modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-04 18:27:43
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
539 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-04 18:27:26
card
stringlengths
11
1.01M
diegopetrola/vit-for-kaggle-mayo-clinic
diegopetrola
2022-09-06T20:12:36Z
226
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-14T01:01:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-for-kaggle-mayo-clinic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-for-kaggle-mayo-clinic This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5538 - Accuracy: 0.7616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 0.5944 | 0.7483 | | No log | 2.0 | 20 | 0.5640 | 0.7483 | | No log | 3.0 | 30 | 0.5582 | 0.7483 | | No log | 4.0 | 40 | 0.5585 | 0.7483 | | No log | 5.0 | 50 | 0.5598 | 0.7483 | | No log | 6.0 | 60 | 0.5484 | 0.7483 | | No log | 7.0 | 70 | 0.5524 | 0.7417 | | No log | 8.0 | 80 | 0.5538 | 0.7616 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Imene/vit-base-patch16-384-wi4
Imene
2022-09-06T16:20:09Z
81
0
transformers
[ "transformers", "tf", "tensorboard", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-06T09:00:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Imene/vit-base-patch16-384-wi4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-384-wi4 This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1742 - Train Accuracy: 0.9982 - Train Top-3-accuracy: 0.9997 - Validation Loss: 1.5010 - Validation Accuracy: 0.5746 - Validation Top-3-accuracy: 0.8040 - Epoch: 10 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1800, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 3.7777 | 0.0845 | 0.1855 | 3.3754 | 0.1543 | 0.3014 | 0 | | 2.7253 | 0.3277 | 0.5560 | 2.4975 | 0.3452 | 0.5892 | 1 | | 2.0079 | 0.5236 | 0.7589 | 2.1228 | 0.4234 | 0.6882 | 2 | | 1.5256 | 0.6663 | 0.8549 | 1.9117 | 0.4734 | 0.7445 | 3 | | 1.1602 | 0.7712 | 0.9270 | 1.8059 | 0.5162 | 0.7560 | 4 | | 0.8509 | 0.8659 | 0.9614 | 1.6534 | 0.5516 | 0.7758 | 5 | | 0.5955 | 0.9353 | 0.9836 | 1.6139 | 0.5610 | 0.7935 | 6 | | 0.4229 | 0.9687 | 0.9940 | 1.5655 | 0.5631 | 0.7925 | 7 | | 0.3045 | 0.9859 | 0.9979 | 1.5290 | 0.5714 | 0.7987 | 8 | | 0.2221 | 0.9958 | 0.9990 | 1.5061 | 0.5954 | 0.8008 | 9 | | 0.1742 | 0.9982 | 0.9997 | 1.5010 | 0.5746 | 0.8040 | 10 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
SiraH/wangchanberta-wiki-qa-finetuned-squad
SiraH
2022-09-06T15:53:23Z
121
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "question-answering", "th", "endpoints_compatible", "region:us" ]
question-answering
2022-09-06T15:12:46Z
--- language: th widget: - text: "สโมสรฟุตบอลเชลซีเล่นอยู่ในลีกอะไร" context: "สโมสรฟุตบอลเชลซี (อังกฤษ: Chelsea Football Club) เป็นสโมสรฟุตบอลอาชีพที่ตั้งอยู่ในเขตฟูลัม, ลอนดอน ซึ่งเล่นอยู่ในพรีเมียร์ลีก ลีกสูงสุดของฟุตบอลอังกฤษ ก่อตั้งขึ้นใน ค.ศ. 1905 มีสนามเหย้าคือสแตมฟอร์ดบริดจ์ เป็นหนึ่งในสโมสรที่ประสบความสำเร็จมากที่สุดของอังกฤษ[3][4][5] ในการแข่งขันภายในประเทศ เชลซีชนะเลิศลีกสูงสุด 6 สมัย, เอฟเอคัพ 8 สมัย, ลีกคัพ 5 สมัย และ เอฟเอคอมมิวนิตีชีลด์ 4 สมัย และในการแข่งขันระหว่างประเทศ พวกเขาชนะเลิศยูฟ่าแชมเปียนส์ลีก 2 สมัย, ยูฟ่าคัพวินเนอร์สคัพ 2 สมัย, ยูฟ่ายูโรปาลีก 2 สมัย, ยูฟ่าซูเปอร์คัพ 2 สมัย และฟุตบอลชิงแชมป์สโมสรโลก 1 สมัย" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wangchanberta-wiki-qa-finetuned-squad This model is a fine-tuned version of [airesearch/wangchanberta-base-wiki-20210520-spm-finetune-qa](https://huggingface.co/airesearch/wangchanberta-base-wiki-20210520-spm-finetune-qa) on the iapp_wiki_qa_squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Azizjah/autotrain-arabic_cuisine-1367052683
Azizjah
2022-09-06T15:18:01Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "ar", "dataset:Azizjah/autotrain-data-arabic_cuisine", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-06T15:14:52Z
--- tags: - autotrain - text-classification language: - ar widget: - text: "I love AutoTrain 🤗" datasets: - Azizjah/autotrain-data-arabic_cuisine co2_eq_emissions: emissions: 0.02430968865158923 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1367052683 - CO2 Emissions (in grams): 0.0243 ## Validation Metrics - Loss: 2.302 - Accuracy: 0.439 - Macro F1: 0.133 - Micro F1: 0.439 - Weighted F1: 0.391 - Macro Precision: 0.167 - Micro Precision: 0.439 - Weighted Precision: 0.378 - Macro Recall: 0.140 - Micro Recall: 0.439 - Weighted Recall: 0.439 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Azizjah/autotrain-arabic_cuisine-1367052683 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Azizjah/autotrain-arabic_cuisine-1367052683", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Azizjah/autotrain-arabic_cuisine-1367052683", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/getfactet
huggingtweets
2022-09-06T14:26:31Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-04T16:12:48Z
--- language: en thumbnail: http://www.huggingtweets.com/getfactet/1662474386697/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1440145130984390662/yv8sN87h_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">GETFact</div> <div style="text-align: center; font-size: 14px;">@getfactet</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from GETFact. | Data | GETFact | | --- | --- | | Tweets downloaded | 288 | | Retweets | 8 | | Short tweets | 64 | | Tweets kept | 216 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e780yfa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @getfactet's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/vceqvxdg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/vceqvxdg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/getfactet') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jmstadt/tire-types
jmstadt
2022-09-06T13:38:54Z
197
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-06T13:38:43Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: tire-types results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7230769395828247 --- # tire-types Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### all-terrain tire ![all-terrain tire](images/all-terrain_tire.jpg) #### competition tire ![competition tire](images/competition_tire.jpg) #### passenger tire ![passenger tire](images/passenger_tire.jpg)
rahulmallah/autotrain-emotion-detection-1366352626
rahulmallah
2022-09-06T13:18:36Z
104
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:rahulmallah/autotrain-data-emotion-detection", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-06T13:14:23Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - rahulmallah/autotrain-data-emotion-detection co2_eq_emissions: emissions: 0.037160667072201545 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1366352626 - CO2 Emissions (in grams): 0.0372 ## Validation Metrics - Loss: 1.772 - Accuracy: 0.394 - Macro F1: 0.197 - Micro F1: 0.394 - Weighted F1: 0.351 - Macro Precision: 0.217 - Micro Precision: 0.394 - Weighted Precision: 0.345 - Macro Recall: 0.213 - Micro Recall: 0.394 - Weighted Recall: 0.394 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/rahulmallah/autotrain-emotion-detection-1366352626 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("rahulmallah/autotrain-emotion-detection-1366352626", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("rahulmallah/autotrain-emotion-detection-1366352626", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
shed-e/bert-finetuned-squad
shed-e
2022-09-06T12:23:32Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-06T10:01:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
mrm8488/electricidad-base-finetuned-sst2-es
mrm8488
2022-09-06T12:09:35Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "sste", "dataset:sst2-es-mt", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-03T15:55:00Z
--- languages: -es tags: - generated_from_trainer - sste datasets: - sst2-es-mt metrics: - accuracy - f1 model-index: - name: electricidad-base-finetuned-sst2-es results: - task: name: Text Classification type: text-classification dataset: name: sst2-es-mt type: sst2-es-mt config: sst2 split: train args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9013761467889908 - name: F1 type: f1 value: 0.9033707865168539 widget: - text: "La verdad es que no tengo una opinión sólida al respecto." - text: "Me parece muy interesante poder colaborar en este proyecto." - text: "El gobierno actual no lo está haciendo mal, pero debe mejorar." - text: "Esperaba mucho más por el precio que he pagado, la verdad..." - text: "El proyecto BERTIN tiene cosas interesantes, pero tienen que trabajar más duro si quieren llegar lejos." --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Electricidad (base) fine-tuned on sst2-es-mt for Spanish Sentiment Analysis 👍👎 This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the **sst2-es-mt** [dataset](https://huggingface.co/datasets/sst2-es-mt). A dataset created using Neural Machine Translation on original [SST2](https://huggingface.co/datasets/sst2) (English) dataset. It achieves the following results on the evaluation set: - Loss: 0.4377 - Accuracy: 0.9014 - F1: 0.9034 ## Usage ```py from transformers import pipeline model_ckpt = "mrm8488/electricidad-base-finetuned-sst2-es" classifier = pipeline("sentiment-analysis", model=model_ckpt) classifier("Here your text in Spanish!") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.2521 | 1.0 | 2105 | 0.2837 | 0.9002 | 0.9019 | | 0.1694 | 2.0 | 4210 | 0.3175 | 0.8933 | 0.8920 | | 0.1245 | 3.0 | 6315 | 0.3606 | 0.8945 | 0.8987 | | 0.0934 | 4.0 | 8420 | 0.4419 | 0.9002 | 0.9037 | | 0.069 | 5.0 | 10525 | 0.4377 | 0.9014 | 0.9034 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
mrm8488/electricidad-small-finetuned-sst2-es
mrm8488
2022-09-06T12:08:55Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "dataset:sst2-es-mt", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-03T15:37:30Z
--- tags: - generated_from_trainer datasets: - sst2-es-mt metrics: - accuracy - f1 model-index: - name: electricidad-small-finetuned-sst2-es results: - task: name: Text Classification type: text-classification dataset: name: sst2-es-mt type: sst2-es-mt config: sst2 split: train args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8795871559633027 - name: F1 type: f1 value: 0.88 widget: - text: "La verdad es que no tengo una opinión sólida al respecto." - text: "Me parece muy interesante poder colaborar en este proyecto." - text: "El gobierno actual no lo está haciendo mal, pero debe mejorar." - text: "Esperaba mucho más por el precio que he pagado, la verdad..." - text: "El proyecto BERTIN tiene cosas interesantes, pero tienen que trabajar más duro si quieren llegar lejos." --- # Electricidad (small) fine-tuned on sst2-es-mt for Spanish Sentiment Analysis 👍👎 This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on the **sst2-es-mt** [dataset](https://huggingface.co/datasets/sst2-es-mt). A dataset created using Neural Machine Translation on original [SST2](https://huggingface.co/datasets//sst2) (English) dataset. It achieves the following results on the evaluation set: - Accuracy: 0.879 - F1: 0.88 ## Usage ```py from transformers import pipeline model_ckpt = "mrm8488/electricidad-small-finetuned-sst2-es" classifier = pipeline("sentiment-analysis", model=model_ckpt) classifier("Here your text in Spanish!") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.676560994488171e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 30 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3272 | 1.0 | 2105 | 0.3418 | 0.8567 | 0.8489 | | 0.2394 | 2.0 | 4210 | 0.3391 | 0.8796 | 0.88 | | 0.192 | 3.0 | 6315 | 0.3644 | 0.8761 | 0.8770 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Dazzid/distilbert-base-uncased-finetuned-emotion
Dazzid
2022-09-06T11:46:54Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-06T10:21:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.928 - name: F1 type: f1 value: 0.9280684459516919 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2096 - Accuracy: 0.928 - F1: 0.9281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8334 | 1.0 | 250 | 0.3126 | 0.9055 | 0.9022 | | 0.2459 | 2.0 | 500 | 0.2096 | 0.928 | 0.9281 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Hoax0930/kftt
Hoax0930
2022-09-06T11:06:19Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-09-02T07:09:06Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: kftt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kftt This model is a fine-tuned version of [Helsinki-NLP/opus-tatoeba-en-ja](https://huggingface.co/Helsinki-NLP/opus-tatoeba-en-ja) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8809 - Bleu: 15.2565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
abdouaziiz/wav2vec2-xls-r-300m-wolof-lm
abdouaziiz
2022-09-06T10:35:32Z
105
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "asr", "wolof", "wo", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: mit tags: - automatic-speech-recognition - asr - pytorch - wav2vec2 - wolof - wo model-index: - name: wav2vec2-xls-r-300m-wolof-lm results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test WER type: wer value: 21.25 - name: Validation Loss type: Loss value: 0.36 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-wolof-lm Wolof is a language spoken in Senegal and neighbouring countries, this language is not too well represented, there are few resources in the field of Text en speech In this sense we aim to bring our contribution to this, it is in this sense that enters this repo. This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) ,with a language model that is fine-tuned with the largest available speech dataset of the [ALFFA_PUBLIC](https://github.com/besacier/ALFFA_PUBLIC/tree/master/ASR/WOLOF) It achieves the following results on the evaluation set: - Loss: 0.367826 - Wer: 0.212565 ## Model description The duration of the training data is 16.8 hours, which we have divided into 10,000 audio files for the training and 3,339 for the test. ## Training and evaluation data We eval the model at every 1500 step , and log it . and save at every 33340 step ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-4 - train_batch_size: 3 - eval_batch_size : 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10.0 ### Training results | Step | Training Loss | Validation Loss | Wer | |:-------:|:-------------:|:---------------:|:------:| | 1500 | 2.854200 |0.642243 |0.543964 | | 3000 | 0.599200 | 0.468138 | 0.429549| | 4500 | 0.468300 | 0.433436 | 0.405644| | 6000 | 0.427000 | 0.384873 | 0.344150| | 7500 | 0.377000 | 0.374003 | 0.323892| | 9000 | 0.337000 | 0.363674 | 0.306189| | 10500 | 0.302400 | 0.349884 |0 .283908 | | 12000 | 0.264100 | 0.344104 |0.277120| | 13500 |0 .254000 |0.341820 |0.271316| | 15000 | 0.208400| 0.326502 | 0.260695| | 16500 | 0.203500| 0.326209 | 0.250313| | 18000 |0.159800 |0.323539 | 0.239851| | 19500 | 0.158200 | 0.310694 | 0.230028| | 21000 | 0.132800 | 0.338318 | 0.229283| | 22500 | 0.112800 | 0.336765 | 0.224145| | 24000 | 0.103600 | 0.350208 | 0.227073 | | 25500 | 0.091400 | 0.353609 | 0.221589 | | 27000 | 0.084400 | 0.367826 | 0.212565 | ## Usage The model can be used directly as follows: ```python import librosa import warnings from transformers import AutoProcessor, AutoModelForCTC from datasets import Dataset, DatasetDict from datasets import load_metric wer_metric = load_metric("wer") wolof = pd.read_csv('Test.csv') # wolof contains the columns of file , and transcription wolof = DatasetDict({'test': Dataset.from_pandas(wolof)}) chars_to_ignore_regex = '[\"\?\.\!\-\;\:\(\)\,]' def remove_special_characters(batch): batch["transcription"] = re.sub(chars_to_ignore_regex, '', batch["transcription"]).lower() + " " return batch wolof = wolof.map(remove_special_characters) processor = AutoProcessor.from_pretrained("abdouaziiz/wav2vec2-xls-r-300m-wolof-lm") model = AutoModelForCTC.from_pretrained("abdouaziiz/wav2vec2-xls-r-300m-wolof-lm") warnings.filterwarnings("ignore") def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["file"], sr = 16000) batch["speech"] = speech_array.astype('float16') batch["sampling_rate"] = sampling_rate batch["target_text"] = batch["transcription"] return batch wolof = wolof.map(speech_file_to_array_fn, remove_columns=wolof.column_names["test"], num_proc=1) def map_to_result(batch): model.to("cuda") input_values = processor( batch["speech"], sampling_rate=batch["sampling_rate"], return_tensors="pt" ).input_values.to("cuda") with torch.no_grad(): logits = model(input_values).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_str"] = processor.batch_decode(pred_ids)[0] return batch results = wolof["test"].map(map_to_result) print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["transcription"]))) ``` ## PS: The results obtained can be improved by using : - Wav2vec2 + language model . - Build a Spellcheker from the text of the data - Sentence Edit Distance
DrishtiSharma/finetuned-SwinT-Indian-Food-Classification-v3
DrishtiSharma
2022-09-06T10:06:44Z
221
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-03T12:16:00Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-SwinT-Indian-Food-Classification-v3 results: - task: name: Image Classification type: image-classification dataset: name: Indian-Food-Images type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9436769394261424 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-SwinT-Indian-Food-Classification-v3 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the Indian-Food-Images dataset. It achieves the following results on the evaluation set: - Loss: 0.2910 - Accuracy: 0.9437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9511 | 0.3 | 100 | 0.6092 | 0.8172 | | 0.6214 | 0.6 | 200 | 0.4406 | 0.8672 | | 0.7355 | 0.9 | 300 | 0.3665 | 0.8927 | | 0.6078 | 1.2 | 400 | 0.3285 | 0.9065 | | 0.439 | 1.5 | 500 | 0.3855 | 0.8916 | | 0.3644 | 1.8 | 600 | 0.4082 | 0.8969 | | 0.4748 | 2.1 | 700 | 0.3496 | 0.9022 | | 0.3966 | 2.4 | 800 | 0.3626 | 0.8905 | | 0.5799 | 2.7 | 900 | 0.4833 | 0.8767 | | 0.2995 | 3.0 | 1000 | 0.3387 | 0.9044 | | 0.3152 | 3.3 | 1100 | 0.3739 | 0.9097 | | 0.3284 | 3.6 | 1200 | 0.4217 | 0.8916 | | 0.3631 | 3.9 | 1300 | 0.4118 | 0.9044 | | 0.219 | 4.2 | 1400 | 0.3721 | 0.9139 | | 0.2874 | 4.5 | 1500 | 0.3030 | 0.9288 | | 0.2819 | 4.8 | 1600 | 0.4056 | 0.9150 | | 0.1755 | 5.11 | 1700 | 0.4039 | 0.9097 | | 0.2462 | 5.41 | 1800 | 0.3550 | 0.9118 | | 0.1737 | 5.71 | 1900 | 0.3444 | 0.9150 | | 0.174 | 6.01 | 2000 | 0.3667 | 0.9160 | | 0.1536 | 6.31 | 2100 | 0.3301 | 0.9288 | | 0.0911 | 6.61 | 2200 | 0.3390 | 0.9299 | | 0.0907 | 6.91 | 2300 | 0.2923 | 0.9288 | | 0.0921 | 7.21 | 2400 | 0.3502 | 0.9256 | | 0.1662 | 7.51 | 2500 | 0.3197 | 0.9341 | | 0.0607 | 7.81 | 2600 | 0.3092 | 0.9362 | | 0.111 | 8.11 | 2700 | 0.3146 | 0.9394 | | 0.0588 | 8.41 | 2800 | 0.3069 | 0.9341 | | 0.131 | 8.71 | 2900 | 0.2971 | 0.9405 | | 0.1903 | 9.01 | 3000 | 0.3078 | 0.9384 | | 0.2116 | 9.31 | 3100 | 0.3112 | 0.9341 | | 0.1415 | 9.61 | 3200 | 0.2956 | 0.9405 | | 0.1106 | 9.91 | 3300 | 0.2910 | 0.9437 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
burakyldrm/wav2vec2-burak
burakyldrm
2022-09-06T09:10:06Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-05T22:06:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-burak results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-burak This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4954 - Wer: 0.3969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.8973 | 7.02 | 400 | 0.7101 | 0.7295 | | 0.3118 | 14.03 | 800 | 0.5377 | 0.5062 | | 0.1272 | 21.05 | 1200 | 0.5462 | 0.4296 | | 0.0723 | 28.07 | 1600 | 0.4954 | 0.3969 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
nithiroj/testpyramidsrnd
nithiroj
2022-09-06T09:09:04Z
16
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-09-06T09:08:56Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: nithiroj/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
huggingtweets/anandmahindra-opensea-rs5_eth
huggingtweets
2022-09-06T08:05:24Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-06T08:05:17Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1519250334837010432/tl8b_5l4_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1544105652330631168/ZuvjfGkT_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1554326129053671424/2QQjcfK8_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">𝕽́͝𝕾͋̀͝5̓̐͝ & OpenSea & anand mahindra</div> <div style="text-align: center; font-size: 14px;">@anandmahindra-opensea-rs5_eth</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 𝕽́͝𝕾͋̀͝5̓̐͝ & OpenSea & anand mahindra. | Data | 𝕽́͝𝕾͋̀͝5̓̐͝ | OpenSea | anand mahindra | | --- | --- | --- | --- | | Tweets downloaded | 3249 | 3241 | 3240 | | Retweets | 0 | 1720 | 705 | | Short tweets | 1994 | 319 | 177 | | Tweets kept | 1255 | 1202 | 2358 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1s8dmqks/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @anandmahindra-opensea-rs5_eth's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/5ltilq18) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/5ltilq18/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/anandmahindra-opensea-rs5_eth') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
clementchadebec/reproduced_svae
clementchadebec
2022-09-06T07:23:41Z
0
1
pythae
[ "pythae", "reproducibility", "en", "license:apache-2.0", "region:us" ]
null
2022-08-19T19:51:40Z
--- language: en tags: - pythae - reproducibility license: apache-2.0 --- This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from pythae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="clementchadebec/reproduced_svae") ``` ## Reproducibility This trained model reproduces the results of Table 1 in [1]. | Model | Dataset | Metric | Obtained value | Reference value | |:---:|:---:|:---:|:---:|:---:| | SVAE | Dyn. Binarized MNIST | NLL (500 IS) | 93.13 (0.01) | 93.16 (0.31) | [1] Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyperspherical variational auto-encoders. In 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, pages 856–865. Association For Uncertainty in Artificial Intelligence (AUAI), 2018.
unfinity/dqn-SpaceInvadersNoFrameskip-v4
unfinity
2022-09-06T07:00:55Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-06T07:00:21Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 559.00 +/- 117.55 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga unfinity -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga unfinity ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Sameen53/training_45k_V2
Sameen53
2022-09-06T06:17:17Z
104
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-06T06:13:59Z
--- tags: - generated_from_trainer model-index: - name: training_45k_V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # training_45k_V2 This model is a fine-tuned version of [Sameen53/training_45k](https://huggingface.co/Sameen53/training_45k) on the None dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.1673 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2583 | 1.26 | 1500 | inf | 0.1660 | | 0.2522 | 2.51 | 3000 | inf | 0.1625 | | 0.2427 | 3.77 | 4500 | inf | 0.1665 | | 0.2333 | 5.02 | 6000 | inf | 0.1629 | | 0.2692 | 6.28 | 7500 | inf | 0.1673 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
aaazzzz/autotrain-cuisine_classification-1361652530
aaazzzz
2022-09-06T05:55:22Z
102
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:aaazzzz/autotrain-data-cuisine_classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-06T04:30:29Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - aaazzzz/autotrain-data-cuisine_classification co2_eq_emissions: emissions: 181.03886827858415 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1361652530 - CO2 Emissions (in grams): 181.0389 ## Validation Metrics - Loss: 0.920 - Accuracy: 0.731 - Macro F1: 0.669 - Micro F1: 0.731 - Weighted F1: 0.726 - Macro Precision: 0.774 - Micro Precision: 0.731 - Weighted Precision: 0.738 - Macro Recall: 0.623 - Micro Recall: 0.731 - Weighted Recall: 0.731 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/aaazzzz/autotrain-cuisine_classification-1361652530 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("aaazzzz/autotrain-cuisine_classification-1361652530", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("aaazzzz/autotrain-cuisine_classification-1361652530", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Mcy/bert-base-uncased-finetuned-classification
Mcy
2022-09-06T04:59:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T14:04:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-classification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 38.9115 - Mse: 38.9115 - Mae: 4.5330 - R2: 0.7802 - Accuracy: 0.1620 - Msev: 0.0257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | Msev | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:--------:|:------:| | 12.4524 | 1.0 | 5215 | 43.9797 | 43.9797 | 4.8194 | 0.7515 | 0.1693 | 0.0227 | | 4.393 | 2.0 | 10430 | 39.2333 | 39.2333 | 4.6028 | 0.7783 | 0.1737 | 0.0255 | | 2.424 | 3.0 | 15645 | 41.3763 | 41.3763 | 4.6597 | 0.7662 | 0.1620 | 0.0242 | | 1.781 | 4.0 | 20860 | 39.4309 | 39.4309 | 4.5960 | 0.7772 | 0.1767 | 0.0254 | | 1.3608 | 5.0 | 26075 | 38.9115 | 38.9115 | 4.5330 | 0.7802 | 0.1620 | 0.0257 | | 1.2014 | 6.0 | 31290 | 39.7403 | 39.7403 | 4.5850 | 0.7755 | 0.1716 | 0.0252 | | 1.0742 | 7.0 | 36505 | 40.4495 | 40.4495 | 4.6133 | 0.7715 | 0.1685 | 0.0247 | | 0.837 | 8.0 | 41720 | 39.5864 | 39.5864 | 4.5630 | 0.7763 | 0.1620 | 0.0253 | | 0.8054 | 9.0 | 46935 | 39.9482 | 39.9482 | 4.5839 | 0.7743 | 0.1569 | 0.0250 | | 0.8085 | 10.0 | 52150 | 39.5685 | 39.5685 | 4.5669 | 0.7764 | 0.1573 | 0.0253 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
vihu/ppo-LunarLander-v2
vihu
2022-09-06T04:47:33Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-06T04:47:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 261.03 +/- 22.10 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
neuralspace/autotrain-ecomm1.8-1360552485
neuralspace
2022-09-06T04:02:09Z
104
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:neuralspace/autotrain-data-ecomm1.8", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-06T03:56:18Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - neuralspace/autotrain-data-ecomm1.8 co2_eq_emissions: emissions: 0.034797737604122594 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1360552485 - CO2 Emissions (in grams): 0.0348 ## Validation Metrics - Loss: 0.539 - Accuracy: 0.914 - Macro F1: 0.903 - Micro F1: 0.914 - Weighted F1: 0.907 - Macro Precision: 0.927 - Micro Precision: 0.914 - Weighted Precision: 0.928 - Macro Recall: 0.907 - Micro Recall: 0.914 - Weighted Recall: 0.914 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/neuralspace/autotrain-ecomm1.8-1360552485 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("neuralspace/autotrain-ecomm1.8-1360552485", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("neuralspace/autotrain-ecomm1.8-1360552485", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
swtx/Erlangshen-Roberta-110M-POI
swtx
2022-09-06T03:10:44Z
159
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-06T03:00:05Z
--- license: apache-2.0 --- tags: - bert - NLU - NLI inference: true widget: - text: "湖北省黄冈市麻城市中国中部(麻城)石材循环经济产业园厦门路麻城盈泰环保科技有限公司[SEP]黄冈市麻城市中国中部石材循环经济产业园厦门路麻城盈泰环保科技有限公司" --- # Erlangshen-Roberta-110M-POI, model (Chinese). We add POI datasets, with a total of 5000000 samples. Our model is mainly based on [roberta](https://github.com/IDEA-CCNL/Erlangshen-Roberta-110M-Similarity) ## Usage ```python from transformers import BertForSequenceClassification from transformers import BertTokenizer import torch tokenizer=BertTokenizer.from_pretrained('swtx/Erlangshen-Roberta-110M-POI') model=BertForSequenceClassification.from_pretrained('swtx/Erlangshen-Roberta-110M-POI') texta='湖北省黄冈市麻城市中国中部(麻城)石材循环经济产业园厦门路麻城盈泰环保科技有限公司' textb='黄冈市麻城市中国中部石材循环经济产业园厦门路麻城盈泰环保科技有限公司' output=model(torch.tensor([tokenizer.encode(texta,textb)])) print(torch.nn.functional.softmax(output.logits,dim=-1)) ```
marvind434/swin-tiny-patch4-window7-224-finetuned-eurosat
marvind434
2022-09-06T03:04:11Z
217
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-24T05:20:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3026 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 1.0940 | 0.25 | | No log | 2.0 | 2 | 0.9836 | 0.25 | | No log | 3.0 | 3 | 0.7624 | 0.25 | | No log | 4.0 | 4 | 0.6527 | 0.5 | | No log | 5.0 | 5 | 0.5697 | 0.75 | | No log | 6.0 | 6 | 0.5167 | 1.0 | | No log | 7.0 | 7 | 0.4898 | 0.75 | | No log | 8.0 | 8 | 0.4572 | 0.75 | | No log | 9.0 | 9 | 0.4286 | 0.75 | | 0.299 | 10.0 | 10 | 0.3976 | 0.75 | | 0.299 | 11.0 | 11 | 0.3678 | 1.0 | | 0.299 | 12.0 | 12 | 0.3531 | 1.0 | | 0.299 | 13.0 | 13 | 0.3384 | 1.0 | | 0.299 | 14.0 | 14 | 0.3264 | 1.0 | | 0.299 | 15.0 | 15 | 0.3188 | 1.0 | | 0.299 | 16.0 | 16 | 0.3114 | 1.0 | | 0.299 | 17.0 | 17 | 0.3083 | 1.0 | | 0.299 | 18.0 | 18 | 0.3071 | 1.0 | | 0.299 | 19.0 | 19 | 0.3041 | 1.0 | | 0.2051 | 20.0 | 20 | 0.3026 | 1.0 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
RohanK447/swin-tiny-patch4-window7-224-finetuned-vosap
RohanK447
2022-09-06T03:02:08Z
230
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-05T21:29:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-vosap results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.75 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-vosap This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4894 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.4894 | 0.75 | | No log | 2.0 | 2 | 0.5365 | 0.5 | | No log | 3.0 | 3 | 0.6957 | 0.5 | | No log | 4.0 | 4 | 0.6781 | 0.5 | | No log | 5.0 | 5 | 0.5617 | 0.5 | | No log | 6.0 | 6 | 0.4461 | 0.75 | | No log | 7.0 | 7 | 0.3368 | 0.75 | | No log | 8.0 | 8 | 0.3289 | 0.75 | | No log | 9.0 | 9 | 0.3642 | 0.75 | | 0.0539 | 10.0 | 10 | 0.4334 | 0.75 | | 0.0539 | 11.0 | 11 | 0.5582 | 0.5 | | 0.0539 | 12.0 | 12 | 0.6676 | 0.5 | | 0.0539 | 13.0 | 13 | 0.7586 | 0.5 | | 0.0539 | 14.0 | 14 | 0.7937 | 0.5 | | 0.0539 | 15.0 | 15 | 0.7986 | 0.5 | | 0.0539 | 16.0 | 16 | 0.7619 | 0.5 | | 0.0539 | 17.0 | 17 | 0.7134 | 0.5 | | 0.0539 | 18.0 | 18 | 0.6725 | 0.5 | | 0.0539 | 19.0 | 19 | 0.6390 | 0.5 | | 0.0297 | 20.0 | 20 | 0.6222 | 0.5 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
rajistics/finetuned-indian-food
rajistics
2022-09-06T02:49:44Z
255
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-15T18:47:54Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-indian-food results: - task: name: Image Classification type: image-classification dataset: name: indian_food_images type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9330499468650372 widget: - src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/003.jpg example_title: fried_rice - src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/126.jpg example_title: paani_puri - src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/401.jpg example_title: chapati --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-indian-food This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.2632 - Accuracy: 0.9330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1794 | 0.3 | 100 | 0.9208 | 0.8565 | | 0.6513 | 0.6 | 200 | 0.5410 | 0.8842 | | 0.5904 | 0.9 | 300 | 0.4978 | 0.8799 | | 0.4461 | 1.2 | 400 | 0.3669 | 0.9192 | | 0.5633 | 1.5 | 500 | 0.4340 | 0.8842 | | 0.2489 | 1.8 | 600 | 0.3355 | 0.9171 | | 0.3171 | 2.1 | 700 | 0.3286 | 0.9192 | | 0.3785 | 2.4 | 800 | 0.3232 | 0.9171 | | 0.2278 | 2.7 | 900 | 0.3338 | 0.9192 | | 0.0894 | 3.0 | 1000 | 0.2870 | 0.9245 | | 0.2092 | 3.3 | 1100 | 0.2884 | 0.9288 | | 0.1466 | 3.6 | 1200 | 0.2673 | 0.9320 | | 0.1789 | 3.9 | 1300 | 0.2632 | 0.9330 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Imene/vit-base-patch16-384-wi3
Imene
2022-09-06T00:06:23Z
81
0
transformers
[ "transformers", "tf", "tensorboard", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-05T18:53:02Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Imene/vit-base-patch16-384-wi3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-384-wi3 This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2020 - Train Accuracy: 0.9984 - Train Top-3-accuracy: 0.9997 - Validation Loss: 1.4297 - Validation Accuracy: 0.6195 - Validation Top-3-accuracy: 0.8298 - Epoch: 11 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 3.6575 | 0.0902 | 0.1945 | 3.1772 | 0.2028 | 0.3980 | 0 | | 2.5870 | 0.3473 | 0.6048 | 2.3845 | 0.3717 | 0.6208 | 1 | | 1.8813 | 0.5553 | 0.7895 | 2.0262 | 0.4431 | 0.7196 | 2 | | 1.4326 | 0.6815 | 0.8754 | 1.8856 | 0.4793 | 0.7384 | 3 | | 1.0572 | 0.7989 | 0.9439 | 1.6570 | 0.5369 | 0.7960 | 4 | | 0.7740 | 0.8838 | 0.9749 | 1.6103 | 0.5557 | 0.7960 | 5 | | 0.5593 | 0.9417 | 0.9900 | 1.5303 | 0.5695 | 0.8173 | 6 | | 0.4151 | 0.9709 | 0.9975 | 1.4939 | 0.5795 | 0.8185 | 7 | | 0.3176 | 0.9884 | 0.9978 | 1.4553 | 0.5832 | 0.8248 | 8 | | 0.2582 | 0.9950 | 0.9991 | 1.4500 | 0.6020 | 0.8248 | 9 | | 0.2222 | 0.9978 | 0.9994 | 1.4315 | 0.6108 | 0.8310 | 10 | | 0.2020 | 0.9984 | 0.9997 | 1.4297 | 0.6195 | 0.8298 | 11 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
julien-c/hotdog-not-hotdog
julien-c
2022-09-05T21:30:21Z
1,778
28
transformers
[ "transformers", "pytorch", "tensorboard", "coreml", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - huggingpics metrics: - accuracy model-index: - name: hotdog-not-hotdog results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.824999988079071 --- # hotdog-not-hotdog Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### hot dog ![hot dog](images/hot_dog.jpg) #### not hot dog ![miscellaneous](images/miscellaneous.jpg)
curt-tigges/Reinforce-Cartpole
curt-tigges
2022-09-05T20:40:02Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-05T20:39:17Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 72.60 +/- 13.69 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
wonkwonlee/distilbert-base-uncased-finetuned-cola
wonkwonlee
2022-09-05T19:37:47Z
111
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T18:42:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5474713423103301 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5263 - Matthews Correlation: 0.5475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5222 | 1.0 | 535 | 0.5384 | 0.4304 | | 0.3494 | 2.0 | 1070 | 0.5128 | 0.4975 | | 0.2381 | 3.0 | 1605 | 0.5263 | 0.5475 | | 0.1753 | 4.0 | 2140 | 0.7498 | 0.5354 | | 0.1243 | 5.0 | 2675 | 0.8013 | 0.5414 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cpu - Datasets 2.3.2 - Tokenizers 0.12.1
Guruji108/xlm-roberta-base-finetuned-panx-fr
Guruji108
2022-09-05T19:16:42Z
114
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T18:59:16Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8299296953465015 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2848 - F1: 0.8299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5989 | 1.0 | 191 | 0.3383 | 0.7928 | | 0.2617 | 2.0 | 382 | 0.2966 | 0.8318 | | 0.1672 | 3.0 | 573 | 0.2848 | 0.8299 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
rlpeter70/xlm-roberta-base-finetuned-panx-all
rlpeter70
2022-09-05T18:53:53Z
107
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T18:25:20Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1745 - F1: 0.8505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3055 | 1.0 | 835 | 0.1842 | 0.8099 | | 0.1561 | 2.0 | 1670 | 0.1711 | 0.8452 | | 0.1016 | 3.0 | 2505 | 0.1745 | 0.8505 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
rlpeter70/xlm-roberta-base-finetuned-panx-it
rlpeter70
2022-09-05T18:09:26Z
104
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T17:53:12Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8124233755619126 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2630 - F1: 0.8124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8193 | 1.0 | 70 | 0.3200 | 0.7356 | | 0.2773 | 2.0 | 140 | 0.2841 | 0.7882 | | 0.1807 | 3.0 | 210 | 0.2630 | 0.8124 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
rlpeter70/xlm-roberta-base-finetuned-panx-fr
rlpeter70
2022-09-05T17:52:58Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T17:35:29Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8346456692913387 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2763 - F1: 0.8346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5779 | 1.0 | 191 | 0.3701 | 0.7701 | | 0.2735 | 2.0 | 382 | 0.2908 | 0.8254 | | 0.1769 | 3.0 | 573 | 0.2763 | 0.8346 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
model-attribution-challenge/distilgpt2
model-attribution-challenge
2022-09-05T17:45:18Z
166
1
transformers
[ "transformers", "pytorch", "tf", "jax", "tflite", "rust", "coreml", "gpt2", "text-generation", "exbert", "en", "dataset:openwebtext", "arxiv:1910.01108", "arxiv:2201.08542", "arxiv:2203.12574", "arxiv:1910.09700", "arxiv:1503.02531", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-26T13:34:09Z
--- language: en tags: - exbert license: apache-2.0 datasets: - openwebtext model-index: - name: distilgpt2 results: - task: type: text-generation name: Text Generation dataset: type: wikitext name: WikiText-103 metrics: - type: perplexity name: Perplexity value: 21.1 co2_eq_emissions: 149200 --- # DistilGPT2 DistilGPT2 (short for Distilled-GPT2) is an English-language model pre-trained with the supervision of the smallest version of Generative Pre-trained Transformer 2 (GPT-2). Like GPT-2, DistilGPT2 can be used to generate text. Users of this model card should also consider information about the design, training, and limitations of [GPT-2](https://huggingface.co/gpt2). ## Model Details - **Developed by:** Hugging Face - **Model type:** Transformer-based Language Model - **Language:** English - **License:** Apache 2.0 - **Model Description:** DistilGPT2 is an English-language model pre-trained with the supervision of the 124 million parameter version of GPT-2. DistilGPT2, which has 82 million parameters, was developed using [knowledge distillation](#knowledge-distillation) and was designed to be a faster, lighter version of GPT-2. - **Resources for more information:** See [this repository](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) for more about Distil\* (a class of compressed models including Distilled-GPT2), [Sanh et al. (2019)](https://arxiv.org/abs/1910.01108) for more information about knowledge distillation and the training procedure, and this page for more about [GPT-2](https://openai.com/blog/better-language-models/). ## Uses, Limitations and Risks #### Limitations and Risks <details> <summary>Click to expand</summary> **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.** As the developers of GPT-2 (OpenAI) note in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md), “language models like GPT-2 reflect the biases inherent to the systems they were trained on.” Significant research has explored bias and fairness issues with models for language generation including GPT-2 (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). DistilGPT2 also suffers from persistent bias issues, as highlighted in the demonstrative examples below. Note that these examples are not a comprehensive stress-testing of the model. Readers considering using the model should consider more rigorous evaluations of the model depending on their use case and context. The impact of model compression techniques – such as knowledge distillation – on bias and fairness issues associated with language models is an active area of research. For example: - [Silva, Tambwekar and Gombolay (2021)](https://aclanthology.org/2021.naacl-main.189.pdf) find that distilled versions of BERT and RoBERTa consistently exhibit statistically significant bias (with regard to gender and race) with effect sizes larger than the teacher models. - [Xu and Hu (2022)](https://arxiv.org/pdf/2201.08542.pdf) find that distilled versions of GPT-2 showed consistent reductions in toxicity and bias compared to the teacher model (see the paper for more detail on metrics used to define/measure toxicity and bias). - [Gupta et al. (2022)](https://arxiv.org/pdf/2203.12574.pdf) find that DistilGPT2 exhibits greater gender disparities than GPT-2 and propose a technique for mitigating gender bias in distilled language models like DistilGPT2. ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='distilgpt2') >>> set_seed(48) >>> generator("The White man worked as a", max_length=20, num_return_sequences=3) [{'generated_text': "The White man worked as a salesman at a McDonald's restaurant called Kia at the time of the"}, {'generated_text': 'The White man worked as a contractor in the Army in the late 1990s. He became a "'}, {'generated_text': 'The White man worked as a police spokesman to the US Navy in the 1930s.'}] >>> set_seed(48) >>> generator("The Black man worked as a", max_length=20, num_return_sequences=3) [{'generated_text': 'The Black man worked as a shop assistant for an hour at Wal-Mart at Wal-Mart in'}, {'generated_text': 'The Black man worked as a waiter in the hotel when he was assaulted when he got out of a'}, {'generated_text': 'The Black man worked as a police spokesman four months ago...'}] ``` </details> #### Potential Uses Since DistilGPT2 is a distilled version of GPT-2, it is intended to be used for similar use cases with the increased functionality of being smaller and easier to run than the base model. The developers of GPT-2 state in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) that they envisioned GPT-2 would be used by researchers to better understand large-scale generative language models, with possible secondary use cases including: > - *Writing assistance: Grammar assistance, autocompletion (for normal prose or code)* > - *Creative writing and art: exploring the generation of creative, fictional texts; aiding creation of poetry and other literary art.* > - *Entertainment: Creation of games, chat bots, and amusing generations.* Using DistilGPT2, the Hugging Face team built the [Write With Transformers](https://transformer.huggingface.co/doc/distil-gpt2) web app, which allows users to play with the model to generate text directly from their browser. #### Out-of-scope Uses OpenAI states in the GPT-2 [model card](https://github.com/openai/gpt-2/blob/master/model_card.md): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case. ### How to Get Started with the Model <details> <summary>Click to expand</summary> *Be sure to read the sections on in-scope and out-of-scope uses and limitations of the model for further information on how to use the model.* Using DistilGPT2 is similar to using GPT-2. DistilGPT2 can be used directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='distilgpt2') >>> set_seed(42) >>> generator("Hello, I’m a language model", max_length=20, num_return_sequences=5) Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation. [{'generated_text': "Hello, I'm a language model, I'm a language model. In my previous post I've"}, {'generated_text': "Hello, I'm a language model, and I'd love to hear what you think about it."}, {'generated_text': "Hello, I'm a language model, but I don't get much of a connection anymore, so"}, {'generated_text': "Hello, I'm a language model, a functional language... It's not an example, and that"}, {'generated_text': "Hello, I'm a language model, not an object model.\n\nIn a nutshell, I"}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') model = GPT2Model.from_pretrained('distilgpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` And in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') model = TFGPT2Model.from_pretrained('distilgpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` </details> ## Training Data DistilGPT2 was trained using [OpenWebTextCorpus](https://skylion007.github.io/OpenWebTextCorpus/), an open-source reproduction of OpenAI’s WebText dataset, which was used to train GPT-2. See the [OpenWebTextCorpus Dataset Card](https://huggingface.co/datasets/openwebtext) for additional information about OpenWebTextCorpus and [Radford et al. (2019)](https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf) for additional information about WebText. ## Training Procedure The texts were tokenized using the same tokenizer as GPT-2, a byte-level version of Byte Pair Encoding (BPE). DistilGPT2 was trained using knowledge distillation, following a procedure similar to the training procedure for DistilBERT, described in more detail in [Sanh et al. (2019)](https://arxiv.org/abs/1910.01108). ## Evaluation Results The creators of DistilGPT2 [report](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) that, on the [WikiText-103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) benchmark, GPT-2 reaches a perplexity on the test set of 16.3 compared to 21.1 for DistilGPT2 (after fine-tuning on the train set). ## Environmental Impact *Carbon emissions were estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.* - **Hardware Type:** 8 16GB V100 - **Hours used:** 168 (1 week) - **Cloud Provider:** Azure - **Compute Region:** unavailable, assumed East US for calculations - **Carbon Emitted** *(Power consumption x Time x Carbon produced based on location of power grid)*: 149.2 kg eq. CO2 ## Citation ```bibtex @inproceedings{sanh2019distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Sanh, Victor and Debut, Lysandre and Chaumond, Julien and Wolf, Thomas}, booktitle={NeurIPS EMC^2 Workshop}, year={2019} } ``` ## Glossary - <a name="knowledge-distillation">**Knowledge Distillation**</a>: As described in [Sanh et al. (2019)](https://arxiv.org/pdf/1910.01108.pdf), “knowledge distillation is a compression technique in which a compact model – the student – is trained to reproduce the behavior of a larger model – the teacher – or an ensemble of models.” Also see [Bucila et al. (2006)](https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf) and [Hinton et al. (2015)](https://arxiv.org/abs/1503.02531). <a href="https://huggingface.co/exbert/?model=distilgpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
rlpeter70/xlm-roberta-base-finetuned-panx-de-fr
rlpeter70
2022-09-05T17:34:16Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T17:01:55Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2888 | 1.0 | 715 | 0.1779 | 0.8233 | | 0.1437 | 2.0 | 1430 | 0.1570 | 0.8497 | | 0.0931 | 3.0 | 2145 | 0.1608 | 0.8593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/suppernickbroth
huggingtweets
2022-09-05T17:19:40Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-05T17:11:57Z
--- language: en thumbnail: http://www.huggingtweets.com/suppernickbroth/1662398278638/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1564658774962585600/j9_gW3wp_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">nicky turner</div> <div style="text-align: center; font-size: 14px;">@suppernickbroth</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from nicky turner. | Data | nicky turner | | --- | --- | | Tweets downloaded | 2538 | | Retweets | 960 | | Short tweets | 429 | | Tweets kept | 1149 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3fdsli1w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @suppernickbroth's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/n9y3a7fd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/n9y3a7fd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/suppernickbroth') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mrquinnzard
huggingtweets
2022-09-05T17:08:52Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-21T00:18:41Z
--- language: en thumbnail: http://www.huggingtweets.com/mrquinnzard/1662397648914/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1566448713224142849/MA1qlIiY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MrQuinnzard X</div> <div style="text-align: center; font-size: 14px;">@mrquinnzard</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from MrQuinnzard X. | Data | MrQuinnzard X | | --- | --- | | Tweets downloaded | 953 | | Retweets | 64 | | Short tweets | 159 | | Tweets kept | 730 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/xz27mo8e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mrquinnzard's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2n2ggtun) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2n2ggtun/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mrquinnzard') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rlpeter70/xlm-roberta-base-finetuned-panx-de
rlpeter70
2022-09-05T16:51:52Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T16:28:24Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
peter2000/bmz_topics_
peter2000
2022-09-05T16:39:06Z
1
1
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-05T16:38:42Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # peter2000/bmz_topics_ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('peter2000/bmz_topics_') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('peter2000/bmz_topics_') model = AutoModel.from_pretrained('peter2000/bmz_topics_') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=peter2000/bmz_topics_) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 36 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.dataloader._InfiniteConstantSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.BatchHardTripletLoss.BatchHardTripletLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 720, "warmup_steps": 72, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ChayanM/Favourite_Foods
ChayanM
2022-09-05T16:22:26Z
287
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-05T16:22:10Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Favourite_Foods results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9553571343421936 --- # Favourite_Foods Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Chocolate ![Chocolate](images/Chocolate.jpg) #### Cookies ![Cookies](images/Cookies.jpg) #### Egg ![Egg](images/Egg.jpg) #### Ice-cream ![Ice-cream](images/Ice-cream.jpg) #### Vegetable ![Vegetable](images/Vegetable.jpg)
mio/Artoria
mio
2022-09-05T16:10:54Z
15
14
espnet
[ "espnet", "audio", "text-to-speech", "jp", "dataset:fate", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-09-05T16:10:08Z
--- tags: - espnet - audio - text-to-speech language: jp datasets: - fate license: cc-by-4.0 --- ## ESPnet2 TTS model ### `mio/Artoria` This model was trained by mio using fate recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 49d18064f22b7508ff24a7fa70c470a65f08f1be pip install -e . cd egs2/fate/tts1 ./run.sh --skip_data_prep false --skip_train true --download_model mio/Artoria ``` ## TTS config <details><summary>expand</summary> ``` config: conf/tuning/finetune_vits.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/22k/tts_fate_saber_vits_finetune_from_jsut ngpu: 1 seed: 777 num_workers: 4 num_att_plot: 0 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 46762 dist_launcher: null multiprocessing_distributed: true unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 10 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - total_count - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: -1 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 50 use_matplotlib: true use_tensorboard: false create_graph_in_tensorboard: false use_wandb: true wandb_project: fate wandb_id: null wandb_entity: null wandb_name: vits_train_saber wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: - downloads/f3698edf589206588f58f5ec837fa516/exp/tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause/train.total_count.ave_10best.pth:tts:tts ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 1000 batch_size: 20 valid_batch_size: null batch_bins: 5000000 valid_batch_bins: null train_shape_file: - exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/text_shape.phn - exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/speech_shape valid_shape_file: - exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/text_shape.phn - exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/22k/raw/train/text - text - text - - dump/22k/raw/train/wav.scp - speech - sound valid_data_path_and_name_and_type: - - dump/22k/raw/dev/text - text - text - - dump/22k/raw/dev/wav.scp - speech - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0001 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler: exponentiallr scheduler_conf: gamma: 0.999875 optim2: adamw optim2_conf: lr: 0.0001 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler2: exponentiallr scheduler2_conf: gamma: 0.999875 generator_first: false token_list: - <blank> - <unk> - '1' - '2' - '0' - '3' - '4' - '-1' - '5' - a - o - '-2' - i - '-3' - u - e - k - n - t - '6' - r - '-4' - s - N - m - pau - '7' - sh - d - g - w - '8' - U - '-5' - I - cl - h - y - b - '9' - j - ts - ch - '-6' - z - p - '-7' - f - ky - ry - '-8' - gy - '-9' - hy - ny - '-10' - by - my - '-11' - '-12' - '-13' - py - '-14' - '-15' - v - '10' - '-16' - '-17' - '11' - '-21' - '-20' - '12' - '-19' - '13' - '-18' - '14' - dy - '15' - ty - '-22' - '16' - '18' - '19' - '17' - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: jaconv g2p: pyopenjtalk_accent_with_pause feats_extract: linear_spectrogram feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null normalize: null normalize_conf: {} tts: vits tts_conf: generator_type: vits_generator generator_params: hidden_channels: 192 spks: -1 global_channels: -1 segment_size: 32 text_encoder_attention_heads: 2 text_encoder_ffn_expand: 4 text_encoder_blocks: 6 text_encoder_positionwise_layer_type: conv1d text_encoder_positionwise_conv_kernel_size: 3 text_encoder_positional_encoding_layer_type: rel_pos text_encoder_self_attention_layer_type: rel_selfattn text_encoder_activation_type: swish text_encoder_normalize_before: true text_encoder_dropout_rate: 0.1 text_encoder_positional_dropout_rate: 0.0 text_encoder_attention_dropout_rate: 0.1 use_macaron_style_in_text_encoder: true use_conformer_conv_in_text_encoder: false text_encoder_conformer_kernel_size: -1 decoder_kernel_size: 7 decoder_channels: 512 decoder_upsample_scales: - 8 - 8 - 2 - 2 decoder_upsample_kernel_sizes: - 16 - 16 - 4 - 4 decoder_resblock_kernel_sizes: - 3 - 7 - 11 decoder_resblock_dilations: - - 1 - 3 - 5 - - 1 - 3 - 5 - - 1 - 3 - 5 use_weight_norm_in_decoder: true posterior_encoder_kernel_size: 5 posterior_encoder_layers: 16 posterior_encoder_stacks: 1 posterior_encoder_base_dilation: 1 posterior_encoder_dropout_rate: 0.0 use_weight_norm_in_posterior_encoder: true flow_flows: 4 flow_kernel_size: 5 flow_base_dilation: 1 flow_layers: 4 flow_dropout_rate: 0.0 use_weight_norm_in_flow: true use_only_mean_in_flow: true stochastic_duration_predictor_kernel_size: 3 stochastic_duration_predictor_dropout_rate: 0.5 stochastic_duration_predictor_flows: 4 stochastic_duration_predictor_dds_conv_layers: 3 vocabs: 85 aux_channels: 513 discriminator_type: hifigan_multi_scale_multi_period_discriminator discriminator_params: scales: 1 scale_downsample_pooling: AvgPool1d scale_downsample_pooling_params: kernel_size: 4 stride: 2 padding: 2 scale_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 15 - 41 - 5 - 3 channels: 128 max_downsample_channels: 1024 max_groups: 16 bias: true downsample_scales: - 2 - 2 - 4 - 4 - 1 nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false follow_official_norm: false periods: - 2 - 3 - 5 - 7 - 11 period_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 5 - 3 channels: 32 downsample_scales: - 3 - 3 - 3 - 3 - 1 max_downsample_channels: 1024 bias: true nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false generator_adv_loss_params: average_by_discriminators: false loss_type: mse discriminator_adv_loss_params: average_by_discriminators: false loss_type: mse feat_match_loss_params: average_by_discriminators: false average_by_layers: false include_final_outputs: true mel_loss_params: fs: 22050 n_fft: 1024 hop_length: 256 win_length: null window: hann n_mels: 80 fmin: 0 fmax: null log_base: null lambda_adv: 1.0 lambda_mel: 45.0 lambda_feat_match: 2.0 lambda_dur: 1.0 lambda_kl: 1.0 sampling_rate: 22050 cache_generator_outputs: true pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: '202207' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
peterdudfield/power_perceiver
peterdudfield
2022-09-05T15:54:37Z
47
0
transformers
[ "transformers", "pytorch", "nowcasting", "forecasting", "timeseries", "remote-sensing", "gan", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-09-05T15:54:22Z
--- license: mit tags: - nowcasting - forecasting - timeseries - remote-sensing - gan --- # FullModel ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
jenniferjane/ner_trainer
jenniferjane
2022-09-05T14:53:19Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T13:55:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: ner_trainer results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9231450719822812 - name: Recall type: recall value: 0.9325427900212552 - name: F1 type: f1 value: 0.9278201346763871 - name: Accuracy type: accuracy value: 0.9830333455128918 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner_trainer This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1069 - Precision: 0.9231 - Recall: 0.9325 - F1: 0.9278 - Accuracy: 0.9830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0029 | 1.0 | 1756 | 0.1069 | 0.9231 | 0.9325 | 0.9278 | 0.9830 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
BartekK/distilHerBERT-base-cased
BartekK
2022-09-05T14:03:29Z
110
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "distilherbert", "pl", "arxiv:1910.01108", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-16T16:33:31Z
--- language: pl tags: - distilherbert --- ## distilHerBERT distilHerBERT-base is a BERT-based Language Model trained on Polish subset of [cc100](https://huggingface.co/datasets/cc100) dataset using Masked Language Modelling (MLM) and [distillation procedure](https://arxiv.org/abs/1910.01108) from model [HerBERT](https://huggingface.co/allegro/herbert-base-cased) with dynamic masking of whole words. We provide one of the models (S4) described in the report from final project on the subject of (Deep) Natural Language Processing, which was carried out at MIMUW in 2021/2022: [Distillation_of_HerBERT](https://github.com/BartekKrzepkowski/DistilHerBERT-base_vol2/blob/master/report/Final_Report___Distillation_of_HerBERT.pdf). The model was trained using fp16 and the data parallelism method (ZeRO Stage 2), using the deep learning optimization library - DeepSpeed. Model training and experiments were conducted with transformers in version 4.20.1. ## Tokenizer The training dataset was tokenized into subwords using a character level byte-pair encoding (``CharBPETokenizer``) with a vocabulary size of 50k tokens. The tokenizer itself was trained with a [tokenizers](https://github.com/huggingface/tokenizers) library. We kindly encourage you to use the ``Fast`` version of the tokenizer, namely ``HerbertTokenizerFast``. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("BartekK/distilHerBERT-base-cased") model = AutoModelForMaskedLM.from_pretrained("BartekK/distilHerBERT-base-cased") output = model( **tokenizer.batch_encode_plus( [ ( "A potem szedł środkiem drogi w kurzawie, bo zamiatał nogami, ślepy dziad prowadzony przez tłustego kundla na sznurku.", "A potem leciał od lasu chłopak z butelką, ale ten ujrzawszy księdza przy drodze okrążył go z dala i biegł na przełaj pól do karczmy." ) ], padding='longest', add_special_tokens=True, return_tensors='pt' ) ) ``` ## Acknowledgements We want to thank <br> Spyridon Mouselinos - for suggesting literature to help with the project <br> and <br> Piotr Rybak - for sharing information on training the HerBERT models ## Authors The model was trained by: Bartłomiej Krzepkowski, <br> Dominika Bankiewicz, <br> Rafał Michaluk, <br> Jacek Ciszewski. If you have questions please contact me: <a href="mailto:bartekkrzepkowski@gmail.com">bartekkrzepkowski@gmail.com</a> The code can be found here: [distilHerBERT-base repo](https://github.com/BartekKrzepkowski/DistilHerBERT-base_vol2/tree/master).
falkne/storytelling-regulationroom-en
falkne
2022-09-05T13:29:16Z
104
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-04T19:03:43Z
# Storytelling Classifier (trained on regulationroom) (storytelling-regulationroom-en) This model is fine-tuning the [BERT base model](https://huggingface.co/bert-base-uncased) on the task of predicting whether a comment or argument contains *storytelling* or not (binary classification). The task together with the dataset was introduced in [this paper](https://aclanthology.org/2022.acl-long.379/). The original corpus and annotation was introduced in [this paper](https://aclanthology.org/L18-1257.pdf). ## Model description
falkne/storytelling-europolis-en
falkne
2022-09-05T13:23:52Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-04T19:07:58Z
# Storytelling Classifier (trained on europolis) (storytelling-europolis-en) This model is fine-tuning the [BERT base model](https://huggingface.co/bert-base-uncased) on the task of predicting whether a comment or argument contains *storytelling* or not (binary classification). The task together with the dataset was introduced in [this paper](https://aclanthology.org/2022.acl-long.379/). The original corpus together with the annotation is called the [Europarl corpus](https://aclanthology.org/2005.mtsummit-papers.11.pdf). ## Model description The language is English (en).
GItaf/bert-base-uncased-finetuned-mbti-0905
GItaf
2022-09-05T13:17:53Z
60
0
transformers
[ "transformers", "pytorch", "bert", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-05T12:35:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-mbti-0905 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-mbti-0905 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Osaleh/sagemaker-bert-mini-arabic-ArSAS
Osaleh
2022-09-05T13:15:39Z
101
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-05T13:14:40Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: sagemaker-bert-mini-arabic-ArSAS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-bert-mini-arabic-ArSAS This model is a fine-tuned version of [asafaya/bert-mini-arabic](https://huggingface.co/asafaya/bert-mini-arabic) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3163 - Accuracy: 0.8771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 291 | 0.3761 | 0.8368 | | 0.4722 | 2.0 | 582 | 0.3163 | 0.8771 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
dhansmair/flamingo-tiny
dhansmair
2022-09-05T12:45:16Z
57
5
transformers
[ "transformers", "pytorch", "image-to-text", "image-captioning", "en", "dataset:conceptual_captions", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2022-08-23T07:58:45Z
--- language: - en tags: - image-to-text - image-captioning license: apache-2.0 datasets: - conceptual_captions --- Flamingo Model (tiny version) pretrained on Image Captioning on the Conceptual Captions (3M) dataset. Source Code: https://github.com/dhansmair/flamingo-mini Demo Space: https://huggingface.co/spaces/dhansmair/flamingo-tiny-cap Flamingo-mini: https://huggingface.co/spaces/dhansmair/flamingo-mini-cap
Osaleh/sagemaker-bert-base-arabic-ar-SAS
Osaleh
2022-09-05T12:44:37Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-05T12:06:14Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: sagemaker-bert-base-arabic-ar-SAS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-bert-base-arabic-ar-SAS This model is a fine-tuned version of [asafaya/bert-base-arabic](https://huggingface.co/asafaya/bert-base-arabic) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2732 - Accuracy: 0.9029 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 291 | 0.2924 | 0.8823 | | 0.3433 | 2.0 | 582 | 0.2732 | 0.9029 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
GItaf/bert-base-uncased-finetuned-mbti-0830
GItaf
2022-09-05T12:30:05Z
56
0
transformers
[ "transformers", "pytorch", "bert", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-08-29T19:12:25Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-mbti-0830 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-mbti-0830 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.4259 | 1.0 | 9720 | 4.3466 | | 4.2788 | 2.0 | 19440 | 4.2536 | | 4.1928 | 3.0 | 29160 | 4.2074 | | 4.1062 | 4.0 | 38880 | 4.1839 | | 4.0502 | 5.0 | 48600 | 4.1715 | | 4.0037 | 6.0 | 58320 | 4.1637 | | 3.9575 | 7.0 | 68040 | 4.1603 | | 3.9169 | 8.0 | 77760 | 4.1591 | | 3.8915 | 9.0 | 87480 | 4.1602 | | 3.8741 | 10.0 | 97200 | 4.1613 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
cemilcelik/q-FrozenLake-v1-4x4-noSlippery
cemilcelik
2022-09-05T12:04:02Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-05T12:00:31Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="cemilcelik/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Sania67/Fine_Tunning_on_CV_dataset
Sania67
2022-09-05T11:47:39Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-05T06:33:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_8_0 model-index: - name: Fine_Tunning_on_CV_dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fine_Tunning_on_CV_dataset This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_8_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7892 - Wer: 0.4734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.8618 | 3.25 | 1000 | 3.0765 | 0.9989 | | 1.6825 | 6.49 | 2000 | 0.8932 | 0.6292 | | 0.7813 | 9.74 | 3000 | 0.7750 | 0.5454 | | 0.5859 | 12.99 | 4000 | 0.7413 | 0.5151 | | 0.472 | 16.23 | 5000 | 0.7559 | 0.4952 | | 0.404 | 19.48 | 6000 | 0.7677 | 0.4915 | | 0.3637 | 22.73 | 7000 | 0.7788 | 0.4863 | | 0.3238 | 25.97 | 8000 | 0.7920 | 0.4738 | | 0.3038 | 29.22 | 9000 | 0.7892 | 0.4734 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
takeda777/wav2vec2-large-xls-r-300m-turkish-colab
takeda777
2022-09-05T08:42:19Z
160
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-05T06:51:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.8327 - Wer: 0.9968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 23.2608 | 9.76 | 400 | 4.9641 | 1.0 | | 3.9324 | 19.51 | 800 | 3.4000 | 1.0 | | 1.4163 | 29.27 | 1200 | 2.8327 | 0.9968 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
Anurag0961/cards-demo-model1
Anurag0961
2022-09-05T08:32:48Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-05T07:53:08Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: cards-demo-model1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cards-demo-model1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
Osaleh/sagemaker-bert-mini-arabic
Osaleh
2022-09-05T07:24:27Z
95
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-05T07:21:39Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: sagemaker-bert-mini-arabic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-bert-mini-arabic This model is a fine-tuned version of [asafaya/bert-mini-arabic](https://huggingface.co/asafaya/bert-mini-arabic) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2531 - Accuracy: 0.8974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3385 | 1.0 | 1469 | 0.2707 | 0.8840 | | 0.2416 | 2.0 | 2938 | 0.2531 | 0.8974 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
piasinga/nude
piasinga
2022-09-05T07:01:12Z
0
0
null
[ "region:us" ]
null
2022-08-10T05:33:51Z
rebecca ferguson beautiful girl lord of the ring armor sword fight in valley 3d 4k Alex Lazar artstation
andreasostling/distilbert-base-uncased-finetuned-ner
andreasostling
2022-09-05T06:39:58Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T06:30:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9267050487156776 - name: Recall type: recall value: 0.9363463474661595 - name: F1 type: f1 value: 0.9315007512102833 - name: Accuracy type: accuracy value: 0.9839706419686403 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0609 - Precision: 0.9267 - Recall: 0.9363 - F1: 0.9315 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2408 | 1.0 | 878 | 0.0682 | 0.9136 | 0.9219 | 0.9178 | 0.9813 | | 0.0538 | 2.0 | 1756 | 0.0605 | 0.9228 | 0.9346 | 0.9286 | 0.9833 | | 0.0301 | 3.0 | 2634 | 0.0609 | 0.9267 | 0.9363 | 0.9315 | 0.9840 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ridiculoys/PPO-LunarLander-v2
ridiculoys
2022-09-05T06:18:04Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-05T06:17:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 264.18 +/- 18.68 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
exploiter345/dqn-SpaceInvadersNoFrameskip-v0
exploiter345
2022-09-05T01:04:55Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-05T01:04:29Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 6.50 +/- 16.29 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga exploiter345 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga exploiter345 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
liux0229/distilbert-base-uncased-finetuned-emotion
liux0229
2022-09-05T00:11:04Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-04T23:42:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9248309431740382 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2176 - Accuracy: 0.925 - F1: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8255 | 1.0 | 250 | 0.3198 | 0.902 | 0.8999 | | 0.2469 | 2.0 | 500 | 0.2176 | 0.925 | 0.9248 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
urkepg/ppo-LunarLander-v2
urkepg
2022-09-05T00:10:30Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-04T23:37:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 266.83 +/- 26.30 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
farleyknight/mnist-digit-classification-2022-09-04
farleyknight
2022-09-04T22:10:43Z
322
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "vision", "generated_from_trainer", "dataset:mnist", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-04T19:47:37Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - mnist metrics: - accuracy model-index: - name: mnist-digit-classification-2022-09-04 results: - task: name: Image Classification type: image-classification dataset: name: mnist type: mnist config: mnist split: train args: mnist metrics: - name: Accuracy type: accuracy value: 0.9923333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mnist-digit-classification-2022-09-04 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0319 - Accuracy: 0.9923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
hieule/codeparrot-ds
hieule
2022-09-04T20:23:49Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-04T13:35:39Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5009 | 0.93 | 5000 | 1.5958 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
c7756748/ppo-LunarLander-v2
c7756748
2022-09-04T16:29:33Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-04T16:29:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 241.88 +/- 16.21 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gngpostalsrvc/w2v2-ami
gngpostalsrvc
2022-09-04T16:18:10Z
104
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-04T13:13:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: w2v2-ami results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # w2v2-ami This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8686 - Wer: 0.2861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.6021 | 3.07 | 500 | 2.9176 | 0.9997 | | 2.5006 | 6.13 | 1000 | 1.0535 | 0.3617 | | 0.9926 | 9.2 | 1500 | 0.8614 | 0.3036 | | 0.809 | 12.27 | 2000 | 0.8676 | 0.2921 | | 0.73 | 15.34 | 2500 | 0.8190 | 0.2966 | | 0.6658 | 18.4 | 3000 | 0.8707 | 0.2900 | | 0.6295 | 21.47 | 3500 | 0.8660 | 0.2821 | | 0.6089 | 24.54 | 4000 | 0.8767 | 0.2829 | | 0.5974 | 27.61 | 4500 | 0.8686 | 0.2861 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
OD/q-FrozenLake-v1-4x4-noSlippery
OD
2022-09-04T15:14:39Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-04T15:14:33Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="OD/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Izzet/qa_tquad_electra-base-turkish
Izzet
2022-09-04T13:52:04Z
104
0
transformers
[ "transformers", "pytorch", "electra", "question-answering", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-09-04T13:31:21Z
--- license: mit widget: - text: "Ankara'da korumaya alınmış alanlar var mıdır?" context: "Ankara kara iklimine sahiptir. Şehir dışındaki il topraklarının büyük kısmı tahıl tarlalarıyla kaplı platolardan oluşur. İlin çeşitli yerlerindeki doğal güzellikler korumaya alınmış, dinlenme ve eğlence amaçlı kullanıma sunulmuştur. İlin adını taşıyan tavşanı, keçisi, atı ve kedisi dünya çapında bilinir, armudu, çiğdemi, yerel yemeklerden Ankara tavası ve Kızılcahamam ve Beypazarı'nın maden suyu ise ülke çapında tanınır." example_title: "Ankara 1" - text: "Ankara toprakları nelerden oluşur?" context: "Ankara kara iklimine sahiptir. Şehir dışındaki il topraklarının büyük kısmı tahıl tarlalarıyla kaplı platolardan oluşur. İlin çeşitli yerlerindeki doğal güzellikler korumaya alınmış, dinlenme ve eğlence amaçlı kullanıma sunulmuştur. İlin adını taşıyan tavşanı, keçisi, atı ve kedisi dünya çapında bilinir, armudu, çiğdemi, yerel yemeklerden Ankara tavası ve Kızılcahamam ve Beypazarı'nın maden suyu ise ülke çapında tanınır." example_title: "Ankara 2" --- # Question Answering Model Fine-Tuned with TQuad Dataset You can find detailed explanation about dataset [here](https://github.com/izzetkalic/botcuk-dataset-analyze/tree/main/datasets/qa-tquad).
Izzet/qa_tquad_bert-base-turkish
Izzet
2022-09-04T13:51:47Z
112
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-09-04T12:45:21Z
--- license: mit widget: - text: "Ankara'da korumaya alınmış alanlar var mıdır?" context: "Ankara kara iklimine sahiptir. Şehir dışındaki il topraklarının büyük kısmı tahıl tarlalarıyla kaplı platolardan oluşur. İlin çeşitli yerlerindeki doğal güzellikler korumaya alınmış, dinlenme ve eğlence amaçlı kullanıma sunulmuştur. İlin adını taşıyan tavşanı, keçisi, atı ve kedisi dünya çapında bilinir, armudu, çiğdemi, yerel yemeklerden Ankara tavası ve Kızılcahamam ve Beypazarı'nın maden suyu ise ülke çapında tanınır." example_title: "Ankara 1" - text: "Ankara toprakları nelerden oluşur?" context: "Ankara kara iklimine sahiptir. Şehir dışındaki il topraklarının büyük kısmı tahıl tarlalarıyla kaplı platolardan oluşur. İlin çeşitli yerlerindeki doğal güzellikler korumaya alınmış, dinlenme ve eğlence amaçlı kullanıma sunulmuştur. İlin adını taşıyan tavşanı, keçisi, atı ve kedisi dünya çapında bilinir, armudu, çiğdemi, yerel yemeklerden Ankara tavası ve Kızılcahamam ve Beypazarı'nın maden suyu ise ülke çapında tanınır." example_title: "Ankara 2" --- # Question Answering Model Fine-Tuned with TQuad Dataset You can find detailed explanation about dataset [here](https://github.com/izzetkalic/botcuk-dataset-analyze/tree/main/datasets/qa-tquad).
Izzet/qa_ytu_distilbert-base-turkish
Izzet
2022-09-04T12:36:22Z
112
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-09-04T12:15:18Z
--- license: mit widget: - text: "Ankara'da korumaya alınmış alanlar var mıdır?" context: "Ankara kara iklimine sahiptir. Şehir dışındaki il topraklarının büyük kısmı tahıl tarlalarıyla kaplı platolardan oluşur. İlin çeşitli yerlerindeki doğal güzellikler korumaya alınmış, dinlenme ve eğlence amaçlı kullanıma sunulmuştur. İlin adını taşıyan tavşanı, keçisi, atı ve kedisi dünya çapında bilinir, armudu, çiğdemi, yerel yemeklerden Ankara tavası ve Kızılcahamam ve Beypazarı'nın maden suyu ise ülke çapında tanınır." example_title: "Ankara 1" - text: "Ankara toprakları nelerden oluşur?" context: "Ankara kara iklimine sahiptir. Şehir dışındaki il topraklarının büyük kısmı tahıl tarlalarıyla kaplı platolardan oluşur. İlin çeşitli yerlerindeki doğal güzellikler korumaya alınmış, dinlenme ve eğlence amaçlı kullanıma sunulmuştur. İlin adını taşıyan tavşanı, keçisi, atı ve kedisi dünya çapında bilinir, armudu, çiğdemi, yerel yemeklerden Ankara tavası ve Kızılcahamam ve Beypazarı'nın maden suyu ise ülke çapında tanınır." example_title: "Ankara 2" --- # Question Answering Model Fine-Tuned with YTU Dataset You can find detailed explanation about dataset [here](https://github.com/izzetkalic/botcuk-dataset-analyze/tree/main/datasets/qa-ytu).
gngpostalsrvc/w2v2
gngpostalsrvc
2022-09-04T12:35:24Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-31T19:29:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: w2v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # w2v2 This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8860 - Wer: 0.2817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.5664 | 3.07 | 500 | 3.0411 | 0.9997 | | 2.5607 | 6.13 | 1000 | 1.0770 | 0.3660 | | 0.9959 | 9.2 | 1500 | 0.8815 | 0.3017 | | 0.8129 | 12.27 | 2000 | 0.8676 | 0.2915 | | 0.7334 | 15.34 | 2500 | 0.8381 | 0.2931 | | 0.669 | 18.4 | 3000 | 0.8802 | 0.2864 | | 0.6312 | 21.47 | 3500 | 0.8679 | 0.2864 | | 0.6094 | 24.54 | 4000 | 0.8811 | 0.2802 | | 0.5987 | 27.61 | 4500 | 0.8860 | 0.2817 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
rebolforces/Reinforces-Pixelcopter-PLE-v0
rebolforces
2022-09-04T11:31:34Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-04T11:22:20Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforces-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 24.30 +/- 22.86 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
hike/MyModel
hike
2022-09-04T10:51:08Z
0
0
null
[ "region:us" ]
null
2022-08-30T11:42:04Z
# 自己常用的transformer模型 ## 文本翻译 * [zh-en](https://huggingface.co/Helsinki-NLP/opus-mt-zh-en) ## 文本生成 * [gpt2-chinese-cluecorpussmall](https://huggingface.co/uer/gpt2-chinese-cluecorpussmall?text=这是很久之前的事情了) ## 中文bert * [bert-base-chinese](https://huggingface.co/bert-base-chinese) * [chinese-reberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large?text=生活的真谛是%5BMASK%5D%E3%80%82)
marko97/opus-mt-en-ro-finetuned-en-to-ro
marko97
2022-09-04T10:35:16Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-03T09:15:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-en-ro-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 config: ro-en split: train args: ro-en metrics: - name: Bleu type: bleu value: 28.1505 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2886 - Bleu: 28.1505 - Gen Len: 34.1036 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.7437 | 1.0 | 38145 | 1.2886 | 28.1505 | 34.1036 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
k3lana/xlm-roberta-base-finetuned-panx-all
k3lana
2022-09-04T10:24:12Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-04T09:54:45Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1745 - F1: 0.8505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3055 | 1.0 | 835 | 0.1842 | 0.8099 | | 0.1561 | 2.0 | 1670 | 0.1711 | 0.8452 | | 0.1016 | 3.0 | 2505 | 0.1745 | 0.8505 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Dinithi/AgitationNotesClassification
Dinithi
2022-09-04T10:17:01Z
91
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-04T09:59:08Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: AgitationNotesClassification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AgitationNotesClassification This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4128 - F1: 0.8690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6567 | 1.0 | 50 | 0.6130 | 0.6500 | | 0.6056 | 2.0 | 100 | 0.5807 | 0.6763 | | 0.5172 | 3.0 | 150 | 0.5398 | 0.6675 | | 0.4206 | 4.0 | 200 | 0.4111 | 0.8355 | | 0.3361 | 5.0 | 250 | 0.3977 | 0.8667 | | 0.2919 | 6.0 | 300 | 0.3874 | 0.8780 | | 0.2233 | 7.0 | 350 | 0.3928 | 0.8690 | | 0.1953 | 8.0 | 400 | 0.3908 | 0.8690 | | 0.1633 | 9.0 | 450 | 0.4076 | 0.86 | | 0.1494 | 10.0 | 500 | 0.4128 | 0.8690 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
k3lana/xlm-roberta-base-finetuned-panx-en
k3lana
2022-09-04T09:54:32Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-04T09:38:19Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6886160714285715 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4043 - F1: 0.6886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1347 | 1.0 | 50 | 0.5771 | 0.4880 | | 0.5066 | 2.0 | 100 | 0.4209 | 0.6582 | | 0.3631 | 3.0 | 150 | 0.4043 | 0.6886 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/joebiden
huggingtweets
2022-09-04T09:32:10Z
17
4
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/joebiden/1662283925554/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1308769664240160770/AfgzWVE7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joe Biden</div> <div style="text-align: center; font-size: 14px;">@joebiden</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Joe Biden. | Data | Joe Biden | | --- | --- | | Tweets downloaded | 3215 | | Retweets | 629 | | Short tweets | 31 | | Tweets kept | 2555 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/tbtim2bm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @joebiden's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1w4wo0t6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1w4wo0t6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/joebiden') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
k3lana/xlm-roberta-base-finetuned-panx-de
k3lana
2022-09-04T08:24:50Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-04T08:00:02Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Sania67/Fine_Tunning_on_CV_Urdu_dataset
Sania67
2022-09-04T07:44:39Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-04T06:28:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_8_0 model-index: - name: Fine_Tunning_on_CV_Urdu_dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fine_Tunning_on_CV_Urdu_dataset This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_8_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.2389 - Wer: 0.7380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 15.2352 | 1.69 | 100 | 4.0555 | 1.0 | | 3.3873 | 3.39 | 200 | 3.2521 | 1.0 | | 3.2387 | 5.08 | 300 | 3.2304 | 1.0 | | 3.1983 | 6.78 | 400 | 3.1712 | 1.0 | | 3.1224 | 8.47 | 500 | 3.0883 | 1.0 | | 3.0782 | 10.17 | 600 | 3.0767 | 0.9996 | | 3.0618 | 11.86 | 700 | 3.0280 | 1.0 | | 2.9929 | 13.56 | 800 | 2.8994 | 1.0 | | 2.785 | 15.25 | 900 | 2.4330 | 1.0 | | 2.1276 | 16.95 | 1000 | 1.7795 | 0.9517 | | 1.5544 | 18.64 | 1100 | 1.5101 | 0.8266 | | 1.2651 | 20.34 | 1200 | 1.4037 | 0.7993 | | 1.0816 | 22.03 | 1300 | 1.3101 | 0.7638 | | 0.9817 | 23.73 | 1400 | 1.2855 | 0.7542 | | 0.9019 | 25.42 | 1500 | 1.2737 | 0.7421 | | 0.8688 | 27.12 | 1600 | 1.2457 | 0.7435 | | 0.8293 | 28.81 | 1700 | 1.2389 | 0.7380 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
uripper/ChatbotTrainingBot
uripper
2022-09-04T07:43:56Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:cc", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-02T23:26:37Z
--- license: cc widget: - text: "User: Hey, how are you?" example_title: "How are you?" - text: "User: What did you do today?" example_title: "What did you do today?" - text: "User: What's your favorite movie?" example_title: "What's your favorite movie?" ---
AmolSatsangi/t5-small-finetuned-xsum
AmolSatsangi
2022-09-04T07:06:11Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-03T17:07:02Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 125 | 2.8679 | 23.1742 | 9.8716 | 18.5896 | 20.7943 | 19.0 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Tsubame/ddpm-butterflies-64
Tsubame
2022-09-04T06:31:22Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-04T04:59:29Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-64 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Tsubame/ddpm-butterflies-64/tensorboard?#scalars)
hieule/mt5-small-finetuned-amazon-en-es
hieule
2022-09-04T05:55:35Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-09-04T04:26:50Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0171 - Rouge1: 16.778 - Rouge2: 8.0849 - Rougel: 16.5329 - Rougelsum: 16.4302 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 3.4297 | 1.0 | 1209 | 3.1211 | 17.6479 | 8.1669 | 17.1554 | 17.0276 | | 3.4217 | 2.0 | 2418 | 3.0394 | 16.4501 | 8.3991 | 16.2225 | 16.2214 | | 3.2701 | 3.0 | 3627 | 3.0427 | 16.3473 | 7.5173 | 16.1924 | 16.098 | | 3.1888 | 4.0 | 4836 | 3.0283 | 15.3718 | 6.8591 | 15.0889 | 14.9769 | | 3.1204 | 5.0 | 6045 | 3.0256 | 17.5963 | 8.331 | 17.1812 | 17.0733 | | 3.072 | 6.0 | 7254 | 3.0189 | 16.5811 | 8.1764 | 16.28 | 16.207 | | 3.0386 | 7.0 | 8463 | 3.0171 | 17.1018 | 8.4785 | 16.8196 | 16.7681 | | 3.0193 | 8.0 | 9672 | 3.0171 | 16.778 | 8.0849 | 16.5329 | 16.4302 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
GAIR/rst-information-extraction-11b
GAIR
2022-09-04T01:43:15Z
75
8
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2206.11147", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-30T16:01:47Z
--- license: afl-3.0 --- <p align="center"> <br> <img src="https://expressai-xlab.s3.amazonaws.com/rst/intro_rst.png" width="1000"/> <br> </p> # reStructured Pre-training (RST) official [repository](https://github.com/ExpressAI/reStructured-Pretraining), [paper](https://arxiv.org/pdf/2206.11147.pdf), [easter eggs](http://expressai.co/peripherals/emoji-eng.html) #### RST is a new paradigm for language pre-training, which * unifies **26** different types of signal from **10** data sources (Totten Tomatoes, Dailymail, Wikipedia, Wikidata, Wikihow, Wordnet, arXiv etc ) in the world structurally, being pre-trained with a monolithcal model, * surpasses strong competitors (e.g., T0) on **52/55** popular datasets from a variety of NLP tasks (classification, IE, retrieval, generation etc) * achieves superior performance in National College Entrance Examination **(Gaokao-English, 高考-英语)** achieves **40** points higher than the average scores made by students and 15 points higher than GPT3 with **1/16** parameters. In particular, Qin gets a high score of **138.5** (the full mark is 150) in the 2018 English exam In such a pre-training paradigm, * Data-centric Pre-training: the role of data will be re-emphasized, and model pre-training and fine-tuning of downstream tasks are viewed as a process of data storing and accessing * Pre-training over JSON instead of TEXT: a good storage mechanism should not only have the ability to cache a large amount of data but also consider the ease of access. ## Model Description We release all models introduced in our [paper](https://arxiv.org/pdf/2206.11147.pdf), covering 13 different application scenarios. Each model contains 11 billion parameters. | Model | Description | Recommended Application | ----------- | ----------- |----------- | | rst-all-11b | Trained with all the signals below except signals that are used to train Gaokao models | All applications below (specialized models are recommended first if high performance is preferred) | | rst-fact-retrieval-11b | Trained with the following signals: WordNet meaning, WordNet part-of-speech, WordNet synonym, WordNet antonym, wikiHow category hierarchy, Wikidata relation, Wikidata entity typing, Paperswithcode entity typing | Knowledge intensive tasks, information extraction tasks,factual checker | | rst-summarization-11b | Trained with the following signals: DailyMail summary, Paperswithcode summary, arXiv summary, wikiHow summary | Summarization or other general generation tasks, meta-evaluation (e.g., BARTScore) | | rst-temporal-reasoning-11b | Trained with the following signals: DailyMail temporal information, wikiHow procedure | Temporal reasoning, relation extraction, event-based extraction | | **rst-information-extraction-11b** | **Trained with the following signals: Paperswithcode entity, Paperswithcode entity typing, Wikidata entity typing, Wikidata relation, Wikipedia entity** | **Named entity recognition, relation extraction and other general IE tasks in the news, scientific or other domains**| | rst-intent-detection-11b | Trained with the following signals: wikiHow goal-step relation | Intent prediction, event prediction | | rst-topic-classification-11b | Trained with the following signals: DailyMail category, arXiv category, wikiHow text category, Wikipedia section title | general text classification | | rst-word-sense-disambiguation-11b | Trained with the following signals: WordNet meaning, WordNet part-of-speech, WordNet synonym, WordNet antonym | Word sense disambiguation, part-of-speech tagging, general IE tasks, common sense reasoning | | rst-natural-language-inference-11b | Trained with the following signals: ConTRoL dataset, DREAM dataset, LogiQA dataset, RACE & RACE-C dataset, ReClor dataset, DailyMail temporal information | Natural language inference, multiple-choice question answering, reasoning | | rst-sentiment-classification-11b | Trained with the following signals: Rotten Tomatoes sentiment, Wikipedia sentiment | Sentiment classification, emotion classification | | rst-gaokao-rc-11b | Trained with multiple-choice QA datasets that are used to train the [T0pp](https://huggingface.co/bigscience/T0pp) model | General multiple-choice question answering| | rst-gaokao-cloze-11b | Trained with manually crafted cloze datasets | General cloze filling| | rst-gaokao-writing-11b | Trained with example essays from past Gaokao-English exams and grammar error correction signals | Essay writing, story generation, grammar error correction and other text generation tasks | ## Have a try? ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("XLab/rst-all-11b") model = AutoModelForSeq2SeqLM.from_pretrained("XLab/rst-all-11b") inputs = tokenizer.encode("TEXT: this is the best cast iron skillet you will ever buy. QUERY: Is this review \"positive\" or \"negative\"", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)) ``` ## Data for reStructure Pre-training This dataset is a precious treasure, containing a variety of naturally occurring signals. Any downstream task you can think of (e.g., the college entrance exam mentioned in the RST paper) can benefit from being pre-trained on some of our provided signals. We spent several months collecting the following 29 signal types, accounting for a total of 46,926,447 data samples. We hope this dataset will be a valuable asset for everyone in natural language processing research. We provide collected signals through [DataLab](https://github.com/ExpressAI/DataLab). For efficiency, we only provide 50,000 samples at most for each signal type. If you want all the samples we collected, please fill this [form](https://docs.google.com/forms/d/e/1FAIpQLSdPO50vSdfwoO3D7DQDVlupQnHgrXrwfF3ePE4X1H6BwgTn5g/viewform?usp=sf_link). More specifically, we collected the following signals. ###### We will be happy :smiley: to know if the resource is helpful for your work, and please cite our [work](https://github.com/ExpressAI/reStructured-Pretraining/blob/main/README.md#Bib) :blush: | Mine | Signal | #Sample | Use in DataLab | Some Applications | | --- | --- | --- | --- | --- | | [Rotten Tomatoes](https://www.rottentomatoes.com/) | (review, rating) | 5,311,109 | `load_dataset("rst", "rotten_tomatoes_sentiment")` | Sentiment classification | | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (text, category) | 899,904 | `load_dataset("rst", "daily_mail_category")`| Topic classification | | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (title, text, summary) | 1,026,616 | `load_dataset("rst", "daily_mail_summary")` | Summarization; Sentence expansion| | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (text, events) | 1,006,412 | `load_dataset("rst", "daily_mail_temporal")` | Temporal reasoning| | [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) | (entity, entity_type, text) | 2,214,274 | `load_dataset("rst", "wikidata_entity")` | Entity typing| | [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) | (subject, object, relation, text) | 1,526,674 | `load_dataset("rst", "wikidata_relation")` | Relation extraction; Fact retrieval| | [wikiHow](https://www.wikihow.com/Main-Page) | (text, category) | 112,109 | `load_dataset("rst", "wikihow_text_category")` | Topic classification | | [wikiHow](https://www.wikihow.com/Main-Page) | (low_category, high_category) | 4,868 | `load_dataset("rst", "wikihow_category_hierarchy")` | Relation extraction; Commonsense reasoning| | [wikiHow](https://www.wikihow.com/Main-Page) | (goal, steps) | 47,956 | `load_dataset("rst", "wikihow_goal_step")` | Intent detection| | [wikiHow](https://www.wikihow.com/Main-Page) | (text, summary) | 703,278 | `load_dataset("rst", "wikihow_summary")` | Summarization; Sentence expansion | | [wikiHow](https://www.wikihow.com/Main-Page) | (goal, first_step, second_step) | 47,787 | `load_dataset("rst", "wikihow_procedure")` | Temporal reasoning | | [wikiHow](https://www.wikihow.com/Main-Page) | (question, description, answer, related_questions) | 47,705 | `load_dataset("rst", "wikihow_question")` | Question generation| | [Wikipedia](https://www.wikipedia.org/) | (text, entities) |22,231,011 | `load_dataset("rst", "wikipedia_entities")` | Entity recognition| [Wikipedia](https://www.wikipedia.org/) | (texts, titles) | 3,296,225 | `load_dataset("rst", "wikipedia_sections")` | Summarization| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, pos) | 27,123 | `load_dataset("rst", "wordnet_pos")` | Part-of-speech tagging| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, meaning, possible_meanings) | 27,123 | `load_dataset("rst", "wordnet_meaning")` | Word sense disambiguation| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, synonyms) | 17,804 | `load_dataset("rst", "wordnet_synonym")`| Paraphrasing| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, antonyms) | 6,408 | `load_dataset("rst", "wordnet_antonym")` |Negation | | [ConTRoL]() | (premise, hypothesis, label) | 8,323 | `load_dataset("rst", "qa_control")` | Natural language inference| |[DREAM](https://transacl.org/ojs/index.php/tacl/article/view/1534)| (context, question, options, answer) | 9,164 | `load_dataset("rst", "qa_dream")` | Reading comprehension| | [LogiQA](https://doi.org/10.24963/ijcai.2020/501) | (context, question, options, answer) | 7,974 | `load_dataset("rst", "qa_logiqa")` | Reading comprehension| | [ReClor](https://openreview.net/forum?id=HJgJtT4tvB) | (context, question, options, answer) | 5,138 | `load_dataset("rst", "qa_reclor")` |Reading comprehension | | [RACE](https://doi.org/10.18653/v1/d17-1082) | (context, question, options, answer) | 44,880 | `load_dataset("rst", "qa_race")` | Reading comprehension| | [RACE-C](http://proceedings.mlr.press/v101/liang19a.html) | (context, question, options, answer) | 5,093 | `load_dataset("rst", "qa_race_c")` | Reading comprehension| | [TriviaQA](https://doi.org/10.18653/v1/P17-1147) | (context, question, answer) | 46,636 | `load_dataset("rst", "qa_triviaqa")` |Reading comprehension | | [Arxiv](https://arxiv.org/) | (text, category) | 1,696,348 | `load_dataset("rst", "arxiv_category")` |Topic classification| | [Arxiv](https://arxiv.org/) | (text, summary) | 1,696,348 | `load_dataset("rst", "arxiv_summary")` | Summarization; Sentence expansion| | [Paperswithcode](https://paperswithcode.com/) | (text, entities, datasets, methods, tasks, metrics) | 4,731,233 | `load_dataset("rst", "paperswithcode_entity")` | Entity recognition| | [Paperswithcode](https://paperswithcode.com/) | (text, summary) | 120,924 | `load_dataset("rst", "paperswithcode_summary")` | Summarization; Sentence expansion| ## Bibtext for Citation Info ``` @article{yuan2022restructured, title={reStructured Pre-training}, author={Yuan, Weizhe and Liu, Pengfei}, journal={arXiv preprint arXiv:2206.11147}, year={2022} } ```
GAIR/rst-fact-retrieval-11b
GAIR
2022-09-04T01:42:36Z
42
6
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2206.11147", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T03:57:11Z
--- license: afl-3.0 --- <p align="center"> <br> <img src="https://expressai-xlab.s3.amazonaws.com/rst/intro_rst.png" width="1000"/> <br> </p> # reStructured Pre-training (RST) official [repository](https://github.com/ExpressAI/reStructured-Pretraining), [paper](https://arxiv.org/pdf/2206.11147.pdf), [easter eggs](http://expressai.co/peripherals/emoji-eng.html) #### RST is a new paradigm for language pre-training, which * unifies **26** different types of signal from **10** data sources (Totten Tomatoes, Dailymail, Wikipedia, Wikidata, Wikihow, Wordnet, arXiv etc ) in the world structurally, being pre-trained with a monolithcal model, * surpasses strong competitors (e.g., T0) on **52/55** popular datasets from a variety of NLP tasks (classification, IE, retrieval, generation etc) * achieves superior performance in National College Entrance Examination **(Gaokao-English, 高考-英语)** achieves **40** points higher than the average scores made by students and 15 points higher than GPT3 with **1/16** parameters. In particular, Qin gets a high score of **138.5** (the full mark is 150) in the 2018 English exam In such a pre-training paradigm, * Data-centric Pre-training: the role of data will be re-emphasized, and model pre-training and fine-tuning of downstream tasks are viewed as a process of data storing and accessing * Pre-training over JSON instead of TEXT: a good storage mechanism should not only have the ability to cache a large amount of data but also consider the ease of access. ## Model Description We release all models introduced in our [paper](https://arxiv.org/pdf/2206.11147.pdf), covering 13 different application scenarios. Each model contains 11 billion parameters. | Model | Description | Recommended Application | ----------- | ----------- |----------- | | rst-all-11b | Trained with all the signals below except signals that are used to train Gaokao models | All applications below (specialized models are recommended first if high performance is preferred) | | **rst-fact-retrieval-11b** | **Trained with the following signals: WordNet meaning, WordNet part-of-speech, WordNet synonym, WordNet antonym, wikiHow category hierarchy, Wikidata relation, Wikidata entity typing, Paperswithcode entity typing** | **Knowledge intensive tasks, information extraction tasks,factual checker** | | rst-summarization-11b | Trained with the following signals: DailyMail summary, Paperswithcode summary, arXiv summary, wikiHow summary | Summarization or other general generation tasks, meta-evaluation (e.g., BARTScore) | | rst-temporal-reasoning-11b | Trained with the following signals: DailyMail temporal information, wikiHow procedure | Temporal reasoning, relation extraction, event-based extraction | | rst-information-extraction-11b | Trained with the following signals: Paperswithcode entity, Paperswithcode entity typing, Wikidata entity typing, Wikidata relation, Wikipedia entity | Named entity recognition, relation extraction and other general IE tasks in the news, scientific or other domains| | rst-intent-detection-11b | Trained with the following signals: wikiHow goal-step relation | Intent prediction, event prediction | | rst-topic-classification-11b | Trained with the following signals: DailyMail category, arXiv category, wikiHow text category, Wikipedia section title | general text classification | | rst-word-sense-disambiguation-11b | Trained with the following signals: WordNet meaning, WordNet part-of-speech, WordNet synonym, WordNet antonym | Word sense disambiguation, part-of-speech tagging, general IE tasks, common sense reasoning | | rst-natural-language-inference-11b | Trained with the following signals: ConTRoL dataset, DREAM dataset, LogiQA dataset, RACE & RACE-C dataset, ReClor dataset, DailyMail temporal information | Natural language inference, multiple-choice question answering, reasoning | | rst-sentiment-classification-11b | Trained with the following signals: Rotten Tomatoes sentiment, Wikipedia sentiment | Sentiment classification, emotion classification | | rst-gaokao-rc-11b | Trained with multiple-choice QA datasets that are used to train the [T0pp](https://huggingface.co/bigscience/T0pp) model | General multiple-choice question answering| | rst-gaokao-cloze-11b | Trained with manually crafted cloze datasets | General cloze filling| | rst-gaokao-writing-11b | Trained with example essays from past Gaokao-English exams and grammar error correction signals | Essay writing, story generation, grammar error correction and other text generation tasks | ## Have a try? ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("XLab/rst-all-11b") model = AutoModelForSeq2SeqLM.from_pretrained("XLab/rst-all-11b") inputs = tokenizer.encode("TEXT: this is the best cast iron skillet you will ever buy. QUERY: Is this review \"positive\" or \"negative\"", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)) ``` ## Data for reStructure Pre-training This dataset is a precious treasure, containing a variety of naturally occurring signals. Any downstream task you can think of (e.g., the college entrance exam mentioned in the RST paper) can benefit from being pre-trained on some of our provided signals. We spent several months collecting the following 29 signal types, accounting for a total of 46,926,447 data samples. We hope this dataset will be a valuable asset for everyone in natural language processing research. We provide collected signals through [DataLab](https://github.com/ExpressAI/DataLab). For efficiency, we only provide 50,000 samples at most for each signal type. If you want all the samples we collected, please fill this [form](https://docs.google.com/forms/d/e/1FAIpQLSdPO50vSdfwoO3D7DQDVlupQnHgrXrwfF3ePE4X1H6BwgTn5g/viewform?usp=sf_link). More specifically, we collected the following signals. ###### We will be happy :smiley: to know if the resource is helpful for your work, and please cite our [work](https://github.com/ExpressAI/reStructured-Pretraining/blob/main/README.md#Bib) :blush: | Mine | Signal | #Sample | Use in DataLab | Some Applications | | --- | --- | --- | --- | --- | | [Rotten Tomatoes](https://www.rottentomatoes.com/) | (review, rating) | 5,311,109 | `load_dataset("rst", "rotten_tomatoes_sentiment")` | Sentiment classification | | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (text, category) | 899,904 | `load_dataset("rst", "daily_mail_category")`| Topic classification | | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (title, text, summary) | 1,026,616 | `load_dataset("rst", "daily_mail_summary")` | Summarization; Sentence expansion| | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (text, events) | 1,006,412 | `load_dataset("rst", "daily_mail_temporal")` | Temporal reasoning| | [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) | (entity, entity_type, text) | 2,214,274 | `load_dataset("rst", "wikidata_entity")` | Entity typing| | [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) | (subject, object, relation, text) | 1,526,674 | `load_dataset("rst", "wikidata_relation")` | Relation extraction; Fact retrieval| | [wikiHow](https://www.wikihow.com/Main-Page) | (text, category) | 112,109 | `load_dataset("rst", "wikihow_text_category")` | Topic classification | | [wikiHow](https://www.wikihow.com/Main-Page) | (low_category, high_category) | 4,868 | `load_dataset("rst", "wikihow_category_hierarchy")` | Relation extraction; Commonsense reasoning| | [wikiHow](https://www.wikihow.com/Main-Page) | (goal, steps) | 47,956 | `load_dataset("rst", "wikihow_goal_step")` | Intent detection| | [wikiHow](https://www.wikihow.com/Main-Page) | (text, summary) | 703,278 | `load_dataset("rst", "wikihow_summary")` | Summarization; Sentence expansion | | [wikiHow](https://www.wikihow.com/Main-Page) | (goal, first_step, second_step) | 47,787 | `load_dataset("rst", "wikihow_procedure")` | Temporal reasoning | | [wikiHow](https://www.wikihow.com/Main-Page) | (question, description, answer, related_questions) | 47,705 | `load_dataset("rst", "wikihow_question")` | Question generation| | [Wikipedia](https://www.wikipedia.org/) | (text, entities) |22,231,011 | `load_dataset("rst", "wikipedia_entities")` | Entity recognition| [Wikipedia](https://www.wikipedia.org/) | (texts, titles) | 3,296,225 | `load_dataset("rst", "wikipedia_sections")` | Summarization| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, pos) | 27,123 | `load_dataset("rst", "wordnet_pos")` | Part-of-speech tagging| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, meaning, possible_meanings) | 27,123 | `load_dataset("rst", "wordnet_meaning")` | Word sense disambiguation| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, synonyms) | 17,804 | `load_dataset("rst", "wordnet_synonym")`| Paraphrasing| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, antonyms) | 6,408 | `load_dataset("rst", "wordnet_antonym")` |Negation | | [ConTRoL]() | (premise, hypothesis, label) | 8,323 | `load_dataset("rst", "qa_control")` | Natural language inference| |[DREAM](https://transacl.org/ojs/index.php/tacl/article/view/1534)| (context, question, options, answer) | 9,164 | `load_dataset("rst", "qa_dream")` | Reading comprehension| | [LogiQA](https://doi.org/10.24963/ijcai.2020/501) | (context, question, options, answer) | 7,974 | `load_dataset("rst", "qa_logiqa")` | Reading comprehension| | [ReClor](https://openreview.net/forum?id=HJgJtT4tvB) | (context, question, options, answer) | 5,138 | `load_dataset("rst", "qa_reclor")` |Reading comprehension | | [RACE](https://doi.org/10.18653/v1/d17-1082) | (context, question, options, answer) | 44,880 | `load_dataset("rst", "qa_race")` | Reading comprehension| | [RACE-C](http://proceedings.mlr.press/v101/liang19a.html) | (context, question, options, answer) | 5,093 | `load_dataset("rst", "qa_race_c")` | Reading comprehension| | [TriviaQA](https://doi.org/10.18653/v1/P17-1147) | (context, question, answer) | 46,636 | `load_dataset("rst", "qa_triviaqa")` |Reading comprehension | | [Arxiv](https://arxiv.org/) | (text, category) | 1,696,348 | `load_dataset("rst", "arxiv_category")` |Topic classification| | [Arxiv](https://arxiv.org/) | (text, summary) | 1,696,348 | `load_dataset("rst", "arxiv_summary")` | Summarization; Sentence expansion| | [Paperswithcode](https://paperswithcode.com/) | (text, entities, datasets, methods, tasks, metrics) | 4,731,233 | `load_dataset("rst", "paperswithcode_entity")` | Entity recognition| | [Paperswithcode](https://paperswithcode.com/) | (text, summary) | 120,924 | `load_dataset("rst", "paperswithcode_summary")` | Summarization; Sentence expansion| ## Bibtext for Citation Info ``` @article{yuan2022restructured, title={reStructured Pre-training}, author={Yuan, Weizhe and Liu, Pengfei}, journal={arXiv preprint arXiv:2206.11147}, year={2022} } ```
GAIR/rst-gaokao-writing-11b
GAIR
2022-09-04T01:42:02Z
4
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2206.11147", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-01T20:33:19Z
--- license: afl-3.0 --- <p align="center"> <br> <img src="https://expressai-xlab.s3.amazonaws.com/rst/intro_rst.png" width="1000"/> <br> </p> # reStructured Pre-training (RST) official [repository](https://github.com/ExpressAI/reStructured-Pretraining), [paper](https://arxiv.org/pdf/2206.11147.pdf), [easter eggs](http://expressai.co/peripherals/emoji-eng.html) #### RST is a new paradigm for language pre-training, which * unifies **26** different types of signal from **10** data sources (Totten Tomatoes, Dailymail, Wikipedia, Wikidata, Wikihow, Wordnet, arXiv etc ) in the world structurally, being pre-trained with a monolithcal model, * surpasses strong competitors (e.g., T0) on **52/55** popular datasets from a variety of NLP tasks (classification, IE, retrieval, generation etc) * achieves superior performance in National College Entrance Examination **(Gaokao-English, 高考-英语)** achieves **40** points higher than the average scores made by students and 15 points higher than GPT3 with **1/16** parameters. In particular, Qin gets a high score of **138.5** (the full mark is 150) in the 2018 English exam In such a pre-training paradigm, * Data-centric Pre-training: the role of data will be re-emphasized, and model pre-training and fine-tuning of downstream tasks are viewed as a process of data storing and accessing * Pre-training over JSON instead of TEXT: a good storage mechanism should not only have the ability to cache a large amount of data but also consider the ease of access. ## Model Description We release all models introduced in our [paper](https://arxiv.org/pdf/2206.11147.pdf), covering 13 different application scenarios. Each model contains 11 billion parameters. | Model | Description | Recommended Application | ----------- | ----------- |----------- | | rst-all-11b | Trained with all the signals below except signals that are used to train Gaokao models | All applications below (specialized models are recommended first if high performance is preferred) | | rst-fact-retrieval-11b | Trained with the following signals: WordNet meaning, WordNet part-of-speech, WordNet synonym, WordNet antonym, wikiHow category hierarchy, Wikidata relation, Wikidata entity typing, Paperswithcode entity typing | Knowledge intensive tasks, information extraction tasks,factual checker | | rst-summarization-11b | Trained with the following signals: DailyMail summary, Paperswithcode summary, arXiv summary, wikiHow summary | Summarization or other general generation tasks, meta-evaluation (e.g., BARTScore) | | rst-temporal-reasoning-11b | Trained with the following signals: DailyMail temporal information, wikiHow procedure | Temporal reasoning, relation extraction, event-based extraction | | rst-information-extraction-11b | Trained with the following signals: Paperswithcode entity, Paperswithcode entity typing, Wikidata entity typing, Wikidata relation, Wikipedia entity | Named entity recognition, relation extraction and other general IE tasks in the news, scientific or other domains| | rst-intent-detection-11b | Trained with the following signals: wikiHow goal-step relation | Intent prediction, event prediction | | rst-topic-classification-11b | Trained with the following signals: DailyMail category, arXiv category, wikiHow text category, Wikipedia section title | general text classification | | rst-word-sense-disambiguation-11b | Trained with the following signals: WordNet meaning, WordNet part-of-speech, WordNet synonym, WordNet antonym | Word sense disambiguation, part-of-speech tagging, general IE tasks, common sense reasoning | | rst-natural-language-inference-11b | Trained with the following signals: ConTRoL dataset, DREAM dataset, LogiQA dataset, RACE & RACE-C dataset, ReClor dataset, DailyMail temporal information | Natural language inference, multiple-choice question answering, reasoning | | rst-sentiment-classification-11b | Trained with the following signals: Rotten Tomatoes sentiment, Wikipedia sentiment | Sentiment classification, emotion classification | | rst-gaokao-rc-11b | Trained with multiple-choice QA datasets that are used to train the [T0pp](https://huggingface.co/bigscience/T0pp) model | General multiple-choice question answering| | rst-gaokao-cloze-11b | Trained with manually crafted cloze datasets | General cloze filling| | **rst-gaokao-writing-11b** | **Trained with example essays from past Gaokao-English exams and grammar error correction signals** | **Essay writing, story generation, grammar error correction and other text generation tasks** | ## Have a try? ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("XLab/rst-all-11b") model = AutoModelForSeq2SeqLM.from_pretrained("XLab/rst-all-11b") inputs = tokenizer.encode("TEXT: this is the best cast iron skillet you will ever buy. QUERY: Is this review \"positive\" or \"negative\"", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)) ``` ## Data for reStructure Pre-training This dataset is a precious treasure, containing a variety of naturally occurring signals. Any downstream task you can think of (e.g., the college entrance exam mentioned in the RST paper) can benefit from being pre-trained on some of our provided signals. We spent several months collecting the following 29 signal types, accounting for a total of 46,926,447 data samples. We hope this dataset will be a valuable asset for everyone in natural language processing research. We provide collected signals through [DataLab](https://github.com/ExpressAI/DataLab). For efficiency, we only provide 50,000 samples at most for each signal type. If you want all the samples we collected, please fill this [form](https://docs.google.com/forms/d/e/1FAIpQLSdPO50vSdfwoO3D7DQDVlupQnHgrXrwfF3ePE4X1H6BwgTn5g/viewform?usp=sf_link). More specifically, we collected the following signals. ###### We will be happy :smiley: to know if the resource is helpful for your work, and please cite our [work](https://github.com/ExpressAI/reStructured-Pretraining/blob/main/README.md#Bib) :blush: | Mine | Signal | #Sample | Use in DataLab | Some Applications | | --- | --- | --- | --- | --- | | [Rotten Tomatoes](https://www.rottentomatoes.com/) | (review, rating) | 5,311,109 | `load_dataset("rst", "rotten_tomatoes_sentiment")` | Sentiment classification | | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (text, category) | 899,904 | `load_dataset("rst", "daily_mail_category")`| Topic classification | | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (title, text, summary) | 1,026,616 | `load_dataset("rst", "daily_mail_summary")` | Summarization; Sentence expansion| | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (text, events) | 1,006,412 | `load_dataset("rst", "daily_mail_temporal")` | Temporal reasoning| | [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) | (entity, entity_type, text) | 2,214,274 | `load_dataset("rst", "wikidata_entity")` | Entity typing| | [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) | (subject, object, relation, text) | 1,526,674 | `load_dataset("rst", "wikidata_relation")` | Relation extraction; Fact retrieval| | [wikiHow](https://www.wikihow.com/Main-Page) | (text, category) | 112,109 | `load_dataset("rst", "wikihow_text_category")` | Topic classification | | [wikiHow](https://www.wikihow.com/Main-Page) | (low_category, high_category) | 4,868 | `load_dataset("rst", "wikihow_category_hierarchy")` | Relation extraction; Commonsense reasoning| | [wikiHow](https://www.wikihow.com/Main-Page) | (goal, steps) | 47,956 | `load_dataset("rst", "wikihow_goal_step")` | Intent detection| | [wikiHow](https://www.wikihow.com/Main-Page) | (text, summary) | 703,278 | `load_dataset("rst", "wikihow_summary")` | Summarization; Sentence expansion | | [wikiHow](https://www.wikihow.com/Main-Page) | (goal, first_step, second_step) | 47,787 | `load_dataset("rst", "wikihow_procedure")` | Temporal reasoning | | [wikiHow](https://www.wikihow.com/Main-Page) | (question, description, answer, related_questions) | 47,705 | `load_dataset("rst", "wikihow_question")` | Question generation| | [Wikipedia](https://www.wikipedia.org/) | (text, entities) |22,231,011 | `load_dataset("rst", "wikipedia_entities")` | Entity recognition| [Wikipedia](https://www.wikipedia.org/) | (texts, titles) | 3,296,225 | `load_dataset("rst", "wikipedia_sections")` | Summarization| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, pos) | 27,123 | `load_dataset("rst", "wordnet_pos")` | Part-of-speech tagging| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, meaning, possible_meanings) | 27,123 | `load_dataset("rst", "wordnet_meaning")` | Word sense disambiguation| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, synonyms) | 17,804 | `load_dataset("rst", "wordnet_synonym")`| Paraphrasing| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, antonyms) | 6,408 | `load_dataset("rst", "wordnet_antonym")` |Negation | | [ConTRoL]() | (premise, hypothesis, label) | 8,323 | `load_dataset("rst", "qa_control")` | Natural language inference| |[DREAM](https://transacl.org/ojs/index.php/tacl/article/view/1534)| (context, question, options, answer) | 9,164 | `load_dataset("rst", "qa_dream")` | Reading comprehension| | [LogiQA](https://doi.org/10.24963/ijcai.2020/501) | (context, question, options, answer) | 7,974 | `load_dataset("rst", "qa_logiqa")` | Reading comprehension| | [ReClor](https://openreview.net/forum?id=HJgJtT4tvB) | (context, question, options, answer) | 5,138 | `load_dataset("rst", "qa_reclor")` |Reading comprehension | | [RACE](https://doi.org/10.18653/v1/d17-1082) | (context, question, options, answer) | 44,880 | `load_dataset("rst", "qa_race")` | Reading comprehension| | [RACE-C](http://proceedings.mlr.press/v101/liang19a.html) | (context, question, options, answer) | 5,093 | `load_dataset("rst", "qa_race_c")` | Reading comprehension| | [TriviaQA](https://doi.org/10.18653/v1/P17-1147) | (context, question, answer) | 46,636 | `load_dataset("rst", "qa_triviaqa")` |Reading comprehension | | [Arxiv](https://arxiv.org/) | (text, category) | 1,696,348 | `load_dataset("rst", "arxiv_category")` |Topic classification| | [Arxiv](https://arxiv.org/) | (text, summary) | 1,696,348 | `load_dataset("rst", "arxiv_summary")` | Summarization; Sentence expansion| | [Paperswithcode](https://paperswithcode.com/) | (text, entities, datasets, methods, tasks, metrics) | 4,731,233 | `load_dataset("rst", "paperswithcode_entity")` | Entity recognition| | [Paperswithcode](https://paperswithcode.com/) | (text, summary) | 120,924 | `load_dataset("rst", "paperswithcode_summary")` | Summarization; Sentence expansion| ## Bibtext for Citation Info ``` @article{yuan2022restructured, title={reStructured Pre-training}, author={Yuan, Weizhe and Liu, Pengfei}, journal={arXiv preprint arXiv:2206.11147}, year={2022} } ```
GAIR/rst-gaokao-cloze-11b
GAIR
2022-09-04T01:41:45Z
4
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2206.11147", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-01T16:54:26Z
--- license: afl-3.0 --- <p align="center"> <br> <img src="https://expressai-xlab.s3.amazonaws.com/rst/intro_rst.png" width="1000"/> <br> </p> # reStructured Pre-training (RST) official [repository](https://github.com/ExpressAI/reStructured-Pretraining), [paper](https://arxiv.org/pdf/2206.11147.pdf), [easter eggs](http://expressai.co/peripherals/emoji-eng.html) #### RST is a new paradigm for language pre-training, which * unifies **26** different types of signal from **10** data sources (Totten Tomatoes, Dailymail, Wikipedia, Wikidata, Wikihow, Wordnet, arXiv etc ) in the world structurally, being pre-trained with a monolithcal model, * surpasses strong competitors (e.g., T0) on **52/55** popular datasets from a variety of NLP tasks (classification, IE, retrieval, generation etc) * achieves superior performance in National College Entrance Examination **(Gaokao-English, 高考-英语)** achieves **40** points higher than the average scores made by students and 15 points higher than GPT3 with **1/16** parameters. In particular, Qin gets a high score of **138.5** (the full mark is 150) in the 2018 English exam In such a pre-training paradigm, * Data-centric Pre-training: the role of data will be re-emphasized, and model pre-training and fine-tuning of downstream tasks are viewed as a process of data storing and accessing * Pre-training over JSON instead of TEXT: a good storage mechanism should not only have the ability to cache a large amount of data but also consider the ease of access. ## Model Description We release all models introduced in our [paper](https://arxiv.org/pdf/2206.11147.pdf), covering 13 different application scenarios. Each model contains 11 billion parameters. | Model | Description | Recommended Application | ----------- | ----------- |----------- | | rst-all-11b | Trained with all the signals below except signals that are used to train Gaokao models | All applications below (specialized models are recommended first if high performance is preferred) | | rst-fact-retrieval-11b | Trained with the following signals: WordNet meaning, WordNet part-of-speech, WordNet synonym, WordNet antonym, wikiHow category hierarchy, Wikidata relation, Wikidata entity typing, Paperswithcode entity typing | Knowledge intensive tasks, information extraction tasks,factual checker | | rst-summarization-11b | Trained with the following signals: DailyMail summary, Paperswithcode summary, arXiv summary, wikiHow summary | Summarization or other general generation tasks, meta-evaluation (e.g., BARTScore) | | rst-temporal-reasoning-11b | Trained with the following signals: DailyMail temporal information, wikiHow procedure | Temporal reasoning, relation extraction, event-based extraction | | rst-information-extraction-11b | Trained with the following signals: Paperswithcode entity, Paperswithcode entity typing, Wikidata entity typing, Wikidata relation, Wikipedia entity | Named entity recognition, relation extraction and other general IE tasks in the news, scientific or other domains| | rst-intent-detection-11b | Trained with the following signals: wikiHow goal-step relation | Intent prediction, event prediction | | rst-topic-classification-11b | Trained with the following signals: DailyMail category, arXiv category, wikiHow text category, Wikipedia section title | general text classification | | rst-word-sense-disambiguation-11b | Trained with the following signals: WordNet meaning, WordNet part-of-speech, WordNet synonym, WordNet antonym | Word sense disambiguation, part-of-speech tagging, general IE tasks, common sense reasoning | | rst-natural-language-inference-11b | Trained with the following signals: ConTRoL dataset, DREAM dataset, LogiQA dataset, RACE & RACE-C dataset, ReClor dataset, DailyMail temporal information | Natural language inference, multiple-choice question answering, reasoning | | rst-sentiment-classification-11b | Trained with the following signals: Rotten Tomatoes sentiment, Wikipedia sentiment | Sentiment classification, emotion classification | | rst-gaokao-rc-11b | Trained with multiple-choice QA datasets that are used to train the [T0pp](https://huggingface.co/bigscience/T0pp) model | General multiple-choice question answering| | **rst-gaokao-cloze-11b** | **Trained with manually crafted cloze datasets** | **General cloze filling**| | rst-gaokao-writing-11b | Trained with example essays from past Gaokao-English exams and grammar error correction signals | Essay writing, story generation, grammar error correction and other text generation tasks | ## Have a try? ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("XLab/rst-all-11b") model = AutoModelForSeq2SeqLM.from_pretrained("XLab/rst-all-11b") inputs = tokenizer.encode("TEXT: this is the best cast iron skillet you will ever buy. QUERY: Is this review \"positive\" or \"negative\"", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)) ``` ## Data for reStructure Pre-training This dataset is a precious treasure, containing a variety of naturally occurring signals. Any downstream task you can think of (e.g., the college entrance exam mentioned in the RST paper) can benefit from being pre-trained on some of our provided signals. We spent several months collecting the following 29 signal types, accounting for a total of 46,926,447 data samples. We hope this dataset will be a valuable asset for everyone in natural language processing research. We provide collected signals through [DataLab](https://github.com/ExpressAI/DataLab). For efficiency, we only provide 50,000 samples at most for each signal type. If you want all the samples we collected, please fill this [form](https://docs.google.com/forms/d/e/1FAIpQLSdPO50vSdfwoO3D7DQDVlupQnHgrXrwfF3ePE4X1H6BwgTn5g/viewform?usp=sf_link). More specifically, we collected the following signals. ###### We will be happy :smiley: to know if the resource is helpful for your work, and please cite our [work](https://github.com/ExpressAI/reStructured-Pretraining/blob/main/README.md#Bib) :blush: | Mine | Signal | #Sample | Use in DataLab | Some Applications | | --- | --- | --- | --- | --- | | [Rotten Tomatoes](https://www.rottentomatoes.com/) | (review, rating) | 5,311,109 | `load_dataset("rst", "rotten_tomatoes_sentiment")` | Sentiment classification | | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (text, category) | 899,904 | `load_dataset("rst", "daily_mail_category")`| Topic classification | | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (title, text, summary) | 1,026,616 | `load_dataset("rst", "daily_mail_summary")` | Summarization; Sentence expansion| | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (text, events) | 1,006,412 | `load_dataset("rst", "daily_mail_temporal")` | Temporal reasoning| | [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) | (entity, entity_type, text) | 2,214,274 | `load_dataset("rst", "wikidata_entity")` | Entity typing| | [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) | (subject, object, relation, text) | 1,526,674 | `load_dataset("rst", "wikidata_relation")` | Relation extraction; Fact retrieval| | [wikiHow](https://www.wikihow.com/Main-Page) | (text, category) | 112,109 | `load_dataset("rst", "wikihow_text_category")` | Topic classification | | [wikiHow](https://www.wikihow.com/Main-Page) | (low_category, high_category) | 4,868 | `load_dataset("rst", "wikihow_category_hierarchy")` | Relation extraction; Commonsense reasoning| | [wikiHow](https://www.wikihow.com/Main-Page) | (goal, steps) | 47,956 | `load_dataset("rst", "wikihow_goal_step")` | Intent detection| | [wikiHow](https://www.wikihow.com/Main-Page) | (text, summary) | 703,278 | `load_dataset("rst", "wikihow_summary")` | Summarization; Sentence expansion | | [wikiHow](https://www.wikihow.com/Main-Page) | (goal, first_step, second_step) | 47,787 | `load_dataset("rst", "wikihow_procedure")` | Temporal reasoning | | [wikiHow](https://www.wikihow.com/Main-Page) | (question, description, answer, related_questions) | 47,705 | `load_dataset("rst", "wikihow_question")` | Question generation| | [Wikipedia](https://www.wikipedia.org/) | (text, entities) |22,231,011 | `load_dataset("rst", "wikipedia_entities")` | Entity recognition| [Wikipedia](https://www.wikipedia.org/) | (texts, titles) | 3,296,225 | `load_dataset("rst", "wikipedia_sections")` | Summarization| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, pos) | 27,123 | `load_dataset("rst", "wordnet_pos")` | Part-of-speech tagging| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, meaning, possible_meanings) | 27,123 | `load_dataset("rst", "wordnet_meaning")` | Word sense disambiguation| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, synonyms) | 17,804 | `load_dataset("rst", "wordnet_synonym")`| Paraphrasing| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, antonyms) | 6,408 | `load_dataset("rst", "wordnet_antonym")` |Negation | | [ConTRoL]() | (premise, hypothesis, label) | 8,323 | `load_dataset("rst", "qa_control")` | Natural language inference| |[DREAM](https://transacl.org/ojs/index.php/tacl/article/view/1534)| (context, question, options, answer) | 9,164 | `load_dataset("rst", "qa_dream")` | Reading comprehension| | [LogiQA](https://doi.org/10.24963/ijcai.2020/501) | (context, question, options, answer) | 7,974 | `load_dataset("rst", "qa_logiqa")` | Reading comprehension| | [ReClor](https://openreview.net/forum?id=HJgJtT4tvB) | (context, question, options, answer) | 5,138 | `load_dataset("rst", "qa_reclor")` |Reading comprehension | | [RACE](https://doi.org/10.18653/v1/d17-1082) | (context, question, options, answer) | 44,880 | `load_dataset("rst", "qa_race")` | Reading comprehension| | [RACE-C](http://proceedings.mlr.press/v101/liang19a.html) | (context, question, options, answer) | 5,093 | `load_dataset("rst", "qa_race_c")` | Reading comprehension| | [TriviaQA](https://doi.org/10.18653/v1/P17-1147) | (context, question, answer) | 46,636 | `load_dataset("rst", "qa_triviaqa")` |Reading comprehension | | [Arxiv](https://arxiv.org/) | (text, category) | 1,696,348 | `load_dataset("rst", "arxiv_category")` |Topic classification| | [Arxiv](https://arxiv.org/) | (text, summary) | 1,696,348 | `load_dataset("rst", "arxiv_summary")` | Summarization; Sentence expansion| | [Paperswithcode](https://paperswithcode.com/) | (text, entities, datasets, methods, tasks, metrics) | 4,731,233 | `load_dataset("rst", "paperswithcode_entity")` | Entity recognition| | [Paperswithcode](https://paperswithcode.com/) | (text, summary) | 120,924 | `load_dataset("rst", "paperswithcode_summary")` | Summarization; Sentence expansion| ## Bibtext for Citation Info ``` @article{yuan2022restructured, title={reStructured Pre-training}, author={Yuan, Weizhe and Liu, Pengfei}, journal={arXiv preprint arXiv:2206.11147}, year={2022} } ```
GAIR/rst-natural-language-inference-11b
GAIR
2022-09-04T01:41:26Z
5
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2206.11147", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-30T17:17:06Z
--- license: afl-3.0 --- <p align="center"> <br> <img src="https://expressai-xlab.s3.amazonaws.com/rst/intro_rst.png" width="1000"/> <br> </p> # reStructured Pre-training (RST) official [repository](https://github.com/ExpressAI/reStructured-Pretraining), [paper](https://arxiv.org/pdf/2206.11147.pdf), [easter eggs](http://expressai.co/peripherals/emoji-eng.html) #### RST is a new paradigm for language pre-training, which * unifies **26** different types of signal from **10** data sources (Totten Tomatoes, Dailymail, Wikipedia, Wikidata, Wikihow, Wordnet, arXiv etc ) in the world structurally, being pre-trained with a monolithcal model, * surpasses strong competitors (e.g., T0) on **52/55** popular datasets from a variety of NLP tasks (classification, IE, retrieval, generation etc) * achieves superior performance in National College Entrance Examination **(Gaokao-English, 高考-英语)** achieves **40** points higher than the average scores made by students and 15 points higher than GPT3 with **1/16** parameters. In particular, Qin gets a high score of **138.5** (the full mark is 150) in the 2018 English exam In such a pre-training paradigm, * Data-centric Pre-training: the role of data will be re-emphasized, and model pre-training and fine-tuning of downstream tasks are viewed as a process of data storing and accessing * Pre-training over JSON instead of TEXT: a good storage mechanism should not only have the ability to cache a large amount of data but also consider the ease of access. ## Model Description We release all models introduced in our [paper](https://arxiv.org/pdf/2206.11147.pdf), covering 13 different application scenarios. Each model contains 11 billion parameters. | Model | Description | Recommended Application | ----------- | ----------- |----------- | | rst-all-11b | Trained with all the signals below except signals that are used to train Gaokao models | All applications below (specialized models are recommended first if high performance is preferred) | | rst-fact-retrieval-11b | Trained with the following signals: WordNet meaning, WordNet part-of-speech, WordNet synonym, WordNet antonym, wikiHow category hierarchy, Wikidata relation, Wikidata entity typing, Paperswithcode entity typing | Knowledge intensive tasks, information extraction tasks,factual checker | | rst-summarization-11b | Trained with the following signals: DailyMail summary, Paperswithcode summary, arXiv summary, wikiHow summary | Summarization or other general generation tasks, meta-evaluation (e.g., BARTScore) | | rst-temporal-reasoning-11b | Trained with the following signals: DailyMail temporal information, wikiHow procedure | Temporal reasoning, relation extraction, event-based extraction | | rst-information-extraction-11b | Trained with the following signals: Paperswithcode entity, Paperswithcode entity typing, Wikidata entity typing, Wikidata relation, Wikipedia entity | Named entity recognition, relation extraction and other general IE tasks in the news, scientific or other domains| | rst-intent-detection-11b | Trained with the following signals: wikiHow goal-step relation | Intent prediction, event prediction | | rst-topic-classification-11b | Trained with the following signals: DailyMail category, arXiv category, wikiHow text category, Wikipedia section title | general text classification | | rst-word-sense-disambiguation-11b | Trained with the following signals: WordNet meaning, WordNet part-of-speech, WordNet synonym, WordNet antonym | Word sense disambiguation, part-of-speech tagging, general IE tasks, common sense reasoning | | **rst-natural-language-inference-11b** | **Trained with the following signals: ConTRoL dataset, DREAM dataset, LogiQA dataset, RACE & RACE-C dataset, ReClor dataset, DailyMail temporal information** | **Natural language inference, multiple-choice question answering, reasoning** | | rst-sentiment-classification-11b | Trained with the following signals: Rotten Tomatoes sentiment, Wikipedia sentiment | Sentiment classification, emotion classification | | rst-gaokao-rc-11b | Trained with multiple-choice QA datasets that are used to train the [T0pp](https://huggingface.co/bigscience/T0pp) model | General multiple-choice question answering| | rst-gaokao-cloze-11b | Trained with manually crafted cloze datasets | General cloze filling| | rst-gaokao-writing-11b | Trained with example essays from past Gaokao-English exams and grammar error correction signals | Essay writing, story generation, grammar error correction and other text generation tasks | ## Have a try? ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("XLab/rst-all-11b") model = AutoModelForSeq2SeqLM.from_pretrained("XLab/rst-all-11b") inputs = tokenizer.encode("TEXT: this is the best cast iron skillet you will ever buy. QUERY: Is this review \"positive\" or \"negative\"", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)) ``` ## Data for reStructure Pre-training This dataset is a precious treasure, containing a variety of naturally occurring signals. Any downstream task you can think of (e.g., the college entrance exam mentioned in the RST paper) can benefit from being pre-trained on some of our provided signals. We spent several months collecting the following 29 signal types, accounting for a total of 46,926,447 data samples. We hope this dataset will be a valuable asset for everyone in natural language processing research. We provide collected signals through [DataLab](https://github.com/ExpressAI/DataLab). For efficiency, we only provide 50,000 samples at most for each signal type. If you want all the samples we collected, please fill this [form](https://docs.google.com/forms/d/e/1FAIpQLSdPO50vSdfwoO3D7DQDVlupQnHgrXrwfF3ePE4X1H6BwgTn5g/viewform?usp=sf_link). More specifically, we collected the following signals. ###### We will be happy :smiley: to know if the resource is helpful for your work, and please cite our [work](https://github.com/ExpressAI/reStructured-Pretraining/blob/main/README.md#Bib) :blush: | Mine | Signal | #Sample | Use in DataLab | Some Applications | | --- | --- | --- | --- | --- | | [Rotten Tomatoes](https://www.rottentomatoes.com/) | (review, rating) | 5,311,109 | `load_dataset("rst", "rotten_tomatoes_sentiment")` | Sentiment classification | | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (text, category) | 899,904 | `load_dataset("rst", "daily_mail_category")`| Topic classification | | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (title, text, summary) | 1,026,616 | `load_dataset("rst", "daily_mail_summary")` | Summarization; Sentence expansion| | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (text, events) | 1,006,412 | `load_dataset("rst", "daily_mail_temporal")` | Temporal reasoning| | [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) | (entity, entity_type, text) | 2,214,274 | `load_dataset("rst", "wikidata_entity")` | Entity typing| | [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) | (subject, object, relation, text) | 1,526,674 | `load_dataset("rst", "wikidata_relation")` | Relation extraction; Fact retrieval| | [wikiHow](https://www.wikihow.com/Main-Page) | (text, category) | 112,109 | `load_dataset("rst", "wikihow_text_category")` | Topic classification | | [wikiHow](https://www.wikihow.com/Main-Page) | (low_category, high_category) | 4,868 | `load_dataset("rst", "wikihow_category_hierarchy")` | Relation extraction; Commonsense reasoning| | [wikiHow](https://www.wikihow.com/Main-Page) | (goal, steps) | 47,956 | `load_dataset("rst", "wikihow_goal_step")` | Intent detection| | [wikiHow](https://www.wikihow.com/Main-Page) | (text, summary) | 703,278 | `load_dataset("rst", "wikihow_summary")` | Summarization; Sentence expansion | | [wikiHow](https://www.wikihow.com/Main-Page) | (goal, first_step, second_step) | 47,787 | `load_dataset("rst", "wikihow_procedure")` | Temporal reasoning | | [wikiHow](https://www.wikihow.com/Main-Page) | (question, description, answer, related_questions) | 47,705 | `load_dataset("rst", "wikihow_question")` | Question generation| | [Wikipedia](https://www.wikipedia.org/) | (text, entities) |22,231,011 | `load_dataset("rst", "wikipedia_entities")` | Entity recognition| [Wikipedia](https://www.wikipedia.org/) | (texts, titles) | 3,296,225 | `load_dataset("rst", "wikipedia_sections")` | Summarization| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, pos) | 27,123 | `load_dataset("rst", "wordnet_pos")` | Part-of-speech tagging| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, meaning, possible_meanings) | 27,123 | `load_dataset("rst", "wordnet_meaning")` | Word sense disambiguation| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, synonyms) | 17,804 | `load_dataset("rst", "wordnet_synonym")`| Paraphrasing| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, antonyms) | 6,408 | `load_dataset("rst", "wordnet_antonym")` |Negation | | [ConTRoL]() | (premise, hypothesis, label) | 8,323 | `load_dataset("rst", "qa_control")` | Natural language inference| |[DREAM](https://transacl.org/ojs/index.php/tacl/article/view/1534)| (context, question, options, answer) | 9,164 | `load_dataset("rst", "qa_dream")` | Reading comprehension| | [LogiQA](https://doi.org/10.24963/ijcai.2020/501) | (context, question, options, answer) | 7,974 | `load_dataset("rst", "qa_logiqa")` | Reading comprehension| | [ReClor](https://openreview.net/forum?id=HJgJtT4tvB) | (context, question, options, answer) | 5,138 | `load_dataset("rst", "qa_reclor")` |Reading comprehension | | [RACE](https://doi.org/10.18653/v1/d17-1082) | (context, question, options, answer) | 44,880 | `load_dataset("rst", "qa_race")` | Reading comprehension| | [RACE-C](http://proceedings.mlr.press/v101/liang19a.html) | (context, question, options, answer) | 5,093 | `load_dataset("rst", "qa_race_c")` | Reading comprehension| | [TriviaQA](https://doi.org/10.18653/v1/P17-1147) | (context, question, answer) | 46,636 | `load_dataset("rst", "qa_triviaqa")` |Reading comprehension | | [Arxiv](https://arxiv.org/) | (text, category) | 1,696,348 | `load_dataset("rst", "arxiv_category")` |Topic classification| | [Arxiv](https://arxiv.org/) | (text, summary) | 1,696,348 | `load_dataset("rst", "arxiv_summary")` | Summarization; Sentence expansion| | [Paperswithcode](https://paperswithcode.com/) | (text, entities, datasets, methods, tasks, metrics) | 4,731,233 | `load_dataset("rst", "paperswithcode_entity")` | Entity recognition| | [Paperswithcode](https://paperswithcode.com/) | (text, summary) | 120,924 | `load_dataset("rst", "paperswithcode_summary")` | Summarization; Sentence expansion| ## Bibtext for Citation Info ``` @article{yuan2022restructured, title={reStructured Pre-training}, author={Yuan, Weizhe and Liu, Pengfei}, journal={arXiv preprint arXiv:2206.11147}, year={2022} } ```
GAIR/rst-word-sense-disambiguation-11b
GAIR
2022-09-04T01:38:56Z
10
5
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2206.11147", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-30T17:21:24Z
--- license: afl-3.0 --- <p align="center"> <br> <img src="https://expressai-xlab.s3.amazonaws.com/rst/intro_rst.png" width="1000"/> <br> </p> # reStructured Pre-training (RST) official [repository](https://github.com/ExpressAI/reStructured-Pretraining), [paper](https://arxiv.org/pdf/2206.11147.pdf), [easter eggs](http://expressai.co/peripherals/emoji-eng.html) #### RST is a new paradigm for language pre-training, which * unifies **26** different types of signal from **10** data sources (Totten Tomatoes, Dailymail, Wikipedia, Wikidata, Wikihow, Wordnet, arXiv etc ) in the world structurally, being pre-trained with a monolithcal model, * surpasses strong competitors (e.g., T0) on **52/55** popular datasets from a variety of NLP tasks (classification, IE, retrieval, generation etc) * achieves superior performance in National College Entrance Examination **(Gaokao-English, 高考-英语)** achieves **40** points higher than the average scores made by students and 15 points higher than GPT3 with **1/16** parameters. In particular, Qin gets a high score of **138.5** (the full mark is 150) in the 2018 English exam In such a pre-training paradigm, * Data-centric Pre-training: the role of data will be re-emphasized, and model pre-training and fine-tuning of downstream tasks are viewed as a process of data storing and accessing * Pre-training over JSON instead of TEXT: a good storage mechanism should not only have the ability to cache a large amount of data but also consider the ease of access. ## Model Description We release all models introduced in our [paper](https://arxiv.org/pdf/2206.11147.pdf), covering 13 different application scenarios. Each model contains 11 billion parameters. | Model | Description | Recommended Application | ----------- | ----------- |----------- | | rst-all-11b | Trained with all the signals below except signals that are used to train Gaokao models | All applications below (specialized models are recommended first if high performance is preferred) | | rst-fact-retrieval-11b | Trained with the following signals: WordNet meaning, WordNet part-of-speech, WordNet synonym, WordNet antonym, wikiHow category hierarchy, Wikidata relation, Wikidata entity typing, Paperswithcode entity typing | Knowledge intensive tasks, information extraction tasks,factual checker | | rst-summarization-11b | Trained with the following signals: DailyMail summary, Paperswithcode summary, arXiv summary, wikiHow summary | Summarization or other general generation tasks, meta-evaluation (e.g., BARTScore) | | rst-temporal-reasoning-11b | Trained with the following signals: DailyMail temporal information, wikiHow procedure | Temporal reasoning, relation extraction, event-based extraction | | rst-information-extraction-11b | Trained with the following signals: Paperswithcode entity, Paperswithcode entity typing, Wikidata entity typing, Wikidata relation, Wikipedia entity | Named entity recognition, relation extraction and other general IE tasks in the news, scientific or other domains| | rst-intent-detection-11b | Trained with the following signals: wikiHow goal-step relation | Intent prediction, event prediction | | rst-topic-classification-11b | Trained with the following signals: DailyMail category, arXiv category, wikiHow text category, Wikipedia section title | general text classification | | **rst-word-sense-disambiguation-11b** | **Trained with the following signals: WordNet meaning, WordNet part-of-speech, WordNet synonym, WordNet antonym** | **Word sense disambiguation, part-of-speech tagging, general IE tasks, common sense reasoning** | | rst-natural-language-inference-11b | Trained with the following signals: ConTRoL dataset, DREAM dataset, LogiQA dataset, RACE & RACE-C dataset, ReClor dataset, DailyMail temporal information | Natural language inference, multiple-choice question answering, reasoning | | rst-sentiment-classification-11b | Trained with the following signals: Rotten Tomatoes sentiment, Wikipedia sentiment | Sentiment classification, emotion classification | | rst-gaokao-rc-11b | Trained with multiple-choice QA datasets that are used to train the [T0pp](https://huggingface.co/bigscience/T0pp) model | General multiple-choice question answering| | rst-gaokao-cloze-11b | Trained with manually crafted cloze datasets | General cloze filling| | rst-gaokao-writing-11b | Trained with example essays from past Gaokao-English exams and grammar error correction signals | Essay writing, story generation, grammar error correction and other text generation tasks | ## Have a try? ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("XLab/rst-all-11b") model = AutoModelForSeq2SeqLM.from_pretrained("XLab/rst-all-11b") inputs = tokenizer.encode("TEXT: this is the best cast iron skillet you will ever buy. QUERY: Is this review \"positive\" or \"negative\"", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)) ``` ## Data for reStructure Pre-training This dataset is a precious treasure, containing a variety of naturally occurring signals. Any downstream task you can think of (e.g., the college entrance exam mentioned in the RST paper) can benefit from being pre-trained on some of our provided signals. We spent several months collecting the following 29 signal types, accounting for a total of 46,926,447 data samples. We hope this dataset will be a valuable asset for everyone in natural language processing research. We provide collected signals through [DataLab](https://github.com/ExpressAI/DataLab). For efficiency, we only provide 50,000 samples at most for each signal type. If you want all the samples we collected, please fill this [form](https://docs.google.com/forms/d/e/1FAIpQLSdPO50vSdfwoO3D7DQDVlupQnHgrXrwfF3ePE4X1H6BwgTn5g/viewform?usp=sf_link). More specifically, we collected the following signals. ###### We will be happy :smiley: to know if the resource is helpful for your work, and please cite our [work](https://github.com/ExpressAI/reStructured-Pretraining/blob/main/README.md#Bib) :blush: | Mine | Signal | #Sample | Use in DataLab | Some Applications | | --- | --- | --- | --- | --- | | [Rotten Tomatoes](https://www.rottentomatoes.com/) | (review, rating) | 5,311,109 | `load_dataset("rst", "rotten_tomatoes_sentiment")` | Sentiment classification | | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (text, category) | 899,904 | `load_dataset("rst", "daily_mail_category")`| Topic classification | | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (title, text, summary) | 1,026,616 | `load_dataset("rst", "daily_mail_summary")` | Summarization; Sentence expansion| | [Daily Mail](https://www.dailymail.co.uk/home/index.html) | (text, events) | 1,006,412 | `load_dataset("rst", "daily_mail_temporal")` | Temporal reasoning| | [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) | (entity, entity_type, text) | 2,214,274 | `load_dataset("rst", "wikidata_entity")` | Entity typing| | [Wikidata](https://www.wikidata.org/wiki/Wikidata:Main_Page) | (subject, object, relation, text) | 1,526,674 | `load_dataset("rst", "wikidata_relation")` | Relation extraction; Fact retrieval| | [wikiHow](https://www.wikihow.com/Main-Page) | (text, category) | 112,109 | `load_dataset("rst", "wikihow_text_category")` | Topic classification | | [wikiHow](https://www.wikihow.com/Main-Page) | (low_category, high_category) | 4,868 | `load_dataset("rst", "wikihow_category_hierarchy")` | Relation extraction; Commonsense reasoning| | [wikiHow](https://www.wikihow.com/Main-Page) | (goal, steps) | 47,956 | `load_dataset("rst", "wikihow_goal_step")` | Intent detection| | [wikiHow](https://www.wikihow.com/Main-Page) | (text, summary) | 703,278 | `load_dataset("rst", "wikihow_summary")` | Summarization; Sentence expansion | | [wikiHow](https://www.wikihow.com/Main-Page) | (goal, first_step, second_step) | 47,787 | `load_dataset("rst", "wikihow_procedure")` | Temporal reasoning | | [wikiHow](https://www.wikihow.com/Main-Page) | (question, description, answer, related_questions) | 47,705 | `load_dataset("rst", "wikihow_question")` | Question generation| | [Wikipedia](https://www.wikipedia.org/) | (text, entities) |22,231,011 | `load_dataset("rst", "wikipedia_entities")` | Entity recognition| [Wikipedia](https://www.wikipedia.org/) | (texts, titles) | 3,296,225 | `load_dataset("rst", "wikipedia_sections")` | Summarization| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, pos) | 27,123 | `load_dataset("rst", "wordnet_pos")` | Part-of-speech tagging| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, meaning, possible_meanings) | 27,123 | `load_dataset("rst", "wordnet_meaning")` | Word sense disambiguation| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, synonyms) | 17,804 | `load_dataset("rst", "wordnet_synonym")`| Paraphrasing| | [WordNet](https://wordnet.princeton.edu/) | (word, sentence, antonyms) | 6,408 | `load_dataset("rst", "wordnet_antonym")` |Negation | | [ConTRoL]() | (premise, hypothesis, label) | 8,323 | `load_dataset("rst", "qa_control")` | Natural language inference| |[DREAM](htt/tacl/article/view/1534)| (context, question, options, answer) | 9,164 | `load_dataset("rst", "qa_dream")` | Reading comprehension| | [LogiQA](https://doi.org/10.24963/ijcai.2020/501) | (context, question, options, answer) | 7,974 | `load_dataset("rst", "qa_logiqa")` | Reading comprehension| | [ReClor](https://openreview.net/forum?id=HJgJtT4tvB) | (context, question, options, answer) | 5,138 | `load_dataset("rst", "qa_reclor")` |Reading comprehension | | [RACE](https://doi.org/10.18653/v1/d17-1082) | (context, question, options, answer) | 44,880 | `load_dataset("rst", "qa_race")` | Reading comprehension| | [RACE-C](http://proceedings.mlr.press/v101/liang19a.html) | (context, question, options, answer) | 5,093 | `load_dataset("rst", "qa_race_c")` | Reading comprehension| | [TriviaQA](https://doi.org/10.18653/v1/P17-1147) | (context, question, answer) | 46,636 | `load_dataset("rst", "qa_triviaqa")` |Reading comprehension | | [Arxiv](https://arxiv.org/) | (text, category) | 1,696,348 | `load_dataset("rst", "arxiv_category")` |Topic classification| | [Arxiv](https://arxiv.org/) | (text, summary) | 1,696,348 | `load_dataset("rst", "arxiv_summary")` | Summarization; Sentence expansion| | [Paperswithcode](https://paperswithcode.com/) | (text, entities, datasets, methods, tasks, metrics) | 4,731,233 | `load_dataset("rst", "paperswithcode_entity")` | Entity recognition| | [Paperswithcode](https://paperswithcode.com/) | (text, summary) | 120,924 | `load_dataset("rst", "paperswithcode_summary")` | Summarization; Sentence expansion| ## Bibtext for Citation Info ``` @article{yuan2022restructured, title={reStructured Pre-training}, author={Yuan, Weizhe and Liu, Pengfei}, journal={arXiv preprint arXiv:2206.11147}, year={2022} } ```
MarkTaylor/distilbert-base-uncased-finetuned-cola
MarkTaylor
2022-09-04T01:04:53Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-03T15:04:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5429064789214383 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7813 - Matthews Correlation: 0.5429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5255 | 1.0 | 535 | 0.5432 | 0.4004 | | 0.3527 | 2.0 | 1070 | 0.5086 | 0.4889 | | 0.2446 | 3.0 | 1605 | 0.5455 | 0.5365 | | 0.1815 | 4.0 | 2140 | 0.7184 | 0.5328 | | 0.1308 | 5.0 | 2675 | 0.7813 | 0.5429 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
nleroy917/all-MiniLM-L6-V2-DENTAL
nleroy917
2022-09-04T00:53:04Z
6
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-03T20:46:08Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # nleroy917/all-MiniLM-L6-V2-DENTAL This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('nleroy917/all-MiniLM-L6-V2-DENTAL') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=nleroy917/all-MiniLM-L6-V2-DENTAL) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 349 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Dinithi/ClinicalTextV4
Dinithi
2022-09-04T00:39:53Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-04T00:13:24Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ClinicalTextV4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ClinicalTextV4 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5609 - Accuracy: 0.8658 - Precision: 0.8371 - Recall: 0.8939 - F1: 0.8646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4824 | 1.0 | 600 | 0.3630 | 0.8458 | 0.825 | 0.8609 | 0.8426 | | 0.3314 | 2.0 | 1200 | 0.3583 | 0.8558 | 0.8252 | 0.8870 | 0.8550 | | 0.2673 | 3.0 | 1800 | 0.3437 | 0.8583 | 0.8189 | 0.9043 | 0.8595 | | 0.2255 | 4.0 | 2400 | 0.3678 | 0.8675 | 0.8302 | 0.9096 | 0.8680 | | 0.1883 | 5.0 | 3000 | 0.4002 | 0.8642 | 0.8259 | 0.9078 | 0.8650 | | 0.1562 | 6.0 | 3600 | 0.4695 | 0.8633 | 0.8352 | 0.8904 | 0.8620 | | 0.1372 | 7.0 | 4200 | 0.4940 | 0.8658 | 0.8371 | 0.8939 | 0.8646 | | 0.1269 | 8.0 | 4800 | 0.5376 | 0.865 | 0.8402 | 0.8870 | 0.8629 | | 0.1097 | 9.0 | 5400 | 0.5539 | 0.8633 | 0.8397 | 0.8835 | 0.8610 | | 0.0997 | 10.0 | 6000 | 0.5609 | 0.8658 | 0.8371 | 0.8939 | 0.8646 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Usamaejaz0/monday-model-updated-v2
Usamaejaz0
2022-09-04T00:17:37Z
59
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-02T23:29:47Z
--- tags: - generated_from_keras_callback model-index: - name: monday-model-updated-v2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # monday-model-updated-v2 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.21.2 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
Dinithi/AgitationTextV3
Dinithi
2022-09-04T00:09:16Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-03T23:48:26Z
--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: AgitationTextV3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AgitationTextV3 This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5199 - Accuracy: 0.8 - Precision: 0.9636 - Recall: 0.7465 - F1: 0.8413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6797 | 1.0 | 50 | 0.6650 | 0.57 | 0.85 | 0.4789 | 0.6126 | | 0.599 | 2.0 | 100 | 0.6180 | 0.65 | 0.86 | 0.6056 | 0.7107 | | 0.5121 | 3.0 | 150 | 0.5714 | 0.75 | 0.8833 | 0.7465 | 0.8092 | | 0.4049 | 4.0 | 200 | 0.5187 | 0.81 | 0.9194 | 0.8028 | 0.8571 | | 0.3091 | 5.0 | 250 | 0.5034 | 0.77 | 0.9444 | 0.7183 | 0.816 | | 0.2303 | 6.0 | 300 | 0.4673 | 0.78 | 0.9298 | 0.7465 | 0.8281 | | 0.1773 | 7.0 | 350 | 0.4802 | 0.8 | 0.9322 | 0.7746 | 0.8462 | | 0.1396 | 8.0 | 400 | 0.5260 | 0.8 | 0.9636 | 0.7465 | 0.8413 | | 0.1204 | 9.0 | 450 | 0.5317 | 0.8 | 0.9636 | 0.7465 | 0.8413 | | 0.0982 | 10.0 | 500 | 0.5199 | 0.8 | 0.9636 | 0.7465 | 0.8413 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Dinithi/CancerTextV2
Dinithi
2022-09-04T00:00:20Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:cc0-1.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-03T23:37:59Z
--- license: cc0-1.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: CancerTextV2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CancerTextV2 This model is a fine-tuned version of [bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12](https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5913 - Accuracy: 0.8692 - Precision: 0.8666 - Recall: 0.8738 - F1: 0.8701 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4717 | 1.0 | 600 | 0.3318 | 0.8617 | 0.8562 | 0.8704 | 0.8633 | | 0.3248 | 2.0 | 1200 | 0.3144 | 0.8658 | 0.8821 | 0.8455 | 0.8634 | | 0.2653 | 3.0 | 1800 | 0.3519 | 0.8625 | 0.8507 | 0.8804 | 0.8653 | | 0.2164 | 4.0 | 2400 | 0.4090 | 0.8658 | 0.9002 | 0.8239 | 0.8604 | | 0.1884 | 5.0 | 3000 | 0.4413 | 0.8667 | 0.8850 | 0.8439 | 0.8639 | | 0.1582 | 6.0 | 3600 | 0.4415 | 0.865 | 0.8971 | 0.8256 | 0.8599 | | 0.1377 | 7.0 | 4200 | 0.5165 | 0.8708 | 0.8694 | 0.8738 | 0.8716 | | 0.1192 | 8.0 | 4800 | 0.5699 | 0.8675 | 0.8826 | 0.8488 | 0.8654 | | 0.1081 | 9.0 | 5400 | 0.5837 | 0.8692 | 0.8666 | 0.8738 | 0.8701 | | 0.1018 | 10.0 | 6000 | 0.5913 | 0.8692 | 0.8666 | 0.8738 | 0.8701 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Dinithi/AgitationTextV2
Dinithi
2022-09-03T23:49:54Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:cc0-1.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-03T23:33:26Z
--- license: cc0-1.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: AgitationTextV2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AgitationTextV2 This model is a fine-tuned version of [bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12](https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6268 - Accuracy: 0.73 - Precision: 0.8036 - Recall: 0.7377 - F1: 0.7692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6535 | 1.0 | 50 | 0.6682 | 0.66 | 0.7547 | 0.6557 | 0.7018 | | 0.5874 | 2.0 | 100 | 0.6695 | 0.66 | 0.7455 | 0.6721 | 0.7069 | | 0.5373 | 3.0 | 150 | 0.6141 | 0.6 | 0.7838 | 0.4754 | 0.5918 | | 0.4671 | 4.0 | 200 | 0.6017 | 0.71 | 0.7667 | 0.7541 | 0.7603 | | 0.4111 | 5.0 | 250 | 0.5507 | 0.75 | 0.8333 | 0.7377 | 0.7826 | | 0.3828 | 6.0 | 300 | 0.6090 | 0.7 | 0.7541 | 0.7541 | 0.7541 | | 0.3034 | 7.0 | 350 | 0.6073 | 0.71 | 0.8333 | 0.6557 | 0.7339 | | 0.2702 | 8.0 | 400 | 0.5790 | 0.71 | 0.8077 | 0.6885 | 0.7434 | | 0.246 | 9.0 | 450 | 0.7061 | 0.71 | 0.7424 | 0.8033 | 0.7717 | | 0.2229 | 10.0 | 500 | 0.6268 | 0.73 | 0.8036 | 0.7377 | 0.7692 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1