modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-05 06:27:37
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
539 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-05 06:27:15
card
stringlengths
11
1.01M
NoCrypt/momocha-mix
NoCrypt
2022-11-10T06:49:03Z
0
19
null
[ "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-10T06:39:29Z
--- language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m inference: false --- # Momocha mix models Scrapped from [chenyfan's sharepoint](https://cyfan-my.sharepoint.com/:f:/g/personal/chenyfan_cyfan_onmicrosoft_com/EilOWB40m3ZJn6ahczIUIs4B6v0XvizO5YorOhG_5eYSUw?e=ZyP7qE) Example output: ![](https://i.ibb.co/T1Gp5yg/photo-2022-11-09-15-54-30.jpg)
betelgeux/bert-base-uncased-issues-128
betelgeux
2022-11-10T05:21:31Z
101
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-09T07:16:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.3932 | 1.0 | 1409 | 2.0750 | | 2.1659 | 2.0 | 2818 | 1.9781 | | 2.0364 | 3.0 | 4227 | 2.1215 | | 1.9399 | 4.0 | 5636 | 2.1018 | | 1.8857 | 5.0 | 7045 | 1.9919 | | 1.813 | 6.0 | 8454 | 2.2653 | | 1.7505 | 7.0 | 9863 | 2.0857 | | 1.7196 | 8.0 | 11272 | 1.9211 | | 1.672 | 9.0 | 12681 | 1.9853 | | 1.6379 | 10.0 | 14090 | 2.0391 | | 1.6037 | 11.0 | 15499 | 1.9305 | | 1.5699 | 12.0 | 16908 | 2.0291 | | 1.5363 | 13.0 | 18317 | 2.0492 | | 1.5155 | 14.0 | 19726 | 1.8807 | | 1.4999 | 15.0 | 21135 | 1.8604 | | 1.4784 | 16.0 | 22544 | 2.0348 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Terence3927/ppo-LunarLander-v2-optuna
Terence3927
2022-11-10T05:17:58Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-10T05:17:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.24 +/- 24.12 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
xu1998hz/sescore_german_mt
xu1998hz
2022-11-10T03:59:25Z
0
1
null
[ "region:us" ]
null
2022-11-05T01:44:41Z
SEScore German checkpoint for Machine Translation
irfan-noordin/segformer-b0-finetuned-segments-sidewalk-oct-22
irfan-noordin
2022-11-10T02:23:44Z
157
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2022-11-09T06:58:03Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-oct-22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-sidewalk-oct-22 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 0.9249 - Mean Iou: 0.1675 - Mean Accuracy: 0.2109 - Overall Accuracy: 0.7776 - Accuracy Unlabeled: nan - Accuracy Flat-road: 0.8631 - Accuracy Flat-sidewalk: 0.9423 - Accuracy Flat-crosswalk: 0.0 - Accuracy Flat-cyclinglane: 0.4704 - Accuracy Flat-parkingdriveway: 0.1421 - Accuracy Flat-railtrack: 0.0 - Accuracy Flat-curb: 0.0061 - Accuracy Human-person: 0.0 - Accuracy Human-rider: 0.0 - Accuracy Vehicle-car: 0.8937 - Accuracy Vehicle-truck: 0.0 - Accuracy Vehicle-bus: 0.0 - Accuracy Vehicle-tramtrain: 0.0 - Accuracy Vehicle-motorcycle: 0.0 - Accuracy Vehicle-bicycle: 0.0 - Accuracy Vehicle-caravan: 0.0 - Accuracy Vehicle-cartrailer: 0.0 - Accuracy Construction-building: 0.9143 - Accuracy Construction-door: 0.0 - Accuracy Construction-wall: 0.0055 - Accuracy Construction-fenceguardrail: 0.0 - Accuracy Construction-bridge: 0.0 - Accuracy Construction-tunnel: nan - Accuracy Construction-stairs: 0.0 - Accuracy Object-pole: 0.0 - Accuracy Object-trafficsign: 0.0 - Accuracy Object-trafficlight: 0.0 - Accuracy Nature-vegetation: 0.9291 - Accuracy Nature-terrain: 0.8710 - Accuracy Sky: 0.9207 - Accuracy Void-ground: 0.0 - Accuracy Void-dynamic: 0.0 - Accuracy Void-static: 0.0 - Accuracy Void-unclear: 0.0 - Iou Unlabeled: nan - Iou Flat-road: 0.6127 - Iou Flat-sidewalk: 0.8192 - Iou Flat-crosswalk: 0.0 - Iou Flat-cyclinglane: 0.4256 - Iou Flat-parkingdriveway: 0.1262 - Iou Flat-railtrack: 0.0 - Iou Flat-curb: 0.0061 - Iou Human-person: 0.0 - Iou Human-rider: 0.0 - Iou Vehicle-car: 0.6655 - Iou Vehicle-truck: 0.0 - Iou Vehicle-bus: 0.0 - Iou Vehicle-tramtrain: 0.0 - Iou Vehicle-motorcycle: 0.0 - Iou Vehicle-bicycle: 0.0 - Iou Vehicle-caravan: 0.0 - Iou Vehicle-cartrailer: 0.0 - Iou Construction-building: 0.5666 - Iou Construction-door: 0.0 - Iou Construction-wall: 0.0054 - Iou Construction-fenceguardrail: 0.0 - Iou Construction-bridge: 0.0 - Iou Construction-tunnel: nan - Iou Construction-stairs: 0.0 - Iou Object-pole: 0.0 - Iou Object-trafficsign: 0.0 - Iou Object-trafficlight: 0.0 - Iou Nature-vegetation: 0.7875 - Iou Nature-terrain: 0.6912 - Iou Sky: 0.8218 - Iou Void-ground: 0.0 - Iou Void-dynamic: 0.0 - Iou Void-static: 0.0 - Iou Void-unclear: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:| | 2.832 | 0.05 | 20 | 3.1768 | 0.0700 | 0.1095 | 0.5718 | nan | 0.1365 | 0.9472 | 0.0019 | 0.0006 | 0.0004 | 0.0 | 0.0205 | 0.0 | 0.0 | 0.2074 | 0.0 | 0.0 | 0.0 | 0.0017 | 0.0001 | 0.0 | 0.0 | 0.7360 | 0.0 | 0.0235 | 0.0050 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9559 | 0.0429 | 0.5329 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1260 | 0.5906 | 0.0016 | 0.0006 | 0.0004 | 0.0 | 0.0175 | 0.0 | 0.0 | 0.2006 | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0001 | 0.0 | 0.0 | 0.3729 | 0.0 | 0.0209 | 0.0044 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5778 | 0.0408 | 0.4932 | 0.0009 | 0.0 | 0.0 | 0.0 | | 2.3224 | 0.1 | 40 | 2.4686 | 0.0885 | 0.1321 | 0.6347 | nan | 0.5225 | 0.9260 | 0.0005 | 0.0001 | 0.0006 | 0.0 | 0.0113 | 0.0 | 0.0 | 0.3738 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8191 | 0.0 | 0.0263 | 0.0012 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9649 | 0.0701 | 0.6434 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4240 | 0.6602 | 0.0005 | 0.0001 | 0.0006 | 0.0 | 0.0109 | 0.0 | 0.0 | 0.3292 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3962 | 0.0 | 0.0260 | 0.0011 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6019 | 0.0617 | 0.5862 | 0.0001 | 0.0 | 0.0 | 0.0 | | 2.1961 | 0.15 | 60 | 1.9886 | 0.0988 | 0.1431 | 0.6500 | nan | 0.5168 | 0.9319 | 0.0 | 0.0001 | 0.0000 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.5761 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8325 | 0.0 | 0.0132 | 0.0003 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9612 | 0.1260 | 0.7625 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3929 | 0.6721 | 0.0 | 0.0001 | 0.0000 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.4609 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4375 | 0.0 | 0.0131 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6342 | 0.1108 | 0.6353 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.2964 | 0.2 | 80 | 2.0597 | 0.1066 | 0.1503 | 0.6682 | nan | 0.6577 | 0.9207 | 0.0 | 0.0000 | 0.0002 | 0.0 | 0.0044 | 0.0 | 0.0 | 0.5257 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8466 | 0.0 | 0.0094 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9526 | 0.2022 | 0.8392 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4276 | 0.7093 | 0.0 | 0.0000 | 0.0002 | 0.0 | 0.0044 | 0.0 | 0.0 | 0.4438 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4488 | 0.0 | 0.0093 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6560 | 0.1833 | 0.7408 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.9751 | 0.25 | 100 | 1.7493 | 0.1186 | 0.1645 | 0.6944 | nan | 0.7604 | 0.9146 | 0.0 | 0.0004 | 0.0012 | 0.0 | 0.0016 | 0.0 | 0.0 | 0.7381 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8273 | 0.0 | 0.0026 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9636 | 0.3289 | 0.8909 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4904 | 0.7490 | 0.0 | 0.0004 | 0.0012 | 0.0 | 0.0016 | 0.0 | 0.0 | 0.5465 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4913 | 0.0 | 0.0026 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6542 | 0.2761 | 0.7004 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.7626 | 0.3 | 120 | 1.5608 | 0.1295 | 0.1752 | 0.7118 | nan | 0.8168 | 0.9102 | 0.0 | 0.0002 | 0.0025 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8094 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8362 | 0.0 | 0.0030 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9492 | 0.5677 | 0.8861 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4958 | 0.7592 | 0.0 | 0.0002 | 0.0025 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.5680 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5095 | 0.0 | 0.0030 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7082 | 0.4878 | 0.7392 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.32 | 0.35 | 140 | 1.5048 | 0.1323 | 0.1797 | 0.7181 | nan | 0.7883 | 0.9260 | 0.0 | 0.0000 | 0.0037 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8711 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8590 | 0.0 | 0.0022 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9128 | 0.7088 | 0.8576 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5141 | 0.7598 | 0.0 | 0.0000 | 0.0037 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.5287 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5016 | 0.0 | 0.0022 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7458 | 0.5602 | 0.7499 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.6464 | 0.4 | 160 | 1.3886 | 0.1342 | 0.1783 | 0.7217 | nan | 0.7859 | 0.9390 | 0.0 | 0.0 | 0.0059 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7401 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8508 | 0.0 | 0.0010 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9368 | 0.7223 | 0.9025 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5173 | 0.7561 | 0.0 | 0.0 | 0.0058 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5846 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5059 | 0.0 | 0.0010 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7366 | 0.5802 | 0.7401 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4757 | 0.45 | 180 | 1.3649 | 0.1367 | 0.1840 | 0.7255 | nan | 0.8587 | 0.9185 | 0.0 | 0.0001 | 0.0039 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8588 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8337 | 0.0 | 0.0014 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9036 | 0.7809 | 0.9138 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5077 | 0.7693 | 0.0 | 0.0001 | 0.0039 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5980 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5264 | 0.0 | 0.0014 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7521 | 0.6078 | 0.7438 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.0018 | 0.5 | 200 | 1.3118 | 0.1353 | 0.1839 | 0.7242 | nan | 0.7797 | 0.9457 | 0.0 | 0.0029 | 0.0057 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8345 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8509 | 0.0 | 0.0018 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8704 | 0.8688 | 0.9069 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5321 | 0.7602 | 0.0 | 0.0029 | 0.0057 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6060 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5276 | 0.0 | 0.0018 | 0.0001 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7133 | 0.5551 | 0.7593 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4636 | 0.55 | 220 | 1.2729 | 0.1330 | 0.1797 | 0.7249 | nan | 0.8619 | 0.9203 | 0.0 | 0.0015 | 0.0067 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8903 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8514 | 0.0 | 0.0031 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9447 | 0.5448 | 0.9040 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5249 | 0.7844 | 0.0 | 0.0015 | 0.0066 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5735 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5336 | 0.0 | 0.0031 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7136 | 0.4869 | 0.7613 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.1856 | 0.6 | 240 | 1.2551 | 0.1382 | 0.1828 | 0.7274 | nan | 0.7497 | 0.9518 | 0.0 | 0.0005 | 0.0048 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8893 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8153 | 0.0 | 0.0048 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9475 | 0.7597 | 0.9107 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5097 | 0.7477 | 0.0 | 0.0005 | 0.0047 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6172 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5527 | 0.0 | 0.0048 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7293 | 0.6250 | 0.7703 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4577 | 0.65 | 260 | 1.1862 | 0.1387 | 0.1848 | 0.7304 | nan | 0.8842 | 0.9065 | 0.0 | 0.0001 | 0.0024 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8566 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8632 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9442 | 0.7313 | 0.9080 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5121 | 0.7833 | 0.0 | 0.0001 | 0.0024 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6297 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5381 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7437 | 0.6199 | 0.7486 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.0748 | 0.7 | 280 | 1.2000 | 0.1391 | 0.1846 | 0.7301 | nan | 0.7249 | 0.9690 | 0.0 | 0.0005 | 0.0064 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8909 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8656 | 0.0 | 0.0014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8917 | 0.8362 | 0.9065 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5306 | 0.7403 | 0.0 | 0.0005 | 0.0063 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6223 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5491 | 0.0 | 0.0014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7566 | 0.6061 | 0.7761 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.642 | 0.75 | 300 | 1.1452 | 0.1432 | 0.1880 | 0.7409 | nan | 0.8682 | 0.9389 | 0.0 | 0.0030 | 0.0062 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8605 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8759 | 0.0 | 0.0020 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9092 | 0.8515 | 0.8892 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5333 | 0.7905 | 0.0 | 0.0030 | 0.0062 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6393 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5418 | 0.0 | 0.0020 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7655 | 0.6551 | 0.7893 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.2166 | 0.8 | 320 | 1.1450 | 0.1388 | 0.1849 | 0.7391 | nan | 0.8516 | 0.9460 | 0.0 | 0.0043 | 0.0060 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8944 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8803 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9283 | 0.6849 | 0.9071 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5584 | 0.7932 | 0.0 | 0.0043 | 0.0060 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.5844 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5259 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7548 | 0.5985 | 0.7549 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.1346 | 0.85 | 340 | 1.1215 | 0.1428 | 0.1887 | 0.7411 | nan | 0.7956 | 0.9551 | 0.0 | 0.0145 | 0.0098 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8646 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8884 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9131 | 0.8828 | 0.9024 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5611 | 0.7721 | 0.0 | 0.0145 | 0.0097 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6313 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5405 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7563 | 0.6337 | 0.7917 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.8351 | 0.9 | 360 | 1.1012 | 0.1433 | 0.1896 | 0.7449 | nan | 0.8723 | 0.9432 | 0.0 | 0.0025 | 0.0114 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8822 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8662 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9213 | 0.8361 | 0.9201 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5472 | 0.7989 | 0.0 | 0.0025 | 0.0113 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6277 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5416 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7666 | 0.6674 | 0.7664 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.152 | 0.95 | 380 | 1.1045 | 0.1452 | 0.1891 | 0.7453 | nan | 0.8827 | 0.9332 | 0.0 | 0.0457 | 0.0124 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8396 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8848 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9399 | 0.7910 | 0.9107 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5462 | 0.7966 | 0.0 | 0.0457 | 0.0123 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6494 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5395 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7636 | 0.6627 | 0.7763 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.2062 | 1.0 | 400 | 1.0607 | 0.1469 | 0.1897 | 0.7482 | nan | 0.8192 | 0.9644 | 0.0 | 0.0944 | 0.0198 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8406 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8821 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9193 | 0.8054 | 0.9137 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5772 | 0.7742 | 0.0 | 0.0941 | 0.0195 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6414 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5360 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7740 | 0.6591 | 0.7710 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.0116 | 1.05 | 420 | 1.0503 | 0.1493 | 0.1950 | 0.7554 | nan | 0.8686 | 0.9478 | 0.0 | 0.2033 | 0.0295 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9166 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8409 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9414 | 0.7667 | 0.9196 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5809 | 0.8022 | 0.0 | 0.1995 | 0.0287 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5916 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5517 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7628 | 0.6441 | 0.7652 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.009 | 1.1 | 440 | 1.0723 | 0.1529 | 0.1958 | 0.7553 | nan | 0.7797 | 0.9670 | 0.0 | 0.2214 | 0.0547 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8978 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8927 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9274 | 0.8016 | 0.9176 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5898 | 0.7717 | 0.0 | 0.2157 | 0.0526 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6389 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5499 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7760 | 0.6697 | 0.7818 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.1496 | 1.15 | 460 | 1.0417 | 0.1571 | 0.2017 | 0.7607 | nan | 0.7736 | 0.9645 | 0.0 | 0.3606 | 0.0669 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8775 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8801 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9098 | 0.8906 | 0.9326 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6102 | 0.7737 | 0.0 | 0.3374 | 0.0634 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6549 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5538 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7682 | 0.6437 | 0.7772 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4669 | 1.2 | 480 | 1.0161 | 0.1566 | 0.2024 | 0.7637 | nan | 0.8236 | 0.9531 | 0.0 | 0.3507 | 0.0584 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.9165 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8675 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9263 | 0.8597 | 0.9222 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6005 | 0.7983 | 0.0 | 0.3296 | 0.0556 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6153 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5498 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7752 | 0.6654 | 0.7770 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.075 | 1.25 | 500 | 1.0124 | 0.1556 | 0.2000 | 0.7634 | nan | 0.8521 | 0.9499 | 0.0 | 0.3154 | 0.0410 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8944 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8618 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9442 | 0.8133 | 0.9290 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5910 | 0.8068 | 0.0 | 0.2992 | 0.0394 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6338 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5507 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7689 | 0.6697 | 0.7737 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.888 | 1.3 | 520 | 0.9797 | 0.1597 | 0.2028 | 0.7677 | nan | 0.8590 | 0.9472 | 0.0 | 0.3534 | 0.0469 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8900 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8807 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9379 | 0.8578 | 0.9187 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5908 | 0.8056 | 0.0 | 0.3311 | 0.0448 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6598 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5676 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7712 | 0.6912 | 0.8088 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.8099 | 1.35 | 540 | 0.9760 | 0.1589 | 0.2026 | 0.7678 | nan | 0.8526 | 0.9534 | 0.0 | 0.3370 | 0.0313 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9235 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8862 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9252 | 0.8551 | 0.9206 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5954 | 0.8014 | 0.0 | 0.3188 | 0.0303 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6382 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5706 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7830 | 0.6934 | 0.8122 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.1998 | 1.4 | 560 | 0.9815 | 0.1578 | 0.2030 | 0.7631 | nan | 0.8956 | 0.9250 | 0.0 | 0.3267 | 0.0461 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.8929 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8956 | 0.0 | 0.0002 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9206 | 0.8669 | 0.9275 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5656 | 0.8136 | 0.0 | 0.3102 | 0.0440 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.6574 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5524 | 0.0 | 0.0002 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7894 | 0.6940 | 0.7818 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.5591 | 1.45 | 580 | 0.9654 | 0.1618 | 0.2043 | 0.7698 | nan | 0.8198 | 0.9655 | 0.0 | 0.3715 | 0.0848 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.8935 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8965 | 0.0 | 0.0013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9146 | 0.8730 | 0.9198 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6182 | 0.7898 | 0.0 | 0.3467 | 0.0792 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.6590 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5647 | 0.0 | 0.0013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7871 | 0.6835 | 0.8101 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.861 | 1.5 | 600 | 0.9622 | 0.1607 | 0.2045 | 0.7689 | nan | 0.8163 | 0.9648 | 0.0 | 0.3780 | 0.0907 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.9187 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8714 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9229 | 0.8485 | 0.9361 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6180 | 0.7903 | 0.0 | 0.3541 | 0.0844 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.6307 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5609 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7854 | 0.6904 | 0.7884 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.8335 | 1.55 | 620 | 0.9569 | 0.1598 | 0.2050 | 0.7686 | nan | 0.8421 | 0.9561 | 0.0 | 0.3493 | 0.0928 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.9261 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8753 | 0.0 | 0.0013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9172 | 0.8688 | 0.9335 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6069 | 0.8031 | 0.0 | 0.3306 | 0.0860 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.6123 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5618 | 0.0 | 0.0013 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7851 | 0.6911 | 0.7950 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.9988 | 1.6 | 640 | 0.9337 | 0.1611 | 0.2050 | 0.7711 | nan | 0.8595 | 0.9538 | 0.0 | 0.3512 | 0.0928 | 0.0 | 0.0006 | 0.0 | 0.0 | 0.8962 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8854 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9281 | 0.8594 | 0.9367 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6062 | 0.8105 | 0.0 | 0.3310 | 0.0868 | 0.0 | 0.0006 | 0.0 | 0.0 | 0.6565 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5596 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7819 | 0.6958 | 0.7880 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.966 | 1.65 | 660 | 0.9322 | 0.1612 | 0.2051 | 0.7707 | nan | 0.8706 | 0.9494 | 0.0 | 0.3470 | 0.0997 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.8905 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8722 | 0.0 | 0.0016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9347 | 0.8652 | 0.9364 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5953 | 0.8136 | 0.0 | 0.3281 | 0.0922 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.6654 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5696 | 0.0 | 0.0016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7756 | 0.6890 | 0.7885 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.2154 | 1.7 | 680 | 0.9373 | 0.1611 | 0.2048 | 0.7710 | nan | 0.8448 | 0.9577 | 0.0 | 0.3717 | 0.1010 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.9173 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8613 | 0.0 | 0.0026 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9411 | 0.8371 | 0.9246 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6096 | 0.8056 | 0.0 | 0.3487 | 0.0930 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.6272 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5696 | 0.0 | 0.0026 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7762 | 0.6911 | 0.7931 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.7979 | 1.75 | 700 | 0.9429 | 0.1622 | 0.2067 | 0.7717 | nan | 0.8496 | 0.9548 | 0.0 | 0.3821 | 0.1182 | 0.0 | 0.0013 | 0.0 | 0.0 | 0.9071 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8803 | 0.0 | 0.0043 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9202 | 0.8812 | 0.9204 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6104 | 0.8088 | 0.0 | 0.3583 | 0.1074 | 0.0 | 0.0013 | 0.0 | 0.0 | 0.6410 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5675 | 0.0 | 0.0043 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7784 | 0.6767 | 0.7994 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.8366 | 1.8 | 720 | 0.9379 | 0.1645 | 0.2075 | 0.7745 | nan | 0.8359 | 0.9580 | 0.0 | 0.4130 | 0.1275 | 0.0 | 0.0021 | 0.0 | 0.0 | 0.8998 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8704 | 0.0 | 0.0088 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9450 | 0.8617 | 0.9251 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6227 | 0.8035 | 0.0 | 0.3850 | 0.1147 | 0.0 | 0.0021 | 0.0 | 0.0 | 0.6544 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5777 | 0.0 | 0.0088 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7682 | 0.6867 | 0.8055 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.0448 | 1.85 | 740 | 0.9419 | 0.1659 | 0.2087 | 0.7769 | nan | 0.8483 | 0.9532 | 0.0 | 0.4442 | 0.1387 | 0.0 | 0.0028 | 0.0 | 0.0 | 0.8986 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8865 | 0.0 | 0.0042 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9458 | 0.8442 | 0.9215 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6240 | 0.8122 | 0.0 | 0.4077 | 0.1237 | 0.0 | 0.0028 | 0.0 | 0.0 | 0.6529 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5700 | 0.0 | 0.0041 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7767 | 0.6938 | 0.8070 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.9737 | 1.9 | 760 | 0.9193 | 0.1664 | 0.2082 | 0.7772 | nan | 0.8420 | 0.9586 | 0.0 | 0.4353 | 0.1193 | 0.0 | 0.0010 | 0.0 | 0.0 | 0.9082 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8955 | 0.0 | 0.0079 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9385 | 0.8464 | 0.9190 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6232 | 0.8053 | 0.0 | 0.4022 | 0.1088 | 0.0 | 0.0010 | 0.0 | 0.0 | 0.6549 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5766 | 0.0 | 0.0079 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7843 | 0.7077 | 0.8180 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.0716 | 1.95 | 780 | 0.9170 | 0.1672 | 0.2098 | 0.7785 | nan | 0.8434 | 0.9539 | 0.0 | 0.4671 | 0.1283 | 0.0 | 0.0037 | 0.0 | 0.0 | 0.9012 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8984 | 0.0 | 0.0058 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9398 | 0.8661 | 0.9157 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6242 | 0.8106 | 0.0 | 0.4232 | 0.1156 | 0.0 | 0.0037 | 0.0 | 0.0 | 0.6631 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5777 | 0.0 | 0.0057 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7811 | 0.6920 | 0.8223 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4144 | 2.0 | 800 | 0.9249 | 0.1675 | 0.2109 | 0.7776 | nan | 0.8631 | 0.9423 | 0.0 | 0.4704 | 0.1421 | 0.0 | 0.0061 | 0.0 | 0.0 | 0.8937 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9143 | 0.0 | 0.0055 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9291 | 0.8710 | 0.9207 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6127 | 0.8192 | 0.0 | 0.4256 | 0.1262 | 0.0 | 0.0061 | 0.0 | 0.0 | 0.6655 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5666 | 0.0 | 0.0054 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7875 | 0.6912 | 0.8218 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.6.1 - Tokenizers 0.12.1
burakyldrm/wav2vec2-burak-new-300-v2-6
burakyldrm
2022-11-10T01:45:10Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T19:25:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-burak-new-300-v2-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-burak-new-300-v2-6 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3074 - Wer: 0.2340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 151 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.3136 | 9.61 | 500 | 3.1262 | 1.0 | | 1.8247 | 19.23 | 1000 | 0.4049 | 0.5065 | | 0.5387 | 28.83 | 1500 | 0.2828 | 0.3462 | | 0.3713 | 38.45 | 2000 | 0.2761 | 0.3125 | | 0.293 | 48.08 | 2500 | 0.2872 | 0.3001 | | 0.2436 | 57.68 | 3000 | 0.2912 | 0.2904 | | 0.2116 | 67.3 | 3500 | 0.2910 | 0.2725 | | 0.1859 | 76.91 | 4000 | 0.2937 | 0.2533 | | 0.1731 | 86.53 | 4500 | 0.2985 | 0.2485 | | 0.1569 | 96.15 | 5000 | 0.3022 | 0.2409 | | 0.1471 | 105.76 | 5500 | 0.3070 | 0.2374 | | 0.1385 | 115.38 | 6000 | 0.2954 | 0.2429 | | 0.1289 | 124.99 | 6500 | 0.3016 | 0.2361 | | 0.1268 | 134.61 | 7000 | 0.3000 | 0.2368 | | 0.12 | 144.23 | 7500 | 0.3074 | 0.2340 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
sanchit-gandhi/whisper-medium-es-5k
sanchit-gandhi
2022-11-10T01:33:57Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "es", "dataset:facebook/multilingual_librispeech", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T19:30:55Z
--- language: - es license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - facebook/multilingual_librispeech metrics: - wer model-index: - name: Whisper Small Es - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Multilingual LibriSpeech type: facebook/multilingual_librispeech args: 'config: es, split: test' metrics: - name: Wer type: wer value: 60.16226172047142 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Es - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Multilingual LibriSpeech dataset. It achieves the following results on the evaluation set: - Loss: 1.2668 - Wer: 60.1623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-08 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 2.2112 | 0.2 | 500 | 1.7394 | 61.1126 | | 1.4913 | 0.4 | 1000 | 1.3758 | 62.8143 | | 1.6651 | 0.6 | 1500 | 1.3100 | 61.3261 | | 1.7031 | 0.8 | 2000 | 1.2752 | 60.5261 | | 1.4289 | 1.0 | 2500 | 1.2668 | 60.1623 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.0 - Datasets 2.6.2.dev0 - Tokenizers 0.12.1
hcho22/opus-mt-ko-en-finetuned-kr-to-en
hcho22
2022-11-10T00:23:13Z
60
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-08T18:23:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: hcho22/opus-mt-ko-en-finetuned-kr-to-en results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # hcho22/opus-mt-ko-en-finetuned-kr-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2330 - Validation Loss: 1.2844 - Train Bleu: 30.7578 - Train Gen Len: 13.9104 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Bleu | Train Gen Len | Epoch | |:----------:|:---------------:|:----------:|:-------------:|:-----:| | 1.2330 | 1.2844 | 30.7578 | 13.9104 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
ntsema/wav2vec2-xlsr-53-espeak-cv-ft-mhr-ntsema-colab
ntsema
2022-11-10T00:12:21Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:audiofolder", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-07T17:02:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-xlsr-53-espeak-cv-ft-mhr-ntsema-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 0.8127090301003345 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-espeak-cv-ft-mhr-ntsema-colab This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7728 - Wer: 0.8127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8463 | 5.79 | 400 | 1.0428 | 0.9331 | | 1.4576 | 11.59 | 800 | 0.6796 | 0.8495 | | 0.8054 | 17.39 | 1200 | 0.7131 | 0.8227 | | 0.4946 | 23.19 | 1600 | 0.7202 | 0.8194 | | 0.3157 | 28.98 | 2000 | 0.7728 | 0.8127 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.14.0.dev20221107+cu116 - Datasets 2.6.1 - Tokenizers 0.13.2
alexionby/clip-roberta-finetuned
alexionby
2022-11-09T23:36:21Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-text-dual-encoder", "feature-extraction", "generated_from_trainer", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-09T21:35:52Z
--- tags: - generated_from_trainer model-index: - name: clip-roberta-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-roberta-finetuned This model is a fine-tuned version of [./clip-roberta](https://huggingface.co/./clip-roberta) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.10.2 - Datasets 2.6.1 - Tokenizers 0.12.1
giulio98/codegen-350M-multi-xlcost-v2
giulio98
2022-11-09T23:22:53Z
102
0
transformers
[ "transformers", "pytorch", "codegen", "text-generation", "code", "gpt2", "generation", "dataset:giulio98/xlcost-single-prompt", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-09T13:56:56Z
--- language: code tags: - code - gpt2 - generation datasets: - giulio98/xlcost-single-prompt widget: - text: "'''\nfunction to add two numbers\n'''\n###\n" example_title: "add two numbers" model-index: - name: codegen-350M-multi-xlcost results: - task: name: Code Generation type: code-generation dataset: name: "XLCost" type: code_eval_outputs metrics: - name: pass@1 type: code_eval_outputs value: 3.325 - name: pass@10 type: code_eval_outputs value: 15 - name: codebleu type: codebleu value: 20.18191 --- # CodeGen-350M-multi-xlcost-v2 CodeGen-350M-multi-xlcost is a CodeGen model fine-tuned on the Python split of XLCost dataset using Deepspeed. ## Usage You can load the CodeGen-350M-multi-xlcost-v2 model and tokenizer directly in `transformers`: ```Python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("giulio98/codegen-350M-multi-xlcost-v2") model = AutoModelForCausalLM.from_pretrained("giulio98/codegen-350M-multi-xlcost-v2") text = tokenizer.eos_token + "\'\'\'\n" + "function to add two numbers" + "\n\'\'\'\n" + "###\n" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` Output: ```Python ''' function to add two numbers ''' ### def add(a, b): return a + b ``` ## Training The model was finetuned on [XLCost-single-prompt](https://huggingface.co/datasets/giulio98/xlcost-single-prompt), an improved version of the original XLCost dataset [ xlcost-text-to-code](https://huggingface.co/datasets/codeparrot/xlcost-text-to-code). Below the hyperparameters. | Hyperparameter | value | |---------------------------|--------| |Per device train batch size| 16 | |Context size| 1024 | |Training steps| 259| |Gradient accumulation| 2| |Gradient checkpointing| True| |Learning rate|1.8e-05 | |Weight decay | 0.1 | |Warmup steps| 35 | |Schedule| linear | |zero stage| 2 | Below the deepspeed configuration ```Python { "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": 0.000018, "betas": [ 0.9, 0.999 ], "eps": 1e-8, "weight_decay": 0.1 } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": 0, "warmup_max_lr": 0.000018, "warmup_num_steps": 35 } }, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "cpu", "pin_memory": false }, "allgather_partitions": true, "allgather_bucket_size": 200000000, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 200000000, "contiguous_gradients": true }, "gradient_accumulation_steps": 2, "train_batch_size": 32, "train_micro_batch_size_per_gpu": 16, "gradient_clipping": 1, "wall_clock_breakdown": false } ``` The training was executed on 1 x V100 (16GB) GPU for 28min 50sec ## Performance We evaluated the model on the first 400 samples of XLCOST's [XLCost-single-prompt test split](https://huggingface.co/datasets/giulio98/xlcost-single-prompt/viewer/Python/test) and comparing the outputs of the generated codes with respect to the expected output using pass@k metric. | Metric | codegen-350M-multi-xlcost-v2 | codegen-350M-multi-xlcost | codegen-350M-mono(zero-shot) | codegen-350M-mono (one-shot) | codegen-350M-mono(few-shot) |--------|-----|-----|-----|-----|-----| |pass@1 |3.325% |3.70% | 0.4% | 0.35% | 0.48% | |pass@10 |15%| 14.5% | 3.5% | 3 % | 3.75% | |CodeBLEU |20.18%| None | 15.15% | 19.42 % | 20.27% | The [pass@k metric](https://huggingface.co/metrics/code_eval) tells the probability that at least one out of k generations passes the tests. ## Citations ``` @article{Nijkamp2022ACP, title={A Conversational Paradigm for Program Synthesis}, author={Nijkamp, Erik and Pang, Bo and Hayashi, Hiroaki and Tu, Lifu and Wang, Huan and Zhou, Yingbo and Savarese, Silvio and Xiong, Caiming}, journal={arXiv preprint}, year={2022} } ```
malay-patel/bert-ww-finetuned-squad
malay-patel
2022-11-09T23:20:25Z
60
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-09T07:19:23Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: malay-patel/bert-ww-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # malay-patel/bert-ww-finetuned-squad This model is a fine-tuned version of [bert-large-cased-whole-word-masking-finetuned-squad](https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1766 - Train End Logits Accuracy: 0.9455 - Train Start Logits Accuracy: 0.9312 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16638, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:-----:| | 0.5635 | 0.8374 | 0.7992 | 0 | | 0.3369 | 0.8987 | 0.8695 | 1 | | 0.1766 | 0.9455 | 0.9312 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
Omerdor/dry_samples
Omerdor
2022-11-09T23:16:52Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-07T14:14:29Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # dry_samples ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Omerdor/dry_samples/tensorboard?#scalars)
gngpostalsrvc/BERiT_2000_enriched
gngpostalsrvc
2022-11-09T22:33:52Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-09T22:02:09Z
--- license: mit tags: - generated_from_trainer model-index: - name: BERiT_2000_enriched results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiT_2000_enriched This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.6052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.786 | 0.19 | 500 | 6.6797 | | 6.6441 | 0.39 | 1000 | 6.6574 | | 6.6376 | 0.58 | 1500 | 6.6240 | | 6.5951 | 0.77 | 2000 | 6.6291 | | 6.6123 | 0.97 | 2500 | 6.6355 | | 6.6028 | 1.16 | 3000 | 6.6084 | | 6.5974 | 1.36 | 3500 | 6.5984 | | 6.6104 | 1.55 | 4000 | 6.5775 | | 6.6113 | 1.74 | 4500 | 6.6062 | | 6.5895 | 1.94 | 5000 | 6.5931 | | 6.6106 | 2.13 | 5500 | 6.6276 | | 6.635 | 2.32 | 6000 | 6.5973 | | 6.5694 | 2.52 | 6500 | 6.6021 | | 6.612 | 2.71 | 7000 | 6.5882 | | 6.5984 | 2.9 | 7500 | 6.6052 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
model-attribution-challenge/bert-base-cased
model-attribution-challenge
2022-11-09T22:24:46Z
108
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-09T20:13:56Z
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # BERT base model (cased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is case-sensitive: it makes a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-cased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] Hello I'm a fashion model. [SEP]", 'score': 0.09019174426794052, 'token': 4633, 'token_str': 'fashion'}, {'sequence': "[CLS] Hello I'm a new model. [SEP]", 'score': 0.06349995732307434, 'token': 1207, 'token_str': 'new'}, {'sequence': "[CLS] Hello I'm a male model. [SEP]", 'score': 0.06228214129805565, 'token': 2581, 'token_str': 'male'}, {'sequence': "[CLS] Hello I'm a professional model. [SEP]", 'score': 0.0441727414727211, 'token': 1848, 'token_str': 'professional'}, {'sequence': "[CLS] Hello I'm a super model. [SEP]", 'score': 0.03326151892542839, 'token': 7688, 'token_str': 'super'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-cased') model = BertModel.from_pretrained("bert-base-cased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-cased') model = TFBertModel.from_pretrained("bert-base-cased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-cased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] The man worked as a lawyer. [SEP]', 'score': 0.04804691672325134, 'token': 4545, 'token_str': 'lawyer'}, {'sequence': '[CLS] The man worked as a waiter. [SEP]', 'score': 0.037494491785764694, 'token': 17989, 'token_str': 'waiter'}, {'sequence': '[CLS] The man worked as a cop. [SEP]', 'score': 0.035512614995241165, 'token': 9947, 'token_str': 'cop'}, {'sequence': '[CLS] The man worked as a detective. [SEP]', 'score': 0.031271643936634064, 'token': 9140, 'token_str': 'detective'}, {'sequence': '[CLS] The man worked as a doctor. [SEP]', 'score': 0.027423162013292313, 'token': 3995, 'token_str': 'doctor'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] The woman worked as a nurse. [SEP]', 'score': 0.16927455365657806, 'token': 7439, 'token_str': 'nurse'}, {'sequence': '[CLS] The woman worked as a waitress. [SEP]', 'score': 0.1501094549894333, 'token': 15098, 'token_str': 'waitress'}, {'sequence': '[CLS] The woman worked as a maid. [SEP]', 'score': 0.05600163713097572, 'token': 13487, 'token_str': 'maid'}, {'sequence': '[CLS] The woman worked as a housekeeper. [SEP]', 'score': 0.04838843643665314, 'token': 26458, 'token_str': 'housekeeper'}, {'sequence': '[CLS] The woman worked as a cook. [SEP]', 'score': 0.029980547726154327, 'token': 9834, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-cased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
huggingtweets/wyld
huggingtweets
2022-11-09T22:18:30Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-09T22:02:59Z
--- language: en thumbnail: http://www.huggingtweets.com/wyld/1668032276555/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1547347036927696896/7JYzatqo_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Wyld</div> <div style="text-align: center; font-size: 14px;">@wyld</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Wyld. | Data | Wyld | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 601 | | Short tweets | 574 | | Tweets kept | 2064 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fod497b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wyld's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/lk8zcqu3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/lk8zcqu3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wyld') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kartikpalani/eai-setfit-model3
kartikpalani
2022-11-09T22:13:11Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-09T22:13:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3214 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 3214, "warmup_steps": 322, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sd-concepts-library/devonm
sd-concepts-library
2022-11-09T22:09:46Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-11-09T22:09:35Z
--- license: mit --- ### DevonM on Stable Diffusion This is the `<DevonM>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<DevonM> 0](https://huggingface.co/sd-concepts-library/devonm/resolve/main/concept_images/4.jpeg) ![<DevonM> 1](https://huggingface.co/sd-concepts-library/devonm/resolve/main/concept_images/2.jpeg) ![<DevonM> 2](https://huggingface.co/sd-concepts-library/devonm/resolve/main/concept_images/1.jpeg) ![<DevonM> 3](https://huggingface.co/sd-concepts-library/devonm/resolve/main/concept_images/0.jpeg) ![<DevonM> 4](https://huggingface.co/sd-concepts-library/devonm/resolve/main/concept_images/3.jpeg)
model-attribution-challenge/bert-base-uncased
model-attribution-challenge
2022-11-09T22:02:03Z
104
0
transformers
[ "transformers", "pytorch", "tf", "jax", "rust", "bert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-09T20:14:45Z
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Model variations BERT has originally been released in base and large variations, for cased and uncased input text. The uncased models also strips out an accent markers. Chinese and multilingual uncased and cased versions followed shortly after. Modified preprocessing with whole word masking has replaced subpiece masking in a following work, with the release of two models. Other 24 smaller models are released afterward. The detailed release history can be found on the [google-research/bert readme](https://github.com/google-research/bert/blob/master/README.md) on github. | Model | #params | Language | |------------------------|--------------------------------|-------| | [`bert-base-uncased`](https://huggingface.co/bert-base-uncased) | 110M | English | | [`bert-large-uncased`](https://huggingface.co/bert-large-uncased) | 340M | English | sub | [`bert-base-cased`](https://huggingface.co/bert-base-cased) | 110M | English | | [`bert-large-cased`](https://huggingface.co/bert-large-cased) | 340M | English | | [`bert-base-chinese`](https://huggingface.co/bert-base-chinese) | 110M | Chinese | | [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) | 110M | Multiple | | [`bert-large-uncased-whole-word-masking`](https://huggingface.co/bert-large-uncased-whole-word-masking) | 340M | English | | [`bert-large-cased-whole-word-masking`](https://huggingface.co/bert-large-cased-whole-word-masking) | 340M | English | ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.1073106899857521, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.08774490654468536, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a new model. [SEP]", 'score': 0.05338378623127937, 'token': 2047, 'token_str': 'new'}, {'sequence': "[CLS] hello i'm a super model. [SEP]", 'score': 0.04667217284440994, 'token': 3565, 'token_str': 'super'}, {'sequence': "[CLS] hello i'm a fine model. [SEP]", 'score': 0.027095865458250046, 'token': 2986, 'token_str': 'fine'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] the man worked as a carpenter. [SEP]', 'score': 0.09747550636529922, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the man worked as a waiter. [SEP]', 'score': 0.0523831807076931, 'token': 15610, 'token_str': 'waiter'}, {'sequence': '[CLS] the man worked as a barber. [SEP]', 'score': 0.04962705448269844, 'token': 13362, 'token_str': 'barber'}, {'sequence': '[CLS] the man worked as a mechanic. [SEP]', 'score': 0.03788609802722931, 'token': 15893, 'token_str': 'mechanic'}, {'sequence': '[CLS] the man worked as a salesman. [SEP]', 'score': 0.037680890411138535, 'token': 18968, 'token_str': 'salesman'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] the woman worked as a nurse. [SEP]', 'score': 0.21981462836265564, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the woman worked as a waitress. [SEP]', 'score': 0.1597415804862976, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the woman worked as a maid. [SEP]', 'score': 0.1154729500412941, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the woman worked as a prostitute. [SEP]', 'score': 0.037968918681144714, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the woman worked as a cook. [SEP]', 'score': 0.03042375110089779, 'token': 5660, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus, and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
huggingtweets/bradsprigg
huggingtweets
2022-11-09T21:57:01Z
98
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-09T21:48:16Z
--- language: en thumbnail: http://www.huggingtweets.com/bradsprigg/1668030722213/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1468456063775117312/6LimXaG6_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon's Musk (stinky boy)</div> <div style="text-align: center; font-size: 14px;">@bradsprigg</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon's Musk (stinky boy). | Data | Elon's Musk (stinky boy) | | --- | --- | | Tweets downloaded | 3224 | | Retweets | 657 | | Short tweets | 239 | | Tweets kept | 2328 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2kr31b63/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bradsprigg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3uyo0305) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3uyo0305/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bradsprigg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Alred/distilbert-base-uncased-finetuned-squad-ver5
Alred
2022-11-09T21:29:48Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-09T21:13:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad-ver5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-ver5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.4776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5572 | 1.0 | 554 | 1.5588 | | 1.2784 | 2.0 | 1108 | 1.4776 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
fractalego/personal-whisper-small.en-model
fractalego
2022-11-09T21:22:35Z
79
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-06T18:39:24Z
Personal speech to text model ----------------------------- Speech to Text models often do not understand my accent, so I fine tuned this one from "openai/whisper-small.en" using about 1000 recordings of my voice, comprising of about 2h of recordings. The system goes from ~10% WER to 6% WER. A larger model would perform better but I need speed. Do not download unless you have exactly my accent (North-East Italy).
Alred/distilbert-base-uncased-finetuned-squad-ver4
Alred
2022-11-09T21:13:37Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-09T20:05:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad-ver4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-ver4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.4931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8147 | 1.0 | 554 | 1.6712 | | 1.4844 | 2.0 | 1108 | 1.4681 | | 1.0993 | 3.0 | 1662 | 1.4931 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
huggingtweets/bong_iverr
huggingtweets
2022-11-09T21:11:55Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-09T21:11:48Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1579688050300436480/Ou3iqmdl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">carsonogenic</div> <div style="text-align: center; font-size: 14px;">@bong_iverr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from carsonogenic. | Data | carsonogenic | | --- | --- | | Tweets downloaded | 726 | | Retweets | 59 | | Short tweets | 42 | | Tweets kept | 625 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3oyq7g4j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bong_iverr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jsj4h3w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jsj4h3w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bong_iverr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gngpostalsrvc/BERiT_7000
gngpostalsrvc
2022-11-09T20:58:50Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-09T20:32:09Z
--- license: mit tags: - generated_from_trainer model-index: - name: BERiT_7000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiT_7000 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.5916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.9484 | 0.19 | 500 | 7.8474 | | 7.7968 | 0.39 | 1000 | 7.7020 | | 7.6992 | 0.58 | 1500 | 7.6949 | | 7.656 | 0.77 | 2000 | 7.6922 | | 7.68 | 0.97 | 2500 | 7.6863 | | 7.5952 | 1.16 | 3000 | 7.6523 | | 7.6441 | 1.36 | 3500 | 7.6523 | | 7.6178 | 1.55 | 4000 | 7.6128 | | 7.5977 | 1.74 | 4500 | 7.6556 | | 7.6087 | 1.94 | 5000 | 7.5990 | | 7.5734 | 2.13 | 5500 | 7.5997 | | 7.566 | 2.32 | 6000 | 7.5961 | | 7.5715 | 2.52 | 6500 | 7.5505 | | 7.5604 | 2.71 | 7000 | 7.5788 | | 7.5749 | 2.9 | 7500 | 7.5916 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
gngpostalsrvc/BERiT_14500
gngpostalsrvc
2022-11-09T20:04:25Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-09T19:36:45Z
--- license: mit tags: - generated_from_trainer model-index: - name: BERiT_14500 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiT_14500 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.0316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.3825 | 0.19 | 500 | 8.3006 | | 8.2426 | 0.39 | 1000 | 8.2751 | | 8.1622 | 0.58 | 1500 | 8.2504 | | 8.1673 | 0.77 | 2000 | 8.1935 | | 8.1597 | 0.97 | 2500 | 8.1928 | | 8.0644 | 1.16 | 3000 | 8.1111 | | 8.0724 | 1.36 | 3500 | 8.0820 | | 8.0654 | 1.55 | 4000 | 8.0655 | | 8.0649 | 1.74 | 4500 | 8.0896 | | 8.051 | 1.94 | 5000 | 8.0838 | | 8.0003 | 2.13 | 5500 | 8.0989 | | 7.9795 | 2.32 | 6000 | 8.0729 | | 7.9984 | 2.52 | 6500 | 8.0566 | | 7.9935 | 2.71 | 7000 | 8.0757 | | 7.9652 | 2.9 | 7500 | 8.0316 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
sandorscog/finetuning-sentiment-model-3000-samples
sandorscog
2022-11-09T19:42:36Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-18T04:16:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0826 - Accuracy: 0.9761 - Precision: 0.9727 - Recall: 0.9654 - F1: 0.9691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
Alred/distilbert-base-uncased-finetuned-squad-ver2
Alred
2022-11-09T19:22:13Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-09T19:00:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad-ver2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-ver2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.8695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3919 | 1.0 | 554 | 1.5543 | | 1.0864 | 2.0 | 1108 | 1.5114 | | 0.5553 | 3.0 | 1662 | 1.8695 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
pig4431/TSE_DistilBERT_5E
pig4431
2022-11-09T19:16:01Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-09T19:14:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: TSE_DistilBERT_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TSE_DistilBERT_5E This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3301 - Accuracy: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6534 | 0.06 | 50 | 0.5269 | 0.8333 | | 0.3926 | 0.12 | 100 | 0.2674 | 0.9133 | | 0.275 | 0.17 | 150 | 0.2063 | 0.94 | | 0.2341 | 0.23 | 200 | 0.1896 | 0.9333 | | 0.2436 | 0.29 | 250 | 0.2132 | 0.9133 | | 0.2561 | 0.35 | 300 | 0.2474 | 0.9 | | 0.2536 | 0.4 | 350 | 0.2092 | 0.9267 | | 0.2048 | 0.46 | 400 | 0.2135 | 0.92 | | 0.2119 | 0.52 | 450 | 0.2382 | 0.9133 | | 0.2152 | 0.58 | 500 | 0.2322 | 0.9267 | | 0.2072 | 0.63 | 550 | 0.2182 | 0.9333 | | 0.2134 | 0.69 | 600 | 0.2457 | 0.9133 | | 0.2093 | 0.75 | 650 | 0.2476 | 0.92 | | 0.2145 | 0.81 | 700 | 0.2489 | 0.9267 | | 0.2191 | 0.87 | 750 | 0.2374 | 0.9267 | | 0.2198 | 0.92 | 800 | 0.2347 | 0.92 | | 0.2126 | 0.98 | 850 | 0.2015 | 0.9467 | | 0.1373 | 1.04 | 900 | 0.2246 | 0.9467 | | 0.1367 | 1.1 | 950 | 0.2875 | 0.9133 | | 0.1726 | 1.15 | 1000 | 0.2641 | 0.94 | | 0.1968 | 1.21 | 1050 | 0.2653 | 0.9333 | | 0.1607 | 1.27 | 1100 | 0.2323 | 0.94 | | 0.1437 | 1.33 | 1150 | 0.2900 | 0.9267 | | 0.1707 | 1.38 | 1200 | 0.2430 | 0.94 | | 0.1174 | 1.44 | 1250 | 0.2553 | 0.94 | | 0.1662 | 1.5 | 1300 | 0.2442 | 0.9467 | | 0.1374 | 1.56 | 1350 | 0.2365 | 0.9467 | | 0.1632 | 1.61 | 1400 | 0.2794 | 0.9133 | | 0.1558 | 1.67 | 1450 | 0.2428 | 0.94 | | 0.1717 | 1.73 | 1500 | 0.2380 | 0.92 | | 0.1301 | 1.79 | 1550 | 0.2006 | 0.94 | | 0.1757 | 1.85 | 1600 | 0.2327 | 0.9467 | | 0.1997 | 1.9 | 1650 | 0.2160 | 0.94 | | 0.1611 | 1.96 | 1700 | 0.2797 | 0.92 | | 0.1638 | 2.02 | 1750 | 0.2433 | 0.9333 | | 0.1041 | 2.08 | 1800 | 0.2389 | 0.94 | | 0.1172 | 2.13 | 1850 | 0.2381 | 0.9467 | | 0.1332 | 2.19 | 1900 | 0.2650 | 0.94 | | 0.1299 | 2.25 | 1950 | 0.2869 | 0.9333 | | 0.0992 | 2.31 | 2000 | 0.2308 | 0.9533 | | 0.1012 | 2.36 | 2050 | 0.2552 | 0.9467 | | 0.0948 | 2.42 | 2100 | 0.2823 | 0.9267 | | 0.1081 | 2.48 | 2150 | 0.2634 | 0.9467 | | 0.1157 | 2.54 | 2200 | 0.2864 | 0.9333 | | 0.1154 | 2.6 | 2250 | 0.2987 | 0.9267 | | 0.1259 | 2.65 | 2300 | 0.2879 | 0.9333 | | 0.1084 | 2.71 | 2350 | 0.2661 | 0.94 | | 0.1342 | 2.77 | 2400 | 0.2711 | 0.94 | | 0.12 | 2.83 | 2450 | 0.2362 | 0.9467 | | 0.0839 | 2.88 | 2500 | 0.2712 | 0.9333 | | 0.1546 | 2.94 | 2550 | 0.2433 | 0.9467 | | 0.1321 | 3.0 | 2600 | 0.2421 | 0.9467 | | 0.101 | 3.06 | 2650 | 0.2820 | 0.9333 | | 0.061 | 3.11 | 2700 | 0.2990 | 0.9267 | | 0.0608 | 3.17 | 2750 | 0.2512 | 0.9467 | | 0.0983 | 3.23 | 2800 | 0.3033 | 0.9333 | | 0.0806 | 3.29 | 2850 | 0.2621 | 0.9467 | | 0.0788 | 3.34 | 2900 | 0.2672 | 0.9467 | | 0.0827 | 3.4 | 2950 | 0.2797 | 0.9467 | | 0.0912 | 3.46 | 3000 | 0.2802 | 0.9467 | | 0.0771 | 3.52 | 3050 | 0.2693 | 0.9467 | | 0.0842 | 3.58 | 3100 | 0.2758 | 0.9467 | | 0.086 | 3.63 | 3150 | 0.2921 | 0.9333 | | 0.1102 | 3.69 | 3200 | 0.3066 | 0.9333 | | 0.1124 | 3.75 | 3250 | 0.2808 | 0.9333 | | 0.0762 | 3.81 | 3300 | 0.2863 | 0.94 | | 0.074 | 3.86 | 3350 | 0.3159 | 0.9333 | | 0.062 | 3.92 | 3400 | 0.2977 | 0.9333 | | 0.1027 | 3.98 | 3450 | 0.3449 | 0.9267 | | 0.0734 | 4.04 | 3500 | 0.3165 | 0.9333 | | 0.0375 | 4.09 | 3550 | 0.2960 | 0.9333 | | 0.0377 | 4.15 | 3600 | 0.3245 | 0.9333 | | 0.0661 | 4.21 | 3650 | 0.3262 | 0.9333 | | 0.079 | 4.27 | 3700 | 0.3085 | 0.9333 | | 0.0801 | 4.33 | 3750 | 0.3219 | 0.9333 | | 0.0865 | 4.38 | 3800 | 0.3336 | 0.9267 | | 0.058 | 4.44 | 3850 | 0.3083 | 0.9333 | | 0.0689 | 4.5 | 3900 | 0.3351 | 0.9267 | | 0.0345 | 4.56 | 3950 | 0.3412 | 0.9267 | | 0.0557 | 4.61 | 4000 | 0.3236 | 0.9333 | | 0.0758 | 4.67 | 4050 | 0.3224 | 0.9333 | | 0.0682 | 4.73 | 4100 | 0.3241 | 0.9333 | | 0.0534 | 4.79 | 4150 | 0.3349 | 0.9333 | | 0.0707 | 4.84 | 4200 | 0.3254 | 0.9333 | | 0.0672 | 4.9 | 4250 | 0.3277 | 0.9333 | | 0.1033 | 4.96 | 4300 | 0.3301 | 0.9333 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.1
burakyldrm/wav2vec2-burak-new-300-v2-5
burakyldrm
2022-11-09T18:46:28Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T12:37:49Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-burak-new-300-v2-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-burak-new-300-v2-5 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2833 - Wer: 0.2168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 141 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.3785 | 9.8 | 500 | 3.1380 | 1.0 | | 1.863 | 19.6 | 1000 | 0.3638 | 0.4659 | | 0.524 | 29.41 | 1500 | 0.2742 | 0.3379 | | 0.3581 | 39.21 | 2000 | 0.2746 | 0.3049 | | 0.2783 | 49.02 | 2500 | 0.2559 | 0.2877 | | 0.2378 | 58.82 | 3000 | 0.2613 | 0.2732 | | 0.2062 | 68.62 | 3500 | 0.2499 | 0.2602 | | 0.1849 | 78.43 | 4000 | 0.2809 | 0.2485 | | 0.1663 | 88.23 | 4500 | 0.2768 | 0.2429 | | 0.1526 | 98.04 | 5000 | 0.2767 | 0.2319 | | 0.1434 | 107.84 | 5500 | 0.2886 | 0.2285 | | 0.1338 | 117.64 | 6000 | 0.2808 | 0.2257 | | 0.1313 | 127.45 | 6500 | 0.2835 | 0.2106 | | 0.1281 | 137.25 | 7000 | 0.2833 | 0.2168 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
ManMir/ppo-LunarLander-v2
ManMir
2022-11-09T18:42:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-04T14:05:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 169.73 +/- 73.60 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
pig4431/TSE_ALBERT_5E
pig4431
2022-11-09T18:05:39Z
101
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-09T18:05:10Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: TSE_ALBERT_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TSE_ALBERT_5E This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3667 - Accuracy: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5712 | 0.06 | 50 | 0.4047 | 0.82 | | 0.3198 | 0.12 | 100 | 0.2883 | 0.9 | | 0.3254 | 0.17 | 150 | 0.4352 | 0.84 | | 0.2898 | 0.23 | 200 | 0.2892 | 0.9133 | | 0.2826 | 0.29 | 250 | 0.3565 | 0.8867 | | 0.2696 | 0.35 | 300 | 0.2263 | 0.9333 | | 0.274 | 0.4 | 350 | 0.2068 | 0.94 | | 0.2393 | 0.46 | 400 | 0.2270 | 0.9333 | | 0.2067 | 0.52 | 450 | 0.2118 | 0.9333 | | 0.2332 | 0.58 | 500 | 0.4454 | 0.88 | | 0.3099 | 0.63 | 550 | 0.2777 | 0.9067 | | 0.2687 | 0.69 | 600 | 0.2077 | 0.9333 | | 0.2053 | 0.75 | 650 | 0.1923 | 0.9533 | | 0.2359 | 0.81 | 700 | 0.3891 | 0.9067 | | 0.2492 | 0.87 | 750 | 0.2765 | 0.9333 | | 0.2589 | 0.92 | 800 | 0.1879 | 0.9467 | | 0.2161 | 0.98 | 850 | 0.2733 | 0.9267 | | 0.1752 | 1.04 | 900 | 0.3108 | 0.92 | | 0.2213 | 1.1 | 950 | 0.3318 | 0.92 | | 0.1665 | 1.15 | 1000 | 0.4124 | 0.8933 | | 0.1832 | 1.21 | 1050 | 0.3448 | 0.92 | | 0.1671 | 1.27 | 1100 | 0.3343 | 0.9067 | | 0.184 | 1.33 | 1150 | 0.3929 | 0.9067 | | 0.2788 | 1.38 | 1200 | 0.3888 | 0.8933 | | 0.1768 | 1.44 | 1250 | 0.4028 | 0.9 | | 0.2368 | 1.5 | 1300 | 0.3154 | 0.9133 | | 0.2055 | 1.56 | 1350 | 0.2603 | 0.9267 | | 0.1693 | 1.61 | 1400 | 0.2994 | 0.9267 | | 0.1447 | 1.67 | 1450 | 0.3247 | 0.9267 | | 0.226 | 1.73 | 1500 | 0.3410 | 0.9267 | | 0.1744 | 1.79 | 1550 | 0.3105 | 0.9267 | | 0.1943 | 1.85 | 1600 | 0.2760 | 0.94 | | 0.2093 | 1.9 | 1650 | 0.2087 | 0.9467 | | 0.2027 | 1.96 | 1700 | 0.2773 | 0.9333 | | 0.1806 | 2.02 | 1750 | 0.3386 | 0.9267 | | 0.1161 | 2.08 | 1800 | 0.4301 | 0.9067 | | 0.0916 | 2.13 | 1850 | 0.3693 | 0.92 | | 0.1586 | 2.19 | 1900 | 0.2929 | 0.94 | | 0.1336 | 2.25 | 1950 | 0.4015 | 0.9133 | | 0.1746 | 2.31 | 2000 | 0.3027 | 0.92 | | 0.1353 | 2.36 | 2050 | 0.3224 | 0.9267 | | 0.116 | 2.42 | 2100 | 0.3609 | 0.9267 | | 0.1807 | 2.48 | 2150 | 0.3044 | 0.9267 | | 0.1016 | 2.54 | 2200 | 0.3706 | 0.9133 | | 0.0634 | 2.6 | 2250 | 0.3391 | 0.92 | | 0.167 | 2.65 | 2300 | 0.3463 | 0.92 | | 0.1718 | 2.71 | 2350 | 0.3254 | 0.92 | | 0.1269 | 2.77 | 2400 | 0.2640 | 0.9333 | | 0.1848 | 2.83 | 2450 | 0.2660 | 0.9267 | | 0.116 | 2.88 | 2500 | 0.2532 | 0.94 | | 0.1804 | 2.94 | 2550 | 0.3538 | 0.92 | | 0.1315 | 3.0 | 2600 | 0.4146 | 0.9067 | | 0.1024 | 3.06 | 2650 | 0.2899 | 0.9333 | | 0.0904 | 3.11 | 2700 | 0.3191 | 0.9333 | | 0.0596 | 3.17 | 2750 | 0.3569 | 0.9333 | | 0.1144 | 3.23 | 2800 | 0.3373 | 0.9267 | | 0.0782 | 3.29 | 2850 | 0.3447 | 0.9267 | | 0.064 | 3.34 | 2900 | 0.2932 | 0.94 | | 0.118 | 3.4 | 2950 | 0.3099 | 0.94 | | 0.1286 | 3.46 | 3000 | 0.3404 | 0.9267 | | 0.0963 | 3.52 | 3050 | 0.4026 | 0.9067 | | 0.1158 | 3.58 | 3100 | 0.3320 | 0.9267 | | 0.0967 | 3.63 | 3150 | 0.2984 | 0.94 | | 0.1122 | 3.69 | 3200 | 0.3149 | 0.9333 | | 0.134 | 3.75 | 3250 | 0.3804 | 0.9133 | | 0.0953 | 3.81 | 3300 | 0.3670 | 0.92 | | 0.0776 | 3.86 | 3350 | 0.4140 | 0.92 | | 0.0813 | 3.92 | 3400 | 0.3654 | 0.9333 | | 0.0406 | 3.98 | 3450 | 0.4364 | 0.92 | | 0.0538 | 4.04 | 3500 | 0.3553 | 0.94 | | 0.0734 | 4.09 | 3550 | 0.3814 | 0.9267 | | 0.0396 | 4.15 | 3600 | 0.3978 | 0.9267 | | 0.0427 | 4.21 | 3650 | 0.4333 | 0.92 | | 0.1472 | 4.27 | 3700 | 0.3816 | 0.92 | | 0.0587 | 4.33 | 3750 | 0.3624 | 0.92 | | 0.0549 | 4.38 | 3800 | 0.3461 | 0.9333 | | 0.0606 | 4.44 | 3850 | 0.3562 | 0.94 | | 0.0483 | 4.5 | 3900 | 0.3655 | 0.9333 | | 0.0351 | 4.56 | 3950 | 0.3613 | 0.9333 | | 0.0763 | 4.61 | 4000 | 0.3641 | 0.94 | | 0.0835 | 4.67 | 4050 | 0.3669 | 0.9333 | | 0.0542 | 4.73 | 4100 | 0.3569 | 0.9333 | | 0.0804 | 4.79 | 4150 | 0.3575 | 0.9333 | | 0.0336 | 4.84 | 4200 | 0.3655 | 0.9333 | | 0.0631 | 4.9 | 4250 | 0.3646 | 0.9333 | | 0.0183 | 4.96 | 4300 | 0.3667 | 0.9333 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.1
JoanWaweru/Code-SwitchedSentimentAnalysis
JoanWaweru
2022-11-09T17:59:01Z
0
0
null
[ "region:us" ]
null
2022-11-09T17:14:49Z
# IS2Project This is a Customer Sentiment Analysis for Code-Switched Language: A Case of Safaricom Limited. The proposed model will be able to detect customer sentiment analysis in the code-switched pair (English-Swahili) for Safaricom users using Support Vector Machines. The model will be able to categorize tweets into good reviews and bad reviews. The model is also compared with Logistic Regression and Naives Bayes to see which model performs the best.
Watwat100/pls
Watwat100
2022-11-09T17:51:10Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-09T17:50:52Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 88 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 88, "warmup_steps": 9, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
agvelu/xlm-roberta-base-finetuned-panx-de
agvelu
2022-11-09T17:46:35Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-08T01:06:13Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
DavidNo/albert-xxlarge-v2-finetuned-squadv2
DavidNo
2022-11-09T17:13:35Z
60
0
transformers
[ "transformers", "tf", "tensorboard", "albert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-09T12:25:34Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: DavidNo/albert-xxlarge-v2-finetuned-squadv2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # DavidNo/albert-xxlarge-v2-finetuned-squadv2 This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7633 - Train End Logits Accuracy: 0.6680 - Train Start Logits Accuracy: 0.6407 - Validation Loss: 1.1441 - Validation End Logits Accuracy: 0.5277 - Validation Start Logits Accuracy: 0.5106 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16494, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.0842 | 0.6032 | 0.5767 | 1.1372 | 0.5166 | 0.5058 | 0 | | 0.7633 | 0.6680 | 0.6407 | 1.1441 | 0.5277 | 0.5106 | 1 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
pig4431/TSE_BERT_5E
pig4431
2022-11-09T16:54:29Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-09T16:52:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: TSE_BERT_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TSE_BERT_5E This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3664 - Accuracy: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6836 | 0.06 | 50 | 0.5614 | 0.8267 | | 0.4679 | 0.12 | 100 | 0.3521 | 0.9 | | 0.3325 | 0.17 | 150 | 0.2747 | 0.8933 | | 0.2493 | 0.23 | 200 | 0.2712 | 0.9067 | | 0.273 | 0.29 | 250 | 0.2304 | 0.9333 | | 0.2888 | 0.35 | 300 | 0.2253 | 0.92 | | 0.2558 | 0.4 | 350 | 0.2110 | 0.9267 | | 0.1997 | 0.46 | 400 | 0.2206 | 0.9267 | | 0.2748 | 0.52 | 450 | 0.2358 | 0.9267 | | 0.2448 | 0.58 | 500 | 0.2942 | 0.8933 | | 0.2247 | 0.63 | 550 | 0.2410 | 0.9067 | | 0.2002 | 0.69 | 600 | 0.2222 | 0.9133 | | 0.2668 | 0.75 | 650 | 0.2372 | 0.9133 | | 0.2701 | 0.81 | 700 | 0.2288 | 0.9333 | | 0.2034 | 0.87 | 750 | 0.2415 | 0.9267 | | 0.2374 | 0.92 | 800 | 0.2278 | 0.92 | | 0.2305 | 0.98 | 850 | 0.2270 | 0.92 | | 0.1704 | 1.04 | 900 | 0.2591 | 0.9333 | | 0.1826 | 1.1 | 950 | 0.2481 | 0.9267 | | 0.1116 | 1.15 | 1000 | 0.2906 | 0.9133 | | 0.1527 | 1.21 | 1050 | 0.2902 | 0.92 | | 0.1692 | 1.27 | 1100 | 0.2489 | 0.9333 | | 0.158 | 1.33 | 1150 | 0.2576 | 0.9333 | | 0.1608 | 1.38 | 1200 | 0.3344 | 0.9267 | | 0.1194 | 1.44 | 1250 | 0.3615 | 0.9267 | | 0.201 | 1.5 | 1300 | 0.3374 | 0.92 | | 0.1938 | 1.56 | 1350 | 0.2847 | 0.92 | | 0.1479 | 1.61 | 1400 | 0.3044 | 0.9267 | | 0.1628 | 1.67 | 1450 | 0.2980 | 0.9267 | | 0.1783 | 1.73 | 1500 | 0.3132 | 0.9267 | | 0.1885 | 1.79 | 1550 | 0.2676 | 0.9333 | | 0.1651 | 1.85 | 1600 | 0.2709 | 0.9333 | | 0.1376 | 1.9 | 1650 | 0.2777 | 0.94 | | 0.1571 | 1.96 | 1700 | 0.2761 | 0.9333 | | 0.1561 | 2.02 | 1750 | 0.2912 | 0.94 | | 0.1187 | 2.08 | 1800 | 0.2893 | 0.9467 | | 0.1205 | 2.13 | 1850 | 0.2882 | 0.9467 | | 0.0751 | 2.19 | 1900 | 0.3032 | 0.9467 | | 0.1412 | 2.25 | 1950 | 0.2926 | 0.9467 | | 0.0783 | 2.31 | 2000 | 0.2962 | 0.9467 | | 0.1094 | 2.36 | 2050 | 0.2909 | 0.9333 | | 0.1158 | 2.42 | 2100 | 0.3087 | 0.9333 | | 0.0606 | 2.48 | 2150 | 0.3102 | 0.9467 | | 0.1164 | 2.54 | 2200 | 0.2812 | 0.94 | | 0.1311 | 2.6 | 2250 | 0.3736 | 0.9267 | | 0.1087 | 2.65 | 2300 | 0.3069 | 0.94 | | 0.109 | 2.71 | 2350 | 0.3176 | 0.94 | | 0.0789 | 2.77 | 2400 | 0.3130 | 0.94 | | 0.0784 | 2.83 | 2450 | 0.3338 | 0.94 | | 0.1388 | 2.88 | 2500 | 0.3440 | 0.9333 | | 0.1062 | 2.94 | 2550 | 0.2883 | 0.94 | | 0.1016 | 3.0 | 2600 | 0.2776 | 0.94 | | 0.0642 | 3.06 | 2650 | 0.3302 | 0.9333 | | 0.052 | 3.11 | 2700 | 0.3217 | 0.94 | | 0.0539 | 3.17 | 2750 | 0.3899 | 0.9267 | | 0.0593 | 3.23 | 2800 | 0.3283 | 0.9467 | | 0.0468 | 3.29 | 2850 | 0.3382 | 0.9467 | | 0.0546 | 3.34 | 2900 | 0.3133 | 0.9467 | | 0.107 | 3.4 | 2950 | 0.3550 | 0.94 | | 0.1079 | 3.46 | 3000 | 0.3484 | 0.94 | | 0.0782 | 3.52 | 3050 | 0.3313 | 0.94 | | 0.0635 | 3.58 | 3100 | 0.3418 | 0.94 | | 0.0771 | 3.63 | 3150 | 0.3685 | 0.9333 | | 0.0629 | 3.69 | 3200 | 0.3467 | 0.9333 | | 0.0552 | 3.75 | 3250 | 0.3677 | 0.94 | | 0.0531 | 3.81 | 3300 | 0.3436 | 0.9333 | | 0.0819 | 3.86 | 3350 | 0.3802 | 0.9333 | | 0.0583 | 3.92 | 3400 | 0.3441 | 0.9333 | | 0.0434 | 3.98 | 3450 | 0.3666 | 0.9333 | | 0.0747 | 4.04 | 3500 | 0.3554 | 0.9333 | | 0.0309 | 4.09 | 3550 | 0.3582 | 0.9333 | | 0.1057 | 4.15 | 3600 | 0.3615 | 0.9267 | | 0.0391 | 4.21 | 3650 | 0.3583 | 0.9267 | | 0.0433 | 4.27 | 3700 | 0.3514 | 0.9333 | | 0.0597 | 4.33 | 3750 | 0.3580 | 0.9333 | | 0.0663 | 4.38 | 3800 | 0.3390 | 0.94 | | 0.0563 | 4.44 | 3850 | 0.3518 | 0.9267 | | 0.0702 | 4.5 | 3900 | 0.3542 | 0.9267 | | 0.0383 | 4.56 | 3950 | 0.3528 | 0.9267 | | 0.0474 | 4.61 | 4000 | 0.3485 | 0.9333 | | 0.0265 | 4.67 | 4050 | 0.3489 | 0.94 | | 0.0165 | 4.73 | 4100 | 0.3616 | 0.9333 | | 0.0489 | 4.79 | 4150 | 0.3579 | 0.9333 | | 0.0478 | 4.84 | 4200 | 0.3603 | 0.9333 | | 0.0536 | 4.9 | 4250 | 0.3666 | 0.9267 | | 0.0551 | 4.96 | 4300 | 0.3664 | 0.9267 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.1
GItaf/JointGPT2-warmup-from-CLS
GItaf
2022-11-09T16:52:19Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-09T13:41:28Z
--- tags: - generated_from_trainer model-index: - name: GPT2-CLS-Finetuned-MBTI-GPT2-CLS-Finetuned-MBTI-JointGPT2-Warmup-from-CLS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GPT2-CLS-Finetuned-MBTI-GPT2-CLS-Finetuned-MBTI-JointGPT2-Warmup-from-CLS This model is a fine-tuned version of [GItaf/GPT2-CLS-Finetuned-MBTI](https://huggingface.co/GItaf/GPT2-CLS-Finetuned-MBTI) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
NineArtsDragon/bert-finetuned-ner
NineArtsDragon
2022-11-09T16:47:02Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-09T02:13:23Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 120 | 0.0053 | 0.8410 | 0.9372 | 0.8865 | 0.9991 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
NoCrypt/Anything-v3-0
NoCrypt
2022-11-09T16:46:59Z
0
4
null
[ "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-09T16:44:02Z
--- language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m inference: false ---
erikdavidsson42/distilbert-base-uncased-finetuned-medium
erikdavidsson42
2022-11-09T16:40:55Z
59
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-07T20:08:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: erikdavidsson42/distilbert-base-uncased-finetuned-medium results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # erikdavidsson42/distilbert-base-uncased-finetuned-medium This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.9469 - Validation Loss: 2.7043 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7567, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.9469 | 2.7043 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.5.0 - Datasets 2.6.1 - Tokenizers 0.13.2
aajrami/bert-mlm-base
aajrami
2022-11-09T16:16:14Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "bert", "license:cc-by-4.0", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-05-12T20:46:05Z
--- tags: - bert license: cc-by-4.0 --- ## bert-mlm-base A BERT base Language Model with an **MLM** pre-training objective. For more details about the pre-training objective and the pre-training hyperparameters, please refer to [How does the pre-training objective affect what large language models learn about linguistic properties?](https://aclanthology.org/2022.acl-short.16/) ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{alajrami2022does, title={How does the pre-training objective affect what large language models learn about linguistic properties?}, author={Alajrami, Ahmed and Aletras, Nikolaos}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)}, pages={131--147}, year={2022} } ```
aajrami/bert-ascii-medium
aajrami
2022-11-09T16:14:30Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "bert", "license:cc-by-4.0", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-08T22:22:19Z
--- tags: - bert license: cc-by-4.0 --- ## bert-ascii-medium A medium-size BERT Language Model pre-trained by predicting the summation of the **ASCII** code values of the characters in a masked token as a pre-training objective. For more details about the pre-training objective and the pre-training hyperparameters, please refer to [How does the pre-training objective affect what large language models learn about linguistic properties?](https://aclanthology.org/2022.acl-short.16/) ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{alajrami2022does, title={How does the pre-training objective affect what large language models learn about linguistic properties?}, author={Alajrami, Ahmed and Aletras, Nikolaos}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)}, pages={131--147}, year={2022} } ```
OFA-Sys/ofa-medium
OFA-Sys
2022-11-09T15:51:47Z
49
5
transformers
[ "transformers", "pytorch", "ofa", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-04-28T07:13:38Z
--- license: apache-2.0 --- # OFA-medium ## Introduction This is the **medium** version of OFA pretrained model. OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image generation, visual grounding, image captioning, image classification, text generation, etc.) to a simple sequence-to-sequence learning framework. The directory includes 4 files, namely `config.json` which consists of model configuration, `vocab.json` and `merge.txt` for our OFA tokenizer, and lastly `pytorch_model.bin` which consists of model weights. There is no need to worry about the mismatch between Fairseq and transformers, since we have addressed the issue yet. ## How to use To use it in transformers, please refer to https://github.com/OFA-Sys/OFA/tree/feature/add_transformers. Install the transformers and download the models as shown below. ```bash git clone --single-branch --branch feature/add_transformers https://github.com/OFA-Sys/OFA.git pip install OFA/transformers/ git clone https://huggingface.co/OFA-Sys/OFA-medium ``` After, refer the path to OFA-medium to `ckpt_dir`, and prepare an image for the testing example below. Also, ensure that you have pillow and torchvision in your environment. ```python >>> from PIL import Image >>> from torchvision import transforms >>> from transformers import OFATokenizer, OFAModel >>> from generate import sequence_generator >>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] >>> resolution = 256 >>> patch_resize_transform = transforms.Compose([ lambda image: image.convert("RGB"), transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) >>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir) >>> txt = " what does the image describe?" >>> inputs = tokenizer([txt], return_tensors="pt").input_ids >>> img = Image.open(path_to_image) >>> patch_img = patch_resize_transform(img).unsqueeze(0) # using the generator of fairseq version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=True) >>> generator = sequence_generator.SequenceGenerator( tokenizer=tokenizer, beam_size=5, max_len_b=16, min_len=0, no_repeat_ngram_size=3, ) >>> data = {} >>> data["net_input"] = {"input_ids": inputs, 'patch_images': patch_img, 'patch_masks':torch.tensor([True])} >>> gen_output = generator.generate([model], data) >>> gen = [gen_output[i][0]["tokens"] for i in range(len(gen_output))] # using the generator of huggingface version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=False) >>> gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3) >>> print(tokenizer.batch_decode(gen, skip_special_tokens=True)) ```
OFA-Sys/ofa-tiny
OFA-Sys
2022-11-09T15:51:26Z
61
5
transformers
[ "transformers", "pytorch", "ofa", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-04-28T06:16:45Z
--- license: apache-2.0 --- # OFA-tiny ## Introduction This is the **tiny** version of OFA pretrained model. OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image generation, visual grounding, image captioning, image classification, text generation, etc.) to a simple sequence-to-sequence learning framework. The directory includes 4 files, namely `config.json` which consists of model configuration, `vocab.json` and `merge.txt` for our OFA tokenizer, and lastly `pytorch_model.bin` which consists of model weights. There is no need to worry about the mismatch between Fairseq and transformers, since we have addressed the issue yet. ## How to use To use it in transformers, please refer to https://github.com/OFA-Sys/OFA/tree/feature/add_transformers. Install the transformers and download the models as shown below. ```bash git clone --single-branch --branch feature/add_transformers https://github.com/OFA-Sys/OFA.git pip install OFA/transformers/ git clone https://huggingface.co/OFA-Sys/OFA-tiny ``` After, refer the path to OFA-tiny to `ckpt_dir`, and prepare an image for the testing example below. Also, ensure that you have pillow and torchvision in your environment. ```python >>> from PIL import Image >>> from torchvision import transforms >>> from transformers import OFATokenizer, OFAModel >>> from generate import sequence_generator >>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] >>> resolution = 256 >>> patch_resize_transform = transforms.Compose([ lambda image: image.convert("RGB"), transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) >>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir) >>> txt = " what does the image describe?" >>> inputs = tokenizer([txt], return_tensors="pt").input_ids >>> img = Image.open(path_to_image) >>> patch_img = patch_resize_transform(img).unsqueeze(0) # using the generator of fairseq version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=True) >>> generator = sequence_generator.SequenceGenerator( tokenizer=tokenizer, beam_size=5, max_len_b=16, min_len=0, no_repeat_ngram_size=3, ) >>> data = {} >>> data["net_input"] = {"input_ids": inputs, 'patch_images': patch_img, 'patch_masks':torch.tensor([True])} >>> gen_output = generator.generate([model], data) >>> gen = [gen_output[i][0]["tokens"] for i in range(len(gen_output))] # using the generator of huggingface version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=False) >>> gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3) >>> print(tokenizer.batch_decode(gen, skip_special_tokens=True)) ```
OFA-Sys/ofa-large
OFA-Sys
2022-11-09T15:50:37Z
75
12
transformers
[ "transformers", "pytorch", "ofa", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-04-28T07:41:55Z
--- license: apache-2.0 --- # OFA-large ## Introduction This is the **large** version of OFA pretrained model. OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image generation, visual grounding, image captioning, image classification, text generation, etc.) to a simple sequence-to-sequence learning framework. The directory includes 4 files, namely `config.json` which consists of model configuration, `vocab.json` and `merge.txt` for our OFA tokenizer, and lastly `pytorch_model.bin` which consists of model weights. There is no need to worry about the mismatch between Fairseq and transformers, since we have addressed the issue yet. ## How to use To use it in transformers, please refer to https://github.com/OFA-Sys/OFA/tree/feature/add_transformers. Install the transformers and download the models as shown below. ```bash git clone --single-branch --branch feature/add_transformers https://github.com/OFA-Sys/OFA.git pip install OFA/transformers/ git clone https://huggingface.co/OFA-Sys/OFA-large ``` After, refer the path to OFA-large to `ckpt_dir`, and prepare an image for the testing example below. Also, ensure that you have pillow and torchvision in your environment. ```python >>> from PIL import Image >>> from torchvision import transforms >>> from transformers import OFATokenizer, OFAModel >>> from generate import sequence_generator >>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] >>> resolution = 480 >>> patch_resize_transform = transforms.Compose([ lambda image: image.convert("RGB"), transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) >>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir) >>> txt = " what does the image describe?" >>> inputs = tokenizer([txt], return_tensors="pt").input_ids >>> img = Image.open(path_to_image) >>> patch_img = patch_resize_transform(img).unsqueeze(0) # using the generator of fairseq version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=True) >>> generator = sequence_generator.SequenceGenerator( tokenizer=tokenizer, beam_size=5, max_len_b=16, min_len=0, no_repeat_ngram_size=3, ) >>> data = {} >>> data["net_input"] = {"input_ids": inputs, 'patch_images': patch_img, 'patch_masks':torch.tensor([True])} >>> gen_output = generator.generate([model], data) >>> gen = [gen_output[i][0]["tokens"] for i in range(len(gen_output))] # using the generator of huggingface version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=False) >>> gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3) >>> print(tokenizer.batch_decode(gen, skip_special_tokens=True)) ```
OFA-Sys/ofa-base
OFA-Sys
2022-11-09T15:50:09Z
364
15
transformers
[ "transformers", "pytorch", "ofa", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-04-28T07:27:45Z
--- license: apache-2.0 --- # OFA-base ## Introduction This is the **base** version of OFA pretrained model. OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image generation, visual grounding, image captioning, image classification, text generation, etc.) to a simple sequence-to-sequence learning framework. The directory includes 4 files, namely `config.json` which consists of model configuration, `vocab.json` and `merge.txt` for our OFA tokenizer, and lastly `pytorch_model.bin` which consists of model weights. There is no need to worry about the mismatch between Fairseq and transformers, since we have addressed the issue yet. ## How to use To use it in transformers, please refer to https://github.com/OFA-Sys/OFA/tree/feature/add_transformers. Install the transformers and download the models as shown below. ```bash git clone --single-branch --branch feature/add_transformers https://github.com/OFA-Sys/OFA.git pip install OFA/transformers/ git clone https://huggingface.co/OFA-Sys/OFA-base ``` After, refer the path to OFA-base to `ckpt_dir`, and prepare an image for the testing example below. Also, ensure that you have pillow and torchvision in your environment. ```python >>> from PIL import Image >>> from torchvision import transforms >>> from transformers import OFATokenizer, OFAModel >>> from generate import sequence_generator >>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] >>> resolution = 384 >>> patch_resize_transform = transforms.Compose([ lambda image: image.convert("RGB"), transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) >>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir) >>> txt = " what does the image describe?" >>> inputs = tokenizer([txt], return_tensors="pt").input_ids >>> img = Image.open(path_to_image) >>> patch_img = patch_resize_transform(img).unsqueeze(0) # using the generator of fairseq version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=True) >>> generator = sequence_generator.SequenceGenerator( tokenizer=tokenizer, beam_size=5, max_len_b=16, min_len=0, no_repeat_ngram_size=3, ) >>> data = {} >>> data["net_input"] = {"input_ids": inputs, 'patch_images': patch_img, 'patch_masks':torch.tensor([True])} >>> gen_output = generator.generate([model], data) >>> gen = [gen_output[i][0]["tokens"] for i in range(len(gen_output))] # using the generator of huggingface version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=False) >>> gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3) >>> print(tokenizer.batch_decode(gen, skip_special_tokens=True)) ```
dodge99/a2c-AntBulletEnv-v0-short-training
dodge99
2022-11-09T15:35:34Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-09T15:34:28Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 376.30 +/- 46.89 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
crodri/wikicat_ca
crodri
2022-11-09T15:23:23Z
103
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "ca", "dataset:projecte-aina/WikiCAT_ca", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-11-09T14:18:46Z
--- tags: - autotrain - text-classification language: - ca widget: - text: "Aquest dissabte, Francesc Solé va arribar a la meta a Ordino com el guanyador del Ultra Trail d'Andorra després de 170km amb un desnivell altitudinal de 13 500 metres, en un temps de 31 hores i 9 minuts." - text: "Una cançó és una composició musical que conté, a vegades, una part amb veu o melodia vocal, és a dir, amb text, cantada, però també pot ser simplement un conjunt de notes tocades sistemàticament, formant un ritme." datasets: - projecte-aina/WikiCAT_ca co2_eq_emissions: emissions: 47.543878831739285 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2036166932 - CO2 Emissions (in grams): 47.5439 ## Validation Metrics - Loss: 0.701 - Accuracy: 0.787 - Macro F1: 0.776 - Micro F1: 0.787 - Weighted F1: 0.784 - Macro Precision: 0.786 - Micro Precision: 0.787 - Weighted Precision: 0.788 - Macro Recall: 0.775 - Micro Recall: 0.787 - Weighted Recall: 0.787 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crodri/autotrain-wikicat_ca-2036166932 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("crodri/wikicat_ca", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("crodri/wikicat_ca", use_auth_token=True) inputs = tokenizer("Una cançó és una composició musical que conté, a vegades, una part amb veu o melodia vocal, és a dir, amb text, cantada, però també pot ser simplement un conjunt de notes tocades sistemàticament, formant un ritme.", return_tensors="pt") outputs = model(**inputs) ```
pig4431/TSE_fewshot
pig4431
2022-11-09T14:48:15Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-09T14:48:01Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 80 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 80, "warmup_steps": 8, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Marre-Barre/smthdssmth
Marre-Barre
2022-11-09T13:58:21Z
0
9
null
[ "region:us" ]
null
2022-11-09T13:06:39Z
prompt: {{replace this with subject}}, art by smthdssmth negative prompt: heavy contrast, out of focus, cropped, low details, deformed, ugly scale: 8 steps: 50 art by smthdssmth is the keyword
sakib131/whisper-small-bn
sakib131
2022-11-09T13:04:48Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "bn", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-08T10:01:56Z
--- language: - bn license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 40.38828355674009 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1305 - Wer: 40.3883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1994 | 0.16 | 1000 | 0.2302 | 58.9519 | | 0.1424 | 0.32 | 2000 | 0.1697 | 48.0494 | | 0.1379 | 0.48 | 3000 | 0.1434 | 43.1854 | | 0.1209 | 0.64 | 4000 | 0.1305 | 40.3883 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
edbeeching/dmlab_30_1111
edbeeching
2022-11-09T13:01:57Z
5
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-09T12:59:54Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: dmlab_30 type: dmlab_30 metrics: - type: mean_reward value: 9.18 +/- 0.64 name: mean_reward verified: false --- A(n) **APPO** model trained on the **dmlab_30** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
AlekseyKorshuk/dalio-1.3b-test
AlekseyKorshuk
2022-11-09T12:02:54Z
5
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-08T23:12:16Z
--- license: other tags: - generated_from_trainer metrics: - accuracy model-index: - name: dalio-1.3b-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dalio-1.3b-test This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6035 - Accuracy: 0.0672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6133 | 0.08 | 1 | 2.625 | 0.0652 | | 2.6199 | 0.15 | 2 | 2.625 | 0.0652 | | 2.7202 | 0.23 | 3 | 2.6113 | 0.0658 | | 2.6177 | 0.31 | 4 | 2.6113 | 0.0658 | | 2.5422 | 0.38 | 5 | 2.5703 | 0.0661 | | 2.5627 | 0.46 | 6 | 2.5566 | 0.0662 | | 2.5784 | 0.54 | 7 | 2.5469 | 0.0664 | | 2.5264 | 0.62 | 8 | 2.5371 | 0.0663 | | 2.3396 | 0.69 | 9 | 2.5332 | 0.0670 | | 2.4297 | 0.77 | 10 | 2.5273 | 0.0673 | | 2.3914 | 0.85 | 11 | 2.5234 | 0.0672 | | 2.429 | 0.92 | 12 | 2.5195 | 0.0671 | | 2.3055 | 1.0 | 13 | 2.5117 | 0.0672 | | 1.7162 | 1.08 | 14 | 2.5215 | 0.0672 | | 1.7264 | 1.15 | 15 | 2.5469 | 0.0677 | | 1.7559 | 1.23 | 16 | 2.5879 | 0.0671 | | 1.7899 | 1.31 | 17 | 2.6113 | 0.0667 | | 1.6465 | 1.38 | 18 | 2.6191 | 0.0666 | | 1.5955 | 1.46 | 19 | 2.6074 | 0.0671 | | 1.5389 | 1.54 | 20 | 2.5957 | 0.0672 | | 1.5356 | 1.62 | 21 | 2.5859 | 0.0670 | | 1.386 | 1.69 | 22 | 2.5820 | 0.0672 | | 1.7698 | 1.77 | 23 | 2.5742 | 0.0670 | | 1.3923 | 1.85 | 24 | 2.5801 | 0.0669 | | 1.4723 | 1.92 | 25 | 2.5898 | 0.0672 | | 1.5653 | 2.0 | 26 | 2.6035 | 0.0672 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bigmorning/whisper_nosp_0020
bigmorning
2022-11-09T11:48:16Z
61
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T11:48:06Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_nosp_0020 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_nosp_0020 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1825 - Train Accuracy: 0.0228 - Validation Loss: 0.8115 - Validation Accuracy: 0.0203 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 7.5559 | 0.0010 | 6.3853 | 0.0013 | 0 | | 6.3227 | 0.0021 | 5.7023 | 0.0038 | 1 | | 4.9825 | 0.0063 | 3.6302 | 0.0109 | 2 | | 2.9413 | 0.0126 | 2.1959 | 0.0154 | 3 | | 1.9349 | 0.0157 | 1.6630 | 0.0172 | 4 | | 1.4741 | 0.0171 | 1.3813 | 0.0181 | 5 | | 1.1975 | 0.0181 | 1.2161 | 0.0186 | 6 | | 1.0048 | 0.0188 | 1.0990 | 0.0191 | 7 | | 0.8598 | 0.0194 | 1.0165 | 0.0194 | 8 | | 0.7431 | 0.0199 | 0.9603 | 0.0196 | 9 | | 0.6489 | 0.0203 | 0.9106 | 0.0198 | 10 | | 0.5682 | 0.0207 | 0.8787 | 0.0199 | 11 | | 0.4985 | 0.0210 | 0.8548 | 0.0200 | 12 | | 0.4372 | 0.0213 | 0.8352 | 0.0201 | 13 | | 0.3829 | 0.0216 | 0.8190 | 0.0202 | 14 | | 0.3327 | 0.0219 | 0.8148 | 0.0202 | 15 | | 0.2904 | 0.0221 | 0.8139 | 0.0202 | 16 | | 0.2492 | 0.0224 | 0.8188 | 0.0202 | 17 | | 0.2140 | 0.0226 | 0.8146 | 0.0203 | 18 | | 0.1825 | 0.0228 | 0.8115 | 0.0203 | 19 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
bigmorning/whisper_nosp_0010
bigmorning
2022-11-09T11:04:17Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T11:04:06Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_nosp_0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_nosp_0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7431 - Train Accuracy: 0.0199 - Validation Loss: 0.9603 - Validation Accuracy: 0.0196 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 7.5559 | 0.0010 | 6.3853 | 0.0013 | 0 | | 6.3227 | 0.0021 | 5.7023 | 0.0038 | 1 | | 4.9825 | 0.0063 | 3.6302 | 0.0109 | 2 | | 2.9413 | 0.0126 | 2.1959 | 0.0154 | 3 | | 1.9349 | 0.0157 | 1.6630 | 0.0172 | 4 | | 1.4741 | 0.0171 | 1.3813 | 0.0181 | 5 | | 1.1975 | 0.0181 | 1.2161 | 0.0186 | 6 | | 1.0048 | 0.0188 | 1.0990 | 0.0191 | 7 | | 0.8598 | 0.0194 | 1.0165 | 0.0194 | 8 | | 0.7431 | 0.0199 | 0.9603 | 0.0196 | 9 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
bigmorning/whisper_nosp_0005
bigmorning
2022-11-09T10:42:15Z
62
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T10:42:03Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_nosp_0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_nosp_0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.9349 - Train Accuracy: 0.0157 - Validation Loss: 1.6630 - Validation Accuracy: 0.0172 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 7.5559 | 0.0010 | 6.3853 | 0.0013 | 0 | | 6.3227 | 0.0021 | 5.7023 | 0.0038 | 1 | | 4.9825 | 0.0063 | 3.6302 | 0.0109 | 2 | | 2.9413 | 0.0126 | 2.1959 | 0.0154 | 3 | | 1.9349 | 0.0157 | 1.6630 | 0.0172 | 4 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
hushell/pmf_metadataset_dino
hushell
2022-11-09T10:34:36Z
0
5
null
[ "region:us" ]
null
2022-11-04T14:13:14Z
# Model checkpoints for [PMF](https://github.com/hushell/pmf_cvpr22) NOTE: for DINO-small, peak VRAM is about 32GB; for DINO-base, peak VRAM is about 42GB. Meta-testing with `dino_small_batch16` trained on full Meta-Dataset: ``` python -m torch.distributed.launch --nproc_per_node=8 --use_env test_meta_dataset.py --data-path ../../datasets/meta_dataset --dataset meta_dataset --arch dino_small_patch16 --deploy finetune --output outputs/md_full_dinosmall --resume md_full_128x128_dinosmall_fp16_lr5e-5/best.pth --dist-eval --ada_steps 100 --ada_lr 0.0001 ``` Meta-testing with `dino_small_batch16` trained on ImageNet domain of Meta-Dataset: ``` python -m torch.distributed.launch --nproc_per_node=8 --use_env test_meta_dataset.py --data-path ../../datasets/meta_dataset --dataset meta_dataset --arch dino_small_patch16 --deploy finetune --output outputs/md_inet_dinosmall_6gpus --resume pmf_metadataset_dino/md_inet_128x128_dinosmall_fp16_lr5e-5/best.pth --dist-eval --ada_steps 100 --ada_lr 0.0001 ``` ## Results The validated meta-test learning rate using 5 episodes for each domain is shown in the bracket. Method |ILSVRC (test) |Omniglot |Aircraft |Birds |Textures |QuickDraw |Fungi |VGG Flower |Traffic signs |MSCOCO ---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------- [md_full_128x128_dinosmall_fp16_lr5e-5](https://huggingface.co/hushell/pmf_metadataset_dino/blob/main/md_full_128x128_dinosmall_fp16_lr5e-5/best.pth) |73.52±0.80&nbsp;(lr=0.0001) |92.17±0.57&nbsp;(lr=0.0001) |89.49±0.52&nbsp;(lr=0.001) |91.04±0.37&nbsp;(lr=0.0001) |85.73±0.62&nbsp;(lr=0.001) |79.43±0.67&nbsp;(lr=0.0001) |74.99±0.94&nbsp;(lr=0) |95.30±0.44&nbsp;(lr=0.001) |89.85±0.76&nbsp;(lr=0.01) |59.69±1.02&nbsp;(lr=0.001) [md_inet_128x128_dinosmall_fp16_lr2e-4](https://huggingface.co/hushell/pmf_metadataset_dino/blob/main/md_imagenet_128x128_dinosmall_fp16_lr2e-4/best.pth) |75.51±0.72&nbsp;(lr=0.001) |82.81±1.10&nbsp;(lr=0.01) |78.38±1.09&nbsp;(lr=0.01) |85.18±0.77&nbsp;(lr=0.001) |86.95±0.60&nbsp;(lr=0.001) |74.47±0.83&nbsp;(lr=0.01) |55.16±1.09&nbsp;(lr=0) |94.66±0.48&nbsp;(lr=0) |90.04±0.81&nbsp;(lr=0.01) |62.60±0.96&nbsp;(lr=0.001)
Sennodipoi/lilt-distilroberta-base
Sennodipoi
2022-11-09T09:51:32Z
162
0
transformers
[ "transformers", "pytorch", "lilt", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-02T10:40:57Z
This model combines the base version of distilroberta + the standalone version of LiLT. It was created with the code available at the original LiLT repository https://github.com/jpWang/LiLT The model can be used for fine-tuning in token classification tasks or visual question answering.
shafin/chemical-bert-uncased-finetuned-cust
shafin
2022-11-09T09:45:22Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-09T01:24:01Z
--- tags: - generated_from_trainer model-index: - name: chemical-bert-uncased-finetuned-cust results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chemical-bert-uncased-finetuned-cust This model is a fine-tuned version of [recobo/chemical-bert-uncased](https://huggingface.co/recobo/chemical-bert-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.5876 | 1.0 | 63 | 2.7997 | | 2.7843 | 2.0 | 126 | 2.3734 | | 2.418 | 3.0 | 189 | 2.1510 | | 2.2247 | 4.0 | 252 | 1.9822 | | 2.062 | 5.0 | 315 | 1.8463 | | 1.9875 | 6.0 | 378 | 1.8293 | | 1.9034 | 7.0 | 441 | 1.7666 | | 1.7818 | 8.0 | 504 | 1.6783 | | 1.7131 | 9.0 | 567 | 1.5754 | | 1.6793 | 10.0 | 630 | 1.5480 | | 1.5773 | 11.0 | 693 | 1.4568 | | 1.5391 | 12.0 | 756 | 1.5101 | | 1.5049 | 13.0 | 819 | 1.4340 | | 1.4476 | 14.0 | 882 | 1.4046 | | 1.4032 | 15.0 | 945 | 1.3593 | | 1.395 | 16.0 | 1008 | 1.3689 | | 1.3353 | 17.0 | 1071 | 1.3350 | | 1.3122 | 18.0 | 1134 | 1.2863 | | 1.3036 | 19.0 | 1197 | 1.3690 | | 1.2644 | 20.0 | 1260 | 1.1904 | | 1.222 | 21.0 | 1323 | 1.1986 | | 1.2091 | 22.0 | 1386 | 1.1650 | | 1.2007 | 23.0 | 1449 | 1.1949 | | 1.1456 | 24.0 | 1512 | 1.1649 | | 1.1426 | 25.0 | 1575 | 1.1498 | | 1.0883 | 26.0 | 1638 | 1.1489 | | 1.0915 | 27.0 | 1701 | 1.1179 | | 1.0635 | 28.0 | 1764 | 1.0726 | | 1.0899 | 29.0 | 1827 | 1.1107 | | 1.0251 | 30.0 | 1890 | 1.0944 | | 1.0387 | 31.0 | 1953 | 1.0488 | | 1.0037 | 32.0 | 2016 | 1.0679 | | 1.0101 | 33.0 | 2079 | 1.0272 | | 0.9595 | 34.0 | 2142 | 1.0158 | | 0.9661 | 35.0 | 2205 | 1.0316 | | 0.9535 | 36.0 | 2268 | 1.0086 | | 0.9269 | 37.0 | 2331 | 1.0221 | | 0.9395 | 38.0 | 2394 | 0.9626 | | 0.9105 | 39.0 | 2457 | 0.9903 | | 0.8888 | 40.0 | 2520 | 0.9892 | | 0.9316 | 41.0 | 2583 | 0.9786 | | 0.8804 | 42.0 | 2646 | 0.9938 | | 0.8589 | 43.0 | 2709 | 1.0105 | | 0.8573 | 44.0 | 2772 | 0.9729 | | 0.8566 | 45.0 | 2835 | 0.9972 | | 0.8392 | 46.0 | 2898 | 1.0085 | | 0.8363 | 47.0 | 2961 | 0.9336 | | 0.8184 | 48.0 | 3024 | 0.9886 | | 0.7964 | 49.0 | 3087 | 0.9661 | | 0.8025 | 50.0 | 3150 | 0.8956 | | 0.8156 | 51.0 | 3213 | 0.9415 | | 0.7906 | 52.0 | 3276 | 0.9381 | | 0.7783 | 53.0 | 3339 | 0.9445 | | 0.7696 | 54.0 | 3402 | 0.8859 | | 0.763 | 55.0 | 3465 | 0.8851 | | 0.7638 | 56.0 | 3528 | 0.9128 | | 0.7576 | 57.0 | 3591 | 0.8629 | | 0.757 | 58.0 | 3654 | 0.8917 | | 0.7232 | 59.0 | 3717 | 0.8956 | | 0.7327 | 60.0 | 3780 | 0.8727 | | 0.7321 | 61.0 | 3843 | 0.8558 | | 0.7131 | 62.0 | 3906 | 0.8876 | | 0.696 | 63.0 | 3969 | 0.8872 | | 0.6996 | 64.0 | 4032 | 0.7758 | | 0.6807 | 65.0 | 4095 | 0.8657 | | 0.6899 | 66.0 | 4158 | 0.8813 | | 0.6873 | 67.0 | 4221 | 0.8488 | | 0.6681 | 68.0 | 4284 | 0.8865 | | 0.6758 | 69.0 | 4347 | 0.8447 | | 0.6626 | 70.0 | 4410 | 0.8421 | | 0.6535 | 71.0 | 4473 | 0.8313 | | 0.6505 | 72.0 | 4536 | 0.8636 | | 0.6654 | 73.0 | 4599 | 0.8433 | | 0.6363 | 74.0 | 4662 | 0.7666 | | 0.6395 | 75.0 | 4725 | 0.8882 | | 0.6206 | 76.0 | 4788 | 0.8409 | | 0.6365 | 77.0 | 4851 | 0.8807 | | 0.6325 | 78.0 | 4914 | 0.8012 | | 0.6142 | 79.0 | 4977 | 0.7705 | | 0.6108 | 80.0 | 5040 | 0.8270 | | 0.62 | 81.0 | 5103 | 0.8552 | | 0.6188 | 82.0 | 5166 | 0.8377 | | 0.6024 | 83.0 | 5229 | 0.7985 | | 0.631 | 84.0 | 5292 | 0.8352 | | 0.5871 | 85.0 | 5355 | 0.8086 | | 0.6014 | 86.0 | 5418 | 0.8129 | | 0.5842 | 87.0 | 5481 | 0.8649 | | 0.5837 | 88.0 | 5544 | 0.8269 | | 0.5958 | 89.0 | 5607 | 0.8407 | | 0.564 | 90.0 | 5670 | 0.7906 | | 0.5748 | 91.0 | 5733 | 0.7393 | | 0.5918 | 92.0 | 5796 | 0.8445 | | 0.5682 | 93.0 | 5859 | 0.8073 | | 0.5497 | 94.0 | 5922 | 0.8165 | | 0.5606 | 95.0 | 5985 | 0.7638 | | 0.5593 | 96.0 | 6048 | 0.7929 | | 0.5556 | 97.0 | 6111 | 0.7991 | | 0.5604 | 98.0 | 6174 | 0.7417 | | 0.5503 | 99.0 | 6237 | 0.8070 | | 0.5561 | 100.0 | 6300 | 0.7845 | | 0.5344 | 101.0 | 6363 | 0.7933 | | 0.5209 | 102.0 | 6426 | 0.7741 | | 0.5337 | 103.0 | 6489 | 0.7760 | | 0.5437 | 104.0 | 6552 | 0.7634 | | 0.5165 | 105.0 | 6615 | 0.7543 | | 0.5343 | 106.0 | 6678 | 0.7661 | | 0.5155 | 107.0 | 6741 | 0.7953 | | 0.512 | 108.0 | 6804 | 0.8253 | | 0.5259 | 109.0 | 6867 | 0.7570 | | 0.5045 | 110.0 | 6930 | 0.7977 | | 0.5115 | 111.0 | 6993 | 0.7598 | | 0.5134 | 112.0 | 7056 | 0.7680 | | 0.5076 | 113.0 | 7119 | 0.7696 | | 0.5126 | 114.0 | 7182 | 0.7451 | | 0.4963 | 115.0 | 7245 | 0.7923 | | 0.5032 | 116.0 | 7308 | 0.7842 | | 0.5137 | 117.0 | 7371 | 0.7239 | | 0.488 | 118.0 | 7434 | 0.8188 | | 0.4938 | 119.0 | 7497 | 0.7479 | | 0.4866 | 120.0 | 7560 | 0.7761 | | 0.4901 | 121.0 | 7623 | 0.7930 | | 0.4877 | 122.0 | 7686 | 0.7733 | | 0.4858 | 123.0 | 7749 | 0.7492 | | 0.4813 | 124.0 | 7812 | 0.7645 | | 0.4817 | 125.0 | 7875 | 0.7938 | | 0.4822 | 126.0 | 7938 | 0.7253 | | 0.4771 | 127.0 | 8001 | 0.7481 | | 0.4769 | 128.0 | 8064 | 0.7402 | | 0.4666 | 129.0 | 8127 | 0.7993 | | 0.474 | 130.0 | 8190 | 0.7653 | | 0.4718 | 131.0 | 8253 | 0.7524 | | 0.4682 | 132.0 | 8316 | 0.7129 | | 0.4698 | 133.0 | 8379 | 0.7806 | | 0.4669 | 134.0 | 8442 | 0.7237 | | 0.4401 | 135.0 | 8505 | 0.7185 | | 0.4656 | 136.0 | 8568 | 0.7542 | | 0.4569 | 137.0 | 8631 | 0.7412 | | 0.4751 | 138.0 | 8694 | 0.7740 | | 0.4474 | 139.0 | 8757 | 0.7636 | | 0.4652 | 140.0 | 8820 | 0.7958 | | 0.4539 | 141.0 | 8883 | 0.7410 | | 0.4452 | 142.0 | 8946 | 0.7652 | | 0.4516 | 143.0 | 9009 | 0.7337 | | 0.4423 | 144.0 | 9072 | 0.7601 | | 0.4542 | 145.0 | 9135 | 0.7692 | | 0.4328 | 146.0 | 9198 | 0.7528 | | 0.4503 | 147.0 | 9261 | 0.7673 | | 0.4416 | 148.0 | 9324 | 0.7193 | | 0.447 | 149.0 | 9387 | 0.7517 | | 0.4434 | 150.0 | 9450 | 0.7241 | | 0.4374 | 151.0 | 9513 | 0.7281 | | 0.4334 | 152.0 | 9576 | 0.7150 | | 0.4209 | 153.0 | 9639 | 0.7531 | | 0.4405 | 154.0 | 9702 | 0.7252 | | 0.4384 | 155.0 | 9765 | 0.7367 | | 0.4265 | 156.0 | 9828 | 0.7111 | | 0.4386 | 157.0 | 9891 | 0.7215 | | 0.4276 | 158.0 | 9954 | 0.7119 | | 0.4289 | 159.0 | 10017 | 0.7587 | | 0.4415 | 160.0 | 10080 | 0.7935 | | 0.4315 | 161.0 | 10143 | 0.7574 | | 0.4227 | 162.0 | 10206 | 0.7296 | | 0.4352 | 163.0 | 10269 | 0.7145 | | 0.4108 | 164.0 | 10332 | 0.7133 | | 0.433 | 165.0 | 10395 | 0.7369 | | 0.4336 | 166.0 | 10458 | 0.7471 | | 0.4016 | 167.0 | 10521 | 0.7329 | | 0.4164 | 168.0 | 10584 | 0.7331 | | 0.4182 | 169.0 | 10647 | 0.7449 | | 0.4136 | 170.0 | 10710 | 0.7365 | | 0.4183 | 171.0 | 10773 | 0.7248 | | 0.4225 | 172.0 | 10836 | 0.7346 | | 0.4294 | 173.0 | 10899 | 0.7099 | | 0.4113 | 174.0 | 10962 | 0.7264 | | 0.4216 | 175.0 | 11025 | 0.6822 | | 0.4208 | 176.0 | 11088 | 0.7198 | | 0.407 | 177.0 | 11151 | 0.7266 | | 0.4164 | 178.0 | 11214 | 0.7466 | | 0.4112 | 179.0 | 11277 | 0.7409 | | 0.4067 | 180.0 | 11340 | 0.7058 | | 0.4297 | 181.0 | 11403 | 0.6918 | | 0.4137 | 182.0 | 11466 | 0.7432 | | 0.4102 | 183.0 | 11529 | 0.7272 | | 0.4184 | 184.0 | 11592 | 0.7309 | | 0.4049 | 185.0 | 11655 | 0.7215 | | 0.4097 | 186.0 | 11718 | 0.7375 | | 0.419 | 187.0 | 11781 | 0.7575 | | 0.4122 | 188.0 | 11844 | 0.7481 | | 0.4089 | 189.0 | 11907 | 0.7790 | | 0.4094 | 190.0 | 11970 | 0.7547 | | 0.4107 | 191.0 | 12033 | 0.7390 | | 0.4044 | 192.0 | 12096 | 0.7472 | | 0.4065 | 193.0 | 12159 | 0.7283 | | 0.4172 | 194.0 | 12222 | 0.7112 | | 0.4124 | 195.0 | 12285 | 0.7470 | | 0.4026 | 196.0 | 12348 | 0.7067 | | 0.4179 | 197.0 | 12411 | 0.7259 | | 0.4027 | 198.0 | 12474 | 0.7328 | | 0.4101 | 199.0 | 12537 | 0.6891 | | 0.3969 | 200.0 | 12600 | 0.7104 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
pig4431/CR_DistilBERT_5E
pig4431
2022-11-09T09:11:59Z
100
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-09T09:08:15Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: CR_DistilBERT_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CR_DistilBERT_5E This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3663 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6345 | 0.33 | 50 | 0.5656 | 0.66 | | 0.4704 | 0.66 | 100 | 0.3705 | 0.82 | | 0.3428 | 0.99 | 150 | 0.3186 | 0.8867 | | 0.2272 | 1.32 | 200 | 0.2871 | 0.9 | | 0.259 | 1.66 | 250 | 0.2975 | 0.8867 | | 0.2583 | 1.99 | 300 | 0.3125 | 0.8867 | | 0.1713 | 2.32 | 350 | 0.3146 | 0.8867 | | 0.181 | 2.65 | 400 | 0.3602 | 0.8867 | | 0.1868 | 2.98 | 450 | 0.3319 | 0.8933 | | 0.1521 | 3.31 | 500 | 0.3413 | 0.8867 | | 0.1153 | 3.64 | 550 | 0.3868 | 0.88 | | 0.1238 | 3.97 | 600 | 0.3686 | 0.8867 | | 0.1104 | 4.3 | 650 | 0.3674 | 0.8867 | | 0.0881 | 4.64 | 700 | 0.3750 | 0.8867 | | 0.1247 | 4.97 | 750 | 0.3663 | 0.9 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.1
pig4431/CR_BERT_5E
pig4431
2022-11-09T08:58:42Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-09T08:56:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: CR_BERT_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CR_BERT_5E This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5094 - Accuracy: 0.8733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.694 | 0.33 | 50 | 0.5894 | 0.6733 | | 0.5335 | 0.66 | 100 | 0.4150 | 0.84 | | 0.3446 | 0.99 | 150 | 0.3052 | 0.9 | | 0.241 | 1.32 | 200 | 0.3409 | 0.8733 | | 0.2536 | 1.66 | 250 | 0.3101 | 0.88 | | 0.2318 | 1.99 | 300 | 0.3015 | 0.8867 | | 0.1527 | 2.32 | 350 | 0.3806 | 0.8733 | | 0.1026 | 2.65 | 400 | 0.3788 | 0.8733 | | 0.1675 | 2.98 | 450 | 0.3956 | 0.8933 | | 0.0699 | 3.31 | 500 | 0.4532 | 0.8867 | | 0.0848 | 3.64 | 550 | 0.4636 | 0.88 | | 0.0991 | 3.97 | 600 | 0.4951 | 0.88 | | 0.0578 | 4.3 | 650 | 0.5073 | 0.88 | | 0.0636 | 4.64 | 700 | 0.5090 | 0.8733 | | 0.0531 | 4.97 | 750 | 0.5094 | 0.8733 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.1
mijantscher/twitter-setfit-v1
mijantscher
2022-11-09T08:42:38Z
2
1
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-09T08:42:21Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 160 with parameters: ``` {'batch_size': 20, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 160, "warmup_steps": 16, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
pig4431/CR_fewshot
pig4431
2022-11-09T08:19:05Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-09T08:18:53Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 80 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 80, "warmup_steps": 8, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
OFA-Sys/ofa-base-vqa-fairseq-version
OFA-Sys
2022-11-09T08:07:17Z
0
5
null
[ "license:apache-2.0", "region:us" ]
null
2022-08-11T14:08:01Z
--- license: apache-2.0 --- # OFA-Base-VQA This is the official checkpoint (adaptive to the official code instead of Huggingface Transformers) of OFA-Base finetuned on VQA 2.0. For more information, please refer to the official github ([https://github.com/OFA-Sys/OFA](https://github.com/OFA-Sys/OFA)) Temporarily, we only provide the finetuned checkpoints based on the official code.
OFA-Sys/ofa-base-refcoco-fairseq-version
OFA-Sys
2022-11-09T08:04:27Z
0
2
null
[ "license:apache-2.0", "region:us" ]
null
2022-08-11T13:39:10Z
--- license: apache-2.0 --- # OFA-Base-RefCOCO This is the official checkpoint (adaptive to the official code instead of Huggingface Transformers) of OFA-Base finetuned on RefCOCO for visual grounding. For more information, please refer to the official github ([https://github.com/OFA-Sys/OFA](https://github.com/OFA-Sys/OFA)) Temporarily, we only provide the finetuned checkpoints based on the official code.
BLENDER100-MAX/FOX
BLENDER100-MAX
2022-11-09T07:19:51Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-11-09T07:19:51Z
--- license: bigscience-openrail-m ---
huggingtweets/mumukshusavitri
huggingtweets
2022-11-09T06:57:30Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-09T06:53:30Z
--- language: en thumbnail: http://www.huggingtweets.com/mumukshusavitri/1667977046540/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1588132608243773441/zuQl_2d7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Savitri Mumukshu - सावित्री मुमुक्षु</div> <div style="text-align: center; font-size: 14px;">@mumukshusavitri</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Savitri Mumukshu - सावित्री मुमुक्षु. | Data | Savitri Mumukshu - सावित्री मुमुक्षु | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 123 | | Short tweets | 640 | | Tweets kept | 2475 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21w2o0rg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mumukshusavitri's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2m3kx4jk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2m3kx4jk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mumukshusavitri') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
studio-ousia/luke-japanese-base-lite
studio-ousia
2022-11-09T06:22:22Z
2,731
8
transformers
[ "transformers", "pytorch", "luke", "fill-mask", "named entity recognition", "entity typing", "relation classification", "question answering", "ja", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-25T09:27:16Z
--- language: ja thumbnail: https://github.com/studio-ousia/luke/raw/master/resources/luke_logo.png tags: - luke - named entity recognition - entity typing - relation classification - question answering license: apache-2.0 --- ## luke-japanese **luke-japanese** is the Japanese version of **LUKE** (**L**anguage **U**nderstanding with **K**nowledge-based **E**mbeddings), a pre-trained _knowledge-enhanced_ contextualized representation of words and entities. LUKE treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. Please refer to our [GitHub repository](https://github.com/studio-ousia/luke) for more details and updates. This model is a lightweight version which does not contain Wikipedia entity embeddings. Please use the [full version](https://huggingface.co/studio-ousia/luke-japanese-base/) for tasks that use Wikipedia entities as inputs. **luke-japanese**は、単語とエンティティの知識拡張型訓練済み Transformer モデル**LUKE**の日本語版です。LUKE は単語とエンティティを独立したトークンとして扱い、これらの文脈を考慮した表現を出力します。詳細については、[GitHub リポジトリ](https://github.com/studio-ousia/luke)を参照してください。 このモデルは、Wikipedia エンティティのエンベディングを含まない軽量版のモデルです。Wikipedia エンティティを入力として使うタスクには、[full version](https://huggingface.co/studio-ousia/luke-japanese-base/)を使用してください。 ### Experimental results on JGLUE The experimental results evaluated on the dev set of [JGLUE](https://github.com/yahoojapan/JGLUE) are shown as follows: | Model | MARC-ja | JSTS | JNLI | JCommonsenseQA | | ---------------------- | --------- | ------------------- | --------- | -------------- | | | acc | Pearson/Spearman | acc | acc | | **LUKE Japanese base** | **0.965** | **0.916**/**0.877** | **0.912** | **0.842** | | _Baselines:_ | | | Tohoku BERT base | 0.958 | 0.909/0.868 | 0.899 | 0.808 | | NICT BERT base | 0.958 | 0.910/0.871 | 0.902 | 0.823 | | Waseda RoBERTa base | 0.962 | 0.913/0.873 | 0.895 | 0.840 | | XLM RoBERTa base | 0.961 | 0.877/0.831 | 0.893 | 0.687 | The baseline scores are obtained from [here](https://github.com/yahoojapan/JGLUE/blob/a6832af23895d6faec8ecf39ec925f1a91601d62/README.md). ### Citation ```latex @inproceedings{yamada2020luke, title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention}, author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto}, booktitle={EMNLP}, year={2020} } ```
Ahmed87/bert-cased-ner-fcit499
Ahmed87
2022-11-09T05:59:01Z
121
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-09T04:39:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-cased-ner-fcit499 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9417409184372858 - name: Recall type: recall value: 0.950207468879668 - name: F1 type: f1 value: 0.9459552495697073 - name: Accuracy type: accuracy value: 0.9905416329830234 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-cased-ner-fcit499 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0404 - Precision: 0.9417 - Recall: 0.9502 - F1: 0.9460 - Accuracy: 0.9905 ## Model description More information neededx ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 157 | 0.0578 | 0.8782 | 0.8976 | 0.8878 | 0.9825 | | No log | 2.0 | 314 | 0.0425 | 0.9317 | 0.9343 | 0.9330 | 0.9885 | | No log | 3.0 | 471 | 0.0391 | 0.9381 | 0.9433 | 0.9407 | 0.9897 | | 0.1097 | 4.0 | 628 | 0.0397 | 0.9377 | 0.9467 | 0.9422 | 0.9900 | | 0.1097 | 5.0 | 785 | 0.0404 | 0.9417 | 0.9502 | 0.9460 | 0.9905 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
thisisHJLee/wav2vec2-large-xls-r-1b-korean-convsen1
thisisHJLee
2022-11-09T05:57:23Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T01:25:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-1b-korean-convsen1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-korean-convsen1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0014 - Cer: 0.0002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.3161 | 1.0 | 1762 | 0.1495 | 0.0443 | | 0.1188 | 2.0 | 3524 | 0.0125 | 0.0033 | | 0.0399 | 3.0 | 5286 | 0.0014 | 0.0002 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.11.0
jamescalam/minilm-arxiv-encoder
jamescalam
2022-11-09T05:15:38Z
5
3
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-09T02:57:58Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
bigmorning/whisper3_0020
bigmorning
2022-11-09T04:45:24Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T04:45:15Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper3_0020 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper3_0020 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1844 - Train Accuracy: 0.0334 - Validation Loss: 0.5619 - Validation Accuracy: 0.0313 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 5.0832 | 0.0116 | 4.4298 | 0.0124 | 0 | | 4.3130 | 0.0131 | 4.0733 | 0.0141 | 1 | | 3.9211 | 0.0146 | 3.6762 | 0.0157 | 2 | | 3.5505 | 0.0159 | 3.3453 | 0.0171 | 3 | | 3.1592 | 0.0175 | 2.8062 | 0.0199 | 4 | | 2.2581 | 0.0220 | 1.7622 | 0.0252 | 5 | | 1.4671 | 0.0259 | 1.2711 | 0.0276 | 6 | | 1.0779 | 0.0278 | 1.0220 | 0.0288 | 7 | | 0.8591 | 0.0290 | 0.8836 | 0.0295 | 8 | | 0.7159 | 0.0297 | 0.7918 | 0.0300 | 9 | | 0.6105 | 0.0304 | 0.7276 | 0.0303 | 10 | | 0.5287 | 0.0309 | 0.6850 | 0.0306 | 11 | | 0.4614 | 0.0313 | 0.6472 | 0.0308 | 12 | | 0.4049 | 0.0317 | 0.6199 | 0.0310 | 13 | | 0.3562 | 0.0320 | 0.6019 | 0.0311 | 14 | | 0.3139 | 0.0324 | 0.5868 | 0.0311 | 15 | | 0.2766 | 0.0326 | 0.5751 | 0.0312 | 16 | | 0.2438 | 0.0329 | 0.5701 | 0.0312 | 17 | | 0.2116 | 0.0332 | 0.5686 | 0.0313 | 18 | | 0.1844 | 0.0334 | 0.5619 | 0.0313 | 19 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.2
Fuji1995/fuji-test
Fuji1995
2022-11-09T03:46:28Z
186
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-09T03:39:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: fuji-test results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0 --- # fuji-test Description ## Example Images #### corgi ![corgi](images/corgi.jpg)
hoaiht/CLIP-ViT-H-14-laion2B-s32B-b79K
hoaiht
2022-11-09T03:05:42Z
26
2
open_clip
[ "open_clip", "pytorch", "clip", "arxiv:1910.04867", "license:mit", "region:us" ]
null
2022-11-08T10:18:55Z
--- license: mit widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png candidate_labels: playing music, playing sports example_title: Cat & Dog --- # Model Card for CLIP ViT-H/14 - LAION-2B # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Training Details](#training-details) 4. [Evaluation](#evaluation) 5. [Acknowledgements](#acknowledgements) 6. [Citation](#citation) 7. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description A CLIP ViT-H/14 model trained with the LAION-2B English subset of LAION-5B (https://laion.ai/blog/laion-5b/) using OpenCLIP (https://github.com/mlfoundations/open_clip). Model training done by Romain Beaumont on the [stability.ai](https://stability.ai/) cluster. # Uses As per the original [OpenAI CLIP model card](https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/model-card.md), this model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such model. The OpenAI CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. Additionally, the LAION-5B blog (https://laion.ai/blog/laion-5b/) and upcoming paper include additional discussion as it relates specifically to the training dataset. ## Direct Use Zero-shot image classification, image and text retrieval, among others. ## Downstream Use Image classification and other image task fine-tuning, linear probe image classification, image generation guiding and conditioning, among others. ## Out-of-Scope Use As per the OpenAI models, **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful. Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use. Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases. Further the above notice, the LAION-5B dataset used in training of these models has additional considerations, see below. # Training Details ## Training Data This model was trained with the 2 Billion sample English subset of LAION-5B (https://laion.ai/blog/laion-5b/). **IMPORTANT NOTE:** The motivation behind dataset creation is to democratize research and experimentation around large-scale multi-modal model training and handling of uncurated, large-scale datasets crawled from publically available internet. Our recommendation is therefore to use the dataset for research purposes. Be aware that this large-scale dataset is uncurated. Keep in mind that the uncurated nature of the dataset means that collected links may lead to strongly discomforting and disturbing content for a human viewer. Therefore, please use the demo links with caution and at your own risk. It is possible to extract a “safe” subset by filtering out samples based on the safety tags (using a customized trained NSFW classifier that we built). While this strongly reduces the chance for encountering potentially harmful content when viewing, we cannot entirely exclude the possibility for harmful content being still present in safe mode, so that the warning holds also there. We think that providing the dataset openly to broad research and other interested communities will allow for transparent investigation of benefits that come along with training large-scale models as well as pitfalls and dangers that may stay unreported or unnoticed when working with closed large datasets that remain restricted to a small community. Providing our dataset openly, we however do not recommend using it for creating ready-to-go industrial products, as the basic research about general properties and safety of such large-scale models, which we would like to encourage with this release, is still in progress. ## Training Procedure Please see [training notes](https://docs.google.com/document/d/1EFbMLRWSSV0LUf9Du1pWzWqgeiIRPwEWX2s1C6mAk5c) and [wandb logs](https://wandb.ai/rom1504/eval_openclip/reports/H-14--VmlldzoyNDAxODQ3). # Evaluation Evaluation done with code in the [LAION CLIP Benchmark suite](https://github.com/LAION-AI/CLIP_benchmark). ## Testing Data, Factors & Metrics ### Testing Data The testing is performed with VTAB+ (A combination of VTAB (https://arxiv.org/abs/1910.04867) w/ additional robustness datasets) for classification and COCO and Flickr for retrieval. **TODO** - more detail ## Results The model achieves a 78.0 zero-shot top-1 accuracy on ImageNet-1k. An initial round of benchmarks have been performed on a wider range of datasets, currently viewable at https://github.com/LAION-AI/CLIP_benchmark/blob/main/benchmark/results.ipynb **TODO** - create table for just this model's metrics. # Acknowledgements Acknowledging [stability.ai](https://stability.ai/) for the compute used to train this model. # Citation **BibTeX:** In addition to forthcoming LAION-5B (https://laion.ai/blog/laion-5b/) paper, please cite: OpenAI CLIP paper ``` @inproceedings{Radford2021LearningTV, title={Learning Transferable Visual Models From Natural Language Supervision}, author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, booktitle={ICML}, year={2021} } ``` OpenCLIP software ``` @software{ilharco_gabriel_2021_5143773, author = {Ilharco, Gabriel and Wortsman, Mitchell and Wightman, Ross and Gordon, Cade and Carlini, Nicholas and Taori, Rohan and Dave, Achal and Shankar, Vaishaal and Namkoong, Hongseok and Miller, John and Hajishirzi, Hannaneh and Farhadi, Ali and Schmidt, Ludwig}, title = {OpenCLIP}, month = jul, year = 2021, note = {If you use this software, please cite it as below.}, publisher = {Zenodo}, version = {0.1}, doi = {10.5281/zenodo.5143773}, url = {https://doi.org/10.5281/zenodo.5143773} } ``` # How to Get Started with the Model Use the code below to get started with the model. ** TODO ** - Hugging Face transformers, OpenCLIP, and timm getting started snippets
Alred/distilbert-base-uncased-finetuned-squad-ver1
Alred
2022-11-09T02:54:54Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-09T02:30:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad-ver1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-ver1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.8669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6175 | 1.0 | 554 | 1.8621 | | 1.1951 | 2.0 | 1108 | 1.8669 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
osanseviero/test_sb3_is_working2
osanseviero
2022-11-09T02:20:56Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-09T02:20:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -152.88 +/- 29.97 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
studio-ousia/luke-japanese-large
studio-ousia
2022-11-09T02:18:56Z
66,623
9
transformers
[ "transformers", "pytorch", "luke", "fill-mask", "named entity recognition", "entity typing", "relation classification", "question answering", "ja", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-07T14:25:53Z
--- language: ja thumbnail: https://github.com/studio-ousia/luke/raw/master/resources/luke_logo.png tags: - luke - named entity recognition - entity typing - relation classification - question answering license: apache-2.0 --- ## luke-japanese-large **luke-japanese** is the Japanese version of **LUKE** (**L**anguage **U**nderstanding with **K**nowledge-based **E**mbeddings), a pre-trained _knowledge-enhanced_ contextualized representation of words and entities. LUKE treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. Please refer to our [GitHub repository](https://github.com/studio-ousia/luke) for more details and updates. This model contains Wikipedia entity embeddings which are not used in general NLP tasks. Please use the [lite version](https://huggingface.co/studio-ousia/luke-japanese-large-lite/) for tasks that do not use Wikipedia entities as inputs. **luke-japanese**は、単語とエンティティの知識拡張型訓練済み Transformer モデル**LUKE**の日本語版です。LUKE は単語とエンティティを独立したトークンとして扱い、これらの文脈を考慮した表現を出力します。詳細については、[GitHub リポジトリ](https://github.com/studio-ousia/luke)を参照してください。 このモデルは、通常の NLP タスクでは使われない Wikipedia エンティティのエンベディングを含んでいます。単語の入力のみを使うタスクには、[lite version](https://huggingface.co/studio-ousia/luke-japanese-large-lite/)を使用してください。 ### Experimental results on JGLUE The experimental results evaluated on the dev set of [JGLUE](https://github.com/yahoojapan/JGLUE) is shown as follows: | Model | MARC-ja | JSTS | JNLI | JCommonsenseQA | | ----------------------------- | --------- | ------------------- | --------- | -------------- | | | acc | Pearson/Spearman | acc | acc | | **LUKE Japanese large** | **0.965** | **0.932**/**0.902** | **0.927** | 0.893 | | _Baselines:_ | | | Tohoku BERT large | 0.955 | 0.913/0.872 | 0.900 | 0.816 | | Waseda RoBERTa large (seq128) | 0.954 | 0.930/0.896 | 0.924 | **0.907** | | Waseda RoBERTa large (seq512) | 0.961 | 0.926/0.892 | 0.926 | 0.891 | | XLM RoBERTa large | 0.964 | 0.918/0.884 | 0.919 | 0.840 | The baseline scores are obtained from [here](https://github.com/yahoojapan/JGLUE/blob/a6832af23895d6faec8ecf39ec925f1a91601d62/README.md). ### Citation ```latex @inproceedings{yamada2020luke, title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention}, author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto}, booktitle={EMNLP}, year={2020} } ```
Tod14/Blacky_Gray
Tod14
2022-11-09T02:02:04Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-09T02:02:04Z
--- license: creativeml-openrail-m ---
Signorlimone/Laikafy
Signorlimone
2022-11-09T01:51:30Z
0
5
null
[ "region:us" ]
null
2022-11-06T20:36:29Z
use laikafy for the model to kick in. I suggest to use [laikafy:10] otherwise it often generates the same model, instead putting the token between brackets followed by :10 will start to use the token after 10 samples. For that reason I usually put 50 samples
lusscios/min
lusscios
2022-11-09T01:26:45Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-09T01:26:45Z
--- license: creativeml-openrail-m ---
Devarshi/Brain_Tumor_Class_swin
Devarshi
2022-11-09T00:32:34Z
204
1
transformers
[ "transformers", "pytorch", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-08T10:47:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - recall - precision model-index: - name: Brain_Tumor_Class_swin results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9936204146730463 - name: F1 type: f1 value: 0.9936204146730463 - name: Recall type: recall value: 0.9936204146730463 - name: Precision type: precision value: 0.9936204146730463 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Brain_Tumor_Class_swin This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0220 - Accuracy: 0.9936 - F1: 0.9936 - Recall: 0.9936 - Precision: 0.9936 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.1248 | 1.0 | 220 | 0.0610 | 0.9767 | 0.9767 | 0.9767 | 0.9767 | | 0.0887 | 2.0 | 440 | 0.0300 | 0.9920 | 0.9920 | 0.9920 | 0.9920 | | 0.0449 | 3.0 | 660 | 0.0220 | 0.9936 | 0.9936 | 0.9936 | 0.9936 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
bieu/WeeBoo-Diffusion
bieu
2022-11-08T23:15:38Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-07T21:36:18Z
--- license: creativeml-openrail-m --- **_WeeBoo Diffusion_** is a model made for **creating characters and backgrounds** **in model 1** you can do things in **anime, cartoon, manga, novel** in 2 you will be able to do in **_addition to the characters, varied things like backgrounds and more complex art styles, try_**
kalpeshk2011/rankgen-t5-xl-pg19
kalpeshk2011
2022-11-08T22:45:49Z
160
3
transformers
[ "transformers", "pytorch", "t5", "feature-extraction", "contrastive learning", "ranking", "decoding", "metric learning", "text generation", "retrieval", "custom_code", "en", "dataset:Wikipedia", "dataset:PG19", "dataset:C4", "dataset:relic", "dataset:ChapterBreak", "dataset:HellaSwag", "dataset:ROCStories", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-20T04:40:35Z
--- language: - en thumbnail: "https://pbs.twimg.com/media/FThx_rEWAAEoujW?format=jpg&name=medium" tags: - t5 - contrastive learning - ranking - decoding - metric learning - pytorch - text generation - retrieval license: "apache-2.0" datasets: - Wikipedia - PG19 - C4 - relic - ChapterBreak - HellaSwag - ROCStories metrics: - MAUVE - human --- ## Main repository https://github.com/martiansideofthemoon/rankgen ## What is RankGen? RankGen is a suite of encoder models (100M-1.2B parameters) which map prefixes and generations from any pretrained English language model to a shared vector space. RankGen can be used to rerank multiple full-length samples from an LM, and it can also be incorporated as a scoring function into beam search to significantly improve generation quality (0.85 vs 0.77 MAUVE, 75% preference according to humans annotators who are English writers). RankGen can also be used like a dense retriever, and achieves state-of-the-art performance on [literary retrieval](https://relic.cs.umass.edu/leaderboard.html). ## Setup **Requirements** (`pip` will install these dependencies for you) Python 3.7+, `torch` (CUDA recommended), `transformers` **Installation** ``` python3.7 -m virtualenv rankgen-venv source rankgen-venv/bin/activate pip install rankgen ``` Get the data [here](https://drive.google.com/drive/folders/1DRG2ess7fK3apfB-6KoHb_azMuHbsIv4?usp=sharing) and place folder in root directory. Alternatively, use `gdown` as shown below, ``` gdown --folder https://drive.google.com/drive/folders/1DRG2ess7fK3apfB-6KoHb_azMuHbsIv4 ``` Run the test script to make sure the RankGen checkpoint has loaded correctly, ``` python -m rankgen.test_rankgen_encoder --model_path kalpeshk2011/rankgen-t5-base-all ### Expected output 0.0009239262409127233 0.0011521980725477804 ``` ## Using RankGen Loading RankGen is simple using the HuggingFace APIs (see Method-2 below), but we suggest using [`RankGenEncoder`](https://github.com/martiansideofthemoon/rankgen/blob/master/rankgen/rankgen_encoder.py), which is a small wrapper around the HuggingFace APIs for correctly preprocessing data and doing tokenization automatically. You can either download [our repository](https://github.com/martiansideofthemoon/rankgen) and install the API, or copy the implementation from [below](#rankgenencoder-implementation). #### [SUGGESTED] Method-1: Loading the model with RankGenEncoder ``` from rankgen import RankGenEncoder, RankGenGenerator rankgen_encoder = RankGenEncoder("kalpeshk2011/rankgen-t5-xl-pg19") # Encoding vectors prefix_vectors = rankgen_encoder.encode(["This is a prefix sentence."], vectors_type="prefix") suffix_vectors = rankgen_encoder.encode(["This is a suffix sentence."], vectors_type="suffix") # Generating text # use a HuggingFace compatible language model generator = RankGenGenerator(rankgen_encoder=rankgen_encoder, language_model="gpt2-medium") inputs = ["Whatever might be the nature of the tragedy it would be over with long before this, and those moving black spots away yonder to the west, that he had discerned from the bluff, were undoubtedly the departing raiders. There was nothing left for Keith to do except determine the fate of the unfortunates, and give their bodies decent burial. That any had escaped, or yet lived, was altogether unlikely, unless, perchance, women had been in the party, in which case they would have been borne away prisoners."] # Baseline nucleus sampling print(generator.generate_single(inputs, top_p=0.9)[0][0]) # Over-generate and re-rank print(generator.overgenerate_rerank(inputs, top_p=0.9, num_samples=10)[0][0]) # Beam search print(generator.beam_search(inputs, top_p=0.9, num_samples=10, beam_size=2)[0][0]) ``` #### Method-2: Loading the model with HuggingFace APIs ``` from transformers import T5Tokenizer, AutoModel tokenizer = T5Tokenizer.from_pretrained(f"google/t5-v1_1-xl") model = AutoModel.from_pretrained("kalpeshk2011/rankgen-t5-xl-pg19", trust_remote_code=True) ``` ### RankGenEncoder Implementation ``` import tqdm from transformers import T5Tokenizer, T5EncoderModel, AutoModel class RankGenEncoder(): def __init__(self, model_path, max_batch_size=32, model_size=None, cache_dir=None): assert model_path in ["kalpeshk2011/rankgen-t5-xl-all", "kalpeshk2011/rankgen-t5-xl-pg19", "kalpeshk2011/rankgen-t5-base-all", "kalpeshk2011/rankgen-t5-large-all"] self.max_batch_size = max_batch_size self.device = 'cuda' if torch.cuda.is_available() else 'cpu' if model_size is None: if "t5-large" in model_path or "t5_large" in model_path: self.model_size = "large" elif "t5-xl" in model_path or "t5_xl" in model_path: self.model_size = "xl" else: self.model_size = "base" else: self.model_size = model_size self.tokenizer = T5Tokenizer.from_pretrained(f"google/t5-v1_1-{self.model_size}", cache_dir=cache_dir) self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True) self.model.to(self.device) self.model.eval() def encode(self, inputs, vectors_type="prefix", verbose=False, return_input_ids=False): tokenizer = self.tokenizer max_batch_size = self.max_batch_size if isinstance(inputs, str): inputs = [inputs] if vectors_type == 'prefix': inputs = ['pre ' + input for input in inputs] max_length = 512 else: inputs = ['suffi ' + input for input in inputs] max_length = 128 all_embeddings = [] all_input_ids = [] for i in tqdm.tqdm(range(0, len(inputs), max_batch_size), total=(len(inputs) // max_batch_size) + 1, disable=not verbose, desc=f"Encoding {vectors_type} inputs:"): tokenized_inputs = tokenizer(inputs[i:i + max_batch_size], return_tensors="pt", padding=True) for k, v in tokenized_inputs.items(): tokenized_inputs[k] = v[:, :max_length] tokenized_inputs = tokenized_inputs.to(self.device) with torch.inference_mode(): batch_embeddings = self.model(**tokenized_inputs) all_embeddings.append(batch_embeddings) if return_input_ids: all_input_ids.extend(tokenized_inputs.input_ids.cpu().tolist()) return { "embeddings": torch.cat(all_embeddings, dim=0), "input_ids": all_input_ids } ```
kalpeshk2011/rankgen-t5-base-all
kalpeshk2011
2022-11-08T22:45:41Z
160
1
transformers
[ "transformers", "pytorch", "t5", "feature-extraction", "contrastive learning", "ranking", "decoding", "metric learning", "text generation", "retrieval", "custom_code", "en", "dataset:Wikipedia", "dataset:PG19", "dataset:C4", "dataset:relic", "dataset:ChapterBreak", "dataset:HellaSwag", "dataset:ROCStories", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-07-20T01:35:22Z
--- language: - en thumbnail: "https://pbs.twimg.com/media/FThx_rEWAAEoujW?format=jpg&name=medium" tags: - t5 - contrastive learning - ranking - decoding - metric learning - pytorch - text generation - retrieval license: "apache-2.0" datasets: - Wikipedia - PG19 - C4 - relic - ChapterBreak - HellaSwag - ROCStories metrics: - MAUVE - human --- ## Main repository https://github.com/martiansideofthemoon/rankgen ## What is RankGen? RankGen is a suite of encoder models (100M-1.2B parameters) which map prefixes and generations from any pretrained English language model to a shared vector space. RankGen can be used to rerank multiple full-length samples from an LM, and it can also be incorporated as a scoring function into beam search to significantly improve generation quality (0.85 vs 0.77 MAUVE, 75% preference according to humans annotators who are English writers). RankGen can also be used like a dense retriever, and achieves state-of-the-art performance on [literary retrieval](https://relic.cs.umass.edu/leaderboard.html). ## Setup **Requirements** (`pip` will install these dependencies for you) Python 3.7+, `torch` (CUDA recommended), `transformers` **Installation** ``` python3.7 -m virtualenv rankgen-venv source rankgen-venv/bin/activate pip install rankgen ``` Get the data [here](https://drive.google.com/drive/folders/1DRG2ess7fK3apfB-6KoHb_azMuHbsIv4?usp=sharing) and place folder in root directory. Alternatively, use `gdown` as shown below, ``` gdown --folder https://drive.google.com/drive/folders/1DRG2ess7fK3apfB-6KoHb_azMuHbsIv4 ``` Run the test script to make sure the RankGen checkpoint has loaded correctly, ``` python -m rankgen.test_rankgen_encoder --model_path kalpeshk2011/rankgen-t5-base-all ### Expected output 0.0009239262409127233 0.0011521980725477804 ``` ## Using RankGen Loading RankGen is simple using the HuggingFace APIs (see Method-2 below), but we suggest using [`RankGenEncoder`](https://github.com/martiansideofthemoon/rankgen/blob/master/rankgen/rankgen_encoder.py), which is a small wrapper around the HuggingFace APIs for correctly preprocessing data and doing tokenization automatically. You can either download [our repository](https://github.com/martiansideofthemoon/rankgen) and install the API, or copy the implementation from [below](#rankgenencoder-implementation). #### [SUGGESTED] Method-1: Loading the model with RankGenEncoder ``` from rankgen import RankGenEncoder, RankGenGenerator rankgen_encoder = RankGenEncoder("kalpeshk2011/rankgen-t5-base-all") # Encoding vectors prefix_vectors = rankgen_encoder.encode(["This is a prefix sentence."], vectors_type="prefix") suffix_vectors = rankgen_encoder.encode(["This is a suffix sentence."], vectors_type="suffix") # Generating text # use a HuggingFace compatible language model generator = RankGenGenerator(rankgen_encoder=rankgen_encoder, language_model="gpt2-medium") inputs = ["Whatever might be the nature of the tragedy it would be over with long before this, and those moving black spots away yonder to the west, that he had discerned from the bluff, were undoubtedly the departing raiders. There was nothing left for Keith to do except determine the fate of the unfortunates, and give their bodies decent burial. That any had escaped, or yet lived, was altogether unlikely, unless, perchance, women had been in the party, in which case they would have been borne away prisoners."] # Baseline nucleus sampling print(generator.generate_single(inputs, top_p=0.9)[0][0]) # Over-generate and re-rank print(generator.overgenerate_rerank(inputs, top_p=0.9, num_samples=10)[0][0]) # Beam search print(generator.beam_search(inputs, top_p=0.9, num_samples=10, beam_size=2)[0][0]) ``` #### Method-2: Loading the model with HuggingFace APIs ``` from transformers import T5Tokenizer, AutoModel tokenizer = T5Tokenizer.from_pretrained(f"google/t5-v1_1-base") model = AutoModel.from_pretrained("kalpeshk2011/rankgen-t5-base-all", trust_remote_code=True) ``` ### RankGenEncoder Implementation ``` import tqdm from transformers import T5Tokenizer, T5EncoderModel, AutoModel class RankGenEncoder(): def __init__(self, model_path, max_batch_size=32, model_size=None, cache_dir=None): assert model_path in ["kalpeshk2011/rankgen-t5-xl-all", "kalpeshk2011/rankgen-t5-xl-pg19", "kalpeshk2011/rankgen-t5-base-all", "kalpeshk2011/rankgen-t5-large-all"] self.max_batch_size = max_batch_size self.device = 'cuda' if torch.cuda.is_available() else 'cpu' if model_size is None: if "t5-large" in model_path or "t5_large" in model_path: self.model_size = "large" elif "t5-xl" in model_path or "t5_xl" in model_path: self.model_size = "xl" else: self.model_size = "base" else: self.model_size = model_size self.tokenizer = T5Tokenizer.from_pretrained(f"google/t5-v1_1-{self.model_size}", cache_dir=cache_dir) self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True) self.model.to(self.device) self.model.eval() def encode(self, inputs, vectors_type="prefix", verbose=False, return_input_ids=False): tokenizer = self.tokenizer max_batch_size = self.max_batch_size if isinstance(inputs, str): inputs = [inputs] if vectors_type == 'prefix': inputs = ['pre ' + input for input in inputs] max_length = 512 else: inputs = ['suffi ' + input for input in inputs] max_length = 128 all_embeddings = [] all_input_ids = [] for i in tqdm.tqdm(range(0, len(inputs), max_batch_size), total=(len(inputs) // max_batch_size) + 1, disable=not verbose, desc=f"Encoding {vectors_type} inputs:"): tokenized_inputs = tokenizer(inputs[i:i + max_batch_size], return_tensors="pt", padding=True) for k, v in tokenized_inputs.items(): tokenized_inputs[k] = v[:, :max_length] tokenized_inputs = tokenized_inputs.to(self.device) with torch.inference_mode(): batch_embeddings = self.model(**tokenized_inputs) all_embeddings.append(batch_embeddings) if return_input_ids: all_input_ids.extend(tokenized_inputs.input_ids.cpu().tolist()) return { "embeddings": torch.cat(all_embeddings, dim=0), "input_ids": all_input_ids } ```
AlekseyKorshuk/dalio-6.7b-test
AlekseyKorshuk
2022-11-08T22:11:24Z
4
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-08T21:02:49Z
--- license: other tags: - generated_from_trainer metrics: - accuracy model-index: - name: dalio-6.7b-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dalio-6.7b-test This model is a fine-tuned version of [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6641 - Accuracy: 0.0662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.5958 | 0.31 | 16 | 2.5371 | 0.0659 | | 2.3784 | 0.62 | 32 | 2.5039 | 0.0670 | | 2.3578 | 0.92 | 48 | 2.6074 | 0.0654 | | 1.3819 | 1.23 | 64 | 2.6680 | 0.0658 | | 1.1529 | 1.54 | 80 | 2.6738 | 0.0665 | | 1.2938 | 1.85 | 96 | 2.6641 | 0.0662 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
victorbahlangene/roberta-base-fine-Disaster-Tweets-Part3
victorbahlangene
2022-11-08T21:52:14Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-08T21:41:40Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: roberta-base-fine-Disaster-Tweets-Part3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-fine-Disaster-Tweets-Part3 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3882 - Accuracy: 0.8380 - F1: 0.8377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 203 | 0.4632 | 0.8179 | 0.8184 | | No log | 2.0 | 406 | 0.3882 | 0.8380 | 0.8377 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
victorbahlangene/xlnet-base-cased-fine-Disaster-Tweets-Part3
victorbahlangene
2022-11-08T21:38:10Z
92
0
transformers
[ "transformers", "pytorch", "xlnet", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-08T21:26:56Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlnet-base-cased-fine-Disaster-Tweets-Part3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-fine-Disaster-Tweets-Part3 This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3924 - Accuracy: 0.8468 - F1: 0.8467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 203 | 0.4457 | 0.8257 | 0.8253 | | No log | 2.0 | 406 | 0.3924 | 0.8468 | 0.8467 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
santiagoahl/vit_model_santiago_ahumada
santiagoahl
2022-11-08T20:28:28Z
189
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-08T18:52:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit_model_santiago_ahumada results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_model_santiago_ahumada This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0164 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.143 | 3.85 | 500 | 0.0164 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
huggingtweets/big___oven-codeinecucumber
huggingtweets
2022-11-08T19:32:56Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-25T19:41:48Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1579203041764442116/RSLookYD_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1571653458972794884/eaxhUsib_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Gutted & oskcar</div> <div style="text-align: center; font-size: 14px;">@big___oven-codeinecucumber</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Gutted & oskcar. | Data | Gutted | oskcar | | --- | --- | --- | | Tweets downloaded | 1761 | 2669 | | Retweets | 243 | 635 | | Short tweets | 326 | 308 | | Tweets kept | 1192 | 1726 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qyf2pl5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @big___oven-codeinecucumber's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rr9twhn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rr9twhn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/big___oven-codeinecucumber') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
MarcosDib/ModeloTesteDib
MarcosDib
2022-11-08T18:45:01Z
0
0
null
[ "exbert", "en", "license:mit", "region:us" ]
null
2022-11-08T18:42:08Z
--- language: en tags: - exbert license: mit --- # GPT-2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
ArafatBHossain/bert_uncased_fine_tuned_emotion_dataset
ArafatBHossain
2022-11-08T18:17:50Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-14T05:38:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_uncased_fine_tuned_emotion_dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_uncased_fine_tuned_emotion_dataset This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1870 - Accuracy: 0.943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2321 | 1.0 | 2000 | 0.2690 | 0.924 | | 0.1483 | 2.0 | 4000 | 0.1683 | 0.9415 | | 0.0954 | 3.0 | 6000 | 0.1870 | 0.943 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
aorhan/ddpm-butterflies-128
aorhan
2022-11-08T17:09:51Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-08T16:38:49Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/aorhan/ddpm-butterflies-128/tensorboard?#scalars)
PaulaAlfy/xlm-roberta-base-finetuned-panx-all
PaulaAlfy
2022-11-08T16:56:34Z
108
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-08T16:22:18Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1528 - F1: 0.8734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2634 | 1.0 | 525 | 0.1602 | 0.8258 | | 0.1316 | 2.0 | 1050 | 0.1454 | 0.8471 | | 0.089 | 3.0 | 1575 | 0.1430 | 0.8555 | | 0.0596 | 4.0 | 2100 | 0.1430 | 0.8676 | | 0.0393 | 5.0 | 2625 | 0.1528 | 0.8734 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
harmonai/honk-140k
harmonai
2022-11-08T16:42:42Z
9
1
diffusers
[ "diffusers", "audio-generation", "license:mit", "diffusers:DanceDiffusionPipeline", "region:us" ]
null
2022-10-20T12:20:05Z
--- license: mit tags: - audio-generation --- [Dance Diffusion](https://github.com/Harmonai-org/sample-generator) is now available in 🧨 Diffusers. ## FP32 ```python # !pip install diffusers[torch] accelerate scipy from diffusers import DiffusionPipeline from scipy.io.wavfile import write model_id = "harmonai/honk-140k" pipe = DiffusionPipeline.from_pretrained(model_id) pipe = pipe.to("cuda") audios = pipe(audio_length_in_s=4.0).audios # To save locally for i, audio in enumerate(audios): write(f"test_{i}.wav", pipe.unet.sample_rate, audio.transpose()) # To dislay in google colab import IPython.display as ipd for audio in audios: display(ipd.Audio(audio, rate=pipe.unet.sample_rate)) ``` ## FP16 Faster at a small loss of quality ```python # !pip install diffusers[torch] accelerate scipy from diffusers import DiffusionPipeline from scipy.io.wavfile import write import torch model_id = "harmonai/honk-140k" pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") audios = pipeline(audio_length_in_s=4.0).audios # To save locally for i, audio in enumerate(audios): write(f"{i}.wav", pipe.unet.sample_rate, audio.transpose()) # To dislay in google colab import IPython.display as ipd for audio in audios: display(ipd.Audio(audio, rate=pipe.unet.sample_rate)) ```
espnet/iam_handwriting_ocr
espnet
2022-11-08T16:28:56Z
4
7
espnet
[ "espnet", "image-to-text", "ocr", "handwriting-recognition", "en", "dataset:iam", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
image-to-text
2022-11-04T17:05:39Z
--- tags: - espnet - image-to-text - ocr - handwriting-recognition language: en datasets: - iam license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/iam_handwriting_ocr` This model was trained by kenzheng99 using iam recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 2169367022b8939d22005e8cf45a65bb20bc0768 pip install -e . cd egs2/iam/ocr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/iam_handwriting_ocr ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Nov 7 13:40:17 EST 2022` - python version: `3.7.13 (default, Mar 29 2022, 02:18:16) [GCC 7.5.0]` - espnet version: `espnet 202209` - pytorch version: `pytorch 1.10.0` - Git hash: `2169367022b8939d22005e8cf45a65bb20bc0768` - Commit date: `Thu Nov 3 20:38:03 2022 -0400` ## asr_train_asr_conformer_extracted_en_char ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave/test|2915|25932|80.5|17.3|2.2|0.8|20.3|72.8| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave/test|2915|125616|94.0|4.2|1.8|0.7|6.7|72.8| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_extracted_en_char ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 35197 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 200 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 64 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_extracted_en_char/train/speech_shape - exp/asr_stats_extracted_en_char/train/text_shape.char valid_shape_file: - exp/asr_stats_extracted_en_char/valid/speech_shape - exp/asr_stats_extracted_en_char/valid/text_shape.char batch_type: folded valid_batch_type: null fold_length: - 800 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/extracted/train/feats.scp - speech - kaldi_ark - - dump/extracted/train/text - text - text valid_data_path_and_name_and_type: - - dump/extracted/valid/feats.scp - speech - kaldi_ark - - dump/extracted/valid/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 15000 token_list: - <blank> - <unk> - <space> - e - t - a - o - n - i - r - s - h - l - d - c - u - m - f - p - g - y - w - b - . - ',' - v - k - '-' - T - '''' - M - I - A - '"' - S - P - H - B - C - W - N - G - x - R - E - L - F - '0' - D - '1' - j - O - q - U - K - '!' - '3' - '9' - ( - z - ) - ':' - V - ; - '5' - '2' - J - '8' - Y - '4' - '6' - '?' - '#' - '&' - '7' - / - '*' - Q - X - Z - + - <sos/eos> init: xavier_uniform input_size: 100 ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 frontend: null frontend_conf: {} specaug: null specaug_conf: {} normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_extracted_en_char/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 1024 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: '202209' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
PaulaAlfy/xlm-roberta-base-finetuned-panx-de-fr
PaulaAlfy
2022-11-08T15:55:07Z
107
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-08T15:16:21Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1907 - F1: 0.8682 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2901 | 1.0 | 715 | 0.1864 | 0.8211 | | 0.1576 | 2.0 | 1430 | 0.1667 | 0.8441 | | 0.1038 | 3.0 | 2145 | 0.1710 | 0.8452 | | 0.0701 | 4.0 | 2860 | 0.1787 | 0.8636 | | 0.0449 | 5.0 | 3575 | 0.1907 | 0.8682 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
bigmorning/whisper_0015
bigmorning
2022-11-08T14:43:13Z
32
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-08T14:42:41Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_0015 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3281 - Train Accuracy: 0.0322 - Validation Loss: 0.5841 - Validation Accuracy: 0.0311 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 5.0856 | 0.0116 | 4.4440 | 0.0123 | 0 | | 4.3149 | 0.0131 | 4.0521 | 0.0142 | 1 | | 3.9260 | 0.0146 | 3.7264 | 0.0153 | 2 | | 3.5418 | 0.0160 | 3.3026 | 0.0174 | 3 | | 2.7510 | 0.0198 | 2.0157 | 0.0241 | 4 | | 1.6782 | 0.0250 | 1.3567 | 0.0273 | 5 | | 1.1705 | 0.0274 | 1.0678 | 0.0286 | 6 | | 0.9126 | 0.0287 | 0.9152 | 0.0294 | 7 | | 0.7514 | 0.0296 | 0.8057 | 0.0299 | 8 | | 0.6371 | 0.0302 | 0.7409 | 0.0302 | 9 | | 0.5498 | 0.0307 | 0.6854 | 0.0306 | 10 | | 0.4804 | 0.0312 | 0.6518 | 0.0307 | 11 | | 0.4214 | 0.0316 | 0.6200 | 0.0310 | 12 | | 0.3713 | 0.0319 | 0.5947 | 0.0311 | 13 | | 0.3281 | 0.0322 | 0.5841 | 0.0311 | 14 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Tokenizers 0.13.2
rosamondthalken/t5-base-sci-names
rosamondthalken
2022-11-08T14:39:36Z
8
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "scientific names", "text generation", "en", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-16T15:00:05Z
--- language: - en tags: - scientific names - text generation license: cc-by-sa-4.0 --- # t5-base-sci-names Biodiversity literature is dedicated to the identification, documentation, and categorization of plants, fungi, animals, and other living organisms. Correctly extracting the name of an organism within these documents involves finding the entire scientific name–including the genus, specific epithet, and author name. Extracting these names allows biologists to access documents about a species more comprehensively, and to track an organism’s history of documentation, which includes biological changes and changes in how scientists describe them. **t5-base-sci-names** uses advances in text-to-text generation to generate scientific names and authors from biodiversity literature. This model was trained on hand-labeled biodiversity texts, including labeled information about a mentioned organism's genus (abbreviated and expanded), specific epithet, and author. This model was trained to output 0-N scientific names with specific prefixes (e.g. "genus = " or "epithet = ") and performs best with anywhere from 20-120 words. You can also use the model in this tutorial for [scientific names generation](https://colab.research.google.com/drive/1GEpnCaMJYiPIhuZiDJ1X1pZsGtGSm8Ds?usp=sharing). Thanks to Damon Little and Nelson Salinas at the New York Botanical Gardens for their support. *Note that this model is still a work in progress. Any feedback is welcome.*
bigmorning/whisper_0010
bigmorning
2022-11-08T14:20:50Z
63
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-08T14:19:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whisper_0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6371 - Train Accuracy: 0.0302 - Validation Loss: 0.7409 - Validation Accuracy: 0.0302 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 5.0856 | 0.0116 | 4.4440 | 0.0123 | 0 | | 4.3149 | 0.0131 | 4.0521 | 0.0142 | 1 | | 3.9260 | 0.0146 | 3.7264 | 0.0153 | 2 | | 3.5418 | 0.0160 | 3.3026 | 0.0174 | 3 | | 2.7510 | 0.0198 | 2.0157 | 0.0241 | 4 | | 1.6782 | 0.0250 | 1.3567 | 0.0273 | 5 | | 1.1705 | 0.0274 | 1.0678 | 0.0286 | 6 | | 0.9126 | 0.0287 | 0.9152 | 0.0294 | 7 | | 0.7514 | 0.0296 | 0.8057 | 0.0299 | 8 | | 0.6371 | 0.0302 | 0.7409 | 0.0302 | 9 | ### Framework versions - Transformers 4.25.0.dev0 - TensorFlow 2.9.2 - Tokenizers 0.13.2