modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-04 18:27:43
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
539 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-04 18:27:26
card
stringlengths
11
1.01M
Jasmine8596/distilbert-finetuned-imdb
Jasmine8596
2022-09-09T02:41:29Z
70
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-08T23:25:43Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Jasmine8596/distilbert-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Jasmine8596/distilbert-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8423 - Validation Loss: 2.6128 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -687, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8423 | 2.6128 | 0 | ### Framework versions - Transformers 4.22.0.dev0 - TensorFlow 2.8.2 - Tokenizers 0.12.1
UmberH/distilbert-base-uncased-finetuned-cola
UmberH
2022-09-09T01:53:53Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-08T20:21:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5456062114587601 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8381 - Matthews Correlation: 0.5456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5245 | 1.0 | 535 | 0.5432 | 0.4249 | | 0.3514 | 2.0 | 1070 | 0.5075 | 0.4874 | | 0.2368 | 3.0 | 1605 | 0.5554 | 0.5403 | | 0.1712 | 4.0 | 2140 | 0.7780 | 0.5246 | | 0.1254 | 5.0 | 2675 | 0.8381 | 0.5456 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/bonzi-monkey
sd-concepts-library
2022-09-09T00:03:11Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-09T00:03:05Z
--- license: mit --- ### bonzi monkey on Stable Diffusion This is the `<bonzi>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<bonzi> 0](https://huggingface.co/sd-concepts-library/bonzi-monkey/resolve/main/concept_images/1.jpeg) ![<bonzi> 1](https://huggingface.co/sd-concepts-library/bonzi-monkey/resolve/main/concept_images/3.jpeg) ![<bonzi> 2](https://huggingface.co/sd-concepts-library/bonzi-monkey/resolve/main/concept_images/2.jpeg) ![<bonzi> 3](https://huggingface.co/sd-concepts-library/bonzi-monkey/resolve/main/concept_images/0.jpeg) ![<bonzi> 4](https://huggingface.co/sd-concepts-library/bonzi-monkey/resolve/main/concept_images/4.jpeg)
SebastianS/MetalSebastian
SebastianS
2022-09-09T00:00:23Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-07T15:25:14Z
--- tags: - conversational --- # Produced with ⚙️ by [mimicbot](https://github.com/CakeCrusher/mimicbot)🤖
sd-concepts-library/shrunken-head
sd-concepts-library
2022-09-08T22:23:57Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-08T22:23:46Z
--- license: mit --- ### shrunken head on Stable Diffusion This is the `<shrunken-head>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<shrunken-head> 0](https://huggingface.co/sd-concepts-library/shrunken-head/resolve/main/concept_images/1.jpeg) ![<shrunken-head> 1](https://huggingface.co/sd-concepts-library/shrunken-head/resolve/main/concept_images/2.jpeg) ![<shrunken-head> 2](https://huggingface.co/sd-concepts-library/shrunken-head/resolve/main/concept_images/3.jpeg) ![<shrunken-head> 3](https://huggingface.co/sd-concepts-library/shrunken-head/resolve/main/concept_images/0.jpeg)
IIIT-L/xlm-roberta-base-finetuned-combined-DS
IIIT-L
2022-09-08T21:22:20Z
114
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-08T20:48:41Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xlm-roberta-base-finetuned-combined-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-combined-DS This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0232 - Accuracy: 0.6362 - Precision: 0.6193 - Recall: 0.6204 - F1: 0.6160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.1187640010910775e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0408 | 1.0 | 711 | 1.0206 | 0.5723 | 0.5597 | 0.5122 | 0.4897 | | 0.9224 | 2.0 | 1422 | 0.9092 | 0.5695 | 0.5745 | 0.5610 | 0.5572 | | 0.8395 | 3.0 | 2133 | 0.8878 | 0.6088 | 0.6083 | 0.6071 | 0.5981 | | 0.7418 | 3.99 | 2844 | 0.8828 | 0.6088 | 0.6009 | 0.6068 | 0.5936 | | 0.6484 | 4.99 | 3555 | 0.9636 | 0.6355 | 0.6235 | 0.6252 | 0.6184 | | 0.5644 | 5.99 | 4266 | 1.0232 | 0.6362 | 0.6193 | 0.6204 | 0.6160 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
PrimeQA/tydiqa-ft-listqa_nq-task-xlm-roberta-large
PrimeQA
2022-09-08T21:12:24Z
37
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "MRC", "TyDiQA", "Natural Questions List", "xlm-roberta-large", "multilingual", "arxiv:1911.02116", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-09-07T14:45:48Z
--- license: apache-2.0 tags: - MRC - TyDiQA - Natural Questions List - xlm-roberta-large language: - multilingual --- *Task*: MRC # Model description An XLM-RoBERTa reading comprehension model for List Question Answering using a fine-tuned [TyDi xlm-roberta-large](https://huggingface.co/PrimeQA/tydiqa-primary-task-xlm-roberta-large) model that is further fine-tuned on the list questions in the [Natural Questions](https://huggingface.co/datasets/natural_questions) dataset. ## Intended uses & limitations You can use the raw model for the reading comprehension task. Biases associated with the pre-existing language model, xlm-roberta-large, that we used may be present in our fine-tuned model, tydiqa-ft-listqa_nq-task-xlm-roberta-large. ## Usage You can use this model directly with the [PrimeQA](https://github.com/primeqa/primeqa) pipeline for reading comprehension [listqa.ipynb](https://github.com/primeqa/primeqa/blob/main/notebooks/mrc/listqa.ipynb). ### BibTeX entry and citation info ```bibtex @article{kwiatkowski-etal-2019-natural, title = "Natural Questions: A Benchmark for Question Answering Research", author = "Kwiatkowski, Tom and Palomaki, Jennimaria and Redfield, Olivia and Collins, Michael and Parikh, Ankur and Alberti, Chris and Epstein, Danielle and Polosukhin, Illia and Devlin, Jacob and Lee, Kenton and Toutanova, Kristina and Jones, Llion and Kelcey, Matthew and Chang, Ming-Wei and Dai, Andrew M. and Uszkoreit, Jakob and Le, Quoc and Petrov, Slav", journal = "Transactions of the Association for Computational Linguistics", volume = "7", year = "2019", address = "Cambridge, MA", publisher = "MIT Press", url = "https://aclanthology.org/Q19-1026", doi = "10.1162/tacl_a_00276", pages = "452--466", } ``` ```bibtex @article{DBLP:journals/corr/abs-1911-02116, author = {Alexis Conneau and Kartikay Khandelwal and Naman Goyal and Vishrav Chaudhary and Guillaume Wenzek and Francisco Guzm{\'{a}}n and Edouard Grave and Myle Ott and Luke Zettlemoyer and Veselin Stoyanov}, title = {Unsupervised Cross-lingual Representation Learning at Scale}, journal = {CoRR}, volume = {abs/1911.02116}, year = {2019}, url = {http://arxiv.org/abs/1911.02116}, eprinttype = {arXiv}, eprint = {1911.02116}, timestamp = {Mon, 11 Nov 2019 18:38:09 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1911-02116.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
GItaf/bert2bert-no-cross-attn-decoder
GItaf
2022-09-08T20:26:21Z
49
0
transformers
[ "transformers", "pytorch", "bert", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-05T08:11:45Z
--- tags: - generated_from_trainer - text-generation widget: parameters: - max_new_tokens = 100 model-index: - name: bert-base-uncased-bert-base-uncased-finetuned-mbti-0909 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-bert-base-uncased-finetuned-mbti-0909 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.0549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.2244 | 1.0 | 1735 | 5.7788 | | 4.8483 | 2.0 | 3470 | 5.7647 | | 4.7578 | 3.0 | 5205 | 5.9016 | | 4.5606 | 4.0 | 6940 | 5.9895 | | 4.4314 | 5.0 | 8675 | 6.0549 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
GItaf/bert-base-uncased-bert-base-uncased-finetuned-mbti-0909
GItaf
2022-09-08T20:12:28Z
12
0
transformers
[ "transformers", "pytorch", "bert", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-08T16:52:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-bert-base-uncased-finetuned-mbti-0909 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-bert-base-uncased-finetuned-mbti-0909 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 4.3136 - eval_runtime: 23.6133 - eval_samples_per_second: 73.475 - eval_steps_per_second: 9.19 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
lewtun/dummy-setfit-model
lewtun
2022-09-08T19:53:17Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-08T19:53:10Z
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/paraphrase-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-mpnet-base-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-mpnet-base-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sd-concepts-library/line-art
sd-concepts-library
2022-09-08T19:30:01Z
0
47
null
[ "license:mit", "region:us" ]
null
2022-09-08T19:29:47Z
--- license: mit --- ### Line Art on Stable Diffusion This is the `<line-art>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<line-art> 0](https://huggingface.co/sd-concepts-library/line-art/resolve/main/concept_images/0.jpeg) ![<line-art> 1](https://huggingface.co/sd-concepts-library/line-art/resolve/main/concept_images/1.jpeg) ![<line-art> 2](https://huggingface.co/sd-concepts-library/line-art/resolve/main/concept_images/2.jpeg) ![<line-art> 3](https://huggingface.co/sd-concepts-library/line-art/resolve/main/concept_images/3.jpeg) ![<line-art> 4](https://huggingface.co/sd-concepts-library/line-art/resolve/main/concept_images/4.jpeg) ![<line-art> 5](https://huggingface.co/sd-concepts-library/line-art/resolve/main/concept_images/5.jpeg) ![<line-art> 6](https://huggingface.co/sd-concepts-library/line-art/resolve/main/concept_images/6.jpeg) Images via Freepik.com
ighita/ddpm-butterflies-128
ighita
2022-09-08T19:17:27Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-06T10:19:48Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/ighita/ddpm-butterflies-128/tensorboard?#scalars)
hashb/darknet-yolov4-object-detection
hashb
2022-09-08T19:11:58Z
0
1
null
[ "arxiv:2004.10934", "license:mit", "region:us" ]
null
2022-09-08T18:36:21Z
--- license: mit --- [![Darknet Continuous Integration](https://github.com/AlexeyAB/darknet/workflows/Darknet%20Continuous%20Integration/badge.svg)](https://github.com/AlexeyAB/darknet/actions?query=workflow%3A%22Darknet+Continuous+Integration%22) ## Model YOLOv7 surpasses all known object detectors in both speed and accuracy in the range from 5 FPS to 160 FPS and has the highest accuracy 56.8% AP among all known real-time object detectors with 30 FPS or higher on GPU V100. YOLOv7-E6 object detector (56 FPS V100, 55.9% AP) outperforms both transformer-based detector SWIN-L Cascade-Mask R-CNN (9.2 FPS A100, 53.9% AP) by 509% in speed and 2% in accuracy, and convolutional-based detector ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) by 551% in speed and 0.7% AP in accuracy, as well as YOLOv7 outperforms: YOLOR, YOLOX, Scaled-YOLOv4, YOLOv5, DETR, Deformable DETR, DINO-5scale-R50, ViT-Adapter-B and many other object detectors in speed and accuracy. ## How to use: ``` # clone the repo git clone https://huggingface.co/hashb/darknet-yolov4-object-detection # open file darknet-yolov4-object-detection.ipynb and run in colab ``` ## Citation ``` @misc{bochkovskiy2020yolov4, title={YOLOv4: Optimal Speed and Accuracy of Object Detection}, author={Alexey Bochkovskiy and Chien-Yao Wang and Hong-Yuan Mark Liao}, year={2020}, eprint={2004.10934}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ``` @InProceedings{Wang_2021_CVPR, author = {Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark}, title = {{Scaled-YOLOv4}: Scaling Cross Stage Partial Network}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2021}, pages = {13029-13038} } ```
sd-concepts-library/art-brut
sd-concepts-library
2022-09-08T18:40:33Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-08T18:40:22Z
--- license: mit --- ### art brut on Stable Diffusion This is the `<art-brut>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<art-brut> 0](https://huggingface.co/sd-concepts-library/art-brut/resolve/main/concept_images/1.jpeg) ![<art-brut> 1](https://huggingface.co/sd-concepts-library/art-brut/resolve/main/concept_images/2.jpeg) ![<art-brut> 2](https://huggingface.co/sd-concepts-library/art-brut/resolve/main/concept_images/3.jpeg) ![<art-brut> 3](https://huggingface.co/sd-concepts-library/art-brut/resolve/main/concept_images/0.jpeg)
sd-concepts-library/nebula
sd-concepts-library
2022-09-08T17:48:26Z
0
23
null
[ "license:mit", "region:us" ]
null
2022-09-08T17:48:21Z
--- license: mit --- ### Nebula on Stable Diffusion This is the `<nebula>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<nebula> 0](https://huggingface.co/sd-concepts-library/nebula/resolve/main/concept_images/5.jpeg) ![<nebula> 1](https://huggingface.co/sd-concepts-library/nebula/resolve/main/concept_images/4.jpeg) ![<nebula> 2](https://huggingface.co/sd-concepts-library/nebula/resolve/main/concept_images/1.jpeg) ![<nebula> 3](https://huggingface.co/sd-concepts-library/nebula/resolve/main/concept_images/2.jpeg) ![<nebula> 4](https://huggingface.co/sd-concepts-library/nebula/resolve/main/concept_images/3.jpeg) ![<nebula> 5](https://huggingface.co/sd-concepts-library/nebula/resolve/main/concept_images/0.jpeg)
danielwang-hads/wav2vec2-base-timit-demo-google-colab
danielwang-hads
2022-09-08T17:45:13Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-30T18:26:43Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5079 - Wer: 0.3365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.4933 | 1.0 | 500 | 1.7711 | 0.9978 | | 0.8658 | 2.01 | 1000 | 0.6262 | 0.5295 | | 0.4405 | 3.01 | 1500 | 0.4841 | 0.4845 | | 0.3062 | 4.02 | 2000 | 0.4897 | 0.4215 | | 0.233 | 5.02 | 2500 | 0.4326 | 0.4101 | | 0.1896 | 6.02 | 3000 | 0.4924 | 0.4078 | | 0.1589 | 7.03 | 3500 | 0.4430 | 0.3896 | | 0.1391 | 8.03 | 4000 | 0.4334 | 0.3889 | | 0.1216 | 9.04 | 4500 | 0.4691 | 0.3828 | | 0.1063 | 10.04 | 5000 | 0.4726 | 0.3705 | | 0.0992 | 11.04 | 5500 | 0.4333 | 0.3690 | | 0.0872 | 12.05 | 6000 | 0.4986 | 0.3771 | | 0.0829 | 13.05 | 6500 | 0.4903 | 0.3685 | | 0.0713 | 14.06 | 7000 | 0.5293 | 0.3655 | | 0.068 | 15.06 | 7500 | 0.5039 | 0.3612 | | 0.0621 | 16.06 | 8000 | 0.5314 | 0.3665 | | 0.0571 | 17.07 | 8500 | 0.5038 | 0.3572 | | 0.0585 | 18.07 | 9000 | 0.4718 | 0.3550 | | 0.0487 | 19.08 | 9500 | 0.5482 | 0.3626 | | 0.0459 | 20.08 | 10000 | 0.5239 | 0.3545 | | 0.0419 | 21.08 | 10500 | 0.5096 | 0.3473 | | 0.0362 | 22.09 | 11000 | 0.5222 | 0.3500 | | 0.0331 | 23.09 | 11500 | 0.5062 | 0.3489 | | 0.0352 | 24.1 | 12000 | 0.4913 | 0.3459 | | 0.0315 | 25.1 | 12500 | 0.4701 | 0.3412 | | 0.028 | 26.1 | 13000 | 0.5178 | 0.3402 | | 0.0255 | 27.11 | 13500 | 0.5168 | 0.3405 | | 0.0228 | 28.11 | 14000 | 0.5154 | 0.3368 | | 0.0232 | 29.12 | 14500 | 0.5079 | 0.3365 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
sd-concepts-library/apulian-rooster-v0-1
sd-concepts-library
2022-09-08T17:31:44Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-08T16:14:06Z
--- license: mit --- ### apulian-rooster-v0.1 on Stable Diffusion -- # Inspired by the design of the Galletto (rooster) typical of ceramics and pottery made in Grottaglie, Puglia (Italy). This is the `<apulian-rooster-v0.1>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<apulian-rooster-v0.1> 0](https://huggingface.co/sd-concepts-library/apulian-rooster-v0-1/resolve/main/concept_images/5.jpeg) ![<apulian-rooster-v0.1> 1](https://huggingface.co/sd-concepts-library/apulian-rooster-v0-1/resolve/main/concept_images/4.jpeg) ![<apulian-rooster-v0.1> 2](https://huggingface.co/sd-concepts-library/apulian-rooster-v0-1/resolve/main/concept_images/1.jpeg) ![<apulian-rooster-v0.1> 3](https://huggingface.co/sd-concepts-library/apulian-rooster-v0-1/resolve/main/concept_images/2.jpeg) ![<apulian-rooster-v0.1> 4](https://huggingface.co/sd-concepts-library/apulian-rooster-v0-1/resolve/main/concept_images/3.jpeg) ![<apulian-rooster-v0.1> 5](https://huggingface.co/sd-concepts-library/apulian-rooster-v0-1/resolve/main/concept_images/0.jpeg)
sd-concepts-library/fractal
sd-concepts-library
2022-09-08T17:04:23Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-09-08T16:58:04Z
--- license: mit --- ### fractal on Stable Diffusion This is the `<fractal>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](#) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](#). The images composing the token are here: https://huggingface.co/datasets/Nbardy/Fractal-photos Thank you to the photographers. Who graciously published these photos for free non-commercial use. Each photo has the artists name in the dataset hosted on hugging face
MultiTrickFox/bloom-2b5_Zen
MultiTrickFox
2022-09-08T16:55:59Z
14
2
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-16T00:37:54Z
##### ## Bloom2.5B Zen ## ##### Bloom (2.5 B) Scientific Model fine-tuned on Zen knowledge ##### ## Usage ## ##### ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("MultiTrickFox/bloom-2b5_Zen") model = AutoModelForCausalLM.from_pretrained("MultiTrickFox/bloom-2b5_Zen") generator = pipeline('text-generation', model=model, tokenizer=tokenizer) inp = [ """Today""", """Yesterday""" ] out = generator( inp, do_sample=True, temperature=.7, typical_p=.6, #top_p=.9, repetition_penalty=1.2, max_new_tokens=666, max_time=60, # seconds ) for o in out: print(o[0]['generated_text']) ```
huggingtweets/piemadd
huggingtweets
2022-09-08T16:20:49Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-08T16:16:57Z
--- language: en thumbnail: http://www.huggingtweets.com/piemadd/1662653961299/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521050682983424003/yERaHagV_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Piero Maddaleni 2027</div> <div style="text-align: center; font-size: 14px;">@piemadd</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Piero Maddaleni 2027. | Data | Piero Maddaleni 2027 | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 322 | | Short tweets | 540 | | Tweets kept | 2380 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jem4xdn0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @piemadd's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6e8s7bst) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6e8s7bst/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/piemadd') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/lolo
sd-concepts-library
2022-09-08T16:06:05Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-08T16:05:54Z
--- license: mit --- ### Lolo on Stable Diffusion This is the `<lolo>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<lolo> 0](https://huggingface.co/sd-concepts-library/lolo/resolve/main/concept_images/1.jpeg) ![<lolo> 1](https://huggingface.co/sd-concepts-library/lolo/resolve/main/concept_images/2.jpeg) ![<lolo> 2](https://huggingface.co/sd-concepts-library/lolo/resolve/main/concept_images/3.jpeg) ![<lolo> 3](https://huggingface.co/sd-concepts-library/lolo/resolve/main/concept_images/0.jpeg)
Guruji108/xlm-roberta-base-finetuned-panx-de
Guruji108
2022-09-08T16:00:40Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T17:49:47Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.863677639046538 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1343 - F1: 0.8637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2578 | 1.0 | 525 | 0.1562 | 0.8273 | | 0.1297 | 2.0 | 1050 | 0.1330 | 0.8474 | | 0.0809 | 3.0 | 1575 | 0.1343 | 0.8637 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
mariolinml/roberta_large-unbalanced_simple-ner-conll2003_0908_v0
mariolinml
2022-09-08T15:24:17Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-08T14:34:41Z
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: roberta_large-unbalanced_simple-ner-conll2003_0908_v0 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9552732335537766 - name: Recall type: recall value: 0.9718484419263456 - name: F1 type: f1 value: 0.9634895559066174 - name: Accuracy type: accuracy value: 0.989226995491912 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_large-unbalanced_simple-ner-conll2003_0908_v0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0881 - Precision: 0.9553 - Recall: 0.9718 - F1: 0.9635 - Accuracy: 0.9892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.07 | 1.0 | 878 | 0.0249 | 0.9616 | 0.9746 | 0.9681 | 0.9936 | | 0.0176 | 2.0 | 1756 | 0.0241 | 0.9699 | 0.9818 | 0.9758 | 0.9948 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
SiddharthaM/bert-base-uncased-ner-conll2003
SiddharthaM
2022-09-08T14:57:50Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-08T14:37:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-ner-conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9342126957955482 - name: Recall type: recall value: 0.9535509929316729 - name: F1 type: f1 value: 0.943782793370534 - name: Accuracy type: accuracy value: 0.9870194854889033 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-ner-conll2003 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0602 - Precision: 0.9342 - Recall: 0.9536 - F1: 0.9438 - Accuracy: 0.9870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0871 | 1.0 | 1756 | 0.0728 | 0.9138 | 0.9275 | 0.9206 | 0.9811 | | 0.0331 | 2.0 | 3512 | 0.0591 | 0.9311 | 0.9514 | 0.9411 | 0.9866 | | 0.0173 | 3.0 | 5268 | 0.0602 | 0.9342 | 0.9536 | 0.9438 | 0.9870 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Sebabrata/lmv2-g-w2-300-doc-09-08
Sebabrata
2022-09-08T14:33:01Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-08T13:35:51Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: lmv2-g-w2-300-doc-09-08 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmv2-g-w2-300-doc-09-08 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0262 - Control Number Precision: 1.0 - Control Number Recall: 1.0 - Control Number F1: 1.0 - Control Number Number: 17 - Ein Precision: 1.0 - Ein Recall: 0.9833 - Ein F1: 0.9916 - Ein Number: 60 - Employee’s Address Precision: 0.9667 - Employee’s Address Recall: 0.9831 - Employee’s Address F1: 0.9748 - Employee’s Address Number: 59 - Employee’s Name Precision: 0.9833 - Employee’s Name Recall: 1.0 - Employee’s Name F1: 0.9916 - Employee’s Name Number: 59 - Employee’s Ssn Precision: 0.9836 - Employee’s Ssn Recall: 1.0 - Employee’s Ssn F1: 0.9917 - Employee’s Ssn Number: 60 - Employer’s Address Precision: 0.9833 - Employer’s Address Recall: 0.9672 - Employer’s Address F1: 0.9752 - Employer’s Address Number: 61 - Employer’s Name Precision: 0.9833 - Employer’s Name Recall: 0.9833 - Employer’s Name F1: 0.9833 - Employer’s Name Number: 60 - Federal Income Tax Withheld Precision: 1.0 - Federal Income Tax Withheld Recall: 1.0 - Federal Income Tax Withheld F1: 1.0 - Federal Income Tax Withheld Number: 60 - Medicare Tax Withheld Precision: 1.0 - Medicare Tax Withheld Recall: 1.0 - Medicare Tax Withheld F1: 1.0 - Medicare Tax Withheld Number: 60 - Medicare Wages Tips Precision: 1.0 - Medicare Wages Tips Recall: 1.0 - Medicare Wages Tips F1: 1.0 - Medicare Wages Tips Number: 60 - Social Security Tax Withheld Precision: 1.0 - Social Security Tax Withheld Recall: 0.9836 - Social Security Tax Withheld F1: 0.9917 - Social Security Tax Withheld Number: 61 - Social Security Wages Precision: 0.9833 - Social Security Wages Recall: 1.0 - Social Security Wages F1: 0.9916 - Social Security Wages Number: 59 - Wages Tips Precision: 1.0 - Wages Tips Recall: 0.9836 - Wages Tips F1: 0.9917 - Wages Tips Number: 61 - Overall Precision: 0.9905 - Overall Recall: 0.9905 - Overall F1: 0.9905 - Overall Accuracy: 0.9973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Control Number Precision | Control Number Recall | Control Number F1 | Control Number Number | Ein Precision | Ein Recall | Ein F1 | Ein Number | Employee’s Address Precision | Employee’s Address Recall | Employee’s Address F1 | Employee’s Address Number | Employee’s Name Precision | Employee’s Name Recall | Employee’s Name F1 | Employee’s Name Number | Employee’s Ssn Precision | Employee’s Ssn Recall | Employee’s Ssn F1 | Employee’s Ssn Number | Employer’s Address Precision | Employer’s Address Recall | Employer’s Address F1 | Employer’s Address Number | Employer’s Name Precision | Employer’s Name Recall | Employer’s Name F1 | Employer’s Name Number | Federal Income Tax Withheld Precision | Federal Income Tax Withheld Recall | Federal Income Tax Withheld F1 | Federal Income Tax Withheld Number | Medicare Tax Withheld Precision | Medicare Tax Withheld Recall | Medicare Tax Withheld F1 | Medicare Tax Withheld Number | Medicare Wages Tips Precision | Medicare Wages Tips Recall | Medicare Wages Tips F1 | Medicare Wages Tips Number | Social Security Tax Withheld Precision | Social Security Tax Withheld Recall | Social Security Tax Withheld F1 | Social Security Tax Withheld Number | Social Security Wages Precision | Social Security Wages Recall | Social Security Wages F1 | Social Security Wages Number | Wages Tips Precision | Wages Tips Recall | Wages Tips F1 | Wages Tips Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:-------------:|:----------:|:------:|:----------:|:----------------------------:|:-------------------------:|:---------------------:|:-------------------------:|:-------------------------:|:----------------------:|:------------------:|:----------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:----------------------------:|:-------------------------:|:---------------------:|:-------------------------:|:-------------------------:|:----------------------:|:------------------:|:----------------------:|:-------------------------------------:|:----------------------------------:|:------------------------------:|:----------------------------------:|:-------------------------------:|:----------------------------:|:------------------------:|:----------------------------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:--------------------------------------:|:-----------------------------------:|:-------------------------------:|:-----------------------------------:|:-------------------------------:|:----------------------------:|:------------------------:|:----------------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.7717 | 1.0 | 240 | 0.9856 | 0.0 | 0.0 | 0.0 | 17 | 0.9206 | 0.9667 | 0.9431 | 60 | 0.6824 | 0.9831 | 0.8056 | 59 | 0.2333 | 0.5932 | 0.3349 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.7609 | 0.5738 | 0.6542 | 61 | 0.3654 | 0.3167 | 0.3393 | 60 | 0.0 | 0.0 | 0.0 | 60 | 0.8194 | 0.9833 | 0.8939 | 60 | 0.6064 | 0.95 | 0.7403 | 60 | 0.5050 | 0.8361 | 0.6296 | 61 | 0.0 | 0.0 | 0.0 | 59 | 0.5859 | 0.9508 | 0.725 | 61 | 0.5954 | 0.6649 | 0.6282 | 0.9558 | | 0.5578 | 2.0 | 480 | 0.2957 | 0.8462 | 0.6471 | 0.7333 | 17 | 0.9831 | 0.9667 | 0.9748 | 60 | 0.9048 | 0.9661 | 0.9344 | 59 | 0.8358 | 0.9492 | 0.8889 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8125 | 0.8525 | 0.8320 | 61 | 0.8462 | 0.9167 | 0.8800 | 60 | 0.9672 | 0.9833 | 0.9752 | 60 | 0.9524 | 1.0 | 0.9756 | 60 | 0.9194 | 0.95 | 0.9344 | 60 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9508 | 0.9831 | 0.9667 | 59 | 0.9516 | 0.9672 | 0.9593 | 61 | 0.9212 | 0.9512 | 0.9359 | 0.9891 | | 0.223 | 3.0 | 720 | 0.1626 | 0.5 | 0.6471 | 0.5641 | 17 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9672 | 1.0 | 0.9833 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8769 | 0.9344 | 0.9048 | 61 | 0.9508 | 0.9667 | 0.9587 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8769 | 0.95 | 0.912 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9516 | 0.9672 | 0.9593 | 61 | 0.9370 | 0.9688 | 0.9526 | 0.9923 | | 0.1305 | 4.0 | 960 | 0.1025 | 0.9444 | 1.0 | 0.9714 | 17 | 0.9831 | 0.9667 | 0.9748 | 60 | 0.9194 | 0.9661 | 0.9421 | 59 | 0.9508 | 0.9831 | 0.9667 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9219 | 0.9672 | 0.944 | 61 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 0.9524 | 1.0 | 0.9756 | 60 | 0.8906 | 0.95 | 0.9194 | 60 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9516 | 0.9672 | 0.9593 | 61 | 0.9511 | 0.9756 | 0.9632 | 0.9947 | | 0.0852 | 5.0 | 1200 | 0.0744 | 0.7391 | 1.0 | 0.85 | 17 | 0.9831 | 0.9667 | 0.9748 | 60 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9344 | 0.9344 | 0.9344 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9365 | 0.9833 | 0.9593 | 60 | 0.9677 | 1.0 | 0.9836 | 60 | 0.95 | 0.95 | 0.9500 | 60 | 0.9836 | 0.9836 | 0.9836 | 61 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9626 | 0.9783 | 0.9704 | 0.9953 | | 0.0583 | 6.0 | 1440 | 0.0554 | 0.7727 | 1.0 | 0.8718 | 17 | 0.9831 | 0.9667 | 0.9748 | 60 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9048 | 0.9344 | 0.9194 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 0.9344 | 0.95 | 0.9421 | 60 | 1.0 | 0.9672 | 0.9833 | 61 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9677 | 0.9756 | 0.9716 | 0.9957 | | 0.0431 | 7.0 | 1680 | 0.0471 | 0.9444 | 1.0 | 0.9714 | 17 | 0.9831 | 0.9667 | 0.9748 | 60 | 0.9016 | 0.9322 | 0.9167 | 59 | 0.95 | 0.9661 | 0.9580 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8676 | 0.9672 | 0.9147 | 61 | 0.9831 | 0.9667 | 0.9748 | 60 | 1.0 | 0.9833 | 0.9916 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9516 | 0.9833 | 0.9672 | 60 | 0.9836 | 0.9836 | 0.9836 | 61 | 0.9831 | 0.9831 | 0.9831 | 59 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9625 | 0.9756 | 0.9690 | 0.9947 | | 0.0314 | 8.0 | 1920 | 0.0359 | 1.0 | 1.0 | 1.0 | 17 | 0.9831 | 0.9667 | 0.9748 | 60 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9516 | 0.9672 | 0.9593 | 61 | 1.0 | 0.9667 | 0.9831 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9516 | 0.9833 | 0.9672 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9831 | 0.9831 | 0.9831 | 59 | 0.9672 | 0.9672 | 0.9672 | 61 | 0.9771 | 0.9824 | 0.9797 | 0.9969 | | 0.0278 | 9.0 | 2160 | 0.0338 | 0.8947 | 1.0 | 0.9444 | 17 | 0.9833 | 0.9833 | 0.9833 | 60 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9667 | 0.9831 | 0.9748 | 59 | 1.0 | 1.0 | 1.0 | 60 | 0.9365 | 0.9672 | 0.9516 | 61 | 0.9672 | 0.9833 | 0.9752 | 60 | 1.0 | 0.9833 | 0.9916 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9516 | 0.9833 | 0.9672 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9672 | 0.9672 | 0.9672 | 61 | 0.9705 | 0.9837 | 0.9771 | 0.9965 | | 0.0231 | 10.0 | 2400 | 0.0332 | 0.9444 | 1.0 | 0.9714 | 17 | 0.9831 | 0.9667 | 0.9748 | 60 | 0.9508 | 0.9831 | 0.9667 | 59 | 0.9048 | 0.9661 | 0.9344 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9667 | 0.9508 | 0.9587 | 61 | 0.9667 | 0.9667 | 0.9667 | 60 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9365 | 0.9833 | 0.9593 | 60 | 1.0 | 0.9672 | 0.9833 | 61 | 0.9831 | 0.9831 | 0.9831 | 59 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9690 | 0.9769 | 0.9730 | 0.9964 | | 0.0189 | 11.0 | 2640 | 0.0342 | 1.0 | 1.0 | 1.0 | 17 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.8657 | 0.9831 | 0.9206 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8594 | 0.9016 | 0.88 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9516 | 0.9672 | 0.9593 | 61 | 0.964 | 0.9810 | 0.9724 | 0.9958 | | 0.0187 | 12.0 | 2880 | 0.0255 | 1.0 | 1.0 | 1.0 | 17 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.9508 | 0.9831 | 0.9667 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9667 | 0.9508 | 0.9587 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9672 | 0.9833 | 0.9752 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9824 | 0.9851 | 0.9837 | 0.9976 | | 0.0126 | 13.0 | 3120 | 0.0257 | 1.0 | 1.0 | 1.0 | 17 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.9344 | 0.9661 | 0.95 | 59 | 0.8889 | 0.9492 | 0.9180 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8788 | 0.9508 | 0.9134 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9836 | 1.0 | 0.9917 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9672 | 0.9833 | 61 | 0.9508 | 0.9831 | 0.9667 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9652 | 0.9796 | 0.9724 | 0.9971 | | 0.012 | 14.0 | 3360 | 0.0227 | 1.0 | 1.0 | 1.0 | 17 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.9516 | 1.0 | 0.9752 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9194 | 0.9344 | 0.9268 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9672 | 0.9833 | 0.9752 | 60 | 1.0 | 0.9833 | 0.9916 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9836 | 0.9836 | 0.9836 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9784 | 0.9851 | 0.9817 | 0.9977 | | 0.0119 | 15.0 | 3600 | 0.0284 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 1.0 | 1.0 | 60 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 1.0 | 1.0 | 60 | 0.9167 | 0.9016 | 0.9091 | 61 | 0.9661 | 0.95 | 0.9580 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9810 | 0.9824 | 0.9817 | 0.9965 | | 0.0103 | 16.0 | 3840 | 0.0289 | 0.9444 | 1.0 | 0.9714 | 17 | 0.9672 | 0.9833 | 0.9752 | 60 | 0.9344 | 0.9661 | 0.95 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 1.0 | 1.0 | 60 | 0.8088 | 0.9016 | 0.8527 | 61 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9666 | 0.9810 | 0.9737 | 0.9963 | | 0.01 | 17.0 | 4080 | 0.0305 | 0.8947 | 1.0 | 0.9444 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9516 | 1.0 | 0.9752 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9355 | 0.9508 | 0.9431 | 61 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.8955 | 1.0 | 0.9449 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9694 | 0.9891 | 0.9792 | 0.9961 | | 0.0082 | 18.0 | 4320 | 0.0256 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9508 | 0.9831 | 0.9667 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8636 | 0.9344 | 0.8976 | 61 | 0.9831 | 0.9667 | 0.9748 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9785 | 0.9864 | 0.9824 | 0.9970 | | 0.0059 | 19.0 | 4560 | 0.0255 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9355 | 0.9508 | 0.9431 | 61 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9865 | 0.9891 | 0.9878 | 0.9974 | | 0.0078 | 20.0 | 4800 | 0.0293 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9508 | 0.9831 | 0.9667 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9 | 0.8852 | 0.8926 | 61 | 0.9661 | 0.95 | 0.9580 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9810 | 0.9810 | 0.9810 | 0.9966 | | 0.009 | 21.0 | 5040 | 0.0264 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9206 | 0.9831 | 0.9508 | 59 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8889 | 0.9180 | 0.9032 | 61 | 0.9672 | 0.9833 | 0.9752 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9836 | 0.9836 | 0.9836 | 61 | 0.9831 | 0.9831 | 0.9831 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9745 | 0.9837 | 0.9791 | 0.9969 | | 0.0046 | 22.0 | 5280 | 0.0271 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9032 | 0.9180 | 0.9106 | 61 | 0.9672 | 0.9833 | 0.9752 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9784 | 0.9851 | 0.9817 | 0.9970 | | 0.0087 | 23.0 | 5520 | 0.0278 | 0.9444 | 1.0 | 0.9714 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9194 | 0.9661 | 0.9421 | 59 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8657 | 0.9508 | 0.9062 | 61 | 0.9836 | 1.0 | 0.9917 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9733 | 0.9878 | 0.9805 | 0.9958 | | 0.0054 | 24.0 | 5760 | 0.0276 | 0.9444 | 1.0 | 0.9714 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.95 | 0.9661 | 0.9580 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9355 | 0.9508 | 0.9431 | 61 | 0.9831 | 0.9667 | 0.9748 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9355 | 0.9667 | 0.9508 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9784 | 0.9837 | 0.9811 | 0.9971 | | 0.0057 | 25.0 | 6000 | 0.0260 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9667 | 0.9831 | 60 | 0.9077 | 1.0 | 0.9516 | 59 | 0.95 | 0.9661 | 0.9580 | 59 | 0.9677 | 1.0 | 0.9836 | 60 | 0.9508 | 0.9508 | 0.9508 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9672 | 0.9833 | 61 | 0.9672 | 1.0 | 0.9833 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9771 | 0.9837 | 0.9804 | 0.9971 | | 0.0074 | 26.0 | 6240 | 0.0340 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9180 | 0.9492 | 0.9333 | 59 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8906 | 0.9344 | 0.9120 | 61 | 0.9831 | 0.9667 | 0.9748 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 0.9836 | 0.9836 | 61 | 0.9757 | 0.9824 | 0.9790 | 0.9959 | | 0.0047 | 27.0 | 6480 | 0.0306 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 1.0 | 1.0 | 60 | 0.8923 | 0.9831 | 0.9355 | 59 | 0.9672 | 1.0 | 0.9833 | 59 | 1.0 | 1.0 | 1.0 | 60 | 0.9016 | 0.9016 | 0.9016 | 61 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9672 | 0.9833 | 61 | 0.8551 | 1.0 | 0.9219 | 59 | 1.0 | 0.8525 | 0.9204 | 61 | 0.9624 | 0.9715 | 0.9669 | 0.9961 | | 0.0052 | 28.0 | 6720 | 0.0262 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9905 | 0.9905 | 0.9905 | 0.9973 | | 0.0033 | 29.0 | 6960 | 0.0320 | 0.9444 | 1.0 | 0.9714 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.8406 | 0.9831 | 0.9062 | 59 | 0.9672 | 1.0 | 0.9833 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8852 | 0.8852 | 0.8852 | 61 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 0.9667 | 0.9831 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9365 | 1.0 | 0.9672 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9627 | 0.9796 | 0.9711 | 0.9960 | | 0.0048 | 30.0 | 7200 | 0.0215 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9672 | 1.0 | 0.9833 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9833 | 0.9672 | 0.9752 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9672 | 0.9833 | 61 | 0.9672 | 1.0 | 0.9833 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9891 | 0.9891 | 0.9891 | 0.9980 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
kkpathak91/FVM
kkpathak91
2022-09-08T13:23:40Z
0
0
null
[ "region:us" ]
null
2022-09-08T10:32:31Z
fact verification model(FVM) is trained on [FEVER](https://fever.ai), which aims to predict the veracity of a textual claim against a trustworthy knowledge source such as Wikipedia. This repo hosts the following models for `FVM`: - `fact_checking/`: the verification models based on BERT (large) and RoBERTa (large), respectively. - `mrc_seq2seq/`: the generative machine reading comprehension model based on BART (base). - `evidence_retrieval/`: the evidence sentence ranking models, which are copied directly from [KGAT](https://github.com/thunlp/KernelGAT).
sd-concepts-library/hub-city
sd-concepts-library
2022-09-08T12:04:39Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-08T12:04:27Z
--- license: mit --- ### Hub City on Stable Diffusion This is the `<HubCity>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<HubCity> 0](https://huggingface.co/sd-concepts-library/hub-city/resolve/main/concept_images/5.jpeg) ![<HubCity> 1](https://huggingface.co/sd-concepts-library/hub-city/resolve/main/concept_images/4.jpeg) ![<HubCity> 2](https://huggingface.co/sd-concepts-library/hub-city/resolve/main/concept_images/8.jpeg) ![<HubCity> 3](https://huggingface.co/sd-concepts-library/hub-city/resolve/main/concept_images/7.jpeg) ![<HubCity> 4](https://huggingface.co/sd-concepts-library/hub-city/resolve/main/concept_images/6.jpeg) ![<HubCity> 5](https://huggingface.co/sd-concepts-library/hub-city/resolve/main/concept_images/1.jpeg) ![<HubCity> 6](https://huggingface.co/sd-concepts-library/hub-city/resolve/main/concept_images/10.jpeg) ![<HubCity> 7](https://huggingface.co/sd-concepts-library/hub-city/resolve/main/concept_images/2.jpeg) ![<HubCity> 8](https://huggingface.co/sd-concepts-library/hub-city/resolve/main/concept_images/3.jpeg) ![<HubCity> 9](https://huggingface.co/sd-concepts-library/hub-city/resolve/main/concept_images/9.jpeg) ![<HubCity> 10](https://huggingface.co/sd-concepts-library/hub-city/resolve/main/concept_images/0.jpeg)
microsoft/xclip-base-patch16-ucf-16-shot
microsoft
2022-09-08T11:54:38Z
68
1
transformers
[ "transformers", "pytorch", "xclip", "feature-extraction", "vision", "video-classification", "en", "arxiv:2208.02816", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
video-classification
2022-09-07T17:45:07Z
--- language: en license: mit tags: - vision - video-classification model-index: - name: nielsr/xclip-base-patch16-ucf-16-shot results: - task: type: video-classification dataset: name: UCF101 type: ucf101 metrics: - type: top-1 accuracy value: 91.4 --- # X-CLIP (base-sized model) X-CLIP model (base-sized, patch resolution of 16) trained in a few-shot fashion (K=16) on [UCF101](https://www.crcv.ucf.edu/data/UCF101.php). It was introduced in the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Ni et al. and first released in [this repository](https://github.com/microsoft/VideoX/tree/master/X-CLIP). This model was trained using 32 frames per video, at a resolution of 224x224. Disclaimer: The team releasing X-CLIP did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description X-CLIP is a minimal extension of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for general video-language understanding. The model is trained in a contrastive way on (video, text) pairs. ![X-CLIP architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/xclip_architecture.png) This allows the model to be used for tasks like zero-shot, few-shot or fully supervised video classification and video-text retrieval. ## Intended uses & limitations You can use the raw model for determining how well text goes with a given video. See the [model hub](https://huggingface.co/models?search=microsoft/xclip) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/xclip.html#). ## Training data This model was trained on [UCF101](https://www.crcv.ucf.edu/data/UCF101.php). ### Preprocessing The exact details of preprocessing during training can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L247). The exact details of preprocessing during validation can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L285). During validation, one resizes the shorter edge of each frame, after which center cropping is performed to a fixed-size resolution (like 224x224). Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results This model achieves a top-1 accuracy of 91.4%.
microsoft/xclip-base-patch16-ucf-8-shot
microsoft
2022-09-08T11:49:44Z
70
0
transformers
[ "transformers", "pytorch", "xclip", "feature-extraction", "vision", "video-classification", "en", "arxiv:2208.02816", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
video-classification
2022-09-07T17:13:46Z
--- language: en license: mit tags: - vision - video-classification model-index: - name: nielsr/xclip-base-patch16-ucf-8-shot results: - task: type: video-classification dataset: name: UCF101 type: ucf101 metrics: - type: top-1 accuracy value: 88.3 --- # X-CLIP (base-sized model) X-CLIP model (base-sized, patch resolution of 16) trained in a few-shot fashion (K=8) on [UCF101](https://www.crcv.ucf.edu/data/UCF101.php). It was introduced in the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Ni et al. and first released in [this repository](https://github.com/microsoft/VideoX/tree/master/X-CLIP). This model was trained using 32 frames per video, at a resolution of 224x224. Disclaimer: The team releasing X-CLIP did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description X-CLIP is a minimal extension of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for general video-language understanding. The model is trained in a contrastive way on (video, text) pairs. ![X-CLIP architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/xclip_architecture.png) This allows the model to be used for tasks like zero-shot, few-shot or fully supervised video classification and video-text retrieval. ## Intended uses & limitations You can use the raw model for determining how well text goes with a given video. See the [model hub](https://huggingface.co/models?search=microsoft/xclip) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/xclip.html#). ## Training data This model was trained on [UCF101](https://www.crcv.ucf.edu/data/UCF101.php). ### Preprocessing The exact details of preprocessing during training can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L247). The exact details of preprocessing during validation can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L285). During validation, one resizes the shorter edge of each frame, after which center cropping is performed to a fixed-size resolution (like 224x224). Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results This model achieves a top-1 accuracy of 88.3%.
microsoft/xclip-base-patch16-ucf-2-shot
microsoft
2022-09-08T11:49:14Z
75
0
transformers
[ "transformers", "pytorch", "xclip", "feature-extraction", "vision", "video-classification", "en", "arxiv:2208.02816", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
video-classification
2022-09-07T17:06:55Z
--- language: en license: mit tags: - vision - video-classification model-index: - name: nielsr/xclip-base-patch16-ucf-2-shot results: - task: type: video-classification dataset: name: UCF101 type: ucf101 metrics: - type: top-1 accuracy value: 76.4 --- # X-CLIP (base-sized model) X-CLIP model (base-sized, patch resolution of 16) trained in a few-shot fashion (K=2) on [UCF101](https://www.crcv.ucf.edu/data/UCF101.php). It was introduced in the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Ni et al. and first released in [this repository](https://github.com/microsoft/VideoX/tree/master/X-CLIP). This model was trained using 32 frames per video, at a resolution of 224x224. Disclaimer: The team releasing X-CLIP did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description X-CLIP is a minimal extension of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for general video-language understanding. The model is trained in a contrastive way on (video, text) pairs. ![X-CLIP architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/xclip_architecture.png) This allows the model to be used for tasks like zero-shot, few-shot or fully supervised video classification and video-text retrieval. ## Intended uses & limitations You can use the raw model for determining how well text goes with a given video. See the [model hub](https://huggingface.co/models?search=microsoft/xclip) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/xclip.html#). ## Training data This model was trained on [UCF101](https://www.crcv.ucf.edu/data/UCF101.php). ### Preprocessing The exact details of preprocessing during training can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L247). The exact details of preprocessing during validation can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L285). During validation, one resizes the shorter edge of each frame, after which center cropping is performed to a fixed-size resolution (like 224x224). Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results This model achieves a top-1 accuracy of 76.4%.
microsoft/xclip-base-patch16-hmdb-2-shot
microsoft
2022-09-08T11:46:18Z
71
0
transformers
[ "transformers", "pytorch", "xclip", "feature-extraction", "vision", "video-classification", "en", "arxiv:2208.02816", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
video-classification
2022-09-07T16:36:25Z
--- language: en license: mit tags: - vision - video-classification model-index: - name: nielsr/xclip-base-patch16-hmdb-2-shot results: - task: type: video-classification dataset: name: HMDB-51 type: hmdb-51 metrics: - type: top-1 accuracy value: 53.0 --- # X-CLIP (base-sized model) X-CLIP model (base-sized, patch resolution of 16) trained in a few-shot fashion (K=2) on [HMDB-51](https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/). It was introduced in the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Ni et al. and first released in [this repository](https://github.com/microsoft/VideoX/tree/master/X-CLIP). This model was trained using 32 frames per video, at a resolution of 224x224. Disclaimer: The team releasing X-CLIP did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description X-CLIP is a minimal extension of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for general video-language understanding. The model is trained in a contrastive way on (video, text) pairs. ![X-CLIP architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/xclip_architecture.png) This allows the model to be used for tasks like zero-shot, few-shot or fully supervised video classification and video-text retrieval. ## Intended uses & limitations You can use the raw model for determining how well text goes with a given video. See the [model hub](https://huggingface.co/models?search=microsoft/xclip) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/xclip.html#). ## Training data This model was trained on [HMDB-51](https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/). ### Preprocessing The exact details of preprocessing during training can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L247). The exact details of preprocessing during validation can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L285). During validation, one resizes the shorter edge of each frame, after which center cropping is performed to a fixed-size resolution (like 224x224). Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results This model achieves a top-1 accuracy of 53.0%.
microsoft/xclip-base-patch16-kinetics-600-16-frames
microsoft
2022-09-08T11:41:13Z
1,338
2
transformers
[ "transformers", "pytorch", "xclip", "feature-extraction", "vision", "video-classification", "en", "arxiv:2208.02816", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
video-classification
2022-09-08T11:23:04Z
--- language: en license: mit tags: - vision - video-classification model-index: - name: nielsr/xclip-base-patch16-kinetics-600-16-frames results: - task: type: video-classification dataset: name: Kinetics 400 type: kinetics-400 metrics: - type: top-1 accuracy value: 85.8 - type: top-5 accuracy value: 97.3 --- # X-CLIP (base-sized model) X-CLIP model (base-sized, patch resolution of 16) trained fully-supervised on [Kinetics-600](https://www.deepmind.com/open-source/kinetics). It was introduced in the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Ni et al. and first released in [this repository](https://github.com/microsoft/VideoX/tree/master/X-CLIP). This model was trained using 16 frames per video, at a resolution of 224x224. Disclaimer: The team releasing X-CLIP did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description X-CLIP is a minimal extension of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for general video-language understanding. The model is trained in a contrastive way on (video, text) pairs. ![X-CLIP architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/xclip_architecture.png) This allows the model to be used for tasks like zero-shot, few-shot or fully supervised video classification and video-text retrieval. ## Intended uses & limitations You can use the raw model for determining how well text goes with a given video. See the [model hub](https://huggingface.co/models?search=microsoft/xclip) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/xclip.html#). ## Training data This model was trained on [Kinetics-600](https://www.deepmind.com/open-source/kinetics). ### Preprocessing The exact details of preprocessing during training can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L247). The exact details of preprocessing during validation can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L285). During validation, one resizes the shorter edge of each frame, after which center cropping is performed to a fixed-size resolution (like 224x224). Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results This model achieves a top-1 accuracy of 85.8% and a top-5 accuracy of 97.3%.
microsoft/xclip-large-patch14-16-frames
microsoft
2022-09-08T11:09:07Z
2,692
3
transformers
[ "transformers", "pytorch", "xclip", "feature-extraction", "vision", "video-classification", "en", "arxiv:2208.02816", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
video-classification
2022-09-07T15:33:48Z
--- language: en license: mit tags: - vision - video-classification model-index: - name: nielsr/xclip-large-patch14-16-frames results: - task: type: video-classification dataset: name: Kinetics 400 type: kinetics-400 metrics: - type: top-1 accuracy value: 87.7 - type: top-5 accuracy value: 97.4 --- # X-CLIP (large-sized model) X-CLIP model (large-sized, patch resolution of 14) trained fully-supervised on [Kinetics-400](https://www.deepmind.com/open-source/kinetics). It was introduced in the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Ni et al. and first released in [this repository](https://github.com/microsoft/VideoX/tree/master/X-CLIP). This model was trained using 16 frames per video, at a resolution of 336x336. Disclaimer: The team releasing X-CLIP did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description X-CLIP is a minimal extension of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for general video-language understanding. The model is trained in a contrastive way on (video, text) pairs. ![X-CLIP architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/xclip_architecture.png) This allows the model to be used for tasks like zero-shot, few-shot or fully supervised video classification and video-text retrieval. ## Intended uses & limitations You can use the raw model for determining how well text goes with a given video. See the [model hub](https://huggingface.co/models?search=microsoft/xclip) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/xclip.html#). ## Training data This model was trained on [Kinetics-400](https://www.deepmind.com/open-source/kinetics). ### Preprocessing The exact details of preprocessing during training can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L247). The exact details of preprocessing during validation can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L285). During validation, one resizes the shorter edge of each frame, after which center cropping is performed to a fixed-size resolution (like 224x224). Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results This model achieves a top-1 accuracy of 87.7% and a top-5 accuracy of 97.4%.
sd-concepts-library/kuvshinov
sd-concepts-library
2022-09-08T10:33:05Z
0
59
null
[ "license:mit", "region:us" ]
null
2022-09-08T10:32:59Z
--- license: mit --- ### Kuvshinov on Stable Diffusion This is the `<kuvshinov>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<kuvshinov> 0](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/21.jpeg) ![<kuvshinov> 1](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/14.jpeg) ![<kuvshinov> 2](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/22.jpeg) ![<kuvshinov> 3](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/15.jpeg) ![<kuvshinov> 4](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/5.jpeg) ![<kuvshinov> 5](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/4.jpeg) ![<kuvshinov> 6](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/26.jpeg) ![<kuvshinov> 7](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/8.jpeg) ![<kuvshinov> 8](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/12.jpeg) ![<kuvshinov> 9](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/29.jpeg) ![<kuvshinov> 10](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/20.jpeg) ![<kuvshinov> 11](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/13.jpeg) ![<kuvshinov> 12](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/7.jpeg) ![<kuvshinov> 13](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/6.jpeg) ![<kuvshinov> 14](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/1.jpeg) ![<kuvshinov> 15](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/10.jpeg) ![<kuvshinov> 16](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/28.jpeg) ![<kuvshinov> 17](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/24.jpeg) ![<kuvshinov> 18](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/2.jpeg) ![<kuvshinov> 19](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/17.jpeg) ![<kuvshinov> 20](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/18.jpeg) ![<kuvshinov> 21](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/19.jpeg) ![<kuvshinov> 22](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/23.jpeg) ![<kuvshinov> 23](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/3.jpeg) ![<kuvshinov> 24](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/27.jpeg) ![<kuvshinov> 25](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/16.jpeg) ![<kuvshinov> 26](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/9.jpeg) ![<kuvshinov> 27](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/25.jpeg) ![<kuvshinov> 28](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/0.jpeg) ![<kuvshinov> 29](https://huggingface.co/sd-concepts-library/kuvshinov/resolve/main/concept_images/11.jpeg)
huggingtweets/mkbhd
huggingtweets
2022-09-08T10:28:33Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/mkbhd/1662632839490/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1468001914302390278/B_Xv_8gu_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Marques Brownlee</div> <div style="text-align: center; font-size: 14px;">@mkbhd</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Marques Brownlee. | Data | Marques Brownlee | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 252 | | Short tweets | 596 | | Tweets kept | 2399 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kgiqibj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mkbhd's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6tkgheyt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6tkgheyt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mkbhd') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/dicoo
sd-concepts-library
2022-09-08T10:11:30Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-08T10:11:25Z
--- license: mit --- ### Dicoo on Stable Diffusion This is the `<Dicoo>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<Dicoo> 0](https://huggingface.co/sd-concepts-library/dicoo/resolve/main/concept_images/4.jpeg) ![<Dicoo> 1](https://huggingface.co/sd-concepts-library/dicoo/resolve/main/concept_images/1.jpeg) ![<Dicoo> 2](https://huggingface.co/sd-concepts-library/dicoo/resolve/main/concept_images/2.jpeg) ![<Dicoo> 3](https://huggingface.co/sd-concepts-library/dicoo/resolve/main/concept_images/3.jpeg) ![<Dicoo> 4](https://huggingface.co/sd-concepts-library/dicoo/resolve/main/concept_images/0.jpeg)
debashish68/roberta-sent-generali
debashish68
2022-09-08T09:52:08Z
103
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-07T17:15:36Z
--- language: en # <-- my language widget: - text: "Moody’s decision to upgrade the credit rating of Air Liquide is all the more remarkable as it is taking place in a more difficult macroeconomic and geopolitical environment. It underlines the Group’s capacity to maintain a high level of cash flow despite the fluctuations of the economy. Following Standard & Poor’s decision to upgrade Air Liquide’s credit rating, this decision recognizes the Group’s level of debt, which has been brought back to its pre-Airgas 2016 acquisition level in five years. It also reflects the largely demonstrated resilience of the Group’s business model." tags: - generated_from_trainer metrics: - f1 model-index: - name: roberta-sent-generali results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-sent-generali This model was fine-tuned on Roberta Large using a private dataset. It achieves the following results on the evaluation set: - Loss: 0.4885 - F1: 0.9104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.355 | 1.0 | 262 | 0.3005 | 0.8829 | | 0.2201 | 2.0 | 524 | 0.3566 | 0.8930 | | 0.1293 | 3.0 | 786 | 0.3644 | 0.9193 | | 0.0662 | 4.0 | 1048 | 0.4202 | 0.9145 | | 0.026 | 5.0 | 1310 | 0.4885 | 0.9104 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/party-girl
sd-concepts-library
2022-09-08T09:37:53Z
0
6
null
[ "license:mit", "region:us" ]
null
2022-09-08T09:37:40Z
--- license: mit --- ### Party girl on Stable Diffusion This is the `<party-girl>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<party-girl> 0](https://huggingface.co/sd-concepts-library/party-girl/resolve/main/concept_images/5.jpeg) ![<party-girl> 1](https://huggingface.co/sd-concepts-library/party-girl/resolve/main/concept_images/4.jpeg) ![<party-girl> 2](https://huggingface.co/sd-concepts-library/party-girl/resolve/main/concept_images/1.jpeg) ![<party-girl> 3](https://huggingface.co/sd-concepts-library/party-girl/resolve/main/concept_images/2.jpeg) ![<party-girl> 4](https://huggingface.co/sd-concepts-library/party-girl/resolve/main/concept_images/3.jpeg) ![<party-girl> 5](https://huggingface.co/sd-concepts-library/party-girl/resolve/main/concept_images/0.jpeg)
pritam18/swadeshi_hindiwav2vec2asr
pritam18
2022-09-08T09:17:06Z
74
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-19T13:36:45Z
swadeshi_hindiwav2vec2asr/ is a Hindi speech recognition model which is a fine tuned version of the theainerd/Wav2Vec2-large-xlsr-hindi model. The model achieved a Word Error Rate of 0.738 when trained with 12 Hours of MUCS data with 30 epochs and given a batch size of 12.
meedan/brazilianpolitics
meedan
2022-09-08T08:44:25Z
108
1
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "pt", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-29T17:41:35Z
--- language: - pt license: "mit" metrics: - accuracy - f1 --- A binary classifier that classifies if an input text is related to the Brazilian elections or not. The classifier was trained on news article headlines taken from online Brazilian news organizations between 2010 and 2022. It was trained X epochs using `microsoft/mdeberta-v3-base` as the base model. <table> <tr> <td>Accuracy</td> <td>0.9203</td> </tr> <tr> <td>F1 Score</td> <td>0.9206</td> </tr> </table>
huggingtweets/mariojpenton-mjorgec1994
huggingtweets
2022-09-08T08:28:04Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-08T05:05:22Z
--- language: en thumbnail: http://www.huggingtweets.com/mariojpenton-mjorgec1994/1662625679744/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1539758332877197313/NRB0lc5a_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1526213406918905856/28mTAbCu_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mario J. Pentón & Mag Jorge Castro🇨🇺</div> <div style="text-align: center; font-size: 14px;">@mariojpenton-mjorgec1994</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mario J. Pentón & Mag Jorge Castro🇨🇺. | Data | Mario J. Pentón | Mag Jorge Castro🇨🇺 | | --- | --- | --- | | Tweets downloaded | 3244 | 3249 | | Retweets | 673 | 0 | | Short tweets | 120 | 236 | | Tweets kept | 2451 | 3013 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kbivb0e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mariojpenton-mjorgec1994's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3m6kiha6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3m6kiha6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mariojpenton-mjorgec1994') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Lunage/my_distilbert-finetuned-imdb
Lunage
2022-09-08T08:21:51Z
70
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-07T13:26:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Lunage/my_distilbert-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Lunage/my_distilbert-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.6915 - Validation Loss: 3.4024 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -843, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.6915 | 3.4024 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/reeducation-camp
sd-concepts-library
2022-09-08T08:19:41Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-08T08:19:37Z
--- license: mit --- ### reeducation camp on Stable Diffusion This is the `<reeducation-camp>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<reeducation-camp> 0](https://huggingface.co/sd-concepts-library/reeducation-camp/resolve/main/concept_images/5.jpeg) ![<reeducation-camp> 1](https://huggingface.co/sd-concepts-library/reeducation-camp/resolve/main/concept_images/4.jpeg) ![<reeducation-camp> 2](https://huggingface.co/sd-concepts-library/reeducation-camp/resolve/main/concept_images/1.jpeg) ![<reeducation-camp> 3](https://huggingface.co/sd-concepts-library/reeducation-camp/resolve/main/concept_images/2.jpeg) ![<reeducation-camp> 4](https://huggingface.co/sd-concepts-library/reeducation-camp/resolve/main/concept_images/3.jpeg) ![<reeducation-camp> 5](https://huggingface.co/sd-concepts-library/reeducation-camp/resolve/main/concept_images/0.jpeg)
sd-concepts-library/abstract-concepts
sd-concepts-library
2022-09-08T07:00:02Z
0
5
null
[ "license:mit", "region:us" ]
null
2022-09-08T06:59:56Z
--- license: mit --- ### abstract concepts on Stable Diffusion This is the `<art-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<art-style> 0](https://huggingface.co/sd-concepts-library/abstract-concepts/resolve/main/concept_images/4.jpeg) ![<art-style> 1](https://huggingface.co/sd-concepts-library/abstract-concepts/resolve/main/concept_images/1.jpeg) ![<art-style> 2](https://huggingface.co/sd-concepts-library/abstract-concepts/resolve/main/concept_images/2.jpeg) ![<art-style> 3](https://huggingface.co/sd-concepts-library/abstract-concepts/resolve/main/concept_images/3.jpeg) ![<art-style> 4](https://huggingface.co/sd-concepts-library/abstract-concepts/resolve/main/concept_images/0.jpeg)
Anurag0961/idp-headers
Anurag0961
2022-09-08T06:37:40Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-08T06:28:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: idp-headers results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # idp-headers This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6714 - F1: 0.4823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.7995 | 1.0 | 5 | 1.8557 | 0.1629 | | 1.7125 | 2.0 | 10 | 1.7832 | 0.1759 | | 1.6381 | 3.0 | 15 | 1.7243 | 0.4698 | | 1.5746 | 4.0 | 20 | 1.6857 | 0.4823 | | 1.5354 | 5.0 | 25 | 1.6714 | 0.4823 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
Anurag0961/idpintents-key-value
Anurag0961
2022-09-08T06:01:50Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-08T05:57:28Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: idpintents-key-value results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # idpintents-key-value This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8276 - F1: 0.8849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.8264 | 1.0 | 68 | 1.3672 | 0.7358 | | 1.3147 | 2.0 | 136 | 0.9310 | 0.8356 | | 1.0444 | 3.0 | 204 | 0.8276 | 0.8849 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
mhyatt000/bad-net
mhyatt000
2022-09-08T05:43:10Z
0
0
null
[ "pytorch", "license:mit", "region:us" ]
null
2022-09-07T15:39:45Z
--- license: mit --- # BadNet Pytorch BadNet weights from [verazuo](https://github.com/verazuo/badnets-pytorch) Proof of concept
huggingtweets/sanmemero
huggingtweets
2022-09-08T04:46:56Z
104
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-08T04:45:30Z
--- language: en thumbnail: http://www.huggingtweets.com/sanmemero/1662612412375/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1547249514485927937/xVT7Zk4l_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">San Memero 🇨🇺</div> <div style="text-align: center; font-size: 14px;">@sanmemero</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from San Memero 🇨🇺. | Data | San Memero 🇨🇺 | | --- | --- | | Tweets downloaded | 3211 | | Retweets | 251 | | Short tweets | 822 | | Tweets kept | 2138 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3llp69ch/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sanmemero's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/kf2jjg02) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/kf2jjg02/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sanmemero') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/monster-girl
sd-concepts-library
2022-09-08T04:40:03Z
0
13
null
[ "license:mit", "region:us" ]
null
2022-09-08T04:39:52Z
--- license: mit --- ### Monster Girl on Stable Diffusion This is the `<monster-girl>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<monster-girl> 0](https://huggingface.co/sd-concepts-library/monster-girl/resolve/main/concept_images/1.jpeg) ![<monster-girl> 1](https://huggingface.co/sd-concepts-library/monster-girl/resolve/main/concept_images/2.jpeg) ![<monster-girl> 2](https://huggingface.co/sd-concepts-library/monster-girl/resolve/main/concept_images/3.jpeg) ![<monster-girl> 3](https://huggingface.co/sd-concepts-library/monster-girl/resolve/main/concept_images/0.jpeg)
sd-concepts-library/dr-livesey
sd-concepts-library
2022-09-08T04:26:52Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-08T04:26:39Z
--- license: mit --- ### Dr Livesey on Stable Diffusion This is the `<dr-livesey>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<dr-livesey> 0](https://huggingface.co/sd-concepts-library/dr-livesey/resolve/main/concept_images/4.jpeg) ![<dr-livesey> 1](https://huggingface.co/sd-concepts-library/dr-livesey/resolve/main/concept_images/1.jpeg) ![<dr-livesey> 2](https://huggingface.co/sd-concepts-library/dr-livesey/resolve/main/concept_images/2.jpeg) ![<dr-livesey> 3](https://huggingface.co/sd-concepts-library/dr-livesey/resolve/main/concept_images/3.jpeg) ![<dr-livesey> 4](https://huggingface.co/sd-concepts-library/dr-livesey/resolve/main/concept_images/0.jpeg)
tasotaku/ddpm-butterflies-128
tasotaku
2022-09-08T03:14:23Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-08T02:00:45Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/tasotaku/ddpm-butterflies-128/tensorboard?#scalars)
LittleFishYoung/bert
LittleFishYoung
2022-09-08T03:10:15Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-09-08T03:05:17Z
--- license: apache-2.0 --- ## Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Training Data](#training-data) 4. [Risks and Limitations](#risks-and-limitations) 5. [Evaluation](#evaluation) 6. [Recommendations](#recommendations) 7. [Glossary and Calculations](#glossary-and-calculations) 8. [More Information](#more-information) 9. [Model Card Authors](#model-card-authors)
PatrickTyBrown/GPT-Neo_DnD_Control
PatrickTyBrown
2022-09-08T02:22:40Z
111
2
transformers
[ "transformers", "pytorch", "tensorboard", "gpt_neo", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-07T06:46:09Z
--- tags: - generated_from_trainer model-index: - name: GPT-Neo_DnD_Control results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GPT-Neo_DnD_Control This model is a fine-tuned version of [PatrickTyBrown/GPT-Neo_DnD](https://huggingface.co/PatrickTyBrown/GPT-Neo_DnD) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 2.6518 - eval_runtime: 141.422 - eval_samples_per_second: 6.527 - eval_steps_per_second: 3.267 - epoch: 3.9 - step: 36000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Andre002wp/layoutlmv3-finetuned-wildreceipt
Andre002wp
2022-09-08T01:44:40Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:wildreceipt", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-08T01:00:59Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - wildreceipt model-index: - name: layoutlmv3-finetuned-wildreceipt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-wildreceipt This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the wildreceipt dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2996 - eval_precision: 0.8566 - eval_recall: 0.8614 - eval_f1: 0.8590 - eval_accuracy: 0.9178 - eval_runtime: 51.7898 - eval_samples_per_second: 9.114 - eval_steps_per_second: 2.278 - epoch: 4.97 - step: 1577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/w3u
sd-concepts-library
2022-09-08T01:39:45Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-08T01:39:39Z
--- license: mit --- ### w3u on Stable Diffusion This is the `<w3u>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<w3u> 0](https://huggingface.co/sd-concepts-library/w3u/resolve/main/concept_images/0.jpeg) ![<w3u> 1](https://huggingface.co/sd-concepts-library/w3u/resolve/main/concept_images/1.jpeg) ![<w3u> 2](https://huggingface.co/sd-concepts-library/w3u/resolve/main/concept_images/2.jpeg) ![<w3u> 3](https://huggingface.co/sd-concepts-library/w3u/resolve/main/concept_images/3.jpeg)
hhffxx/distilbert-base-uncased-distilled-clinc
hhffxx
2022-09-08T01:32:06Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-08T00:58:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: train args: plus metrics: - name: Accuracy type: accuracy value: 0.9503225806451613 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2656 - Accuracy: 0.9503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 3.1212 | 1.0 | 1271 | 1.2698 | 0.8558 | | 0.6441 | 2.0 | 2542 | 0.3528 | 0.9326 | | 0.149 | 3.0 | 3813 | 0.2512 | 0.9494 | | 0.0647 | 4.0 | 5084 | 0.2510 | 0.95 | | 0.0406 | 5.0 | 6355 | 0.2575 | 0.9510 | | 0.0318 | 6.0 | 7626 | 0.2592 | 0.9494 | | 0.026 | 7.0 | 8897 | 0.2629 | 0.9503 | | 0.023 | 8.0 | 10168 | 0.2682 | 0.95 | | 0.0207 | 9.0 | 11439 | 0.2656 | 0.9503 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
NithirojTripatarasit/ppo-LunarLander-v2
NithirojTripatarasit
2022-09-08T00:34:45Z
4
0
transformers
[ "transformers", "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "endpoints_compatible", "region:us" ]
reinforcement-learning
2022-09-01T01:59:15Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PPO results: - metrics: - type: mean_reward value: -131.97 +/- 97.59 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. To learn to code your own PPO agent and train it Unit 8 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit8 # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'virtual_display': True 'repo_id': 'NithirojTripatarasit/ppo-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
lddczcn/distilbert-base-uncased-finetuned-emotion
lddczcn
2022-09-08T00:29:20Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-07T23:39:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9265519473019482 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2155 - Accuracy: 0.9265 - F1: 0.9266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3133 | 0.9075 | 0.9054 | | No log | 2.0 | 500 | 0.2155 | 0.9265 | 0.9266 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
sd-concepts-library/monte-novo
sd-concepts-library
2022-09-08T00:23:28Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-08T00:23:22Z
--- license: mit --- ### Monte Novo on Stable Diffusion This is the `<monte novo cutting board>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<monte novo cutting board> 0](https://huggingface.co/sd-concepts-library/monte-novo/resolve/main/concept_images/1.jpeg) ![<monte novo cutting board> 1](https://huggingface.co/sd-concepts-library/monte-novo/resolve/main/concept_images/2.jpeg) ![<monte novo cutting board> 2](https://huggingface.co/sd-concepts-library/monte-novo/resolve/main/concept_images/3.jpeg) ![<monte novo cutting board> 3](https://huggingface.co/sd-concepts-library/monte-novo/resolve/main/concept_images/0.jpeg)
NithirojTripatarasit/ppo-CartPole-v1
NithirojTripatarasit
2022-09-08T00:21:14Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-07T08:17:32Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PPO results: - metrics: - type: mean_reward value: 208.80 +/- 135.81 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. To learn to code your own PPO agent and train it Unit 8 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit8 # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'virtual_display': True 'repo_id': 'NithirojTripatarasit/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
sd-concepts-library/vkuoo1
sd-concepts-library
2022-09-08T00:04:38Z
0
24
null
[ "license:mit", "region:us" ]
null
2022-09-08T00:04:32Z
--- license: mit --- ### Vkuoo1 on Stable Diffusion This is the `<style-vkuoo1>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<style-vkuoo1> 0](https://huggingface.co/sd-concepts-library/vkuoo1/resolve/main/concept_images/5.jpeg) ![<style-vkuoo1> 1](https://huggingface.co/sd-concepts-library/vkuoo1/resolve/main/concept_images/4.jpeg) ![<style-vkuoo1> 2](https://huggingface.co/sd-concepts-library/vkuoo1/resolve/main/concept_images/1.jpeg) ![<style-vkuoo1> 3](https://huggingface.co/sd-concepts-library/vkuoo1/resolve/main/concept_images/2.jpeg) ![<style-vkuoo1> 4](https://huggingface.co/sd-concepts-library/vkuoo1/resolve/main/concept_images/3.jpeg) ![<style-vkuoo1> 5](https://huggingface.co/sd-concepts-library/vkuoo1/resolve/main/concept_images/0.jpeg)
slarionne/q-FrozenLake-v1-4x4-noSlippery_2
slarionne
2022-09-07T23:06:29Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-07T23:06:21Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery_2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="slarionne/q-FrozenLake-v1-4x4-noSlippery_2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
IIIT-L/albert-base-v2-finetuned-TRAC-DS
IIIT-L
2022-09-07T22:31:53Z
103
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-07T21:27:21Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: albert-base-v2-finetuned-TRAC-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-TRAC-DS This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8271 - Accuracy: 0.6315 - Precision: 0.6206 - Recall: 0.6201 - F1: 0.6147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.919508251872584e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0373 | 1.0 | 612 | 1.1241 | 0.3627 | 0.5914 | 0.3618 | 0.2414 | | 1.0617 | 2.0 | 1224 | 1.1039 | 0.3350 | 0.2781 | 0.3354 | 0.1740 | | 0.9791 | 3.0 | 1836 | 0.8365 | 0.5989 | 0.6192 | 0.5887 | 0.5883 | | 0.798 | 3.99 | 2448 | 0.8271 | 0.6315 | 0.6206 | 0.6201 | 0.6147 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
slarionne/q-Taxi-v3
slarionne
2022-09-07T22:10:05Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-07T22:10:00Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="slarionne/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
sd-concepts-library/cubex
sd-concepts-library
2022-09-07T21:43:50Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-09-07T21:43:45Z
--- license: mit --- ### cubex on Stable Diffusion This is the `<cube>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<cube> 0](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/299-2991025_justin-maller-encrusted.jpg) ![<cube> 1](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/BS3Yy9G.jpeg) ![<cube> 2](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/GsHUQ5.jpg) ![<cube> 3](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/1135144.jpg) ![<cube> 4](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/time_160391014612_id_1603955164_labels_#7#.jpeg) ![<cube> 5](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/oZbiNs-TvrU4-ZDc0syUBR34jCMbTTenBWJJqbi201Q.jpg) ![<cube> 6](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/justin-maller-encrusted-art.jpg) ![<cube> 7](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/zaCOf6.jpg) ![<cube> 8](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/WP_Encrusted_XIII-2560x1440_00000.jpg) ![<cube> 9](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/WP_Encrusted_XV-2560x1440_00000.jpg) ![<cube> 10](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/330672.jpg) ![<cube> 11](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/5d4935b70173a144198f2258c714280ffb4f8435) ![<cube> 12](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/2f934571c09a1dab6d0da37042469871dcc9802e) ![<cube> 13](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/time_160390980117_id_1603917296_labels_#7#.jpeg) ![<cube> 14](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/wp1977734.jpg) ![<cube> 15](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/295445-Sepik.jpg) ![<cube> 16](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/Justin_Maller_artwork_abstract_digital_digital_art_Facets_geometric_figures-1683409.jpg!d) ![<cube> 17](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/loyYr6.jpg) ![<cube> 18](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/time_160390988955_id_1603927820_labels_#7#.jpeg) ![<cube> 19](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/time_160391057459_id_1603982701_labels_#7#.jpeg) ![<cube> 20](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/54c6bdb3e9d72935b58b0254fd82b9fdbc8c797b) ![<cube> 21](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/time_160391716409_id_1603919258_labels_#7#.jpeg) ![<cube> 22](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/wp1977727.jpg) ![<cube> 23](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/330683.jpg)
sd-concepts-library/schloss-mosigkau
sd-concepts-library
2022-09-07T21:42:56Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-07T21:42:50Z
--- license: mit --- ### schloss mosigkau on Stable Diffusion This is the `<ralph>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<ralph> 0](https://huggingface.co/sd-concepts-library/schloss-mosigkau/resolve/main/concept_images/0.jpeg) ![<ralph> 1](https://huggingface.co/sd-concepts-library/schloss-mosigkau/resolve/main/concept_images/3.jpeg) ![<ralph> 2](https://huggingface.co/sd-concepts-library/schloss-mosigkau/resolve/main/concept_images/4.jpeg) ![<ralph> 3](https://huggingface.co/sd-concepts-library/schloss-mosigkau/resolve/main/concept_images/1.jpeg) ![<ralph> 4](https://huggingface.co/sd-concepts-library/schloss-mosigkau/resolve/main/concept_images/2.jpeg)
talhaa/distilbert-base-uncased-masking-lang
talhaa
2022-09-07T20:58:20Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-07T20:54:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-masking-lang results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-masking-lang This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 2.2594 | | No log | 2.0 | 2 | 0.7379 | | No log | 3.0 | 3 | 2.0914 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/mafalda-character
sd-concepts-library
2022-09-07T20:02:26Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-07T20:02:12Z
--- license: mit --- ### mafalda character on Stable Diffusion This is the `<mafalda-quino>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<mafalda-quino> 0](https://huggingface.co/sd-concepts-library/mafalda-character/resolve/main/concept_images/0.jpeg) ![<mafalda-quino> 1](https://huggingface.co/sd-concepts-library/mafalda-character/resolve/main/concept_images/3.jpeg) ![<mafalda-quino> 2](https://huggingface.co/sd-concepts-library/mafalda-character/resolve/main/concept_images/1.jpeg) ![<mafalda-quino> 3](https://huggingface.co/sd-concepts-library/mafalda-character/resolve/main/concept_images/2.jpeg)
talhaa/distilbert-base-uncased-finetuned-imdb
talhaa
2022-09-07T19:52:38Z
162
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-07T18:50:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 3.3374 | | No log | 2.0 | 2 | 3.8206 | | No log | 3.0 | 3 | 2.8370 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Sanatbek/uzbek-kazakh-machine-translation
Sanatbek
2022-09-07T19:40:36Z
6
0
null
[ "tensorboard", "license:afl-3.0", "region:us" ]
null
2022-09-07T18:34:34Z
--- license: afl-3.0 --- The model is for Machine translation between Uzbek and Kazakh languages
sd-concepts-library/canary-cap
sd-concepts-library
2022-09-07T19:21:04Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-07T19:20:53Z
--- license: mit --- ### canary cap on Stable Diffusion This is the `<canary-cap>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<canary-cap> 0](https://huggingface.co/sd-concepts-library/canary-cap/resolve/main/concept_images/0.jpeg) ![<canary-cap> 1](https://huggingface.co/sd-concepts-library/canary-cap/resolve/main/concept_images/3.jpeg) ![<canary-cap> 2](https://huggingface.co/sd-concepts-library/canary-cap/resolve/main/concept_images/4.jpeg) ![<canary-cap> 3](https://huggingface.co/sd-concepts-library/canary-cap/resolve/main/concept_images/1.jpeg) ![<canary-cap> 4](https://huggingface.co/sd-concepts-library/canary-cap/resolve/main/concept_images/2.jpeg)
huggingtweets/mariojpenton-mjorgec1994-sanmemero
huggingtweets
2022-09-07T18:38:33Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-07T18:38:24Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1547249514485927937/xVT7Zk4l_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1526213406918905856/28mTAbCu_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1539758332877197313/NRB0lc5a_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">San Memero 🇨🇺 & Mag Jorge Castro🇨🇺 & Mario J. Pentón</div> <div style="text-align: center; font-size: 14px;">@mariojpenton-mjorgec1994-sanmemero</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from San Memero 🇨🇺 & Mag Jorge Castro🇨🇺 & Mario J. Pentón. | Data | San Memero 🇨🇺 | Mag Jorge Castro🇨🇺 | Mario J. Pentón | | --- | --- | --- | --- | | Tweets downloaded | 3212 | 3249 | 3244 | | Retweets | 252 | 0 | 671 | | Short tweets | 821 | 235 | 121 | | Tweets kept | 2139 | 3014 | 2452 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cyfkcr0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mariojpenton-mjorgec1994-sanmemero's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/xyy5oobg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/xyy5oobg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mariojpenton-mjorgec1994-sanmemero') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/karl-s-lzx-1
sd-concepts-library
2022-09-07T18:27:38Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-07T18:27:26Z
--- license: mit --- ### karl's lzx 1 on Stable Diffusion This is the `<lzx>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<lzx> 0](https://huggingface.co/sd-concepts-library/karl-s-lzx-1/resolve/main/concept_images/0.jpeg) ![<lzx> 1](https://huggingface.co/sd-concepts-library/karl-s-lzx-1/resolve/main/concept_images/3.jpeg) ![<lzx> 2](https://huggingface.co/sd-concepts-library/karl-s-lzx-1/resolve/main/concept_images/1.jpeg) ![<lzx> 3](https://huggingface.co/sd-concepts-library/karl-s-lzx-1/resolve/main/concept_images/2.jpeg)
sd-concepts-library/cheburashka
sd-concepts-library
2022-09-07T17:49:45Z
0
6
null
[ "license:mit", "region:us" ]
null
2022-09-07T17:49:38Z
--- license: mit --- ### Cheburashka on Stable Diffusion This is the `<cheburashka>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<cheburashka> 0](https://huggingface.co/sd-concepts-library/cheburashka/resolve/main/concept_images/0.jpeg) ![<cheburashka> 1](https://huggingface.co/sd-concepts-library/cheburashka/resolve/main/concept_images/3.jpeg) ![<cheburashka> 2](https://huggingface.co/sd-concepts-library/cheburashka/resolve/main/concept_images/1.jpeg) ![<cheburashka> 3](https://huggingface.co/sd-concepts-library/cheburashka/resolve/main/concept_images/2.jpeg)
clementchadebec/reproduced_miwae
clementchadebec
2022-09-07T15:43:16Z
0
0
pythae
[ "pythae", "reproducibility", "en", "license:apache-2.0", "region:us" ]
null
2022-09-07T15:33:42Z
--- language: en tags: - pythae - reproducibility license: apache-2.0 --- This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from pythae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="clementchadebec/reproduced_miwae") ``` ## Reproducibility This trained model reproduces the results of the official implementation of [1]. | Model | Dataset | Metric | Obtained value | Reference value | |:---:|:---:|:---:|:---:|:---:| | MIWAE (M=8, K=8) | Dyn. Binarized MNIST | NLL (5000 IS) | 85.09 (0.00) | 84.97 (0.10) | [1] Rainforth, Tom, et al. "Tighter variational bounds are not necessarily better." International Conference on Machine Learning. PMLR, 2018.
clementchadebec/reproduced_ciwae
clementchadebec
2022-09-07T15:34:02Z
0
0
pythae
[ "pythae", "reproducibility", "en", "license:apache-2.0", "region:us" ]
null
2022-09-07T15:22:26Z
--- language: en tags: - pythae - reproducibility license: apache-2.0 --- This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from pythae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="clementchadebec/reproduced_ciwae") ``` ## Reproducibility This trained model reproduces the results of the official implementation of [1]. | Model | Dataset | Metric | Obtained value | Reference value | |:---:|:---:|:---:|:---:|:---:| | CIWAE (beta=0.05) | Dyn. Binarized MNIST | NLL (5000 IS) | 84.74 (0.01) | 84.57 (0.09) | [1] Rainforth, Tom, et al. "Tighter variational bounds are not necessarily better." International Conference on Machine Learning. PMLR, 2018.
sd-concepts-library/indian-watercolor-portraits
sd-concepts-library
2022-09-07T15:33:58Z
0
10
null
[ "license:mit", "region:us" ]
null
2022-09-07T15:33:41Z
--- license: mit --- ### Indian Watercolor Portraits on Stable Diffusion This is the `<watercolor-portrait>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `style`: ![<watercolor-portrait> 0](https://huggingface.co/sd-concepts-library/indian-watercolor-portraits/resolve/main/concept_images/0.jpeg) ![<watercolor-portrait> 1](https://huggingface.co/sd-concepts-library/indian-watercolor-portraits/resolve/main/concept_images/1.jpeg) ![<watercolor-portrait> 2](https://huggingface.co/sd-concepts-library/indian-watercolor-portraits/resolve/main/concept_images/2.jpeg) ![<watercolor-portrait> 3](https://huggingface.co/sd-concepts-library/indian-watercolor-portraits/resolve/main/concept_images/3.jpeg)
PrimeQA/mt5-base-tydi-question-generator
PrimeQA
2022-09-07T15:01:15Z
121
3
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-29T09:46:08Z
--- license: apache-2.0 --- # Model description This is an [mt5-base](https://huggingface.co/google/mt5-base) model, finetuned to generate questions using [TyDi QA](https://huggingface.co/datasets/tydiqa) dataset. It was trained to take the context and answer as input to generate questions. # Overview *Language model*: mT5-base \ *Language*: Arabic, Bengali, English, Finnish, Indonesian, Korean, Russian, Swahili, Telugu \ *Task*: Question Generation \ *Data*: TyDi QA # Intented use and limitations One can use this model to generate questions. Biases associated with pre-training of mT5 and TyDiQA dataset may be present. ## Usage One can use this model directly in the [PrimeQA](https://github.com/primeqa/primeqa) framework as in this example [notebook](https://github.com/primeqa/primeqa/blob/main/notebooks/qg/tableqg_inference.ipynb). Or ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("PrimeQA/mt5-base-tydi-question-generator") model = AutoModelForSeq2SeqLM.from_pretrained("PrimeQA/mt5-base-tydi-question-generator") def get_question(answer, context, max_length=64): input_text = answer +" <<sep>> " + context features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=max_length) return tokenizer.decode(output[0]) context = "শচীন টেন্ডুলকারকে ক্রিকেট ইতিহাসের অন্যতম সেরা ব্যাটসম্যান হিসেবে গণ্য করা হয়।" answer = "শচীন টেন্ডুলকার" get_question(answer, context) # output: ক্রিকেট ইতিহাসের অন্যতম সেরা ব্যাটসম্যান কে? ``` ## Citation ```bibtex @inproceedings{xue2021mt5, title={mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer}, author={Xue, Linting and Constant, Noah and Roberts, Adam and Kale, Mihir and Al-Rfou, Rami and Siddhant, Aditya and Barua, Aditya and Raffel, Colin}, booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, pages={483--498}, year={2021} } ```
jmstadt/navy-ships
jmstadt
2022-09-07T14:48:50Z
214
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-07T14:48:37Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: navy-ships results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.75 --- # navy-ships Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### aircraft carrier ![aircraft carrier](images/aircraft_carrier.jpg) #### cruiser ![cruiser](images/cruiser.jpg) #### destroyer ![destroyer](images/destroyer.jpg) #### frigate ![frigate](images/frigate.jpg) #### submarine ![submarine](images/submarine.jpg)
jenniferjane/test_trainer
jenniferjane
2022-09-07T14:29:16Z
158
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:yelp_review_full", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-05T13:38:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: test_trainer results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: train args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.628 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.1033 - Accuracy: 0.628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0473 | 1.0 | 1250 | 0.9373 | 0.59 | | 0.7362 | 2.0 | 2500 | 0.9653 | 0.611 | | 0.4692 | 3.0 | 3750 | 1.1033 | 0.628 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Berk/ddpm-butterflies-128
Berk
2022-09-07T14:15:28Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-07T11:30:51Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Berk/ddpm-butterflies-128/tensorboard?#scalars)
sd-concepts-library/birb-style
sd-concepts-library
2022-09-07T14:15:26Z
0
35
null
[ "license:mit", "region:us" ]
null
2022-09-07T13:58:05Z
--- license: mit --- ### Birb style on Stable Diffusion This is the `<birb-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Example outputs (style): ![<birb-style> 0](https://huggingface.co/sd-concepts-library/birb-style/resolve/main/birb_examples.jpeg) Source images: ![<birb-style> 0](https://huggingface.co/sd-concepts-library/birb-style/resolve/main/concept_images/0.jpeg) ![<birb-style> 1](https://huggingface.co/sd-concepts-library/birb-style/resolve/main/concept_images/1.jpeg) ![<birb-style> 2](https://huggingface.co/sd-concepts-library/birb-style/resolve/main/concept_images/2.jpeg)
RayK/distilbert-base-uncased-finetuned-cola
RayK
2022-09-07T13:13:31Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-04T00:05:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5410039366652665 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6949 - Matthews Correlation: 0.5410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5241 | 1.0 | 535 | 0.5322 | 0.3973 | | 0.356 | 2.0 | 1070 | 0.5199 | 0.4836 | | 0.2402 | 3.0 | 1605 | 0.6086 | 0.5238 | | 0.166 | 4.0 | 2140 | 0.6949 | 0.5410 | | 0.134 | 5.0 | 2675 | 0.8254 | 0.5253 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.12.1
anniepyim/xlm-roberta-base-finetuned-panx-de
anniepyim
2022-09-07T13:03:30Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-07T12:39:42Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
liat-nakayama/japanese-roberta-base-20201221
liat-nakayama
2022-09-07T13:03:15Z
191
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "license:cc-by-sa-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-07T12:45:36Z
--- license: cc-by-sa-3.0 --- 2020/12/21時点のWikipediaを用いて事前学習した日本語RoBERTaです。 janome(MeCabのPythonラッパー)とBPEを使用してトークナイズしています。
saipavan/doctor-review-classifier
saipavan
2022-09-07T11:41:07Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-07T11:10:20Z
--- license: other --- # model information This model classifies the reviews given by the patients to doctors model:bert model task : text-classification or sentiment analysis classes: positive and negative use same path saipavan/.... to load model and tokenizer this model got trained on more than 5000 reviews and is giving good accuracy.
sd-concepts-library/madhubani-art
sd-concepts-library
2022-09-07T08:47:46Z
0
20
null
[ "license:mit", "region:us" ]
null
2022-09-07T08:07:36Z
--- license: mit --- ### madhubani art on Stable Diffusion This is the `<madhubani-art>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `style`: ![<madhubani-art> 0](https://huggingface.co/sd-concepts-library/madhubani-art/resolve/main/concept_images/0.jpeg) ![<madhubani-art> 1](https://huggingface.co/sd-concepts-library/madhubani-art/resolve/main/concept_images/1.jpeg) ![<madhubani-art> 2](https://huggingface.co/sd-concepts-library/madhubani-art/resolve/main/concept_images/2.jpeg) ![<madhubani-art> 3](https://huggingface.co/sd-concepts-library/madhubani-art/resolve/main/concept_images/3.jpeg)
hhffxx/distilbert-base-uncased-finetuned-clinc
hhffxx
2022-09-07T08:21:36Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-07T02:40:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: train args: plus metrics: - name: Accuracy type: accuracy value: 0.9503225806451613 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2339 - Accuracy: 0.9503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.2073 | 1.0 | 1271 | 1.3840 | 0.8542 | | 0.7452 | 2.0 | 2542 | 0.4053 | 0.9316 | | 0.1916 | 3.0 | 3813 | 0.2580 | 0.9452 | | 0.0768 | 4.0 | 5084 | 0.2371 | 0.9477 | | 0.0455 | 5.0 | 6355 | 0.2339 | 0.9503 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
NithirojTripatarasit/a2c-AntBulletEnv-v0
NithirojTripatarasit
2022-09-07T06:29:12Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-07T06:27:46Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1704.47 +/- 175.74 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mesolitica/roberta-base-bahasa-cased
mesolitica
2022-09-07T06:12:59Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "ms", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-07T05:54:15Z
--- language: ms --- # roberta-base-bahasa-cased Pretrained RoBERTa base language model for Malay. ## Pretraining Corpus `roberta-base-bahasa-cased` model was pretrained on ~400 miliion words. Below is list of data we trained on, 1. IIUM confession, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean 2. local Instagram, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean 3. local news, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean 4. local parliament hansards, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean 5. local research papers related to `kebudayaan`, `keagaaman` and `etnik`, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean 6. local twitter, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean 7. Malay Wattpad, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean 8. Malay Wikipedia, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean ## Pretraining details - All steps can reproduce from https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/roberta. ## Example using AutoModelWithLMHead ```python from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline model = AutoModelForMaskedLM.from_pretrained('mesolitica/roberta-base-bahasa-cased') tokenizer = AutoTokenizer.from_pretrained( 'mesolitica/roberta-base-bahasa-cased', do_lower_case = False, ) fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer) fill_mask('Permohonan Najib, anak untuk dengar isu perlembagaan <mask> .') ``` Output is, ```json [{'score': 0.3368818759918213, 'token': 746, 'token_str': ' negara', 'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan negara.'}, {'score': 0.09646568447351456, 'token': 598, 'token_str': ' Malaysia', 'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan Malaysia.'}, {'score': 0.029483484104275703, 'token': 3265, 'token_str': ' UMNO', 'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan UMNO.'}, {'score': 0.026470622047781944, 'token': 2562, 'token_str': ' parti', 'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan parti.'}, {'score': 0.023237623274326324, 'token': 391, 'token_str': ' ini', 'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan ini.'}] ```
neuralspace/autotrain-citizen_nlu_hindi-1370952776
neuralspace
2022-09-07T05:48:02Z
102
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "hi", "dataset:neuralspace/autotrain-data-citizen_nlu_hindi", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-07T05:39:47Z
--- tags: - autotrain - text-classification language: - hi widget: - text: "I love AutoTrain 🤗" datasets: - neuralspace/autotrain-data-citizen_nlu_hindi co2_eq_emissions: emissions: 0.06283545088764929 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1370952776 - CO2 Emissions (in grams): 0.0628 ## Validation Metrics - Loss: 0.101 - Accuracy: 0.974 - Macro F1: 0.974 - Micro F1: 0.974 - Weighted F1: 0.974 - Macro Precision: 0.975 - Micro Precision: 0.974 - Weighted Precision: 0.975 - Macro Recall: 0.973 - Micro Recall: 0.974 - Weighted Recall: 0.974 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/neuralspace/autotrain-citizen_nlu_hindi-1370952776 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("neuralspace/autotrain-citizen_nlu_hindi-1370952776", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("neuralspace/autotrain-citizen_nlu_hindi-1370952776", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
neuralspace/autotrain-citizen_nlu_bn-1370652766
neuralspace
2022-09-07T05:42:31Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "bn", "dataset:neuralspace/autotrain-data-citizen_nlu_bn", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-07T05:33:04Z
--- tags: - autotrain - text-classification language: - bn widget: - text: "I love AutoTrain 🤗" datasets: - neuralspace/autotrain-data-citizen_nlu_bn co2_eq_emissions: emissions: 0.08431503532658222 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1370652766 - CO2 Emissions (in grams): 0.0843 ## Validation Metrics - Loss: 0.117 - Accuracy: 0.971 - Macro F1: 0.971 - Micro F1: 0.971 - Weighted F1: 0.971 - Macro Precision: 0.973 - Micro Precision: 0.971 - Weighted Precision: 0.972 - Macro Recall: 0.970 - Micro Recall: 0.971 - Weighted Recall: 0.971 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/neuralspace/autotrain-citizen_nlu_bn-1370652766 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("neuralspace/autotrain-citizen_nlu_bn-1370652766", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("neuralspace/autotrain-citizen_nlu_bn-1370652766", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
jhonparra18/wav2vec2-300m-ft-soft-skill
jhonparra18
2022-09-07T02:59:51Z
160
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-09-06T02:29:15Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-300m-ft-soft-skill results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-300m-ft-soft-skill This model is a fine-tuned version of [glob-asr/xls-r-es-test-lm](https://huggingface.co/glob-asr/xls-r-es-test-lm) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7447 - Accuracy: 0.6827 - F1 Micro: 0.3514 - F1 Macro: 0.6827 - Precision Micro: 0.6827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | F1 Macro | Precision Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:---------------:| | 0.823 | 0.51 | 100 | 0.6821 | 0.7589 | 0.2876 | 0.7589 | 0.7589 | | 0.7122 | 1.02 | 200 | 0.6767 | 0.7589 | 0.2876 | 0.7589 | 0.7589 | | 0.6706 | 1.52 | 300 | 0.6768 | 0.7589 | 0.2876 | 0.7589 | 0.7589 | | 0.7096 | 2.03 | 400 | 0.6791 | 0.7589 | 0.2876 | 0.7589 | 0.7589 | | 0.6909 | 2.54 | 500 | 0.6780 | 0.7589 | 0.2876 | 0.7589 | 0.7589 | | 0.6861 | 3.05 | 600 | 0.6779 | 0.7589 | 0.2876 | 0.7589 | 0.7589 | | 0.6842 | 3.55 | 700 | 0.6773 | 0.7589 | 0.2876 | 0.7589 | 0.7589 | | 0.6887 | 4.06 | 800 | 0.6764 | 0.7589 | 0.2876 | 0.7589 | 0.7589 | | 0.6766 | 4.57 | 900 | 0.6803 | 0.7589 | 0.2876 | 0.7589 | 0.7589 | | 0.6964 | 5.08 | 1000 | 0.6819 | 0.7589 | 0.2876 | 0.7589 | 0.7589 | | 0.6515 | 5.58 | 1100 | 0.6788 | 0.7589 | 0.2876 | 0.7589 | 0.7589 | | 0.6608 | 6.09 | 1200 | 0.6864 | 0.7589 | 0.2876 | 0.7589 | 0.7589 | | 0.6171 | 6.6 | 1300 | 0.6980 | 0.7589 | 0.2876 | 0.7589 | 0.7589 | | 0.6292 | 7.11 | 1400 | 0.7172 | 0.7386 | 0.3119 | 0.7386 | 0.7386 | | 0.6015 | 7.61 | 1500 | 0.6988 | 0.7462 | 0.3212 | 0.7462 | 0.7462 | | 0.6236 | 8.12 | 1600 | 0.7493 | 0.6954 | 0.3432 | 0.6954 | 0.6954 | | 0.5643 | 8.63 | 1700 | 0.7250 | 0.7107 | 0.3466 | 0.7107 | 0.7107 | | 0.6134 | 9.14 | 1800 | 0.7561 | 0.6751 | 0.3565 | 0.6751 | 0.6751 | | 0.5642 | 9.64 | 1900 | 0.7447 | 0.6827 | 0.3514 | 0.6827 | 0.6827 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.8.1+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
nateraw/test-update-metadata-issue
nateraw
2022-09-07T02:40:04Z
0
0
null
[ "en", "license:mit", "region:us" ]
null
2022-09-07T02:28:32Z
--- language: en license: mit ---
rajistics/auditor-test
rajistics
2022-09-07T01:35:51Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "PROD", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-22T18:41:17Z
--- tags: - generated_from_trainer - PROD model-index: - name: auditor-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # auditor-test This model is a fine-tuned version of [demo-org/finbert-pretrain](https://huggingface.co/demo-org/finbert-pretrain) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Imene/vit-base-patch16-384-wi5
Imene
2022-09-07T01:30:24Z
79
0
transformers
[ "transformers", "tf", "tensorboard", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-06T19:10:41Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Imene/vit-base-patch16-384-wi5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-384-wi5 This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4102 - Train Accuracy: 0.9755 - Train Top-3-accuracy: 0.9960 - Validation Loss: 1.9021 - Validation Accuracy: 0.4912 - Validation Top-3-accuracy: 0.7302 - Epoch: 8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3180, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 4.2945 | 0.0568 | 0.1328 | 3.6233 | 0.1387 | 0.2916 | 0 | | 3.1234 | 0.2437 | 0.4585 | 2.8657 | 0.3041 | 0.5330 | 1 | | 2.4383 | 0.4182 | 0.6638 | 2.5499 | 0.3534 | 0.6048 | 2 | | 1.9258 | 0.5698 | 0.7913 | 2.3046 | 0.4202 | 0.6583 | 3 | | 1.4919 | 0.6963 | 0.8758 | 2.1349 | 0.4553 | 0.6784 | 4 | | 1.1127 | 0.7992 | 0.9395 | 2.0878 | 0.4595 | 0.6809 | 5 | | 0.8092 | 0.8889 | 0.9720 | 1.9460 | 0.4962 | 0.7210 | 6 | | 0.5794 | 0.9419 | 0.9883 | 1.9478 | 0.4979 | 0.7201 | 7 | | 0.4102 | 0.9755 | 0.9960 | 1.9021 | 0.4912 | 0.7302 | 8 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
theojolliffe/pegasus-model3
theojolliffe
2022-09-07T00:46:43Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-03T17:57:04Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-model3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-model3 This model is a fine-tuned version of [theojolliffe/pegasus-cnn_dailymail-v4-e1-e4-feedback](https://huggingface.co/theojolliffe/pegasus-cnn_dailymail-v4-e1-e4-feedback) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2808 - Rouge1: 70.5507 - Rouge2: 66.5776 - Rougel: 64.6438 - Rougelsum: 70.0264 - Gen Len: 123.7447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 0.4839 | 1.0 | 748 | 0.2808 | 70.5507 | 66.5776 | 64.6438 | 70.0264 | 123.7447 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
vms57464/Dogz
vms57464
2022-09-07T00:05:26Z
270
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-07T00:05:13Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Dogz results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # Dogz Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Golden Retriever ![Golden Retriever](images/Golden_Retriever.jpg) #### Jack Russell Terrier ![Jack Russell Terrier](images/Jack_Russell_Terrier.jpg) #### Pitbull Terrier ![Pitbull Terrier](images/Pitbull_Terrier.jpg)
Cyanogenoid/ddpm-ema-pokemon-64
Cyanogenoid
2022-09-06T22:43:34Z
4
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/pokemon", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-06T19:26:46Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/pokemon metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-ema-pokemon-64 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/pokemon` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(0.95, 0.999), weight_decay=1e-06 and epsilon=1e-08 - lr_scheduler: cosine - lr_warmup_steps: 500 - ema_inv_gamma: 1.0 - ema_inv_gamma: 0.75 - ema_inv_gamma: 0.9999 - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/Cyanogenoid/ddpm-ema-pokemon-64/tensorboard?#scalars)
theojolliffe/bart-paraphrase-feedback
theojolliffe
2022-09-06T21:30:07Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-06T20:42:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-paraphrase-feedback results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-feedback This model is a fine-tuned version of [theojolliffe/bart-paraphrase-v4-e1-feedback](https://huggingface.co/theojolliffe/bart-paraphrase-v4-e1-feedback) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3640 - Rouge1: 55.8307 - Rouge2: 49.7983 - Rougel: 51.7379 - Rougelsum: 55.0839 - Gen Len: 19.4385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.6009 | 1.0 | 521 | 0.3640 | 55.8307 | 49.7983 | 51.7379 | 55.0839 | 19.4385 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1