- | | Tweets downloaded | 3169 | | Retweets | 883 | | Short tweets | 796 | | Tweets kept | 1490 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/z4oke017/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lilnasx's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3flqsl4t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3flqsl4t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lilnasx') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/nhlrumorsdaily
huggingtweets
2021-09-14T23:52:40Z
5
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/nhlrumorsdaily/1631663556170/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1230668680066891776/NrwCWFUg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">NRD</div> <div style="text-align: center; font-size: 14px;">@nhlrumorsdaily</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from NRD. | Data | NRD | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 282 | | Short tweets | 576 | | Tweets kept | 2389 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/362t5kc0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nhlrumorsdaily's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/9pxaxgg1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/9pxaxgg1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nhlrumorsdaily') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cutebunnys50
huggingtweets
2021-09-14T23:47:15Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cutebunnys50/1631663231129/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1385023548935258114/UuMXQpjI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bunny ✊🏽✊🏾✊🏿 🏳️‍🌈</div> <div style="text-align: center; font-size: 14px;">@cutebunnys50</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bunny ✊🏽✊🏾✊🏿 🏳️‍🌈. | Data | Bunny ✊🏽✊🏾✊🏿 🏳️‍🌈 | | --- | --- | | Tweets downloaded | 3208 | | Retweets | 2575 | | Short tweets | 16 | | Tweets kept | 617 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2t0h4kcz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cutebunnys50's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ymfrlb8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ymfrlb8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cutebunnys50') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/foodnetwork
huggingtweets
2021-09-14T23:41:32Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/foodnetwork/1631662887881/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1395089186538115072/oehHqb54_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Food Network</div> <div style="text-align: center; font-size: 14px;">@foodnetwork</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Food Network. | Data | Food Network | | --- | --- | | Tweets downloaded | 3237 | | Retweets | 938 | | Short tweets | 49 | | Tweets kept | 2250 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2x1lok4q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @foodnetwork's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2yjxdjcm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2yjxdjcm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/foodnetwork') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/fluffyguy
huggingtweets
2021-09-14T23:40:29Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/fluffyguy/1631662825404/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1346711262869086210/KPshm_gK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">G a b r i e l - I g l e s i a s</div> <div style="text-align: center; font-size: 14px;">@fluffyguy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from G a b r i e l - I g l e s i a s. | Data | G a b r i e l - I g l e s i a s | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 264 | | Short tweets | 132 | | Tweets kept | 2850 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24pz59rj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fluffyguy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/36h0hs6l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/36h0hs6l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fluffyguy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/lizzo
huggingtweets
2021-09-14T23:39:31Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/lizzo/1631662767078/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1422227243498020865/sMYfk77e_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ALL THE RUMORS ARE TRUE</div> <div style="text-align: center; font-size: 14px;">@lizzo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ALL THE RUMORS ARE TRUE. | Data | ALL THE RUMORS ARE TRUE | | --- | --- | | Tweets downloaded | 3095 | | Retweets | 1412 | | Short tweets | 420 | | Tweets kept | 1263 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1iacenbu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lizzo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1erzu9fc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1erzu9fc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lizzo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cosm1cgrandma-glitchre-glitchre8
huggingtweets
2021-09-14T22:32:11Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cosm1cgrandma-glitchre-glitchre8/1631658643977/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1265389720047058944/hWPrCwh7_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1394712172010393608/tkWea9AS_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406255548228640781/wzOACSA8_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SA | Glitchre & glitchre & cosmic gangster</div> <div style="text-align: center; font-size: 14px;">@cosm1cgrandma-glitchre-glitchre8</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from SA | Glitchre & glitchre & cosmic gangster. | Data | SA | Glitchre | glitchre | cosmic gangster | | --- | --- | --- | --- | | Tweets downloaded | 2920 | 2891 | 2960 | | Retweets | 347 | 808 | 1410 | | Short tweets | 872 | 600 | 359 | | Tweets kept | 1701 | 1483 | 1191 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/15s2bdg3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cosm1cgrandma-glitchre-glitchre8's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3jv76342) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3jv76342/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cosm1cgrandma-glitchre-glitchre8') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/lilbthebasedgod
huggingtweets
2021-09-14T22:15:23Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/lilbthebasedgod/1631657718769/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1248509273/39198_1571854573776_1157872547_31663366_5779158_n_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lil B THE BASEDGOD</div> <div style="text-align: center; font-size: 14px;">@lilbthebasedgod</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lil B THE BASEDGOD. | Data | Lil B THE BASEDGOD | | --- | --- | | Tweets downloaded | 3074 | | Retweets | 2496 | | Short tweets | 0 | | Tweets kept | 578 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/19n5hf1u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lilbthebasedgod's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2dlir6fx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2dlir6fx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lilbthebasedgod') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bigscience/tr1-13B-codecarbon
bigscience
2021-09-14T21:38:31Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
CodeCarbon wasn't ready until the training was over so we only did an additional 10h run to measure with and then we can extrapolate to the whole training. This set of records captures the startup time and 2499 iterations in 2 records per gpu, since there was also an intermediary checkpoint saved half-way and we flush the CC records on each checkpoint saving. The training had 168000 iterations. Therefore multiply the reported data by 67. This would be quite approximate since we were using 16 nodes when doing the ramp up, then 64 and only the last 3 weeks 128 nodes. Caveat emptor: I'm not sure whether CC-reports overlap since each report is per gpu and I think they may be measuring the same thing, other than the gpu itself. So this requires research. Each csv file contains a report for a single gpu.
deval/distilbert-base-uncased-finetuned-ner
deval
2021-09-14T19:10:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9276788676324229 - name: Recall type: recall value: 0.9384718648618414 - name: F1 type: f1 value: 0.9330441552663775 - name: Accuracy type: accuracy value: 0.9843836878643939 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0606 - Precision: 0.9277 - Recall: 0.9385 - F1: 0.9330 - Accuracy: 0.9844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2454 | 1.0 | 878 | 0.0692 | 0.9106 | 0.9212 | 0.9159 | 0.9809 | | 0.0517 | 2.0 | 1756 | 0.0616 | 0.9203 | 0.9352 | 0.9277 | 0.9834 | | 0.0314 | 3.0 | 2634 | 0.0606 | 0.9277 | 0.9385 | 0.9330 | 0.9844 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.0 - Tokenizers 0.10.3
macedonizer/gr-gpt2
macedonizer
2021-09-14T16:07:35Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "gr", "dataset:wiki-gr", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - gr thumbnail: https://huggingface.co/macedonizer/gr-roberta-base/lets-talk-about-nlp-gr.jpg license: apache-2.0 datasets: - wiki-gr --- # gr-gpt2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). ## Model description gr-gpt2 is a transformers model pretrained on a very large corpus of Greek data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of the continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of a word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the Greek language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for, however, which is generating texts from a prompt. ### How to use Here is how to use this model to get the features of a given text in PyTorch: import random from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained('macedonizer/gr-gpt2') \\nnmodel = AutoModelWithLMHead.from_pretrained('macedonizer/gr-gpt2') input_text = 'Η Αθήνα είναι' if len(input_text) == 0: \ encoded_input = tokenizer(input_text, return_tensors="pt") \ output = model.generate( \ bos_token_id=random.randint(1, 50000), \ do_sample=True, \ top_k=50, \ max_length=1024, \ top_p=0.95, \ num_return_sequences=1, \ ) \ else: \ encoded_input = tokenizer(input_text, return_tensors="pt") \ output = model.generate( \ **encoded_input, \ bos_token_id=random.randint(1, 50000), \ do_sample=True, \ top_k=50, \ max_length=1024, \ top_p=0.95, \ num_return_sequences=1, \ ) decoded_output = [] \ for sample in output: \ decoded_output.append(tokenizer.decode(sample, skip_special_tokens=True)) print(decoded_output)
CAMeL-Lab/bert-base-arabic-camelbert-mix
CAMeL-Lab
2021-09-14T14:34:32Z
3,211
15
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "Arabic", "Dialect", "Egyptian", "Gulf", "Levantine", "Classical Arabic", "MSA", "Modern Standard Arabic", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 tags: - Arabic - Dialect - Egyptian - Gulf - Levantine - Classical Arabic - MSA - Modern Standard Arabic widget: - text: "الهدف من الحياة هو [MASK] ." --- # CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks ## Model description **CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants. We release pre-trained language models for Modern Standard Arabic (MSA), dialectal Arabic (DA), and classical Arabic (CA), in addition to a model pre-trained on a mix of the three. We also provide additional models that are pre-trained on a scaled-down set of the MSA variant (half, quarter, eighth, and sixteenth). The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* This model card describes **CAMeLBERT-Mix** (`bert-base-arabic-camelbert-mix`), a model pre-trained on a mixture of these variants: MSA, DA, and CA. ||Model|Variant|Size|#Word| |-|-|:-:|-:|-:| |✔|`bert-base-arabic-camelbert-mix`|CA,DA,MSA|167GB|17.3B| ||`bert-base-arabic-camelbert-ca`|CA|6GB|847M| ||`bert-base-arabic-camelbert-da`|DA|54GB|5.8B| ||`bert-base-arabic-camelbert-msa`|MSA|107GB|12.6B| ||`bert-base-arabic-camelbert-msa-half`|MSA|53GB|6.3B| ||`bert-base-arabic-camelbert-msa-quarter`|MSA|27GB|3.1B| ||`bert-base-arabic-camelbert-msa-eighth`|MSA|14GB|1.6B| ||`bert-base-arabic-camelbert-msa-sixteenth`|MSA|6GB|746M| ## Intended uses You can use the released model for either masked language modeling or next sentence prediction. However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification. We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT). #### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-arabic-camelbert-mix') >>> unmasker("الهدف من الحياة هو [MASK] .") [{'sequence': '[CLS] الهدف من الحياة هو النجاح. [SEP]', 'score': 0.10861027985811234, 'token': 6232, 'token_str': 'النجاح'}, {'sequence': '[CLS] الهدف من الحياة هو.. [SEP]', 'score': 0.07626965641975403, 'token': 18, 'token_str': '.'}, {'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]', 'score': 0.05131986364722252, 'token': 3696, 'token_str': 'الحياة'}, {'sequence': '[CLS] الهدف من الحياة هو الموت. [SEP]', 'score': 0.03734956309199333, 'token': 4295, 'token_str': 'الموت'}, {'sequence': '[CLS] الهدف من الحياة هو العمل. [SEP]', 'score': 0.027189988642930984, 'token': 2854, 'token_str': 'العمل'}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-mix') model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-mix') text = "مرحبا يا عالم." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import AutoTokenizer, TFAutoModel tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-mix') model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-mix') text = "مرحبا يا عالم." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data - MSA (Modern Standard Arabic) - [The Arabic Gigaword Fifth Edition](https://catalog.ldc.upenn.edu/LDC2011T11) - [Abu El-Khair Corpus](http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus) - [OSIAN corpus](https://vlo.clarin.eu/search;jsessionid=31066390B2C9E8C6304845BA79869AC1?1&q=osian) - [Arabic Wikipedia](https://archive.org/details/arwiki-20190201) - The unshuffled version of the Arabic [OSCAR corpus](https://oscar-corpus.com/) - DA (dialectal Arabic) - A collection of dialectal Arabic data described in [our paper](https://arxiv.org/abs/2103.06678). - CA (classical Arabic) - [OpenITI (Version 2020.1.2)](https://zenodo.org/record/3891466#.YEX4-F0zbzc) ## Training procedure We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training. We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified. ### Preprocessing - After extracting the raw text from each corpus, we apply the following pre-processing. - We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297). - We also remove lines without any Arabic characters. - We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools). - Finally, we split each line into sentences with a heuristics-based sentence segmenter. - We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers). - We do not lowercase letters nor strip accents. ### Pre-training - The model was trained on a single cloud TPU (`v3-8`) for one million steps in total. - The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256. - The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. - We use whole word masking and a duplicate factor of 10. - We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens. - We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1. - The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results - We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification. - We fine-tune and evaluate the models using 12 dataset. - We used Hugging Face's transformers to fine-tune our CAMeLBERT models. - We used transformers `v3.1.0` along with PyTorch `v1.5.1`. - The fine-tuning was done by adding a fully connected linear layer to the last hidden state. - We use \\(F_{1}\\) score as a metric for all tasks. - Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT). ### Results | Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 | | -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- | | NER | ANERcorp | MSA | 80.8% | 67.9% | 74.1% | 82.4% | 82.0% | 82.1% | 82.6% | 80.8% | | POS | PATB (MSA) | MSA | 98.1% | 97.8% | 97.7% | 98.3% | 98.2% | 98.3% | 98.2% | 98.2% | | | ARZTB (EGY) | DA | 93.6% | 92.3% | 92.7% | 93.6% | 93.6% | 93.7% | 93.6% | 93.6% | | | Gumar (GLF) | DA | 97.3% | 97.7% | 97.9% | 97.9% | 97.9% | 97.9% | 97.9% | 97.9% | | SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% | | | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% | | | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% | | DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% | | | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% | | | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% | | | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% | | Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% | ### Results (Average) | | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 | | -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- | | Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 82.1% | 75.7% | 80.1% | 83.4% | 83.0% | 83.3% | 83.2% | 82.3% | | | DA | 74.4% | 72.1% | 72.9% | 74.2% | 74.0% | 74.3% | 74.1% | 73.9% | | | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% | | Macro-Average | ALL | 78.7% | 74.7% | 77.1% | 79.2% | 79.0% | 79.2% | 79.1% | 78.6% | <a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant. ## Acknowledgements This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC). ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-da
CAMeL-Lab
2021-09-14T14:29:21Z
1,130
28
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: "الهدف من الحياة هو [MASK] ." --- # CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks ## Model description **CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants. We release pre-trained language models for Modern Standard Arabic (MSA), dialectal Arabic (DA), and classical Arabic (CA), in addition to a model pre-trained on a mix of the three. We also provide additional models that are pre-trained on a scaled-down set of the MSA variant (half, quarter, eighth, and sixteenth). The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* This model card describes **CAMeLBERT-DA** (`bert-base-arabic-camelbert-da`), a model pre-trained on the DA (dialectal Arabic) dataset. ||Model|Variant|Size|#Word| |-|-|:-:|-:|-:| ||`bert-base-arabic-camelbert-mix`|CA,DA,MSA|167GB|17.3B| ||`bert-base-arabic-camelbert-ca`|CA|6GB|847M| |✔|`bert-base-arabic-camelbert-da`|DA|54GB|5.8B| ||`bert-base-arabic-camelbert-msa`|MSA|107GB|12.6B| ||`bert-base-arabic-camelbert-msa-half`|MSA|53GB|6.3B| ||`bert-base-arabic-camelbert-msa-quarter`|MSA|27GB|3.1B| ||`bert-base-arabic-camelbert-msa-eighth`|MSA|14GB|1.6B| ||`bert-base-arabic-camelbert-msa-sixteenth`|MSA|6GB|746M| ## Intended uses You can use the released model for either masked language modeling or next sentence prediction. However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification. We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT). #### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-arabic-camelbert-da') >>> unmasker("الهدف من الحياة هو [MASK] .") [{'sequence': '[CLS] الهدف من الحياة هو.. [SEP]', 'score': 0.062508225440979, 'token': 18, 'token_str': '.'}, {'sequence': '[CLS] الهدف من الحياة هو الموت. [SEP]', 'score': 0.033172328025102615, 'token': 4295, 'token_str': 'الموت'}, {'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]', 'score': 0.029575437307357788, 'token': 3696, 'token_str': 'الحياة'}, {'sequence': '[CLS] الهدف من الحياة هو الرحيل. [SEP]', 'score': 0.02724040113389492, 'token': 11449, 'token_str': 'الرحيل'}, {'sequence': '[CLS] الهدف من الحياة هو الحب. [SEP]', 'score': 0.01564178802073002, 'token': 3088, 'token_str': 'الحب'}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-da') model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-da') text = "مرحبا يا عالم." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import AutoTokenizer, TFAutoModel tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-da') model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-da') text = "مرحبا يا عالم." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data - DA (dialectal Arabic) - A collection of dialectal Arabic data described in [our paper](https://arxiv.org/abs/2103.06678). ## Training procedure We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training. We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified. ### Preprocessing - After extracting the raw text from each corpus, we apply the following pre-processing. - We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297). - We also remove lines without any Arabic characters. - We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools). - Finally, we split each line into sentences with a heuristics-based sentence segmenter. - We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers). - We do not lowercase letters nor strip accents. ### Pre-training - The model was trained on a single cloud TPU (`v3-8`) for one million steps in total. - The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256. - The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. - We use whole word masking and a duplicate factor of 10. - We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens. - We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1. - The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results - We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification. - We fine-tune and evaluate the models using 12 dataset. - We used Hugging Face's transformers to fine-tune our CAMeLBERT models. - We used transformers `v3.1.0` along with PyTorch `v1.5.1`. - The fine-tuning was done by adding a fully connected linear layer to the last hidden state. - We use \\(F_{1}\\) score as a metric for all tasks. - Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT). ### Results | Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 | | -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- | | NER | ANERcorp | MSA | 80.8% | 67.9% | 74.1% | 82.4% | 82.0% | 82.1% | 82.6% | 80.8% | | POS | PATB (MSA) | MSA | 98.1% | 97.8% | 97.7% | 98.3% | 98.2% | 98.3% | 98.2% | 98.2% | | | ARZTB (EGY) | DA | 93.6% | 92.3% | 92.7% | 93.6% | 93.6% | 93.7% | 93.6% | 93.6% | | | Gumar (GLF) | DA | 97.3% | 97.7% | 97.9% | 97.9% | 97.9% | 97.9% | 97.9% | 97.9% | | SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% | | | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% | | | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% | | DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% | | | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% | | | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% | | | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% | | Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% | ### Results (Average) | | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 | | -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- | | Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 82.1% | 75.7% | 80.1% | 83.4% | 83.0% | 83.3% | 83.2% | 82.3% | | | DA | 74.4% | 72.1% | 72.9% | 74.2% | 74.0% | 74.3% | 74.1% | 73.9% | | | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% | | Macro-Average | ALL | 78.7% | 74.7% | 77.1% | 79.2% | 79.0% | 79.2% | 79.1% | 78.6% | <a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant. ## Acknowledgements This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC). ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth
CAMeL-Lab
2021-09-14T14:26:07Z
124
3
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: "الهدف من الحياة هو [MASK] ." --- # CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks ## Model description **CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants. We release pre-trained language models for Modern Standard Arabic (MSA), dialectal Arabic (DA), and classical Arabic (CA), in addition to a model pre-trained on a mix of the three. We also provide additional models that are pre-trained on a scaled-down set of the MSA variant (half, quarter, eighth, and sixteenth). The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* This model card describes **CAMeLBERT-MSA-sixteenth** (`bert-base-arabic-camelbert-msa-sixteenth`), a model pre-trained on a sixteenth of the full MSA dataset. ||Model|Variant|Size|#Word| |-|-|:-:|-:|-:| ||`bert-base-arabic-camelbert-mix`|CA,DA,MSA|167GB|17.3B| ||`bert-base-arabic-camelbert-ca`|CA|6GB|847M| ||`bert-base-arabic-camelbert-da`|DA|54GB|5.8B| ||`bert-base-arabic-camelbert-msa`|MSA|107GB|12.6B| ||`bert-base-arabic-camelbert-msa-half`|MSA|53GB|6.3B| ||`bert-base-arabic-camelbert-msa-quarter`|MSA|27GB|3.1B| ||`bert-base-arabic-camelbert-msa-eighth`|MSA|14GB|1.6B| |✔|`bert-base-arabic-camelbert-msa-sixteenth`|MSA|6GB|746M| ## Intended uses You can use the released model for either masked language modeling or next sentence prediction. However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification. We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT). #### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth') >>> unmasker("الهدف من الحياة هو [MASK] .") [{'sequence': '[CLS] الهدف من الحياة هو التغيير. [SEP]', 'score': 0.08320745080709457, 'token': 7946, 'token_str': 'التغيير'}, {'sequence': '[CLS] الهدف من الحياة هو التعلم. [SEP]', 'score': 0.04305094853043556, 'token': 12554, 'token_str': 'التعلم'}, {'sequence': '[CLS] الهدف من الحياة هو العمل. [SEP]', 'score': 0.0417640283703804, 'token': 2854, 'token_str': 'العمل'}, {'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]', 'score': 0.041371218860149384, 'token': 3696, 'token_str': 'الحياة'}, {'sequence': '[CLS] الهدف من الحياة هو المعرفة. [SEP]', 'score': 0.039794355630874634, 'token': 7344, 'token_str': 'المعرفة'}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth') model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth') text = "مرحبا يا عالم." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import AutoTokenizer, TFAutoModel tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth') model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth') text = "مرحبا يا عالم." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data - MSA (Modern Standard Arabic) - [The Arabic Gigaword Fifth Edition](https://catalog.ldc.upenn.edu/LDC2011T11) - [Abu El-Khair Corpus](http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus) - [OSIAN corpus](https://vlo.clarin.eu/search;jsessionid=31066390B2C9E8C6304845BA79869AC1?1&q=osian) - [Arabic Wikipedia](https://archive.org/details/arwiki-20190201) - The unshuffled version of the Arabic [OSCAR corpus](https://oscar-corpus.com/) ## Training procedure We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training. We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified. ### Preprocessing - After extracting the raw text from each corpus, we apply the following pre-processing. - We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297). - We also remove lines without any Arabic characters. - We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools). - Finally, we split each line into sentences with a heuristics-based sentence segmenter. - We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers). - We do not lowercase letters nor strip accents. ### Pre-training - The model was trained on a single cloud TPU (`v3-8`) for one million steps in total. - The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256. - The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. - We use whole word masking and a duplicate factor of 10. - We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens. - We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1. - The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results - We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification. - We fine-tune and evaluate the models using 12 dataset. - We used Hugging Face's transformers to fine-tune our CAMeLBERT models. - We used transformers `v3.1.0` along with PyTorch `v1.5.1`. - The fine-tuning was done by adding a fully connected linear layer to the last hidden state. - We use \\(F_{1}\\) score as a metric for all tasks. - Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT). ### Results | Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 | | -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- | | NER | ANERcorp | MSA | 80.8% | 67.9% | 74.1% | 82.4% | 82.0% | 82.1% | 82.6% | 80.8% | | POS | PATB (MSA) | MSA | 98.1% | 97.8% | 97.7% | 98.3% | 98.2% | 98.3% | 98.2% | 98.2% | | | ARZTB (EGY) | DA | 93.6% | 92.3% | 92.7% | 93.6% | 93.6% | 93.7% | 93.6% | 93.6% | | | Gumar (GLF) | DA | 97.3% | 97.7% | 97.9% | 97.9% | 97.9% | 97.9% | 97.9% | 97.9% | | SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% | | | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% | | | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% | | DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% | | | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% | | | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% | | | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% | | Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% | ### Results (Average) | | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 | | -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- | | Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 82.1% | 75.7% | 80.1% | 83.4% | 83.0% | 83.3% | 83.2% | 82.3% | | | DA | 74.4% | 72.1% | 72.9% | 74.2% | 74.0% | 74.3% | 74.1% | 73.9% | | | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% | | Macro-Average | ALL | 78.7% | 74.7% | 77.1% | 79.2% | 79.0% | 79.2% | 79.1% | 78.6% | <a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant. ## Acknowledgements This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC). ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
lewtun/perceriver-test-01
lewtun
2021-09-14T14:07:26Z
2
0
transformers
[ "transformers", "pytorch", "satflow", "forecasting", "timeseries", "remote-sensing", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: mit tags: - satflow - forecasting - timeseries - remote-sensing --- # Perceiver ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
mdhugol/indonesia-bert-sentiment-classification
mdhugol
2021-09-14T08:24:28Z
11,943
21
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
Indonesian BERT Base Sentiment Classifier is a sentiment-text-classification model. The model was originally the pre-trained [IndoBERT Base Model (phase1 - uncased)](https://huggingface.co/indobenchmark/indobert-base-p1) model using [Prosa sentiment dataset](https://github.com/indobenchmark/indonlu/tree/master/dataset/smsa_doc-sentiment-prosa) ## How to Use ### As Text Classifier ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForSequenceClassification pretrained= "mdhugol/indonesia-bert-sentiment-classification" model = AutoModelForSequenceClassification.from_pretrained(pretrained) tokenizer = AutoTokenizer.from_pretrained(pretrained) sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) label_index = {'LABEL_0': 'positive', 'LABEL_1': 'neutral', 'LABEL_2': 'negative'} pos_text = "Sangat bahagia hari ini" neg_text = "Dasar anak sialan!! Kurang ajar!!" result = sentiment_analysis(pos_text) status = label_index[result[0]['label']] score = result[0]['score'] print(f'Text: {pos_text} | Label : {status} ({score * 100:.3f}%)') result = sentiment_analysis(neg_text) status = label_index[result[0]['label']] score = result[0]['score'] print(f'Text: {neg_text} | Label : {status} ({score * 100:.3f}%)') ```
huggingtweets/4by3animetits
huggingtweets
2021-09-14T06:15:43Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/4by3animetits/1631600106043/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1437436917201637376/YMXf838Y_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Numb</div> <div style="text-align: center; font-size: 14px;">@4by3animetits</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Numb. | Data | Numb | | --- | --- | | Tweets downloaded | 3206 | | Retweets | 1497 | | Short tweets | 491 | | Tweets kept | 1218 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3pdw5mgr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @4by3animetits's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/5yrdnbzr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/5yrdnbzr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/4by3animetits') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jamescharles-loganpaul-tanamongeau
huggingtweets
2021-09-14T05:53:11Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/jamescharles-loganpaul-tanamongeau/1631598787303/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1420806762408464385/10y3M0iO_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1324782032124215296/HMG6-q8g_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1401837042934468611/okzqIoMb_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CANCELLED & James Charles & Logan Paul</div> <div style="text-align: center; font-size: 14px;">@jamescharles-loganpaul-tanamongeau</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CANCELLED & James Charles & Logan Paul. | Data | CANCELLED | James Charles | Logan Paul | | --- | --- | --- | --- | | Tweets downloaded | 3167 | 3182 | 3246 | | Retweets | 938 | 480 | 98 | | Short tweets | 522 | 496 | 287 | | Tweets kept | 1707 | 2206 | 2861 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2avr905u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jamescharles-loganpaul-tanamongeau's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2at101p1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2at101p1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jamescharles-loganpaul-tanamongeau') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
dbmdz/bert-base-french-europeana-cased
dbmdz
2021-09-13T21:03:24Z
44,865
4
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "historic french", "fr", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: fr license: mit tags: - "historic french" --- # 🤗 + 📚 dbmdz BERT model In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources French Europeana BERT models 🎉 # French Europeana BERT We extracted all French texts using the `language` metadata attribute from the Europeana corpus. The resulting corpus has a size of 63GB and consists of 11,052,528,456 tokens. Based on the metadata information, texts from the 18th - 20th century are mainly included in the training corpus. Detailed information about the data and pretraining steps can be found in [this repository](https://github.com/stefan-it/europeana-bert). ## Model weights BERT model weights for PyTorch and TensorFlow are available. * French Europeana BERT: `dbmdz/bert-base-french-europeana-cased` - [model hub page](https://huggingface.co/dbmdz/bert-base-french-europeana-cased/tree/main) ## Results For results on Historic NER, please refer to [this repository](https://github.com/stefan-it/europeana-bert). ## Usage With Transformers >= 2.3 our French Europeana BERT model can be loaded like: ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-french-europeana-cased") model = AutoModel.from_pretrained("dbmdz/bert-base-french-europeana-cased") ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT model just open an issue [here](https://github.com/dbmdz/berts/issues/new) 🤗 # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❤️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download our model from their S3 storage 🤗
shashank2123/t5-base-fine-tuned-for-Punctuation-Restoration
shashank2123
2021-09-13T14:42:51Z
34
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-base-fine-tuned-for-Punctuation-Restoration results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-fine-tuned-for-Punctuation-Restoration This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1796 | 1.0 | 1431 | 0.1097 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
nielsr/beit-base-patch16-224
nielsr
2021-09-13T13:36:43Z
73
0
transformers
[ "transformers", "pytorch", "jax", "beit", "image-classification", "dataset:imagenet", "dataset:imagenet-21k", "arxiv:2106.08254", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification datasets: - imagenet - imagenet-21k --- # BEiT (base-sized model, fine-tuned on ImageNet-1k after being intermediately fine-tuned on ImageNet-22k) BEiT (BERT pre-training of Image Transformers) model pre-trained in a self-supervised way on ImageNet-22k (14 million images, 21,841 classes) at resolution 224x224, and also fine-tuned on the same dataset at the same resolution. It was introduced in the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit). Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team.
SIKU-BERT/sikubert
SIKU-BERT
2021-09-13T13:34:40Z
419
10
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "chinese", "classical chinese", "literary chinese", "ancient chinese", "roberta", "zh", "license:apache-2.0", "autotrain_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - "zh" thumbnail: "https://raw.githubusercontent.com/SIKU-BERT/SikuBERT/main/appendix/sikubert.png" tags: - "chinese" - "classical chinese" - "literary chinese" - "ancient chinese" - "bert" - "roberta" - "pytorch" inference: false license: "apache-2.0" --- # SikuBERT ## Model description ![SikuBERT](https://raw.githubusercontent.com/SIKU-BERT/SikuBERT-for-digital-humanities-and-classical-Chinese-information-processing/main/appendix/sikubert.png) Digital humanities research needs the support of large-scale corpus and high-performance ancient Chinese natural language processing tools. The pre-training language model has greatly improved the accuracy of text mining in English and modern Chinese texts. At present, there is an urgent need for a pre-training model specifically for the automatic processing of ancient texts. We used the verified high-quality “Siku Quanshu” full-text corpus as the training set, based on the BERT deep language model architecture, we constructed the SikuBERT and SikuRoBERTa pre-training language models for intelligent processing tasks of ancient Chinese. ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("SIKU-BERT/sikubert") model = AutoModel.from_pretrained("SIKU-BERT/sikubert") ``` ## About Us We are from Nanjing Agricultural University. > Created with by SIKU-BERT [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/SIKU-BERT/SikuBERT-for-digital-humanities-and-classical-Chinese-information-processing)
Gregor/xlm-roberta-large-wmt21-qe
Gregor
2021-09-13T11:22:14Z
2
0
adapter-transformers
[ "adapter-transformers", "xlm-roberta", "adapterhub:quality_estimation/wmt21", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - adapter-transformers - xlm-roberta - adapterhub:quality_estimation/wmt21 --- # Adapter `Gregor/xlm-roberta-large-wmt21-qe` for xlm-roberta-large An [adapter](https://adapterhub.ml) for the xlm-roberta-large model that was trained on the [quality_estimation/wmt21](https://adapterhub.ml/explore/quality_estimation/wmt21/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("xlm-roberta-large") adapter_name = model.load_adapter("Gregor/xlm-roberta-large-wmt21-qe") model.active_adapters = adapter_name ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
huggingtweets/lux_capital
huggingtweets
2021-09-13T09:48:37Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/lux_capital/1631526513457/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/728194457632395264/rwtxA-v4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lux Capital</div> <div style="text-align: center; font-size: 14px;">@lux_capital</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lux Capital. | Data | Lux Capital | | --- | --- | | Tweets downloaded | 2329 | | Retweets | 597 | | Short tweets | 22 | | Tweets kept | 1710 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3khqan1v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lux_capital's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gfkbn7u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gfkbn7u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lux_capital') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
eugenesiow/drln-bam
eugenesiow
2021-09-13T08:34:40Z
69,548
1
transformers
[ "transformers", "DRLN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1906.12021", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - super-image - image-super-resolution datasets: - eugenesiow/Div2k - eugenesiow/Set5 - eugenesiow/Set14 - eugenesiow/BSD100 - eugenesiow/Urban100 metrics: - pnsr - ssim --- # Densely Residual Laplacian Super-Resolution (DRLN) DRLN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Densely Residual Laplacian Super-resolution](https://arxiv.org/abs/1906.12021) by Anwar et al. (2020) and first released in [this repository](https://github.com/saeed-anwar/DRLN). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/drln_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description Super-Resolution convolutional neural networks have recently demonstrated high-quality restoration for single images. However, existing algorithms often require very deep architectures and long training times. Furthermore, current convolutional neural networks for super-resolution are unable to exploit features at multiple scales and weigh them equally, limiting their learning capability. In this exposition, we present a compact and accurate super-resolution algorithm namely, Densely Residual Laplacian Network (DRLN). The proposed network employs cascading residual on the residual structure to allow the flow of low-frequency information to focus on learning high and mid-level features. In addition, deep supervision is achieved via the densely concatenated residual blocks settings, which also helps in learning from high-level complex features. Moreover, we propose Laplacian attention to model the crucial features to learn the inter and intra-level dependencies between the feature maps. Furthermore, comprehensive quantitative and qualitative evaluations on low-resolution, noisy low-resolution, and real historical image benchmark datasets illustrate that our DRLN algorithm performs favorably against the state-of-the-art methods visually and accurately. This model also applies the balanced attention (BAM) method invented by [Wang et al. (2021)](https://arxiv.org/abs/2104.07566) to further improve the results. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import DrlnModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = DrlnModel.from_pretrained('eugenesiow/drln-bam', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, DrlnModel, DrlnConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = DrlnConfig( scale=4, # train a model to upscale 4x bam=True, # apply balanced attention to the network ) model = DrlnModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |drln-bam | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**38.23/0.9614** | |Set5 |3x |30.39/0.8678 |**35.3/0.9422** | |Set5 |4x |28.42/0.8101 |**32.49/0.8986** | |Set14 |2x |30.22/0.8683 |**33.95/0.9206** | |Set14 |3x |27.53/0.7737 |**31.27/0.8624** | |Set14 |4x |25.99/0.7023 |**28.94/0.7899** | |BSD100 |2x |29.55/0.8425 |**33.95/0.9269** | |BSD100 |3x |27.20/0.7382 |**29.78/0.8224** | |BSD100 |4x |25.96/0.6672 |**28.63/0.7686** | |Urban100 |2x |26.66/0.8408 |**32.81/0.9339** | |Urban100 |3x | |**29.82/0.8828** | |Urban100 |4x |23.14/0.6573 |**26.53/0.7991** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/drln_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{wang2021bam, title={BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution}, author={Fanyi Wang and Haotian Hu and Cheng Shen}, year={2021}, eprint={2104.07566}, archivePrefix={arXiv}, primaryClass={eess.IV} } ``` ```bibtex @misc{anwar2019densely, title={Densely Residual Laplacian Super-Resolution}, author={Saeed Anwar and Nick Barnes}, year={2019}, eprint={1906.12021}, archivePrefix={arXiv}, primaryClass={eess.IV} } ```
pkufool/icefall_asr_aishell_tdnn_lstm_ctc
pkufool
2021-09-13T06:42:32Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# TDNN-LSTM model for aishell with icefall
Aftabhussain/Tomato_Leaf_Classifier
Aftabhussain
2021-09-13T04:14:44Z
75
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:04Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Tomato_Leaf_Classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # Tomato_Leaf_Classifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Bacterial_spot ![Bacterial_spot](images/Bacterial_spot.JPG) #### Healthy ![Healthy](images/Healthy.JPG)
arogyaGurkha/kobert-finetuned-squad_kor_v1
arogyaGurkha
2021-09-13T03:59:34Z
44
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad_kor_v1", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad_kor_v1 model-index: - name: kobert-finetuned-squad_kor_v1 results: - task: name: Question Answering type: question-answering dataset: name: squad_kor_v1 type: squad_kor_v1 args: squad_kor_v1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobert-finetuned-squad_kor_v1 This model is a fine-tuned version of [monologg/kobert](https://huggingface.co/monologg/kobert) on the squad_kor_v1 dataset. It achieves the following results on the evaluation set: - Loss: 4.0928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.0155 | 1.0 | 3808 | 4.0928 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
eugenesiow/edsr
eugenesiow
2021-09-13T03:46:42Z
4,608
4
transformers
[ "transformers", "EDSR", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1707.02921", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - super-image - image-super-resolution datasets: - eugenesiow/Div2k - eugenesiow/Set5 - eugenesiow/Set14 - eugenesiow/BSD100 - eugenesiow/Urban100 metrics: - pnsr - ssim --- # Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR) EDSR model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Enhanced Deep Residual Networks for Single Image Super-Resolution](https://arxiv.org/abs/1707.02921) by Lim et al. (2017) and first released in [this repository](https://github.com/sanghyun-son/EDSR-PyTorch). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and EDSR upscaling x2. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/edsr_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description EDSR is a model that uses both deeper and wider architecture (32 ResBlocks and 256 channels) to improve performance. It uses both global and local skip connections, and up-scaling is done at the end of the network. It doesn't use batch normalization layers (input and output have similar distributions, normalizing intermediate features may not be desirable) instead it uses constant scaling layers to ensure stable training. An L1 loss function (absolute error) is used instead of L2 (MSE), the authors showed better performance empirically and it requires less computation. This is a base model (~5mb vs ~100mb) that includes just 16 ResBlocks and 64 channels. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import EdsrModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = EdsrModel.from_pretrained('eugenesiow/edsr', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, EdsrModel, EdsrConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = EdsrConfig( scale=4, # train a model to upscale 4x ) model = EdsrModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |edsr | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**38.19/0.9612** | |Set5 |3x |30.39/0.8678 |**35.31/0.9421** | |Set5 |4x |28.42/0.8101 |**32.5/0.8986** | |Set14 |2x |30.22/0.8683 |**33.99/0.9215** | |Set14 |3x |27.53/0.7737 |**31.18/0.862** | |Set14 |4x |25.99/0.7023 |**28.92/0.7899** | |BSD100 |2x |29.55/0.8425 |**33.89/0.9266** | |BSD100 |3x |27.20/0.7382 |**29.77/0.8224** | |BSD100 |4x |25.96/0.6672 |**28.62/0.7689** | |Urban100 |2x |26.66/0.8408 |**32.68/0.9331** | |Urban100 |3x | |**29.75/0.8825** | |Urban100 |4x |23.14/0.6573 |**26.53/0.7995** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/edsr_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @InProceedings{Lim_2017_CVPR_Workshops, author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu}, title = {Enhanced Deep Residual Networks for Single Image Super-Resolution}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, month = {July}, year = {2017} } ```
huggingtweets/coinburnm
huggingtweets
2021-09-13T02:25:49Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/coinburnm/1631499945178/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1396939691870535682/062raFlk_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Coinburn</div> <div style="text-align: center; font-size: 14px;">@coinburnm</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Coinburn. | Data | Coinburn | | --- | --- | | Tweets downloaded | 837 | | Retweets | 72 | | Short tweets | 141 | | Tweets kept | 624 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38wldrmx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coinburnm's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2z4rh9o1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2z4rh9o1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/coinburnm') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
pkufool/icefall_asr_librispeech_tdnn-lstm_ctc
pkufool
2021-09-13T02:05:58Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Pre-trained TDNN-LSTM-CTC models for the librispeech dataset with icefall. The model was trained on full [LibriSpeech](http://openslr.org/12/) with the scripts in [icefall](https://github.com/k2-fsa/icefall). See (https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/tdnn_lstm_ctc) for more details of this model. ## How to use See (https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/tdnn_lstm_ctc/Pre-trained.md) ## Training procedure The version of the mainly repositories are list below. k2: https://github.com/k2-fsa/k2/commit/81cec9ec736d2c603ad75d933bb3e3a3706fb0dd icefall: https://github.com/k2-fsa/icefall/commit/7a647a13780cf011f9cfe3067e87a6ebb3bb8411 lhotse: https://github.com/lhotse-speech/lhotse/commit/5dfe0f4c02b1334ebb7db6d67e1141fe406ca76b * Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. It is better to use the given version above, but I think the latest version would be ok. And also install the requirements listed in icefall. * Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. ``` git clone https://github.com/k2-fsa/icefall cd icefall git checkout 7a647a13780cf011f9cfe3067e87a6ebb3bb8411 ``` * Preparing data. ``` cd egs/librispeech/ASR bash ./prepare.sh ``` * Training ``` export CUDA_VISIBLE_DEVICES="0,1,2,3" python tdnn_lstm_ctc/train.py --bucketing-sampler True \ --concatenate-cuts False \ --max-duration 200 \ --full-libri True \ --world-size 4 ``` ## Evaluation results The best decoding results (WERs) on LibriSpeech test-clean and test-other are listed below, we got this results by averaging models from epoch 14 to 19, the decoding method is `whole-lattice-rescoring`. ||test-clean|test-other| |--|--|--| |WER|6.59%|17.69%|
huggingartists/peter-paul-and-mary
huggingartists
2021-09-13T00:35:13Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/peter-paul-and-mary", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/peter-paul-and-mary tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/02fe78bca7c47dc6869673e7552c7978.500x338x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Peter, Paul and Mary</div> <a href="https://genius.com/artists/peter-paul-and-mary"> <div style="text-align: center; font-size: 14px;">@peter-paul-and-mary</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Peter, Paul and Mary. Dataset is available [here](https://huggingface.co/datasets/huggingartists/peter-paul-and-mary). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/peter-paul-and-mary") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/svwa6bev/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Peter, Paul and Mary's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1s4mkr9x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1s4mkr9x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/peter-paul-and-mary') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/peter-paul-and-mary") model = AutoModelWithLMHead.from_pretrained("huggingartists/peter-paul-and-mary") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
doyoungkim/bert-base-uncased-sst2-membership-attack
doyoungkim
2021-09-12T15:14:11Z
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model_index: name: bert-base-uncased-sst2-membership-attack --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-sst2-membership-attack This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.6296 - Accuracy: 0.8681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6921 | 1.0 | 3813 | 0.6263 | 0.8360 | | 0.6916 | 2.0 | 7626 | 0.6296 | 0.8681 | | 0.6904 | 3.0 | 11439 | 0.6105 | 0.8406 | | 0.6886 | 4.0 | 15252 | 0.6192 | 0.8200 | | 0.6845 | 5.0 | 19065 | 0.6250 | 0.7798 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.1
huggingartists/aikko
huggingartists
2021-09-12T14:10:49Z
6
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/aikko", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/aikko tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a1a40316d1405fa83df2a21923d64168.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">⁣aikko</div> <a href="https://genius.com/artists/aikko"> <div style="text-align: center; font-size: 14px;">@aikko</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ⁣aikko. Dataset is available [here](https://huggingface.co/datasets/huggingartists/aikko). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/aikko") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1cfdpsrg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ⁣aikko's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/oesyn53g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/oesyn53g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/aikko') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/aikko") model = AutoModelWithLMHead.from_pretrained("huggingartists/aikko") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/krechet
huggingartists
2021-09-12T14:06:03Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/krechet", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/krechet tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/61181ccb60b6a0e1e7f8fb8ae2a2ab0a.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Krechet</div> <a href="https://genius.com/artists/krechet"> <div style="text-align: center; font-size: 14px;">@krechet</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Krechet. Dataset is available [here](https://huggingface.co/datasets/huggingartists/krechet). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/krechet") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1c2yk38s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Krechet's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/39bxkroc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/39bxkroc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/krechet') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/krechet") model = AutoModelWithLMHead.from_pretrained("huggingartists/krechet") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/mashina-vremeni
huggingartists
2021-09-12T12:25:03Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/mashina-vremeni", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/mashina-vremeni tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b780335021ab0e732601f25bd7a3d319.380x380x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Машина Времени (Mashina Vremeni)</div> <a href="https://genius.com/artists/mashina-vremeni"> <div style="text-align: center; font-size: 14px;">@mashina-vremeni</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Машина Времени (Mashina Vremeni). Dataset is available [here](https://huggingface.co/datasets/huggingartists/mashina-vremeni). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/mashina-vremeni") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3r1yxrx7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Машина Времени (Mashina Vremeni)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1cgaltpc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1cgaltpc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/mashina-vremeni') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/mashina-vremeni") model = AutoModelWithLMHead.from_pretrained("huggingartists/mashina-vremeni") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/system-of-a-down
huggingartists
2021-09-12T12:08:09Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/system-of-a-down", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/system-of-a-down tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/5688d59e74bfc07b0531636114f56c1e.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">System of a Down</div> <a href="https://genius.com/artists/system-of-a-down"> <div style="text-align: center; font-size: 14px;">@system-of-a-down</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from System of a Down. Dataset is available [here](https://huggingface.co/datasets/huggingartists/system-of-a-down). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/system-of-a-down") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3m1sikv8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on System of a Down's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/wf3qe4yi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/wf3qe4yi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/system-of-a-down') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/system-of-a-down") model = AutoModelWithLMHead.from_pretrained("huggingartists/system-of-a-down") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
pritoms/gpt-neo-125M-Byethon
pritoms
2021-09-12T11:14:38Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt_neo", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: gpt-neo-125M-Byethon results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-125M-Byethon This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 237 | 0.8348 | | No log | 2.0 | 474 | 0.6931 | | 0.8151 | 3.0 | 711 | 0.6609 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingartists/post-malone
huggingartists
2021-09-12T03:17:01Z
6
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/post-malone", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/post-malone tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1010194fa644be099aa2d1329de0b230.448x448x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Post Malone</div> <a href="https://genius.com/artists/post-malone"> <div style="text-align: center; font-size: 14px;">@post-malone</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Post Malone. Dataset is available [here](https://huggingface.co/datasets/huggingartists/post-malone). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/post-malone") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/5ig21wpy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Post Malone's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2ih9ntzv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2ih9ntzv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/post-malone') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/post-malone") model = AutoModelWithLMHead.from_pretrained("huggingartists/post-malone") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/armin-van-buuren
huggingartists
2021-09-12T03:06:42Z
5
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/armin-van-buuren", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/armin-van-buuren tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b1a35069a1a44927425ef26c0bbda4a4.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Armin van Buuren</div> <a href="https://genius.com/artists/armin-van-buuren"> <div style="text-align: center; font-size: 14px;">@armin-van-buuren</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Armin van Buuren. Dataset is available [here](https://huggingface.co/datasets/huggingartists/armin-van-buuren). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/armin-van-buuren") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/hrrfc55y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Armin van Buuren's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3q93rwo8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3q93rwo8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/armin-van-buuren') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/armin-van-buuren") model = AutoModelWithLMHead.from_pretrained("huggingartists/armin-van-buuren") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
blizrys/distilbert-base-uncased-finetuned-mnli
blizrys
2021-09-11T19:31:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8205807437595517 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6753 - Accuracy: 0.8206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.5146 | 1.0 | 24544 | 0.4925 | 0.8049 | | 0.4093 | 2.0 | 49088 | 0.5090 | 0.8164 | | 0.3122 | 3.0 | 73632 | 0.5299 | 0.8185 | | 0.2286 | 4.0 | 98176 | 0.6753 | 0.8206 | | 0.182 | 5.0 | 122720 | 0.8372 | 0.8195 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingartists/imagine-dragons
huggingartists
2021-09-11T13:36:33Z
6
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/imagine-dragons", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/imagine-dragons tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/ec1df125fd46ec3ef56f228df021a8cd.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Imagine Dragons</div> <a href="https://genius.com/artists/imagine-dragons"> <div style="text-align: center; font-size: 14px;">@imagine-dragons</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Imagine Dragons. Dataset is available [here](https://huggingface.co/datasets/huggingartists/imagine-dragons). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/imagine-dragons") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/dln6ixis/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Imagine Dragons's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3cj3c8z1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3cj3c8z1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/imagine-dragons') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/imagine-dragons") model = AutoModelWithLMHead.from_pretrained("huggingartists/imagine-dragons") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/sergei-letov
huggingartists
2021-09-11T12:13:08Z
3
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/sergei-letov", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/sergei-letov tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a5717aec4301e2adfb464d3b85701f74.300x300x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Сергей Летов (Sergei Letov)</div> <a href="https://genius.com/artists/sergei-letov"> <div style="text-align: center; font-size: 14px;">@sergei-letov</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Сергей Летов (Sergei Letov). Dataset is available [here](https://huggingface.co/datasets/huggingartists/sergei-letov). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/sergei-letov") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1chw67j7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Сергей Летов (Sergei Letov)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/my7m2jp6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/my7m2jp6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/sergei-letov') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/sergei-letov") model = AutoModelWithLMHead.from_pretrained("huggingartists/sergei-letov") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/v-x-v-prince
huggingartists
2021-09-11T11:37:19Z
5
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/v-x-v-prince", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/v-x-v-prince tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/08ad78acc3e91c45a426390e7524d4e9.853x853x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">V $ X V PRiNCE</div> <a href="https://genius.com/artists/v-x-v-prince"> <div style="text-align: center; font-size: 14px;">@v-x-v-prince</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from V $ X V PRiNCE. Dataset is available [here](https://huggingface.co/datasets/huggingartists/v-x-v-prince). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/v-x-v-prince") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/a6qdzbfe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on V $ X V PRiNCE's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1rv03n56) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1rv03n56/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/v-x-v-prince') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/v-x-v-prince") model = AutoModelWithLMHead.from_pretrained("huggingartists/v-x-v-prince") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
airesearch/wangchanberta-base-wiki-newmm
airesearch
2021-09-11T09:39:18Z
636
2
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "th", "arxiv:1907.11692", "arxiv:2101.09635", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: th --- # WangchanBERTa base model: `wangchanberta-base-wiki-newmm` <br> Pretrained RoBERTa BASE model on Thai Wikipedia corpus. The script and documentation can be found at [this reposiryory](https://github.com/vistec-AI/thai2transformers). <br> ## Model description <br> The architecture of the pretrained model is based on RoBERTa [[Liu et al., 2019]](https://arxiv.org/abs/1907.11692). <br> ## Intended uses & limitations <br> You can use the pretrained model for masked language modeling (i.e. predicting a mask token in the input text). In addition, we also provide finetuned models for multiclass/multilabel text classification and token classification task. <br> **Multiclass text classification** - `wisesight_sentiment` 4-class text classification task (`positive`, `neutral`, `negative`, and `question`) based on social media posts and tweets. - `wongnai_reivews` Users' review rating classification task (scale is ranging from 1 to 5) - `generated_reviews_enth` : (`review_star` as label) Generated users' review rating classification task (scale is ranging from 1 to 5). **Multilabel text classification** - `prachathai67k` Thai topic classification with 12 labels based on news article corpus from prachathai.com. The detail is described in this [page](https://huggingface.co/datasets/prachathai67k). **Token classification** - `thainer` Named-entity recognition tagging with 13 named-entities as descibed in this [page](https://huggingface.co/datasets/thainer). - `lst20` : NER NER and POS tagging Named-entity recognition tagging with 10 named-entities and Part-of-Speech tagging with 16 tags as descibed in this [page](https://huggingface.co/datasets/lst20). <br> ## How to use <br> The getting started notebook of WangchanBERTa model can be found at this [Colab notebook](https://colab.research.google.com/drive/1Kbk6sBspZLwcnOE61adAQo30xxqOQ9ko) <br> ## Training data `wangchanberta-base-wiki-newmm` model was pretrained on Thai Wikipedia. Specifically, we use the Wikipedia dump articles on 20 August 2020 (dumps.wikimedia.org/thwiki/20200820/). We opt out lists, and tables. ### Preprocessing Texts are preprocessed with the following rules: - Replace non-breaking space, zero-width non-breaking space, and soft hyphen with spaces. - Remove an empty parenthesis that occur right after the title of the first paragraph. - Replace spaces wtth <_>. <br> Regarding the vocabulary, we use wordl-level token from [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp)'s dictionary-based tokenizer namedly `newmm`. The total number of word-level tokens in the vocabulary is 97,982. We sample sentences contigously to have the length of at most 512 tokens. For some sentences that overlap the boundary of 512 tokens, we split such sentence with an additional token as document separator. This is the same approach as proposed by [[Liu et al., 2019]](https://arxiv.org/abs/1907.11692) (called "FULL-SENTENCES"). Regarding the masking procedure, for each sequence, we sampled 15% of the tokens and replace them with<mask>token.Out of the 15%, 80% is replaced with a<mask>token, 10% is left unchanged and 10% is replaced with a random token. <br> **Train/Val/Test splits** We split sequencially 944,782 sentences for training set, 24,863 sentences for validation set and 24,862 sentences for test set. <br> **Pretraining** The model was trained on 32 V100 GPUs for 31,250 steps with the batch size of 8,192 (16 sequences per device with 16 accumulation steps) and a sequence length of 512 tokens. The optimizer we used is Adam with the learning rate of $7e-4$, $\beta_1 = 0.9$, $\beta_2= 0.98$ and $\epsilon = 1e-6$. The learning rate is warmed up for the first 1250 steps and linearly decayed to zero. The model checkpoint with minimum validation loss will be selected as the best model checkpoint. <br> **BibTeX entry and citation info** ``` @misc{lowphansirikul2021wangchanberta, title={WangchanBERTa: Pretraining transformer-based Thai Language Models}, author={Lalita Lowphansirikul and Charin Polpanumas and Nawat Jantrakulchai and Sarana Nutanong}, year={2021}, eprint={2101.09635}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
airesearch/wangchanberta-base-wiki-20210520-spm-finetune-qa
airesearch
2021-09-11T09:28:19Z
111
0
transformers
[ "transformers", "pytorch", "camembert", "question-answering", "th", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: th widget: - text: "สวนกุหลาบเป็นโรงเรียนอะไร" context: "โรงเรียนสวนกุหลาบวิทยาลัย (Suankularb Wittayalai School) (อักษรย่อ : ส.ก. / S.K.) เป็นโรงเรียนชายล้วน ระดับชั้นมัธยมศึกษาขนาดใหญ่พิเศษ สังกัดสำนักงานเขตพื้นที่การศึกษามัธยมศึกษาเขต 1 สำนักงานคณะกรรมการการศึกษาขั้นพื้นฐาน (ชื่อเดิม: กรมสามัญศึกษา) กระทรวงศึกษาธิการ ก่อตั้งโดย พระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัว ได้รับการสถาปนาขึ้นในวันที่ 8 มีนาคม พ.ศ. 2424 (ขณะนั้นนับวันที่ 1 เมษายน เป็นวันขึ้นปีใหม่ เมื่อนับอย่างสากลถือเป็น พ.ศ. 2425) โดยเป็นโรงเรียนรัฐบาลแห่งแรกของประเทศไทย" --- # wangchanberta-base-wiki-20210520-spm-finetune-qa Finetuning `airesearchth/wangchanberta-base-wiki-20210520-spmd` with the training set of `iapp_wiki_qa_squad`, `thaiqa_squad`, and `nsc_qa` (removed examples which have cosine similarity with validation and test examples over 0.8; contexts of the latter two are trimmed to be around 300 `newmm` words). Benchmarks shared on [wandb](https://wandb.ai/cstorm125/wangchanberta-qa) using validation and test sets of `iapp_wiki_qa_squad`. Trained with [thai2transformers](https://github.com/vistec-AI/thai2transformers/blob/dev/scripts/downstream/train_question_answering_lm_finetuning.py). Run with: ``` export MODEL_NAME=airesearchth/wangchanberta-base-wiki-20210520-news-spm CUDA_LAUNCH_BLOCKING=1 python train_question_answering_lm_finetuning.py \\n --model_name $MODEL_NAME \\n --dataset_name chimera_qa \\n --output_dir $MODEL_NAME-finetune-chimera_qa-model \\n --log_dir $MODEL_NAME-finetune-chimera_qa-log \\n --model_max_length 400 \\n --pad_on_right \\n --fp16 ```
Narrativa/spanish-gpt2-finetuned-rap-lyrics
Narrativa
2021-09-11T08:46:33Z
11
5
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "GPT-2", "Rap", "Lyrics", "Songs", "es", "dataset:large_spanish_corpus", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: es tags: - GPT-2 - Rap - Lyrics - Songs datasets: - large_spanish_corpus widget: - text: "Déjame contarte lo importante que es buscarte un plan\nNo para golpearles o ganarles, sino para darles paz\n" license: mit --- # Spanish GPT-2 trained on [Spanish RAP Lyrics](https://www.kaggle.com/smunoz3801/9325-letras-de-rap-en-espaol) Created by: [Narrativa](https://www.narrativa.com/) About Narrativa: Natural Language Generation (NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. #NLG #AI
arogyaGurkha/koelectra-base-discriminator-finetuned-squad_kor_v1
arogyaGurkha
2021-09-11T08:34:39Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:squad_kor_v1", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad_kor_v1 model-index: - name: koelectra-base-discriminator-finetuned-squad_kor_v1 results: - task: name: Question Answering type: question-answering dataset: name: squad_kor_v1 type: squad_kor_v1 args: squad_kor_v1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # koelectra-base-discriminator-finetuned-squad_kor_v1 This model is a fine-tuned version of [monologg/koelectra-base-discriminator](https://huggingface.co/monologg/koelectra-base-discriminator) on the squad_kor_v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.5589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5774 | 1.0 | 4025 | 0.5589 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingartists/rocket
huggingartists
2021-09-11T07:31:59Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/rocket", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/rocket tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/0fb709925134799103886db5e722ef73.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ROCKET</div> <a href="https://genius.com/artists/rocket"> <div style="text-align: center; font-size: 14px;">@rocket</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ROCKET. Dataset is available [here](https://huggingface.co/datasets/huggingartists/rocket). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/rocket") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3ceqmb05/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ROCKET's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/37kckftd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/37kckftd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/rocket') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/rocket") model = AutoModelWithLMHead.from_pretrained("huggingartists/rocket") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
tobiaslee/bert-2l-768h-uncased
tobiaslee
2021-09-11T03:10:34Z
7
0
transformers
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# BERT-uncased-2L-768H This is a converted pytorch checkpoint for bert with 2L trained from scratch. See [Google BERT](https://github.com/google-research/bert) for details.
megagonlabs/optimus-amzn
megagonlabs
2021-09-11T00:16:57Z
12
1
transformers
[ "transformers", "pytorch", "summarization", "en", "license:bsd-3-clause", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en tags: - summarization inference: false license: bsd-3-clause --- ## Optimus model See original GitHub repo for more details [here](https://github.com/megagonlabs/coop)
megagonlabs/optimus-yelp
megagonlabs
2021-09-11T00:16:32Z
10
0
transformers
[ "transformers", "pytorch", "summarization", "en", "license:bsd-3-clause", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en tags: - summarization inference: false license: bsd-3-clause --- ## Optimus model See original GitHub repo for more details [here](https://github.com/megagonlabs/coop)
megagonlabs/bimeanvae-yelp
megagonlabs
2021-09-11T00:12:51Z
22
1
transformers
[ "transformers", "pytorch", "summarization", "en", "license:bsd-3-clause", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en tags: - summarization inference: false license: bsd-3-clause --- ## BiMeanVAE model See original GitHub repo for more details [here](https://github.com/megagonlabs/coop)
megagonlabs/bimeanvae-amzn
megagonlabs
2021-09-11T00:10:54Z
14
0
transformers
[ "transformers", "pytorch", "summarization", "en", "license:bsd-3-clause", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en tags: - summarization inference: false license: bsd-3-clause --- ## BiMeanVAE model See original GitHub repo for more details [here](https://github.com/megagonlabs/coop)
huggingartists/aaron-watson
huggingartists
2021-09-10T15:49:57Z
6
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/aaron-watson", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/aaron-watson tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/894021d09a748eef8c6d63ad898b814b.650x430x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aaron Watson</div> <a href="https://genius.com/artists/aaron-watson"> <div style="text-align: center; font-size: 14px;">@aaron-watson</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Aaron Watson. Dataset is available [here](https://huggingface.co/datasets/huggingartists/aaron-watson). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/aaron-watson") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/14ha1tnc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Aaron Watson's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/34e4zb2v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/34e4zb2v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/aaron-watson') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/aaron-watson") model = AutoModelWithLMHead.from_pretrained("huggingartists/aaron-watson") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/skillet
huggingartists
2021-09-10T14:51:47Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/skillet", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/skillet tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c42b7baa88dae01013eebc53c0aed177.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Skillet</div> <a href="https://genius.com/artists/skillet"> <div style="text-align: center; font-size: 14px;">@skillet</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Skillet. Dataset is available [here](https://huggingface.co/datasets/huggingartists/skillet). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/skillet") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1wmbkzn8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Skillet's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3jke6b6i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3jke6b6i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/skillet') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/skillet") model = AutoModelWithLMHead.from_pretrained("huggingartists/skillet") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/scriptonite
huggingartists
2021-09-10T13:10:06Z
5
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/scriptonite", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/scriptonite tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/411d50392aef867fe0e9dd55a074ecfb.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Скриптонит (Scriptonite)</div> <a href="https://genius.com/artists/scriptonite"> <div style="text-align: center; font-size: 14px;">@scriptonite</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Скриптонит (Scriptonite). Dataset is available [here](https://huggingface.co/datasets/huggingartists/scriptonite). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/scriptonite") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/13pxeww0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Скриптонит (Scriptonite)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1itfp830) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1itfp830/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/scriptonite') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/scriptonite") model = AutoModelWithLMHead.from_pretrained("huggingartists/scriptonite") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/25-17
huggingartists
2021-09-10T12:55:59Z
5
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/25-17", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/25-17 tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4fedc5dd2830a874a5274bf1cac62002.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">25/17</div> <a href="https://genius.com/artists/25-17"> <div style="text-align: center; font-size: 14px;">@25-17</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 25/17. Dataset is available [here](https://huggingface.co/datasets/huggingartists/25-17). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/25-17") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1iuytbjp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 25/17's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/knv4l4gw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/knv4l4gw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/25-17') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/25-17") model = AutoModelWithLMHead.from_pretrained("huggingartists/25-17") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
Riser/YOLOP
Riser
2021-09-10T09:08:34Z
0
9
null
[ "object-detection", "arxiv:2108.11250", "arxiv:1612.07695", "arxiv:1606.02147", "region:us" ]
object-detection
2022-03-02T23:29:04Z
--- tags: - object-detection --- <div align="left"> ## You Only Look Once for Panoptic ​ Driving Perception > [**You Only Look at Once for Panoptic driving Perception**](https://arxiv.org/abs/2108.11250) > > by Dong Wu, Manwen Liao, Weitian Zhang, [Xinggang Wang](https://xinggangw.info/) [*School of EIC, HUST*](http://eic.hust.edu.cn/English/Home.htm) > > *arXiv technical report ([arXiv 2108.11250](https://arxiv.org/abs/2108.11250))* --- ### The Illustration of YOLOP ![yolop](pictures/yolop.png) ### Contributions * We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the `BDD100K `dataset. * We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization. ### Results #### Traffic Object Detection Result | Model | Recall(%) | mAP50(%) | Speed(fps) | | -------------- | --------- | -------- | ---------- | | `Multinet` | 81.3 | 60.2 | 8.6 | | `DLT-Net` | 89.4 | 68.4 | 9.3 | | `Faster R-CNN` | 77.2 | 55.6 | 5.3 | | `YOLOv5s` | 86.8 | 77.2 | 82 | | `YOLOP(ours)` | 89.2 | 76.5 | 41 | #### Drivable Area Segmentation Result | Model | mIOU(%) | Speed(fps) | | ------------- | ------- | ---------- | | `Multinet` | 71.6 | 8.6 | | `DLT-Net` | 71.3 | 9.3 | | `PSPNet` | 89.6 | 11.1 | | `YOLOP(ours)` | 91.5 | 41 | #### Lane Detection Result: | Model | mIOU(%) | IOU(%) | | ------------- | ------- | ------ | | `ENet` | 34.12 | 14.64 | | `SCNN` | 35.79 | 15.84 | | `ENet-SAD` | 36.56 | 16.02 | | `YOLOP(ours)` | 70.50 | 26.20 | #### Ablation Studies 1: End-to-end v.s. Step-by-step: | Training_method | Recall(%) | AP(%) | mIoU(%) | Accuracy(%) | IoU(%) | | --------------- | --------- | ----- | ------- | ----------- | ------ | | `ES-W` | 87.0 | 75.3 | 90.4 | 66.8 | 26.2 | | `ED-W` | 87.3 | 76.0 | 91.6 | 71.2 | 26.1 | | `ES-D-W` | 87.0 | 75.1 | 91.7 | 68.6 | 27.0 | | `ED-S-W` | 87.5 | 76.1 | 91.6 | 68.0 | 26.8 | | `End-to-end` | 89.2 | 76.5 | 91.5 | 70.5 | 26.2 | #### Ablation Studies 2: Multi-task v.s. Single task: | Training_method | Recall(%) | AP(%) | mIoU(%) | Accuracy(%) | IoU(%) | Speed(ms/frame) | | --------------- | --------- | ----- | ------- | ----------- | ------ | --------------- | | `Det(only)` | 88.2 | 76.9 | - | - | - | 15.7 | | `Da-Seg(only)` | - | - | 92.0 | - | - | 14.8 | | `Ll-Seg(only)` | - | - | - | 79.6 | 27.9 | 14.8 | | `Multitask` | 89.2 | 76.5 | 91.5 | 70.5 | 26.2 | 24.4 | **Notes**: - The works we has use for reference including `Multinet` ([paper](https://arxiv.org/pdf/1612.07695.pdf?utm_campaign=affiliate-ir-Optimise%20media%28%20South%20East%20Asia%29%20Pte.%20ltd._156_-99_national_R_all_ACQ_cpa_en&utm_content=&utm_source=%20388939),[code](https://github.com/MarvinTeichmann/MultiNet)),`DLT-Net` ([paper](https://ieeexplore.ieee.org/abstract/document/8937825)),`Faster R-CNN` ([paper](https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf),[code](https://github.com/ShaoqingRen/faster_rcnn)),`YOLOv5s`([code](https://github.com/ultralytics/yolov5)) ,`PSPNet`([paper](https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.pdf),[code](https://github.com/hszhao/PSPNet)) ,`ENet`([paper](https://arxiv.org/pdf/1606.02147.pdf),[code](https://github.com/osmr/imgclsmob)) `SCNN`([paper](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/16802/16322),[code](https://github.com/XingangPan/SCNN)) `SAD-ENet`([paper](https://openaccess.thecvf.com/content_ICCV_2019/papers/Hou_Learning_Lightweight_Lane_Detection_CNNs_by_Self_Attention_Distillation_ICCV_2019_paper.pdf),[code](https://github.com/cardwing/Codes-for-Lane-Detection)). Thanks for their wonderful works. - In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others. --- ### Visualization #### Traffic Object Detection Result ![detect result](pictures/detect.png) #### Drivable Area Segmentation Result ![](pictures/da.png) #### Lane Detection Result ![](pictures/ll.png) **Notes**: - The visualization of lane detection result has been post processed by quadratic fitting. --- ### Project Structure ```python ├─inference │ ├─images # inference images │ ├─output # inference result ├─lib │ ├─config/default # configuration of training and validation │ ├─core │ │ ├─activations.py # activation function │ │ ├─evaluate.py # calculation of metric │ │ ├─function.py # training and validation of model │ │ ├─general.py #calculation of metric、nms、conversion of data-format、visualization │ │ ├─loss.py # loss function │ │ ├─postprocess.py # postprocess(refine da-seg and ll-seg, unrelated to paper) │ ├─dataset │ │ ├─AutoDriveDataset.py # Superclass dataset,general function │ │ ├─bdd.py # Subclass dataset,specific function │ │ ├─hust.py # Subclass dataset(Campus scene, unrelated to paper) │ │ ├─convect.py │ │ ├─DemoDataset.py # demo dataset(image, video and stream) │ ├─models │ │ ├─YOLOP.py # Setup and Configuration of model │ │ ├─light.py # Model lightweight(unrelated to paper, zwt) │ │ ├─commom.py # calculation module │ ├─utils │ │ ├─augmentations.py # data augumentation │ │ ├─autoanchor.py # auto anchor(k-means) │ │ ├─split_dataset.py # (Campus scene, unrelated to paper) │ │ ├─utils.py # logging、device_select、time_measure、optimizer_select、model_save&initialize 、Distributed training │ ├─run │ │ ├─dataset/training time # Visualization, logging and model_save ├─tools │ │ ├─demo.py # demo(folder、camera) │ │ ├─test.py │ │ ├─train.py ├─toolkits │ │ ├─depoly # Deployment of model ├─weights # Pretraining model ``` --- ### Requirement This codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+: ``` conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch ``` See `requirements.txt` for additional dependencies and version requirements. ```setup pip install -r requirements.txt ``` ### Data preparation #### Download - Download the images from [images](https://bdd-data.berkeley.edu/). - Download the annotations of detection from [det_annotations](https://drive.google.com/file/d/1Ge-R8NTxG1eqd4zbryFo-1Uonuh0Nxyl/view?usp=sharing). - Download the annotations of drivable area segmentation from [da_seg_annotations](https://drive.google.com/file/d/1xy_DhUZRHR8yrZG3OwTQAHhYTnXn7URv/view?usp=sharing). - Download the annotations of lane line segmentation from [ll_seg_annotations](https://drive.google.com/file/d/1lDNTPIQj_YLNZVkksKM25CvCHuquJ8AP/view?usp=sharing). We recommend the dataset directory structure to be the following: ``` # The id represent the correspondence relation ├─dataset root │ ├─images │ │ ├─train │ │ ├─val │ ├─det_annotations │ │ ├─train │ │ ├─val │ ├─da_seg_annotations │ │ ├─train │ │ ├─val │ ├─ll_seg_annotations │ │ ├─train │ │ ├─val ``` Update the your dataset path in the `./lib/config/default.py`. ### Training You can set the training configuration in the `./lib/config/default.py`. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch_size). If you want try alternating optimization or train model for single task, please modify the corresponding configuration in `./lib/config/default.py` to `True`. (As following, all configurations is `False`, which means training multiple tasks end to end). ```python # Alternating optimization _C.TRAIN.SEG_ONLY = False # Only train two segmentation branchs _C.TRAIN.DET_ONLY = False # Only train detection branch _C.TRAIN.ENC_SEG_ONLY = False # Only train encoder and two segmentation branchs _C.TRAIN.ENC_DET_ONLY = False # Only train encoder and detection branch # Single task _C.TRAIN.DRIVABLE_ONLY = False # Only train da_segmentation task _C.TRAIN.LANE_ONLY = False # Only train ll_segmentation task _C.TRAIN.DET_ONLY = False # Only train detection task ``` Start training: ```shell python tools/train.py ``` ### Evaluation You can set the evaluation configuration in the `./lib/config/default.py`. (Including: batch_size and threshold value for nms). Start evaluating: ```shell python tools/test.py --weights weights/End-to-end.pth ``` ### Demo Test We provide two testing method. #### Folder You can store the image or video in `--source`, and then save the reasoning result to `--save-dir` ```shell python tools/demo --source inference/images ``` #### Camera If there are any camera connected to your computer, you can set the `source` as the camera number(The default is 0). ```shell python tools/demo --source 0 ``` ### Deployment Our model can reason in real-time on `Jetson Tx2`, with `Zed Camera` to capture image. We use `TensorRT` tool for speeding up. We provide code for deployment and reasoning of model in `./toolkits/deploy`. ## Citation If you find our paper and code useful for your research, please consider giving a star and citation: ```BibTeX @misc{2108.11250, Author = {Dong Wu and Manwen Liao and Weitian Zhang and Xinggang Wang}, Title = {YOLOP: You Only Look Once for Panoptic Driving Perception}, Year = {2021}, Eprint = {arXiv:2108.11250}, } ```
huggingartists/agata-christie
huggingartists
2021-09-10T09:07:11Z
10
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/agata-christie", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/agata-christie tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/61b6b0a0b7f6587d1b33542d5c18ad3c.489x489x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Агата Кристи (Agata Christie)</div> <a href="https://genius.com/artists/agata-christie"> <div style="text-align: center; font-size: 14px;">@agata-christie</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Агата Кристи (Agata Christie). Dataset is available [here](https://huggingface.co/datasets/huggingartists/agata-christie). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/agata-christie") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1dtf6ia5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Агата Кристи (Agata Christie)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/q27fvz1h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/q27fvz1h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/agata-christie') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/agata-christie") model = AutoModelWithLMHead.from_pretrained("huggingartists/agata-christie") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/the-velvet-underground
huggingartists
2021-09-10T09:04:08Z
6
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/the-velvet-underground", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/the-velvet-underground tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://s3.amazonaws.com/rapgenius/vu.jpeg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Velvet Underground</div> <a href="https://genius.com/artists/the-velvet-underground"> <div style="text-align: center; font-size: 14px;">@the-velvet-underground</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from The Velvet Underground. Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-velvet-underground). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-velvet-underground") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/lbkqy84q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The Velvet Underground's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1e4s74q4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1e4s74q4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-velvet-underground') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-velvet-underground") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-velvet-underground") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/enigma
huggingartists
2021-09-10T08:57:05Z
6
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/enigma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/enigma tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4b5472082f220eb9c2ca6b22f4d12f45.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Enigma</div> <a href="https://genius.com/artists/enigma"> <div style="text-align: center; font-size: 14px;">@enigma</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Enigma. Dataset is available [here](https://huggingface.co/datasets/huggingartists/enigma). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/enigma") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/8bx90lw6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Enigma's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1c1t20ji) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1c1t20ji/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/enigma') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/enigma") model = AutoModelWithLMHead.from_pretrained("huggingartists/enigma") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/kipelov
huggingartists
2021-09-10T08:40:56Z
3
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/kipelov", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/kipelov tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d4ae6ad73ca63bc97b2a10dfefc47b63.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Кипелов (Kipelov)</div> <a href="https://genius.com/artists/kipelov"> <div style="text-align: center; font-size: 14px;">@kipelov</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Кипелов (Kipelov). Dataset is available [here](https://huggingface.co/datasets/huggingartists/kipelov). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/kipelov") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/225m5y65/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Кипелов (Kipelov)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/38es269x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/38es269x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/kipelov') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/kipelov") model = AutoModelWithLMHead.from_pretrained("huggingartists/kipelov") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/grigory-leps
huggingartists
2021-09-10T08:13:40Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/grigory-leps", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/grigory-leps tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/f30e8944a06a196868ee4b077a7926a6.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Григорий Лепс (Grigory Leps)</div> <a href="https://genius.com/artists/grigory-leps"> <div style="text-align: center; font-size: 14px;">@grigory-leps</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Григорий Лепс (Grigory Leps). Dataset is available [here](https://huggingface.co/datasets/huggingartists/grigory-leps). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/grigory-leps") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/32wqexib/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Григорий Лепс (Grigory Leps)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1j0f6nwb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1j0f6nwb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/grigory-leps') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/grigory-leps") model = AutoModelWithLMHead.from_pretrained("huggingartists/grigory-leps") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/vladimir-vysotsky
huggingartists
2021-09-10T07:47:12Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/vladimir-vysotsky", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/vladimir-vysotsky tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/18735fe10bace7b3f615b2da9c95ac73.938x938x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Владимир Высоцкий (Vladimir Vysotsky)</div> <a href="https://genius.com/artists/vladimir-vysotsky"> <div style="text-align: center; font-size: 14px;">@vladimir-vysotsky</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Владимир Высоцкий (Vladimir Vysotsky). Dataset is available [here](https://huggingface.co/datasets/huggingartists/vladimir-vysotsky). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/vladimir-vysotsky") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1w1qc649/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Владимир Высоцкий (Vladimir Vysotsky)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1inrl5qe) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1inrl5qe/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/vladimir-vysotsky') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/vladimir-vysotsky") model = AutoModelWithLMHead.from_pretrained("huggingartists/vladimir-vysotsky") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
flooptherocket/DialogGPT-small-rick
flooptherocket
2021-09-10T01:17:41Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: conversational --- @Rick from Rick and Morty GPT-2 Conversation Model ---
bshlgrs/autonlp-old-data-trained-10022181
bshlgrs
2021-09-09T21:46:53Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:bshlgrs/autonlp-data-old-data-trained", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - bshlgrs/autonlp-data-old-data-trained --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 10022181 ## Validation Metrics - Loss: 0.369505375623703 - Accuracy: 0.8706206896551724 - Macro F1: 0.5410226656476808 - Micro F1: 0.8706206896551724 - Weighted F1: 0.8515634683886795 - Macro Precision: 0.5159711665622992 - Micro Precision: 0.8706206896551724 - Weighted Precision: 0.8346991124101657 - Macro Recall: 0.5711653346601209 - Micro Recall: 0.8706206896551724 - Weighted Recall: 0.8706206896551724 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-old-data-trained-10022181 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-old-data-trained-10022181", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-old-data-trained-10022181", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
sevbqewre/hyou
sevbqewre
2021-09-09T17:57:48Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
https://maccaboard.paulmccartney.com/users/watch-shang-chi-2021-full-movie-watch-online-download-hdrip https://maccaboard.paulmccartney.com/users/watch-shang-chi-2021-online-full-free-download https://maccaboard.paulmccartney.com/users/watch-shang-chi-2021-full-movie-download-hd https://maccaboard.paulmccartney.com/users/download-shang-chi-2021-online-full-movie-free https://maccaboard.paulmccartney.com/users/123movies-online-shang-chi-2021-watch-free-hd https://maccaboard.paulmccartney.com/users/shang-chi-hindi-dubbed-movie-download-full-hd-720p-telegram https://maccaboard.paulmccartney.com/users/watch-shang-chi-hindi-dubbed-movie-download-full-hd-720p-0 https://maccaboard.paulmccartney.com/users/hindi-dubbed-watch-shang-chi-2021-full-hd-movie-online-free https://maccaboard.paulmccartney.com/users/download-shang-chi-2021-torrent-movie-free-hd-yts https://maccaboard.paulmccartney.com/users/download-720p-shang-chi-2021-full-movie-watch-free https://maccaboard.paulmccartney.com/users/watch-shang-chi-2021-full-movie-hd-online-free-download https://maccaboard.paulmccartney.com/users/download-shang-chi-full-movie-and-watch-online-free-hd-720p https://maccaboard.paulmccartney.com/users/123movies-free-shang-chi-2021-online-download-full-hd
Aleksandar/distilbert-srb-ner
Aleksandar
2021-09-09T06:27:16Z
14
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "sr", "dataset:wikiann", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy language: - sr model_index: - name: distilbert-srb-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: sr metric: name: Accuracy type: accuracy value: 0.9576561462374611 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-srb-ner This model was trained from scratch on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2972 - Precision: 0.8871 - Recall: 0.9100 - F1: 0.8984 - Accuracy: 0.9577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3818 | 1.0 | 625 | 0.2175 | 0.8175 | 0.8370 | 0.8272 | 0.9306 | | 0.198 | 2.0 | 1250 | 0.1766 | 0.8551 | 0.8732 | 0.8640 | 0.9458 | | 0.1423 | 3.0 | 1875 | 0.1702 | 0.8597 | 0.8763 | 0.8679 | 0.9473 | | 0.079 | 4.0 | 2500 | 0.1774 | 0.8674 | 0.8875 | 0.8773 | 0.9515 | | 0.0531 | 5.0 | 3125 | 0.2011 | 0.8688 | 0.8965 | 0.8825 | 0.9522 | | 0.0429 | 6.0 | 3750 | 0.2082 | 0.8769 | 0.8970 | 0.8868 | 0.9538 | | 0.032 | 7.0 | 4375 | 0.2268 | 0.8764 | 0.8916 | 0.8839 | 0.9528 | | 0.0204 | 8.0 | 5000 | 0.2423 | 0.8726 | 0.8959 | 0.8841 | 0.9529 | | 0.0148 | 9.0 | 5625 | 0.2522 | 0.8774 | 0.8991 | 0.8881 | 0.9538 | | 0.0125 | 10.0 | 6250 | 0.2544 | 0.8823 | 0.9024 | 0.8922 | 0.9559 | | 0.0108 | 11.0 | 6875 | 0.2592 | 0.8780 | 0.9041 | 0.8909 | 0.9553 | | 0.007 | 12.0 | 7500 | 0.2672 | 0.8877 | 0.9056 | 0.8965 | 0.9571 | | 0.0048 | 13.0 | 8125 | 0.2714 | 0.8879 | 0.9089 | 0.8982 | 0.9583 | | 0.0049 | 14.0 | 8750 | 0.2872 | 0.8873 | 0.9068 | 0.8970 | 0.9573 | | 0.0034 | 15.0 | 9375 | 0.2915 | 0.8883 | 0.9114 | 0.8997 | 0.9577 | | 0.0027 | 16.0 | 10000 | 0.2890 | 0.8865 | 0.9103 | 0.8983 | 0.9581 | | 0.0028 | 17.0 | 10625 | 0.2885 | 0.8877 | 0.9085 | 0.8980 | 0.9576 | | 0.0014 | 18.0 | 11250 | 0.2928 | 0.8860 | 0.9073 | 0.8965 | 0.9577 | | 0.0013 | 19.0 | 11875 | 0.2963 | 0.8856 | 0.9099 | 0.8976 | 0.9576 | | 0.001 | 20.0 | 12500 | 0.2972 | 0.8871 | 0.9100 | 0.8984 | 0.9577 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.1
rizky22/IndoBERT
rizky22
2021-09-09T05:33:05Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
https://sites.google.com/view/watchonline-full-hd-we-need-to/ https://sites.google.com/view/watch-hdthegateway2021fullmovi/ https://sites.google.com/view/downloadwatch-hdwildindian2021/ https://sites.google.com/view/putlocker123movieswatchkaren20/ https://sites.google.com/view/full-hdzone4142021moviewatchon/ https://sites.google.com/view/watch-hdmalignant2021onlinemov/ https://sites.google.com/view/watch-the-card-counter-2021-fu/ https://sites.google.com/view/queenpins2021onlinemoviefullhd/ https://sites.google.com/view/watch-hdsmallenginerepair2021f/ https://sites.google.com/view/shang-chi-watch/ https://sites.google.com/view/watch-vivo2021-online-free/ https://sites.google.com/view/watch-free-guy-download/ https://sites.google.com/view/hd-yakuza-princess-20/ https://www.metooo.io/e/watch-free-blue-bayou-2021-hd-movies-full-online-4k-uhd https://www.metooo.io/e/123movies-hd-watch-the-card-counter-online-movie-2021-full-free-download0 https://www.peacefirst.org/user-profile/cry-macho-2021-movie-online-full-hd-1 https://ok.ru/group/63840774127847/topic/153545931483367 https://medium.com/@arbor.hooper/123movies-watch-the-card-counter-2021-movie-online-full-free-download-1382366cc20a http://perencanaan.setjen.pertanian.go.id/index.php/forum/baca/123movies-watch-we-need-to-do-something-2021-movie-online-full-free-download-in-hd
eugenesiow/han
eugenesiow
2021-09-09T01:59:04Z
150
0
transformers
[ "transformers", "HAN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:2008.08767", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - super-image - image-super-resolution datasets: - eugenesiow/Div2k - eugenesiow/Set5 - eugenesiow/Set14 - eugenesiow/BSD100 - eugenesiow/Urban100 metrics: - pnsr - ssim --- # Holistic Attention Network (HAN) HAN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Single Image Super-Resolution via a Holistic Attention Network](https://arxiv.org/abs/2008.08767) by Niu et al. (2020) and first released in [this repository](https://github.com/wwlCape/HAN). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/han_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-of-the-art single image super- resolution approaches. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import HanModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = HanModel.from_pretrained('eugenesiow/han', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, HanModel, HanConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = HanConfig( scale=4, # train a model to upscale 4x ) model = HanModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |han | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**** | |Set5 |3x |30.39/0.8678 |**** | |Set5 |4x |28.42/0.8101 |**31.21/0.8778** | |Set14 |2x |30.22/0.8683 |**** | |Set14 |3x |27.53/0.7737 |**** | |Set14 |4x |25.99/0.7023 |**28.18/0.7712** | |BSD100 |2x |29.55/0.8425 |**** | |BSD100 |3x |27.20/0.7382 |**** | |BSD100 |4x |25.96/0.6672 |**28.09/0.7533** | |Urban100 |2x |26.66/0.8408 |**** | |Urban100 |3x | |**** | |Urban100 |4x |23.14/0.6573 |**25.1/0.7497** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/han_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{niu2020single, title={Single Image Super-Resolution via a Holistic Attention Network}, author={Ben Niu and Weilei Wen and Wenqi Ren and Xiangde Zhang and Lianping Yang and Shuzhen Wang and Kaihao Zhang and Xiaochun Cao and Haifeng Shen}, year={2020}, eprint={2008.08767}, archivePrefix={arXiv}, primaryClass={eess.IV} } ```
elisno/is_core_web_trf
elisno
2021-09-08T21:19:54Z
4
0
spacy
[ "spacy", "token-classification", "is", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - is model-index: - name: is_core_web_trf results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9193318395 - name: NER Recall type: recall value: 0.9217728758 - name: NER F Score type: f_score value: 0.9205507394 --- | Feature | Description | | --- | --- | | **Name** | `is_core_web_trf` | | **Version** | `0.0.0` | | **spaCy** | `>=3.1.1,<3.2.0` | | **Default Pipeline** | `transformer`, `ner`, `tagger`, `parser` | | **Components** | `transformer`, `ner`, `tagger`, `parser` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (591 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `Date`, `Location`, `Miscellaneous`, `Money`, `Organization`, `Percent`, `Person`, `Time` | | **`tagger`** | `aa`, `aae`, `aam`, `af`, `afe`, `afm`, `au`, `c`, `cn`, `ct`, `e`, `fahee`, `fahen`, `faheo`, `faheþ`, `fahfe`, `fahfn`, `fahfo`, `fahfþ`, `fakee`, `faken`, `fakeo`, `fakeþ`, `fakfe`, `fakfn`, `fakfo`, `fakfþ`, `favee`, `faven`, `faveo`, `faveþ`, `favfe`, `favfn`, `favfo`, `favfþ`, `fbhee`, `fbhen`, `fbheo`, `fbheþ`, `fbhfe`, `fbhfn`, `fbhfo`, `fbhfþ`, `fbkee`, `fbken`, `fbkeo`, `fbkeþ`, `fbkfe`, `fbkfn`, `fbkfo`, `fbkfþ`, `fbvee`, `fbven`, `fbveo`, `fbveþ`, `fbvfe`, `fbvfn`, `fbvfo`, `fbvfþ`, `fehee`, `fehen`, `feheo`, `feheþ`, `fehfe`, `fehfn`, `fehfo`, `fehfþ`, `fekee`, `feken`, `fekeo`, `fekeþ`, `fekfe`, `fekfn`, `fekfo`, `fekfþ`, `fevee`, `feven`, `feveo`, `feveþ`, `fevfe`, `fevfn`, `fevfo`, `fevfþ`, `fohee`, `fohen`, `foheo`, `foheþ`, `fohfe`, `fohfn`, `fohfo`, `fohfþ`, `fokee`, `foken`, `fokeo`, `fokeþ`, `fokfe`, `fokfn`, `fokfo`, `fokfþ`, `fovee`, `foven`, `foveo`, `foveþ`, `fovfe`, `fovfn`, `fovfo`, `fovfþ`, `fp1ee`, `fp1en`, `fp1eo`, `fp1eþ`, `fp1fe`, `fp1fn`, `fp1fo`, `fp1fþ`, `fp2ee`, `fp2en`, `fp2eo`, `fp2eþ`, `fp2fe`, `fp2fn`, `fp2fo`, `fp2fþ`, `fphee`, `fphen`, `fpheo`, `fpheþ`, `fphfe`, `fphfn`, `fphfo`, `fphfþ`, `fpkee`, `fpken`, `fpkeo`, `fpkeþ`, `fpkfe`, `fpkfn`, `fpkfo`, `fpkfþ`, `fpvee`, `fpven`, `fpveo`, `fpveþ`, `fpvfe`, `fpvfn`, `fpvfo`, `fpvfþ`, `fshee`, `fshen`, `fsheo`, `fsheþ`, `fshfe`, `fshfn`, `fshfo`, `fshfþ`, `fskee`, `fsken`, `fskeo`, `fskeþ`, `fskfe`, `fskfn`, `fskfo`, `fskfþ`, `fsvee`, `fsven`, `fsveo`, `fsveþ`, `fsvfe`, `fsvfn`, `fsvfo`, `fsvfþ`, `ghee`, `ghen`, `gheo`, `gheþ`, `ghfe`, `ghfn`, `ghfo`, `ghfþ`, `gkee`, `gken`, `gkeo`, `gkeþ`, `gkfe`, `gkfn`, `gkfo`, `gkfþ`, `gvee`, `gven`, `gveo`, `gveþ`, `gvfe`, `gvfn`, `gvfo`, `gvfþ`, `ks`, `kt`, `lheeof`, `lheesf`, `lheeve`, `lheevf`, `lheevm`, `lhenof`, `lhense`, `lhensf`, `lhenve`, `lhenvf`, `lhenvm`, `lheoof`, `lheose`, `lheosf`, `lheosm`, `lheove`, `lheovf`, `lheovm`, `lheþof`, `lheþse`, `lheþsf`, `lheþve`, `lheþvf`, `lheþvm`, `lhfeof`, `lhfese`, `lhfesf`, `lhfeve`, `lhfevf`, `lhfevm`, `lhfnof`, `lhfnse`, `lhfnsf`, `lhfnve`, `lhfnvf`, `lhfnvm`, `lhfoof`, `lhfose`, `lhfosf`, `lhfove`, `lhfovf`, `lhfovm`, `lhfþof`, `lhfþse`, `lhfþsf`, `lhfþve`, `lhfþvf`, `lhfþvm`, `lkeeof`, `lkeesf`, `lkeeve`, `lkeevf`, `lkeevm`, `lkenof`, `lkense`, `lkensf`, `lkenve`, `lkenvf`, `lkenvm`, `lkeoof`, `lkeose`, `lkeosf`, `lkeove`, `lkeovf`, `lkeovm`, `lkeþof`, `lkeþse`, `lkeþsf`, `lkeþve`, `lkeþvf`, `lkeþvm`, `lkfeof`, `lkfese`, `lkfesf`, `lkfeve`, `lkfevf`, `lkfevm`, `lkfnof`, `lkfnse`, `lkfnsf`, `lkfnve`, `lkfnvf`, `lkfnvm`, `lkfoof`, `lkfose`, `lkfosf`, `lkfove`, `lkfovf`, `lkfovm`, `lkfþof`, `lkfþse`, `lkfþsf`, `lkfþsm`, `lkfþve`, `lkfþvf`, `lkfþvm`, `lveeof`, `lveese`, `lveesf`, `lveeve`, `lveevf`, `lveevm`, `lvenof`, `lvense`, `lvensf`, `lvenve`, `lvenvf`, `lvenvm`, `lveoof`, `lveose`, `lveosf`, `lveove`, `lveovf`, `lveovm`, `lveþof`, `lveþse`, `lveþsf`, `lveþve`, `lveþvf`, `lveþvm`, `lvfeof`, `lvfese`, `lvfesf`, `lvfeve`, `lvfevf`, `lvfevm`, `lvfnof`, `lvfnse`, `lvfnsf`, `lvfnve`, `lvfnvf`, `lvfnvm`, `lvfoof`, `lvfose`, `lvfosf`, `lvfove`, `lvfovf`, `lvfovm`, `lvfþof`, `lvfþse`, `lvfþsf`, `lvfþsm`, `lvfþve`, `lvfþvf`, `lvfþvm`, `m`, `n----s`, `n-ee`, `n-ee-s`, `n-en`, `n-en-s`, `n-eng`, `n-eo`, `n-eo-s`, `n-eþ`, `n-eþ-s`, `n-fn`, `nhee`, `nhee-s`, `nheeg`, `nheegs`, `nhen`, `nhen-s`, `nheng`, `nhengs`, `nheo`, `nheo-s`, `nheog`, `nheogs`, `nheþ`, `nheþ-s`, `nheþg`, `nheþgs`, `nhfe`, `nhfe-s`, `nhfeg`, `nhfegs`, `nhfn`, `nhfn-s`, `nhfng`, `nhfngs`, `nhfo`, `nhfo-s`, `nhfog`, `nhfogs`, `nhfþ`, `nhfþ-s`, `nhfþg`, `nhfþgs`, `nkee`, `nkee-s`, `nkeeg`, `nkeegs`, `nken`, `nken-s`, `nkeng`, `nkengs`, `nkeo`, `nkeo-s`, `nkeog`, `nkeogs`, `nkeþ`, `nkeþ-s`, `nkeþg`, `nkeþgs`, `nkfe`, `nkfe-s`, `nkfeg`, `nkfegs`, `nkfn`, `nkfn-s`, `nkfng`, `nkfngs`, `nkfo`, `nkfo-s`, `nkfog`, `nkfogs`, `nkfþ`, `nkfþ-s`, `nkfþg`, `nkfþgs`, `nvee`, `nvee-s`, `nveeg`, `nveegs`, `nven`, `nven-s`, `nveng`, `nvengs`, `nveo`, `nveo-s`, `nveog`, `nveogs`, `nveþ`, `nveþ-s`, `nveþg`, `nveþgs`, `nvfe`, `nvfe-s`, `nvfeg`, `nvfegs`, `nvfn`, `nvfn-s`, `nvfng`, `nvfngs`, `nvfo`, `nvfo-s`, `nvfog`, `nvfogs`, `nvfþ`, `nvfþ-s`, `nvfþg`, `nvfþgs`, `pa`, `pg`, `pk`, `pl`, `sbg2en`, `sbg2fn`, `sbm2en`, `sbm2fn`, `sfg1en`, `sfg1eþ`, `sfg1fn`, `sfg1fþ`, `sfg2en`, `sfg2eþ`, `sfg2fn`, `sfg2fþ`, `sfg3en`, `sfg3eþ`, `sfg3fn`, `sfg3fþ`, `sfm1en`, `sfm1eþ`, `sfm1fn`, `sfm1fþ`, `sfm2en`, `sfm2eþ`, `sfm2fn`, `sfm2fþ`, `sfm3en`, `sfm3eþ`, `sfm3fn`, `sfm3fþ`, `slg`, `sng`, `snm`, `svg1en`, `svg1eþ`, `svg1fn`, `svg1fþ`, `svg2en`, `svg2eþ`, `svg2fn`, `svg2fþ`, `svg3en`, `svg3eþ`, `svg3fn`, `svg3fþ`, `svm1en`, `svm1eþ`, `svm1fn`, `svm1fþ`, `svm2en`, `svm2eþ`, `svm2fn`, `svm3en`, `svm3eþ`, `svm3fn`, `svm3fþ`, `sþghen`, `sþgheo`, `sþghfn`, `sþghfo`, `sþgken`, `sþgkeo`, `sþgkfn`, `sþgkfo`, `sþgven`, `sþgveo`, `sþgvfn`, `sþgvfo`, `sþgvfþ`, `sþmhen`, `sþmheo`, `sþmken`, `sþmven`, `ta`, `tfhee`, `tfhen`, `tfheo`, `tfheþ`, `tfhfe`, `tfhfn`, `tfhfo`, `tfhfþ`, `tfkee`, `tfken`, `tfkeo`, `tfkeþ`, `tfkfe`, `tfkfn`, `tfkfo`, `tfkfþ`, `tfvee`, `tfven`, `tfveo`, `tfveþ`, `tfvfe`, `tfvfn`, `tfvfo`, `tfvfþ`, `to`, `tp`, `v`, `x` | | **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `dep`, `det`, `fixed`, `flat:name`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nummod`, `obj`, `obl`, `obl:arg`, `parataxis`, `punct`, `xcomp` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 92.06 | | `ENTS_P` | 91.93 | | `ENTS_R` | 92.18 | | `TRANSFORMER_LOSS` | 248325.98 | | `NER_LOSS` | 120059.07 |
LeoCordoba/mt5-small-cc-news-es-titles
LeoCordoba
2021-09-08T17:03:30Z
14
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "spanish", "es", "dataset:LeoCordoba/CC-NEWS-ES-titles", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:04Z
--- language: es tags: - summarization - mt5 - spanish license: apache-2.0 datasets: - LeoCordoba/CC-NEWS-ES-titles model-index: - name: mt5-small-ccnews-titles-es results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: "CCNEWS-ES-titles" type: LeoCordoba/CC-NEWS-ES-titles metrics: - name: Validation ROGUE-1 type: rogue-1 value: 22.6623 - name: Validation ROGUE-2 type: rogue-2 value: 7.7894 - name: Validation ROGUE-L type: rogue-l value: 19.8015 - name: Validation ROGUE-Lsum type: rogue-lsum value: 19.8092 - name: Test ROGUE-1 type: rogue-1 value: 22.9263 - name: Test ROGUE-2 type: rogue-2 value: 7.9146 - name: Test ROGUE-L type: rogue-l value: 20.0272 - name: Test ROGUE-Lsum type: rogue-lsum value: 20.0387 widget: - text: "La chocotorta, el tradicional y práctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por críticos de restaurants internacionales, a casi 40 años de su creación. El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. “Este postre argentino sin hornear fue influenciado por la cocina italiana y se inspiró en el famoso tiramisú italiano. Está elaborado con tres ingredientes básicos argentinos: galletas de chocolate, dulce de leche y queso crema”, explica la página web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votación, superó también a los waffles belgas y el zserbó húngaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompaña al listón dorado de “postre número uno“, los expertos enseñan además cómo se hacen las chocotortas, paso por paso. “Las galletas se ablandan en leche y se cubren con una combinación de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, café o incluso licor de café”, detallan. Por último, adjudican su creación a una “campaña de márketing” diseñada para promover las galletitas icónicas que le dan su nombre. La chocotorta, infaltable en los cumpleaños argentinos, fue creada en 1982 por una creativa de las agencias más importantes del país, Marité Mabragaña." --- ## Hyperparameters { "max_target_length": 64, "model_name_or_path": "google/mt5-small", "num_train_epochs": 3, "seed": 7, "summary_column": "output_text", "text_column": "text", "encoder_max_length" : 512, "decoder_max_length" :36, "batch_size" : 128 } ## Usage ``` article = """ La chocotorta, el tradicional y práctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por críticos de restaurants internacionales, a casi 40 años de su creación. El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. “Este postre argentino sin hornear fue influenciado por la cocina italiana y se inspiró en el famoso tiramisú italiano. Está elaborado con tres ingredientes básicos argentinos: galletas de chocolate, dulce de leche y queso crema”, explica la página web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votación, superó también a los waffles belgas y el zserbó húngaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompaña al listón dorado de “postre número uno", los expertos enseñan además cómo se hacen las chocotortas, paso por paso. “Las galletas se ablandan en leche y se cubren con una combinación de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, café o incluso licor de café”, detallan. Por último, adjudican su creación a una “campaña de márketing” diseñada para promover las galletitas icónicas que le dan su nombre. La chocotorta, infaltable en los cumpleaños argentinos, fue creada en 1982 por una creativa de las agencias más importantes del país, Marité Mabragaña. """ from transformers import pipeline summarizer = pipeline("summarization", model="LeoCordoba/mt5-small-ccnews-titles-es") summarizer(article, min_length=5, max_length=64) ``` ## Results | metric | score | | --- | ----- | | eval_loss | 2.879085063934326 | | eval_rouge1 | 22.6623 | | eval_rouge2 | 7.7894 | | eval_rougeL | 19.8015, | | eval_rougeLsum | 19.8092 | | eval_gen_len | 17.1839 | | test_loss | 2.878429412841797 | | test_rouge1 | 22.9263 | | test_rouge2 | 7.9146 | | test_rougeL | 20.0272 | | test_rougeLsum | 20.0387 | | test_gen_len | 17.1696 |
sv/gpt2-nft-poetry
sv
2021-09-08T16:15:47Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - null model-index: - name: gpt2-nft-poetry results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-nft-poetry This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 282 | 4.3092 | | 4.5403 | 2.0 | 564 | 4.1283 | | 4.5403 | 3.0 | 846 | 4.0605 | | 4.039 | 4.0 | 1128 | 4.0321 | | 4.039 | 5.0 | 1410 | 4.0243 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
charlecheng/distilbert-base-uncased-finetuned-ner
charlecheng
2021-09-08T03:51:22Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9276454293628809 - name: Recall type: recall value: 0.9365700861393892 - name: F1 type: f1 value: 0.9320863950122468 - name: Accuracy type: accuracy value: 0.9840500738716699 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0607 - Precision: 0.9276 - Recall: 0.9366 - F1: 0.9321 - Accuracy: 0.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.246 | 1.0 | 878 | 0.0696 | 0.9152 | 0.9215 | 0.9183 | 0.9812 | | 0.0518 | 2.0 | 1756 | 0.0606 | 0.9196 | 0.9342 | 0.9269 | 0.9831 | | 0.0309 | 3.0 | 2634 | 0.0607 | 0.9276 | 0.9366 | 0.9321 | 0.9841 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
fihtrotuld/123
fihtrotuld
2021-09-08T01:35:59Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
import requests API_URL = "https://api-inference.huggingface.co/models/huggingface/prunebert-base-uncased-6-finepruned-w-distil-squad" headers = {"Authorization": "Bearer api_UXqrzQBiZKXaWxstVwEKcYvHQpGSGiQGbr"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": { "question": "What's my name?", "context": "My name is Clara and I live in Berkeley.", }, })
nateraw/timm-resnet50-beans
nateraw
2021-09-07T17:21:50Z
14
1
timm
[ "timm", "pytorch", "image-classification", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - timm library_tag: timm --- # Model card for `timm-resnet50-beans` **TODO** **For now, try dragging and dropping this image into the inference widget. It should classify as angular_leaf_spot.** ![leaf_example](angular_leaf_spot_train.304.jpg)
kamalkraj/bioelectra-base-discriminator-pubmed
kamalkraj
2021-09-07T13:52:16Z
810
6
transformers
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset. For a detailed description and experimental results, please refer to our paper [BioELECTRA:Pretrained Biomedical text Encoder using Discriminators](https://www.aclweb.org/anthology/2021.bionlp-1.16/). Cite our paper using below citation ``` @inproceedings{kanakarajan-etal-2021-bioelectra, title = "{B}io{ELECTRA}:Pretrained Biomedical text Encoder using Discriminators", author = "Kanakarajan, Kamal raj and Kundumani, Bhuvana and Sankarasubbu, Malaikannan", booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.bionlp-1.16", doi = "10.18653/v1/2021.bionlp-1.16", pages = "143--154", abstract = "Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. We apply {`}replaced token detection{'} pretraining technique proposed by ELECTRA and pretrain a biomedical language model from scratch using biomedical text and vocabulary. We introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA for the Biomedical domain. WE evaluate our model on the BLURB and BLUE biomedical NLP benchmarks. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 different NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34{\%}(1.39{\%} accuracy improvement) on MedNLI and 64{\%} (2.98{\%} accuracy improvement) on PubMedQA dataset.", } ``` ## How to use the discriminator in `transformers` ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") tokenizer = ElectraTokenizerFast.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") sentence = "The quick brown fox jumps over the lazy dog" fake_sentence = "The quick brown fox fake over the lazy dog" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions[0].tolist()] ```
M47Labs/spanish_news_classification_headlines
M47Labs
2021-09-07T11:56:58Z
106
3
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- widget: - text: "El dólar se dispara tras la reunión de la Fed" --- # Spanish News Classification Headlines SNCH: this model was develop by [M47Labs](https://www.m47labs.com/es/) the goal is text classification, the base model use was [BETO](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased), it was fine-tuned on 1000 example dataset. ## Dataset Sample Dataset size : 1000 Columns: idTask,task content 1,idTag,tag. |idTask|task content 1|idTag|tag| |------|------|------|------| |3637d9ac-119c-4a8f-899c-339cf5b42ae0|Alcalá de Guadaíra celebra la IV Semana de la Diversidad Sexual con acciones de sensibilización|81b36360-6cbf-4ffa-b558-9ef95c136714|sociedad| |d56bab52-0029-45dd-ad90-5c17d4ed4c88|El Archipiélago Chinijo Graciplus se impone en el Trofeo Centro Comercial Rubicón|ed198b6d-a5b9-4557-91ff-c0be51707dec|deportes| |dec70bc5-4932-4fa2-aeac-31a52377be02|Un total de 39 personas padecen ELA actualmente en la provincia|81b36360-6cbf-4ffa-b558-9ef95c136714|sociedad| |fb396ba9-fbf1-4495-84d9-5314eb731405|Eurocopa 2021 : Italia vence a Gales y pasa a octavos con su candidatura reforzada|ed198b6d-a5b9-4557-91ff-c0be51707dec|deportes| |bc5a36ca-4e0a-422e-9167-766b41008c01|Resolución de 10 de junio de 2021, del Ayuntamiento de Tarazona de La Mancha (Albacete), referente a la convocatoria para proveer una plaza.|81b36360-6cbf-4ffa-b558-9ef95c136714|sociedad| |a87f8703-ce34-47a5-9c1b-e992c7fe60f6|El primer ministro sueco pierde una moción de censura|209ae89e-55b4-41fd-aac0-5400feab479e|politica| |d80bdaad-0ad5-43a0-850e-c473fd612526|El dólar se dispara tras la reunión de la Fed|11925830-148e-4890-a2bc-da9dc059dc17|economia| ## Labels: * ciencia_tecnologia * clickbait * cultura * deportes * economia * educacion * medio_ambiente * opinion * politica * sociedad ## Example of Use ### Pipeline ```{python} import torch from transformers import AutoTokenizer, BertForSequenceClassification,TextClassificationPipeline review_text = 'los vehiculos que esten esperando pasajaeros deberan estar apagados para reducir emisiones' path = "M47Labs/spanish_news_classification_headlines" tokenizer = AutoTokenizer.from_pretrained(path) model = BertForSequenceClassification.from_pretrained(path) nlp = TextClassificationPipeline(task = "text-classification", model = model, tokenizer = tokenizer) print(nlp(review_text)) ``` ```[{'label': 'medio_ambiente', 'score': 0.5648820996284485}]``` ### Pytorch ```{python} import torch from transformers import AutoTokenizer, BertForSequenceClassification,TextClassificationPipeline from numpy import np model_name = 'M47Labs/spanish_news_classification_headlines' MAX_LEN = 32 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) texto = "las emisiones estan bajando, debido a las medidas ambientales tomadas por el gobierno" encoded_review = tokenizer.encode_plus( texto, max_length=MAX_LEN, add_special_tokens=True, #return_token_type_ids=False, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt', ) input_ids = encoded_review['input_ids'] attention_mask = encoded_review['attention_mask'] output = model(input_ids, attention_mask) _, prediction = torch.max(output['logits'], dim=1) print(f'Review text: {texto}') print(f'Sentiment : {model.config.id2label[prediction.detach().cpu().numpy()[0]]}') ``` ```Review text: las emisiones estan bajando, debido a las medidas ambientales tomadas por el gobierno``` ```Sentiment : medio_ambiente``` A more in depth example on how to use the model can be found in this colab notebook: https://colab.research.google.com/drive/1XsKea6oMyEckye2FePW_XN7Rf8v41Cw_?usp=sharing ## Finetune Hyperparameters * MAX_LEN = 32 * TRAIN_BATCH_SIZE = 8 * VALID_BATCH_SIZE = 4 * EPOCHS = 5 * LEARNING_RATE = 1e-05 ## Train Results |n_example|epoch|loss|acc| |------|------|------|------| |100|0|2.286327266693115|12.5| |100|1|2.018876111507416|40.0| |100|2|1.8016730904579163|43.75| |100|3|1.6121837735176086|46.25| |100|4|1.41565443277359|68.75| |n_example|epoch|loss|acc| |------|------|------|------| |500|0|2.0770938420295715|24.5| |500|1|1.6953029704093934|50.25| |500|2|1.258900796175003|64.25| |500|3|0.8342628020048142|78.25| |500|4|0.5135736921429634|90.25| |n_example|epoch|loss|acc| |------|------|------|------| |1000|0|1.916002897115854|36.1997226074896| |1000|1|1.2941598492664295|62.2746185852982| |1000|2|0.8201534710415117|76.97642163661581| |1000|3|0.524806430051615|86.9625520110957| |1000|4|0.30662027455784463|92.64909847434119| ## Validation Results |n_examples|100| |------|------| |Accuracy Score|0.35| |Precision (Macro)|0.35| |Recall (Macro)|0.16| |n_examples|500| |------|------| |Accuracy Score|0.62| |Precision (Macro)|0.60| |Recall (Macro)|0.47| |n_examples|1000| |------|------| |Accuracy Score|0.68| |Precision(Macro)|0.68| |Recall (Macro)|0.64| ![alt text](https://media-exp1.licdn.com/dms/image/C4D0BAQHpfgjEyhtE1g/company-logo_200_200/0/1625210573748?e=1638403200&v=beta&t=toQNpiOlyim5Ja4f7Ejv8yKoCWifMsLWjkC7XnyXICI "Logo M47")
pritoms/gpt-neo-125M-finetuned-pgt
pritoms
2021-09-07T08:20:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt_neo", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: gpt-neo-125M-finetuned-pgt results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-125M-finetuned-pgt This model is a fine-tuned version of [pritoms/gpt-neo-125M-finetuned-pgt](https://huggingface.co/pritoms/gpt-neo-125M-finetuned-pgt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 26 | 1.5947 | | No log | 2.0 | 52 | 1.5963 | | No log | 3.0 | 78 | 1.6026 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
MaryaAI/opus-mt-ar-en-finetuned-ar-to-en
MaryaAI
2021-09-07T07:26:24Z
251
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:opus_wikipedia", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - opus_wikipedia model-index: - name: opus-mt-ar-en-finetuned-ar-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_wikipedia type: opus_wikipedia args: ar-en --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ar-en-finetuned-ar-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on the opus_wikipedia dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
espnet/xuankai_chang_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_larg-truncated-5b94d9
espnet
2021-09-07T03:11:55Z
2
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - librispeech license: cc-by-4.0 inference: false --- # ESPnet2 ASR pretrained model ## `Xuankai Chang/xuankai_chang_librispeech_asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp_25epoch, fs=16k, lang=en` This model was trained by Takashi Maekaku using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Python API ```text See https://github.com/espnet/espnet_model_zoo ``` ### Evaluate in the recipe ```python # coming soon ``` ### Results ```bash # RESULTS ## Environments - date: `Sat Jul 3 23:10:19 JST 2021` - python version: `3.7.9 (default, Apr 23 2021, 13:48:31) [GCC 5.5.0 20171010]` - espnet version: `espnet 0.9.9` - pytorch version: `pytorch 1.7.0` - Git hash: `0f7558a716ab830d0c29da8785840124f358d47b` - Commit date: `Tue Jun 8 15:33:49 2021 -0400` ## asr_train_asr_conformer7_wav2vec2_960hr_large_raw_en_bpe5000_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|54402|98.3|1.6|0.2|0.2|1.9|24.9| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|50948|95.1|4.3|0.6|0.4|5.4|42.8| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|52576|98.1|1.7|0.2|0.2|2.2|26.8| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|52343|95.3|4.1|0.6|0.5|5.2|45.8| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|288456|99.5|0.2|0.2|0.2|0.6|24.9| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|265951|98.1|1.0|0.9|0.5|2.4|42.8| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|281530|99.5|0.2|0.3|0.2|0.7|26.8| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|272758|98.3|0.8|0.9|0.5|2.3|45.8| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|68010|97.8|1.6|0.6|0.4|2.6|24.9| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|63110|94.1|4.3|1.6|1.1|7.0|42.8| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|65818|97.6|1.6|0.8|0.4|2.8|26.8| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|65101|94.3|4.0|1.8|1.0|6.7|45.8| ``` ### Training config See full config in [`config.yaml`](./exp/asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp/config.yaml) ```yaml config: conf/tuning/train_asr_conformer7_hubert_960hr_large.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp ngpu: 3 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 3 local_rank: 3 dist_master_addr: localhost dist_master_port: 33643 dist_launcher: null multiprocessing_distributed: true cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
espnet/xuankai_chang_librispeech_asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp_26epoch
espnet
2021-09-07T03:05:41Z
2
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - librispeech license: cc-by-4.0 inference: false --- # ESPnet2 ASR pretrained model ## `Xuankai Chang/xuankai_chang_librispeech_asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp_26epoch, fs=16k, lang=en` This model was trained by Takashi Maekaku using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Python API ```text See https://github.com/espnet/espnet_model_zoo ``` ### Evaluate in the recipe ```python # coming soon ``` ### Results ```bash # RESULTS ## Environments - date: `Fri Aug 6 11:44:39 JST 2021` - python version: `3.7.9 (default, Apr 23 2021, 13:48:31) [GCC 5.5.0 20171010]` - espnet version: `espnet 0.9.9` - pytorch version: `pytorch 1.7.0` - Git hash: `0f7558a716ab830d0c29da8785840124f358d47b` - Commit date: `Tue Jun 8 15:33:49 2021 -0400` ## asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|54402|98.5|1.3|0.2|0.2|1.7|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|50948|96.8|2.8|0.4|0.3|3.4|33.7| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|52576|98.4|1.4|0.2|0.2|1.8|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|52343|96.8|2.8|0.4|0.4|3.6|36.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|288456|99.6|0.2|0.2|0.2|0.6|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|265951|98.8|0.6|0.6|0.3|1.5|33.7| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|281530|99.6|0.2|0.2|0.2|0.6|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|272758|98.9|0.5|0.5|0.4|1.4|36.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|68010|98.2|1.3|0.5|0.4|2.2|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|63110|96.0|2.8|1.2|0.6|4.6|33.7| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|65818|98.1|1.3|0.6|0.4|2.3|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|65101|96.0|2.7|1.3|0.6|4.6|36.0| ``` ### Training config See full config in [`config.yaml`](./exp/asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp/config.yaml) ```yaml config: conf/tuning/train_asr_conformer7_hubert_960hr_large.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp ngpu: 3 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 3 local_rank: 3 dist_master_addr: localhost dist_master_port: 33643 dist_launcher: null multiprocessing_distributed: true cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
huggingtweets/discountpicasso-dril-liam_100000
huggingtweets
2021-09-07T00:14:05Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/discountpicasso-dril-liam_100000/1630973640579/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1426930394297819137/-zzMnfJo_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/980964012170121217/U6FjPH4H_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">LIAM & wint & Picasso</div> <div style="text-align: center; font-size: 14px;">@discountpicasso-dril-liam_100000</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from LIAM & wint & Picasso. | Data | LIAM | wint | Picasso | | --- | --- | --- | --- | | Tweets downloaded | 1962 | 3226 | 3216 | | Retweets | 135 | 472 | 427 | | Short tweets | 435 | 313 | 421 | | Tweets kept | 1392 | 2441 | 2368 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1w4ekve8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @discountpicasso-dril-liam_100000's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2s4a755y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2s4a755y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/discountpicasso-dril-liam_100000') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/itskillerdog
huggingtweets
2021-09-06T23:46:38Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/itskillerdog/1630971994166/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1355537154538000391/0mOGv6Mw_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">june party corner</div> <div style="text-align: center; font-size: 14px;">@itskillerdog</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from june party corner. | Data | june party corner | | --- | --- | | Tweets downloaded | 196 | | Retweets | 20 | | Short tweets | 30 | | Tweets kept | 146 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1u7twx27/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @itskillerdog's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1vg0bbs8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1vg0bbs8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/itskillerdog') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
julien-c/dummy-for-flat
julien-c
2021-09-06T21:02:55Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
in the editor i only change this line Example of a hf.co repo containing signed commits. hello tabs
yseop/FNP_T5_D2T_simple
yseop
2021-09-06T20:54:48Z
8
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# T5-base data to text model specialized for Finance NLG __simple version__ This model was trained on a limited number of indicators, values and dates ---- ## Usage (HuggingFace Transformers) #### Call the model ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("yseop/FNP_T5_D2T_simple") model = AutoModelForSeq2SeqLM.from_pretrained("yseop/FNP_T5_D2T_simple") text = ["Group profit | valIs | $ 10 && € $10 | dTime | in 2019"] ``` #### Choose a generation method ```python input_ids = tokenizer.encode(": {}".format(text), return_tensors="pt") p=0.72 k=40 outputs = model.generate(input_ids, do_sample=True, top_p=p, top_k=k, early_stopping=True) print(tokenizer.decode(outputs[0])) ``` ```python input_ids = tokenizer.encode(": {}".format(text), return_tensors="pt") outputs = model.generate(input_ids, max_length=200, num_beams=2, repetition_penalty=2.5, top_k=50, top_p=0.98, length_penalty=1.0, early_stopping=True) print(tokenizer.decode(outputs[0])) ``` **Created by:** [Yseop](https://www.yseop.com/) | Pioneer in Natural Language Generation (NLG) technology. Scaling human expertise through Natural Language Generation.
sv/gpt2-finetuned-nft-shakes
sv
2021-09-06T16:59:11Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - null model-index: - name: gpt2-finetuned-nft-shakes results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-nft-shakes This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 306 | 3.9679 | | 4.2957 | 2.0 | 612 | 3.7979 | | 4.2957 | 3.0 | 918 | 3.7566 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/beesforbo-cafe_orbitinnit-weebbutt
huggingtweets
2021-09-06T15:26:27Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/beesforbo-cafe_orbitinnit-weebbutt/1630941920455/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1429115399975497731/JZdA725e_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1434240567001636864/BkVzkg7C_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1434228331315187712/IrO7AP6L_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">✨たち Tommy’s an Orbit 🌙 たち✨ & Goose & c!tubbo + glatt</div> <div style="text-align: center; font-size: 14px;">@beesforbo-cafe_orbitinnit-weebbutt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ✨たち Tommy’s an Orbit 🌙 たち✨ & Goose & c!tubbo + glatt. | Data | ✨たち Tommy’s an Orbit 🌙 たち✨ | Goose | c!tubbo + glatt | | --- | --- | --- | --- | | Tweets downloaded | 2241 | 3243 | 3242 | | Retweets | 1335 | 511 | 108 | | Short tweets | 323 | 512 | 1198 | | Tweets kept | 583 | 2220 | 1936 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/p0uk28zi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @beesforbo-cafe_orbitinnit-weebbutt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/310986pt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/310986pt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/beesforbo-cafe_orbitinnit-weebbutt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BSC-LT/gpt2-large-bne
BSC-LT
2021-09-06T14:13:06Z
26
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "national library of spain", "spanish", "bne", "es", "dataset:bne", "arxiv:2107.07253", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" datasets: - "bne" metrics: - "ppl" --- # GPT2-large trained with data from National Library of Spain (BNE) ## Model Description GPT2-large-bne is a transformer-based model for the Spanish language. It is based on the [GPT-2](http://www.persagen.com/files/misc/radford2019language.pdf) model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. ## Training corpora and preprocessing The [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) crawls all .es domains once a year. The training corpus consists of 59TB of WARC files from these crawls, carried out from 2009 to 2019. To obtain a high-quality training corpus, the corpus has been preprocessed with a pipeline of operations, including among the others, sentence splitting, language detection, filtering of bad-formed sentences and deduplication of repetitive contents. During the process document boundaries are kept. This resulted into 2TB of Spanish clean corpus. Further global deduplication among the corpus is applied, resulting into 570GB of text. Some of the statistics of the corpus: | Corpora | Number of documents | Number of tokens | Size (GB) | |---------|---------------------|------------------|-----------| | BNE | 201,080,084 | 135,733,450,668 | 570GB | ## Tokenization and pre-training The training corpus has been tokenized using a byte version of Byte-Pair Encoding (BPE) used in the original [GPT-2](http://www.persagen.com/files/misc/radford2019language.pdf) model with a vocabulary size of 50,262 tokens. The GPT2-large-bne pre-training consists of an autoregressive language model training that follows the approach of the GPT-2. The training lasted a total of 10 days with 32 computing nodes each one with 4 NVIDIA V100 GPUs of 16GB VRAM. ## Evaluation and results For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquín Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
lewtun/metnet-test-5
lewtun
2021-09-06T11:01:50Z
2
0
transformers
[ "transformers", "pytorch", "satflow", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: mit tags: - satflow --- # MetNet ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
lewtun/metnet-test-4
lewtun
2021-09-06T11:00:39Z
1
0
transformers
[ "transformers", "pytorch", "satflow", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: mit tags: - satflow --- # Model Card for MetNet ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]