modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-04 18:27:43
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
539 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-04 18:27:26
card
stringlengths
11
1.01M
bhumikak/resultse
bhumikak
2022-09-27T12:58:35Z
98
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T12:17:00Z
--- tags: - generated_from_trainer model-index: - name: resultse results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resultse This model is a fine-tuned version of [bhumikak/resultsc](https://huggingface.co/bhumikak/resultsc) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.9374 - Rouge2 Precision: 0.3333 - Rouge2 Recall: 0.0476 - Rouge2 Fmeasure: 0.0833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 50 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
anas-awadalla/t5-small-few-shot-k-32-finetuned-squad-seed-2
anas-awadalla
2022-09-27T12:53:19Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T12:45:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-small-few-shot-k-32-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-few-shot-k-32-finetuned-squad-seed-2 This model is a fine-tuned version of [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
IIIT-L/xlm-roberta-large-finetuned-code-mixed-DS
IIIT-L
2022-09-27T12:44:00Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-13T13:15:49Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xlm-roberta-large-finetuned-code-mixed-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-code-mixed-DS This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7328 - Accuracy: 0.7022 - Precision: 0.6437 - Recall: 0.6634 - F1: 0.6483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.098 | 0.5 | 248 | 1.0944 | 0.5352 | 0.2355 | 0.3344 | 0.2397 | | 1.0827 | 1.0 | 496 | 1.0957 | 0.5352 | 0.5789 | 0.3379 | 0.2502 | | 1.0503 | 1.5 | 744 | 0.9969 | 0.5312 | 0.3621 | 0.4996 | 0.3914 | | 0.9728 | 2.0 | 992 | 0.8525 | 0.6056 | 0.5096 | 0.5565 | 0.4678 | | 0.9271 | 2.49 | 1240 | 0.7809 | 0.6378 | 0.6014 | 0.6320 | 0.5963 | | 0.7977 | 2.99 | 1488 | 0.8290 | 0.5875 | 0.5630 | 0.5918 | 0.5390 | | 0.752 | 3.49 | 1736 | 0.7684 | 0.7123 | 0.6526 | 0.6610 | 0.6558 | | 0.6846 | 3.99 | 1984 | 0.7328 | 0.7022 | 0.6437 | 0.6634 | 0.6483 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
huynguyen208/bert-base-multilingual-cased-finetuned-ner
huynguyen208
2022-09-27T12:43:41Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-25T12:10:18Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-multilingual-cased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0247 - Precision: 0.9269 - Recall: 0.9509 - F1: 0.9387 - Accuracy: 0.9945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0744 | 1.0 | 843 | 0.0266 | 0.8945 | 0.9293 | 0.9116 | 0.9920 | | 0.016 | 2.0 | 1686 | 0.0239 | 0.9279 | 0.9446 | 0.9362 | 0.9942 | | 0.0075 | 3.0 | 2529 | 0.0247 | 0.9269 | 0.9509 | 0.9387 | 0.9945 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
habib1030/distilbert-base-uncased-finetuned-squad
habib1030
2022-09-27T12:34:36Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-22T08:49:25Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.8711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 5.9634 | | No log | 2.0 | 2 | 5.9013 | | No log | 3.0 | 3 | 5.8711 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
anas-awadalla/t5-small-few-shot-k-16-finetuned-squad-seed-4
anas-awadalla
2022-09-27T12:34:04Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T12:26:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-small-few-shot-k-16-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-few-shot-k-16-finetuned-squad-seed-4 This model is a fine-tuned version of [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-small-few-shot-k-16-finetuned-squad-seed-2
anas-awadalla
2022-09-27T12:24:59Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T12:18:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-small-few-shot-k-16-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-few-shot-k-16-finetuned-squad-seed-2 This model is a fine-tuned version of [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
Hoax0930/kyoto_marian_mod_4
Hoax0930
2022-09-27T11:42:52Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-09-27T09:53:18Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: kyoto_marian_mod_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kyoto_marian_mod_4 This model is a fine-tuned version of [Hoax0930/kyoto_marian_mod_3](https://huggingface.co/Hoax0930/kyoto_marian_mod_3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8237 - Bleu: 21.5586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Hoax0930/kyoto_marian_mod_2_1
Hoax0930
2022-09-27T11:09:17Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-09-27T09:18:33Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: kyoto_marian_mod_2_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kyoto_marian_mod_2_1 This model is a fine-tuned version of [Hoax0930/kyoto_marian_mod_2_0](https://huggingface.co/Hoax0930/kyoto_marian_mod_2_0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2568 - Bleu: 20.9923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
ericntay/stbl_clinical_bert_ft_rs6
ericntay
2022-09-27T09:57:00Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-27T09:38:14Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: stbl_clinical_bert_ft_rs6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stbl_clinical_bert_ft_rs6 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0876 - F1: 0.9177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2778 | 1.0 | 101 | 0.0871 | 0.8482 | | 0.066 | 2.0 | 202 | 0.0700 | 0.8892 | | 0.031 | 3.0 | 303 | 0.0657 | 0.9053 | | 0.0152 | 4.0 | 404 | 0.0716 | 0.9057 | | 0.0099 | 5.0 | 505 | 0.0717 | 0.9105 | | 0.0049 | 6.0 | 606 | 0.0807 | 0.9145 | | 0.0042 | 7.0 | 707 | 0.0796 | 0.9140 | | 0.0028 | 8.0 | 808 | 0.0833 | 0.9140 | | 0.002 | 9.0 | 909 | 0.0836 | 0.9141 | | 0.0013 | 10.0 | 1010 | 0.0866 | 0.9177 | | 0.0011 | 11.0 | 1111 | 0.0867 | 0.9178 | | 0.001 | 12.0 | 1212 | 0.0876 | 0.9177 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Hoax0930/kyoto_marian_mod_3
Hoax0930
2022-09-27T09:51:02Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-09-27T07:51:11Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: kyoto_marian_mod_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kyoto_marian_mod_3_5 This model is a fine-tuned version of [Hoax0930/kyoto_marian_mod_2](https://huggingface.co/Hoax0930/kyoto_marian_mod_2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8052 - Bleu: 18.4305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
IIIT-L/xlm-roberta-large-finetuned-combined-DS
IIIT-L
2022-09-27T09:50:50Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-13T14:13:02Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xlm-roberta-large-finetuned-combined-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-combined-DS This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9169 - Accuracy: 0.6587 - Precision: 0.6417 - Recall: 0.6445 - F1: 0.6396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0116 | 0.5 | 711 | 0.9454 | 0.5892 | 0.6556 | 0.5190 | 0.4582 | | 0.8678 | 1.0 | 1422 | 0.9676 | 0.6503 | 0.6383 | 0.6076 | 0.6103 | | 0.7644 | 1.5 | 2133 | 0.8672 | 0.6355 | 0.6142 | 0.6206 | 0.6166 | | 0.8198 | 2.0 | 2844 | 0.8319 | 0.6713 | 0.6460 | 0.6448 | 0.6453 | | 0.6665 | 2.5 | 3555 | 0.8342 | 0.6538 | 0.6359 | 0.6414 | 0.6349 | | 0.6473 | 3.0 | 4266 | 0.9169 | 0.6587 | 0.6417 | 0.6445 | 0.6396 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
bhumikak/resultsd
bhumikak
2022-09-27T09:46:19Z
101
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-27T09:02:57Z
--- tags: - generated_from_trainer model-index: - name: resultsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resultsd This model is a fine-tuned version of [bhumikak/resultsc](https://huggingface.co/bhumikak/resultsc) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5131 - Rouge2 Precision: 0.0278 - Rouge2 Recall: 0.1165 - Rouge2 Fmeasure: 0.0447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 50 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
lewtun/autotrain-sphere-emotion-1565855719
lewtun
2022-09-27T09:35:07Z
103
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:lewtun/autotrain-data-sphere-emotion", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-09-27T09:32:19Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - lewtun/autotrain-data-sphere-emotion co2_eq_emissions: emissions: 0.02429248200067234 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1565855719 - CO2 Emissions (in grams): 0.0243 ## Validation Metrics - Loss: 0.134 - Accuracy: 0.943 - Macro F1: 0.915 - Micro F1: 0.943 - Weighted F1: 0.943 - Macro Precision: 0.911 - Micro Precision: 0.943 - Weighted Precision: 0.943 - Macro Recall: 0.920 - Micro Recall: 0.943 - Weighted Recall: 0.943 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lewtun/autotrain-sphere-emotion-1565855719 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("lewtun/autotrain-sphere-emotion-1565855719", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lewtun/autotrain-sphere-emotion-1565855719", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
hadiqa123/XLS-R_timit_en
hadiqa123
2022-09-27T09:26:46Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-22T05:39:00Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: XLS-R_timit_en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R_timit_en This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3799 - Wer: 0.3019 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5228 | 3.3 | 1000 | 0.9889 | 0.8394 | | 0.6617 | 6.6 | 2000 | 0.3566 | 0.4027 | | 0.3177 | 9.9 | 3000 | 0.3112 | 0.3606 | | 0.2262 | 13.2 | 4000 | 0.3521 | 0.3324 | | 0.1683 | 16.5 | 5000 | 0.3563 | 0.3260 | | 0.137 | 19.8 | 6000 | 0.3605 | 0.3149 | | 0.1139 | 23.1 | 7000 | 0.3768 | 0.3069 | | 0.1068 | 26.4 | 8000 | 0.3643 | 0.3044 | | 0.0897 | 29.7 | 9000 | 0.3799 | 0.3019 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.0
lewtun/autotrain-sphere-banking77-1565555714
lewtun
2022-09-27T08:51:27Z
102
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:lewtun/autotrain-data-sphere-banking77", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-09-27T08:46:25Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - lewtun/autotrain-data-sphere-banking77 co2_eq_emissions: emissions: 0.040322592546588654 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1565555714 - CO2 Emissions (in grams): 0.0403 ## Validation Metrics - Loss: 0.317 - Accuracy: 0.919 - Macro F1: 0.920 - Micro F1: 0.919 - Weighted F1: 0.920 - Macro Precision: 0.925 - Micro Precision: 0.919 - Weighted Precision: 0.923 - Macro Recall: 0.919 - Micro Recall: 0.919 - Weighted Recall: 0.919 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lewtun/autotrain-sphere-banking77-1565555714 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("lewtun/autotrain-sphere-banking77-1565555714", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lewtun/autotrain-sphere-banking77-1565555714", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
neuralworm/stable-diffusion-prompt-generator-gpt2
neuralworm
2022-09-27T08:32:49Z
0
9
null
[ "region:us" ]
null
2022-09-09T16:33:38Z
stable-diffusion-prompt-generator-gpt2 stable-diffusion prompt generator, trained with all prompts from stable-diffusion discord server gpt2 model for use with gpt2-simple notebook for use: https://colab.research.google.com/drive/16Nc-_pFITldPCw3tgSMDiew1anLVBAPw?usp=sharing source for training: https://huggingface.co/datasets/bartman081523/stable-diffusion-discord-prompts
sd-concepts-library/fzk
sd-concepts-library
2022-09-27T08:21:31Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-27T08:21:24Z
--- license: mit --- ### fzk on Stable Diffusion This is the `<fzk>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<fzk> 0](https://huggingface.co/sd-concepts-library/fzk/resolve/main/concept_images/8.jpeg) ![<fzk> 1](https://huggingface.co/sd-concepts-library/fzk/resolve/main/concept_images/4.jpeg) ![<fzk> 2](https://huggingface.co/sd-concepts-library/fzk/resolve/main/concept_images/0.jpeg) ![<fzk> 3](https://huggingface.co/sd-concepts-library/fzk/resolve/main/concept_images/3.jpeg) ![<fzk> 4](https://huggingface.co/sd-concepts-library/fzk/resolve/main/concept_images/6.jpeg) ![<fzk> 5](https://huggingface.co/sd-concepts-library/fzk/resolve/main/concept_images/2.jpeg) ![<fzk> 6](https://huggingface.co/sd-concepts-library/fzk/resolve/main/concept_images/1.jpeg) ![<fzk> 7](https://huggingface.co/sd-concepts-library/fzk/resolve/main/concept_images/5.jpeg) ![<fzk> 8](https://huggingface.co/sd-concepts-library/fzk/resolve/main/concept_images/7.jpeg)
crescendonow/pwa_categorical_complaint
crescendonow
2022-09-27T07:42:44Z
161
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-27T07:24:36Z
--- license: apache-2.0 --- This Model finetunes from WangchanBERTa ("wangchanberta-base-att-spm-uncased") uses only the Provincial Waterworks Authority of Thailand. The Model classification into ten categories describe by the dictionary are {'ข้อร้องเรียน-ปริมาณน้ำ':[11,0], 'ข้อร้องเรียน-ท่อแตกรั่ว':[12,1], 'ข้อร้องเรียน-คุณภาพน้ำ':[13,2], 'ข้อร้องเรียน-การบริการ':[14,3], 'ข้อร้องเรียน-บุคลากร':[15,4], 'ข้อสอบถามทั่วไป':[2,5], 'ข้อเสนอแนะ':[3,6], 'ข้อคิดเห็น':[4,7], 'อื่นๆ':[8,8], 'ไม่เกี่ยวข้องกับกปภ.':[9,9]}
Hoax0930/kyoto_marian_mod_2
Hoax0930
2022-09-27T07:05:14Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-09-27T05:11:18Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: kyoto_marian_mod_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kyoto_marian_mod_2 This model is a fine-tuned version of [Hoax0930/kyoto_marian_mod_1](https://huggingface.co/Hoax0930/kyoto_marian_mod_1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7472 - Bleu: 20.8730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
pcuenq/ddpm-ema-pets-64-no-tcond
pcuenq
2022-09-27T05:53:40Z
5
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:pcuenq/oxford-pets", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-27T04:11:07Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: pcuenq/oxford-pets metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-ema-pets-64-no-tcond ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `pcuenq/oxford-pets` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(0.95, 0.999), weight_decay=1e-06 and epsilon=1e-08 - lr_scheduler: cosine - lr_warmup_steps: 500 - ema_inv_gamma: 1.0 - ema_inv_gamma: 0.75 - ema_inv_gamma: 0.9999 - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/pcuenq/ddpm-ema-pets-64-no-tcond/tensorboard?#scalars)
huggingtweets/rossimiano
huggingtweets
2022-09-27T05:26:34Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T04:09:09Z
--- language: en thumbnail: http://www.huggingtweets.com/rossimiano/1664256351634/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1550158420988153856/OUoCVt_b_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ross Massimiano, DVM</div> <div style="text-align: center; font-size: 14px;">@rossimiano</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ross Massimiano, DVM. | Data | Ross Massimiano, DVM | | --- | --- | | Tweets downloaded | 1324 | | Retweets | 203 | | Short tweets | 130 | | Tweets kept | 991 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/312h1q2v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rossimiano's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1vljawam) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1vljawam/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rossimiano') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kerkathy/distilbert-base-uncased-finetuned-imdb
kerkathy
2022-09-27T04:57:38Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-27T04:50:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
VietAI/gptho
VietAI
2022-09-27T04:48:32Z
139
9
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "causal-lm", "gpt", "vi", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-26T03:23:24Z
--- language: - vi tags: - pytorch - causal-lm - gpt widget: - text: "<|endoftext|> thu sang " --- # How to prompt? Type: ``` <|endoftext|> + your_prompt + [space] ``` ### Example: ``` <|endoftext|> thu sang + [space] ```
SmilestheSad/bert-base-multilingual-uncased-sep-26
SmilestheSad
2022-09-27T03:46:06Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-27T01:23:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-multilingual-uncased-sep-26 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-uncased-sep-26 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0483 - F1: 0.9369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0798 | 1.0 | 8623 | 0.0682 | 0.8979 | | 0.0498 | 2.0 | 17246 | 0.0551 | 0.9270 | | 0.0351 | 3.0 | 25869 | 0.0483 | 0.9369 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
SmilestheSad/distilbert-cased-sep-26
SmilestheSad
2022-09-27T01:06:44Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-27T00:33:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-cased-sep-26 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-cased-sep-26 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0467 - F1: 0.9318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1125 | 1.0 | 1078 | 0.0552 | 0.8867 | | 0.0438 | 2.0 | 2156 | 0.0452 | 0.9180 | | 0.0288 | 3.0 | 3234 | 0.0449 | 0.9261 | | 0.0202 | 4.0 | 4312 | 0.0445 | 0.9309 | | 0.0152 | 5.0 | 5390 | 0.0467 | 0.9318 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
IIIT-L/xlm-roberta-large-finetuned-TRAC-DS-new
IIIT-L
2022-09-26T22:32:54Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-26T16:48:31Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xlm-roberta-large-finetuned-TRAC-DS-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-TRAC-DS-new This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2229 - Accuracy: 0.6724 - Precision: 0.6503 - Recall: 0.6556 - F1: 0.6513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0895 | 0.25 | 612 | 1.0893 | 0.4453 | 0.3220 | 0.4654 | 0.3554 | | 1.0788 | 0.5 | 1224 | 1.1051 | 0.4436 | 0.1479 | 0.3333 | 0.2049 | | 1.0567 | 0.75 | 1836 | 0.9507 | 0.5637 | 0.4176 | 0.4948 | 0.4279 | | 1.0052 | 1.0 | 2448 | 0.9716 | 0.4665 | 0.4913 | 0.5106 | 0.4324 | | 0.9862 | 1.25 | 3060 | 0.9160 | 0.5719 | 0.5824 | 0.5851 | 0.5517 | | 0.9428 | 1.5 | 3672 | 0.9251 | 0.5645 | 0.5838 | 0.5903 | 0.5386 | | 0.9381 | 1.75 | 4284 | 0.9212 | 0.6307 | 0.6031 | 0.6091 | 0.6053 | | 0.9124 | 2.0 | 4896 | 0.8897 | 0.6054 | 0.6078 | 0.6169 | 0.5895 | | 0.9558 | 2.25 | 5508 | 0.8576 | 0.6283 | 0.6330 | 0.6077 | 0.6094 | | 0.8814 | 2.5 | 6120 | 0.9458 | 0.6520 | 0.6357 | 0.6270 | 0.6286 | | 0.8697 | 2.75 | 6732 | 0.8928 | 0.6381 | 0.6304 | 0.6259 | 0.6228 | | 0.9142 | 3.0 | 7344 | 0.8542 | 0.6225 | 0.6227 | 0.6272 | 0.6124 | | 0.825 | 3.25 | 7956 | 0.9639 | 0.6577 | 0.6491 | 0.6089 | 0.6093 | | 0.84 | 3.5 | 8568 | 0.8980 | 0.6266 | 0.6309 | 0.6169 | 0.6130 | | 0.8505 | 3.75 | 9180 | 0.9127 | 0.6503 | 0.6197 | 0.6130 | 0.6154 | | 0.8287 | 4.0 | 9792 | 0.9343 | 0.6683 | 0.6515 | 0.6527 | 0.6488 | | 0.7772 | 4.25 | 10404 | 1.0434 | 0.6650 | 0.6461 | 0.6454 | 0.6437 | | 0.8217 | 4.5 | 11016 | 0.9760 | 0.6724 | 0.6574 | 0.6550 | 0.6533 | | 0.7543 | 4.75 | 11628 | 1.0790 | 0.6454 | 0.6522 | 0.6342 | 0.6327 | | 0.7868 | 5.0 | 12240 | 1.1457 | 0.6708 | 0.6519 | 0.6445 | 0.6463 | | 0.8093 | 5.25 | 12852 | 1.1714 | 0.6716 | 0.6517 | 0.6525 | 0.6509 | | 0.8032 | 5.5 | 13464 | 1.1882 | 0.6691 | 0.6480 | 0.6542 | 0.6489 | | 0.7511 | 5.75 | 14076 | 1.2113 | 0.6650 | 0.6413 | 0.6458 | 0.6429 | | 0.7698 | 6.0 | 14688 | 1.2229 | 0.6724 | 0.6503 | 0.6556 | 0.6513 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
arinakos/wolves_and_bears
arinakos
2022-09-26T22:25:51Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-09-26T21:10:36Z
--- title: Pet classifier! emoji: 🐶 colorFrom: pink colorTo: blue sdk: gradio sdk_version: 3.1.1 app_file: app.py pinned: true license: apache-2.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
sd-concepts-library/kawaii-girl-plus-style
sd-concepts-library
2022-09-26T22:22:28Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-26T22:22:20Z
--- license: mit --- ### kawaii_girl_plus_style on Stable Diffusion This is the `<kawaii_girl>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<kawaii_girl> 0](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/0.png) ![<kawaii_girl> 1](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/1.png) ![<kawaii_girl> 2](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/2.png) ![<kawaii_girl> 3](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/3.png) ![<kawaii_girl> 4](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/4.png) ![<kawaii_girl> 5](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/5.png) ![<kawaii_girl> 6](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/6.png) ![<kawaii_girl> 7](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/7.png) ![<kawaii_girl> 8](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/8.png) ![<kawaii_girl> 9](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/9.png) ![<kawaii_girl> 10](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/10.png) ![<kawaii_girl> 11](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/11.png) ![<kawaii_girl> 12](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/12.png) ![<kawaii_girl> 13](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/13.png) ![<kawaii_girl> 14](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/14.png) ![<kawaii_girl> 15](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/15.png) ![<kawaii_girl> 16](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/16.png) ![<kawaii_girl> 17](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/17.png) ![<kawaii_girl> 18](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/18.png) ![<kawaii_girl> 19](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/19.png) ![<kawaii_girl> 20](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/20.png) ![<kawaii_girl> 21](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/21.png) ![<kawaii_girl> 22](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/22.png) ![<kawaii_girl> 23](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/23.png) ![<kawaii_girl> 24](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/24.png) ![<kawaii_girl> 25](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/25.png) ![<kawaii_girl> 26](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/26.png) ![<kawaii_girl> 27](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/27.png) ![<kawaii_girl> 28](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/28.png) ![<kawaii_girl> 29](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/29.png) ![<kawaii_girl> 30](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/30.png) ![<kawaii_girl> 31](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/31.png) ![<kawaii_girl> 32](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/32.png) ![<kawaii_girl> 33](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/33.png) ![<kawaii_girl> 34](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/34.png) ![<kawaii_girl> 35](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/35.png) ![<kawaii_girl> 36](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/36.png) ![<kawaii_girl> 37](https://huggingface.co/sd-concepts-library/kawaii-girl-plus-style/resolve/main/concept_images/37.png)
huggingtweets/alexspoodiary-apesahoy-nsp_gpt2
huggingtweets
2022-09-26T22:08:29Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-26T22:03:52Z
--- language: en thumbnail: http://www.huggingtweets.com/alexspoodiary-apesahoy-nsp_gpt2/1664230104622/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/774937495691722752/OHoU0clu_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1196519479364268034/5QpniWSP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1218028522939113479/0VrO0Rko_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alex's Poo Diary & Humongous Ape MP & Ninja Sex Party but AI</div> <div style="text-align: center; font-size: 14px;">@alexspoodiary-apesahoy-nsp_gpt2</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alex's Poo Diary & Humongous Ape MP & Ninja Sex Party but AI. | Data | Alex's Poo Diary | Humongous Ape MP | Ninja Sex Party but AI | | --- | --- | --- | --- | | Tweets downloaded | 1859 | 3246 | 692 | | Retweets | 3 | 178 | 13 | | Short tweets | 5 | 625 | 44 | | Tweets kept | 1851 | 2443 | 635 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28kotecb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alexspoodiary-apesahoy-nsp_gpt2's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2thnv3rd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2thnv3rd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alexspoodiary-apesahoy-nsp_gpt2') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ammarpl/t5-base-finetuned-eli5-a
ammarpl
2022-09-26T22:02:48Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-26T19:36:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-base-finetuned-eli5-a results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 14.6711 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-eli5-a This model is a fine-tuned version of [ammarpl/t5-base-finetuned-xsum-a](https://huggingface.co/ammarpl/t5-base-finetuned-xsum-a) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.1773 - Rouge1: 14.6711 - Rouge2: 2.2878 - Rougel: 11.3676 - Rougelsum: 13.1805 - Gen Len: 18.9892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.3417 | 1.0 | 17040 | 3.1773 | 14.6711 | 2.2878 | 11.3676 | 13.1805 | 18.9892 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
quecopiones/distillbert-base-spanish-uncased-finetuned-10percent-clean-ds-suicidios
quecopiones
2022-09-26T20:27:30Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-26T20:04:45Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distillbert-base-spanish-uncased-finetuned-10percent-clean-ds-suicidios results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distillbert-base-spanish-uncased-finetuned-10percent-clean-ds-suicidios This model is a fine-tuned version of [CenIA/distillbert-base-spanish-uncased](https://huggingface.co/CenIA/distillbert-base-spanish-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2430 - Accuracy: 0.9418 - F1: 0.9418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2908 | 1.0 | 3206 | 0.2144 | 0.9382 | 0.9382 | | 0.1671 | 2.0 | 6412 | 0.2430 | 0.9418 | 0.9418 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
ColdFellow/kcorona
ColdFellow
2022-09-26T20:17:49Z
0
0
null
[ "region:us" ]
null
2022-09-26T20:15:02Z
https://photos.google.com/photo/AF1QipOr5Mq84sMC https://photos.google.com/photo/AF1QipPbeoSDESDMrm_R6YqXK2hrjGN5FNtQYHHGOUYPjtcOMRHST8xtTRg8slUvbG0mfw https://photos.google.com/photo/AF1QipN26lOKK6ZvaHyq8m52N-6SWdSqoLp7xMf53Go
enaserian/distilbert-base-uncased-finetuned
enaserian
2022-09-26T20:11:39Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-23T10:58:52Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.2813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.6309 | 1.0 | 76 | 7.4774 | | 7.0806 | 2.0 | 152 | 6.9937 | | 6.6842 | 3.0 | 228 | 6.9314 | | 6.4592 | 4.0 | 304 | 6.9088 | | 6.2936 | 5.0 | 380 | 6.9135 | | 6.1301 | 6.0 | 456 | 6.9018 | | 5.9878 | 7.0 | 532 | 6.8865 | | 5.8071 | 8.0 | 608 | 6.8926 | | 5.6372 | 9.0 | 684 | 6.8750 | | 5.4791 | 10.0 | 760 | 6.9394 | | 5.3365 | 11.0 | 836 | 6.9594 | | 5.2117 | 12.0 | 912 | 6.9962 | | 5.0887 | 13.0 | 988 | 7.0570 | | 4.9288 | 14.0 | 1064 | 7.0549 | | 4.8169 | 15.0 | 1140 | 7.0971 | | 4.7008 | 16.0 | 1216 | 7.1439 | | 4.6149 | 17.0 | 1292 | 7.1320 | | 4.487 | 18.0 | 1368 | 7.1577 | | 4.364 | 19.0 | 1444 | 7.1712 | | 4.3208 | 20.0 | 1520 | 7.1959 | | 4.2492 | 21.0 | 1596 | 7.2136 | | 4.1423 | 22.0 | 1672 | 7.2304 | | 4.0873 | 23.0 | 1748 | 7.2526 | | 4.0261 | 24.0 | 1824 | 7.2681 | | 3.9598 | 25.0 | 1900 | 7.2715 | | 3.9562 | 26.0 | 1976 | 7.2648 | | 3.8951 | 27.0 | 2052 | 7.2665 | | 3.8772 | 28.0 | 2128 | 7.2781 | | 3.8403 | 29.0 | 2204 | 7.2801 | | 3.8275 | 30.0 | 2280 | 7.2813 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
uf-aice-lab/SafeMathBot
uf-aice-lab
2022-09-26T20:04:02Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generation", "math learning", "education", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - generation - math learning - education license: mit metrics: - PerspectiveAPI widget: - text: "<bos><speaker1>Hello! My name is CL. Nice meeting y'all!<speaker2>[SAFE]" example_title: "Safe Response" - text: "<bos><speaker1>Hello! My name is CL. Nice meeting y'all!<speaker2>[UNSAFE]" example_title: "Unsafe Response" --- # SafeMathBot for NLP tasks in math learning environments This model is fine-tuned with GPT2-xl with 8 Nvidia RTX 1080Ti GPUs and enhanced with conversation safety policies (e.g., threat, profanity, identity attack) using 3,000,000 math discussion posts by students and facilitators on Algebra Nation (https://www.mathnation.com/). SafeMathBot consists of 48 layers and over 1.5 billion parameters, consuming up to 6 gigabytes of disk space. Researchers can experiment with and finetune the model to help construct math conversational AI that can effectively avoid unsafe response generation. It was trained to allow researchers to control generated responses' safety using tags `[SAFE]` and `[UNSAFE]` ### Here is how to use it with texts in HuggingFace ```python # A list of special tokens the model was trained with special_tokens_dict = { 'additional_special_tokens': [ '[SAFE]','[UNSAFE]', '[OK]', '[SELF_M]','[SELF_F]', '[SELF_N]', '[PARTNER_M]', '[PARTNER_F]', '[PARTNER_N]', '[ABOUT_M]', '[ABOUT_F]', '[ABOUT_N]', '<speaker1>', '<speaker2>' ], 'bos_token': '<bos>', 'eos_token': '<eos>', } from transformers import AutoTokenizer, AutoModelForCausalLM math_bot_tokenizer = AutoTokenizer.from_pretrained('uf-aice-lab/SafeMathBot') safe_math_bot = AutoModelForCausalLM.from_pretrained('uf-aice-lab/SafeMathBot') text = "Replace me by any text you'd like." encoded_input = math_bot_tokenizer(text, return_tensors='pt') output = safe_math_bot(**encoded_input) ```
sd-concepts-library/kira-sensei
sd-concepts-library
2022-09-26T19:25:20Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-26T19:25:07Z
--- license: mit --- ### kira-sensei on Stable Diffusion This is the `<kira-sensei>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<kira-sensei> 0](https://huggingface.co/sd-concepts-library/kira-sensei/resolve/main/concept_images/3.jpeg) ![<kira-sensei> 1](https://huggingface.co/sd-concepts-library/kira-sensei/resolve/main/concept_images/1.jpeg) ![<kira-sensei> 2](https://huggingface.co/sd-concepts-library/kira-sensei/resolve/main/concept_images/0.jpeg) ![<kira-sensei> 3](https://huggingface.co/sd-concepts-library/kira-sensei/resolve/main/concept_images/2.jpeg)
KoboldAI/GPT-NeoX-20B-Erebus
KoboldAI
2022-09-26T19:05:19Z
3,741
84
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "en", "arxiv:2204.06745", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-09-02T18:07:19Z
--- language: en license: apache-2.0 inference: false --- # GPT-NeoX-20B-Erebus ## Model description This is the second generation of the original Shinen made by Mr. Seeker. The full dataset consists of 6 different sources, all surrounding the "Adult" theme. The name "Erebus" comes from the greek mythology, also named "darkness". This is in line with Shin'en, or "deep abyss". For inquiries, please contact the KoboldAI community. **Warning: THIS model is NOT suitable for use by minors. The model will output X-rated content.** ## Training procedure GPT-NeoX-20B-Erebus was trained on a TPUv3-256 TPU pod using a heavily modified version of Ben Wang's Mesh Transformer JAX library, the original version of which was used by EleutherAI to train their GPT-J-6B model. ## Training data The data can be divided in 6 different datasets: - Literotica (everything with 4.5/5 or higher) - Sexstories (everything with 90 or higher) - Dataset-G (private dataset of X-rated stories) - Doc's Lab (all stories) - Pike Dataset (novels with "adult" rating) - SoFurry (collection of various animals) The dataset uses `[Genre: <comma-separated list of genres>]` for tagging. ## Limitations and biases Based on known problems with NLP technology, potential relevant factors include bias (gender, profession, race and religion). **Warning: This model has a very strong NSFW bias!** ## Citation details The GPT-NeoX-20B model weights: ```bibtex @inproceedings{gpt-neox-20b, title={{GPT-NeoX-20B}: An Open-Source Autoregressive Language Model}, author={Black, Sid and Biderman, Stella and Hallahan, Eric and Anthony, Quentin and Gao, Leo and Golding, Laurence and He, Horace and Leahy, Connor and McDonell, Kyle and Phang, Jason and Pieler, Michael and Prashanth, USVSN Sai and Purohit, Shivanshu and Reynolds, Laria and Tow, Jonathan and Wang, Ben and Weinbach, Samuel}, booktitle={Proceedings of the ACL Workshop on Challenges \& Perspectives in Creating Large Language Models}, url={https://arxiv.org/abs/2204.06745}, year={2022} } ``` The Mesh Transformer JAX library: ```bibtex @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ```
mrm8488/setfit-mpnet-base-v2-finetuned-sentEval-CR
mrm8488
2022-09-26T18:50:11Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-26T18:49:59Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 20, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
gabrielsgaspar/test-trainer
gabrielsgaspar
2022-09-26T18:20:02Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-26T16:17:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: test-trainer results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.9395 - name: F1 type: f1 value: 0.9395662658775557 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-trainer This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2394 - Accuracy: 0.9395 - F1: 0.9396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2518 | 1.0 | 2000 | 0.1971 | 0.931 | 0.9305 | | 0.1678 | 2.0 | 4000 | 0.1782 | 0.9405 | 0.9406 | | 0.1048 | 3.0 | 6000 | 0.2394 | 0.9395 | 0.9396 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
espnet/transformer_tts_cmu_indic_hin_ab
espnet
2022-09-26T18:15:07Z
0
2
espnet
[ "espnet", "audio", "text-to-speech", "hi", "dataset:cmu_indic", "region:us" ]
text-to-speech
2022-09-26T18:02:38Z
--- tags: - espnet - audio - text-to-speech language: hi datasets: - cmu_indic ---
AbhijeetA/PIE
AbhijeetA
2022-09-26T17:30:37Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
Model details available [here](https://github.com/awasthiabhijeet/PIE)
microsoft/graphcodebert-base
microsoft
2022-09-26T17:06:54Z
104,959
56
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "arxiv:2009.08366", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
## GraphCodeBERT model GraphCodeBERT is a graph-based pre-trained model based on the Transformer architecture for programming language, which also considers data-flow information along with code sequences. GraphCodeBERT consists of 12 layers, 768 dimensional hidden states, and 12 attention heads. The maximum sequence length for the model is 512. The model is trained on the CodeSearchNet dataset, which includes 2.3M functions with document pairs for six programming languages. More details can be found in the [paper](https://arxiv.org/abs/2009.08366) by Guo et. al. **Disclaimer:** The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face community members.
pjcordero04/distilbert-base-uncased-finetuned-cola
pjcordero04
2022-09-26T16:32:49Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-26T14:35:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5442538936990396 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8348 - Matthews Correlation: 0.5443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5236 | 1.0 | 535 | 0.5495 | 0.4205 | | 0.3505 | 2.0 | 1070 | 0.5176 | 0.4977 | | 0.2401 | 3.0 | 1605 | 0.5498 | 0.5354 | | 0.1751 | 4.0 | 2140 | 0.7975 | 0.5270 | | 0.1229 | 5.0 | 2675 | 0.8348 | 0.5443 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
marcelklehr/autotrain-byt5-summary-1562255681
marcelklehr
2022-09-26T16:29:17Z
103
0
transformers
[ "transformers", "pytorch", "autotrain", "summarization", "unk", "dataset:mklehr/autotrain-data-byt5-summary", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
summarization
2022-09-26T16:27:29Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - mklehr/autotrain-data-byt5-summary co2_eq_emissions: emissions: 2.2525628167913614 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1562255681 - CO2 Emissions (in grams): 2.2526 ## Validation Metrics - Loss: 0.918 - Rouge1: 12.572 - Rouge2: 2.448 - RougeL: 11.701 - RougeLsum: 11.785 - Gen Len: 19.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/mklehr/autotrain-byt5-summary-1562255681 ```
jamieai/t5-small-finetuned-xsum
jamieai
2022-09-26T16:04:00Z
109
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-26T15:56:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/at-wolf-boy-object
sd-concepts-library
2022-09-26T15:44:23Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-26T15:08:05Z
--- license: mit --- ### AT-Wolf-Boy-Object on Stable Diffusion **- Art created by Akihito Tsukushi** This is the `<AT-Wolf-Boy-Object>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<AT-Wolf-Boy-Object> 0](https://huggingface.co/sd-concepts-library/at-wolf-boy-object/resolve/main/concept_images/3.jpeg) ![<AT-Wolf-Boy-Object> 1](https://huggingface.co/sd-concepts-library/at-wolf-boy-object/resolve/main/concept_images/1.jpeg) ![<AT-Wolf-Boy-Object> 2](https://huggingface.co/sd-concepts-library/at-wolf-boy-object/resolve/main/concept_images/4.jpeg) ![<AT-Wolf-Boy-Object> 3](https://huggingface.co/sd-concepts-library/at-wolf-boy-object/resolve/main/concept_images/5.jpeg) ![<AT-Wolf-Boy-Object> 4](https://huggingface.co/sd-concepts-library/at-wolf-boy-object/resolve/main/concept_images/0.jpeg) ![<AT-Wolf-Boy-Object> 5](https://huggingface.co/sd-concepts-library/at-wolf-boy-object/resolve/main/concept_images/2.jpeg)
tner/deberta-v3-large-bc5cdr
tner
2022-09-26T15:27:41Z
114
0
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "dataset:tner/bc5cdr", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-09T23:31:56Z
--- datasets: - tner/bc5cdr metrics: - f1 - precision - recall model-index: - name: tner/deberta-v3-large-bc5cdr results: - task: name: Token Classification type: token-classification dataset: name: tner/bc5cdr type: tner/bc5cdr args: tner/bc5cdr metrics: - name: F1 type: f1 value: 0.8902493653874869 - name: Precision type: precision value: 0.8697724178175452 - name: Recall type: recall value: 0.9117137322866755 - name: F1 (macro) type: f1_macro value: 0.8863403908610603 - name: Precision (macro) type: precision_macro value: 0.8657302393432342 - name: Recall (macro) type: recall_macro value: 0.9080747413030301 - name: F1 (entity span) type: f1_entity_span value: 0.8929371360310587 - name: Precision (entity span) type: precision_entity_span value: 0.8723983660766388 - name: Recall (entity span) type: recall_entity_span value: 0.9144663064532572 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/deberta-v3-large-bc5cdr This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the [tner/bc5cdr](https://huggingface.co/datasets/tner/bc5cdr) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.8902493653874869 - Precision (micro): 0.8697724178175452 - Recall (micro): 0.9117137322866755 - F1 (macro): 0.8863403908610603 - Precision (macro): 0.8657302393432342 - Recall (macro): 0.9080747413030301 The per-entity breakdown of the F1 score on the test set are below: - chemical: 0.9298502009499452 - disease: 0.8428305807721753 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.885162383660078, 0.8951239957151518] - 95%: [0.8838793313408008, 0.8959517574197015] - F1 (macro): - 90%: [0.885162383660078, 0.8951239957151518] - 95%: [0.8838793313408008, 0.8959517574197015] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-bc5cdr/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-bc5cdr/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/deberta-v3-large-bc5cdr") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/bc5cdr'] - dataset_split: train - dataset_name: None - local_dataset: None - model: microsoft/deberta-v3-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 16 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 4 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/deberta-v3-large-bc5cdr/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/deberta-v3-large-wnut2017
tner
2022-09-26T15:10:46Z
30
0
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "dataset:tner/wnut2017", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-09T23:14:32Z
--- datasets: - tner/wnut2017 metrics: - f1 - precision - recall model-index: - name: tner/deberta-v3-large-wnut2017 results: - task: name: Token Classification type: token-classification dataset: name: tner/wnut2017 type: tner/wnut2017 args: tner/wnut2017 metrics: - name: F1 type: f1 value: 0.5047353760445682 - name: Precision type: precision value: 0.63268156424581 - name: Recall type: recall value: 0.4198331788693234 - name: F1 (macro) type: f1_macro value: 0.4165125500830091 - name: Precision (macro) type: precision_macro value: 0.5356144444686111 - name: Recall (macro) type: recall_macro value: 0.3573954549633822 - name: F1 (entity span) type: f1_entity_span value: 0.6249999999999999 - name: Precision (entity span) type: precision_entity_span value: 0.7962697274031564 - name: Recall (entity span) type: recall_entity_span value: 0.5143651529193698 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/deberta-v3-large-wnut2017 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the [tner/wnut2017](https://huggingface.co/datasets/tner/wnut2017) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.5047353760445682 - Precision (micro): 0.63268156424581 - Recall (micro): 0.4198331788693234 - F1 (macro): 0.4165125500830091 - Precision (macro): 0.5356144444686111 - Recall (macro): 0.3573954549633822 The per-entity breakdown of the F1 score on the test set are below: - corporation: 0.25477707006369427 - group: 0.34309623430962344 - location: 0.6187050359712232 - person: 0.6721763085399448 - product: 0.18579234972677597 - work_of_art: 0.42452830188679247 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.4752384997212858, 0.5329114690850492] - 95%: [0.46929053844001617, 0.537282841423422] - F1 (macro): - 90%: [0.4752384997212858, 0.5329114690850492] - 95%: [0.46929053844001617, 0.537282841423422] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-wnut2017/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-wnut2017/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/deberta-v3-large-wnut2017") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/wnut2017'] - dataset_split: train - dataset_name: None - local_dataset: None - model: microsoft/deberta-v3-large - crf: False - max_length: 128 - epoch: 15 - batch_size: 16 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 4 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/deberta-v3-large-wnut2017/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/deberta-v3-large-ttc
tner
2022-09-26T14:41:30Z
4
0
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "dataset:tner/ttc", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-17T11:20:57Z
--- datasets: - tner/ttc metrics: - f1 - precision - recall model-index: - name: tner/deberta-v3-large-ttc results: - task: name: Token Classification type: token-classification dataset: name: tner/ttc type: tner/ttc args: tner/ttc metrics: - name: F1 type: f1 value: 0.8266925817946227 - name: Precision type: precision value: 0.8264248704663213 - name: Recall type: recall value: 0.8269604666234608 - name: F1 (macro) type: f1_macro value: 0.8267742072572187 - name: Precision (macro) type: precision_macro value: 0.8278533291801137 - name: Recall (macro) type: recall_macro value: 0.8257668793195109 - name: F1 (entity span) type: f1_entity_span value: 0.8713961775186264 - name: Precision (entity span) type: precision_entity_span value: 0.8711139896373057 - name: Recall (entity span) type: recall_entity_span value: 0.8716785482825664 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/deberta-v3-large-ttc This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the [tner/ttc](https://huggingface.co/datasets/tner/ttc) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.8266925817946227 - Precision (micro): 0.8264248704663213 - Recall (micro): 0.8269604666234608 - F1 (macro): 0.8267742072572187 - Precision (macro): 0.8278533291801137 - Recall (macro): 0.8257668793195109 The per-entity breakdown of the F1 score on the test set are below: - location: 0.7862266857962696 - organization: 0.7770320656226697 - person: 0.9170638703527169 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.8124223893760291, 0.8416139230675236] - 95%: [0.8098712905029445, 0.8440240645643514] - F1 (macro): - 90%: [0.8124223893760291, 0.8416139230675236] - 95%: [0.8098712905029445, 0.8440240645643514] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-ttc/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-ttc/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/deberta-v3-large-ttc") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/ttc'] - dataset_split: train - dataset_name: None - local_dataset: None - model: microsoft/deberta-v3-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 16 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 4 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/deberta-v3-large-ttc/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/deberta-v3-large-mit-movie-trivia
tner
2022-09-26T14:30:39Z
7
0
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "dataset:tner/mit_movie_trivia", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-12T11:41:52Z
--- datasets: - tner/mit_movie_trivia metrics: - f1 - precision - recall model-index: - name: tner/deberta-v3-large-mit-movie-trivia results: - task: name: Token Classification type: token-classification dataset: name: tner/mit_movie_trivia type: tner/mit_movie_trivia args: tner/mit_movie_trivia metrics: - name: F1 type: f1 value: 0.7324478178368122 - name: Precision type: precision value: 0.7186865267433988 - name: Recall type: recall value: 0.746746394653535 - name: F1 (macro) type: f1_macro value: 0.6597589403836301 - name: Precision (macro) type: precision_macro value: 0.6493939604029393 - name: Recall (macro) type: recall_macro value: 0.6747458149186768 - name: F1 (entity span) type: f1_entity_span value: 0.749525289142068 - name: Precision (entity span) type: precision_entity_span value: 0.7359322033898306 - name: Recall (entity span) type: recall_entity_span value: 0.7636299683432993 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/deberta-v3-large-mit-movie-trivia This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the [tner/mit_movie_trivia](https://huggingface.co/datasets/tner/mit_movie_trivia) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.7324478178368122 - Precision (micro): 0.7186865267433988 - Recall (micro): 0.746746394653535 - F1 (macro): 0.6597589403836301 - Precision (macro): 0.6493939604029393 - Recall (macro): 0.6747458149186768 The per-entity breakdown of the F1 score on the test set are below: - actor: 0.9590417310664605 - award: 0.4755244755244755 - character_name: 0.7391304347826086 - date: 0.9640179910044978 - director: 0.909706546275395 - genre: 0.755114693118413 - opinion: 0.4910714285714286 - origin: 0.3922518159806296 - plot: 0.4929757343550447 - quote: 0.7391304347826088 - relationship: 0.5705705705705706 - soundtrack: 0.42857142857142855 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.7213456287685677, 0.742502895519075] - 95%: [0.7198169787204788, 0.7460320515170399] - F1 (macro): - 90%: [0.7213456287685677, 0.742502895519075] - 95%: [0.7198169787204788, 0.7460320515170399] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-mit-movie-trivia/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-mit-movie-trivia/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/deberta-v3-large-mit-movie-trivia") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/mit_movie_trivia'] - dataset_split: train - dataset_name: None - local_dataset: None - model: microsoft/deberta-v3-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 16 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 4 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/deberta-v3-large-mit-movie-trivia/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/roberta-large-ttc
tner
2022-09-26T14:25:57Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/ttc", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-12T10:49:56Z
--- datasets: - tner/ttc metrics: - f1 - precision - recall model-index: - name: tner/roberta-large-ttc results: - task: name: Token Classification type: token-classification dataset: name: tner/ttc type: tner/ttc args: tner/ttc metrics: - name: F1 type: f1 value: 0.8314534321624235 - name: Precision type: precision value: 0.8269230769230769 - name: Recall type: recall value: 0.8360337005832793 - name: F1 (macro) type: f1_macro value: 0.8317396497007042 - name: Precision (macro) type: precision_macro value: 0.8296690551538254 - name: Recall (macro) type: recall_macro value: 0.8340850231639706 - name: F1 (entity span) type: f1_entity_span value: 0.8739929100870126 - name: Precision (entity span) type: precision_entity_span value: 0.8692307692307693 - name: Recall (entity span) type: recall_entity_span value: 0.8788075178224238 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/roberta-large-ttc This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tner/ttc](https://huggingface.co/datasets/tner/ttc) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.8314534321624235 - Precision (micro): 0.8269230769230769 - Recall (micro): 0.8360337005832793 - F1 (macro): 0.8317396497007042 - Precision (macro): 0.8296690551538254 - Recall (macro): 0.8340850231639706 The per-entity breakdown of the F1 score on the test set are below: - location: 0.7817403708987161 - organization: 0.7737656595431097 - person: 0.939712918660287 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.8153670265512099, 0.8476331336073506] - 95%: [0.8126974643551524, 0.8505459585794019] - F1 (macro): - 90%: [0.8153670265512099, 0.8476331336073506] - 95%: [0.8126974643551524, 0.8505459585794019] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-ttc/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/roberta-large-ttc/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/roberta-large-ttc") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/ttc'] - dataset_split: train - dataset_name: None - local_dataset: None - model: roberta-large - crf: True - max_length: 128 - epoch: 16 - batch_size: 64 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 2 - weight_decay: None - lr_warmup_step_ratio: 0.1 - max_grad_norm: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-ttc/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/roberta-large-bionlp2004
tner
2022-09-26T14:23:31Z
10
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/bionlp2004", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-12T00:10:08Z
--- datasets: - tner/bionlp2004 metrics: - f1 - precision - recall model-index: - name: tner/roberta-large-bionlp2004 results: - task: name: Token Classification type: token-classification dataset: name: tner/bionlp2004 type: tner/bionlp2004 args: tner/bionlp2004 metrics: - name: F1 type: f1 value: 0.7513434294088912 - name: Precision type: precision value: 0.7090462042823481 - name: Recall type: recall value: 0.7990071577003002 - name: F1 (macro) type: f1_macro value: 0.7165656135319811 - name: Precision (macro) type: precision_macro value: 0.6765580411075789 - name: Recall (macro) type: recall_macro value: 0.7685019796698731 - name: F1 (entity span) type: f1_entity_span value: 0.7936818107800032 - name: Precision (entity span) type: precision_entity_span value: 0.7490011269337158 - name: Recall (entity span) type: recall_entity_span value: 0.8440314015238974 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/roberta-large-bionlp2004 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tner/bionlp2004](https://huggingface.co/datasets/tner/bionlp2004) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.7513434294088912 - Precision (micro): 0.7090462042823481 - Recall (micro): 0.7990071577003002 - F1 (macro): 0.7165656135319811 - Precision (macro): 0.6765580411075789 - Recall (macro): 0.7685019796698731 The per-entity breakdown of the F1 score on the test set are below: - cell_line: 0.6080273270708796 - cell_type: 0.7536311318169361 - dna: 0.7150259067357512 - protein: 0.7738602374694099 - rna: 0.7322834645669293 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.7433198691879565, 0.7598437899577305] - 95%: [0.7420570442205622, 0.7606216680394585] - F1 (macro): - 90%: [0.7433198691879565, 0.7598437899577305] - 95%: [0.7420570442205622, 0.7606216680394585] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-bionlp2004/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/roberta-large-bionlp2004/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/roberta-large-bionlp2004") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/bionlp2004'] - dataset_split: train - dataset_name: None - local_dataset: None - model: roberta-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 64 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 1 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-bionlp2004/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/roberta-large-fin
tner
2022-09-26T14:22:04Z
11
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:fin", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-12T20:28:39Z
--- datasets: - fin metrics: - f1 - precision - recall model-index: - name: tner/roberta-large-fin results: - task: name: Token Classification type: token-classification dataset: name: fin type: fin args: fin metrics: - name: F1 type: f1 value: 0.6988727858293075 - name: Precision type: precision value: 0.7161716171617162 - name: Recall type: recall value: 0.6823899371069182 - name: F1 (macro) type: f1_macro value: 0.45636958249281745 - name: Precision (macro) type: precision_macro value: 0.4519134760270864 - name: Recall (macro) type: recall_macro value: 0.4705942205942206 - name: F1 (entity span) type: f1_entity_span value: 0.7087378640776698 - name: Precision (entity span) type: precision_entity_span value: 0.7227722772277227 - name: Recall (entity span) type: recall_entity_span value: 0.6952380952380952 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/roberta-large-fin This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tner/fin](https://huggingface.co/datasets/tner/fin) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.6988727858293075 - Precision (micro): 0.7161716171617162 - Recall (micro): 0.6823899371069182 - F1 (macro): 0.45636958249281745 - Precision (macro): 0.4519134760270864 - Recall (macro): 0.4705942205942206 The per-entity breakdown of the F1 score on the test set are below: - location: 0.5121951219512196 - organization: 0.49624060150375937 - other: 0.0 - person: 0.8170426065162907 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.6355508274231678, 0.7613829748047737] - 95%: [0.624150263185174, 0.7724430709173716] - F1 (macro): - 90%: [0.6355508274231678, 0.7613829748047737] - 95%: [0.624150263185174, 0.7724430709173716] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-fin/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/roberta-large-fin/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/roberta-large-fin") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/fin'] - dataset_split: train - dataset_name: None - local_dataset: None - model: roberta-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 64 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 1 - weight_decay: None - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-fin/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/bertweet-large-wnut2017
tner
2022-09-26T14:18:26Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/wnut2017", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-09T23:25:24Z
--- datasets: - tner/wnut2017 metrics: - f1 - precision - recall model-index: - name: tner/bertweet-large-wnut2017 results: - task: name: Token Classification type: token-classification dataset: name: tner/wnut2017 type: tner/wnut2017 args: tner/wnut2017 metrics: - name: F1 type: f1 value: 0.5302273987798114 - name: Precision type: precision value: 0.6602209944751382 - name: Recall type: recall value: 0.44300278035217794 - name: F1 (macro) type: f1_macro value: 0.4643459997680019 - name: Precision (macro) type: precision_macro value: 0.5792841925426832 - name: Recall (macro) type: recall_macro value: 0.3973128655628379 - name: F1 (entity span) type: f1_entity_span value: 0.6142697881828317 - name: Precision (entity span) type: precision_entity_span value: 0.7706293706293706 - name: Recall (entity span) type: recall_entity_span value: 0.5106580166821131 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/bertweet-large-wnut2017 This model is a fine-tuned version of [vinai/bertweet-large](https://huggingface.co/vinai/bertweet-large) on the [tner/wnut2017](https://huggingface.co/datasets/tner/wnut2017) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.5302273987798114 - Precision (micro): 0.6602209944751382 - Recall (micro): 0.44300278035217794 - F1 (macro): 0.4643459997680019 - Precision (macro): 0.5792841925426832 - Recall (macro): 0.3973128655628379 The per-entity breakdown of the F1 score on the test set are below: - corporation: 0.3902439024390244 - group: 0.37130801687763715 - location: 0.6595744680851063 - person: 0.65474552957359 - product: 0.2857142857142857 - work_of_art: 0.4244897959183674 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.5002577319587629, 0.5587481638299118] - 95%: [0.4947163587619384, 0.5629013150503995] - F1 (macro): - 90%: [0.5002577319587629, 0.5587481638299118] - 95%: [0.4947163587619384, 0.5629013150503995] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bertweet-large-wnut2017/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/bertweet-large-wnut2017/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/bertweet-large-wnut2017") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/wnut2017'] - dataset_split: train - dataset_name: None - local_dataset: None - model: vinai/bertweet-large - crf: False - max_length: 128 - epoch: 15 - batch_size: 16 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 4 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bertweet-large-wnut2017/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/roberta-large-wnut2017
tner
2022-09-26T14:16:19Z
6,792
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:wnut2017", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-09T23:12:35Z
--- datasets: - wnut2017 metrics: - f1 - precision - recall model-index: - name: tner/roberta-large-wnut2017 results: - task: name: Token Classification type: token-classification dataset: name: wnut2017 type: wnut2017 args: wnut2017 metrics: - name: F1 type: f1 value: 0.5375139977603584 - name: Precision type: precision value: 0.6789250353606789 - name: Recall type: recall value: 0.4448563484708063 - name: F1 (macro) type: f1_macro value: 0.4734480458244917 - name: Precision (macro) type: precision_macro value: 0.59471614080646 - name: Recall (macro) type: recall_macro value: 0.4020936892146829 - name: F1 (entity span) type: f1_entity_span value: 0.6304591265397536 - name: Precision (entity span) type: precision_entity_span value: 0.7963224893917963 - name: Recall (entity span) type: recall_entity_span value: 0.5217794253938832 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/roberta-large-wnut2017 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tner/wnut2017](https://huggingface.co/datasets/tner/wnut2017) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.5375139977603584 - Precision (micro): 0.6789250353606789 - Recall (micro): 0.4448563484708063 - F1 (macro): 0.4734480458244917 - Precision (macro): 0.59471614080646 - Recall (macro): 0.4020936892146829 The per-entity breakdown of the F1 score on the test set are below: - corporation: 0.4065040650406504 - group: 0.33913043478260874 - location: 0.6715867158671587 - person: 0.6657342657342658 - product: 0.27999999999999997 - work_of_art: 0.4777327935222672 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.5084441265818846, 0.5659035599952082] - 95%: [0.5009032784561068, 0.5708361009044657] - F1 (macro): - 90%: [0.5084441265818846, 0.5659035599952082] - 95%: [0.5009032784561068, 0.5708361009044657] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-wnut2017/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/roberta-large-wnut2017/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/roberta-large-wnut2017") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/wnut2017'] - dataset_split: train - dataset_name: None - local_dataset: None - model: roberta-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 64 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 1 - weight_decay: None - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-wnut2017/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/roberta-large-mit-movie-trivia
tner
2022-09-26T14:15:35Z
17
1
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/mit_movie_trivia", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-12T10:37:29Z
--- datasets: - tner/mit_movie_trivia metrics: - f1 - precision - recall model-index: - name: tner/roberta-large-mit-movie-trivia results: - task: name: Token Classification type: token-classification dataset: name: tner/mit_movie_trivia type: tner/mit_movie_trivia args: tner/mit_movie_trivia metrics: - name: F1 type: f1 value: 0.7284025200655909 - name: Precision type: precision value: 0.7151330283002881 - name: Recall type: recall value: 0.7421737601125572 - name: F1 (macro) type: f1_macro value: 0.6502255723148889 - name: Precision (macro) type: precision_macro value: 0.6457158565124362 - name: Recall (macro) type: recall_macro value: 0.6578012664661943 - name: F1 (entity span) type: f1_entity_span value: 0.749525289142068 - name: Precision (entity span) type: precision_entity_span value: 0.7359322033898306 - name: Recall (entity span) type: recall_entity_span value: 0.7636299683432993 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/roberta-large-mit-movie-trivia This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tner/mit_movie_trivia](https://huggingface.co/datasets/tner/mit_movie_trivia) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.7284025200655909 - Precision (micro): 0.7151330283002881 - Recall (micro): 0.7421737601125572 - F1 (macro): 0.6502255723148889 - Precision (macro): 0.6457158565124362 - Recall (macro): 0.6578012664661943 The per-entity breakdown of the F1 score on the test set are below: - actor: 0.9557453416149068 - award: 0.41726618705035967 - character_name: 0.7467105263157895 - date: 0.9668674698795181 - director: 0.9148936170212766 - genre: 0.7277079593058049 - opinion: 0.43478260869565216 - origin: 0.28846153846153844 - plot: 0.5132575757575758 - quote: 0.8387096774193549 - relationship: 0.5697329376854599 - soundtrack: 0.42857142857142855 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.718570586211627, 0.7387631655667131] - 95%: [0.7170135350354089, 0.7412372838115527] - F1 (macro): - 90%: [0.718570586211627, 0.7387631655667131] - 95%: [0.7170135350354089, 0.7412372838115527] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-mit-movie-trivia/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/roberta-large-mit-movie-trivia/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/roberta-large-mit-movie-trivia") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/mit_movie_trivia'] - dataset_split: train - dataset_name: None - local_dataset: None - model: roberta-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 64 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 1 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-mit-movie-trivia/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/roberta-large-bc5cdr
tner
2022-09-26T14:13:58Z
12
2
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/bc5cdr", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-09T23:32:35Z
--- datasets: - tner/bc5cdr metrics: - f1 - precision - recall model-index: - name: tner/roberta-large-bc5cdr results: - task: name: Token Classification type: token-classification dataset: name: tner/bc5cdr type: tner/bc5cdr args: tner/bc5cdr metrics: - name: F1 type: f1 value: 0.8840696387239609 - name: Precision type: precision value: 0.8728266269249876 - name: Recall type: recall value: 0.8956060760526048 - name: F1 (macro) type: f1_macro value: 0.8797360472482783 - name: Precision (macro) type: precision_macro value: 0.8684274142690976 - name: Recall (macro) type: recall_macro value: 0.8913672531528037 - name: F1 (entity span) type: f1_entity_span value: 0.886283586595552 - name: Precision (entity span) type: precision_entity_span value: 0.8750124192747144 - name: Recall (entity span) type: recall_entity_span value: 0.8978489142624121 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/roberta-large-bc5cdr This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tner/bc5cdr](https://huggingface.co/datasets/tner/bc5cdr) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.8840696387239609 - Precision (micro): 0.8728266269249876 - Recall (micro): 0.8956060760526048 - F1 (macro): 0.8797360472482783 - Precision (macro): 0.8684274142690976 - Recall (macro): 0.8913672531528037 The per-entity breakdown of the F1 score on the test set are below: - chemical: 0.9256943167187788 - disease: 0.8337777777777777 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.878869501707946, 0.8890795634554179] - 95%: [0.8776790106527211, 0.8897422640465147] - F1 (macro): - 90%: [0.878869501707946, 0.8890795634554179] - 95%: [0.8776790106527211, 0.8897422640465147] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-bc5cdr/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/roberta-large-bc5cdr/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/roberta-large-bc5cdr") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/bc5cdr'] - dataset_split: train - dataset_name: None - local_dataset: None - model: roberta-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 64 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 1 - weight_decay: None - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-bc5cdr/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/roberta-large-conll2003
tner
2022-09-26T14:13:18Z
65
1
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/conll2003", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-09T23:19:06Z
--- datasets: - tner/conll2003 metrics: - f1 - precision - recall model-index: - name: tner/roberta-large-conll2003 results: - task: name: Token Classification type: token-classification dataset: name: tner/conll2003 type: tner/conll2003 args: tner/conll2003 metrics: - name: F1 type: f1 value: 0.924769027716674 - name: Precision type: precision value: 0.9191883855168795 - name: Recall type: recall value: 0.9304178470254958 - name: F1 (macro) type: f1_macro value: 0.9110950780089749 - name: Precision (macro) type: precision_macro value: 0.9030546238754271 - name: Recall (macro) type: recall_macro value: 0.9197126371122274 - name: F1 (entity span) type: f1_entity_span value: 0.9619852164730729 - name: Precision (entity span) type: precision_entity_span value: 0.9562631210636809 - name: Recall (entity span) type: recall_entity_span value: 0.9677762039660056 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/roberta-large-conll2003 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tner/conll2003](https://huggingface.co/datasets/tner/conll2003) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.924769027716674 - Precision (micro): 0.9191883855168795 - Recall (micro): 0.9304178470254958 - F1 (macro): 0.9110950780089749 - Precision (macro): 0.9030546238754271 - Recall (macro): 0.9197126371122274 The per-entity breakdown of the F1 score on the test set are below: - location: 0.9390573401380967 - organization: 0.9107142857142857 - other: 0.8247422680412372 - person: 0.9698664181422801 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.9185189408755685, 0.9309806929048586] - 95%: [0.9174010190551032, 0.9318590917100465] - F1 (macro): - 90%: [0.9185189408755685, 0.9309806929048586] - 95%: [0.9174010190551032, 0.9318590917100465] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-conll2003/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/roberta-large-conll2003/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/roberta-large-conll2003") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/conll2003'] - dataset_split: train - dataset_name: None - local_dataset: None - model: roberta-large - crf: True - max_length: 128 - epoch: 17 - batch_size: 64 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 1 - weight_decay: None - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-conll2003/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
dartkain/newforproject
dartkain
2022-09-26T14:00:12Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-09-26T14:00:12Z
--- license: creativeml-openrail-m ---
montazeri/bert-base-persian-sport-bert-uncased
montazeri
2022-09-26T13:25:26Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-02T06:07:47Z
--- widget: - text: "یوسین بولت دوندهٔ [MASK] دو سرعت و سریعترین انسان جهان است." example_title: "EXAMPLE1" - text: "ایران در مسابقات پاراالمپیک [MASK] شرکت می کند" example_title: "EXAMPLE2" - text: "وحید [MASK] آقای گل فوتسال جهان است" example_title: "EXAMPLE3" - text: "دو تیم ذوب آهن و نفت آبادان در ورزشگاه فولاد [MASK] به مصاف هم رفتند. " example_title: "EXAMPLE4" - text: "حسن یزدانی با شکست [MASK] قهرمان جهان شد " example_title: "EXAMPLE5" - text: "حسین [MASK] دو بار مدال طلای مسابقات المپیک را برای ایران به ارمغان آورده‌است" example_title: "EXAMPLE6" - text: " در مسابقه‌های تکواندو بازی‌های آتن، سهم هر کشور، دو شرکت کننده تعیین شده بود که این سهمیه به هادی ساعی و یوسف [MASK] تعلق گرفت." example_title: "EXAMPLE7" - text: "سرمربی تیم ملی فوتبال ایران [MASK] است" example_title: "EXAMPLE8" --- VarzeshiBERT: Introducing a language model based on Bret to analyze sports content in Persian language Introduction: VarzeshiBERT language model is presented for the purpose of Persian sports analysis in topics related to this linguistic field
wangwangw/123
wangwangw
2022-09-26T12:26:00Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-09-26T12:21:49Z
--- title: Anime Remove Background emoji: 🪄🖼️ colorFrom: indigo colorTo: pink sdk: gradio sdk_version: 3.1.4 app_file: app.py pinned: false license: apache-2.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
jurabi/bert-ner-japanese
jurabi
2022-09-26T12:13:44Z
3,771
10
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ja", "license:cc-by-sa-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-26T07:46:38Z
--- language: - ja widget: - text: 株式会社Jurabiは、東京都台東区に本社を置くIT企業である。 license: cc-by-sa-3.0 --- # BERTによる日本語固有表現抽出のモデル [BertForTokenClassification](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForTokenClassification)を用いて、日本語の文から固有表現を抽出します。 抽出される固有表現のタイプは、以下の8種類です。 - 人名 - 法人名(法人または法人に類する組織) - 政治的組織名(政治的組織名、政党名、政府組織名、行政組織名、軍隊名、国際組織名) - その他の組織名 (競技組織名、公演組織名、その他) - 地名 - 施設名 - 製品名(商品名、番組名、映画名、書籍名、歌名、ブランド名等) - イベント名 ## 使用方法 必要なライブラリ(transformers、unidic_lite、fugashi)をpipなどでインストールして、下記のコードを実行するだけです。 ```python from transformers import BertJapaneseTokenizer, BertForTokenClassification from transformers import pipeline model = BertForTokenClassification.from_pretrained("jurabi/bert-ner-japanese") tokenizer = BertJapaneseTokenizer.from_pretrained("jurabi/bert-ner-japanese") ner_pipeline = pipeline('ner', model=model, tokenizer=tokenizer) ner_pipeline("株式会社Jurabiは、東京都台東区に本社を置くIT企業である。") ``` ## 事前学習モデル 東北大学乾研究室が公開している日本語BERTモデル([cl-tohoku/bert-base-japanese-v2](https://huggingface.co/cl-tohoku/bert-base-japanese-v2)) ## 学習データ ストックマーク株式会社が公開しているWikipediaを用いた日本語の固有表現抽出データセット([stockmarkteam/ner-wikipedia-dataset](https://github.com/stockmarkteam/ner-wikipedia-dataset)) ## ソースコード ファインチューニングに使用したプログラムは、[jurabiinc/bert-ner-japanese](https://github.com/jurabiinc/bert-ner-japanese)で公開しています。 ## ライセンス [Creative Commons Attribution-ShareAlike 3.0](https://creativecommons.org/licenses/by-sa/3.0/)
sd-concepts-library/poring-ragnarok-online
sd-concepts-library
2022-09-26T12:11:17Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-26T12:11:11Z
--- license: mit --- ### Poring Ragnarok Online on Stable Diffusion This is the `<poring-ro>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<poring-ro> 0](https://huggingface.co/sd-concepts-library/poring-ragnarok-online/resolve/main/concept_images/3.jpeg) ![<poring-ro> 1](https://huggingface.co/sd-concepts-library/poring-ragnarok-online/resolve/main/concept_images/1.jpeg) ![<poring-ro> 2](https://huggingface.co/sd-concepts-library/poring-ragnarok-online/resolve/main/concept_images/4.jpeg) ![<poring-ro> 3](https://huggingface.co/sd-concepts-library/poring-ragnarok-online/resolve/main/concept_images/5.jpeg) ![<poring-ro> 4](https://huggingface.co/sd-concepts-library/poring-ragnarok-online/resolve/main/concept_images/0.jpeg) ![<poring-ro> 5](https://huggingface.co/sd-concepts-library/poring-ragnarok-online/resolve/main/concept_images/2.jpeg)
anaasanin/layoutlmv3-finetuned-wildreceipt
anaasanin
2022-09-26T11:06:35Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:wildreceipt", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-26T09:13:35Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - wildreceipt metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-wildreceipt results: - task: name: Token Classification type: token-classification dataset: name: wildreceipt type: wildreceipt config: WildReceipt split: train args: WildReceipt metrics: - name: Precision type: precision value: 0.874880087707277 - name: Recall type: recall value: 0.878491812302188 - name: F1 type: f1 value: 0.8766822301565504 - name: Accuracy type: accuracy value: 0.9253043764396183 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-wildreceipt This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the wildreceipt dataset. It achieves the following results on the evaluation set: - Loss: 0.3111 - Precision: 0.8749 - Recall: 0.8785 - F1: 0.8767 - Accuracy: 0.9253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.32 | 100 | 1.3060 | 0.6792 | 0.3615 | 0.4718 | 0.6966 | | No log | 0.63 | 200 | 0.8842 | 0.6524 | 0.5193 | 0.5783 | 0.7737 | | No log | 0.95 | 300 | 0.6795 | 0.7338 | 0.6772 | 0.7044 | 0.8336 | | No log | 1.26 | 400 | 0.5604 | 0.7719 | 0.7390 | 0.7551 | 0.8629 | | 1.0319 | 1.58 | 500 | 0.4862 | 0.7819 | 0.7618 | 0.7717 | 0.8730 | | 1.0319 | 1.89 | 600 | 0.4365 | 0.7852 | 0.7807 | 0.7829 | 0.8795 | | 1.0319 | 2.21 | 700 | 0.4182 | 0.8162 | 0.8016 | 0.8088 | 0.8897 | | 1.0319 | 2.52 | 800 | 0.3886 | 0.8126 | 0.8196 | 0.8161 | 0.8936 | | 1.0319 | 2.84 | 900 | 0.3637 | 0.8260 | 0.8347 | 0.8303 | 0.9004 | | 0.4162 | 3.15 | 1000 | 0.3482 | 0.8532 | 0.8243 | 0.8385 | 0.9062 | | 0.4162 | 3.47 | 1100 | 0.3474 | 0.8573 | 0.8248 | 0.8407 | 0.9042 | | 0.4162 | 3.79 | 1200 | 0.3325 | 0.8408 | 0.8435 | 0.8421 | 0.9086 | | 0.4162 | 4.1 | 1300 | 0.3262 | 0.8468 | 0.8467 | 0.8468 | 0.9095 | | 0.4162 | 4.42 | 1400 | 0.3237 | 0.8511 | 0.8442 | 0.8477 | 0.9100 | | 0.2764 | 4.73 | 1500 | 0.3156 | 0.8563 | 0.8456 | 0.8509 | 0.9122 | | 0.2764 | 5.05 | 1600 | 0.3032 | 0.8558 | 0.8566 | 0.8562 | 0.9153 | | 0.2764 | 5.36 | 1700 | 0.3120 | 0.8604 | 0.8457 | 0.8530 | 0.9142 | | 0.2764 | 5.68 | 1800 | 0.2976 | 0.8608 | 0.8592 | 0.8600 | 0.9178 | | 0.2764 | 5.99 | 1900 | 0.3056 | 0.8551 | 0.8676 | 0.8613 | 0.9171 | | 0.212 | 6.31 | 2000 | 0.3191 | 0.8528 | 0.8599 | 0.8563 | 0.9147 | | 0.212 | 6.62 | 2100 | 0.3051 | 0.8653 | 0.8635 | 0.8644 | 0.9186 | | 0.212 | 6.94 | 2200 | 0.3022 | 0.8681 | 0.8632 | 0.8657 | 0.9208 | | 0.212 | 7.26 | 2300 | 0.3101 | 0.8605 | 0.8643 | 0.8624 | 0.9178 | | 0.212 | 7.57 | 2400 | 0.3100 | 0.8553 | 0.8693 | 0.8622 | 0.9163 | | 0.1725 | 7.89 | 2500 | 0.3012 | 0.8685 | 0.8723 | 0.8704 | 0.9221 | | 0.1725 | 8.2 | 2600 | 0.3135 | 0.8627 | 0.8756 | 0.8691 | 0.9187 | | 0.1725 | 8.52 | 2700 | 0.3115 | 0.8768 | 0.8671 | 0.8719 | 0.9229 | | 0.1725 | 8.83 | 2800 | 0.3044 | 0.8757 | 0.8708 | 0.8732 | 0.9231 | | 0.1725 | 9.15 | 2900 | 0.3042 | 0.8698 | 0.8658 | 0.8678 | 0.9212 | | 0.142 | 9.46 | 3000 | 0.3095 | 0.8677 | 0.8702 | 0.8690 | 0.9207 | | 0.142 | 9.78 | 3100 | 0.3119 | 0.8686 | 0.8762 | 0.8724 | 0.9229 | | 0.142 | 10.09 | 3200 | 0.3078 | 0.8713 | 0.8774 | 0.8743 | 0.9238 | | 0.142 | 10.41 | 3300 | 0.3123 | 0.8711 | 0.8753 | 0.8732 | 0.9238 | | 0.142 | 10.73 | 3400 | 0.3098 | 0.8688 | 0.8774 | 0.8731 | 0.9232 | | 0.1238 | 11.04 | 3500 | 0.3120 | 0.8737 | 0.8770 | 0.8754 | 0.9247 | | 0.1238 | 11.36 | 3600 | 0.3124 | 0.8760 | 0.8768 | 0.8764 | 0.9251 | | 0.1238 | 11.67 | 3700 | 0.3101 | 0.8770 | 0.8759 | 0.8764 | 0.9254 | | 0.1238 | 11.99 | 3800 | 0.3103 | 0.8767 | 0.8774 | 0.8770 | 0.9255 | | 0.1238 | 12.3 | 3900 | 0.3122 | 0.8740 | 0.8788 | 0.8764 | 0.9251 | | 0.1096 | 12.62 | 4000 | 0.3111 | 0.8749 | 0.8785 | 0.8767 | 0.9253 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.13.0
fxmarty/distilbert-base-uncased-finetuned-sst-2-english-int8-static-dedicated-qdq-everywhere
fxmarty
2022-09-26T10:52:18Z
3
0
transformers
[ "transformers", "onnx", "distilbert", "text-classification", "dataset:sst2", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-26T10:27:48Z
--- license: apache-2.0 datasets: - sst2 - glue --- This model is a fork of https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english , quantized using static Post-Training Quantization (PTQ) with ONNX Runtime and 🤗 Optimum library. It achieves 0.896 accuracy on the validation set. This model uses the ONNX Runtime static quantization configurations `qdq_add_pair_to_weight=True` and `qdq_dedicated_pair=True`, so that **weights are stored in fp32**, and full Quantize + Dequantize nodes are inserted for the weights, compared to the default where weights are stored in int8 and only a Dequantize node is inserted for weights. Moreover, here QDQ pairs have a single output. For more reference, see the documentation: https://github.com/microsoft/onnxruntime/blob/ade0d291749144e1962884a9cfa736d4e1e80ff8/onnxruntime/python/tools/quantization/quantize.py#L432-L441 This is useful to later load a static quantized model in TensorRT. To load this model: ```python from optimum.onnxruntime import ORTModelForSequenceClassification model = ORTModelForSequenceClassification.from_pretrained("fxmarty/distilbert-base-uncased-finetuned-sst-2-english-int8-static-dedicated-qdq-everywhere") ``` ### Weights stored as int8, only DequantizeLinear nodes (model here: https://huggingface.co/fxmarty/distilbert-base-uncased-finetuned-sst-2-english-int8-static) ![DQ only](no_qdq.png) ### Weights stored as fp32, only QuantizeLinear + DequantizeLinear nodes (this model) ![QDQ](qdq.png)
glopez/cifar-10
glopez
2022-09-26T09:56:03Z
235
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:cifar10", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-26T09:51:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cifar10 model-index: - name: cifar-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cifar-10 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the cifar10 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
fxmarty/distilbert-base-uncased-finetuned-sst-2-english-int8-static
fxmarty
2022-09-26T09:00:58Z
5
0
transformers
[ "transformers", "onnx", "distilbert", "text-classification", "dataset:sst2", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-26T08:51:58Z
--- license: apache-2.0 datasets: - sst2 - glue --- This model is a fork of https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english , quantized using static Post-Training Quantization (PTQ) with ONNX Runtime and 🤗 Optimum library. It achieves 0.894 accuracy on the validation set. To load this model: ```python from optimum.onnxruntime import ORTModelForSequenceClassification model = ORTModelForSequenceClassification.from_pretrained("fxmarty/distilbert-base-uncased-finetuned-sst-2-english-int8-static") ```
microsoft/deberta-v2-xlarge
microsoft
2022-09-26T08:59:06Z
104,224
23
transformers
[ "transformers", "pytorch", "tf", "deberta-v2", "deberta", "fill-mask", "en", "arxiv:2006.03654", "license:mit", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - deberta - fill-mask thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This is the DeBERTa V2 xlarge model with 24 layers, 1536 hidden size. The total parameters are 900M and it is trained with 160GB raw data. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp** ```bash cd transformers/examples/text-classification/ export TASK_NAME=mrpc python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\\\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\\\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
microsoft/deberta-base
microsoft
2022-09-26T08:50:43Z
6,398,087
76
transformers
[ "transformers", "pytorch", "tf", "rust", "deberta", "deberta-v1", "fill-mask", "en", "arxiv:2006.03654", "license:mit", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - deberta-v1 - fill-mask thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. #### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and MNLI tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m | |-------------------|-----------|-----------|--------| | RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 | | XLNet-Large | -/- | -/80.2 | 86.8 | | **DeBERTa-base** | 93.1/87.2 | 86.2/83.1 | 88.8 | ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
duchung17/wav2vec2-base-timit-demo-google-colab
duchung17
2022-09-26T08:41:07Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-02T09:42:21Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4049 - Wer: 0.3556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.7319 | 1.0 | 500 | 1.3558 | 0.8890 | | 0.7826 | 2.01 | 1000 | 0.5655 | 0.5398 | | 0.4157 | 3.01 | 1500 | 0.4692 | 0.4682 | | 0.2722 | 4.02 | 2000 | 0.4285 | 0.4193 | | 0.2094 | 5.02 | 2500 | 0.4170 | 0.3949 | | 0.1682 | 6.02 | 3000 | 0.3895 | 0.3751 | | 0.1295 | 7.03 | 3500 | 0.3943 | 0.3628 | | 0.1064 | 8.03 | 4000 | 0.4198 | 0.3648 | | 0.0869 | 9.04 | 4500 | 0.4049 | 0.3556 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
prikarsartam/Olga
prikarsartam
2022-09-26T08:17:24Z
67
0
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-26T04:59:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: prikarsartam/Olga results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # prikarsartam/Olga This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8904 - Validation Loss: 2.6281 - Train Rouge1: 25.0368 - Train Rouge2: 5.6914 - Train Rougel: 19.4806 - Train Rougelsum: 19.4874 - Train Gen Len: 18.7987 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 3.0715 | 2.6854 | 23.4337 | 4.8994 | 18.1348 | 18.1316 | 18.7024 | 0 | | 2.8904 | 2.6281 | 25.0368 | 5.6914 | 19.4806 | 19.4874 | 18.7987 | 1 | ### Framework versions - Transformers 4.22.1 - TensorFlow 2.8.2 - Datasets 2.5.1 - Tokenizers 0.12.1
sahita/lang-VoxLingua107-ecapa
sahita
2022-09-26T08:13:03Z
16
0
speechbrain
[ "speechbrain", "audio-classification", "embeddings", "Language", "Identification", "pytorch", "ECAPA-TDNN", "TDNN", "VoxLingua107", "multilingual", "en", "mr", "dataset:VoxLingua107", "arxiv:2106.04624", "license:apache-2.0", "region:us" ]
audio-classification
2022-09-23T08:53:34Z
--- language: - multilingual - en - mr thumbnail: tags: - audio-classification - speechbrain - embeddings - Language - Identification - pytorch - ECAPA-TDNN - TDNN - VoxLingua107 license: "apache-2.0" datasets: - VoxLingua107 metrics: - Accuracy widget: - example_title: English Sample src: https://cdn-media.huggingface.co/speech_samples/LibriSpeech_61-70968-0000.flac --- # VoxLingua107 ECAPA-TDNN Spoken Language Identification Model ## Model description This is a spoken language recognition model trained on the VoxLingua107 dataset using SpeechBrain. The model uses the ECAPA-TDNN architecture that has previously been used for speaker recognition. However, it uses more fully connected hidden layers after the embedding layer, and cross-entropy loss was used for training. We observed that this improved the performance of extracted utterance embeddings for downstream tasks. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. The model can classify a speech utterance according to the language spoken. It covers 2 different languages ( English, Hindi). ## Intended uses & limitations The model has two uses: - use 'as is' for spoken language recognition - use as an utterance-level feature (embedding) extractor, for creating a dedicated language ID model on your own data The model is trained on automatically collected YouTube data. For more information about the dataset, see [here](http://bark.phon.ioc.ee/voxlingua107/). #### How to use ```python import torchaudio from speechbrain.pretrained import EncoderClassifier language_id = EncoderClassifier.from_hparams(source="sahita/lang-VoxLingua-ecapa", savedir="tmp") # Download Thai language sample from Omniglot and cvert to suitable form signal = language_id.load_audio("https://omniglot.com/soundfiles/udhr/udhr_th.mp3") prediction = language_id.classify_batch(signal) print(prediction) # (tensor([[-2.8646e+01, -3.0346e+01, -2.0748e+01, -2.9562e+01, -2.2187e+01, # -3.2668e+01, -3.6677e+01, -3.3573e+01, -3.2545e+01, -2.4365e+01, # -2.4688e+01, -3.1171e+01, -2.7743e+01, -2.9918e+01, -2.4770e+01, # -3.2250e+01, -2.4727e+01, -2.6087e+01, -2.1870e+01, -3.2821e+01, # -2.2128e+01, -2.2822e+01, -3.0888e+01, -3.3564e+01, -2.9906e+01, # -2.2392e+01, -2.5573e+01, -2.6443e+01, -3.2429e+01, -3.2652e+01, # -3.0030e+01, -2.4607e+01, -2.2967e+01, -2.4396e+01, -2.8578e+01, # -2.5153e+01, -2.8475e+01, -2.6409e+01, -2.5230e+01, -2.7957e+01, # -2.6298e+01, -2.3609e+01, -2.5863e+01, -2.8225e+01, -2.7225e+01, # -3.0486e+01, -2.1185e+01, -2.7938e+01, -3.3155e+01, -1.9076e+01, # -2.9181e+01, -2.2160e+01, -1.8352e+01, -2.5866e+01, -3.3636e+01, # -4.2016e+00, -3.1581e+01, -3.1894e+01, -2.7834e+01, -2.5429e+01, # -3.2235e+01, -3.2280e+01, -2.8786e+01, -2.3366e+01, -2.6047e+01, # -2.2075e+01, -2.3770e+01, -2.2518e+01, -2.8101e+01, -2.5745e+01, # -2.6441e+01, -2.9822e+01, -2.7109e+01, -3.0225e+01, -2.4566e+01, # -2.9268e+01, -2.7651e+01, -3.4221e+01, -2.9026e+01, -2.6009e+01, # -3.1968e+01, -3.1747e+01, -2.8156e+01, -2.9025e+01, -2.7756e+01, # -2.8052e+01, -2.9341e+01, -2.8806e+01, -2.1636e+01, -2.3992e+01, # -2.3794e+01, -3.3743e+01, -2.8332e+01, -2.7465e+01, -1.5085e-02, # -2.9094e+01, -2.1444e+01, -2.9780e+01, -3.6046e+01, -3.7401e+01, # -3.0888e+01, -3.3172e+01, -1.8931e+01, -2.2679e+01, -3.0225e+01, # -2.4995e+01, -2.1028e+01]]), tensor([-0.0151]), tensor([94]), ['th']) # The scores in the prediction[0] tensor can be interpreted as log-likelihoods that # the given utterance belongs to the given language (i.e., the larger the better) # The linear-scale likelihood can be retrieved using the following: print(prediction[1].exp()) # tensor([0.9850]) # The identified language ISO code is given in prediction[3] print(prediction[3]) # ['th: Thai'] # Alternatively, use the utterance embedding extractor: emb = language_id.encode_batch(signal) print(emb.shape) # torch.Size([1, 1, 256]) ``` To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*. #### Limitations and bias Since the model is trained on VoxLingua107, it has many limitations and biases, some of which are: - Probably it's accuracy on smaller languages is quite limited - Probably it works worse on female speech than male speech (because YouTube data includes much more male speech) - Based on subjective experiments, it doesn't work well on speech with a foreign accent - Probably it doesn't work well on children's speech and on persons with speech disorders ## Training data The model is trained on [VoxLingua107](http://bark.phon.ioc.ee/voxlingua107/). VoxLingua107 is a speech dataset for training spoken language identification models. The dataset consists of short speech segments automatically extracted from YouTube videos and labeled according the language of the video title and description, with some post-processing steps to filter out false positives. VoxLingua107 contains data for 107 languages. The total amount of speech in the training set is 6628 hours. The average amount of data per language is 62 hours. However, the real amount per language varies a lot. There is also a seperate development set containing 1609 speech segments from 33 languages, validated by at least two volunteers to really contain the given language. ## Training procedure See the [SpeechBrain recipe](https://github.com/speechbrain/speechbrain/tree/voxlingua107/recipes/VoxLingua107/lang_id). ## Evaluation results Error rate: 6.7% on the VoxLingua107 development dataset #### Referencing SpeechBrain ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ``` ### Referencing VoxLingua107 ```bibtex @inproceedings{valk2021slt, title={{VoxLingua107}: a Dataset for Spoken Language Recognition}, author={J{\"o}rgen Valk and Tanel Alum{\"a}e}, booktitle={Proc. IEEE SLT Workshop}, year={2021}, } ``` #### About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain
Enoch/Unixcoder-Tuned-Code-Search-Py
Enoch
2022-09-26T07:53:37Z
101
2
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-26T06:59:10Z
--- license: apache-2.0 ---
sd-concepts-library/eru-chitanda-casual
sd-concepts-library
2022-09-26T07:39:50Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-26T07:39:45Z
--- license: mit --- ### Eru Chitanda Casual on Stable Diffusion This is the `<c-eru-chitanda>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<c-eru-chitanda> 0](https://huggingface.co/sd-concepts-library/eru-chitanda-casual/resolve/main/concept_images/3.jpeg) ![<c-eru-chitanda> 1](https://huggingface.co/sd-concepts-library/eru-chitanda-casual/resolve/main/concept_images/1.jpeg) ![<c-eru-chitanda> 2](https://huggingface.co/sd-concepts-library/eru-chitanda-casual/resolve/main/concept_images/4.jpeg) ![<c-eru-chitanda> 3](https://huggingface.co/sd-concepts-library/eru-chitanda-casual/resolve/main/concept_images/0.jpeg) ![<c-eru-chitanda> 4](https://huggingface.co/sd-concepts-library/eru-chitanda-casual/resolve/main/concept_images/2.jpeg)
rram12/a2c-AntBulletEnv-v0
rram12
2022-09-26T05:27:04Z
3
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-26T05:26:14Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1851.70 +/- 143.96 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
erikejw/swinv2-small-patch4-window16-256-finetuned-eurosat
erikejw
2022-09-26T03:31:23Z
172
0
transformers
[ "transformers", "pytorch", "tensorboard", "swinv2", "image-classification", "generated_from_trainer", "dataset:imagefolder", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-26T01:44:49Z
--- tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: swinv2-small-patch4-window16-256-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9892592592592593 - name: F1 type: f1 value: 0.9892542163878574 - name: Precision type: precision value: 0.9892896521886161 - name: Recall type: recall value: 0.9892592592592593 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-small-patch4-window16-256-finetuned-eurosat This model is a fine-tuned version of [microsoft/swinv2-small-patch4-window16-256](https://huggingface.co/microsoft/swinv2-small-patch4-window16-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0328 - Accuracy: 0.9893 - F1: 0.9893 - Precision: 0.9893 - Recall: 0.9893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2326 | 1.0 | 253 | 0.0870 | 0.9715 | 0.9716 | 0.9720 | 0.9715 | | 0.1955 | 2.0 | 506 | 0.0576 | 0.9789 | 0.9788 | 0.9794 | 0.9789 | | 0.1229 | 3.0 | 759 | 0.0450 | 0.9837 | 0.9837 | 0.9839 | 0.9837 | | 0.0797 | 4.0 | 1012 | 0.0332 | 0.9889 | 0.9889 | 0.9889 | 0.9889 | | 0.0826 | 5.0 | 1265 | 0.0328 | 0.9893 | 0.9893 | 0.9893 | 0.9893 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
ssharm87/t5-small-finetuned-eli5
ssharm87
2022-09-26T02:38:02Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-25T21:12:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-small-finetuned-eli5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 9.5483 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-eli5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.7596 - Rouge1: 9.5483 - Rouge2: 1.8202 - Rougel: 7.7317 - Rougelsum: 8.8491 - Gen Len: 18.9895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 3.9551 | 1.0 | 68159 | 3.7596 | 9.5483 | 1.8202 | 7.7317 | 8.8491 | 18.9895 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Ahmed007/BERT
Ahmed007
2022-09-26T02:32:44Z
195
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-26T02:25:43Z
--- tags: - generated_from_trainer model-index: - name: BERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sahajrajmalla/patrakar
sahajrajmalla
2022-09-26T02:06:00Z
107
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "nepali-nlp", "nepali-news-classificiation", "nlp", "deep-learning", "transfer-learning", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-15T07:05:22Z
--- license: mit tags: - nepali-nlp - nepali-news-classificiation - nlp - transformers - deep-learning - pytorch - transfer-learning model-index: - name: patrakar results: [] widget: - text: "नेकपा (एमाले)का नेता गोकर्णराज विष्टले सहमति र सहकार्यबाटै संविधान बनाउने तथा जनताको जीवनस्तर उकास्ने काम गर्नु नै अबको मुख्य काम रहेको बताएका छन् ।" example_title: "Example 1" - text: "राजनीतिक स्थिरता नहुँदा विकास निर्माणले गति लिन सकेन ।" example_title: "Example 2" - text: "ठूलो उद्योग खोल्न महिलालाई ऋण दिइन्न" example_title: "Example 3" --- # patrakar/ पत्रकार (Nepali News Classifier) Last updated: September 2022 ## Model Details **patrakar** is a DistilBERT pre-trained sequence classification transformer model which classifies Nepali language news into 9 newsgroup category, such as: - politics - opinion - bank - entertainment - economy - health - literature - sports - tourism It is developed by Sahaj Raj Malla to be generally usefuly for general public and so that others could explore them for commercial and scientific purposes. This model was trained on [Sakonii/distilgpt2-nepali](https://huggingface.co/Sakonii/distilgpt2-nepali) model. It achieves the following results on the test dataset: | Total Number of samples | Accuracy(%) |:-------------:|:---------------: | 5670 | 95.475 ### Model date September 2022 ### Model type Sequence classification model ### Model version 1.0.0 ## Model Usage This model can be used directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python from transformers import pipeline, set_seed set_seed(42) model_name = "sahajrajmalla/patrakar" classifier = pipeline('text-classification', model=model_name) text = "नेकपा (एमाले)का नेता गोकर्णराज विष्टले सहमति र सहकार्यबाटै संविधान बनाउने तथा जनताको जीवनस्तर उकास्ने काम गर्नु नै अबको मुख्य काम रहेको बताएका छन् ।" classifier(text) ``` Here is how we can use the model to get the features of a given text in PyTorch: ```python !pip install transformers torch from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification import torch import torch.nn.functional as F # initializing model and tokenizer model_name = "sahajrajmalla/patrakar" # downloading tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) # downloading model model = AutoModelForSequenceClassification.from_pretrained(model_name) def tokenize_function(examples): return tokenizer(examples["data"], padding="max_length", truncation=True) # predicting with the model sequence_i_want_to_predict = "राजनीतिक स्थिरता नहुँदा विकास निर्माणले गति लिन सकेन" # initializing our labels label_list = [ "bank", "economy", "entertainment", "health", "literature", "opinion", "politics", "sports", "tourism" ] batch = tokenizer(sequence_i_want_to_predict, padding=True, truncation=True, max_length=512, return_tensors='pt') with torch.no_grad(): outputs = model(**batch) predictions = F.softmax(outputs.logits, dim=1) labels = torch.argmax(predictions, dim=1) print(f"The sequence: \n\n {word_i_want_to_predict} \n\n is predicted to be of newsgroup {label_list[labels.item()]}") ``` ## Training data This model is trained on 50,945 rows of Nepali language news grouped [dataset](https://www.kaggle.com/competitions/text-it-meet-22/data?select=train.csv) found on Kaggle which was also used in IT Meet 2022 Text challenge. ## Framework versions - Transformers 4.20.1 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.11.6
ramsformers/shoes-brand
ramsformers
2022-09-26T01:56:03Z
226
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-26T01:55:52Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: shoes-brand results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6716417670249939 --- # shoes-brand Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### adidas shoes ![adidas shoes](images/adidas_shoes.jpg) #### nike shoes ![nike shoes](images/nike_shoes.jpg) #### puma shoes ![puma shoes](images/puma_shoes.jpg)
jamiehuang/t5-small-finetuned-xsum
jamiehuang
2022-09-26T01:29:12Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-24T21:08:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 13.2962 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.6746 - Rouge1: 13.2962 - Rouge2: 2.0081 - Rougel: 10.6529 - Rougelsum: 12.049 - Gen Len: 18.9985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.8901 | 1.0 | 17040 | 3.6746 | 13.2962 | 2.0081 | 10.6529 | 12.049 | 18.9985 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
ammarpl/t5-base-finetuned-elif-attempt1
ammarpl
2022-09-26T01:14:32Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-25T21:01:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-base-finetuned-elif-attempt1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 3.9675 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-elif-attempt1 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 5.3889 - Rouge1: 3.9675 - Rouge2: 0.248 - Rougel: 3.454 - Rougelsum: 3.765 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 5.8271 | 1.0 | 17040 | 5.3889 | 3.9675 | 0.248 | 3.454 | 3.765 | 19.0 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
CoreyMorris/a2c-AntBulletEnv-v0-old
CoreyMorris
2022-09-26T00:52:15Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-26T00:51:18Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 951.33 +/- 234.16 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Bistolero/nl_ge_DP_6BX5_3
Bistolero
2022-09-25T23:49:17Z
111
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:gem", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-25T23:30:36Z
--- tags: - generated_from_trainer datasets: - gem model-index: - name: nl_ge_DP_6BX5_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nl_ge_DP_6BX5_3 This model was trained from scratch on the gem dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 25 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
amirabbas/wav2vec2-large-xls-r-300m-turkish-demo-colab-1
amirabbas
2022-09-25T23:11:58Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-25T19:40:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-demo-colab-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-demo-colab-1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3487 - Wer: 0.3000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.0425 | 3.67 | 400 | 0.7168 | 0.6650 | | 0.4365 | 7.34 | 800 | 0.4498 | 0.4695 | | 0.2103 | 11.01 | 1200 | 0.3975 | 0.3840 | | 0.1257 | 14.68 | 1600 | 0.3655 | 0.3341 | | 0.0828 | 18.35 | 2000 | 0.3487 | 0.3000 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
kkotkar1/t5-small-t5-base
kkotkar1
2022-09-25T22:49:52Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-25T16:33:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 model-index: - name: t5-small-t5-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-t5-base This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
BumblingOrange/Shalltear_Bloodfallen
BumblingOrange
2022-09-25T22:25:26Z
0
1
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-09-25T19:31:46Z
--- license: bigscience-bloom-rail-1.0 --- Uses the Waifu Diffusion model as a base, linked here: https://huggingface.co/hakurei/waifu-diffusion Custom Dreambooth model based off of the likeness of Shalltear Bloodfallen from Overlord. Dataset was 15 training images, and 13 regularization images. Trained for 3000 steps. To use the model, simply insert the name 'Shalltear Bloodfallen' into your prompts. The class token used was 'vampire_girl_hair_bow_white_hair'. Append the class token after Shalltear Bloodfallen for stronger result. EX: "A photo of Shalltear Bloodfallen vampire_girl_hair_bow_white_hair"
gur509/t5-small-finetuned-eli5
gur509
2022-09-25T22:23:43Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-24T23:38:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-small-finetuned-eli5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 15.1689 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-eli5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.5993 - Rouge1: 15.1689 - Rouge2: 2.1762 - Rougel: 12.7542 - Rougelsum: 14.0214 - Gen Len: 18.9988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.8011 | 1.0 | 17040 | 3.5993 | 15.1689 | 2.1762 | 12.7542 | 14.0214 | 18.9988 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/remert
sd-concepts-library
2022-09-25T20:50:59Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-25T20:50:05Z
--- license: mit --- ### remert on Stable Diffusion This is the `<Remert>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`:
quecopiones/distillbert-base-spanish-uncased-finetuned-full-suicidios
quecopiones
2022-09-25T19:52:22Z
90
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-25T14:14:14Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distillbert-base-spanish-uncased-finetuned-full-suicidios results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distillbert-base-spanish-uncased-finetuned-full-suicidios This model is a fine-tuned version of [CenIA/distillbert-base-spanish-uncased](https://huggingface.co/CenIA/distillbert-base-spanish-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0825 - Accuracy: 0.9814 - F1: 0.9814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.2059 | 1.0 | 32058 | 0.1142 | 0.9694 | 0.9694 | | 0.1229 | 2.0 | 64116 | 0.0825 | 0.9814 | 0.9814 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sharonpeng/distilbert-base-uncased-finetuned-squad
sharonpeng
2022-09-25T18:31:46Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-06T06:04:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.215 | 1.0 | 5533 | 1.1619 | | 0.9533 | 2.0 | 11066 | 1.1257 | | 0.7566 | 3.0 | 16599 | 1.1456 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
amirabbas/wav2vec2-large-xls-r-300m-turkish-demo-colab
amirabbas
2022-09-25T18:23:15Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-25T12:17:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
kevinbram/nyfin
kevinbram
2022-09-25T17:13:57Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-25T15:28:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: nyfin results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nyfin This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.26 | 1.0 | 5533 | 1.2155 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
simecek/DNADebertaK6_Worm
simecek
2022-09-25T14:28:30Z
162
0
transformers
[ "transformers", "pytorch", "deberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-19T08:02:15Z
--- tags: - generated_from_trainer model-index: - name: DNADebertaK6_Worm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DNADebertaK6_Worm This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 600001 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:------:|:---------------:| | 4.5653 | 7.26 | 20000 | 1.8704 | | 1.8664 | 14.53 | 40000 | 1.7762 | | 1.7803 | 21.79 | 60000 | 1.7429 | | 1.7502 | 29.06 | 80000 | 1.7305 | | 1.7329 | 36.32 | 100000 | 1.7185 | | 1.7191 | 43.59 | 120000 | 1.7073 | | 1.7065 | 50.85 | 140000 | 1.6925 | | 1.6945 | 58.12 | 160000 | 1.6877 | | 1.6862 | 65.38 | 180000 | 1.6792 | | 1.6788 | 72.65 | 200000 | 1.6712 | | 1.6729 | 79.91 | 220000 | 1.6621 | | 1.6679 | 87.18 | 240000 | 1.6608 | | 1.6632 | 94.44 | 260000 | 1.6586 | | 1.6582 | 101.71 | 280000 | 1.6585 | | 1.6551 | 108.97 | 300000 | 1.6564 | | 1.6507 | 116.24 | 320000 | 1.6449 | | 1.6481 | 123.5 | 340000 | 1.6460 | | 1.6448 | 130.77 | 360000 | 1.6411 | | 1.6425 | 138.03 | 380000 | 1.6408 | | 1.6387 | 145.3 | 400000 | 1.6358 | | 1.6369 | 152.56 | 420000 | 1.6373 | | 1.6337 | 159.83 | 440000 | 1.6364 | | 1.6312 | 167.09 | 460000 | 1.6303 | | 1.6298 | 174.36 | 480000 | 1.6346 | | 1.6273 | 181.62 | 500000 | 1.6272 | | 1.6244 | 188.88 | 520000 | 1.6268 | | 1.6225 | 196.15 | 540000 | 1.6295 | | 1.6207 | 203.41 | 560000 | 1.6206 | | 1.6186 | 210.68 | 580000 | 1.6277 | | 1.6171 | 217.94 | 600000 | 1.6161 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
simecek/DNADebertaK6_Arabidopsis
simecek
2022-09-25T14:27:59Z
178
1
transformers
[ "transformers", "pytorch", "deberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-19T07:42:31Z
--- tags: - generated_from_trainer model-index: - name: DNADebertaK6_Arabidopsis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DNADebertaK6_Arabidopsis This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 600001 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:------:|:---------------:| | 4.6174 | 6.12 | 20000 | 1.9257 | | 1.8873 | 12.24 | 40000 | 1.8098 | | 1.8213 | 18.36 | 60000 | 1.7952 | | 1.8042 | 24.48 | 80000 | 1.7888 | | 1.7945 | 30.6 | 100000 | 1.7861 | | 1.7873 | 36.72 | 120000 | 1.7772 | | 1.782 | 42.84 | 140000 | 1.7757 | | 1.7761 | 48.96 | 160000 | 1.7632 | | 1.7714 | 55.08 | 180000 | 1.7685 | | 1.7677 | 61.2 | 200000 | 1.7568 | | 1.7637 | 67.32 | 220000 | 1.7570 | | 1.7585 | 73.44 | 240000 | 1.7442 | | 1.7554 | 79.56 | 260000 | 1.7556 | | 1.7515 | 85.68 | 280000 | 1.7505 | | 1.7483 | 91.8 | 300000 | 1.7463 | | 1.745 | 97.92 | 320000 | 1.7425 | | 1.7427 | 104.04 | 340000 | 1.7425 | | 1.7398 | 110.16 | 360000 | 1.7359 | | 1.7377 | 116.28 | 380000 | 1.7369 | | 1.7349 | 122.4 | 400000 | 1.7340 | | 1.7325 | 128.52 | 420000 | 1.7313 | | 1.731 | 134.64 | 440000 | 1.7256 | | 1.7286 | 140.76 | 460000 | 1.7238 | | 1.7267 | 146.88 | 480000 | 1.7324 | | 1.7247 | 153.0 | 500000 | 1.7247 | | 1.7228 | 159.12 | 520000 | 1.7185 | | 1.7209 | 165.24 | 540000 | 1.7166 | | 1.7189 | 171.36 | 560000 | 1.7206 | | 1.7181 | 177.48 | 580000 | 1.7190 | | 1.7159 | 183.6 | 600000 | 1.7194 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
apipond/ppo-LunarLander-v2
apipond
2022-09-25T13:37:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-25T13:37:18Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 226.89 +/- 17.19 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jamesesguerra/mt5-small-finetuned-1.0.0
jamesesguerra
2022-09-25T13:01:37Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-25T02:38:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-1.0.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-1.0.0 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8753 - Rouge1: 57.3754 - Rouge2: 52.6902 - Rougel: 56.5013 - Rougelsum: 56.9205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 7.598 | 1.0 | 339 | 1.1360 | 57.9291 | 52.9851 | 56.8619 | 57.36 | | 1.6607 | 2.0 | 678 | 0.9274 | 58.4006 | 53.715 | 57.3505 | 57.8747 | | 1.3212 | 3.0 | 1017 | 0.8753 | 57.3754 | 52.6902 | 56.5013 | 56.9205 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
quecopiones/distillbert-base-spanish-uncased-finetuned-suicidios
quecopiones
2022-09-25T12:57:54Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T22:14:32Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distillbert-base-spanish-uncased-finetuned-suicidios results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distillbert-base-spanish-uncased-finetuned-suicidios This model is a fine-tuned version of [CenIA/distillbert-base-spanish-uncased](https://huggingface.co/CenIA/distillbert-base-spanish-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2970 - Accuracy: 0.9483 - F1: 0.9483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.3543 | 1.0 | 9618 | 0.2688 | 0.9422 | 0.9422 | | 0.1726 | 2.0 | 19236 | 0.2970 | 0.9483 | 0.9483 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
weijiahaha/t5-small-summarization
weijiahaha
2022-09-25T12:21:01Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-26T07:38:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: t5-small-summarization results: [] --- # t5-small-summarization This model is a fine-tuned version of t5-small (https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6477 ## Model description The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9195 | 1.0 | 718 | 1.6477 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
shmuhammad/distilbert-base-uncased-distilled-clinc
shmuhammad
2022-09-25T11:06:16Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-18T14:37:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9487096774193549 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3060 - Accuracy: 0.9487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.643 | 1.0 | 318 | 1.9110 | 0.7452 | | 1.4751 | 2.0 | 636 | 0.9678 | 0.8606 | | 0.7736 | 3.0 | 954 | 0.5578 | 0.9168 | | 0.4652 | 4.0 | 1272 | 0.4081 | 0.9352 | | 0.3364 | 5.0 | 1590 | 0.3538 | 0.9442 | | 0.2801 | 6.0 | 1908 | 0.3294 | 0.9465 | | 0.2515 | 7.0 | 2226 | 0.3165 | 0.9471 | | 0.2366 | 8.0 | 2544 | 0.3107 | 0.9487 | | 0.2292 | 9.0 | 2862 | 0.3069 | 0.9490 | | 0.2247 | 10.0 | 3180 | 0.3060 | 0.9487 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1.post200 - Datasets 1.16.1 - Tokenizers 0.10.3