modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-04 18:27:43
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
539 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-04 18:27:26
card
stringlengths
11
1.01M
sd-concepts-library/nomad
sd-concepts-library
2022-10-01T21:08:36Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-01T21:08:32Z
--- license: mit --- ### Nomad on Stable Diffusion This is the `<nomad>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<nomad> 0](https://huggingface.co/sd-concepts-library/nomad/resolve/main/concept_images/1.jpeg) ![<nomad> 1](https://huggingface.co/sd-concepts-library/nomad/resolve/main/concept_images/4.jpeg) ![<nomad> 2](https://huggingface.co/sd-concepts-library/nomad/resolve/main/concept_images/10.jpeg) ![<nomad> 3](https://huggingface.co/sd-concepts-library/nomad/resolve/main/concept_images/7.jpeg) ![<nomad> 4](https://huggingface.co/sd-concepts-library/nomad/resolve/main/concept_images/2.jpeg) ![<nomad> 5](https://huggingface.co/sd-concepts-library/nomad/resolve/main/concept_images/0.jpeg) ![<nomad> 6](https://huggingface.co/sd-concepts-library/nomad/resolve/main/concept_images/9.jpeg) ![<nomad> 7](https://huggingface.co/sd-concepts-library/nomad/resolve/main/concept_images/3.jpeg) ![<nomad> 8](https://huggingface.co/sd-concepts-library/nomad/resolve/main/concept_images/6.jpeg) ![<nomad> 9](https://huggingface.co/sd-concepts-library/nomad/resolve/main/concept_images/5.jpeg) ![<nomad> 10](https://huggingface.co/sd-concepts-library/nomad/resolve/main/concept_images/8.jpeg)
IIIT-L/roberta-large-finetuned-TRAC-DS
IIIT-L
2022-10-01T20:45:23Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-01T17:17:37Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-large-finetuned-TRAC-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-TRAC-DS This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8198 - Accuracy: 0.7190 - Precision: 0.6955 - Recall: 0.6979 - F1: 0.6963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9538 | 1.0 | 612 | 0.8083 | 0.6111 | 0.6192 | 0.6164 | 0.5994 | | 0.7924 | 2.0 | 1224 | 0.7594 | 0.6601 | 0.6688 | 0.6751 | 0.6424 | | 0.6844 | 3.0 | 1836 | 0.6986 | 0.7042 | 0.6860 | 0.6969 | 0.6858 | | 0.5715 | 3.99 | 2448 | 0.7216 | 0.7075 | 0.6957 | 0.6978 | 0.6925 | | 0.45 | 4.99 | 3060 | 0.7963 | 0.7288 | 0.7126 | 0.7074 | 0.7073 | | 0.352 | 5.99 | 3672 | 1.0824 | 0.7141 | 0.6999 | 0.6774 | 0.6818 | | 0.2546 | 6.99 | 4284 | 1.0884 | 0.7230 | 0.7006 | 0.7083 | 0.7028 | | 0.1975 | 7.99 | 4896 | 1.5338 | 0.7337 | 0.7090 | 0.7063 | 0.7074 | | 0.1656 | 8.99 | 5508 | 1.8182 | 0.7100 | 0.6882 | 0.6989 | 0.6896 | | 0.1358 | 9.98 | 6120 | 2.1623 | 0.7173 | 0.6917 | 0.6959 | 0.6934 | | 0.1235 | 10.98 | 6732 | 2.3249 | 0.7141 | 0.6881 | 0.6914 | 0.6888 | | 0.1003 | 11.98 | 7344 | 2.3474 | 0.7124 | 0.6866 | 0.6920 | 0.6887 | | 0.0826 | 12.98 | 7956 | 2.3574 | 0.7083 | 0.6853 | 0.6959 | 0.6874 | | 0.0727 | 13.98 | 8568 | 2.4989 | 0.7116 | 0.6858 | 0.6934 | 0.6883 | | 0.0553 | 14.98 | 9180 | 2.8090 | 0.7026 | 0.6747 | 0.6710 | 0.6725 | | 0.0433 | 15.97 | 9792 | 2.6647 | 0.7255 | 0.7010 | 0.7028 | 0.7018 | | 0.0449 | 16.97 | 10404 | 2.6568 | 0.7247 | 0.7053 | 0.6997 | 0.7010 | | 0.0373 | 17.97 | 11016 | 2.7632 | 0.7149 | 0.6888 | 0.6938 | 0.6909 | | 0.0278 | 18.97 | 11628 | 2.8245 | 0.7124 | 0.6866 | 0.6930 | 0.6889 | | 0.0288 | 19.97 | 12240 | 2.8198 | 0.7190 | 0.6955 | 0.6979 | 0.6963 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
MoososCap/SpongeBob-SquarePants-Diffusion
MoososCap
2022-10-01T19:15:12Z
0
2
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-01T18:20:25Z
--- license: creativeml-openrail-m --- Modified from original model:CompVis/stable-diffusion-v-1-4-original training using images: https://i.imgur.com/D76R0eV.jpg https://i.imgur.com/7zQ6f72.jpg https://i.imgur.com/T2vcv5K.jpg https://i.imgur.com/T4RsGHU.jpg https://i.imgur.com/CRrskPZ.jpg https://i.imgur.com/HG9Ba3q.jpg https://i.imgur.com/X0XV8sG.jpg https://i.imgur.com/RTnZIMr.jpg https://i.imgur.com/4QVQodx.jpg https://i.imgur.com/VTsdYj8.jpg https://i.imgur.com/MM4ng1M.jpg If you will not import the model, feel free to use the COLAB below https://colab.research.google.com/drive/1MJ96yoU5J8h1fBWzabBNYBmK_MvNtx71?usp=sharing
LunNova/sd1.4-pony-finetune
LunNova
2022-10-01T18:35:14Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-01T18:35:14Z
--- license: creativeml-openrail-m ---
gabrielgmendonca/bert-base-portuguese-cased-finetuned-chico-xavier-finetuned-chico-xavier
gabrielgmendonca
2022-10-01T18:10:15Z
75
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-28T11:15:15Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: gabrielgmendonca/bert-base-portuguese-cased-finetuned-chico-xavier-finetuned-chico-xavier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # gabrielgmendonca/bert-base-portuguese-cased-finetuned-chico-xavier-finetuned-chico-xavier This model is a fine-tuned version of [gabrielgmendonca/bert-base-portuguese-cased-finetuned-chico-xavier](https://huggingface.co/gabrielgmendonca/bert-base-portuguese-cased-finetuned-chico-xavier) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.8630 - Validation Loss: 1.7215 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3430, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.8630 | 1.7215 | 0 | ### Framework versions - Transformers 4.22.2 - TensorFlow 2.8.2 - Datasets 2.5.1 - Tokenizers 0.12.1
IIIT-L/roberta-large-finetuned-ours-DS
IIIT-L
2022-10-01T17:03:49Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-01T15:57:22Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-large-finetuned-ours-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-ours-DS This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3369 - Accuracy: 0.75 - Precision: 0.7054 - Recall: 0.6949 - F1: 0.6974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0561 | 0.99 | 99 | 0.8773 | 0.615 | 0.4054 | 0.5584 | 0.4591 | | 0.762 | 1.98 | 198 | 0.6514 | 0.715 | 0.6735 | 0.6672 | 0.6588 | | 0.5661 | 2.97 | 297 | 0.6806 | 0.71 | 0.6764 | 0.6608 | 0.6435 | | 0.3699 | 3.96 | 396 | 0.8358 | 0.71 | 0.6611 | 0.6691 | 0.6570 | | 0.2184 | 4.95 | 495 | 1.1627 | 0.7 | 0.6597 | 0.6337 | 0.6414 | | 0.1743 | 5.94 | 594 | 1.0544 | 0.725 | 0.6831 | 0.6949 | 0.6831 | | 0.098 | 6.93 | 693 | 1.4757 | 0.73 | 0.6885 | 0.6902 | 0.6892 | | 0.0813 | 7.92 | 792 | 1.8146 | 0.73 | 0.6840 | 0.6772 | 0.6800 | | 0.0435 | 8.91 | 891 | 1.6697 | 0.755 | 0.7141 | 0.7127 | 0.7132 | | 0.0209 | 9.9 | 990 | 1.8931 | 0.755 | 0.7102 | 0.7070 | 0.7082 | | 0.0201 | 10.89 | 1089 | 2.1934 | 0.74 | 0.6971 | 0.6866 | 0.6907 | | 0.0095 | 11.88 | 1188 | 2.1389 | 0.75 | 0.7014 | 0.6915 | 0.6932 | | 0.0141 | 12.87 | 1287 | 2.1902 | 0.74 | 0.6942 | 0.6943 | 0.6936 | | 0.0112 | 13.86 | 1386 | 2.5021 | 0.73 | 0.6889 | 0.6669 | 0.6741 | | 0.0054 | 14.85 | 1485 | 2.3840 | 0.73 | 0.6819 | 0.6715 | 0.6746 | | 0.0088 | 15.84 | 1584 | 2.3224 | 0.74 | 0.6909 | 0.6825 | 0.6787 | | 0.003 | 16.83 | 1683 | 2.2641 | 0.75 | 0.7054 | 0.6949 | 0.6974 | | 0.0017 | 17.82 | 1782 | 2.3361 | 0.75 | 0.7077 | 0.6968 | 0.7012 | | 0.0014 | 18.81 | 1881 | 2.3041 | 0.755 | 0.7131 | 0.7009 | 0.7051 | | 0.0083 | 19.8 | 1980 | 2.3369 | 0.75 | 0.7054 | 0.6949 | 0.6974 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
grantsl/distilbert-base-uncased-finetuned-emotion
grantsl
2022-10-01T15:19:20Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-01T15:02:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9415 - name: F1 type: f1 value: 0.9414702638466222 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1764 - Accuracy: 0.9415 - F1: 0.9415 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.436 | 1.0 | 2000 | 0.2178 | 0.93 | 0.9305 | | 0.1615 | 2.0 | 4000 | 0.1764 | 0.9415 | 0.9415 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
lv416e/distilbert-base-uncased-finetuned-emotion
lv416e
2022-10-01T13:07:04Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-30T17:24:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9264561231665573 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2194 - Accuracy: 0.9265 - F1: 0.9265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8297 | 1.0 | 250 | 0.3140 | 0.9055 | 0.9031 | | 0.2499 | 2.0 | 500 | 0.2194 | 0.9265 | 0.9265 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
JJRohan/LunarLander-v2
JJRohan
2022-10-01T12:49:19Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-01T12:29:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 281.85 +/- 21.67 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sd-concepts-library/alex-thumbnail-object-2000-steps
sd-concepts-library
2022-10-01T11:51:21Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-01T11:51:15Z
--- license: mit --- ### Alex Thumbnail Object 2000 Steps on Stable Diffusion This is the `<alex>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<alex> 0](https://huggingface.co/sd-concepts-library/alex-thumbnail-object-2000-steps/resolve/main/concept_images/1.jpeg) ![<alex> 1](https://huggingface.co/sd-concepts-library/alex-thumbnail-object-2000-steps/resolve/main/concept_images/2.jpeg) ![<alex> 2](https://huggingface.co/sd-concepts-library/alex-thumbnail-object-2000-steps/resolve/main/concept_images/0.jpeg) ![<alex> 3](https://huggingface.co/sd-concepts-library/alex-thumbnail-object-2000-steps/resolve/main/concept_images/3.jpeg)
Betka/finetuning-sentiment-model-3000-samples
Betka
2022-10-01T10:17:53Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-01T10:06:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.87248322147651 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2850 - Accuracy: 0.8733 - F1: 0.8725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
bambooNerdFreeDownloads/Kizuna_Akali_tr
bambooNerdFreeDownloads
2022-10-01T09:38:23Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-30T19:16:21Z
--- license: mit --- # Description Trainer: bambooNerdKagu8 # akali_waifu1.3ckpt Kizuna Akali from Voiceroid ref: https://www.ah-soft.com/voiceroid/akari/index.html ## Dataset >Training: 40 images >Regularization: 599 images ## Info >Model Used: Waifu Diffusion 1.3 beta(4epoch) >Steps: 500 >Keyword: kizuna_akali_tr >Class Phrase: kizuna_akali_class ![Kizuna_Akali_tr](https://pbs.twimg.com/media/Fd6VOUtaEAASyES?format=png&name=small) # yuzuki_yukari_waifu1_3_ep4.ckpt Yuzuki Yukari from Voiceroid ref: https://www.ah-soft.com/yukari/ ## Dataset >Training: 40 images >Regularization: 233 images ## Info >Model Used: Waifu Diffusion 1.3 beta(4epoch) >Steps: 1000 >Keyword: yuzuki_yukari_tr >Class Phrase: yuzuki_yukari_class ![Yuzuki_Yukari_tr](https://pbs.twimg.com/media/Fd9sXr9aEAEHxZ5?format=png&name=small)
philschmid/distilbert-onnx-banking77
philschmid
2022-10-01T07:40:53Z
27
5
generic
[ "generic", "onnx", "text-classification", "endpoints-template", "optimum", "endpoints_compatible", "region:us" ]
text-classification
2022-06-24T19:53:29Z
--- tags: - text-classification - endpoints-template - optimum library_name: generic --- # Optimized and Quantized DistilBERT with a custom pipeline with handler.py > NOTE: Blog post coming soon This is a template repository for Text Classification using Optimum and onnxruntime to support generic inference with Hugging Face Hub generic Inference API. There are two required steps: 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `handler.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload the optimum model and tokenizers as well as the `text-classification` pipeline needed for inference. This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. add ``` library_name: generic ``` to the readme. _note: the `generic` community image currently only support `inputs` as parameter and no parameter._
FIT17/q-Taxi-v3
FIT17
2022-10-01T06:05:37Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-01T06:05:28Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="FIT17/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
FIT17/q-FrozenLake-v1-4x4-noSlippery
FIT17
2022-10-01T06:02:34Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-01T06:02:26Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="FIT17/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Bistolero/german_dutchall_mixed2ep
Bistolero
2022-10-01T03:53:57Z
109
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-01T03:34:34Z
--- tags: - generated_from_trainer model-index: - name: german_dutchall_mixed2ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # german_dutchall_mixed2ep This model is a fine-tuned version of [Bistolero/nl_ge_alltr](https://huggingface.co/Bistolero/nl_ge_alltr) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
tuananh18/VietnamesePunctuation
tuananh18
2022-10-01T02:39:08Z
109
1
transformers
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-09-24T15:16:42Z
This is a test model, so the results are not really good. The team is continuing to grow. If you like it, Click like above to support the author. 🤗
jamesesguerra/mt5-small-finetuned-1.0.3
jamesesguerra
2022-09-30T23:20:08Z
85
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-30T11:37:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-1.0.3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-1.0.3 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1389 - Rouge1: 48.1276 - Rouge2: 45.1735 - Rougel: 47.9444 - Rougelsum: 47.9803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 0.8385 | 1.0 | 1161 | 0.1389 | 48.1276 | 45.1735 | 47.9444 | 47.9803 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/ohisashiburi-style
sd-concepts-library
2022-09-30T22:39:01Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-30T22:38:57Z
--- license: mit --- ### ohisashiburi-style on Stable Diffusion This is the `<ohishashiburi-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<ohishashiburi-style> 0](https://huggingface.co/sd-concepts-library/ohisashiburi-style/resolve/main/concept_images/1.jpeg) ![<ohishashiburi-style> 1](https://huggingface.co/sd-concepts-library/ohisashiburi-style/resolve/main/concept_images/2.jpeg) ![<ohishashiburi-style> 2](https://huggingface.co/sd-concepts-library/ohisashiburi-style/resolve/main/concept_images/0.jpeg) ![<ohishashiburi-style> 3](https://huggingface.co/sd-concepts-library/ohisashiburi-style/resolve/main/concept_images/3.jpeg)
huggingtweets/dominasnow-kinkyfetishviv-mistresslhush
huggingtweets
2022-09-30T22:27:43Z
49
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-30T22:27:15Z
--- language: en thumbnail: http://www.huggingtweets.com/dominasnow-kinkyfetishviv-mistresslhush/1664576858505/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1569863287310802945/0rB4kb-c_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1384245697755582474/vPcYIiXA_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1528340382509154311/FamGl7eU_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mistress Vivienne l’Amour - Serve me on Onlyfans! & Goddess Alexandra Snow 🌟 V4M Creator of the Year & 𝐌𝐢𝐬𝐭𝐫𝐞𝐬𝐬 𝐋𝐨𝐥𝐢𝐭𝐚 𝐇𝐮𝐬𝐡</div> <div style="text-align: center; font-size: 14px;">@dominasnow-kinkyfetishviv-mistresslhush</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mistress Vivienne l’Amour - Serve me on Onlyfans! & Goddess Alexandra Snow 🌟 V4M Creator of the Year & 𝐌𝐢𝐬𝐭𝐫𝐞𝐬𝐬 𝐋𝐨𝐥𝐢𝐭𝐚 𝐇𝐮𝐬𝐡. | Data | Mistress Vivienne l’Amour - Serve me on Onlyfans! | Goddess Alexandra Snow 🌟 V4M Creator of the Year | 𝐌𝐢𝐬𝐭𝐫𝐞𝐬𝐬 𝐋𝐨𝐥𝐢𝐭𝐚 𝐇𝐮𝐬𝐡 | | --- | --- | --- | --- | | Tweets downloaded | 3207 | 3223 | 2186 | | Retweets | 781 | 435 | 301 | | Short tweets | 268 | 206 | 426 | | Tweets kept | 2158 | 2582 | 1459 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/lwew59sn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dominasnow-kinkyfetishviv-mistresslhush's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1l6o456x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1l6o456x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dominasnow-kinkyfetishviv-mistresslhush') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lucaordronneau/finbert-finetuned-FG-SINGLE_SENTENCE-NEWS-WEIGHTED
lucaordronneau
2022-09-30T18:45:49Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-11T12:45:07Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finbert-finetuned-FG-SINGLE_SENTENCE-NEWS-WEIGHTED results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finbert-finetuned-FG-SINGLE_SENTENCE-NEWS-WEIGHTED This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2741 - Accuracy: 0.7475 - F1: 0.7253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 249 | 0.9150 | 0.7346 | 0.6484 | | No log | 2.0 | 498 | 0.8837 | 0.6210 | 0.6317 | | 1.033 | 3.0 | 747 | 0.8460 | 0.6485 | 0.6666 | | 1.033 | 4.0 | 996 | 1.0089 | 0.6831 | 0.6909 | | 0.5642 | 5.0 | 1245 | 1.2507 | 0.7352 | 0.7152 | | 0.5642 | 6.0 | 1494 | 1.3241 | 0.7129 | 0.7042 | | 0.2078 | 7.0 | 1743 | 1.5163 | 0.7528 | 0.7230 | | 0.2078 | 8.0 | 1992 | 1.5818 | 0.7352 | 0.7236 | | 0.1108 | 9.0 | 2241 | 1.7930 | 0.7012 | 0.7046 | | 0.1108 | 10.0 | 2490 | 1.8262 | 0.7305 | 0.7211 | | 0.07 | 11.0 | 2739 | 2.0415 | 0.7440 | 0.7192 | | 0.07 | 12.0 | 2988 | 2.1260 | 0.7563 | 0.7230 | | 0.0392 | 13.0 | 3237 | 2.1502 | 0.7528 | 0.7323 | | 0.0392 | 14.0 | 3486 | 2.2117 | 0.7516 | 0.7270 | | 0.0174 | 15.0 | 3735 | 2.2657 | 0.7405 | 0.7236 | | 0.0174 | 16.0 | 3984 | 2.2741 | 0.7475 | 0.7253 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
stevhliu/my_awesome_wnut_model
stevhliu
2022-09-30T18:27:37Z
176
1
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-30T17:31:41Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: stevhliu/my_awesome_wnut_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # stevhliu/my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1210 - Validation Loss: 0.2698 - Train Precision: 0.5099 - Train Recall: 0.3995 - Train F1: 0.4480 - Train Accuracy: 0.9444 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 636, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.3233 | 0.3099 | 0.4155 | 0.2117 | 0.2805 | 0.9333 | 0 | | 0.1600 | 0.2743 | 0.5111 | 0.3589 | 0.4216 | 0.9416 | 1 | | 0.1210 | 0.2698 | 0.5099 | 0.3995 | 0.4480 | 0.9444 | 2 | ### Framework versions - Transformers 4.22.2 - TensorFlow 2.8.2 - Datasets 2.5.1 - Tokenizers 0.12.1
espnet/talromur2_xvector_tacotron2
espnet
2022-09-30T17:56:29Z
4
0
espnet
[ "espnet", "audio", "text-to-speech", "is", "dataset:talromur2", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-09-30T17:14:14Z
--- tags: - espnet - audio - text-to-speech language: is datasets: - talromur2 license: cc-by-4.0 --- ## ESPnet2 TTS model ### `` This model was trained by Gunnar Thor using talromur2 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd talromur2/tts1/talromur2_xvector_tacotron2 ./run.sh --skip_data_prep false --skip_train true --download_model ``` ## TTS config <details><summary>expand</summary> ``` config: ./conf/tuning/train_xvector_tacotron2.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_xvector_tacotron2_raw_phn_none ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 500 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 5 nbest_averaging_interval: 0 grad_clip: 1.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 500 batch_size: 20 valid_batch_size: null batch_bins: 3750000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_phn_none/train/text_shape.phn - exp/tts_stats_raw_phn_none/train/speech_shape valid_shape_file: - exp/tts_stats_raw_phn_none/valid/text_shape.phn - exp/tts_stats_raw_phn_none/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_phn/text - text - text - - dump/raw/train_phn/wav.scp - speech - sound - - dump/xvector/train_phn/xvector.scp - spembs - kaldi_ark valid_data_path_and_name_and_type: - - dump/raw/dev_phn/text - text - text - - dump/raw/dev_phn/wav.scp - speech - sound - - dump/xvector/dev_phn/xvector.scp - spembs - kaldi_ark allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-06 weight_decay: 0.0 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - r - a - t - I - n - s - D - Y - E - l - v - m - h - k - 'a:' - j - 'E:' - T - f - G - p - 'i:' - 'au:' - c - 'O:' - i - r_0 - 'I:' - t_h - ei - O - k_h - ou - '9' - 'u:' - ai - au - 'ou:' - u - 'ei:' - l_0 - N - n_0 - '9:' - p_h - 'ai:' - c_h - 9i - C - '9i:' - x - 'Y:' - N_0 - J - m_0 - Yi - Oi - J_0 - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null feats_extract: fbank feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null fs: 22050 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/tts_stats_raw_phn_none/train/feats_stats.npz tts: tacotron2 tts_conf: embed_dim: 512 elayers: 1 eunits: 512 econv_layers: 3 econv_chans: 512 econv_filts: 5 atype: location adim: 512 aconv_chans: 32 aconv_filts: 15 cumulate_att_w: true dlayers: 2 dunits: 1024 prenet_layers: 2 prenet_units: 256 postnet_layers: 5 postnet_chans: 512 postnet_filts: 5 output_activation: null use_batch_norm: true use_concate: true use_residual: false spk_embed_dim: 512 spk_embed_integration_type: add dropout_rate: 0.5 zoneout_rate: 0.1 reduction_factor: 1 use_masking: true bce_pos_weight: 10.0 use_guided_attn_loss: true guided_attn_loss_sigma: 0.4 guided_attn_loss_lambda: 1.0 pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: '202204' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
cardiffnlp/roberta-base-tweet-topic-single-2020
cardiffnlp
2022-09-30T17:45:15Z
54
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_single", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-30T07:32:09Z
--- datasets: - cardiffnlp/tweet_topic_single metrics: - f1 - accuracy model-index: - name: cardiffnlp/roberta-base-tweet-topic-single-2020 results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_single type: cardiffnlp/tweet_topic_single args: cardiffnlp/tweet_topic_single split: test_2021 metrics: - name: F1 type: f1 value: 0.8682811577082102 - name: F1 (macro) type: f1_macro value: 0.7296667105332716 - name: Accuracy type: accuracy value: 0.8682811577082102 pipeline_tag: text-classification widget: - text: "I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but man does their experience versus the Blue Jackets this year and last help them a lot versus this Islanders team. Another meat grinder upcoming for the good guys" example_title: "Example 1" - text: "Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US." example_title: "Example 2" --- # cardiffnlp/roberta-base-tweet-topic-single-2020 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the [tweet_topic_single](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single). This model is fine-tuned on `train_2020` split and validated on `test_2021` split of tweet_topic. Fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single/blob/main/lm_finetuning.py). It achieves the following results on the test_2021 set: - F1 (micro): 0.8682811577082102 - F1 (macro): 0.7296667105332716 - Accuracy: 0.8682811577082102 ### Usage ```python from transformers import pipeline pipe = pipeline("text-classification", "cardiffnlp/roberta-base-tweet-topic-single-2020") topic = pipe("Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US.") print(topic) ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
abu2sid/my-awesome-model
abu2sid
2022-09-30T17:41:53Z
26
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-30T17:38:09Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-awesome-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-awesome-model This model is a fine-tuned version of [Rocketknight1/t5-small-finetuned-xsum](https://huggingface.co/Rocketknight1/t5-small-finetuned-xsum) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.22.2 - TensorFlow 2.8.2 - Datasets 2.5.1 - Tokenizers 0.12.1
cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020
cardiffnlp
2022-09-30T17:34:59Z
52
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_single", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-30T07:19:52Z
--- datasets: - cardiffnlp/tweet_topic_single metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020 results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_single type: cardiffnlp/tweet_topic_single args: cardiffnlp/tweet_topic_single split: test_2021 metrics: - name: F1 type: f1 value: 0.8824571766095688 - name: F1 (macro) type: f1_macro value: 0.7401873227149222 - name: Accuracy type: accuracy value: 0.8824571766095688 pipeline_tag: text-classification widget: - text: "I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but man does their experience versus the Blue Jackets this year and last help them a lot versus this Islanders team. Another meat grinder upcoming for the good guys" example_title: "Example 1" - text: "Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US." example_title: "Example 2" --- # cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on the [tweet_topic_single](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single). This model is fine-tuned on `train_2020` split and validated on `test_2021` split of tweet_topic. Fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single/blob/main/lm_finetuning.py). It achieves the following results on the test_2021 set: - F1 (micro): 0.8824571766095688 - F1 (macro): 0.7401873227149222 - Accuracy: 0.8824571766095688 ### Usage ```python from transformers import pipeline pipe = pipeline("text-classification", "cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020") topic = pipe("Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US.") print(topic) ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
luminolblue/HomunculusGPT-testbot
luminolblue
2022-09-30T17:23:59Z
50
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-30T17:18:30Z
--- tags: - conversational --- # Purely made as a joke, it's bad, don't expect anything ty.
ioanfr/distilbert-base-uncased-finetuned-cola
ioanfr
2022-09-30T16:28:22Z
44
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-30T14:09:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5340667882909217 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8124 - Matthews Correlation: 0.5341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5227 | 1.0 | 535 | 0.5222 | 0.4210 | | 0.3467 | 2.0 | 1070 | 0.5046 | 0.4855 | | 0.2335 | 3.0 | 1605 | 0.5637 | 0.5173 | | 0.1813 | 4.0 | 2140 | 0.7634 | 0.5200 | | 0.1334 | 5.0 | 2675 | 0.8124 | 0.5341 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.5.1 - Tokenizers 0.13.0
ner4archives/fr_ner4archives_default_test
ner4archives
2022-09-30T16:24:27Z
4
0
spacy
[ "spacy", "token-classification", "fr", "model-index", "region:us" ]
token-classification
2022-07-28T14:55:57Z
--- widget: - text: "415 Lyon Lettres de rémission accordées à Denis Fromant, marinier, pour meurtre commis à Saint-Haon 1, au pays de Roannais, sur la personne de Driet Cantin qui l'accusait d'avoir maltraité un de ses pages et de l'avoir dépouillé d'une jument (Fol 145 v°, n° 415) Septembre 1501." example_title: "FRAN_IR_000061" - text: "BB/29/988 page 143 Penne (Lot-et-Garronne) 14 décembre 1822. BB/29/988 page 145 Billom (Puy-de-Dôme) 11 janvier 1823." example_title: "FRAN_IR_050370" tags: - spacy - token-classification language: - fr model-index: - name: fr_ner4archives_default_test results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8 - name: NER Recall type: recall value: 0.741301059 - name: NER F Score type: f_score value: 0.7695327837 --- NER4Archives pipeline optimized for CPU and specialized on French National Archives findings aids (XML-EAD) - Corpus V2. Components: tok2vec, ner. Base default CNN architecture. | Feature | Description | | --- | --- | | **Name** | `fr_ner4archives_default_test` | | **Version** | `0.0.0` | | **spaCy** | `>=3.3.1,<3.4.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | French corpus for the NER task composed of finding aids in XML-EAD ​​from the National Archives of France (v. 2.0) - [Check corpus version on GitHub](https://github.com/NER4Archives-project/Corpus_TrainingData) | | **License** | CC-BY-4.0 license | | **Author** | [Archives nationales]() / [Inria-Almanach]() | ### Label Scheme <details> <summary>View label scheme (5 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `EVENT`, `LOCATION`, `ORGANISATION`, `PERSON`, `TITLE` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 76.95 | | `ENTS_P` | 80.00 | | `ENTS_R` | 74.13 | | `TOK2VEC_LOSS` | 76044.50 | | `NER_LOSS` | 75529.77 |
anas-awadalla/bart-large-finetuned-squad-seq2seq
anas-awadalla
2022-09-30T16:02:03Z
51
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-29T19:23:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-finetuned-squad-seq2seq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-finetuned-squad-seq2seq This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020
cardiffnlp
2022-09-30T14:43:17Z
55
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_single", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-30T05:07:45Z
--- datasets: - cardiffnlp/tweet_topic_single metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020 results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_single type: cardiffnlp/tweet_topic_single args: cardiffnlp/tweet_topic_single split: test_2021 metrics: - name: F1 type: f1 value: 0.8759598346131128 - name: F1 (macro) type: f1_macro value: 0.7462751206081605 - name: Accuracy type: accuracy value: 0.8759598346131128 pipeline_tag: text-classification widget: - text: "I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but man does their experience versus the Blue Jackets this year and last help them a lot versus this Islanders team. Another meat grinder upcoming for the good guys" example_title: "Example 1" - text: "Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US." example_title: "Example 2" --- # cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020) on the [tweet_topic_single](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single). This model is fine-tuned on `train_2020` split and validated on `test_2021` split of tweet_topic. Fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single/blob/main/lm_finetuning.py). It achieves the following results on the test_2021 set: - F1 (micro): 0.8759598346131128 - F1 (macro): 0.7462751206081605 - Accuracy: 0.8759598346131128 ### Usage ```python from transformers import pipeline pipe = pipeline("text-classification", "cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020") topic = pipe("Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US.") print(topic) ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
mfreihaut/refinement-finetuned-mnli-2
mfreihaut
2022-09-30T13:55:53Z
5
0
transformers
[ "transformers", "pytorch", "bart", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-29T16:36:24Z
--- license: mit tags: - generated_from_trainer model-index: - name: refinement-finetuned-mnli-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # refinement-finetuned-mnli-2 This model is a fine-tuned version of [mfreihaut/refinement-finetuned-mnli-1](https://huggingface.co/mfreihaut/refinement-finetuned-mnli-1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 1.0 | 303 | 0.3730 | | 1.1146 | 2.0 | 606 | 0.9860 | | 1.1146 | 3.0 | 909 | 0.7304 | | 1.0018 | 4.0 | 1212 | 0.6386 | | 1.0045 | 5.0 | 1515 | 0.4228 | | 1.0045 | 6.0 | 1818 | 0.6769 | | 0.9618 | 7.0 | 2121 | 0.3008 | | 0.9618 | 8.0 | 2424 | 0.4496 | | 0.964 | 9.0 | 2727 | 0.1826 | | 0.9586 | 10.0 | 3030 | 0.0367 | | 0.9586 | 11.0 | 3333 | 0.1811 | | 1.0467 | 12.0 | 3636 | 0.1352 | | 1.0467 | 13.0 | 3939 | 0.0612 | | 1.0047 | 14.0 | 4242 | 0.1702 | | 1.0012 | 15.0 | 4545 | 0.0622 | | 1.0012 | 16.0 | 4848 | 0.7077 | | 1.0514 | 17.0 | 5151 | 0.2146 | | 1.0514 | 18.0 | 5454 | 0.5531 | | 0.9389 | 19.0 | 5757 | 1.2304 | | 0.9229 | 20.0 | 6060 | 0.6252 | | 0.9229 | 21.0 | 6363 | 0.6844 | | 0.9334 | 22.0 | 6666 | 0.5663 | | 0.9334 | 23.0 | 6969 | 0.9912 | | 0.9312 | 24.0 | 7272 | 0.3112 | | 0.8971 | 25.0 | 7575 | 0.4511 | | 0.8971 | 26.0 | 7878 | 0.3860 | | 0.9022 | 27.0 | 8181 | 0.5904 | | 0.9022 | 28.0 | 8484 | 0.4710 | | 0.7568 | 29.0 | 8787 | 0.8233 | | 0.6753 | 30.0 | 9090 | 0.6951 | | 0.6753 | 31.0 | 9393 | 0.6363 | | 0.5802 | 32.0 | 9696 | 0.8018 | | 0.5802 | 33.0 | 9999 | 0.9381 | | 0.5323 | 34.0 | 10302 | 0.9941 | | 0.5218 | 35.0 | 10605 | 0.9418 | | 0.5218 | 36.0 | 10908 | 0.9236 | | 0.4558 | 37.0 | 11211 | 0.4542 | | 0.4247 | 38.0 | 11514 | 0.9279 | | 0.4247 | 39.0 | 11817 | 0.9567 | | 0.43 | 40.0 | 12120 | 0.8077 | | 0.43 | 41.0 | 12423 | 0.9595 | | 0.352 | 42.0 | 12726 | 0.9189 | | 0.3393 | 43.0 | 13029 | 0.8762 | | 0.3393 | 44.0 | 13332 | 1.0505 | | 0.316 | 45.0 | 13635 | 0.9273 | | 0.316 | 46.0 | 13938 | 1.0716 | | 0.2983 | 47.0 | 14241 | 1.0084 | | 0.2503 | 48.0 | 14544 | 1.1027 | | 0.2503 | 49.0 | 14847 | 1.0478 | | 0.2462 | 50.0 | 15150 | 1.0242 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.0 - Datasets 2.5.1 - Tokenizers 0.12.1
cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all
cardiffnlp
2022-09-30T13:23:43Z
116
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_single", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-30T03:27:04Z
--- datasets: - cardiffnlp/tweet_topic_single metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_single type: cardiffnlp/tweet_topic_single args: cardiffnlp/tweet_topic_single split: test_2021 metrics: - name: F1 type: f1 value: 0.8948611931482575 - name: F1 (macro) type: f1_macro value: 0.800952410284692 - name: Accuracy type: accuracy value: 0.8948611931482575 pipeline_tag: text-classification widget: - text: "I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but man does their experience versus the Blue Jackets this year and last help them a lot versus this Islanders team. Another meat grinder upcoming for the good guys" example_title: "Example 1" - text: "Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US." example_title: "Example 2" --- # cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the [tweet_topic_single](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single). This model is fine-tuned on `train_all` split and validated on `test_2021` split of tweet_topic. Fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single/blob/main/lm_finetuning.py). It achieves the following results on the test_2021 set: - F1 (micro): 0.8948611931482575 - F1 (macro): 0.800952410284692 - Accuracy: 0.8948611931482575 ### Usage ```python from transformers import pipeline pipe = pipeline("text-classification", "cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all") topic = pipe("Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US.") print(topic) ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
facebook/vit-msn-base
facebook
2022-09-30T13:22:24Z
1,246
0
transformers
[ "transformers", "pytorch", "vit_msn", "image-feature-extraction", "vision", "dataset:imagenet-1k", "arxiv:2204.07141", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-feature-extraction
2022-09-09T06:08:37Z
--- license: apache-2.0 tags: - vision datasets: - imagenet-1k --- # Vision Transformer (base-sized model) pre-trained with MSN Vision Transformer (ViT) model pre-trained using the MSN method. It was introduced in the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas and first released in [this repository](https://github.com/facebookresearch/msn). Disclaimer: The team releasing MSN did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like). Images are presented to the model as a sequence of fixed-size patches. MSN presents a joint-embedding architecture to match the prototypes of masked patches with that of the unmasked patches. With this setup, their method yields excellent performance in the low-shot and extreme low-shot regimes. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. ## Intended uses & limitations You can use the raw model for downstream tasks like image classification. See the [model hub](https://huggingface.co/models?filter=vit_msn) to look for different versions of MSN pre-trained models that interest you. The model is particularly beneficial when you have a few labeled samples in your training set. ### How to use Here is how to use this backbone encoder: ```python from transformers import AutoFeatureExtractor, ViTMSNModel import torch from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/vit-msn-base") model = ViTMSNModel.from_pretrained("facebook/vit-msn-base") inputs = feature_extractor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` For fine-tuning on image classification use the `ViTMSNForImageClassification` class: ```python from transformers import AutoFeatureExtractor, ViTMSNForImageClassification import torch from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/vit-msn-base") model = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-base") ... ``` ### Citation ```bibtex @article{assran2022masked, title={Masked Siamese Networks for Label-Efficient Learning}, author={Assran, Mahmoud, and Caron, Mathilde, and Misra, Ishan, and Bojanowski, Piotr, and Bordes, Florian and Vincent, Pascal, and Joulin, Armand, and Rabbat, Michael, and Ballas, Nicolas}, journal={arXiv preprint arXiv:2204.07141}, year={2022} } ```
anas-awadalla/bart-base-few-shot-k-1024-finetuned-squad-seed-2
anas-awadalla
2022-09-30T12:57:50Z
54
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-30T12:50:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-1024-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-1024-finetuned-squad-seed-2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
FIT17/ppo-LunarLander-v2
FIT17
2022-09-30T12:30:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-30T12:29:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 123.84 +/- 87.24 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
anas-awadalla/bart-base-few-shot-k-512-finetuned-squad-seed-2
anas-awadalla
2022-09-30T12:30:21Z
49
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-30T12:26:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-512-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-256-finetuned-squad-seed-4
anas-awadalla
2022-09-30T12:17:35Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-30T12:15:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-256-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-256-finetuned-squad-seed-4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
n2ziaei/q-Taxi-v3
n2ziaei
2022-09-30T11:59:04Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-30T11:58:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="n2ziaei/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
anas-awadalla/bart-base-few-shot-k-128-finetuned-squad-seed-0
anas-awadalla
2022-09-30T11:55:31Z
54
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-30T11:53:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-128-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-128-finetuned-squad-seed-0 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-64-finetuned-squad-seed-4
anas-awadalla
2022-09-30T11:51:42Z
57
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-30T11:50:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-64-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-64-finetuned-squad-seed-4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
n2ziaei/q-FrozenLake-v1-4x4-noSlippery
n2ziaei
2022-09-30T11:40:07Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-30T11:40:02Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="n2ziaei/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
anas-awadalla/bart-base-few-shot-k-32-finetuned-squad-seed-4
anas-awadalla
2022-09-30T11:40:04Z
72
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-30T11:38:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-32-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-32-finetuned-squad-seed-0
anas-awadalla
2022-09-30T11:32:03Z
52
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-30T11:30:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-32-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-32-finetuned-squad-seed-0 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-16-finetuned-squad-seed-4
anas-awadalla
2022-09-30T11:28:08Z
55
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-30T11:26:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-16-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-16-finetuned-squad-seed-4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-16-finetuned-squad-seed-2
anas-awadalla
2022-09-30T11:24:05Z
58
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-29T19:53:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-16-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-16-finetuned-squad-seed-2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-16-finetuned-squad-seed-0
anas-awadalla
2022-09-30T11:19:55Z
68
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-29T19:46:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-16-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-16-finetuned-squad-seed-0 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
Jardenna/opus-mt-en-nl-finetuned-en-to-af
Jardenna
2022-09-30T10:16:54Z
74
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-28T17:36:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: opus-mt-en-nl-finetuned-en-to-af results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-nl-finetuned-en-to-af This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-nl](https://huggingface.co/Helsinki-NLP/opus-mt-en-nl) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 241 | 4.1990 | 5.0127 | 21.973 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
susnato/distilbert-base-uncased-finetuned-emotion
susnato
2022-09-30T10:09:58Z
65
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-30T09:32:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9325 - name: F1 type: f1 value: 0.9325489261096217 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1553 - Accuracy: 0.9325 - F1: 0.9325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2091 | 1.0 | 250 | 0.1686 | 0.9275 | 0.9267 | | 0.1379 | 2.0 | 500 | 0.1553 | 0.9325 | 0.9325 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.12.1
rebolforces/dectrans-half-cheetah
rebolforces
2022-09-30T09:40:18Z
15
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "dataset:decision_transformer_gym_replay", "endpoints_compatible", "region:us" ]
null
2022-09-30T09:18:54Z
--- tags: - generated_from_trainer datasets: - decision_transformer_gym_replay model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 220 ### Training results ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1.post200 - Datasets 2.5.1 - Tokenizers 0.12.1
Hoax0930/kyoto_marian_test
Hoax0930
2022-09-30T09:16:48Z
65
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-09-30T07:09:27Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: kyoto_marian_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kyoto_marian_test This model is a fine-tuned version of [Hoax0930/kyoto_marian_mod_2_2_1](https://huggingface.co/Hoax0930/kyoto_marian_mod_2_2_1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4758 - Bleu: 47.0794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
microsoft/markuplm-large-finetuned-websrc
microsoft
2022-09-30T08:58:02Z
93
10
transformers
[ "transformers", "pytorch", "markuplm", "question-answering", "en", "dataset:websrc", "arxiv:2110.08518", "region:us" ]
question-answering
2022-06-14T13:38:07Z
--- language: - en datasets: - websrc inference: false --- # MarkupLM, fine-tuned on WebSRC **Multimodal (text +markup language) pre-training for [Document AI](https://www.microsoft.com/en-us/research/project/document-ai/)** ## Introduction MarkupLM is a simple but effective multi-modal pre-training method of text and markup language for visually-rich document understanding and information extraction tasks, such as webpage QA and webpage information extraction. MarkupLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei ## Usage We refer to the [docs](https://huggingface.co/docs/transformers/main/en/model_doc/markuplm) and [demo notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/MarkupLM).
microsoft/markuplm-base-finetuned-websrc
microsoft
2022-09-30T08:57:47Z
548
10
transformers
[ "transformers", "pytorch", "markuplm", "question-answering", "en", "dataset:websrc", "arxiv:2110.08518", "region:us" ]
question-answering
2022-06-14T13:08:06Z
--- language: - en datasets: - websrc inference: false --- # MarkupLM, fine-tuned on WebSRC **Multimodal (text +markup language) pre-training for [Document AI](https://www.microsoft.com/en-us/research/project/document-ai/)** ## Introduction MarkupLM is a simple but effective multi-modal pre-training method of text and markup language for visually-rich document understanding and information extraction tasks, such as webpage QA and webpage information extraction. MarkupLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei ## Usage We refer to the [docs](https://huggingface.co/docs/transformers/main/en/model_doc/markuplm) and [demo notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/MarkupLM).
microsoft/markuplm-large
microsoft
2022-09-30T08:56:38Z
760
20
transformers
[ "transformers", "pytorch", "markuplm", "en", "arxiv:2110.08518", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en --- # MarkupLM **Multimodal (text +markup language) pre-training for [Document AI](https://www.microsoft.com/en-us/research/project/document-ai/)** ## Introduction MarkupLM is a simple but effective multi-modal pre-training method of text and markup language for visually-rich document understanding and information extraction tasks, such as webpage QA and webpage information extraction. MarkupLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei ## Usage We refer to the [docs](https://huggingface.co/docs/transformers/main/en/model_doc/markuplm) and [demo notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/MarkupLM).
floodpark/test
floodpark
2022-09-30T08:42:33Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-09-30T08:42:33Z
--- license: creativeml-openrail-m ---
Ahmedshabana/distilbert-base-uncased-finetuned-mnli
Ahmedshabana
2022-09-30T08:19:48Z
65
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-26T20:34:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mnli split: train args: mnli metrics: - name: Accuracy type: accuracy value: 0.42 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.1091 - Accuracy: 0.42 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 32 | 1.1005 | 0.28 | | No log | 2.0 | 64 | 1.1038 | 0.3 | | No log | 3.0 | 96 | 1.1074 | 0.32 | | No log | 4.0 | 128 | 1.1088 | 0.42 | | No log | 5.0 | 160 | 1.1091 | 0.42 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sobamchan/bart-large-scitldr
sobamchan
2022-09-30T07:38:58Z
174
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-30T07:32:46Z
```py from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("sobamchan/bart-large-scitldr") model = AutoModelForSeq2SeqLM.from_pretrained("sobamchan/bart-large-scitldr") text = "Abstract of a paper." batch = tok(text, return_tensors="pt") generated_ids = model.generate(batch["input_ids"]) print(tok.batch_decode(generated_ids, skip_special_tokens=True)) ```
sd-concepts-library/80s-anime-ai-being
sd-concepts-library
2022-09-30T05:08:50Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-30T05:08:44Z
--- license: mit --- ### 80s Anime AI Being on Stable Diffusion This is the `<anime-AI-being>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<anime-AI-being> 0](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/21.jpeg) ![<anime-AI-being> 1](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/10.jpeg) ![<anime-AI-being> 2](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/0.jpeg) ![<anime-AI-being> 3](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/15.jpeg) ![<anime-AI-being> 4](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/7.jpeg) ![<anime-AI-being> 5](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/12.jpeg) ![<anime-AI-being> 6](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/3.jpeg) ![<anime-AI-being> 7](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/19.jpeg) ![<anime-AI-being> 8](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/11.jpeg) ![<anime-AI-being> 9](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/14.jpeg) ![<anime-AI-being> 10](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/9.jpeg) ![<anime-AI-being> 11](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/4.jpeg) ![<anime-AI-being> 12](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/5.jpeg) ![<anime-AI-being> 13](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/1.jpeg) ![<anime-AI-being> 14](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/13.jpeg) ![<anime-AI-being> 15](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/6.jpeg) ![<anime-AI-being> 16](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/16.jpeg) ![<anime-AI-being> 17](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/20.jpeg) ![<anime-AI-being> 18](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/18.jpeg) ![<anime-AI-being> 19](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/2.jpeg) ![<anime-AI-being> 20](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/17.jpeg) ![<anime-AI-being> 21](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/8.jpeg) ![<anime-AI-being> 22](https://huggingface.co/sd-concepts-library/80s-anime-ai-being/resolve/main/concept_images/22.jpeg)
Assadullah1467/donut-base-sroie2
Assadullah1467
2022-09-30T02:28:54Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-09-29T05:31:06Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie2 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.8.1+cu102 - Datasets 2.5.1 - Tokenizers 0.13.0
anas-awadalla/t5-base-few-shot-k-1024-finetuned-squad-seed-4
anas-awadalla
2022-09-30T02:13:17Z
74
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T21:25:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-1024-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-1024-finetuned-squad-seed-4 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
bigdino/bart-large-finetuned-cnn-dailymail
bigdino
2022-09-30T02:03:05Z
52
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-30T01:36:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: bart-large-finetuned-cnn-dailymail results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-finetuned-cnn-dailymail This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
anas-awadalla/t5-base-few-shot-k-1024-finetuned-squad-seed-0
anas-awadalla
2022-09-30T01:23:02Z
60
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T19:58:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-1024-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
waifu-research-department/Holo
waifu-research-department
2022-09-30T01:16:44Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-30T00:50:36Z
--- license: mit --- # Description Trainer: Hank Holo from Spice and Wolf # Dataset >Training: 7 images >Regularization: 14 images # Info >Model Used: Waifu Diffusion 1.2 >Steps: 3000 >Keyword: Holo (Use this in the prompt) >Class Phrase: wolf_girl ![pRqknL2avy.jpg](https://s3.amazonaws.com/moonup/production/uploads/1664499261058-6303fe3cd14428368d1a4137.jpeg)
gary109/ai-light-dance_singing6_ft_wav2vec2-large-xlsr-53-5gram-v4-2
gary109
2022-09-30T01:15:03Z
44
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-26T09:40:25Z
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing6_ft_wav2vec2-large-xlsr-53-5gram-v4-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing6_ft_wav2vec2-large-xlsr-53-5gram-v4-2 This model is a fine-tuned version of [gary109/ai-light-dance_singing6_ft_wav2vec2-large-xlsr-53-5gram-v4-2](https://huggingface.co/gary109/ai-light-dance_singing6_ft_wav2vec2-large-xlsr-53-5gram-v4-2) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING6 dataset. It achieves the following results on the evaluation set: - Loss: 0.1731 - Wer: 0.0949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4688 | 1.0 | 171 | 0.1822 | 0.0986 | | 0.4505 | 2.0 | 342 | 0.1822 | 0.0995 | | 0.4418 | 3.0 | 513 | 0.1819 | 0.0996 | | 0.4505 | 4.0 | 684 | 0.1842 | 0.1009 | | 0.4403 | 5.0 | 855 | 0.1817 | 0.0983 | | 0.4362 | 6.0 | 1026 | 0.1820 | 0.1001 | | 0.4546 | 7.0 | 1197 | 0.1795 | 0.0979 | | 0.4283 | 8.0 | 1368 | 0.1841 | 0.1004 | | 0.4289 | 9.0 | 1539 | 0.1783 | 0.0970 | | 0.445 | 10.0 | 1710 | 0.1785 | 0.0969 | | 0.4483 | 11.0 | 1881 | 0.1781 | 0.0990 | | 0.4319 | 12.0 | 2052 | 0.1811 | 0.0995 | | 0.4175 | 13.0 | 2223 | 0.1781 | 0.0979 | | 0.4298 | 14.0 | 2394 | 0.1761 | 0.0969 | | 0.4511 | 15.0 | 2565 | 0.1741 | 0.0950 | | 0.4287 | 16.0 | 2736 | 0.1771 | 0.0976 | | 0.4417 | 17.0 | 2907 | 0.1780 | 0.0979 | | 0.4257 | 18.0 | 3078 | 0.1762 | 0.0963 | | 0.4588 | 19.0 | 3249 | 0.1750 | 0.0957 | | 0.4439 | 20.0 | 3420 | 0.1758 | 0.0968 | | 0.4515 | 21.0 | 3591 | 0.1782 | 0.0966 | | 0.4311 | 22.0 | 3762 | 0.1774 | 0.0975 | | 0.403 | 23.0 | 3933 | 0.1758 | 0.0963 | | 0.4168 | 24.0 | 4104 | 0.1775 | 0.0972 | | 0.425 | 25.0 | 4275 | 0.1742 | 0.0952 | | 0.4493 | 26.0 | 4446 | 0.1749 | 0.0963 | | 0.4232 | 27.0 | 4617 | 0.1749 | 0.0966 | | 0.4331 | 28.0 | 4788 | 0.1754 | 0.0964 | | 0.4306 | 29.0 | 4959 | 0.1756 | 0.0967 | | 0.4261 | 30.0 | 5130 | 0.1753 | 0.0969 | | 0.4284 | 31.0 | 5301 | 0.1749 | 0.0958 | | 0.4322 | 32.0 | 5472 | 0.1748 | 0.0952 | | 0.4225 | 33.0 | 5643 | 0.1747 | 0.0952 | | 0.4179 | 34.0 | 5814 | 0.1749 | 0.0955 | | 0.4264 | 35.0 | 5985 | 0.1757 | 0.0966 | | 0.4217 | 36.0 | 6156 | 0.1753 | 0.0955 | | 0.4556 | 37.0 | 6327 | 0.1749 | 0.0957 | | 0.4181 | 38.0 | 6498 | 0.1756 | 0.0972 | | 0.4286 | 39.0 | 6669 | 0.1747 | 0.0956 | | 0.4427 | 40.0 | 6840 | 0.1747 | 0.0965 | | 0.4292 | 41.0 | 7011 | 0.1742 | 0.0955 | | 0.424 | 42.0 | 7182 | 0.1740 | 0.0952 | | 0.4314 | 43.0 | 7353 | 0.1743 | 0.0963 | | 0.4359 | 44.0 | 7524 | 0.1744 | 0.0952 | | 0.4195 | 45.0 | 7695 | 0.1736 | 0.0949 | | 0.4214 | 46.0 | 7866 | 0.1731 | 0.0949 | | 0.4358 | 47.0 | 8037 | 0.1738 | 0.0952 | | 0.4347 | 48.0 | 8208 | 0.1742 | 0.0956 | | 0.4032 | 49.0 | 8379 | 0.1739 | 0.0956 | | 0.441 | 50.0 | 8550 | 0.1737 | 0.0957 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
anas-awadalla/t5-base-few-shot-k-512-finetuned-squad-seed-2
anas-awadalla
2022-09-30T00:42:57Z
64
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T19:11:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-512-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-multi-all
cardiffnlp
2022-09-30T00:31:32Z
65
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_multi", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-27T16:53:48Z
--- datasets: - cardiffnlp/tweet_topic_multi metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-multi-all results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_multi type: cardiffnlp/tweet_topic_multi args: cardiffnlp/tweet_topic_multi split: test_2021 metrics: - name: F1 type: f1 value: 0.7599173553719007 - name: F1 (macro) type: f1_macro value: 0.5990098728991452 - name: Accuracy type: accuracy value: 0.5360333531864205 pipeline_tag: text-classification widget: - text: "I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but man does their experience versus the Blue Jackets this year and last help them a lot versus this Islanders team. Another meat grinder upcoming for the good guys" example_title: "Example 1" - text: "Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US." example_title: "Example 2" --- # cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-multi-all This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020) on the [tweet_topic_multi](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi). This model is fine-tuned on `train_all` split and validated on `test_2021` split of tweet_topic. Fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi/blob/main/lm_finetuning.py). It achieves the following results on the test_2021 set: - F1 (micro): 0.7599173553719007 - F1 (macro): 0.5990098728991452 - Accuracy: 0.5360333531864205 ### Usage ```python import math import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer def sigmoid(x): return 1 / (1 + math.exp(-x)) tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-multi-all") model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-multi-all", problem_type="multi_label_classification") model.eval() class_mapping = model.config.id2label with torch.no_grad(): text = #NewVideo Cray Dollas- Water- Ft. Charlie Rose- (Official Music Video)- {{URL}} via {@YouTube@} #watchandlearn {{USERNAME}} tokens = tokenizer(text, return_tensors='pt') output = model(**tokens) flags = [sigmoid(s) > 0.5 for s in output[0][0].detach().tolist()] topic = [class_mapping[n] for n, i in enumerate(flags) if i] print(topic) ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
huggingtweets/pukicho
huggingtweets
2022-09-30T00:31:10Z
62
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-30T00:29:29Z
--- language: en thumbnail: http://www.huggingtweets.com/pukicho/1664497866027/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/866045441942487041/xRAnnstd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pukicho</div> <div style="text-align: center; font-size: 14px;">@pukicho</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pukicho. | Data | Pukicho | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 60 | | Short tweets | 301 | | Tweets kept | 2886 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1tuqgf1r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pukicho's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3f17ip6z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3f17ip6z/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pukicho') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
cardiffnlp/roberta-large-tweet-topic-multi-2020
cardiffnlp
2022-09-30T00:30:48Z
60
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_multi", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-29T14:23:19Z
--- datasets: - cardiffnlp/tweet_topic_multi metrics: - f1 - accuracy model-index: - name: cardiffnlp/roberta-large-tweet-topic-multi-2020 results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_multi type: cardiffnlp/tweet_topic_multi args: cardiffnlp/tweet_topic_multi split: test_2021 metrics: - name: F1 type: f1 value: 0.7323655694132079 - name: F1 (macro) type: f1_macro value: 0.5794562917377284 - name: Accuracy type: accuracy value: 0.4937462775461584 pipeline_tag: text-classification widget: - text: "I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but man does their experience versus the Blue Jackets this year and last help them a lot versus this Islanders team. Another meat grinder upcoming for the good guys" example_title: "Example 1" - text: "Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US." example_title: "Example 2" --- # cardiffnlp/roberta-large-tweet-topic-multi-2020 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tweet_topic_multi](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi). This model is fine-tuned on `train_2020` split and validated on `test_2021` split of tweet_topic. Fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi/blob/main/lm_finetuning.py). It achieves the following results on the test_2021 set: - F1 (micro): 0.7323655694132079 - F1 (macro): 0.5794562917377284 - Accuracy: 0.4937462775461584 ### Usage ```python import math import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer def sigmoid(x): return 1 / (1 + math.exp(-x)) tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/roberta-large-tweet-topic-multi-2020") model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/roberta-large-tweet-topic-multi-2020", problem_type="multi_label_classification") model.eval() class_mapping = model.config.id2label with torch.no_grad(): text = #NewVideo Cray Dollas- Water- Ft. Charlie Rose- (Official Music Video)- {{URL}} via {@YouTube@} #watchandlearn {{USERNAME}} tokens = tokenizer(text, return_tensors='pt') output = model(**tokens) flags = [sigmoid(s) > 0.5 for s in output[0][0].detach().tolist()] topic = [class_mapping[n] for n, i in enumerate(flags) if i] print(topic) ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
cardiffnlp/roberta-large-tweet-topic-multi-all
cardiffnlp
2022-09-30T00:29:30Z
78
6
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_multi", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-29T17:02:02Z
--- datasets: - cardiffnlp/tweet_topic_multi metrics: - f1 - accuracy model-index: - name: cardiffnlp/roberta-large-tweet-topic-multi-all results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_multi type: cardiffnlp/tweet_topic_multi args: cardiffnlp/tweet_topic_multi split: test_2021 metrics: - name: F1 type: f1 value: 0.7631035905901775 - name: F1 (macro) type: f1_macro value: 0.6202570779365779 - name: Accuracy type: accuracy value: 0.5366289458010721 pipeline_tag: text-classification widget: - text: "I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but man does their experience versus the Blue Jackets this year and last help them a lot versus this Islanders team. Another meat grinder upcoming for the good guys" example_title: "Example 1" - text: "Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US." example_title: "Example 2" --- # cardiffnlp/roberta-large-tweet-topic-multi-all This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tweet_topic_multi](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi). This model is fine-tuned on `train_all` split and validated on `test_2021` split of tweet_topic. Fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi/blob/main/lm_finetuning.py). It achieves the following results on the test_2021 set: - F1 (micro): 0.7631035905901775 - F1 (macro): 0.6202570779365779 - Accuracy: 0.5366289458010721 ### Usage ```python import math import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer def sigmoid(x): return 1 / (1 + math.exp(-x)) tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/roberta-large-tweet-topic-multi-all") model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/roberta-large-tweet-topic-multi-all", problem_type="multi_label_classification") model.eval() class_mapping = model.config.id2label with torch.no_grad(): text = #NewVideo Cray Dollas- Water- Ft. Charlie Rose- (Official Music Video)- {{URL}} via {@YouTube@} #watchandlearn {{USERNAME}} tokens = tokenizer(text, return_tensors='pt') output = model(**tokens) flags = [sigmoid(s) > 0.5 for s in output[0][0].detach().tolist()] topic = [class_mapping[n] for n, i in enumerate(flags) if i] print(topic) ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
anas-awadalla/t5-base-few-shot-k-512-finetuned-squad-seed-0
anas-awadalla
2022-09-30T00:28:20Z
63
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T18:47:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-512-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-256-finetuned-squad-seed-4
anas-awadalla
2022-09-30T00:12:43Z
67
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T18:33:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-256-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-256-finetuned-squad-seed-4 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
huggingtweets/lovely_lads
huggingtweets
2022-09-30T00:05:18Z
92
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-30T00:03:46Z
--- language: en thumbnail: http://www.huggingtweets.com/lovely_lads/1664496313498/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/3342017159/2260e8f14ecdf5fd391b3a371e706820_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Beatles' lyrics bot</div> <div style="text-align: center; font-size: 14px;">@lovely_lads</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Beatles' lyrics bot. | Data | Beatles' lyrics bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 3250 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38xe0fqm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lovely_lads's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1bgsb3aq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1bgsb3aq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lovely_lads') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/tally_lyrics
huggingtweets
2022-09-29T23:57:17Z
119
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-29T23:55:56Z
--- language: en thumbnail: http://www.huggingtweets.com/tally_lyrics/1664495833031/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1280523258597707776/YLMt_BC-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">tally hall lyrics</div> <div style="text-align: center; font-size: 14px;">@tally_lyrics</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from tally hall lyrics. | Data | tally hall lyrics | | --- | --- | | Tweets downloaded | 3200 | | Retweets | 1 | | Short tweets | 215 | | Tweets kept | 2984 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2m1lt2gw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tally_lyrics's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/jcv42uh2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/jcv42uh2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tally_lyrics') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
anas-awadalla/t5-base-few-shot-k-128-finetuned-squad-seed-4
anas-awadalla
2022-09-29T23:44:21Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T17:57:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-128-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-128-finetuned-squad-seed-4 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-128-finetuned-squad-seed-2
anas-awadalla
2022-09-29T23:35:20Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T17:47:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-128-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-128-finetuned-squad-seed-2 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
IIIT-L/muril-base-cased-finetuned-TRAC-DS
IIIT-L
2022-09-29T23:14:48Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-29T22:08:10Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: muril-base-cased-finetuned-TRAC-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # muril-base-cased-finetuned-TRAC-DS This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co/google/muril-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1894 - Accuracy: 0.6838 - Precision: 0.6534 - Recall: 0.6513 - F1: 0.6522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0109 | 1.99 | 612 | 0.9284 | 0.5948 | 0.4327 | 0.5193 | 0.4509 | | 0.8635 | 3.99 | 1224 | 0.8556 | 0.6291 | 0.6012 | 0.5865 | 0.5888 | | 0.764 | 5.98 | 1836 | 0.8585 | 0.6609 | 0.6249 | 0.6275 | 0.6260 | | 0.6744 | 7.97 | 2448 | 0.8469 | 0.6732 | 0.6391 | 0.6408 | 0.6398 | | 0.5865 | 9.97 | 3060 | 0.8438 | 0.6667 | 0.6424 | 0.6395 | 0.6395 | | 0.4978 | 11.96 | 3672 | 0.9269 | 0.6855 | 0.6532 | 0.6582 | 0.6542 | | 0.4245 | 13.95 | 4284 | 0.9934 | 0.6699 | 0.6397 | 0.6482 | 0.6396 | | 0.378 | 15.95 | 4896 | 1.0488 | 0.6830 | 0.6530 | 0.6446 | 0.6474 | | 0.3349 | 17.94 | 5508 | 1.0548 | 0.6806 | 0.6505 | 0.6536 | 0.6518 | | 0.3019 | 19.93 | 6120 | 1.1092 | 0.6757 | 0.6476 | 0.6497 | 0.6482 | | 0.2869 | 21.93 | 6732 | 1.1515 | 0.6814 | 0.6507 | 0.6514 | 0.6510 | | 0.2575 | 23.92 | 7344 | 1.1894 | 0.6838 | 0.6534 | 0.6513 | 0.6522 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
Bistolero/nlge24mixed
Bistolero
2022-09-29T23:11:33Z
108
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-29T23:08:39Z
--- tags: - generated_from_trainer model-index: - name: nlge24mixed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nlge24mixed This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
nbroad/fix_punct_uncased_t5_small
nbroad
2022-09-29T22:50:22Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-29T22:18:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: fix_punct_uncased_t5_small results: [] datasets: - https://huggingface.co/datasets/nbroad/fix_punctuation widget: - text: this is, a sentence. with odd punctuation to show off what, the model. can do - text: what, should the proper. punctuation. in. this sentence be? --- # fix_punct_uncased_t5_small This model is a fine-tuned version of [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) on the [NPR utterances dataset](https://www.kaggle.com/datasets/shuyangli94/interview-npr-media-dialog-transcripts?select=utterances.csv). ## Dataset The model was trained on 80k rows from the above dataset consisting of NPR radio transcripts. Commans, periods, and semicolons were removed from the text and then random commas, periods, and semicolons were added. The model was trained to place those three punctuation marks in the correct location. All texts were lowercase during training. It achieves the following results on the evaluation set: - Loss: 0.3050 - Rouge1: 92.8762 - Rouge2: 90.4805 - Rougel: 92.8662 - Rougelsum: 92.7068 - Gen Len: 48.6130 ## Model description The purpose of this model is to correct the punctuation in a sentence. For example, the phrase "this is, a sentence. with odd punctuation to show off what, the model. can do" gets changed to "this is a sentence with odd punctuation to show off what the model can do." ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.3066 | 1.0 | 600 | 0.4347 | 59.0002 | 54.7692 | 58.7112 | 58.7856 | 16.3808 | | 0.8192 | 2.0 | 1200 | 0.3154 | 62.4672 | 59.0199 | 62.4096 | 62.3667 | 16.5158 | | 0.7208 | 3.0 | 1800 | 0.3050 | 62.701 | 59.3201 | 62.6739 | 62.6165 | 16.5471 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.11.0a0+17540c5 - Datasets 2.5.1 - Tokenizers 0.12.1
aware-ai/wav2vec2-xls-r-300m-german
aware-ai
2022-09-29T22:20:41Z
19
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_10_0", "generated_from_trainer", "de", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-25T04:37:30Z
--- language: - de tags: - automatic-speech-recognition - mozilla-foundation/common_voice_10_0 - generated_from_trainer model-index: - name: wav2vec2-xls-r-300m-german results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-german This model is a fine-tuned version of [wav2vec2-xls-r-300m-german](https://huggingface.co/wav2vec2-xls-r-300m-german) on the MOZILLA-FOUNDATION/COMMON_VOICE_10_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.4842 - Wer: 0.3940 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2759 | 1.0 | 3612 | 0.4813 | 0.3922 | | 0.2672 | 2.0 | 7224 | 0.4796 | 0.3925 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/lphr-style
sd-concepts-library
2022-09-29T21:48:37Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-29T16:46:23Z
--- license: mit --- ### LPHR Style on Stable Diffusion This is the `<lphr-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Images from here: https://www.luispabloherrera.com/ Note: Images are copyrighted Here is the new concept you will be able to use as a `style`: ![<lphr-style> 0](https://huggingface.co/sd-concepts-library/lphr-style/resolve/main/concept_images/8.jpeg) ![<lphr-style> 1](https://huggingface.co/sd-concepts-library/lphr-style/resolve/main/concept_images/3.jpeg) ![<lphr-style> 2](https://huggingface.co/sd-concepts-library/lphr-style/resolve/main/concept_images/1.jpeg) ![<lphr-style> 3](https://huggingface.co/sd-concepts-library/lphr-style/resolve/main/concept_images/5.jpeg) ![<lphr-style> 4](https://huggingface.co/sd-concepts-library/lphr-style/resolve/main/concept_images/0.jpeg) ![<lphr-style> 5](https://huggingface.co/sd-concepts-library/lphr-style/resolve/main/concept_images/7.jpeg) ![<lphr-style> 6](https://huggingface.co/sd-concepts-library/lphr-style/resolve/main/concept_images/6.jpeg) ![<lphr-style> 7](https://huggingface.co/sd-concepts-library/lphr-style/resolve/main/concept_images/4.jpeg) ![<lphr-style> 8](https://huggingface.co/sd-concepts-library/lphr-style/resolve/main/concept_images/9.jpeg) ![<lphr-style> 9](https://huggingface.co/sd-concepts-library/lphr-style/resolve/main/concept_images/2.jpeg)
anas-awadalla/bart-base-finetuned-squad-seq2seq
anas-awadalla
2022-09-29T21:34:29Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-29T19:29:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-finetuned-squad-seq2seq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-squad-seq2seq This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
waifu-research-department/Blaze
waifu-research-department
2022-09-29T21:04:14Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-29T00:53:41Z
--- license: mit --- # Description Trainer: naotsue Blaze from Arknights # Dataset >Training: 29 images >Regularization: (~300) # Info >Model Used: Waifu Diffusion 1.2 >Steps: 3000 >Keyword: BLAZE (Use this in the prompt) >Class Phrase: 1girl_dark_hair_red_headband_fox_ears ![Sak](https://i.pinimg.com/originals/77/dc/cc/77dccc705564a5fdf6e2b4c26d4716c2.jpg)
anas-awadalla/t5-small-few-shot-k-16-finetuned-squad-seed-0
anas-awadalla
2022-09-29T20:45:16Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T12:09:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-small-few-shot-k-16-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-few-shot-k-16-finetuned-squad-seed-0 This model is a fine-tuned version of [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
matemato/Reinforce-cartpole_2
matemato
2022-09-29T19:59:02Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-29T19:58:46Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole_2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
matemato/Reinforce-cartpole
matemato
2022-09-29T19:53:51Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-29T19:52:10Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 96.80 +/- 19.03 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
n2ziaei/ppo-LunarLander-v2
n2ziaei
2022-09-29T18:52:23Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-29T18:52:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -276.53 +/- 169.07 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sd-concepts-library/trust-support
sd-concepts-library
2022-09-29T18:38:52Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-29T18:38:40Z
--- license: mit --- ### trust_support on Stable Diffusion This is the `<trust>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<trust> 0](https://huggingface.co/sd-concepts-library/trust-support/resolve/main/concept_images/1.jpeg) ![<trust> 1](https://huggingface.co/sd-concepts-library/trust-support/resolve/main/concept_images/0.jpeg) ![<trust> 2](https://huggingface.co/sd-concepts-library/trust-support/resolve/main/concept_images/2.jpeg)
TingChenChang/cMedQA2-multi-qa-mpnet-zh
TingChenChang
2022-09-29T18:22:33Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-29T18:22:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11781 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1178, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 5891, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
TingChenChang/lcqmc-ocnli-cnsd-multi-MiniLM-v2
TingChenChang
2022-09-29T18:21:36Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-22T18:18:52Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2166 with parameters: ``` {'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 216, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 1e-06 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2166, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
TingChenChang/multi-qa-mpnet-zh
TingChenChang
2022-09-29T18:17:21Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-29T18:17:06Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11898 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Tritkoman/GermantoNorthFrisian
Tritkoman
2022-09-29T17:33:29Z
99
2
transformers
[ "transformers", "pytorch", "autotrain", "translation", "de", "en", "dataset:Tritkoman/autotrain-data-ttreddsd", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
translation
2022-09-29T17:21:11Z
--- tags: - autotrain - translation language: - de - en datasets: - Tritkoman/autotrain-data-ttreddsd co2_eq_emissions: emissions: 21.087082943674986 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1599456406 - CO2 Emissions (in grams): 21.0871 ## Validation Metrics - Loss: 1.347 - SacreBLEU: 40.859 - Gen len: 13.513
sd-concepts-library/concept-art
sd-concepts-library
2022-09-29T17:25:34Z
0
37
null
[ "license:mit", "region:us" ]
null
2022-09-29T17:25:23Z
--- license: mit --- ### Concept Art on Stable Diffusion This is the `<concept-art>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<concept-art> 0](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/15.jpg) ![<concept-art> 1](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/22.jpg) ![<concept-art> 2](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/7.jpg) ![<concept-art> 3](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/14.jpg) ![<concept-art> 4](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/13.jpg) ![<concept-art> 5](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/19.jpg) ![<concept-art> 6](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/21.jpg) ![<concept-art> 7](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/12.jpg) ![<concept-art> 8](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/18.jpg) ![<concept-art> 9](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/10.jpg) ![<concept-art> 10](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/nyc.jpg) ![<concept-art> 11](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/2.jpg) ![<concept-art> 12](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/20.jpg) ![<concept-art> 13](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/16.jpg) ![<concept-art> 14](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/0.jpg) ![<concept-art> 15](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/4.jpg) ![<concept-art> 16](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/5.jpg) ![<concept-art> 17](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/17.jpg) ![<concept-art> 18](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/11.jpg) ![<concept-art> 19](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/1.jpg) ![<concept-art> 20](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/6.jpg) ![<concept-art> 21](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/23.jpg) ![<concept-art> 22](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/8.jpg) ![<concept-art> 23](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/3.jpg) ![<concept-art> 24](https://huggingface.co/sd-concepts-library/concept-art/resolve/main/concept_images/9.jpg)
Hoax0930/kyoto_marian_mod_5_1
Hoax0930
2022-09-29T17:13:22Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-09-29T15:23:46Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: kyoto_marian_mod_5_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kyoto_marian_mod_5_1 This model is a fine-tuned version of [Hoax0930/kyoto_marian_mod_5_0](https://huggingface.co/Hoax0930/kyoto_marian_mod_5_0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7105 - Bleu: 20.5324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
eloi/ibaillanosmodel
eloi
2022-09-29T16:18:00Z
32
0
diffusers
[ "diffusers", "license:mit", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-09-29T16:16:03Z
--- license: mit --- ### ibaillanosmodel on Stable Diffusion via Dreambooth #### model by eloi This your the Stable Diffusion model fine-tuned the ibaillanosmodel concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **ibaillanos** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/60.jpeg) ![image 1](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/34.jpeg) ![image 2](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/8.jpeg) ![image 3](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/33.jpeg) ![image 4](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/64.jpeg) ![image 5](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/3.jpeg) ![image 6](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/12.jpeg) ![image 7](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/14.jpeg) ![image 8](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/49.jpeg) ![image 9](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/28.jpeg) ![image 10](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/29.jpeg) ![image 11](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/18.jpeg) ![image 12](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/26.jpeg) ![image 13](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/62.jpeg) ![image 14](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/1.jpeg) ![image 15](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/48.jpeg) ![image 16](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/63.jpeg) ![image 17](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/27.jpeg) ![image 18](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/42.jpeg) ![image 19](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/57.jpeg) ![image 20](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/16.jpeg) ![image 21](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/50.jpeg) ![image 22](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/20.jpeg) ![image 23](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/24.jpeg) ![image 24](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/53.jpeg) ![image 25](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/61.jpeg) ![image 26](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/11.jpeg) ![image 27](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/5.jpeg) ![image 28](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/0.jpeg) ![image 29](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/21.jpeg) ![image 30](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/38.jpeg) ![image 31](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/55.jpeg) ![image 32](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/51.jpeg) ![image 33](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/39.jpeg) ![image 34](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/47.jpeg) ![image 35](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/7.jpeg) ![image 36](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/15.jpeg) ![image 37](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/17.jpeg) ![image 38](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/23.jpeg) ![image 39](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/31.jpeg) ![image 40](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/37.jpeg) ![image 41](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/44.jpeg) ![image 42](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/36.jpeg) ![image 43](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/54.jpeg) ![image 44](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/22.jpeg) ![image 45](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/32.jpeg) ![image 46](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/58.jpeg) ![image 47](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/10.jpeg) ![image 48](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/30.jpeg) ![image 49](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/41.jpeg) ![image 50](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/25.jpeg) ![image 51](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/19.jpeg) ![image 52](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/40.jpeg) ![image 53](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/6.jpeg) ![image 54](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/4.jpeg) ![image 55](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/9.jpeg) ![image 56](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/45.jpeg) ![image 57](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/43.jpeg) ![image 58](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/35.jpeg) ![image 59](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/2.jpeg) ![image 60](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/13.jpeg) ![image 61](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/56.jpeg) ![image 62](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/52.jpeg) ![image 63](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/46.jpeg) ![image 64](https://huggingface.co/eloi/ibaillanosmodel/resolve/main/concept_images/59.jpeg)
huggingtweets/apandahvevo-apandeez
huggingtweets
2022-09-29T15:59:29Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-29T15:59:21Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1572592902672470016/kAEvgyZL_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1487225505573183490/b3iFm538_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">apandah & big poo</div> <div style="text-align: center; font-size: 14px;">@apandahvevo-apandeez</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from apandah & big poo. | Data | apandah | big poo | | --- | --- | --- | | Tweets downloaded | 3229 | 657 | | Retweets | 53 | 22 | | Short tweets | 1470 | 341 | | Tweets kept | 1706 | 294 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/36gnlq3h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @apandahvevo-apandeez's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gv7a5fr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gv7a5fr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/apandahvevo-apandeez') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
DrishtiSharma/finetuned-ConvNext-Indian-food
DrishtiSharma
2022-09-29T15:50:06Z
200
0
transformers
[ "transformers", "pytorch", "tensorboard", "convnext", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-29T14:54:46Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-ConvNext-Indian-food results: - task: name: Image Classification type: image-classification dataset: name: indian_food_images type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9107332624867163 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-ConvNext-Indian-food This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the indian_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.2977 - Accuracy: 0.9107 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3145 | 0.3 | 100 | 1.0460 | 0.8151 | | 0.6694 | 0.6 | 200 | 0.5439 | 0.8757 | | 0.5057 | 0.9 | 300 | 0.4398 | 0.8831 | | 0.4381 | 1.2 | 400 | 0.4286 | 0.8820 | | 0.4376 | 1.5 | 500 | 0.3400 | 0.9044 | | 0.2499 | 1.8 | 600 | 0.3312 | 0.9065 | | 0.2802 | 2.1 | 700 | 0.3338 | 0.9033 | | 0.3014 | 2.4 | 800 | 0.3572 | 0.8948 | | 0.2508 | 2.7 | 900 | 0.3432 | 0.9022 | | 0.2012 | 3.0 | 1000 | 0.3060 | 0.9086 | | 0.2634 | 3.3 | 1100 | 0.3451 | 0.9086 | | 0.2483 | 3.6 | 1200 | 0.3550 | 0.9044 | | 0.2273 | 3.9 | 1300 | 0.2977 | 0.9107 | | 0.1214 | 4.2 | 1400 | 0.3265 | 0.9160 | | 0.2048 | 4.5 | 1500 | 0.3126 | 0.9214 | | 0.0997 | 4.8 | 1600 | 0.3164 | 0.9160 | | 0.1145 | 5.11 | 1700 | 0.3055 | 0.9139 | | 0.1578 | 5.41 | 1800 | 0.3195 | 0.9171 | | 0.0615 | 5.71 | 1900 | 0.3401 | 0.9107 | | 0.1537 | 6.01 | 2000 | 0.3428 | 0.9097 | | 0.1278 | 6.31 | 2100 | 0.3058 | 0.9192 | | 0.1274 | 6.61 | 2200 | 0.3189 | 0.9192 | | 0.0877 | 6.91 | 2300 | 0.3370 | 0.9182 | | 0.1058 | 7.21 | 2400 | 0.3225 | 0.9192 | | 0.1742 | 7.51 | 2500 | 0.3341 | 0.9214 | | 0.0949 | 7.81 | 2600 | 0.3126 | 0.9256 | | 0.1732 | 8.11 | 2700 | 0.3078 | 0.9235 | | 0.0894 | 8.41 | 2800 | 0.3098 | 0.9267 | | 0.1257 | 8.71 | 2900 | 0.3030 | 0.9320 | | 0.1747 | 9.01 | 3000 | 0.3106 | 0.9256 | | 0.2119 | 9.31 | 3100 | 0.3037 | 0.9299 | | 0.1074 | 9.61 | 3200 | 0.3049 | 0.9277 | | 0.1275 | 9.91 | 3300 | 0.3046 | 0.9309 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
RamAnanth1/decision-transformers-walker2d-expert
RamAnanth1
2022-09-29T15:40:33Z
64
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "deep-reinforcement-learning", "reinforcement-learning", "decision-transformer", "gym-continous-control", "dataset:decision_transformer_gym_replay", "arxiv:2106.01345", "endpoints_compatible", "region:us" ]
reinforcement-learning
2022-09-29T15:35:33Z
--- tags: - generated_from_trainer - deep-reinforcement-learning - reinforcement-learning - decision-transformer - gym-continous-control pipeline_tag: reinforcement-learning datasets: - decision_transformer_gym_replay --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Decision Transformer model trained on expert trajectories sampled from the Gym Walker2d environment This is a trained [Decision Transformer](https://arxiv.org/abs/2106.01345) model trained from scratch on expert trajectories sampled from the Gym Walker2d environment based on the modified version of the example [training script](https://github.com/huggingface/blog/blob/main/notebooks/101_train-decision-transformers.ipynb) provided by HuggingFace ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 120 ### Training results ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
model-attribution-challenge/roberta-base
model-attribution-challenge
2022-09-29T15:21:48Z
170
0
transformers
[ "transformers", "pytorch", "tf", "jax", "rust", "safetensors", "roberta", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1907.11692", "arxiv:1806.02847", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-09T20:15:07Z
--- language: en tags: - exbert license: mit datasets: - bookcorpus - wikipedia --- # RoBERTa base model Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1907.11692) and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta). This model is case-sensitive: it makes a difference between english and English. Disclaimer: The team releasing RoBERTa did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=roberta) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='roberta-base') >>> unmasker("Hello I'm a <mask> model.") [{'sequence': "<s>Hello I'm a male model.</s>", 'score': 0.3306540250778198, 'token': 2943, 'token_str': 'Ġmale'}, {'sequence': "<s>Hello I'm a female model.</s>", 'score': 0.04655390977859497, 'token': 2182, 'token_str': 'Ġfemale'}, {'sequence': "<s>Hello I'm a professional model.</s>", 'score': 0.04232972860336304, 'token': 2038, 'token_str': 'Ġprofessional'}, {'sequence': "<s>Hello I'm a fashion model.</s>", 'score': 0.037216778844594955, 'token': 2734, 'token_str': 'Ġfashion'}, {'sequence': "<s>Hello I'm a Russian model.</s>", 'score': 0.03253649175167084, 'token': 1083, 'token_str': 'ĠRussian'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import RobertaTokenizer, RobertaModel tokenizer = RobertaTokenizer.from_pretrained('roberta-base') model = RobertaModel.from_pretrained('roberta-base') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import RobertaTokenizer, TFRobertaModel tokenizer = RobertaTokenizer.from_pretrained('roberta-base') model = TFRobertaModel.from_pretrained('roberta-base') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='roberta-base') >>> unmasker("The man worked as a <mask>.") [{'sequence': '<s>The man worked as a mechanic.</s>', 'score': 0.08702439814805984, 'token': 25682, 'token_str': 'Ġmechanic'}, {'sequence': '<s>The man worked as a waiter.</s>', 'score': 0.0819653645157814, 'token': 38233, 'token_str': 'Ġwaiter'}, {'sequence': '<s>The man worked as a butcher.</s>', 'score': 0.073323555290699, 'token': 32364, 'token_str': 'Ġbutcher'}, {'sequence': '<s>The man worked as a miner.</s>', 'score': 0.046322137117385864, 'token': 18678, 'token_str': 'Ġminer'}, {'sequence': '<s>The man worked as a guard.</s>', 'score': 0.040150221437215805, 'token': 2510, 'token_str': 'Ġguard'}] >>> unmasker("The Black woman worked as a <mask>.") [{'sequence': '<s>The Black woman worked as a waitress.</s>', 'score': 0.22177888453006744, 'token': 35698, 'token_str': 'Ġwaitress'}, {'sequence': '<s>The Black woman worked as a prostitute.</s>', 'score': 0.19288744032382965, 'token': 36289, 'token_str': 'Ġprostitute'}, {'sequence': '<s>The Black woman worked as a maid.</s>', 'score': 0.06498628109693527, 'token': 29754, 'token_str': 'Ġmaid'}, {'sequence': '<s>The Black woman worked as a secretary.</s>', 'score': 0.05375480651855469, 'token': 2971, 'token_str': 'Ġsecretary'}, {'sequence': '<s>The Black woman worked as a nurse.</s>', 'score': 0.05245552211999893, 'token': 9008, 'token_str': 'Ġnurse'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The RoBERTa model was pretrained on the reunion of five datasets: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books; - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers) ; - [CC-News](https://commoncrawl.org/2016/10/news-dataset-available/), a dataset containing 63 millions English news articles crawled between September 2016 and February 2019. - [OpenWebText](https://github.com/jcpeterson/openwebtext), an opensource recreation of the WebText dataset used to train GPT-2, - [Stories](https://arxiv.org/abs/1806.02847) a dataset containing a subset of CommonCrawl data filtered to match the story-like style of Winograd schemas. Together theses datasets weight 160GB of text. ## Training procedure ### Preprocessing The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50,000. The inputs of the model take pieces of 512 contiguous token that may span over documents. The beginning of a new document is marked with `<s>` and the end of one by `</s>` The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `<mask>`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed). ### Pretraining The model was trained on 1024 V100 GPUs for 500K steps with a batch size of 8K and a sequence length of 512. The optimizer used is Adam with a learning rate of 6e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and \\(\epsilon = 1e-6\\), a weight decay of 0.01, learning rate warmup for 24,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:| | | 87.6 | 91.9 | 92.8 | 94.8 | 63.6 | 91.2 | 90.2 | 78.7 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1907-11692, author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and Luke Zettlemoyer and Veselin Stoyanov}, title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach}, journal = {CoRR}, volume = {abs/1907.11692}, year = {2019}, url = {http://arxiv.org/abs/1907.11692}, archivePrefix = {arXiv}, eprint = {1907.11692}, timestamp = {Thu, 01 Aug 2019 08:59:33 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=roberta-base"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
JanRubenFischer/Klassifizierung-Gewerke
JanRubenFischer
2022-09-29T14:10:39Z
100
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-28T14:24:38Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: Klassifizierung-Gewerke results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Klassifizierung-Gewerke This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0964 - F1: 0.9822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6216 | 1.0 | 91 | 0.1944 | 0.9415 | | 0.1465 | 2.0 | 182 | 0.1180 | 0.9695 | | 0.0651 | 3.0 | 273 | 0.0964 | 0.9822 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
philschmid/distilbert-base-uncased-emotion
philschmid
2022-09-29T14:01:38Z
123
2
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "emotion", "endpoints-template", "en", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-18T05:56:21Z
--- language: - en tags: - text-classification - emotion - endpoints-template license: apache-2.0 datasets: - emotion metrics: - Accuracy, F1 Score --- # Fork of [bhadresh-savani/distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion)