modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-05 00:41:53
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
539 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-05 00:41:31
card
stringlengths
11
1.01M
yonghun/q-FrozenLake-v1-4x4-Slippery
yonghun
2023-08-07T06:59:50Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-07T06:46:59Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.17 +/- 0.38 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="yonghun/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
PrakhAI/AIPlane
PrakhAI
2023-08-07T06:56:58Z
0
0
null
[ "arxiv:1710.10196", "arxiv:1802.05957", "region:us" ]
null
2023-08-05T19:12:41Z
--- datasets: - cifar10 - https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/ --- GAN model trained on [CIFAR10 (Airplane)](https://www.tensorflow.org/datasets/catalog/cifar10) and [FGVC Aircraft](https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/) images. The model leverages [Progressive Growing](https://arxiv.org/pdf/1710.10196.pdf) with [Spectral Normalization](https://arxiv.org/pdf/1802.05957.pdf). Try out this model [here](https://huggingface.co/spaces/PrakhAI/AIPlane). | Generated Images | Real Images (for comparison) | | -------- | --------- | | ![generated_1691259071.png](https://cdn-uploads.huggingface.co/production/uploads/649f9483d76ca0fe679011c2/DNio2mes1414p6cgm7K62.png) | ![image.png](https://cdn-uploads.huggingface.co/production/uploads/649f9483d76ca0fe679011c2/4Sp33Hl9JK2cfHzBXHXfh.png) | # Training Progression <video width="50%" controls> <source src="https://cdn-uploads.huggingface.co/production/uploads/649f9483d76ca0fe679011c2/qFlnTITZwS3DSTxLp0Oa8.mp4" type="video/mp4"> </video> # Details [Colab Notebook](https://colab.research.google.com/drive/1b4KFZOnLERwQW_3jQ8FMABepKEAcDIK7?usp=sharing) The model generates 32 x 32 images of Airplanes. It is trained on an NVIDIA T4 Colab Runtime. The Critic consists of Convolutional Layers (3x3 kernel) with strides for downsampling, and Leaky ReLU activation. The critic uses [Spectral Normalization](https://arxiv.org/pdf/1802.05957.pdf), with more details [here](#spectral-normalization). The Generator uses Transposed Convolutions (2x2 kernel) with strides for upsampling, and ReLU activation. The generator uses the variant of pixel-level Local Response Normalization proposed in the [Progressive Growing](https://arxiv.org/pdf/1710.10196.pdf) paper. # Spectral Normalization Spectral Normalization is a technique suggested for training GANs in [this paper](https://arxiv.org/pdf/1802.05957.pdf). It aims to make the Critic's (Discriminator's) outputs mathematically continuous w.r.t. the space of input images, avoiding exploding gradients. Spectral Normalization works very well in practice to stabilize the training of the GAN, as demonstrated by the example below (comparison at equivalent points during training): | Batch Normalization | Spectral Normalization | | ----------- | ------------ | | ![image.png](https://cdn-uploads.huggingface.co/production/uploads/649f9483d76ca0fe679011c2/PNbqYRjw24OhMManXaMS9.png) | ![image.png](https://cdn-uploads.huggingface.co/production/uploads/649f9483d76ca0fe679011c2/F8q4y2vshssfdc70jH_X2.png) | # Progressive Growing Progressive Growing of GAN resolutions is suggested to improve the Quality and Stability of GAN training, especially for higher resolution models (1024x1024). For 32x32 images of Airplanes, even a short initial round of Progressive Growing provides significant improvement (comparison at equivalent points during training): | Flat Growing | Progressive Growing | | ----------- | ------------ | | ![image.png](https://cdn-uploads.huggingface.co/production/uploads/649f9483d76ca0fe679011c2/QnTET-5ae_0x11CcXeWgR.png) | ![image.png](https://cdn-uploads.huggingface.co/production/uploads/649f9483d76ca0fe679011c2/F8q4y2vshssfdc70jH_X2.png) | The generator for this model generates 4x4, 8x8, 16x16 and 32x32 images, which form the inputs for the critic. Each resolution is associated with a 'weight' (α<sub>4</sub>, α<sub>8</sub>, α<sub>16</sub>, α<sub>32</sub>), which indicate the focus on the corresponding image resolution at any given time during the training. At the beginning of the training, α<sub>4</sub>=1, α<sub>8</sub>=0, α<sub>16</sub>=0, α<sub>32</sub>=0, with the values being α<sub>4</sub>=0, α<sub>8</sub>=0, α<sub>16</sub>=0, α<sub>32</sub>=1 towards the end.
ThaumielSparrow/nnue-unet
ThaumielSparrow
2023-08-07T06:51:37Z
0
0
null
[ "region:us" ]
null
2023-08-07T06:49:17Z
# Efficiently-Updatable Neural Network (NNUE) Refactor of Classic U-Net Architecture for Membrane Segmentation ### Developed by Luzhou Zhang - Project still under development 🧠 ## Setup Clone into repository: `git clone https://github.com/ThaumielSparrow/cremi-nnue` Install dependencies: `pip install -r requirements.txt` Download CREMI training and test data [here](https://cremi.org/data/). Modify runtime variables in `main.py` and `train.py` and run program: `python main.py` Note: This project has only been tested and validated for Python 3.9.X and 3.10.X with frozen packages. It is likely that any Python version >3.7 supports it. ## Docs I'm not writing documentation lol
TinToTin/ppo-LunarLander-v2
TinToTin
2023-08-07T06:49:56Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-07T06:49:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.06 +/- 23.53 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
yonghun/q-FrozenLake-v1-4x4-noSlippery
yonghun
2023-08-07T06:42:48Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-07T06:42:46Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="yonghun/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jaswant50/distilbert-base-uncased-jaswant-base-finetuned
jaswant50
2023-08-07T06:41:04Z
0
0
transformers
[ "transformers", "text-classification", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
text-classification
2023-07-31T17:12:25Z
--- library_name: transformers pipeline_tag: text-classification --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mkly/TinyStories-1M-ONNX
mkly
2023-08-07T06:39:59Z
16
1
transformers.js
[ "transformers.js", "onnx", "gpt_neo", "text-generation", "en", "license:unknown", "region:us" ]
text-generation
2023-08-07T01:54:33Z
--- license: unknown language: - en library_name: transformers.js tags: - gpt_neo --- [ONNX](https://onnx.ai/) format Generated from [roneneldan/TinyStories-1M](https://huggingface.co/roneneldan/TinyStories-1M) For use with [Transformers.js](https://huggingface.co/docs/transformers.js) ```js const pipe = await pipeline( "text-generation", "mkly/TinyStories-1M-ONNX", ); const response = await pipe( "Some example text", { max_new_tokens: 500, temperature: 0.9, }, ); console.log(response[0].generated_text); ```
AmelieSchreiber/esm2_t12_35M_LoRA_RNA_binding
AmelieSchreiber
2023-08-07T06:36:45Z
7
1
peft
[ "peft", "transformers", "biology", "esm", "esm2", "protein", "protein language model", "en", "license:mit", "region:us" ]
null
2023-08-07T06:21:02Z
--- library_name: peft license: mit language: - en tags: - transformers - biology - esm - esm2 - protein - protein language model --- # ESM-2 RNA Binding Site LoRA This is a Parameter Efficient Fine Tuning (PEFT) Low Rank Adaptation ([LoRA](https://huggingface.co/docs/peft/task_guides/token-classification-lora)) of the [esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) model for the (binary) token classification task of predicting RNA binding sites of proteins. The Github with the training script and conda env YAML can be [found here](https://github.com/Amelie-Schreiber/esm2_LoRA_binding_sites/tree/main). You can also find a version of this model that was fine-tuned without LoRA [here](https://huggingface.co/AmelieSchreiber/esm2_t6_8M_UR50D_rna_binding_site_predictor). ## Training procedure This is a Low Rank Adaptation (LoRA) of `esm2_t6_8M_UR50D`, trained on `166` protein sequences in the [RNA binding sites dataset](https://huggingface.co/datasets/AmelieSchreiber/data_of_protein-rna_binding_sites) using a `75/25` train/test split. It achieves an evaluation loss of `0.18801096081733704`. ### Framework versions - PEFT 0.4.0 ## Using the Model To use, try running: ```python from transformers import AutoModelForTokenClassification, AutoTokenizer from peft import PeftModel import torch # Path to the saved LoRA model model_path = "AmelieSchreiber/esm2_t12_35M_LoRA_RNA_binding" # ESM2 base model base_model_path = "facebook/esm2_t12_35M_UR50D" # Load the model base_model = AutoModelForTokenClassification.from_pretrained(base_model_path) loaded_model = PeftModel.from_pretrained(base_model, model_path) # Ensure the model is in evaluation mode loaded_model.eval() # Load the tokenizer loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path) # Protein sequence for inference protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence # Tokenize the sequence inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length') # Run the model with torch.no_grad(): logits = loaded_model(**inputs).logits # Get predictions tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens predictions = torch.argmax(logits, dim=2) # Define labels id2label = { 0: "No binding site", 1: "Binding site" } # Print the predicted labels for each token for token, prediction in zip(tokens, predictions[0].numpy()): if token not in ['<pad>', '<cls>', '<eos>']: print((token, id2label[prediction])) ```
TheRains/yt-special-batch4-base
TheRains
2023-08-07T06:19:37Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "dataset:yt", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-07T05:07:54Z
--- license: apache-2.0 base_model: openai/whisper-base tags: - whisper-event - generated_from_trainer datasets: - yt metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: yt id type: yt metrics: - name: Wer type: wer value: 66.04630049931912 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the yt id dataset. It achieves the following results on the evaluation set: - Loss: 1.0175 - Wer: 66.0463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4446 | 0.09 | 1000 | 1.2313 | 91.5959 | | 1.0599 | 0.17 | 2000 | 1.1312 | 106.3420 | | 1.1851 | 0.26 | 3000 | 1.0801 | 77.3166 | | 1.0325 | 0.34 | 4000 | 1.0380 | 71.8436 | | 1.008 | 0.43 | 5000 | 1.0175 | 66.0463 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Dr-Tetsuo/llama2-qlora-finetunined-french
Dr-Tetsuo
2023-08-07T06:16:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-07T06:16:10Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
TheRains/yt-special-batch8-tiny
TheRains
2023-08-07T06:13:43Z
87
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "dataset:yt", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-05T05:06:05Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper-event - generated_from_trainer datasets: - yt metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: yt id type: yt metrics: - name: Wer type: wer value: 76.37636988522145 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the yt id dataset. It achieves the following results on the evaluation set: - Loss: 1.1651 - Wer: 76.3764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4295 | 0.17 | 1000 | 1.4094 | 110.1550 | | 1.3042 | 0.34 | 2000 | 1.2886 | 86.2914 | | 1.2212 | 0.52 | 3000 | 1.2206 | 84.1191 | | 1.1306 | 0.69 | 4000 | 1.1814 | 78.1532 | | 1.1333 | 0.86 | 5000 | 1.1651 | 76.3764 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
hw2942/bert-base-chinese-wallstreetcn-morning-news-market-overview-open-SSEC-f1-v1
hw2942
2023-08-07T06:10:49Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-chinese", "base_model:finetune:google-bert/bert-base-chinese", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-07T06:01:30Z
--- base_model: bert-base-chinese tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-chinese-wallstreetcn-morning-news-market-overview-open-SSEC-f1-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-wallstreetcn-morning-news-market-overview-open-SSEC-f1-v1 This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3043 - F1: 0.4167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 38 | 0.6797 | 0.0 | | No log | 2.0 | 76 | 0.6726 | 0.1538 | | No log | 3.0 | 114 | 0.6660 | 0.6154 | | No log | 4.0 | 152 | 0.7310 | 0.4545 | | No log | 5.0 | 190 | 0.8288 | 0.5926 | | No log | 6.0 | 228 | 0.9843 | 0.4545 | | No log | 7.0 | 266 | 1.4159 | 0.4545 | | No log | 8.0 | 304 | 1.9705 | 0.4348 | | No log | 9.0 | 342 | 2.2006 | 0.4167 | | No log | 10.0 | 380 | 2.3043 | 0.4167 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
TheRains/yt-special-batch4-tiny
TheRains
2023-08-07T06:02:35Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "dataset:yt", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-07T05:07:55Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper-event - generated_from_trainer datasets: - yt metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: yt id type: yt metrics: - name: Wer type: wer value: 85.86991764477013 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the yt id dataset. It achieves the following results on the evaluation set: - Loss: 1.2325 - Wer: 85.8699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6736 | 0.09 | 1000 | 1.4867 | 126.2823 | | 1.3354 | 0.17 | 2000 | 1.3584 | 103.0219 | | 1.4841 | 0.26 | 3000 | 1.2936 | 86.3303 | | 1.2807 | 0.34 | 4000 | 1.2523 | 85.9477 | | 1.2095 | 0.43 | 5000 | 1.2325 | 85.8699 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Moonforeva/ppo-Huggy
Moonforeva
2023-08-07T05:53:25Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-07T05:53:15Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Moonforeva/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Rihong/q-Taxi-v3
Rihong
2023-08-07T05:31:08Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-07T05:31:05Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.68 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Rihong/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Rihong/q-FrozenLake-v1-4x4-noSlippery
Rihong
2023-08-07T05:23:24Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-07T05:23:22Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Rihong/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vgarg/my-dataset-identification-model-v3
vgarg
2023-08-07T05:14:44Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-07T05:14:29Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # vgarg/my-dataset-identification-model-v3 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("vgarg/my-dataset-identification-model-v3") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
intfloat/e5-large
intfloat
2023-08-07T04:59:49Z
18,018
74
sentence-transformers
[ "sentence-transformers", "pytorch", "safetensors", "bert", "mteb", "Sentence Transformers", "sentence-similarity", "en", "arxiv:2212.03533", "arxiv:2104.08663", "arxiv:2210.07316", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-26T06:03:12Z
--- tags: - mteb - Sentence Transformers - sentence-similarity - sentence-transformers model-index: - name: e5-large results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 77.68656716417911 - type: ap value: 41.336896075573584 - type: f1 value: 71.788561468075 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 90.04965 - type: ap value: 86.24637009569418 - type: f1 value: 90.03896671762645 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 43.016000000000005 - type: f1 value: 42.1942431880186 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 25.107000000000003 - type: map_at_10 value: 40.464 - type: map_at_100 value: 41.577999999999996 - type: map_at_1000 value: 41.588 - type: map_at_3 value: 35.301 - type: map_at_5 value: 38.263000000000005 - type: mrr_at_1 value: 25.605 - type: mrr_at_10 value: 40.64 - type: mrr_at_100 value: 41.760000000000005 - type: mrr_at_1000 value: 41.77 - type: mrr_at_3 value: 35.443000000000005 - type: mrr_at_5 value: 38.448 - type: ndcg_at_1 value: 25.107000000000003 - type: ndcg_at_10 value: 49.352000000000004 - type: ndcg_at_100 value: 53.98500000000001 - type: ndcg_at_1000 value: 54.208 - type: ndcg_at_3 value: 38.671 - type: ndcg_at_5 value: 43.991 - type: precision_at_1 value: 25.107000000000003 - type: precision_at_10 value: 7.795000000000001 - type: precision_at_100 value: 0.979 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 16.145 - type: precision_at_5 value: 12.262 - type: recall_at_1 value: 25.107000000000003 - type: recall_at_10 value: 77.952 - type: recall_at_100 value: 97.866 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 48.435 - type: recall_at_5 value: 61.309000000000005 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 46.19278045044154 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 41.37976387757665 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 60.07433334608074 - type: mrr value: 73.44347711383723 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 86.4298072183543 - type: cos_sim_spearman value: 84.73144873582848 - type: euclidean_pearson value: 85.15885058870728 - type: euclidean_spearman value: 85.42062106559356 - type: manhattan_pearson value: 84.89409921792054 - type: manhattan_spearman value: 85.31941394024344 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.14285714285714 - type: f1 value: 84.11674412565644 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.600076342340785 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 35.08861812135148 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.684000000000005 - type: map_at_10 value: 41.675000000000004 - type: map_at_100 value: 42.963 - type: map_at_1000 value: 43.078 - type: map_at_3 value: 38.708999999999996 - type: map_at_5 value: 40.316 - type: mrr_at_1 value: 39.485 - type: mrr_at_10 value: 47.152 - type: mrr_at_100 value: 47.96 - type: mrr_at_1000 value: 48.010000000000005 - type: mrr_at_3 value: 44.754 - type: mrr_at_5 value: 46.285 - type: ndcg_at_1 value: 39.485 - type: ndcg_at_10 value: 46.849000000000004 - type: ndcg_at_100 value: 52.059 - type: ndcg_at_1000 value: 54.358 - type: ndcg_at_3 value: 42.705 - type: ndcg_at_5 value: 44.663000000000004 - type: precision_at_1 value: 39.485 - type: precision_at_10 value: 8.455 - type: precision_at_100 value: 1.3379999999999999 - type: precision_at_1000 value: 0.178 - type: precision_at_3 value: 19.695 - type: precision_at_5 value: 13.905999999999999 - type: recall_at_1 value: 32.684000000000005 - type: recall_at_10 value: 56.227000000000004 - type: recall_at_100 value: 78.499 - type: recall_at_1000 value: 94.021 - type: recall_at_3 value: 44.157999999999994 - type: recall_at_5 value: 49.694 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 31.875999999999998 - type: map_at_10 value: 41.603 - type: map_at_100 value: 42.825 - type: map_at_1000 value: 42.961 - type: map_at_3 value: 38.655 - type: map_at_5 value: 40.294999999999995 - type: mrr_at_1 value: 40.127 - type: mrr_at_10 value: 47.959 - type: mrr_at_100 value: 48.59 - type: mrr_at_1000 value: 48.634 - type: mrr_at_3 value: 45.786 - type: mrr_at_5 value: 46.964 - type: ndcg_at_1 value: 40.127 - type: ndcg_at_10 value: 47.176 - type: ndcg_at_100 value: 51.346000000000004 - type: ndcg_at_1000 value: 53.502 - type: ndcg_at_3 value: 43.139 - type: ndcg_at_5 value: 44.883 - type: precision_at_1 value: 40.127 - type: precision_at_10 value: 8.72 - type: precision_at_100 value: 1.387 - type: precision_at_1000 value: 0.188 - type: precision_at_3 value: 20.637 - type: precision_at_5 value: 14.446 - type: recall_at_1 value: 31.875999999999998 - type: recall_at_10 value: 56.54900000000001 - type: recall_at_100 value: 73.939 - type: recall_at_1000 value: 87.732 - type: recall_at_3 value: 44.326 - type: recall_at_5 value: 49.445 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 41.677 - type: map_at_10 value: 52.222 - type: map_at_100 value: 53.229000000000006 - type: map_at_1000 value: 53.288000000000004 - type: map_at_3 value: 49.201 - type: map_at_5 value: 51.00599999999999 - type: mrr_at_1 value: 47.524 - type: mrr_at_10 value: 55.745999999999995 - type: mrr_at_100 value: 56.433 - type: mrr_at_1000 value: 56.464999999999996 - type: mrr_at_3 value: 53.37499999999999 - type: mrr_at_5 value: 54.858 - type: ndcg_at_1 value: 47.524 - type: ndcg_at_10 value: 57.406 - type: ndcg_at_100 value: 61.403 - type: ndcg_at_1000 value: 62.7 - type: ndcg_at_3 value: 52.298 - type: ndcg_at_5 value: 55.02 - type: precision_at_1 value: 47.524 - type: precision_at_10 value: 8.865 - type: precision_at_100 value: 1.179 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 22.612 - type: precision_at_5 value: 15.461 - type: recall_at_1 value: 41.677 - type: recall_at_10 value: 69.346 - type: recall_at_100 value: 86.344 - type: recall_at_1000 value: 95.703 - type: recall_at_3 value: 55.789 - type: recall_at_5 value: 62.488 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.991999999999997 - type: map_at_10 value: 32.804 - type: map_at_100 value: 33.812999999999995 - type: map_at_1000 value: 33.897 - type: map_at_3 value: 30.567 - type: map_at_5 value: 31.599 - type: mrr_at_1 value: 27.797 - type: mrr_at_10 value: 34.768 - type: mrr_at_100 value: 35.702 - type: mrr_at_1000 value: 35.766 - type: mrr_at_3 value: 32.637 - type: mrr_at_5 value: 33.614 - type: ndcg_at_1 value: 27.797 - type: ndcg_at_10 value: 36.966 - type: ndcg_at_100 value: 41.972 - type: ndcg_at_1000 value: 44.139 - type: ndcg_at_3 value: 32.547 - type: ndcg_at_5 value: 34.258 - type: precision_at_1 value: 27.797 - type: precision_at_10 value: 5.514 - type: precision_at_100 value: 0.8340000000000001 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 13.333 - type: precision_at_5 value: 9.04 - type: recall_at_1 value: 25.991999999999997 - type: recall_at_10 value: 47.941 - type: recall_at_100 value: 71.039 - type: recall_at_1000 value: 87.32799999999999 - type: recall_at_3 value: 36.01 - type: recall_at_5 value: 40.056000000000004 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.533 - type: map_at_10 value: 24.336 - type: map_at_100 value: 25.445 - type: map_at_1000 value: 25.561 - type: map_at_3 value: 22.116 - type: map_at_5 value: 23.347 - type: mrr_at_1 value: 21.642 - type: mrr_at_10 value: 28.910999999999998 - type: mrr_at_100 value: 29.836000000000002 - type: mrr_at_1000 value: 29.907 - type: mrr_at_3 value: 26.638 - type: mrr_at_5 value: 27.857 - type: ndcg_at_1 value: 21.642 - type: ndcg_at_10 value: 28.949 - type: ndcg_at_100 value: 34.211000000000006 - type: ndcg_at_1000 value: 37.031 - type: ndcg_at_3 value: 24.788 - type: ndcg_at_5 value: 26.685 - type: precision_at_1 value: 21.642 - type: precision_at_10 value: 5.137 - type: precision_at_100 value: 0.893 - type: precision_at_1000 value: 0.127 - type: precision_at_3 value: 11.733 - type: precision_at_5 value: 8.383000000000001 - type: recall_at_1 value: 17.533 - type: recall_at_10 value: 38.839 - type: recall_at_100 value: 61.458999999999996 - type: recall_at_1000 value: 81.58 - type: recall_at_3 value: 27.328999999999997 - type: recall_at_5 value: 32.168 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.126 - type: map_at_10 value: 37.872 - type: map_at_100 value: 39.229 - type: map_at_1000 value: 39.353 - type: map_at_3 value: 34.93 - type: map_at_5 value: 36.59 - type: mrr_at_1 value: 34.071 - type: mrr_at_10 value: 43.056 - type: mrr_at_100 value: 43.944 - type: mrr_at_1000 value: 43.999 - type: mrr_at_3 value: 40.536 - type: mrr_at_5 value: 42.065999999999995 - type: ndcg_at_1 value: 34.071 - type: ndcg_at_10 value: 43.503 - type: ndcg_at_100 value: 49.120000000000005 - type: ndcg_at_1000 value: 51.410999999999994 - type: ndcg_at_3 value: 38.767 - type: ndcg_at_5 value: 41.075 - type: precision_at_1 value: 34.071 - type: precision_at_10 value: 7.843999999999999 - type: precision_at_100 value: 1.2489999999999999 - type: precision_at_1000 value: 0.163 - type: precision_at_3 value: 18.223 - type: precision_at_5 value: 13.050999999999998 - type: recall_at_1 value: 28.126 - type: recall_at_10 value: 54.952 - type: recall_at_100 value: 78.375 - type: recall_at_1000 value: 93.29899999999999 - type: recall_at_3 value: 41.714 - type: recall_at_5 value: 47.635 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.957 - type: map_at_10 value: 34.749 - type: map_at_100 value: 35.929 - type: map_at_1000 value: 36.043 - type: map_at_3 value: 31.947 - type: map_at_5 value: 33.575 - type: mrr_at_1 value: 32.078 - type: mrr_at_10 value: 39.844 - type: mrr_at_100 value: 40.71 - type: mrr_at_1000 value: 40.77 - type: mrr_at_3 value: 37.386 - type: mrr_at_5 value: 38.83 - type: ndcg_at_1 value: 32.078 - type: ndcg_at_10 value: 39.97 - type: ndcg_at_100 value: 45.254 - type: ndcg_at_1000 value: 47.818 - type: ndcg_at_3 value: 35.453 - type: ndcg_at_5 value: 37.631 - type: precision_at_1 value: 32.078 - type: precision_at_10 value: 7.158 - type: precision_at_100 value: 1.126 - type: precision_at_1000 value: 0.153 - type: precision_at_3 value: 16.743 - type: precision_at_5 value: 11.872 - type: recall_at_1 value: 25.957 - type: recall_at_10 value: 50.583 - type: recall_at_100 value: 73.593 - type: recall_at_1000 value: 91.23599999999999 - type: recall_at_3 value: 37.651 - type: recall_at_5 value: 43.626 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.1505 - type: map_at_10 value: 34.844833333333334 - type: map_at_100 value: 35.95216666666667 - type: map_at_1000 value: 36.06675 - type: map_at_3 value: 32.41975 - type: map_at_5 value: 33.74233333333333 - type: mrr_at_1 value: 31.923666666666662 - type: mrr_at_10 value: 38.87983333333334 - type: mrr_at_100 value: 39.706250000000004 - type: mrr_at_1000 value: 39.76708333333333 - type: mrr_at_3 value: 36.72008333333333 - type: mrr_at_5 value: 37.96933333333334 - type: ndcg_at_1 value: 31.923666666666662 - type: ndcg_at_10 value: 39.44258333333334 - type: ndcg_at_100 value: 44.31475 - type: ndcg_at_1000 value: 46.75 - type: ndcg_at_3 value: 35.36299999999999 - type: ndcg_at_5 value: 37.242333333333335 - type: precision_at_1 value: 31.923666666666662 - type: precision_at_10 value: 6.643333333333333 - type: precision_at_100 value: 1.0612499999999998 - type: precision_at_1000 value: 0.14575 - type: precision_at_3 value: 15.875250000000001 - type: precision_at_5 value: 11.088916666666664 - type: recall_at_1 value: 27.1505 - type: recall_at_10 value: 49.06349999999999 - type: recall_at_100 value: 70.60841666666666 - type: recall_at_1000 value: 87.72049999999999 - type: recall_at_3 value: 37.60575000000001 - type: recall_at_5 value: 42.511166666666675 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.101000000000003 - type: map_at_10 value: 30.147000000000002 - type: map_at_100 value: 30.98 - type: map_at_1000 value: 31.080000000000002 - type: map_at_3 value: 28.571 - type: map_at_5 value: 29.319 - type: mrr_at_1 value: 27.761000000000003 - type: mrr_at_10 value: 32.716 - type: mrr_at_100 value: 33.504 - type: mrr_at_1000 value: 33.574 - type: mrr_at_3 value: 31.135 - type: mrr_at_5 value: 32.032 - type: ndcg_at_1 value: 27.761000000000003 - type: ndcg_at_10 value: 33.358 - type: ndcg_at_100 value: 37.569 - type: ndcg_at_1000 value: 40.189 - type: ndcg_at_3 value: 30.291 - type: ndcg_at_5 value: 31.558000000000003 - type: precision_at_1 value: 27.761000000000003 - type: precision_at_10 value: 4.939 - type: precision_at_100 value: 0.759 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 12.577 - type: precision_at_5 value: 8.497 - type: recall_at_1 value: 25.101000000000003 - type: recall_at_10 value: 40.739 - type: recall_at_100 value: 60.089999999999996 - type: recall_at_1000 value: 79.768 - type: recall_at_3 value: 32.16 - type: recall_at_5 value: 35.131 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 20.112 - type: map_at_10 value: 26.119999999999997 - type: map_at_100 value: 27.031 - type: map_at_1000 value: 27.150000000000002 - type: map_at_3 value: 24.230999999999998 - type: map_at_5 value: 25.15 - type: mrr_at_1 value: 24.535 - type: mrr_at_10 value: 30.198000000000004 - type: mrr_at_100 value: 30.975 - type: mrr_at_1000 value: 31.051000000000002 - type: mrr_at_3 value: 28.338 - type: mrr_at_5 value: 29.269000000000002 - type: ndcg_at_1 value: 24.535 - type: ndcg_at_10 value: 30.147000000000002 - type: ndcg_at_100 value: 34.544000000000004 - type: ndcg_at_1000 value: 37.512 - type: ndcg_at_3 value: 26.726 - type: ndcg_at_5 value: 28.046 - type: precision_at_1 value: 24.535 - type: precision_at_10 value: 5.179 - type: precision_at_100 value: 0.859 - type: precision_at_1000 value: 0.128 - type: precision_at_3 value: 12.159 - type: precision_at_5 value: 8.424 - type: recall_at_1 value: 20.112 - type: recall_at_10 value: 38.312000000000005 - type: recall_at_100 value: 58.406000000000006 - type: recall_at_1000 value: 79.863 - type: recall_at_3 value: 28.358 - type: recall_at_5 value: 31.973000000000003 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.111 - type: map_at_10 value: 34.096 - type: map_at_100 value: 35.181000000000004 - type: map_at_1000 value: 35.276 - type: map_at_3 value: 31.745 - type: map_at_5 value: 33.045 - type: mrr_at_1 value: 31.343 - type: mrr_at_10 value: 37.994 - type: mrr_at_100 value: 38.873000000000005 - type: mrr_at_1000 value: 38.934999999999995 - type: mrr_at_3 value: 35.743 - type: mrr_at_5 value: 37.077 - type: ndcg_at_1 value: 31.343 - type: ndcg_at_10 value: 38.572 - type: ndcg_at_100 value: 43.854 - type: ndcg_at_1000 value: 46.190999999999995 - type: ndcg_at_3 value: 34.247 - type: ndcg_at_5 value: 36.28 - type: precision_at_1 value: 31.343 - type: precision_at_10 value: 6.166 - type: precision_at_100 value: 1 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 15.081 - type: precision_at_5 value: 10.428999999999998 - type: recall_at_1 value: 27.111 - type: recall_at_10 value: 48.422 - type: recall_at_100 value: 71.846 - type: recall_at_1000 value: 88.57000000000001 - type: recall_at_3 value: 36.435 - type: recall_at_5 value: 41.765 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.264 - type: map_at_10 value: 33.522 - type: map_at_100 value: 34.963 - type: map_at_1000 value: 35.175 - type: map_at_3 value: 31.366 - type: map_at_5 value: 32.621 - type: mrr_at_1 value: 31.028 - type: mrr_at_10 value: 37.230000000000004 - type: mrr_at_100 value: 38.149 - type: mrr_at_1000 value: 38.218 - type: mrr_at_3 value: 35.046 - type: mrr_at_5 value: 36.617 - type: ndcg_at_1 value: 31.028 - type: ndcg_at_10 value: 37.964999999999996 - type: ndcg_at_100 value: 43.342000000000006 - type: ndcg_at_1000 value: 46.471000000000004 - type: ndcg_at_3 value: 34.67 - type: ndcg_at_5 value: 36.458 - type: precision_at_1 value: 31.028 - type: precision_at_10 value: 6.937 - type: precision_at_100 value: 1.346 - type: precision_at_1000 value: 0.22799999999999998 - type: precision_at_3 value: 15.942 - type: precision_at_5 value: 11.462 - type: recall_at_1 value: 26.264 - type: recall_at_10 value: 45.571 - type: recall_at_100 value: 70.246 - type: recall_at_1000 value: 90.971 - type: recall_at_3 value: 36.276 - type: recall_at_5 value: 41.162 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.372999999999998 - type: map_at_10 value: 28.992 - type: map_at_100 value: 29.837999999999997 - type: map_at_1000 value: 29.939 - type: map_at_3 value: 26.999000000000002 - type: map_at_5 value: 28.044999999999998 - type: mrr_at_1 value: 25.692999999999998 - type: mrr_at_10 value: 30.984 - type: mrr_at_100 value: 31.799 - type: mrr_at_1000 value: 31.875999999999998 - type: mrr_at_3 value: 29.267 - type: mrr_at_5 value: 30.163 - type: ndcg_at_1 value: 25.692999999999998 - type: ndcg_at_10 value: 32.45 - type: ndcg_at_100 value: 37.103 - type: ndcg_at_1000 value: 39.678000000000004 - type: ndcg_at_3 value: 28.725 - type: ndcg_at_5 value: 30.351 - type: precision_at_1 value: 25.692999999999998 - type: precision_at_10 value: 4.806 - type: precision_at_100 value: 0.765 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 11.768 - type: precision_at_5 value: 8.096 - type: recall_at_1 value: 23.372999999999998 - type: recall_at_10 value: 41.281 - type: recall_at_100 value: 63.465 - type: recall_at_1000 value: 82.575 - type: recall_at_3 value: 31.063000000000002 - type: recall_at_5 value: 34.991 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 8.821 - type: map_at_10 value: 15.383 - type: map_at_100 value: 17.244999999999997 - type: map_at_1000 value: 17.445 - type: map_at_3 value: 12.64 - type: map_at_5 value: 13.941999999999998 - type: mrr_at_1 value: 19.544 - type: mrr_at_10 value: 29.738999999999997 - type: mrr_at_100 value: 30.923000000000002 - type: mrr_at_1000 value: 30.969 - type: mrr_at_3 value: 26.384 - type: mrr_at_5 value: 28.199 - type: ndcg_at_1 value: 19.544 - type: ndcg_at_10 value: 22.398 - type: ndcg_at_100 value: 30.253999999999998 - type: ndcg_at_1000 value: 33.876 - type: ndcg_at_3 value: 17.473 - type: ndcg_at_5 value: 19.154 - type: precision_at_1 value: 19.544 - type: precision_at_10 value: 7.217999999999999 - type: precision_at_100 value: 1.564 - type: precision_at_1000 value: 0.22300000000000003 - type: precision_at_3 value: 13.225000000000001 - type: precision_at_5 value: 10.319 - type: recall_at_1 value: 8.821 - type: recall_at_10 value: 28.110000000000003 - type: recall_at_100 value: 55.64 - type: recall_at_1000 value: 75.964 - type: recall_at_3 value: 16.195 - type: recall_at_5 value: 20.678 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 9.344 - type: map_at_10 value: 20.301 - type: map_at_100 value: 28.709 - type: map_at_1000 value: 30.470999999999997 - type: map_at_3 value: 14.584 - type: map_at_5 value: 16.930999999999997 - type: mrr_at_1 value: 67.25 - type: mrr_at_10 value: 75.393 - type: mrr_at_100 value: 75.742 - type: mrr_at_1000 value: 75.75 - type: mrr_at_3 value: 73.958 - type: mrr_at_5 value: 74.883 - type: ndcg_at_1 value: 56.00000000000001 - type: ndcg_at_10 value: 42.394 - type: ndcg_at_100 value: 47.091 - type: ndcg_at_1000 value: 54.215 - type: ndcg_at_3 value: 46.995 - type: ndcg_at_5 value: 44.214999999999996 - type: precision_at_1 value: 67.25 - type: precision_at_10 value: 33.525 - type: precision_at_100 value: 10.67 - type: precision_at_1000 value: 2.221 - type: precision_at_3 value: 49.417 - type: precision_at_5 value: 42.15 - type: recall_at_1 value: 9.344 - type: recall_at_10 value: 25.209 - type: recall_at_100 value: 52.329 - type: recall_at_1000 value: 74.2 - type: recall_at_3 value: 15.699 - type: recall_at_5 value: 19.24 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 48.05 - type: f1 value: 43.06718139212933 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 46.452 - type: map_at_10 value: 58.825 - type: map_at_100 value: 59.372 - type: map_at_1000 value: 59.399 - type: map_at_3 value: 56.264 - type: map_at_5 value: 57.879999999999995 - type: mrr_at_1 value: 49.82 - type: mrr_at_10 value: 62.178999999999995 - type: mrr_at_100 value: 62.641999999999996 - type: mrr_at_1000 value: 62.658 - type: mrr_at_3 value: 59.706 - type: mrr_at_5 value: 61.283 - type: ndcg_at_1 value: 49.82 - type: ndcg_at_10 value: 65.031 - type: ndcg_at_100 value: 67.413 - type: ndcg_at_1000 value: 68.014 - type: ndcg_at_3 value: 60.084 - type: ndcg_at_5 value: 62.858000000000004 - type: precision_at_1 value: 49.82 - type: precision_at_10 value: 8.876000000000001 - type: precision_at_100 value: 1.018 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 24.477 - type: precision_at_5 value: 16.208 - type: recall_at_1 value: 46.452 - type: recall_at_10 value: 80.808 - type: recall_at_100 value: 91.215 - type: recall_at_1000 value: 95.52000000000001 - type: recall_at_3 value: 67.62899999999999 - type: recall_at_5 value: 74.32900000000001 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 18.351 - type: map_at_10 value: 30.796 - type: map_at_100 value: 32.621 - type: map_at_1000 value: 32.799 - type: map_at_3 value: 26.491 - type: map_at_5 value: 28.933999999999997 - type: mrr_at_1 value: 36.265 - type: mrr_at_10 value: 45.556999999999995 - type: mrr_at_100 value: 46.323 - type: mrr_at_1000 value: 46.359 - type: mrr_at_3 value: 42.695 - type: mrr_at_5 value: 44.324000000000005 - type: ndcg_at_1 value: 36.265 - type: ndcg_at_10 value: 38.558 - type: ndcg_at_100 value: 45.18 - type: ndcg_at_1000 value: 48.292 - type: ndcg_at_3 value: 34.204 - type: ndcg_at_5 value: 35.735 - type: precision_at_1 value: 36.265 - type: precision_at_10 value: 10.879999999999999 - type: precision_at_100 value: 1.77 - type: precision_at_1000 value: 0.234 - type: precision_at_3 value: 23.044999999999998 - type: precision_at_5 value: 17.253 - type: recall_at_1 value: 18.351 - type: recall_at_10 value: 46.116 - type: recall_at_100 value: 70.786 - type: recall_at_1000 value: 89.46300000000001 - type: recall_at_3 value: 31.404 - type: recall_at_5 value: 37.678 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 36.847 - type: map_at_10 value: 54.269999999999996 - type: map_at_100 value: 55.152 - type: map_at_1000 value: 55.223 - type: map_at_3 value: 51.166 - type: map_at_5 value: 53.055 - type: mrr_at_1 value: 73.693 - type: mrr_at_10 value: 79.975 - type: mrr_at_100 value: 80.202 - type: mrr_at_1000 value: 80.214 - type: mrr_at_3 value: 78.938 - type: mrr_at_5 value: 79.595 - type: ndcg_at_1 value: 73.693 - type: ndcg_at_10 value: 63.334999999999994 - type: ndcg_at_100 value: 66.452 - type: ndcg_at_1000 value: 67.869 - type: ndcg_at_3 value: 58.829 - type: ndcg_at_5 value: 61.266 - type: precision_at_1 value: 73.693 - type: precision_at_10 value: 13.122 - type: precision_at_100 value: 1.5559999999999998 - type: precision_at_1000 value: 0.174 - type: precision_at_3 value: 37.083 - type: precision_at_5 value: 24.169999999999998 - type: recall_at_1 value: 36.847 - type: recall_at_10 value: 65.61099999999999 - type: recall_at_100 value: 77.792 - type: recall_at_1000 value: 87.17099999999999 - type: recall_at_3 value: 55.625 - type: recall_at_5 value: 60.425 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 82.1096 - type: ap value: 76.67089212843918 - type: f1 value: 82.03535056754939 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 24.465 - type: map_at_10 value: 37.072 - type: map_at_100 value: 38.188 - type: map_at_1000 value: 38.232 - type: map_at_3 value: 33.134 - type: map_at_5 value: 35.453 - type: mrr_at_1 value: 25.142999999999997 - type: mrr_at_10 value: 37.669999999999995 - type: mrr_at_100 value: 38.725 - type: mrr_at_1000 value: 38.765 - type: mrr_at_3 value: 33.82 - type: mrr_at_5 value: 36.111 - type: ndcg_at_1 value: 25.142999999999997 - type: ndcg_at_10 value: 44.054 - type: ndcg_at_100 value: 49.364000000000004 - type: ndcg_at_1000 value: 50.456 - type: ndcg_at_3 value: 36.095 - type: ndcg_at_5 value: 40.23 - type: precision_at_1 value: 25.142999999999997 - type: precision_at_10 value: 6.845 - type: precision_at_100 value: 0.95 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 15.204999999999998 - type: precision_at_5 value: 11.221 - type: recall_at_1 value: 24.465 - type: recall_at_10 value: 65.495 - type: recall_at_100 value: 89.888 - type: recall_at_1000 value: 98.165 - type: recall_at_3 value: 43.964 - type: recall_at_5 value: 53.891 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.86228910168718 - type: f1 value: 93.69177113259104 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 76.3999088007296 - type: f1 value: 58.96668664333438 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.21788836583727 - type: f1 value: 71.4545936552952 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.39071956960323 - type: f1 value: 77.12398952847603 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 32.255379528166955 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 29.66423362872814 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.782211620375964 - type: mrr value: 31.773479703044956 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.863 - type: map_at_10 value: 13.831 - type: map_at_100 value: 17.534 - type: map_at_1000 value: 19.012 - type: map_at_3 value: 10.143 - type: map_at_5 value: 12.034 - type: mrr_at_1 value: 46.749 - type: mrr_at_10 value: 55.376999999999995 - type: mrr_at_100 value: 56.009 - type: mrr_at_1000 value: 56.042 - type: mrr_at_3 value: 53.30200000000001 - type: mrr_at_5 value: 54.85 - type: ndcg_at_1 value: 44.582 - type: ndcg_at_10 value: 36.07 - type: ndcg_at_100 value: 33.39 - type: ndcg_at_1000 value: 41.884 - type: ndcg_at_3 value: 41.441 - type: ndcg_at_5 value: 39.861000000000004 - type: precision_at_1 value: 46.129999999999995 - type: precision_at_10 value: 26.594 - type: precision_at_100 value: 8.365 - type: precision_at_1000 value: 2.1260000000000003 - type: precision_at_3 value: 39.009 - type: precision_at_5 value: 34.861 - type: recall_at_1 value: 5.863 - type: recall_at_10 value: 17.961 - type: recall_at_100 value: 34.026 - type: recall_at_1000 value: 64.46499999999999 - type: recall_at_3 value: 11.242 - type: recall_at_5 value: 14.493 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 38.601 - type: map_at_10 value: 55.293000000000006 - type: map_at_100 value: 56.092 - type: map_at_1000 value: 56.111999999999995 - type: map_at_3 value: 51.269 - type: map_at_5 value: 53.787 - type: mrr_at_1 value: 43.221 - type: mrr_at_10 value: 57.882999999999996 - type: mrr_at_100 value: 58.408 - type: mrr_at_1000 value: 58.421 - type: mrr_at_3 value: 54.765 - type: mrr_at_5 value: 56.809 - type: ndcg_at_1 value: 43.221 - type: ndcg_at_10 value: 62.858999999999995 - type: ndcg_at_100 value: 65.987 - type: ndcg_at_1000 value: 66.404 - type: ndcg_at_3 value: 55.605000000000004 - type: ndcg_at_5 value: 59.723000000000006 - type: precision_at_1 value: 43.221 - type: precision_at_10 value: 9.907 - type: precision_at_100 value: 1.169 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 25.019000000000002 - type: precision_at_5 value: 17.474 - type: recall_at_1 value: 38.601 - type: recall_at_10 value: 82.966 - type: recall_at_100 value: 96.154 - type: recall_at_1000 value: 99.223 - type: recall_at_3 value: 64.603 - type: recall_at_5 value: 73.97200000000001 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.77 - type: map_at_10 value: 84.429 - type: map_at_100 value: 85.04599999999999 - type: map_at_1000 value: 85.065 - type: map_at_3 value: 81.461 - type: map_at_5 value: 83.316 - type: mrr_at_1 value: 81.51 - type: mrr_at_10 value: 87.52799999999999 - type: mrr_at_100 value: 87.631 - type: mrr_at_1000 value: 87.632 - type: mrr_at_3 value: 86.533 - type: mrr_at_5 value: 87.214 - type: ndcg_at_1 value: 81.47999999999999 - type: ndcg_at_10 value: 88.181 - type: ndcg_at_100 value: 89.39200000000001 - type: ndcg_at_1000 value: 89.52 - type: ndcg_at_3 value: 85.29299999999999 - type: ndcg_at_5 value: 86.88 - type: precision_at_1 value: 81.47999999999999 - type: precision_at_10 value: 13.367 - type: precision_at_100 value: 1.5230000000000001 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.227 - type: precision_at_5 value: 24.494 - type: recall_at_1 value: 70.77 - type: recall_at_10 value: 95.199 - type: recall_at_100 value: 99.37700000000001 - type: recall_at_1000 value: 99.973 - type: recall_at_3 value: 86.895 - type: recall_at_5 value: 91.396 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 50.686353396858344 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 61.3664675312921 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.7379999999999995 - type: map_at_10 value: 12.01 - type: map_at_100 value: 14.02 - type: map_at_1000 value: 14.310999999999998 - type: map_at_3 value: 8.459 - type: map_at_5 value: 10.281 - type: mrr_at_1 value: 23.3 - type: mrr_at_10 value: 34.108 - type: mrr_at_100 value: 35.217 - type: mrr_at_1000 value: 35.272 - type: mrr_at_3 value: 30.833 - type: mrr_at_5 value: 32.768 - type: ndcg_at_1 value: 23.3 - type: ndcg_at_10 value: 20.116999999999997 - type: ndcg_at_100 value: 27.961000000000002 - type: ndcg_at_1000 value: 33.149 - type: ndcg_at_3 value: 18.902 - type: ndcg_at_5 value: 16.742 - type: precision_at_1 value: 23.3 - type: precision_at_10 value: 10.47 - type: precision_at_100 value: 2.177 - type: precision_at_1000 value: 0.34299999999999997 - type: precision_at_3 value: 17.567 - type: precision_at_5 value: 14.78 - type: recall_at_1 value: 4.7379999999999995 - type: recall_at_10 value: 21.221999999999998 - type: recall_at_100 value: 44.242 - type: recall_at_1000 value: 69.652 - type: recall_at_3 value: 10.688 - type: recall_at_5 value: 14.982999999999999 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 84.84572946827069 - type: cos_sim_spearman value: 80.48508130408966 - type: euclidean_pearson value: 82.0481530027767 - type: euclidean_spearman value: 80.45902876782752 - type: manhattan_pearson value: 82.03728222483326 - type: manhattan_spearman value: 80.45684282911755 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.33476464677516 - type: cos_sim_spearman value: 75.93057758003266 - type: euclidean_pearson value: 80.89685744015691 - type: euclidean_spearman value: 76.29929953441706 - type: manhattan_pearson value: 80.91391345459995 - type: manhattan_spearman value: 76.31985463110914 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 84.63686106359005 - type: cos_sim_spearman value: 85.22240034668202 - type: euclidean_pearson value: 84.6074814189106 - type: euclidean_spearman value: 85.17169644755828 - type: manhattan_pearson value: 84.48329306239368 - type: manhattan_spearman value: 85.0086508544768 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 82.95455774064745 - type: cos_sim_spearman value: 80.54074646118492 - type: euclidean_pearson value: 81.79598955554704 - type: euclidean_spearman value: 80.55837617606814 - type: manhattan_pearson value: 81.78213797905386 - type: manhattan_spearman value: 80.5666746878273 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.92813309124739 - type: cos_sim_spearman value: 88.81459873052108 - type: euclidean_pearson value: 88.21193118930564 - type: euclidean_spearman value: 88.87072745043731 - type: manhattan_pearson value: 88.22576929706727 - type: manhattan_spearman value: 88.8867671095791 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.6881529671839 - type: cos_sim_spearman value: 85.2807092969554 - type: euclidean_pearson value: 84.62334178652704 - type: euclidean_spearman value: 85.2116373296784 - type: manhattan_pearson value: 84.54948211541777 - type: manhattan_spearman value: 85.10737722637882 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.55963694458408 - type: cos_sim_spearman value: 89.36731628848683 - type: euclidean_pearson value: 89.64975952985465 - type: euclidean_spearman value: 89.29689484033007 - type: manhattan_pearson value: 89.61234491713135 - type: manhattan_spearman value: 89.20302520255782 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.411800961903886 - type: cos_sim_spearman value: 62.99105515749963 - type: euclidean_pearson value: 65.29826669549443 - type: euclidean_spearman value: 63.29880964105775 - type: manhattan_pearson value: 65.00126190601183 - type: manhattan_spearman value: 63.32011025899179 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.83498531837608 - type: cos_sim_spearman value: 87.21366640615442 - type: euclidean_pearson value: 86.74764288798261 - type: euclidean_spearman value: 87.06060470780834 - type: manhattan_pearson value: 86.65971223951476 - type: manhattan_spearman value: 86.99814399831457 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 83.94448463485881 - type: mrr value: 95.36291867174221 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 59.928000000000004 - type: map_at_10 value: 68.577 - type: map_at_100 value: 69.35900000000001 - type: map_at_1000 value: 69.37299999999999 - type: map_at_3 value: 66.217 - type: map_at_5 value: 67.581 - type: mrr_at_1 value: 63 - type: mrr_at_10 value: 69.994 - type: mrr_at_100 value: 70.553 - type: mrr_at_1000 value: 70.56700000000001 - type: mrr_at_3 value: 68.167 - type: mrr_at_5 value: 69.11699999999999 - type: ndcg_at_1 value: 63 - type: ndcg_at_10 value: 72.58 - type: ndcg_at_100 value: 75.529 - type: ndcg_at_1000 value: 76.009 - type: ndcg_at_3 value: 68.523 - type: ndcg_at_5 value: 70.301 - type: precision_at_1 value: 63 - type: precision_at_10 value: 9.333 - type: precision_at_100 value: 1.09 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 26.444000000000003 - type: precision_at_5 value: 17.067 - type: recall_at_1 value: 59.928000000000004 - type: recall_at_10 value: 83.544 - type: recall_at_100 value: 96 - type: recall_at_1000 value: 100 - type: recall_at_3 value: 72.072 - type: recall_at_5 value: 76.683 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.82178217821782 - type: cos_sim_ap value: 95.41507679819003 - type: cos_sim_f1 value: 90.9456740442656 - type: cos_sim_precision value: 91.49797570850203 - type: cos_sim_recall value: 90.4 - type: dot_accuracy value: 99.77227722772277 - type: dot_ap value: 92.50123869445967 - type: dot_f1 value: 88.18414322250638 - type: dot_precision value: 90.26178010471205 - type: dot_recall value: 86.2 - type: euclidean_accuracy value: 99.81782178217821 - type: euclidean_ap value: 95.3935066749006 - type: euclidean_f1 value: 90.66128218071681 - type: euclidean_precision value: 91.53924566768603 - type: euclidean_recall value: 89.8 - type: manhattan_accuracy value: 99.81881188118813 - type: manhattan_ap value: 95.39767454613512 - type: manhattan_f1 value: 90.62019477191186 - type: manhattan_precision value: 92.95478443743428 - type: manhattan_recall value: 88.4 - type: max_accuracy value: 99.82178217821782 - type: max_ap value: 95.41507679819003 - type: max_f1 value: 90.9456740442656 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 64.96313921233748 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 33.602625720956745 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 51.32659230651731 - type: mrr value: 52.33861726508785 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.01587644214203 - type: cos_sim_spearman value: 30.974306908731013 - type: dot_pearson value: 29.83339853838187 - type: dot_spearman value: 30.07761671934048 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.22 - type: map_at_10 value: 1.9539999999999997 - type: map_at_100 value: 11.437 - type: map_at_1000 value: 27.861000000000004 - type: map_at_3 value: 0.6479999999999999 - type: map_at_5 value: 1.0410000000000001 - type: mrr_at_1 value: 84 - type: mrr_at_10 value: 90.333 - type: mrr_at_100 value: 90.333 - type: mrr_at_1000 value: 90.333 - type: mrr_at_3 value: 90.333 - type: mrr_at_5 value: 90.333 - type: ndcg_at_1 value: 80 - type: ndcg_at_10 value: 78.31700000000001 - type: ndcg_at_100 value: 59.396 - type: ndcg_at_1000 value: 52.733 - type: ndcg_at_3 value: 81.46900000000001 - type: ndcg_at_5 value: 80.74 - type: precision_at_1 value: 84 - type: precision_at_10 value: 84 - type: precision_at_100 value: 60.980000000000004 - type: precision_at_1000 value: 23.432 - type: precision_at_3 value: 87.333 - type: precision_at_5 value: 86.8 - type: recall_at_1 value: 0.22 - type: recall_at_10 value: 2.156 - type: recall_at_100 value: 14.557999999999998 - type: recall_at_1000 value: 49.553999999999995 - type: recall_at_3 value: 0.685 - type: recall_at_5 value: 1.121 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 3.373 - type: map_at_10 value: 11.701 - type: map_at_100 value: 17.144000000000002 - type: map_at_1000 value: 18.624 - type: map_at_3 value: 6.552 - type: map_at_5 value: 9.372 - type: mrr_at_1 value: 38.775999999999996 - type: mrr_at_10 value: 51.975 - type: mrr_at_100 value: 52.873999999999995 - type: mrr_at_1000 value: 52.873999999999995 - type: mrr_at_3 value: 47.619 - type: mrr_at_5 value: 50.578 - type: ndcg_at_1 value: 36.735 - type: ndcg_at_10 value: 27.212999999999997 - type: ndcg_at_100 value: 37.245 - type: ndcg_at_1000 value: 48.602000000000004 - type: ndcg_at_3 value: 30.916 - type: ndcg_at_5 value: 30.799 - type: precision_at_1 value: 38.775999999999996 - type: precision_at_10 value: 23.469 - type: precision_at_100 value: 7.327 - type: precision_at_1000 value: 1.486 - type: precision_at_3 value: 31.973000000000003 - type: precision_at_5 value: 32.245000000000005 - type: recall_at_1 value: 3.373 - type: recall_at_10 value: 17.404 - type: recall_at_100 value: 46.105000000000004 - type: recall_at_1000 value: 80.35 - type: recall_at_3 value: 7.4399999999999995 - type: recall_at_5 value: 12.183 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.5592 - type: ap value: 14.330910591410134 - type: f1 value: 54.45745186286521 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.20543293718167 - type: f1 value: 61.45365480309872 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 43.81162998944145 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.69011146212075 - type: cos_sim_ap value: 76.09792353652536 - type: cos_sim_f1 value: 70.10202763786646 - type: cos_sim_precision value: 68.65671641791045 - type: cos_sim_recall value: 71.60949868073878 - type: dot_accuracy value: 85.33110806461227 - type: dot_ap value: 70.19304383327554 - type: dot_f1 value: 67.22494202525122 - type: dot_precision value: 65.6847935548842 - type: dot_recall value: 68.83905013192611 - type: euclidean_accuracy value: 86.5410979316922 - type: euclidean_ap value: 75.91906915651882 - type: euclidean_f1 value: 69.6798975672215 - type: euclidean_precision value: 67.6865671641791 - type: euclidean_recall value: 71.79419525065963 - type: manhattan_accuracy value: 86.60070334386363 - type: manhattan_ap value: 75.94617413885031 - type: manhattan_f1 value: 69.52689565780946 - type: manhattan_precision value: 68.3312101910828 - type: manhattan_recall value: 70.76517150395777 - type: max_accuracy value: 86.69011146212075 - type: max_ap value: 76.09792353652536 - type: max_f1 value: 70.10202763786646 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.25951798812434 - type: cos_sim_ap value: 86.31476416599727 - type: cos_sim_f1 value: 78.52709971038477 - type: cos_sim_precision value: 76.7629972792117 - type: cos_sim_recall value: 80.37419156144134 - type: dot_accuracy value: 88.03896456708192 - type: dot_ap value: 83.26963599196237 - type: dot_f1 value: 76.72696459492317 - type: dot_precision value: 73.56411162133521 - type: dot_recall value: 80.17400677548507 - type: euclidean_accuracy value: 89.21682772538519 - type: euclidean_ap value: 86.29306071289969 - type: euclidean_f1 value: 78.40827030519554 - type: euclidean_precision value: 77.42250243939053 - type: euclidean_recall value: 79.41946412072683 - type: manhattan_accuracy value: 89.22458959133776 - type: manhattan_ap value: 86.2901934710645 - type: manhattan_f1 value: 78.54211378440453 - type: manhattan_precision value: 76.85505858079729 - type: manhattan_recall value: 80.30489682784109 - type: max_accuracy value: 89.25951798812434 - type: max_ap value: 86.31476416599727 - type: max_f1 value: 78.54211378440453 language: - en license: mit --- ## E5-large **News (May 2023): please switch to [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2), which has better performance and same method of usage.** [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 This model has 24 layers and the embedding size is 1024. ## Usage Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ". # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."] tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-large') model = AutoModel.from_pretrained('intfloat/e5-large') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Training Details Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf). ## Benchmark Evaluation Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). ## Support for Sentence Transformers Below is an example for usage with sentence_transformers. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/e5-large') input_texts = [ 'query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] embeddings = model.encode(input_texts, normalize_embeddings=True) ``` Package requirements `pip install sentence_transformers~=2.2.2` Contributors: [michaelfeil](https://huggingface.co/michaelfeil) ## FAQ **1. Do I need to add the prefix "query: " and "passage: " to input texts?** Yes, this is how the model is trained, otherwise you will see a performance degradation. Here are some rules of thumb: - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. - Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval. - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. **2. Why are my reproduced results slightly different from reported in the model card?** Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue. ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} } ``` ## Limitations This model only works for English texts. Long texts will be truncated to at most 512 tokens.
intfloat/e5-base
intfloat
2023-08-07T04:59:19Z
325,938
20
sentence-transformers
[ "sentence-transformers", "pytorch", "safetensors", "bert", "mteb", "Sentence Transformers", "sentence-similarity", "en", "arxiv:2212.03533", "arxiv:2104.08663", "arxiv:2210.07316", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-26T05:58:05Z
--- tags: - mteb - Sentence Transformers - sentence-similarity - sentence-transformers model-index: - name: e5-base results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 79.71641791044777 - type: ap value: 44.15426065428253 - type: f1 value: 73.89474407693241 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 87.9649 - type: ap value: 84.10171551915973 - type: f1 value: 87.94148377827356 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 42.645999999999994 - type: f1 value: 42.230574673549 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 26.814 - type: map_at_10 value: 42.681999999999995 - type: map_at_100 value: 43.714 - type: map_at_1000 value: 43.724000000000004 - type: map_at_3 value: 38.11 - type: map_at_5 value: 40.666999999999994 - type: mrr_at_1 value: 27.168999999999997 - type: mrr_at_10 value: 42.84 - type: mrr_at_100 value: 43.864 - type: mrr_at_1000 value: 43.875 - type: mrr_at_3 value: 38.193 - type: mrr_at_5 value: 40.793 - type: ndcg_at_1 value: 26.814 - type: ndcg_at_10 value: 51.410999999999994 - type: ndcg_at_100 value: 55.713 - type: ndcg_at_1000 value: 55.957 - type: ndcg_at_3 value: 41.955 - type: ndcg_at_5 value: 46.558 - type: precision_at_1 value: 26.814 - type: precision_at_10 value: 7.922999999999999 - type: precision_at_100 value: 0.9780000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 17.71 - type: precision_at_5 value: 12.859000000000002 - type: recall_at_1 value: 26.814 - type: recall_at_10 value: 79.232 - type: recall_at_100 value: 97.795 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 53.129000000000005 - type: recall_at_5 value: 64.29599999999999 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 44.56933066536439 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 40.47647746165173 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 59.65675531567043 - type: mrr value: 72.95255683067317 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 85.83147014162338 - type: cos_sim_spearman value: 85.1031439521441 - type: euclidean_pearson value: 83.53609085510973 - type: euclidean_spearman value: 84.59650590202833 - type: manhattan_pearson value: 83.14611947586386 - type: manhattan_spearman value: 84.13384475757064 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 83.32792207792208 - type: f1 value: 83.32037485050513 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 36.18605446588703 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 32.72379130181917 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.659 - type: map_at_10 value: 40.333999999999996 - type: map_at_100 value: 41.763 - type: map_at_1000 value: 41.894 - type: map_at_3 value: 37.561 - type: map_at_5 value: 39.084 - type: mrr_at_1 value: 37.482 - type: mrr_at_10 value: 45.736 - type: mrr_at_100 value: 46.591 - type: mrr_at_1000 value: 46.644999999999996 - type: mrr_at_3 value: 43.491 - type: mrr_at_5 value: 44.75 - type: ndcg_at_1 value: 37.482 - type: ndcg_at_10 value: 45.606 - type: ndcg_at_100 value: 51.172 - type: ndcg_at_1000 value: 53.407000000000004 - type: ndcg_at_3 value: 41.808 - type: ndcg_at_5 value: 43.449 - type: precision_at_1 value: 37.482 - type: precision_at_10 value: 8.254999999999999 - type: precision_at_100 value: 1.3719999999999999 - type: precision_at_1000 value: 0.186 - type: precision_at_3 value: 19.695 - type: precision_at_5 value: 13.847999999999999 - type: recall_at_1 value: 30.659 - type: recall_at_10 value: 55.409 - type: recall_at_100 value: 78.687 - type: recall_at_1000 value: 93.068 - type: recall_at_3 value: 43.891999999999996 - type: recall_at_5 value: 48.678 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.977 - type: map_at_10 value: 40.296 - type: map_at_100 value: 41.453 - type: map_at_1000 value: 41.581 - type: map_at_3 value: 37.619 - type: map_at_5 value: 39.181 - type: mrr_at_1 value: 39.108 - type: mrr_at_10 value: 46.894000000000005 - type: mrr_at_100 value: 47.55 - type: mrr_at_1000 value: 47.598 - type: mrr_at_3 value: 44.766 - type: mrr_at_5 value: 46.062999999999995 - type: ndcg_at_1 value: 39.108 - type: ndcg_at_10 value: 45.717 - type: ndcg_at_100 value: 49.941 - type: ndcg_at_1000 value: 52.138 - type: ndcg_at_3 value: 42.05 - type: ndcg_at_5 value: 43.893 - type: precision_at_1 value: 39.108 - type: precision_at_10 value: 8.306 - type: precision_at_100 value: 1.3419999999999999 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 19.979 - type: precision_at_5 value: 14.038 - type: recall_at_1 value: 30.977 - type: recall_at_10 value: 54.688 - type: recall_at_100 value: 72.556 - type: recall_at_1000 value: 86.53800000000001 - type: recall_at_3 value: 43.388 - type: recall_at_5 value: 48.717 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 39.812 - type: map_at_10 value: 50.1 - type: map_at_100 value: 51.193999999999996 - type: map_at_1000 value: 51.258 - type: map_at_3 value: 47.510999999999996 - type: map_at_5 value: 48.891 - type: mrr_at_1 value: 45.266 - type: mrr_at_10 value: 53.459999999999994 - type: mrr_at_100 value: 54.19199999999999 - type: mrr_at_1000 value: 54.228 - type: mrr_at_3 value: 51.296 - type: mrr_at_5 value: 52.495999999999995 - type: ndcg_at_1 value: 45.266 - type: ndcg_at_10 value: 55.034000000000006 - type: ndcg_at_100 value: 59.458 - type: ndcg_at_1000 value: 60.862 - type: ndcg_at_3 value: 50.52799999999999 - type: ndcg_at_5 value: 52.564 - type: precision_at_1 value: 45.266 - type: precision_at_10 value: 8.483 - type: precision_at_100 value: 1.162 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 21.944 - type: precision_at_5 value: 14.721 - type: recall_at_1 value: 39.812 - type: recall_at_10 value: 66.36 - type: recall_at_100 value: 85.392 - type: recall_at_1000 value: 95.523 - type: recall_at_3 value: 54.127 - type: recall_at_5 value: 59.245000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.186 - type: map_at_10 value: 33.18 - type: map_at_100 value: 34.052 - type: map_at_1000 value: 34.149 - type: map_at_3 value: 31.029 - type: map_at_5 value: 32.321 - type: mrr_at_1 value: 28.136 - type: mrr_at_10 value: 35.195 - type: mrr_at_100 value: 35.996 - type: mrr_at_1000 value: 36.076 - type: mrr_at_3 value: 33.051 - type: mrr_at_5 value: 34.407 - type: ndcg_at_1 value: 28.136 - type: ndcg_at_10 value: 37.275999999999996 - type: ndcg_at_100 value: 41.935 - type: ndcg_at_1000 value: 44.389 - type: ndcg_at_3 value: 33.059 - type: ndcg_at_5 value: 35.313 - type: precision_at_1 value: 28.136 - type: precision_at_10 value: 5.457999999999999 - type: precision_at_100 value: 0.826 - type: precision_at_1000 value: 0.107 - type: precision_at_3 value: 13.522 - type: precision_at_5 value: 9.424000000000001 - type: recall_at_1 value: 26.186 - type: recall_at_10 value: 47.961999999999996 - type: recall_at_100 value: 70.072 - type: recall_at_1000 value: 88.505 - type: recall_at_3 value: 36.752 - type: recall_at_5 value: 42.168 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.586000000000002 - type: map_at_10 value: 23.637 - type: map_at_100 value: 24.82 - type: map_at_1000 value: 24.95 - type: map_at_3 value: 21.428 - type: map_at_5 value: 22.555 - type: mrr_at_1 value: 20.771 - type: mrr_at_10 value: 27.839999999999996 - type: mrr_at_100 value: 28.887 - type: mrr_at_1000 value: 28.967 - type: mrr_at_3 value: 25.56 - type: mrr_at_5 value: 26.723000000000003 - type: ndcg_at_1 value: 20.771 - type: ndcg_at_10 value: 28.255000000000003 - type: ndcg_at_100 value: 33.886 - type: ndcg_at_1000 value: 36.963 - type: ndcg_at_3 value: 24.056 - type: ndcg_at_5 value: 25.818 - type: precision_at_1 value: 20.771 - type: precision_at_10 value: 5.1 - type: precision_at_100 value: 0.9119999999999999 - type: precision_at_1000 value: 0.132 - type: precision_at_3 value: 11.526 - type: precision_at_5 value: 8.158999999999999 - type: recall_at_1 value: 16.586000000000002 - type: recall_at_10 value: 38.456 - type: recall_at_100 value: 62.666 - type: recall_at_1000 value: 84.47 - type: recall_at_3 value: 26.765 - type: recall_at_5 value: 31.297000000000004 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.831 - type: map_at_10 value: 37.545 - type: map_at_100 value: 38.934999999999995 - type: map_at_1000 value: 39.044000000000004 - type: map_at_3 value: 34.601 - type: map_at_5 value: 36.302 - type: mrr_at_1 value: 34.264 - type: mrr_at_10 value: 42.569 - type: mrr_at_100 value: 43.514 - type: mrr_at_1000 value: 43.561 - type: mrr_at_3 value: 40.167 - type: mrr_at_5 value: 41.678 - type: ndcg_at_1 value: 34.264 - type: ndcg_at_10 value: 42.914 - type: ndcg_at_100 value: 48.931999999999995 - type: ndcg_at_1000 value: 51.004000000000005 - type: ndcg_at_3 value: 38.096999999999994 - type: ndcg_at_5 value: 40.509 - type: precision_at_1 value: 34.264 - type: precision_at_10 value: 7.642 - type: precision_at_100 value: 1.258 - type: precision_at_1000 value: 0.161 - type: precision_at_3 value: 17.453 - type: precision_at_5 value: 12.608 - type: recall_at_1 value: 28.831 - type: recall_at_10 value: 53.56999999999999 - type: recall_at_100 value: 79.26100000000001 - type: recall_at_1000 value: 92.862 - type: recall_at_3 value: 40.681 - type: recall_at_5 value: 46.597 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.461000000000002 - type: map_at_10 value: 35.885 - type: map_at_100 value: 37.039 - type: map_at_1000 value: 37.16 - type: map_at_3 value: 33.451 - type: map_at_5 value: 34.807 - type: mrr_at_1 value: 34.018 - type: mrr_at_10 value: 41.32 - type: mrr_at_100 value: 42.157 - type: mrr_at_1000 value: 42.223 - type: mrr_at_3 value: 39.288000000000004 - type: mrr_at_5 value: 40.481 - type: ndcg_at_1 value: 34.018 - type: ndcg_at_10 value: 40.821000000000005 - type: ndcg_at_100 value: 46.053 - type: ndcg_at_1000 value: 48.673 - type: ndcg_at_3 value: 36.839 - type: ndcg_at_5 value: 38.683 - type: precision_at_1 value: 34.018 - type: precision_at_10 value: 7.009 - type: precision_at_100 value: 1.123 - type: precision_at_1000 value: 0.153 - type: precision_at_3 value: 16.933 - type: precision_at_5 value: 11.826 - type: recall_at_1 value: 27.461000000000002 - type: recall_at_10 value: 50.285000000000004 - type: recall_at_100 value: 73.25500000000001 - type: recall_at_1000 value: 91.17699999999999 - type: recall_at_3 value: 39.104 - type: recall_at_5 value: 43.968 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.980083333333337 - type: map_at_10 value: 34.47208333333333 - type: map_at_100 value: 35.609249999999996 - type: map_at_1000 value: 35.72833333333333 - type: map_at_3 value: 32.189416666666666 - type: map_at_5 value: 33.44683333333334 - type: mrr_at_1 value: 31.731666666666662 - type: mrr_at_10 value: 38.518 - type: mrr_at_100 value: 39.38166666666667 - type: mrr_at_1000 value: 39.446999999999996 - type: mrr_at_3 value: 36.49966666666668 - type: mrr_at_5 value: 37.639916666666664 - type: ndcg_at_1 value: 31.731666666666662 - type: ndcg_at_10 value: 38.92033333333333 - type: ndcg_at_100 value: 44.01675 - type: ndcg_at_1000 value: 46.51075 - type: ndcg_at_3 value: 35.09766666666667 - type: ndcg_at_5 value: 36.842999999999996 - type: precision_at_1 value: 31.731666666666662 - type: precision_at_10 value: 6.472583333333332 - type: precision_at_100 value: 1.0665 - type: precision_at_1000 value: 0.14725000000000002 - type: precision_at_3 value: 15.659083333333331 - type: precision_at_5 value: 10.878833333333333 - type: recall_at_1 value: 26.980083333333337 - type: recall_at_10 value: 48.13925 - type: recall_at_100 value: 70.70149999999998 - type: recall_at_1000 value: 88.10775000000001 - type: recall_at_3 value: 37.30091666666667 - type: recall_at_5 value: 41.90358333333333 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.607999999999997 - type: map_at_10 value: 30.523 - type: map_at_100 value: 31.409 - type: map_at_1000 value: 31.507 - type: map_at_3 value: 28.915000000000003 - type: map_at_5 value: 29.756 - type: mrr_at_1 value: 28.681 - type: mrr_at_10 value: 33.409 - type: mrr_at_100 value: 34.241 - type: mrr_at_1000 value: 34.313 - type: mrr_at_3 value: 32.029999999999994 - type: mrr_at_5 value: 32.712 - type: ndcg_at_1 value: 28.681 - type: ndcg_at_10 value: 33.733000000000004 - type: ndcg_at_100 value: 38.32 - type: ndcg_at_1000 value: 40.937 - type: ndcg_at_3 value: 30.898999999999997 - type: ndcg_at_5 value: 32.088 - type: precision_at_1 value: 28.681 - type: precision_at_10 value: 4.968999999999999 - type: precision_at_100 value: 0.79 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 12.73 - type: precision_at_5 value: 8.558 - type: recall_at_1 value: 25.607999999999997 - type: recall_at_10 value: 40.722 - type: recall_at_100 value: 61.956999999999994 - type: recall_at_1000 value: 81.43 - type: recall_at_3 value: 32.785 - type: recall_at_5 value: 35.855 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 20.399 - type: map_at_10 value: 25.968000000000004 - type: map_at_100 value: 26.985999999999997 - type: map_at_1000 value: 27.105 - type: map_at_3 value: 24.215 - type: map_at_5 value: 25.157 - type: mrr_at_1 value: 24.708 - type: mrr_at_10 value: 29.971999999999998 - type: mrr_at_100 value: 30.858 - type: mrr_at_1000 value: 30.934 - type: mrr_at_3 value: 28.304000000000002 - type: mrr_at_5 value: 29.183999999999997 - type: ndcg_at_1 value: 24.708 - type: ndcg_at_10 value: 29.676000000000002 - type: ndcg_at_100 value: 34.656 - type: ndcg_at_1000 value: 37.588 - type: ndcg_at_3 value: 26.613 - type: ndcg_at_5 value: 27.919 - type: precision_at_1 value: 24.708 - type: precision_at_10 value: 5.01 - type: precision_at_100 value: 0.876 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 11.975 - type: precision_at_5 value: 8.279 - type: recall_at_1 value: 20.399 - type: recall_at_10 value: 36.935 - type: recall_at_100 value: 59.532 - type: recall_at_1000 value: 80.58 - type: recall_at_3 value: 27.979 - type: recall_at_5 value: 31.636999999999997 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.606 - type: map_at_10 value: 34.213 - type: map_at_100 value: 35.339999999999996 - type: map_at_1000 value: 35.458 - type: map_at_3 value: 31.987 - type: map_at_5 value: 33.322 - type: mrr_at_1 value: 31.53 - type: mrr_at_10 value: 37.911 - type: mrr_at_100 value: 38.879000000000005 - type: mrr_at_1000 value: 38.956 - type: mrr_at_3 value: 35.868 - type: mrr_at_5 value: 37.047999999999995 - type: ndcg_at_1 value: 31.53 - type: ndcg_at_10 value: 38.312000000000005 - type: ndcg_at_100 value: 43.812 - type: ndcg_at_1000 value: 46.414 - type: ndcg_at_3 value: 34.319 - type: ndcg_at_5 value: 36.312 - type: precision_at_1 value: 31.53 - type: precision_at_10 value: 5.970000000000001 - type: precision_at_100 value: 0.9939999999999999 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 14.738999999999999 - type: precision_at_5 value: 10.242999999999999 - type: recall_at_1 value: 27.606 - type: recall_at_10 value: 47.136 - type: recall_at_100 value: 71.253 - type: recall_at_1000 value: 89.39399999999999 - type: recall_at_3 value: 36.342 - type: recall_at_5 value: 41.388999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.855 - type: map_at_10 value: 31.963 - type: map_at_100 value: 33.371 - type: map_at_1000 value: 33.584 - type: map_at_3 value: 29.543999999999997 - type: map_at_5 value: 30.793 - type: mrr_at_1 value: 29.644 - type: mrr_at_10 value: 35.601 - type: mrr_at_100 value: 36.551 - type: mrr_at_1000 value: 36.623 - type: mrr_at_3 value: 33.399 - type: mrr_at_5 value: 34.575 - type: ndcg_at_1 value: 29.644 - type: ndcg_at_10 value: 36.521 - type: ndcg_at_100 value: 42.087 - type: ndcg_at_1000 value: 45.119 - type: ndcg_at_3 value: 32.797 - type: ndcg_at_5 value: 34.208 - type: precision_at_1 value: 29.644 - type: precision_at_10 value: 6.7 - type: precision_at_100 value: 1.374 - type: precision_at_1000 value: 0.22899999999999998 - type: precision_at_3 value: 15.152 - type: precision_at_5 value: 10.671999999999999 - type: recall_at_1 value: 24.855 - type: recall_at_10 value: 45.449 - type: recall_at_100 value: 70.921 - type: recall_at_1000 value: 90.629 - type: recall_at_3 value: 33.526 - type: recall_at_5 value: 37.848 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.781 - type: map_at_10 value: 30.020999999999997 - type: map_at_100 value: 30.948999999999998 - type: map_at_1000 value: 31.05 - type: map_at_3 value: 28.412 - type: map_at_5 value: 29.193 - type: mrr_at_1 value: 27.172 - type: mrr_at_10 value: 32.309 - type: mrr_at_100 value: 33.164 - type: mrr_at_1000 value: 33.239999999999995 - type: mrr_at_3 value: 30.775999999999996 - type: mrr_at_5 value: 31.562 - type: ndcg_at_1 value: 27.172 - type: ndcg_at_10 value: 33.178999999999995 - type: ndcg_at_100 value: 37.949 - type: ndcg_at_1000 value: 40.635 - type: ndcg_at_3 value: 30.107 - type: ndcg_at_5 value: 31.36 - type: precision_at_1 value: 27.172 - type: precision_at_10 value: 4.769 - type: precision_at_100 value: 0.769 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 12.261 - type: precision_at_5 value: 8.17 - type: recall_at_1 value: 24.781 - type: recall_at_10 value: 40.699000000000005 - type: recall_at_100 value: 62.866 - type: recall_at_1000 value: 83.11699999999999 - type: recall_at_3 value: 32.269999999999996 - type: recall_at_5 value: 35.443999999999996 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 5.2139999999999995 - type: map_at_10 value: 9.986 - type: map_at_100 value: 11.343 - type: map_at_1000 value: 11.55 - type: map_at_3 value: 7.961 - type: map_at_5 value: 8.967 - type: mrr_at_1 value: 12.052 - type: mrr_at_10 value: 20.165 - type: mrr_at_100 value: 21.317 - type: mrr_at_1000 value: 21.399 - type: mrr_at_3 value: 17.079 - type: mrr_at_5 value: 18.695 - type: ndcg_at_1 value: 12.052 - type: ndcg_at_10 value: 15.375 - type: ndcg_at_100 value: 21.858 - type: ndcg_at_1000 value: 26.145000000000003 - type: ndcg_at_3 value: 11.334 - type: ndcg_at_5 value: 12.798000000000002 - type: precision_at_1 value: 12.052 - type: precision_at_10 value: 5.16 - type: precision_at_100 value: 1.206 - type: precision_at_1000 value: 0.198 - type: precision_at_3 value: 8.73 - type: precision_at_5 value: 7.114 - type: recall_at_1 value: 5.2139999999999995 - type: recall_at_10 value: 20.669999999999998 - type: recall_at_100 value: 43.901 - type: recall_at_1000 value: 68.447 - type: recall_at_3 value: 11.049000000000001 - type: recall_at_5 value: 14.652999999999999 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.511000000000001 - type: map_at_10 value: 19.503 - type: map_at_100 value: 27.46 - type: map_at_1000 value: 29.187 - type: map_at_3 value: 14.030999999999999 - type: map_at_5 value: 16.329 - type: mrr_at_1 value: 63.74999999999999 - type: mrr_at_10 value: 73.419 - type: mrr_at_100 value: 73.691 - type: mrr_at_1000 value: 73.697 - type: mrr_at_3 value: 71.792 - type: mrr_at_5 value: 72.979 - type: ndcg_at_1 value: 53.125 - type: ndcg_at_10 value: 41.02 - type: ndcg_at_100 value: 45.407 - type: ndcg_at_1000 value: 52.68000000000001 - type: ndcg_at_3 value: 46.088 - type: ndcg_at_5 value: 43.236000000000004 - type: precision_at_1 value: 63.74999999999999 - type: precision_at_10 value: 32.35 - type: precision_at_100 value: 10.363 - type: precision_at_1000 value: 2.18 - type: precision_at_3 value: 49.667 - type: precision_at_5 value: 41.5 - type: recall_at_1 value: 8.511000000000001 - type: recall_at_10 value: 24.851 - type: recall_at_100 value: 50.745 - type: recall_at_1000 value: 73.265 - type: recall_at_3 value: 15.716 - type: recall_at_5 value: 19.256 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 49.43500000000001 - type: f1 value: 44.56288273966374 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 40.858 - type: map_at_10 value: 52.276 - type: map_at_100 value: 52.928 - type: map_at_1000 value: 52.966 - type: map_at_3 value: 49.729 - type: map_at_5 value: 51.27 - type: mrr_at_1 value: 43.624 - type: mrr_at_10 value: 55.22899999999999 - type: mrr_at_100 value: 55.823 - type: mrr_at_1000 value: 55.85 - type: mrr_at_3 value: 52.739999999999995 - type: mrr_at_5 value: 54.251000000000005 - type: ndcg_at_1 value: 43.624 - type: ndcg_at_10 value: 58.23500000000001 - type: ndcg_at_100 value: 61.315 - type: ndcg_at_1000 value: 62.20099999999999 - type: ndcg_at_3 value: 53.22 - type: ndcg_at_5 value: 55.88999999999999 - type: precision_at_1 value: 43.624 - type: precision_at_10 value: 8.068999999999999 - type: precision_at_100 value: 0.975 - type: precision_at_1000 value: 0.107 - type: precision_at_3 value: 21.752 - type: precision_at_5 value: 14.515 - type: recall_at_1 value: 40.858 - type: recall_at_10 value: 73.744 - type: recall_at_100 value: 87.667 - type: recall_at_1000 value: 94.15599999999999 - type: recall_at_3 value: 60.287 - type: recall_at_5 value: 66.703 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 17.864 - type: map_at_10 value: 28.592000000000002 - type: map_at_100 value: 30.165 - type: map_at_1000 value: 30.364 - type: map_at_3 value: 24.586 - type: map_at_5 value: 26.717000000000002 - type: mrr_at_1 value: 35.031 - type: mrr_at_10 value: 43.876 - type: mrr_at_100 value: 44.683 - type: mrr_at_1000 value: 44.736 - type: mrr_at_3 value: 40.998000000000005 - type: mrr_at_5 value: 42.595 - type: ndcg_at_1 value: 35.031 - type: ndcg_at_10 value: 36.368 - type: ndcg_at_100 value: 42.472 - type: ndcg_at_1000 value: 45.973000000000006 - type: ndcg_at_3 value: 31.915 - type: ndcg_at_5 value: 33.394 - type: precision_at_1 value: 35.031 - type: precision_at_10 value: 10.139 - type: precision_at_100 value: 1.6420000000000001 - type: precision_at_1000 value: 0.22699999999999998 - type: precision_at_3 value: 21.142 - type: precision_at_5 value: 15.772 - type: recall_at_1 value: 17.864 - type: recall_at_10 value: 43.991 - type: recall_at_100 value: 66.796 - type: recall_at_1000 value: 87.64 - type: recall_at_3 value: 28.915999999999997 - type: recall_at_5 value: 35.185 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 36.556 - type: map_at_10 value: 53.056000000000004 - type: map_at_100 value: 53.909 - type: map_at_1000 value: 53.98 - type: map_at_3 value: 49.982 - type: map_at_5 value: 51.9 - type: mrr_at_1 value: 73.113 - type: mrr_at_10 value: 79.381 - type: mrr_at_100 value: 79.60300000000001 - type: mrr_at_1000 value: 79.617 - type: mrr_at_3 value: 78.298 - type: mrr_at_5 value: 78.995 - type: ndcg_at_1 value: 73.113 - type: ndcg_at_10 value: 62.21 - type: ndcg_at_100 value: 65.242 - type: ndcg_at_1000 value: 66.667 - type: ndcg_at_3 value: 57.717 - type: ndcg_at_5 value: 60.224 - type: precision_at_1 value: 73.113 - type: precision_at_10 value: 12.842999999999998 - type: precision_at_100 value: 1.522 - type: precision_at_1000 value: 0.17099999999999999 - type: precision_at_3 value: 36.178 - type: precision_at_5 value: 23.695 - type: recall_at_1 value: 36.556 - type: recall_at_10 value: 64.213 - type: recall_at_100 value: 76.077 - type: recall_at_1000 value: 85.53699999999999 - type: recall_at_3 value: 54.266999999999996 - type: recall_at_5 value: 59.236999999999995 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 75.958 - type: ap value: 69.82869527654348 - type: f1 value: 75.89120903005633 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 23.608 - type: map_at_10 value: 36.144 - type: map_at_100 value: 37.244 - type: map_at_1000 value: 37.291999999999994 - type: map_at_3 value: 32.287 - type: map_at_5 value: 34.473 - type: mrr_at_1 value: 24.226 - type: mrr_at_10 value: 36.711 - type: mrr_at_100 value: 37.758 - type: mrr_at_1000 value: 37.8 - type: mrr_at_3 value: 32.92 - type: mrr_at_5 value: 35.104 - type: ndcg_at_1 value: 24.269 - type: ndcg_at_10 value: 43.138 - type: ndcg_at_100 value: 48.421 - type: ndcg_at_1000 value: 49.592000000000006 - type: ndcg_at_3 value: 35.269 - type: ndcg_at_5 value: 39.175 - type: precision_at_1 value: 24.269 - type: precision_at_10 value: 6.755999999999999 - type: precision_at_100 value: 0.941 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.938 - type: precision_at_5 value: 10.934000000000001 - type: recall_at_1 value: 23.608 - type: recall_at_10 value: 64.679 - type: recall_at_100 value: 89.027 - type: recall_at_1000 value: 97.91 - type: recall_at_3 value: 43.25 - type: recall_at_5 value: 52.617000000000004 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.21477428180576 - type: f1 value: 92.92502305092152 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 74.76744186046511 - type: f1 value: 59.19855520057899 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.24613315400134 - type: f1 value: 70.19950395651232 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.75857431069268 - type: f1 value: 76.5433450230191 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.525463791623604 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.28695907385136 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.068174046665224 - type: mrr value: 30.827586642840803 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.322 - type: map_at_10 value: 13.919999999999998 - type: map_at_100 value: 17.416 - type: map_at_1000 value: 18.836 - type: map_at_3 value: 10.111 - type: map_at_5 value: 11.991999999999999 - type: mrr_at_1 value: 48.297000000000004 - type: mrr_at_10 value: 57.114 - type: mrr_at_100 value: 57.713 - type: mrr_at_1000 value: 57.751 - type: mrr_at_3 value: 55.108000000000004 - type: mrr_at_5 value: 56.533 - type: ndcg_at_1 value: 46.44 - type: ndcg_at_10 value: 36.589 - type: ndcg_at_100 value: 33.202 - type: ndcg_at_1000 value: 41.668 - type: ndcg_at_3 value: 41.302 - type: ndcg_at_5 value: 39.829 - type: precision_at_1 value: 47.988 - type: precision_at_10 value: 27.059 - type: precision_at_100 value: 8.235000000000001 - type: precision_at_1000 value: 2.091 - type: precision_at_3 value: 38.184000000000005 - type: precision_at_5 value: 34.365 - type: recall_at_1 value: 6.322 - type: recall_at_10 value: 18.288 - type: recall_at_100 value: 32.580999999999996 - type: recall_at_1000 value: 63.605999999999995 - type: recall_at_3 value: 11.266 - type: recall_at_5 value: 14.69 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 36.586999999999996 - type: map_at_10 value: 52.464 - type: map_at_100 value: 53.384 - type: map_at_1000 value: 53.405 - type: map_at_3 value: 48.408 - type: map_at_5 value: 50.788999999999994 - type: mrr_at_1 value: 40.904 - type: mrr_at_10 value: 54.974000000000004 - type: mrr_at_100 value: 55.60699999999999 - type: mrr_at_1000 value: 55.623 - type: mrr_at_3 value: 51.73799999999999 - type: mrr_at_5 value: 53.638 - type: ndcg_at_1 value: 40.904 - type: ndcg_at_10 value: 59.965999999999994 - type: ndcg_at_100 value: 63.613 - type: ndcg_at_1000 value: 64.064 - type: ndcg_at_3 value: 52.486 - type: ndcg_at_5 value: 56.377 - type: precision_at_1 value: 40.904 - type: precision_at_10 value: 9.551 - type: precision_at_100 value: 1.162 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 23.552 - type: precision_at_5 value: 16.436999999999998 - type: recall_at_1 value: 36.586999999999996 - type: recall_at_10 value: 80.094 - type: recall_at_100 value: 95.515 - type: recall_at_1000 value: 98.803 - type: recall_at_3 value: 60.907 - type: recall_at_5 value: 69.817 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.422 - type: map_at_10 value: 84.113 - type: map_at_100 value: 84.744 - type: map_at_1000 value: 84.762 - type: map_at_3 value: 81.171 - type: map_at_5 value: 83.039 - type: mrr_at_1 value: 81.12 - type: mrr_at_10 value: 87.277 - type: mrr_at_100 value: 87.384 - type: mrr_at_1000 value: 87.385 - type: mrr_at_3 value: 86.315 - type: mrr_at_5 value: 86.981 - type: ndcg_at_1 value: 81.12 - type: ndcg_at_10 value: 87.92 - type: ndcg_at_100 value: 89.178 - type: ndcg_at_1000 value: 89.29899999999999 - type: ndcg_at_3 value: 85.076 - type: ndcg_at_5 value: 86.67099999999999 - type: precision_at_1 value: 81.12 - type: precision_at_10 value: 13.325999999999999 - type: precision_at_100 value: 1.524 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.16 - type: precision_at_5 value: 24.456 - type: recall_at_1 value: 70.422 - type: recall_at_10 value: 95.00800000000001 - type: recall_at_100 value: 99.38 - type: recall_at_1000 value: 99.94800000000001 - type: recall_at_3 value: 86.809 - type: recall_at_5 value: 91.334 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 48.18491891699636 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 62.190639679711914 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.478 - type: map_at_10 value: 11.268 - type: map_at_100 value: 13.129 - type: map_at_1000 value: 13.41 - type: map_at_3 value: 8.103 - type: map_at_5 value: 9.609 - type: mrr_at_1 value: 22 - type: mrr_at_10 value: 32.248 - type: mrr_at_100 value: 33.355000000000004 - type: mrr_at_1000 value: 33.42 - type: mrr_at_3 value: 29.15 - type: mrr_at_5 value: 30.785 - type: ndcg_at_1 value: 22 - type: ndcg_at_10 value: 18.990000000000002 - type: ndcg_at_100 value: 26.302999999999997 - type: ndcg_at_1000 value: 31.537 - type: ndcg_at_3 value: 18.034 - type: ndcg_at_5 value: 15.655 - type: precision_at_1 value: 22 - type: precision_at_10 value: 9.91 - type: precision_at_100 value: 2.0420000000000003 - type: precision_at_1000 value: 0.33 - type: precision_at_3 value: 16.933 - type: precision_at_5 value: 13.719999999999999 - type: recall_at_1 value: 4.478 - type: recall_at_10 value: 20.087 - type: recall_at_100 value: 41.457 - type: recall_at_1000 value: 67.10199999999999 - type: recall_at_3 value: 10.313 - type: recall_at_5 value: 13.927999999999999 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 84.27341574565806 - type: cos_sim_spearman value: 79.66419880841734 - type: euclidean_pearson value: 81.32473321838208 - type: euclidean_spearman value: 79.29828832085133 - type: manhattan_pearson value: 81.25554065883132 - type: manhattan_spearman value: 79.23275543279853 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 83.40468875905418 - type: cos_sim_spearman value: 74.2189990321174 - type: euclidean_pearson value: 80.74376966290956 - type: euclidean_spearman value: 74.97663839079335 - type: manhattan_pearson value: 80.69779331646207 - type: manhattan_spearman value: 75.00225252917613 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 82.5745290053095 - type: cos_sim_spearman value: 83.31401180333397 - type: euclidean_pearson value: 82.96500607325534 - type: euclidean_spearman value: 83.8534967935793 - type: manhattan_pearson value: 82.83112050632508 - type: manhattan_spearman value: 83.70877296557838 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 80.67833656607704 - type: cos_sim_spearman value: 78.52252410630707 - type: euclidean_pearson value: 80.071189514343 - type: euclidean_spearman value: 78.95143545742796 - type: manhattan_pearson value: 80.0128926165121 - type: manhattan_spearman value: 78.91236678732628 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.48437639980746 - type: cos_sim_spearman value: 88.34876527774259 - type: euclidean_pearson value: 87.64898081823888 - type: euclidean_spearman value: 88.58937180804213 - type: manhattan_pearson value: 87.5942417815288 - type: manhattan_spearman value: 88.53013922267687 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 82.69189187164781 - type: cos_sim_spearman value: 84.15327883572112 - type: euclidean_pearson value: 83.64202266685898 - type: euclidean_spearman value: 84.6219602318862 - type: manhattan_pearson value: 83.53256698709998 - type: manhattan_spearman value: 84.49260712904946 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.09508017611589 - type: cos_sim_spearman value: 87.23010990417097 - type: euclidean_pearson value: 87.62545569077133 - type: euclidean_spearman value: 86.71152051711714 - type: manhattan_pearson value: 87.5057154278377 - type: manhattan_spearman value: 86.60611898281267 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 61.72129893941176 - type: cos_sim_spearman value: 62.87871412069194 - type: euclidean_pearson value: 63.21077648290454 - type: euclidean_spearman value: 63.03263080805978 - type: manhattan_pearson value: 63.20740860135976 - type: manhattan_spearman value: 62.89930471802817 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.039118236799 - type: cos_sim_spearman value: 86.18102563389962 - type: euclidean_pearson value: 85.62977041471879 - type: euclidean_spearman value: 86.02478990544347 - type: manhattan_pearson value: 85.60786740521806 - type: manhattan_spearman value: 85.99546210442547 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 82.89875069737266 - type: mrr value: 95.42621322033087 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 58.660999999999994 - type: map_at_10 value: 68.738 - type: map_at_100 value: 69.33200000000001 - type: map_at_1000 value: 69.352 - type: map_at_3 value: 66.502 - type: map_at_5 value: 67.686 - type: mrr_at_1 value: 61.667 - type: mrr_at_10 value: 70.003 - type: mrr_at_100 value: 70.441 - type: mrr_at_1000 value: 70.46 - type: mrr_at_3 value: 68.278 - type: mrr_at_5 value: 69.194 - type: ndcg_at_1 value: 61.667 - type: ndcg_at_10 value: 73.083 - type: ndcg_at_100 value: 75.56 - type: ndcg_at_1000 value: 76.01400000000001 - type: ndcg_at_3 value: 69.28699999999999 - type: ndcg_at_5 value: 70.85000000000001 - type: precision_at_1 value: 61.667 - type: precision_at_10 value: 9.6 - type: precision_at_100 value: 1.087 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 27.111 - type: precision_at_5 value: 17.467 - type: recall_at_1 value: 58.660999999999994 - type: recall_at_10 value: 85.02199999999999 - type: recall_at_100 value: 95.933 - type: recall_at_1000 value: 99.333 - type: recall_at_3 value: 74.506 - type: recall_at_5 value: 78.583 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.8029702970297 - type: cos_sim_ap value: 94.87673936635738 - type: cos_sim_f1 value: 90.00502260170768 - type: cos_sim_precision value: 90.41372351160445 - type: cos_sim_recall value: 89.60000000000001 - type: dot_accuracy value: 99.57524752475247 - type: dot_ap value: 84.81717934496321 - type: dot_f1 value: 78.23026646556059 - type: dot_precision value: 78.66531850353893 - type: dot_recall value: 77.8 - type: euclidean_accuracy value: 99.8029702970297 - type: euclidean_ap value: 94.74658253135284 - type: euclidean_f1 value: 90.08470353761834 - type: euclidean_precision value: 89.77159880834161 - type: euclidean_recall value: 90.4 - type: manhattan_accuracy value: 99.8 - type: manhattan_ap value: 94.69224030742787 - type: manhattan_f1 value: 89.9502487562189 - type: manhattan_precision value: 89.50495049504951 - type: manhattan_recall value: 90.4 - type: max_accuracy value: 99.8029702970297 - type: max_ap value: 94.87673936635738 - type: max_f1 value: 90.08470353761834 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 63.906039623153035 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 32.56053830923281 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 50.15326538775145 - type: mrr value: 50.99279295051355 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.44030762047337 - type: cos_sim_spearman value: 31.00910300264562 - type: dot_pearson value: 26.88257194766013 - type: dot_spearman value: 27.646202679013577 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.247 - type: map_at_10 value: 1.9429999999999998 - type: map_at_100 value: 10.82 - type: map_at_1000 value: 25.972 - type: map_at_3 value: 0.653 - type: map_at_5 value: 1.057 - type: mrr_at_1 value: 94 - type: mrr_at_10 value: 96.333 - type: mrr_at_100 value: 96.333 - type: mrr_at_1000 value: 96.333 - type: mrr_at_3 value: 96.333 - type: mrr_at_5 value: 96.333 - type: ndcg_at_1 value: 89 - type: ndcg_at_10 value: 79.63799999999999 - type: ndcg_at_100 value: 57.961 - type: ndcg_at_1000 value: 50.733 - type: ndcg_at_3 value: 84.224 - type: ndcg_at_5 value: 82.528 - type: precision_at_1 value: 94 - type: precision_at_10 value: 84.2 - type: precision_at_100 value: 59.36 - type: precision_at_1000 value: 22.738 - type: precision_at_3 value: 88 - type: precision_at_5 value: 86.8 - type: recall_at_1 value: 0.247 - type: recall_at_10 value: 2.131 - type: recall_at_100 value: 14.035 - type: recall_at_1000 value: 47.457 - type: recall_at_3 value: 0.6779999999999999 - type: recall_at_5 value: 1.124 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.603 - type: map_at_10 value: 11.667 - type: map_at_100 value: 16.474 - type: map_at_1000 value: 18.074 - type: map_at_3 value: 6.03 - type: map_at_5 value: 8.067 - type: mrr_at_1 value: 34.694 - type: mrr_at_10 value: 51.063 - type: mrr_at_100 value: 51.908 - type: mrr_at_1000 value: 51.908 - type: mrr_at_3 value: 47.959 - type: mrr_at_5 value: 49.694 - type: ndcg_at_1 value: 32.653 - type: ndcg_at_10 value: 28.305000000000003 - type: ndcg_at_100 value: 35.311 - type: ndcg_at_1000 value: 47.644999999999996 - type: ndcg_at_3 value: 32.187 - type: ndcg_at_5 value: 29.134999999999998 - type: precision_at_1 value: 34.694 - type: precision_at_10 value: 26.122 - type: precision_at_100 value: 6.755 - type: precision_at_1000 value: 1.467 - type: precision_at_3 value: 34.694 - type: precision_at_5 value: 30.203999999999997 - type: recall_at_1 value: 2.603 - type: recall_at_10 value: 18.716 - type: recall_at_100 value: 42.512 - type: recall_at_1000 value: 79.32000000000001 - type: recall_at_3 value: 7.59 - type: recall_at_5 value: 10.949 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 74.117 - type: ap value: 15.89357321699319 - type: f1 value: 57.14385866369257 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.38370118845502 - type: f1 value: 61.67038693866553 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 42.57754941537969 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.1775049174465 - type: cos_sim_ap value: 74.3994879581554 - type: cos_sim_f1 value: 69.32903671308551 - type: cos_sim_precision value: 61.48193508879363 - type: cos_sim_recall value: 79.47229551451187 - type: dot_accuracy value: 81.65345413363534 - type: dot_ap value: 59.690898346685096 - type: dot_f1 value: 57.27622826467499 - type: dot_precision value: 51.34965473948525 - type: dot_recall value: 64.74934036939314 - type: euclidean_accuracy value: 86.04637301066937 - type: euclidean_ap value: 74.33009001775268 - type: euclidean_f1 value: 69.2458374142997 - type: euclidean_precision value: 64.59570580173595 - type: euclidean_recall value: 74.6174142480211 - type: manhattan_accuracy value: 86.11193896405793 - type: manhattan_ap value: 74.2964140130421 - type: manhattan_f1 value: 69.11601528788066 - type: manhattan_precision value: 64.86924323073363 - type: manhattan_recall value: 73.95778364116094 - type: max_accuracy value: 86.1775049174465 - type: max_ap value: 74.3994879581554 - type: max_f1 value: 69.32903671308551 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.01501921061823 - type: cos_sim_ap value: 85.97819287477351 - type: cos_sim_f1 value: 78.33882858518875 - type: cos_sim_precision value: 75.49446626204926 - type: cos_sim_recall value: 81.40591315060055 - type: dot_accuracy value: 86.47494857763806 - type: dot_ap value: 78.77420360340282 - type: dot_f1 value: 73.06433247936238 - type: dot_precision value: 67.92140777983595 - type: dot_recall value: 79.04989220819218 - type: euclidean_accuracy value: 88.7297706368611 - type: euclidean_ap value: 85.61550568529317 - type: euclidean_f1 value: 77.84805525263539 - type: euclidean_precision value: 73.73639994491117 - type: euclidean_recall value: 82.44533415460425 - type: manhattan_accuracy value: 88.75111576823068 - type: manhattan_ap value: 85.58701671476263 - type: manhattan_f1 value: 77.70169909067856 - type: manhattan_precision value: 73.37666780704755 - type: manhattan_recall value: 82.5685247921158 - type: max_accuracy value: 89.01501921061823 - type: max_ap value: 85.97819287477351 - type: max_f1 value: 78.33882858518875 language: - en license: mit --- ## E5-base **News (May 2023): please switch to [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2), which has better performance and same method of usage.** [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 This model has 12 layers and the embedding size is 768. ## Usage Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ". # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."] tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-base') model = AutoModel.from_pretrained('intfloat/e5-base') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Training Details Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf). ## Benchmark Evaluation Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). ## Support for Sentence Transformers Below is an example for usage with sentence_transformers. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/e5-base') input_texts = [ 'query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] embeddings = model.encode(input_texts, normalize_embeddings=True) ``` Package requirements `pip install sentence_transformers~=2.2.2` Contributors: [michaelfeil](https://huggingface.co/michaelfeil) ## FAQ **1. Do I need to add the prefix "query: " and "passage: " to input texts?** Yes, this is how the model is trained, otherwise you will see a performance degradation. Here are some rules of thumb: - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. - Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval. - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. **2. Why are my reproduced results slightly different from reported in the model card?** Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue. ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} } ``` ## Limitations This model only works for English texts. Long texts will be truncated to at most 512 tokens.
intfloat/e5-small
intfloat
2023-08-07T04:58:08Z
56,836
41
sentence-transformers
[ "sentence-transformers", "pytorch", "onnx", "safetensors", "bert", "mteb", "Sentence Transformers", "sentence-similarity", "en", "arxiv:2212.03533", "arxiv:2104.08663", "arxiv:2210.07316", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-07T06:48:03Z
--- tags: - mteb - Sentence Transformers - sentence-similarity - sentence-transformers model-index: - name: e5-small results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 76.22388059701493 - type: ap value: 40.27466219523129 - type: f1 value: 70.60533006025108 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 87.525775 - type: ap value: 83.51063993897611 - type: f1 value: 87.49342736805572 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 42.611999999999995 - type: f1 value: 42.05088045932892 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 23.826 - type: map_at_10 value: 38.269 - type: map_at_100 value: 39.322 - type: map_at_1000 value: 39.344 - type: map_at_3 value: 33.428000000000004 - type: map_at_5 value: 36.063 - type: mrr_at_1 value: 24.253 - type: mrr_at_10 value: 38.425 - type: mrr_at_100 value: 39.478 - type: mrr_at_1000 value: 39.5 - type: mrr_at_3 value: 33.606 - type: mrr_at_5 value: 36.195 - type: ndcg_at_1 value: 23.826 - type: ndcg_at_10 value: 46.693 - type: ndcg_at_100 value: 51.469 - type: ndcg_at_1000 value: 52.002 - type: ndcg_at_3 value: 36.603 - type: ndcg_at_5 value: 41.365 - type: precision_at_1 value: 23.826 - type: precision_at_10 value: 7.383000000000001 - type: precision_at_100 value: 0.9530000000000001 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 15.268 - type: precision_at_5 value: 11.479000000000001 - type: recall_at_1 value: 23.826 - type: recall_at_10 value: 73.82600000000001 - type: recall_at_100 value: 95.306 - type: recall_at_1000 value: 99.431 - type: recall_at_3 value: 45.804 - type: recall_at_5 value: 57.397 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 44.13995374767436 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 37.13950072624313 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 59.35843292105327 - type: mrr value: 73.72312359846987 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 84.55140418324174 - type: cos_sim_spearman value: 84.21637675860022 - type: euclidean_pearson value: 81.26069614610006 - type: euclidean_spearman value: 83.25069210421785 - type: manhattan_pearson value: 80.17441422581014 - type: manhattan_spearman value: 81.87596198487877 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 81.87337662337661 - type: f1 value: 81.76647866926402 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 35.80600542614507 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 31.86321613256603 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.054 - type: map_at_10 value: 40.699999999999996 - type: map_at_100 value: 41.818 - type: map_at_1000 value: 41.959999999999994 - type: map_at_3 value: 37.742 - type: map_at_5 value: 39.427 - type: mrr_at_1 value: 38.769999999999996 - type: mrr_at_10 value: 46.150000000000006 - type: mrr_at_100 value: 46.865 - type: mrr_at_1000 value: 46.925 - type: mrr_at_3 value: 43.705 - type: mrr_at_5 value: 45.214999999999996 - type: ndcg_at_1 value: 38.769999999999996 - type: ndcg_at_10 value: 45.778 - type: ndcg_at_100 value: 50.38 - type: ndcg_at_1000 value: 52.922999999999995 - type: ndcg_at_3 value: 41.597 - type: ndcg_at_5 value: 43.631 - type: precision_at_1 value: 38.769999999999996 - type: precision_at_10 value: 8.269 - type: precision_at_100 value: 1.278 - type: precision_at_1000 value: 0.178 - type: precision_at_3 value: 19.266 - type: precision_at_5 value: 13.705 - type: recall_at_1 value: 32.054 - type: recall_at_10 value: 54.947 - type: recall_at_100 value: 74.79599999999999 - type: recall_at_1000 value: 91.40899999999999 - type: recall_at_3 value: 42.431000000000004 - type: recall_at_5 value: 48.519 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.035 - type: map_at_10 value: 38.007000000000005 - type: map_at_100 value: 39.125 - type: map_at_1000 value: 39.251999999999995 - type: map_at_3 value: 35.77 - type: map_at_5 value: 37.057 - type: mrr_at_1 value: 36.497 - type: mrr_at_10 value: 44.077 - type: mrr_at_100 value: 44.743 - type: mrr_at_1000 value: 44.79 - type: mrr_at_3 value: 42.123 - type: mrr_at_5 value: 43.308 - type: ndcg_at_1 value: 36.497 - type: ndcg_at_10 value: 42.986000000000004 - type: ndcg_at_100 value: 47.323 - type: ndcg_at_1000 value: 49.624 - type: ndcg_at_3 value: 39.805 - type: ndcg_at_5 value: 41.286 - type: precision_at_1 value: 36.497 - type: precision_at_10 value: 7.8340000000000005 - type: precision_at_100 value: 1.269 - type: precision_at_1000 value: 0.178 - type: precision_at_3 value: 19.023 - type: precision_at_5 value: 13.248 - type: recall_at_1 value: 29.035 - type: recall_at_10 value: 51.06 - type: recall_at_100 value: 69.64099999999999 - type: recall_at_1000 value: 84.49 - type: recall_at_3 value: 41.333999999999996 - type: recall_at_5 value: 45.663 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 37.239 - type: map_at_10 value: 47.873 - type: map_at_100 value: 48.842999999999996 - type: map_at_1000 value: 48.913000000000004 - type: map_at_3 value: 45.050000000000004 - type: map_at_5 value: 46.498 - type: mrr_at_1 value: 42.508 - type: mrr_at_10 value: 51.44 - type: mrr_at_100 value: 52.087 - type: mrr_at_1000 value: 52.129999999999995 - type: mrr_at_3 value: 49.164 - type: mrr_at_5 value: 50.343 - type: ndcg_at_1 value: 42.508 - type: ndcg_at_10 value: 53.31399999999999 - type: ndcg_at_100 value: 57.245000000000005 - type: ndcg_at_1000 value: 58.794000000000004 - type: ndcg_at_3 value: 48.295 - type: ndcg_at_5 value: 50.415 - type: precision_at_1 value: 42.508 - type: precision_at_10 value: 8.458 - type: precision_at_100 value: 1.133 - type: precision_at_1000 value: 0.132 - type: precision_at_3 value: 21.191 - type: precision_at_5 value: 14.307 - type: recall_at_1 value: 37.239 - type: recall_at_10 value: 65.99000000000001 - type: recall_at_100 value: 82.99499999999999 - type: recall_at_1000 value: 94.128 - type: recall_at_3 value: 52.382 - type: recall_at_5 value: 57.648999999999994 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.039 - type: map_at_10 value: 29.694 - type: map_at_100 value: 30.587999999999997 - type: map_at_1000 value: 30.692999999999998 - type: map_at_3 value: 27.708 - type: map_at_5 value: 28.774 - type: mrr_at_1 value: 24.633 - type: mrr_at_10 value: 31.478 - type: mrr_at_100 value: 32.299 - type: mrr_at_1000 value: 32.381 - type: mrr_at_3 value: 29.435 - type: mrr_at_5 value: 30.446 - type: ndcg_at_1 value: 24.633 - type: ndcg_at_10 value: 33.697 - type: ndcg_at_100 value: 38.080000000000005 - type: ndcg_at_1000 value: 40.812 - type: ndcg_at_3 value: 29.654000000000003 - type: ndcg_at_5 value: 31.474000000000004 - type: precision_at_1 value: 24.633 - type: precision_at_10 value: 5.0729999999999995 - type: precision_at_100 value: 0.753 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 12.279 - type: precision_at_5 value: 8.452 - type: recall_at_1 value: 23.039 - type: recall_at_10 value: 44.275999999999996 - type: recall_at_100 value: 64.4 - type: recall_at_1000 value: 85.135 - type: recall_at_3 value: 33.394 - type: recall_at_5 value: 37.687 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 13.594999999999999 - type: map_at_10 value: 19.933999999999997 - type: map_at_100 value: 20.966 - type: map_at_1000 value: 21.087 - type: map_at_3 value: 17.749000000000002 - type: map_at_5 value: 19.156000000000002 - type: mrr_at_1 value: 17.662 - type: mrr_at_10 value: 24.407 - type: mrr_at_100 value: 25.385 - type: mrr_at_1000 value: 25.465 - type: mrr_at_3 value: 22.056 - type: mrr_at_5 value: 23.630000000000003 - type: ndcg_at_1 value: 17.662 - type: ndcg_at_10 value: 24.391 - type: ndcg_at_100 value: 29.681 - type: ndcg_at_1000 value: 32.923 - type: ndcg_at_3 value: 20.271 - type: ndcg_at_5 value: 22.621 - type: precision_at_1 value: 17.662 - type: precision_at_10 value: 4.44 - type: precision_at_100 value: 0.8200000000000001 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 9.577 - type: precision_at_5 value: 7.313 - type: recall_at_1 value: 13.594999999999999 - type: recall_at_10 value: 33.976 - type: recall_at_100 value: 57.43000000000001 - type: recall_at_1000 value: 80.958 - type: recall_at_3 value: 22.897000000000002 - type: recall_at_5 value: 28.714000000000002 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.683 - type: map_at_10 value: 35.068 - type: map_at_100 value: 36.311 - type: map_at_1000 value: 36.436 - type: map_at_3 value: 32.371 - type: map_at_5 value: 33.761 - type: mrr_at_1 value: 32.435 - type: mrr_at_10 value: 40.721000000000004 - type: mrr_at_100 value: 41.535 - type: mrr_at_1000 value: 41.593 - type: mrr_at_3 value: 38.401999999999994 - type: mrr_at_5 value: 39.567 - type: ndcg_at_1 value: 32.435 - type: ndcg_at_10 value: 40.538000000000004 - type: ndcg_at_100 value: 45.963 - type: ndcg_at_1000 value: 48.400999999999996 - type: ndcg_at_3 value: 36.048 - type: ndcg_at_5 value: 37.899 - type: precision_at_1 value: 32.435 - type: precision_at_10 value: 7.1129999999999995 - type: precision_at_100 value: 1.162 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 16.683 - type: precision_at_5 value: 11.684 - type: recall_at_1 value: 26.683 - type: recall_at_10 value: 51.517 - type: recall_at_100 value: 74.553 - type: recall_at_1000 value: 90.649 - type: recall_at_3 value: 38.495000000000005 - type: recall_at_5 value: 43.495 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.186 - type: map_at_10 value: 31.972 - type: map_at_100 value: 33.117000000000004 - type: map_at_1000 value: 33.243 - type: map_at_3 value: 29.423 - type: map_at_5 value: 30.847 - type: mrr_at_1 value: 29.794999999999998 - type: mrr_at_10 value: 36.767 - type: mrr_at_100 value: 37.645 - type: mrr_at_1000 value: 37.716 - type: mrr_at_3 value: 34.513 - type: mrr_at_5 value: 35.791000000000004 - type: ndcg_at_1 value: 29.794999999999998 - type: ndcg_at_10 value: 36.786 - type: ndcg_at_100 value: 41.94 - type: ndcg_at_1000 value: 44.830999999999996 - type: ndcg_at_3 value: 32.504 - type: ndcg_at_5 value: 34.404 - type: precision_at_1 value: 29.794999999999998 - type: precision_at_10 value: 6.518 - type: precision_at_100 value: 1.0659999999999998 - type: precision_at_1000 value: 0.149 - type: precision_at_3 value: 15.296999999999999 - type: precision_at_5 value: 10.731 - type: recall_at_1 value: 24.186 - type: recall_at_10 value: 46.617 - type: recall_at_100 value: 68.75 - type: recall_at_1000 value: 88.864 - type: recall_at_3 value: 34.199 - type: recall_at_5 value: 39.462 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.22083333333333 - type: map_at_10 value: 31.606666666666662 - type: map_at_100 value: 32.6195 - type: map_at_1000 value: 32.739999999999995 - type: map_at_3 value: 29.37825 - type: map_at_5 value: 30.596083333333336 - type: mrr_at_1 value: 28.607916666666668 - type: mrr_at_10 value: 35.54591666666666 - type: mrr_at_100 value: 36.33683333333333 - type: mrr_at_1000 value: 36.40624999999999 - type: mrr_at_3 value: 33.526250000000005 - type: mrr_at_5 value: 34.6605 - type: ndcg_at_1 value: 28.607916666666668 - type: ndcg_at_10 value: 36.07966666666667 - type: ndcg_at_100 value: 40.73308333333333 - type: ndcg_at_1000 value: 43.40666666666666 - type: ndcg_at_3 value: 32.23525 - type: ndcg_at_5 value: 33.97083333333333 - type: precision_at_1 value: 28.607916666666668 - type: precision_at_10 value: 6.120333333333335 - type: precision_at_100 value: 0.9921666666666668 - type: precision_at_1000 value: 0.14091666666666666 - type: precision_at_3 value: 14.54975 - type: precision_at_5 value: 10.153166666666667 - type: recall_at_1 value: 24.22083333333333 - type: recall_at_10 value: 45.49183333333334 - type: recall_at_100 value: 66.28133333333332 - type: recall_at_1000 value: 85.16541666666667 - type: recall_at_3 value: 34.6485 - type: recall_at_5 value: 39.229749999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 21.842 - type: map_at_10 value: 27.573999999999998 - type: map_at_100 value: 28.410999999999998 - type: map_at_1000 value: 28.502 - type: map_at_3 value: 25.921 - type: map_at_5 value: 26.888 - type: mrr_at_1 value: 24.08 - type: mrr_at_10 value: 29.915999999999997 - type: mrr_at_100 value: 30.669 - type: mrr_at_1000 value: 30.746000000000002 - type: mrr_at_3 value: 28.349000000000004 - type: mrr_at_5 value: 29.246 - type: ndcg_at_1 value: 24.08 - type: ndcg_at_10 value: 30.898999999999997 - type: ndcg_at_100 value: 35.272999999999996 - type: ndcg_at_1000 value: 37.679 - type: ndcg_at_3 value: 27.881 - type: ndcg_at_5 value: 29.432000000000002 - type: precision_at_1 value: 24.08 - type: precision_at_10 value: 4.678 - type: precision_at_100 value: 0.744 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 11.860999999999999 - type: precision_at_5 value: 8.16 - type: recall_at_1 value: 21.842 - type: recall_at_10 value: 38.66 - type: recall_at_100 value: 59.169000000000004 - type: recall_at_1000 value: 76.887 - type: recall_at_3 value: 30.532999999999998 - type: recall_at_5 value: 34.354 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.145 - type: map_at_10 value: 22.729 - type: map_at_100 value: 23.574 - type: map_at_1000 value: 23.695 - type: map_at_3 value: 21.044 - type: map_at_5 value: 21.981 - type: mrr_at_1 value: 20.888 - type: mrr_at_10 value: 26.529000000000003 - type: mrr_at_100 value: 27.308 - type: mrr_at_1000 value: 27.389000000000003 - type: mrr_at_3 value: 24.868000000000002 - type: mrr_at_5 value: 25.825 - type: ndcg_at_1 value: 20.888 - type: ndcg_at_10 value: 26.457000000000004 - type: ndcg_at_100 value: 30.764000000000003 - type: ndcg_at_1000 value: 33.825 - type: ndcg_at_3 value: 23.483999999999998 - type: ndcg_at_5 value: 24.836 - type: precision_at_1 value: 20.888 - type: precision_at_10 value: 4.58 - type: precision_at_100 value: 0.784 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 10.874 - type: precision_at_5 value: 7.639 - type: recall_at_1 value: 17.145 - type: recall_at_10 value: 33.938 - type: recall_at_100 value: 53.672 - type: recall_at_1000 value: 76.023 - type: recall_at_3 value: 25.363000000000003 - type: recall_at_5 value: 29.023 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.275 - type: map_at_10 value: 30.438 - type: map_at_100 value: 31.489 - type: map_at_1000 value: 31.601000000000003 - type: map_at_3 value: 28.647 - type: map_at_5 value: 29.660999999999998 - type: mrr_at_1 value: 28.077999999999996 - type: mrr_at_10 value: 34.098 - type: mrr_at_100 value: 35.025 - type: mrr_at_1000 value: 35.109 - type: mrr_at_3 value: 32.4 - type: mrr_at_5 value: 33.379999999999995 - type: ndcg_at_1 value: 28.077999999999996 - type: ndcg_at_10 value: 34.271 - type: ndcg_at_100 value: 39.352 - type: ndcg_at_1000 value: 42.199 - type: ndcg_at_3 value: 30.978 - type: ndcg_at_5 value: 32.498 - type: precision_at_1 value: 28.077999999999996 - type: precision_at_10 value: 5.345 - type: precision_at_100 value: 0.897 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 13.526 - type: precision_at_5 value: 9.16 - type: recall_at_1 value: 24.275 - type: recall_at_10 value: 42.362 - type: recall_at_100 value: 64.461 - type: recall_at_1000 value: 84.981 - type: recall_at_3 value: 33.249 - type: recall_at_5 value: 37.214999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.358 - type: map_at_10 value: 30.062 - type: map_at_100 value: 31.189 - type: map_at_1000 value: 31.386999999999997 - type: map_at_3 value: 27.672 - type: map_at_5 value: 28.76 - type: mrr_at_1 value: 26.877000000000002 - type: mrr_at_10 value: 33.948 - type: mrr_at_100 value: 34.746 - type: mrr_at_1000 value: 34.816 - type: mrr_at_3 value: 31.884 - type: mrr_at_5 value: 33.001000000000005 - type: ndcg_at_1 value: 26.877000000000002 - type: ndcg_at_10 value: 34.977000000000004 - type: ndcg_at_100 value: 39.753 - type: ndcg_at_1000 value: 42.866 - type: ndcg_at_3 value: 30.956 - type: ndcg_at_5 value: 32.381 - type: precision_at_1 value: 26.877000000000002 - type: precision_at_10 value: 6.7 - type: precision_at_100 value: 1.287 - type: precision_at_1000 value: 0.215 - type: precision_at_3 value: 14.360999999999999 - type: precision_at_5 value: 10.119 - type: recall_at_1 value: 22.358 - type: recall_at_10 value: 44.183 - type: recall_at_100 value: 67.14 - type: recall_at_1000 value: 87.53999999999999 - type: recall_at_3 value: 32.79 - type: recall_at_5 value: 36.829 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 19.198999999999998 - type: map_at_10 value: 25.229000000000003 - type: map_at_100 value: 26.003 - type: map_at_1000 value: 26.111 - type: map_at_3 value: 23.442 - type: map_at_5 value: 24.343 - type: mrr_at_1 value: 21.072 - type: mrr_at_10 value: 27.02 - type: mrr_at_100 value: 27.735 - type: mrr_at_1000 value: 27.815 - type: mrr_at_3 value: 25.416 - type: mrr_at_5 value: 26.173999999999996 - type: ndcg_at_1 value: 21.072 - type: ndcg_at_10 value: 28.862 - type: ndcg_at_100 value: 33.043 - type: ndcg_at_1000 value: 36.003 - type: ndcg_at_3 value: 25.35 - type: ndcg_at_5 value: 26.773000000000003 - type: precision_at_1 value: 21.072 - type: precision_at_10 value: 4.436 - type: precision_at_100 value: 0.713 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 10.659 - type: precision_at_5 value: 7.32 - type: recall_at_1 value: 19.198999999999998 - type: recall_at_10 value: 38.376 - type: recall_at_100 value: 58.36900000000001 - type: recall_at_1000 value: 80.92099999999999 - type: recall_at_3 value: 28.715000000000003 - type: recall_at_5 value: 32.147 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 5.9319999999999995 - type: map_at_10 value: 10.483 - type: map_at_100 value: 11.97 - type: map_at_1000 value: 12.171999999999999 - type: map_at_3 value: 8.477 - type: map_at_5 value: 9.495000000000001 - type: mrr_at_1 value: 13.094 - type: mrr_at_10 value: 21.282 - type: mrr_at_100 value: 22.556 - type: mrr_at_1000 value: 22.628999999999998 - type: mrr_at_3 value: 18.218999999999998 - type: mrr_at_5 value: 19.900000000000002 - type: ndcg_at_1 value: 13.094 - type: ndcg_at_10 value: 15.811 - type: ndcg_at_100 value: 23.035 - type: ndcg_at_1000 value: 27.089999999999996 - type: ndcg_at_3 value: 11.905000000000001 - type: ndcg_at_5 value: 13.377 - type: precision_at_1 value: 13.094 - type: precision_at_10 value: 5.225 - type: precision_at_100 value: 1.2970000000000002 - type: precision_at_1000 value: 0.203 - type: precision_at_3 value: 8.86 - type: precision_at_5 value: 7.309 - type: recall_at_1 value: 5.9319999999999995 - type: recall_at_10 value: 20.305 - type: recall_at_100 value: 46.314 - type: recall_at_1000 value: 69.612 - type: recall_at_3 value: 11.21 - type: recall_at_5 value: 14.773 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.674 - type: map_at_10 value: 17.822 - type: map_at_100 value: 24.794 - type: map_at_1000 value: 26.214 - type: map_at_3 value: 12.690999999999999 - type: map_at_5 value: 15.033 - type: mrr_at_1 value: 61.75000000000001 - type: mrr_at_10 value: 71.58 - type: mrr_at_100 value: 71.923 - type: mrr_at_1000 value: 71.932 - type: mrr_at_3 value: 70.125 - type: mrr_at_5 value: 71.038 - type: ndcg_at_1 value: 51 - type: ndcg_at_10 value: 38.637 - type: ndcg_at_100 value: 42.398 - type: ndcg_at_1000 value: 48.962 - type: ndcg_at_3 value: 43.29 - type: ndcg_at_5 value: 40.763 - type: precision_at_1 value: 61.75000000000001 - type: precision_at_10 value: 30.125 - type: precision_at_100 value: 9.53 - type: precision_at_1000 value: 1.9619999999999997 - type: precision_at_3 value: 45.583 - type: precision_at_5 value: 38.95 - type: recall_at_1 value: 8.674 - type: recall_at_10 value: 23.122 - type: recall_at_100 value: 47.46 - type: recall_at_1000 value: 67.662 - type: recall_at_3 value: 13.946 - type: recall_at_5 value: 17.768 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 46.86000000000001 - type: f1 value: 41.343580452760776 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 36.609 - type: map_at_10 value: 47.552 - type: map_at_100 value: 48.283 - type: map_at_1000 value: 48.321 - type: map_at_3 value: 44.869 - type: map_at_5 value: 46.509 - type: mrr_at_1 value: 39.214 - type: mrr_at_10 value: 50.434999999999995 - type: mrr_at_100 value: 51.122 - type: mrr_at_1000 value: 51.151 - type: mrr_at_3 value: 47.735 - type: mrr_at_5 value: 49.394 - type: ndcg_at_1 value: 39.214 - type: ndcg_at_10 value: 53.52400000000001 - type: ndcg_at_100 value: 56.997 - type: ndcg_at_1000 value: 57.975 - type: ndcg_at_3 value: 48.173 - type: ndcg_at_5 value: 51.05800000000001 - type: precision_at_1 value: 39.214 - type: precision_at_10 value: 7.573 - type: precision_at_100 value: 0.9440000000000001 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 19.782 - type: precision_at_5 value: 13.453000000000001 - type: recall_at_1 value: 36.609 - type: recall_at_10 value: 69.247 - type: recall_at_100 value: 84.99600000000001 - type: recall_at_1000 value: 92.40899999999999 - type: recall_at_3 value: 54.856 - type: recall_at_5 value: 61.797000000000004 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 16.466 - type: map_at_10 value: 27.060000000000002 - type: map_at_100 value: 28.511999999999997 - type: map_at_1000 value: 28.693 - type: map_at_3 value: 22.777 - type: map_at_5 value: 25.086000000000002 - type: mrr_at_1 value: 32.716 - type: mrr_at_10 value: 41.593999999999994 - type: mrr_at_100 value: 42.370000000000005 - type: mrr_at_1000 value: 42.419000000000004 - type: mrr_at_3 value: 38.143 - type: mrr_at_5 value: 40.288000000000004 - type: ndcg_at_1 value: 32.716 - type: ndcg_at_10 value: 34.795 - type: ndcg_at_100 value: 40.58 - type: ndcg_at_1000 value: 43.993 - type: ndcg_at_3 value: 29.573 - type: ndcg_at_5 value: 31.583 - type: precision_at_1 value: 32.716 - type: precision_at_10 value: 9.937999999999999 - type: precision_at_100 value: 1.585 - type: precision_at_1000 value: 0.22 - type: precision_at_3 value: 19.496 - type: precision_at_5 value: 15.247 - type: recall_at_1 value: 16.466 - type: recall_at_10 value: 42.886 - type: recall_at_100 value: 64.724 - type: recall_at_1000 value: 85.347 - type: recall_at_3 value: 26.765 - type: recall_at_5 value: 33.603 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 33.025 - type: map_at_10 value: 47.343 - type: map_at_100 value: 48.207 - type: map_at_1000 value: 48.281 - type: map_at_3 value: 44.519 - type: map_at_5 value: 46.217000000000006 - type: mrr_at_1 value: 66.05 - type: mrr_at_10 value: 72.94699999999999 - type: mrr_at_100 value: 73.289 - type: mrr_at_1000 value: 73.30499999999999 - type: mrr_at_3 value: 71.686 - type: mrr_at_5 value: 72.491 - type: ndcg_at_1 value: 66.05 - type: ndcg_at_10 value: 56.338 - type: ndcg_at_100 value: 59.599999999999994 - type: ndcg_at_1000 value: 61.138000000000005 - type: ndcg_at_3 value: 52.034000000000006 - type: ndcg_at_5 value: 54.352000000000004 - type: precision_at_1 value: 66.05 - type: precision_at_10 value: 11.693000000000001 - type: precision_at_100 value: 1.425 - type: precision_at_1000 value: 0.163 - type: precision_at_3 value: 32.613 - type: precision_at_5 value: 21.401999999999997 - type: recall_at_1 value: 33.025 - type: recall_at_10 value: 58.467 - type: recall_at_100 value: 71.242 - type: recall_at_1000 value: 81.452 - type: recall_at_3 value: 48.92 - type: recall_at_5 value: 53.504 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 75.5492 - type: ap value: 69.42911637216271 - type: f1 value: 75.39113704261024 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 23.173 - type: map_at_10 value: 35.453 - type: map_at_100 value: 36.573 - type: map_at_1000 value: 36.620999999999995 - type: map_at_3 value: 31.655 - type: map_at_5 value: 33.823 - type: mrr_at_1 value: 23.868000000000002 - type: mrr_at_10 value: 36.085 - type: mrr_at_100 value: 37.15 - type: mrr_at_1000 value: 37.193 - type: mrr_at_3 value: 32.376 - type: mrr_at_5 value: 34.501 - type: ndcg_at_1 value: 23.854 - type: ndcg_at_10 value: 42.33 - type: ndcg_at_100 value: 47.705999999999996 - type: ndcg_at_1000 value: 48.91 - type: ndcg_at_3 value: 34.604 - type: ndcg_at_5 value: 38.473 - type: precision_at_1 value: 23.854 - type: precision_at_10 value: 6.639 - type: precision_at_100 value: 0.932 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.685 - type: precision_at_5 value: 10.782 - type: recall_at_1 value: 23.173 - type: recall_at_10 value: 63.441 - type: recall_at_100 value: 88.25 - type: recall_at_1000 value: 97.438 - type: recall_at_3 value: 42.434 - type: recall_at_5 value: 51.745 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 92.05426356589147 - type: f1 value: 91.88068588063942 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 73.23985408116735 - type: f1 value: 55.858906745287506 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.21923335574984 - type: f1 value: 70.0174116204253 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.77673167451245 - type: f1 value: 75.44811354778666 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.340414710728737 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.196676760061578 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 29.564149683482206 - type: mrr value: 30.28995474250486 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.93 - type: map_at_10 value: 12.828000000000001 - type: map_at_100 value: 15.501000000000001 - type: map_at_1000 value: 16.791 - type: map_at_3 value: 9.727 - type: map_at_5 value: 11.318999999999999 - type: mrr_at_1 value: 47.678 - type: mrr_at_10 value: 55.893 - type: mrr_at_100 value: 56.491 - type: mrr_at_1000 value: 56.53 - type: mrr_at_3 value: 54.386 - type: mrr_at_5 value: 55.516 - type: ndcg_at_1 value: 45.975 - type: ndcg_at_10 value: 33.928999999999995 - type: ndcg_at_100 value: 30.164 - type: ndcg_at_1000 value: 38.756 - type: ndcg_at_3 value: 41.077000000000005 - type: ndcg_at_5 value: 38.415 - type: precision_at_1 value: 47.678 - type: precision_at_10 value: 24.365000000000002 - type: precision_at_100 value: 7.344 - type: precision_at_1000 value: 1.994 - type: precision_at_3 value: 38.184000000000005 - type: precision_at_5 value: 33.003 - type: recall_at_1 value: 5.93 - type: recall_at_10 value: 16.239 - type: recall_at_100 value: 28.782999999999998 - type: recall_at_1000 value: 60.11 - type: recall_at_3 value: 10.700999999999999 - type: recall_at_5 value: 13.584 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 36.163000000000004 - type: map_at_10 value: 51.520999999999994 - type: map_at_100 value: 52.449 - type: map_at_1000 value: 52.473000000000006 - type: map_at_3 value: 47.666 - type: map_at_5 value: 50.043000000000006 - type: mrr_at_1 value: 40.266999999999996 - type: mrr_at_10 value: 54.074 - type: mrr_at_100 value: 54.722 - type: mrr_at_1000 value: 54.739000000000004 - type: mrr_at_3 value: 51.043000000000006 - type: mrr_at_5 value: 52.956 - type: ndcg_at_1 value: 40.238 - type: ndcg_at_10 value: 58.73199999999999 - type: ndcg_at_100 value: 62.470000000000006 - type: ndcg_at_1000 value: 63.083999999999996 - type: ndcg_at_3 value: 51.672 - type: ndcg_at_5 value: 55.564 - type: precision_at_1 value: 40.238 - type: precision_at_10 value: 9.279 - type: precision_at_100 value: 1.139 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 23.078000000000003 - type: precision_at_5 value: 16.176 - type: recall_at_1 value: 36.163000000000004 - type: recall_at_10 value: 77.88199999999999 - type: recall_at_100 value: 93.83399999999999 - type: recall_at_1000 value: 98.465 - type: recall_at_3 value: 59.857000000000006 - type: recall_at_5 value: 68.73599999999999 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.344 - type: map_at_10 value: 83.907 - type: map_at_100 value: 84.536 - type: map_at_1000 value: 84.557 - type: map_at_3 value: 80.984 - type: map_at_5 value: 82.844 - type: mrr_at_1 value: 81.02000000000001 - type: mrr_at_10 value: 87.158 - type: mrr_at_100 value: 87.268 - type: mrr_at_1000 value: 87.26899999999999 - type: mrr_at_3 value: 86.17 - type: mrr_at_5 value: 86.87 - type: ndcg_at_1 value: 81.02000000000001 - type: ndcg_at_10 value: 87.70700000000001 - type: ndcg_at_100 value: 89.004 - type: ndcg_at_1000 value: 89.139 - type: ndcg_at_3 value: 84.841 - type: ndcg_at_5 value: 86.455 - type: precision_at_1 value: 81.02000000000001 - type: precision_at_10 value: 13.248999999999999 - type: precision_at_100 value: 1.516 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 36.963 - type: precision_at_5 value: 24.33 - type: recall_at_1 value: 70.344 - type: recall_at_10 value: 94.75099999999999 - type: recall_at_100 value: 99.30499999999999 - type: recall_at_1000 value: 99.928 - type: recall_at_3 value: 86.506 - type: recall_at_5 value: 91.083 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 42.873718018378305 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 56.39477366450528 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 3.868 - type: map_at_10 value: 9.611 - type: map_at_100 value: 11.087 - type: map_at_1000 value: 11.332 - type: map_at_3 value: 6.813 - type: map_at_5 value: 8.233 - type: mrr_at_1 value: 19 - type: mrr_at_10 value: 28.457 - type: mrr_at_100 value: 29.613 - type: mrr_at_1000 value: 29.695 - type: mrr_at_3 value: 25.55 - type: mrr_at_5 value: 27.29 - type: ndcg_at_1 value: 19 - type: ndcg_at_10 value: 16.419 - type: ndcg_at_100 value: 22.817999999999998 - type: ndcg_at_1000 value: 27.72 - type: ndcg_at_3 value: 15.379000000000001 - type: ndcg_at_5 value: 13.645 - type: precision_at_1 value: 19 - type: precision_at_10 value: 8.540000000000001 - type: precision_at_100 value: 1.7819999999999998 - type: precision_at_1000 value: 0.297 - type: precision_at_3 value: 14.267 - type: precision_at_5 value: 12.04 - type: recall_at_1 value: 3.868 - type: recall_at_10 value: 17.288 - type: recall_at_100 value: 36.144999999999996 - type: recall_at_1000 value: 60.199999999999996 - type: recall_at_3 value: 8.688 - type: recall_at_5 value: 12.198 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.96614722598582 - type: cos_sim_spearman value: 78.9003023008781 - type: euclidean_pearson value: 81.01829384436505 - type: euclidean_spearman value: 78.93248416788914 - type: manhattan_pearson value: 81.1665428926402 - type: manhattan_spearman value: 78.93264116287453 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 83.54613363895993 - type: cos_sim_spearman value: 75.1883451602451 - type: euclidean_pearson value: 79.70320886899894 - type: euclidean_spearman value: 74.5917140136796 - type: manhattan_pearson value: 79.82157067185999 - type: manhattan_spearman value: 74.74185720594735 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 81.30430156721782 - type: cos_sim_spearman value: 81.79962989974364 - type: euclidean_pearson value: 80.89058823224924 - type: euclidean_spearman value: 81.35929372984597 - type: manhattan_pearson value: 81.12204370487478 - type: manhattan_spearman value: 81.6248963282232 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 81.13064504403134 - type: cos_sim_spearman value: 78.48371403924872 - type: euclidean_pearson value: 80.16794919665591 - type: euclidean_spearman value: 78.29216082221699 - type: manhattan_pearson value: 80.22308565207301 - type: manhattan_spearman value: 78.37829229948022 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.52918899541099 - type: cos_sim_spearman value: 87.49276894673142 - type: euclidean_pearson value: 86.77440570164254 - type: euclidean_spearman value: 87.5753295736756 - type: manhattan_pearson value: 86.86098573892133 - type: manhattan_spearman value: 87.65848591821947 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 82.86805307244882 - type: cos_sim_spearman value: 84.58066253757511 - type: euclidean_pearson value: 84.38377000876991 - type: euclidean_spearman value: 85.1837278784528 - type: manhattan_pearson value: 84.41903291363842 - type: manhattan_spearman value: 85.19023736251052 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 86.77218560282436 - type: cos_sim_spearman value: 87.94243515296604 - type: euclidean_pearson value: 88.22800939214864 - type: euclidean_spearman value: 87.91106839439841 - type: manhattan_pearson value: 88.17063269848741 - type: manhattan_spearman value: 87.72751904126062 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 60.40731554300387 - type: cos_sim_spearman value: 63.76300532966479 - type: euclidean_pearson value: 62.94727878229085 - type: euclidean_spearman value: 63.678039531461216 - type: manhattan_pearson value: 63.00661039863549 - type: manhattan_spearman value: 63.6282591984376 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.92731569745344 - type: cos_sim_spearman value: 86.36336704300167 - type: euclidean_pearson value: 86.09122224841195 - type: euclidean_spearman value: 86.2116149319238 - type: manhattan_pearson value: 86.07879456717032 - type: manhattan_spearman value: 86.2022069635119 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 79.75976311752326 - type: mrr value: 94.15782837351466 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 51.193999999999996 - type: map_at_10 value: 61.224999999999994 - type: map_at_100 value: 62.031000000000006 - type: map_at_1000 value: 62.066 - type: map_at_3 value: 59.269000000000005 - type: map_at_5 value: 60.159 - type: mrr_at_1 value: 53.667 - type: mrr_at_10 value: 62.74999999999999 - type: mrr_at_100 value: 63.39399999999999 - type: mrr_at_1000 value: 63.425 - type: mrr_at_3 value: 61.389 - type: mrr_at_5 value: 61.989000000000004 - type: ndcg_at_1 value: 53.667 - type: ndcg_at_10 value: 65.596 - type: ndcg_at_100 value: 68.906 - type: ndcg_at_1000 value: 69.78999999999999 - type: ndcg_at_3 value: 62.261 - type: ndcg_at_5 value: 63.453 - type: precision_at_1 value: 53.667 - type: precision_at_10 value: 8.667 - type: precision_at_100 value: 1.04 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 24.556 - type: precision_at_5 value: 15.6 - type: recall_at_1 value: 51.193999999999996 - type: recall_at_10 value: 77.156 - type: recall_at_100 value: 91.43299999999999 - type: recall_at_1000 value: 98.333 - type: recall_at_3 value: 67.994 - type: recall_at_5 value: 71.14399999999999 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.81485148514851 - type: cos_sim_ap value: 95.28896513388551 - type: cos_sim_f1 value: 90.43478260869566 - type: cos_sim_precision value: 92.56544502617801 - type: cos_sim_recall value: 88.4 - type: dot_accuracy value: 99.30594059405941 - type: dot_ap value: 61.6432597455472 - type: dot_f1 value: 59.46481665014866 - type: dot_precision value: 58.93909626719057 - type: dot_recall value: 60 - type: euclidean_accuracy value: 99.81980198019802 - type: euclidean_ap value: 95.21411049527 - type: euclidean_f1 value: 91.06090373280944 - type: euclidean_precision value: 89.47876447876449 - type: euclidean_recall value: 92.7 - type: manhattan_accuracy value: 99.81782178217821 - type: manhattan_ap value: 95.32449994414968 - type: manhattan_f1 value: 90.86395233366436 - type: manhattan_precision value: 90.23668639053254 - type: manhattan_recall value: 91.5 - type: max_accuracy value: 99.81980198019802 - type: max_ap value: 95.32449994414968 - type: max_f1 value: 91.06090373280944 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 59.08045614613064 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 30.297802606804748 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 49.12801740706292 - type: mrr value: 50.05592956879722 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.523347880124497 - type: cos_sim_spearman value: 31.388214436391014 - type: dot_pearson value: 24.55403435439901 - type: dot_spearman value: 23.50153210841191 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.243 - type: map_at_10 value: 1.886 - type: map_at_100 value: 10.040000000000001 - type: map_at_1000 value: 23.768 - type: map_at_3 value: 0.674 - type: map_at_5 value: 1.079 - type: mrr_at_1 value: 88 - type: mrr_at_10 value: 93.667 - type: mrr_at_100 value: 93.667 - type: mrr_at_1000 value: 93.667 - type: mrr_at_3 value: 93.667 - type: mrr_at_5 value: 93.667 - type: ndcg_at_1 value: 83 - type: ndcg_at_10 value: 76.777 - type: ndcg_at_100 value: 55.153 - type: ndcg_at_1000 value: 47.912 - type: ndcg_at_3 value: 81.358 - type: ndcg_at_5 value: 80.74799999999999 - type: precision_at_1 value: 88 - type: precision_at_10 value: 80.80000000000001 - type: precision_at_100 value: 56.02 - type: precision_at_1000 value: 21.51 - type: precision_at_3 value: 86 - type: precision_at_5 value: 86 - type: recall_at_1 value: 0.243 - type: recall_at_10 value: 2.0869999999999997 - type: recall_at_100 value: 13.014000000000001 - type: recall_at_1000 value: 44.433 - type: recall_at_3 value: 0.6910000000000001 - type: recall_at_5 value: 1.1440000000000001 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 3.066 - type: map_at_10 value: 10.615 - type: map_at_100 value: 16.463 - type: map_at_1000 value: 17.815 - type: map_at_3 value: 5.7860000000000005 - type: map_at_5 value: 7.353999999999999 - type: mrr_at_1 value: 38.775999999999996 - type: mrr_at_10 value: 53.846000000000004 - type: mrr_at_100 value: 54.37 - type: mrr_at_1000 value: 54.37 - type: mrr_at_3 value: 48.980000000000004 - type: mrr_at_5 value: 51.735 - type: ndcg_at_1 value: 34.694 - type: ndcg_at_10 value: 26.811 - type: ndcg_at_100 value: 37.342999999999996 - type: ndcg_at_1000 value: 47.964 - type: ndcg_at_3 value: 30.906 - type: ndcg_at_5 value: 27.77 - type: precision_at_1 value: 38.775999999999996 - type: precision_at_10 value: 23.878 - type: precision_at_100 value: 7.632999999999999 - type: precision_at_1000 value: 1.469 - type: precision_at_3 value: 31.973000000000003 - type: precision_at_5 value: 26.939 - type: recall_at_1 value: 3.066 - type: recall_at_10 value: 17.112 - type: recall_at_100 value: 47.723 - type: recall_at_1000 value: 79.50500000000001 - type: recall_at_3 value: 6.825 - type: recall_at_5 value: 9.584 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 72.76460000000002 - type: ap value: 14.944240012137053 - type: f1 value: 55.89805777266571 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 63.30503678551217 - type: f1 value: 63.57492701921179 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 37.51066495006874 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.07021517553794 - type: cos_sim_ap value: 74.15520712370555 - type: cos_sim_f1 value: 68.64321608040201 - type: cos_sim_precision value: 65.51558752997602 - type: cos_sim_recall value: 72.0844327176781 - type: dot_accuracy value: 80.23484532395541 - type: dot_ap value: 54.298763810214176 - type: dot_f1 value: 53.22254659779924 - type: dot_precision value: 46.32525410476936 - type: dot_recall value: 62.532981530343015 - type: euclidean_accuracy value: 86.04637301066937 - type: euclidean_ap value: 73.85333854233123 - type: euclidean_f1 value: 68.77723660599845 - type: euclidean_precision value: 66.87437686939182 - type: euclidean_recall value: 70.79155672823218 - type: manhattan_accuracy value: 85.98676759849795 - type: manhattan_ap value: 73.56016090035973 - type: manhattan_f1 value: 68.48878539036647 - type: manhattan_precision value: 63.9505607690547 - type: manhattan_recall value: 73.7203166226913 - type: max_accuracy value: 86.07021517553794 - type: max_ap value: 74.15520712370555 - type: max_f1 value: 68.77723660599845 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.92769821865176 - type: cos_sim_ap value: 85.78879502899773 - type: cos_sim_f1 value: 78.14414083990464 - type: cos_sim_precision value: 74.61651607480563 - type: cos_sim_recall value: 82.0218663381583 - type: dot_accuracy value: 84.95750378390964 - type: dot_ap value: 75.80219641857563 - type: dot_f1 value: 70.13966179585681 - type: dot_precision value: 65.71140262361251 - type: dot_recall value: 75.20788420080073 - type: euclidean_accuracy value: 88.93546008460433 - type: euclidean_ap value: 85.72056428301667 - type: euclidean_f1 value: 78.14387902598124 - type: euclidean_precision value: 75.3376688344172 - type: euclidean_recall value: 81.16723129042192 - type: manhattan_accuracy value: 88.96262661543835 - type: manhattan_ap value: 85.76605136314335 - type: manhattan_f1 value: 78.26696165191743 - type: manhattan_precision value: 75.0990659496179 - type: manhattan_recall value: 81.71388974437943 - type: max_accuracy value: 88.96262661543835 - type: max_ap value: 85.78879502899773 - type: max_f1 value: 78.26696165191743 language: - en license: mit --- # E5-small **News (May 2023): please switch to [e5-small-v2](https://huggingface.co/intfloat/e5-small-v2), which has better performance and same method of usage.** [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 This model has 12 layers and the embedding size is 384. ## Usage Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ". # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."] tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-small') model = AutoModel.from_pretrained('intfloat/e5-small') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Training Details Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf). ## Benchmark Evaluation Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). ## Support for Sentence Transformers Below is an example for usage with sentence_transformers. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/e5-small') input_texts = [ 'query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] embeddings = model.encode(input_texts, normalize_embeddings=True) ``` Package requirements `pip install sentence_transformers~=2.2.2` Contributors: [michaelfeil](https://huggingface.co/michaelfeil) ## FAQ **1. Do I need to add the prefix "query: " and "passage: " to input texts?** Yes, this is how the model is trained, otherwise you will see a performance degradation. Here are some rules of thumb: - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. - Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval. - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. **2. Why are my reproduced results slightly different from reported in the model card?** Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue. ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} } ``` ## Limitations This model only works for English texts. Long texts will be truncated to at most 512 tokens.
KnutJaegersberg/galactica-orca-wizardlm-1.3b
KnutJaegersberg
2023-08-07T04:50:46Z
1,439
3
transformers
[ "transformers", "pytorch", "safetensors", "opt", "text-generation", "autotrain", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-26T13:09:09Z
--- tags: - autotrain - text-generation license: cc-by-nc-4.0 --- Prompt ### System:\n{system}\n\n### User:\n{instruction}\n\n### Response:\n
thisiskeithkwan/whisper-medium-1000steps-spaced
thisiskeithkwan
2023-08-07T04:35:59Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "zh", "dataset:thisiskeithkwan/canto", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-07T01:25:37Z
--- language: - zh license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - thisiskeithkwan/canto model-index: - name: whisper-medium-cantonese results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-cantonese This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the thisiskeithkwan/canto dataset. It achieves the following results on the evaluation set: - Loss: 0.4767 - Cer: 1.2115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5362 | 0.76 | 500 | 0.4981 | 1.5560 | | 0.3313 | 1.52 | 1000 | 0.4767 | 1.2115 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
elenahuang/llama2-qlora-finetunined-french
elenahuang
2023-08-07T03:55:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-07T03:54:59Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
avanish07/Hindi-wiki-LLaMA
avanish07
2023-08-07T03:53:11Z
6
0
peft
[ "peft", "text-generation", "license:apache-2.0", "region:us" ]
text-generation
2023-08-06T15:27:35Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: peft --- ## Hindi-wiki-LLaMA Hindi Wikipedia Article Generation Model This repository contains a language generation model trained on Hindi Wikipedia articles using the Hugging Face Transformers library. The model is based on the Llama-2 architecture and fine-tuned on a large dataset of Hindi text from Wikipedia. ## Model Details - Base Model: Llama-2 - Pretraining Dataset: Hindi Wikipedia Articles - Tokenizer: Hugging Face Tokenizer - Model Architecture: Causal Language Modeling ```python from peft import AutoPeftModelForCausalLM base_model_name = "meta-llama/Llama-2-7b-hf" tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token output_dir = "./final_checkpoint" device_map = {"": 0} model = AutoPeftModelForCausalLM.from_pretrained(output_dir, device_map=device_map, torch_dtype=torch.bfloat16) device = torch.device("cuda") text = "" inputs = tokenizer(text, return_tensors="pt").to(device) outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), attention_mask=inputs["attention_mask"], max_new_tokens=100, pad_token_id=tokenizer.eos_token_id) print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)) ``` ## Model Performance:-- The model has been trained on a substantial amount of Hindi Wikipedia articles, which allows it to generate coherent and contextually relevant text.
hw2942/chinese-bigbird-wwm-base-4096-wallstreetcn-morning-news-market-overview-open-SSEC-f1-v1
hw2942
2023-08-07T03:50:49Z
97
0
transformers
[ "transformers", "pytorch", "tensorboard", "big_bird", "text-classification", "generated_from_trainer", "base_model:Lowin/chinese-bigbird-wwm-base-4096", "base_model:finetune:Lowin/chinese-bigbird-wwm-base-4096", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-07T03:23:10Z
--- license: apache-2.0 base_model: Lowin/chinese-bigbird-wwm-base-4096 tags: - generated_from_trainer metrics: - f1 model-index: - name: chinese-bigbird-wwm-base-4096-wallstreetcn-morning-news-market-overview-open-SSEC-f1-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-bigbird-wwm-base-4096-wallstreetcn-morning-news-market-overview-open-SSEC-f1-v1 This model is a fine-tuned version of [Lowin/chinese-bigbird-wwm-base-4096](https://huggingface.co/Lowin/chinese-bigbird-wwm-base-4096) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9660 - F1: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 75 | 0.6832 | 0.1538 | | No log | 2.0 | 150 | 0.6909 | 0.0 | | No log | 3.0 | 225 | 0.6766 | 0.4 | | No log | 4.0 | 300 | 0.9574 | 0.5161 | | No log | 5.0 | 375 | 1.0109 | 0.4348 | | No log | 6.0 | 450 | 1.1757 | 0.3333 | | 0.5475 | 7.0 | 525 | 1.6141 | 0.5 | | 0.5475 | 8.0 | 600 | 1.7908 | 0.3810 | | 0.5475 | 9.0 | 675 | 1.9172 | 0.5 | | 0.5475 | 10.0 | 750 | 1.9660 | 0.5 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
thisiskeithkwan/whisper-medium-1000steps
thisiskeithkwan
2023-08-07T03:50:36Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "zh", "dataset:thisiskeithkwan/canto", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-07T01:06:39Z
--- language: - zh license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - thisiskeithkwan/canto model-index: - name: whisper-medium-cantonese results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-cantonese This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the thisiskeithkwan/canto dataset. It achieves the following results on the evaluation set: - Loss: 0.7006 - Cer: 3.6111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6458 | 0.76 | 500 | 0.7109 | 3.5960 | | 0.4183 | 1.52 | 1000 | 0.7006 | 3.6111 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
mikuhl/wow-icons
mikuhl
2023-08-07T03:46:47Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-07T03:12:35Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a world of warcraft icon tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - mikuhl/wow-icons These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a world of warcraft icon using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
yourui/bgi-promptcblue-baichuan-13b
yourui
2023-08-07T03:31:49Z
18
0
transformers
[ "transformers", "pytorch", "baichuan", "text-generation", "generated_from_trainer", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-27T02:45:19Z
--- tags: - generated_from_trainer datasets: - Data/PromptCBLUE/bgiv3 model-index: - name: baichuan_finetune_v3_071618 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # baichuan_finetune_v3_071618 This model is a fine-tuned version of [baichuan-inc/Baichuan-13B-Base](https://huggingface.co/baichuan-inc/Baichuan-13B-Base) on the Data/PromptCBLUE/bgiv3 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Naruke/rl_course_vizdoom_health_gathering_supreme
Naruke
2023-08-07T03:22:50Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T19:03:46Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.87 +/- 5.84 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Naruke/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
GFazzito/distilhubert-finetuned-gtzan
GFazzito
2023-08-07T03:21:29Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-21T00:04:55Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.82 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5513 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9949 | 1.0 | 113 | 1.8096 | 0.5 | | 1.3453 | 2.0 | 226 | 1.2502 | 0.62 | | 1.0267 | 3.0 | 339 | 0.9683 | 0.73 | | 0.8382 | 4.0 | 452 | 0.8201 | 0.74 | | 0.6864 | 5.0 | 565 | 0.6620 | 0.81 | | 0.3746 | 6.0 | 678 | 0.8011 | 0.74 | | 0.2883 | 7.0 | 791 | 0.5384 | 0.86 | | 0.1192 | 8.0 | 904 | 0.4698 | 0.85 | | 0.2028 | 9.0 | 1017 | 0.4610 | 0.85 | | 0.1638 | 10.0 | 1130 | 0.5513 | 0.82 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Eggsbena/model_009
Eggsbena
2023-08-07T03:17:45Z
29
0
diffusers
[ "diffusers", "text-to-image", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-07T03:04:57Z
--- library_name: diffusers pipeline_tag: text-to-image ---
Eggsbena/model_008
Eggsbena
2023-08-07T03:09:38Z
29
0
diffusers
[ "diffusers", "text-to-image", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-07T02:57:23Z
--- library_name: diffusers pipeline_tag: text-to-image ---
saefro991/tts_bytes_css10_7lang_textpretrain_residual_freeze
saefro991
2023-08-07T03:01:26Z
3
1
espnet
[ "espnet", "audio", "text-to-speech", "multilingual", "dataset:masmultts", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2023-08-07T02:45:09Z
--- tags: - espnet - audio - text-to-speech language: multilingual datasets: - masmultts license: cc-by-4.0 --- ## ESPnet2 TTS model ### `saefro991/tts_bytes_css10_7lang_textpretrain_residual_freeze` This model was trained by Takaaki-Saeki using masmultts recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 11a7d61312439111d4996d55935ede718d494262 pip install -e . cd egs2/masmultts/tts_byte_css10_adap_residual_freeze ./run.sh --skip_data_prep false --skip_train true --download_model saefro991/tts_bytes_css10_7lang_textpretrain_residual_freeze ``` ## TTS config <details><summary>expand</summary> ``` config: conf/train.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_raw_byte ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 1 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 200 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 3 nbest_averaging_interval: 0 grad_clip: 2.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: - ../tts_pretrain_byte_residual/exp/tts_train_byte/2epoch.pth:tts_pretrain.encoder:tts.encoder - ../tts_pretrain_byte_residual/exp/tts_train_byte/2epoch.pth:tts_pretrain.lid_emb:tts.lid_emb ignore_init_mismatch: false freeze_param: - tts.encoder.adapter - tts.encoder.embed - tts.lid_emb num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 400000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_byte/train/text_shape.byte - exp/tts_stats_raw_byte/train/speech_shape valid_shape_file: - exp/tts_stats_raw_byte/valid/text_shape.byte - exp/tts_stats_raw_byte/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - /local/11399690.1.gpu/dump/raw/train/text - text - text - - /local/11399690.1.gpu/dump/raw/train/wav.scp - speech - sound - - /local/11399690.1.gpu/dump/xvector/train/xvector.scp - spembs - kaldi_ark - - /local/11399690.1.gpu/dump/raw/train/utt2lid - lids - text_int valid_data_path_and_name_and_type: - - /local/11399690.1.gpu/dump/raw/dev/text - text - text - - /local/11399690.1.gpu/dump/raw/dev/wav.scp - speech - sound - - /local/11399690.1.gpu/dump/xvector/dev/xvector.scp - spembs - kaldi_ark - - /local/11399690.1.gpu/dump/raw/dev/utt2lid - lids - text_int allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 1.0 scheduler: noamlr scheduler_conf: model_size: 512 warmup_steps: 50000 token_list: - <blank> - <unk> - '32' - '101' - '97' - '105' - '110' - '116' - '111' - '115' - '114' - '108' - '100' - '117' - '109' - '99' - '195' - '112' - '104' - '118' - '107' - '103' - '98' - '122' - '102' - '106' - '121' - '119' - '164' - '169' - '197' - '196' - '161' - '113' - '179' - '173' - '188' - '182' - '190' - '208' - '120' - '141' - '153' - '160' - '155' - '189' - '131' - '186' - '168' - '133' - '209' - '130' - '181' - '159' - '151' - '175' - '177' - '145' - '171' - '174' - '165' - '135' - '200' - '180' - '170' - '178' - '176' - '163' - '184' - '185' - '187' - '129' - '132' - '128' - '136' - '143' - '162' - '191' - '150' - '206' - '183' - '140' - '172' - '167' - '207' - '139' - '142' - '147' - '134' - '137' - '148' - '194' - '149' - '166' - '49' - '50' - '48' - '51' - '138' - '56' - '53' - '55' - '52' - '54' - '57' - '199' - '226' - '210' - '144' - '203' - '225' - '202' - '232' - '201' - '157' - '231' - '156' - '220' - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: byte bpemodel: null non_linguistic_symbols: null cleaner: null g2p: byte feats_extract: fbank feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null fs: 16000 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/tts_stats_raw_byte/train/feats_stats.npz tts: transformer tts_conf: embed_dim: 0 eprenet_conv_layers: 0 eprenet_conv_filts: 0 eprenet_conv_chans: 0 dprenet_layers: 2 dprenet_units: 256 adim: 512 aheads: 8 elayers: 6 eunits: 1024 dlayers: 6 dunits: 1024 positionwise_layer_type: conv1d positionwise_conv_kernel_size: 1 postnet_layers: 5 postnet_filts: 5 postnet_chans: 256 spk_embed_dim: 192 spk_embed_integration_type: add use_gst: true gst_heads: 4 gst_tokens: 16 use_masking: true bce_pos_weight: 5.0 use_scaled_pos_enc: true encoder_normalize_before: true decoder_normalize_before: true reduction_factor: 1 init_type: xavier_uniform init_enc_alpha: 1.0 init_dec_alpha: 1.0 eprenet_dropout_rate: 0.0 dprenet_dropout_rate: 0.5 postnet_dropout_rate: 0.5 transformer_enc_dropout_rate: 0.1 transformer_enc_positional_dropout_rate: 0.1 transformer_enc_attn_dropout_rate: 0.1 transformer_dec_dropout_rate: 0.1 transformer_dec_positional_dropout_rate: 0.1 transformer_dec_attn_dropout_rate: 0.1 transformer_enc_dec_attn_dropout_rate: 0.1 use_guided_attn_loss: true num_heads_applied_guided_attn: 2 num_layers_applied_guided_attn: 2 modules_applied_guided_attn: - encoder-decoder guided_attn_loss_sigma: 0.4 guided_attn_loss_lambda: 10.0 langs: 21 lang_family_encoding: false num_lang_family: 7 use_adapter: true adapter_type: residual use_encoder_w_lid: true pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: '202209' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
mrkusypl/Nitrodolski
mrkusypl
2023-08-07T02:59:13Z
0
0
null
[ "pl", "region:us" ]
null
2023-07-27T10:37:42Z
--- language: - pl --- <center> <img src="https://cdn.discordapp.com/attachments/1134073942835986442/1134073943100248064/Major-Suchodolski-prokuratura-wszczela-sledztwo-w-sprawie-smierci-patostreamera_article_north.png"></img> <h1>Major Suchodolski (RVC v2) (Mangio Crepe 64) (250 Epochs)</h1> **Model by:** kusy <br/> **Voice Actor:** Wojciech "Major" Suchodolski <br/> **Dataset:** 00:16:44 <br/> <audio controls> <source src="https://cdn.discordapp.com/attachments/1134073942835986442/1134073976491081799/example.mp3" type="audio/mpeg"> </audio><br /> <audio controls> <source src="https://cdn.discordapp.com/attachments/1134073942835986442/1137932924612784178/gadanie.wav" type="audio/wav"> </audio> <a href="https://huggingface.co/mrkusypl/Nitrodolski/resolve/main/Nitrodolski%20%5B250%20epoch%20%2B%20RVC%20v2%5D.zip">Download or copy the link</a> </center>
mrkusypl/MexicanoTV
mrkusypl
2023-08-07T02:57:15Z
0
0
null
[ "pl", "region:us" ]
null
2023-08-01T20:57:37Z
--- language: - pl --- <center> <img src="https://cdn.discordapp.com/attachments/1136043395123515465/1136043395928825957/comment_7oiVx1SlO3f8Ub44Vb0718v2vZin7XUk.png"></img> <h1>MexicanoTV (RVC v2) (Mangio Crepe 64) (400 Epochs)</h1> **Model by:** kusy <br/> **Voice Actor:** Jarosław Andrzejewski <br/> **Dataset:** 00:17:40 <br/> <audio controls> <source src="https://cdn.discordapp.com/attachments/1136043395123515465/1137050343440650341/example.mp3" type="audio/mpeg"> </audio><br /> <audio controls> <source src="https://cdn.discordapp.com/attachments/1136043395123515465/1137932262139248741/gadanie.wav" type="audio/wav"> </audio> <a href="https://huggingface.co/mrkusypl/MexicanoTV/resolve/main/MexicanoTV%20%5B400%20epoch%20%2B%20RVC%20v2%5D.zip">Download or copy the link</a> </center>
mrkusypl/Kononowicz
mrkusypl
2023-08-07T02:55:42Z
0
0
null
[ "pl", "region:us" ]
null
2023-07-26T16:20:00Z
--- language: - pl --- <center> <img src="https://wiez.pl/wp-content/uploads/2022/10/krzysztof-kononowicz-1-1-1408x1000.jpg"></img> <h1>Krzysztof Kononowicz (RVC v2) (Mangio Crepe 64) (300 Epochs)</h1> **Model by:** kusy <br/> **Voice Actor:** Krzysztof Kononowicz <br/> **Dataset:** 00:19:10 <br/> <audio controls> <source src="https://cdn.discordapp.com/attachments/1133799046327316592/1137482939828027392/example.mp3" type="audio/mpeg"> </audio><br /> <audio controls> <source src="https://cdn.discordapp.com/attachments/1133799046327316592/1137929852339634266/gadanie.wav" type="audio/wav"> </audio> <a href="https://huggingface.co/mrkusypl/Kononowicz/blob/main/Kononowicz%20%5B300%20epoch%20%2B%20RVC%20v2%5D.zip">Download or copy the link</a> </center>
Yacong/lora-trained-xl
Yacong
2023-08-07T02:50:49Z
3
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-07T01:33:38Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Yacong/lora-trained-xl These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
AmelieSchreiber/esm2_t6_8M_UR50D_LoRA_RNA-binding
AmelieSchreiber
2023-08-07T02:34:08Z
4
1
peft
[ "peft", "transformers", "biology", "esm", "esm2", "protein", "protein language model", "en", "license:mit", "region:us" ]
null
2023-08-07T00:12:16Z
--- library_name: peft license: mit language: - en tags: - transformers - biology - esm - esm2 - protein - protein language model --- # ESM-2 RNA Binding Site LoRA This is a Parameter Efficient Fine Tuning (PEFT) Low Rank Adaptation (LoRA) of the [esm2_t6_8M_UR50D](https://huggingface.co/facebook/esm2_t6_8M_UR50D) model for the (binary) token classification task of predicting RNA binding sites of proteins. The Github with the training script and conda env YAML can be [found here](https://github.com/Amelie-Schreiber/esm2_LoRA_binding_sites/tree/main). You can also find a version of this model that was fine-tuned without LoRA [here](https://huggingface.co/AmelieSchreiber/esm2_t6_8M_UR50D_rna_binding_site_predictor). ## Training procedure This is a Low Rank Adaptation (LoRA) of `esm2_t6_8M_UR50D`, trained on `166` protein sequences in the [RNA binding sites dataset](https://huggingface.co/datasets/AmelieSchreiber/data_of_protein-rna_binding_sites) using a `75/25` train/test split. It achieves an evaluation loss of `0.1791934072971344`. ### Framework versions - PEFT 0.4.0 ## Using the Model To use, try running: ```python from transformers import AutoModelForTokenClassification, AutoTokenizer from peft import PeftModel import torch # Path to the saved LoRA model model_path = "AmelieSchreiber/esm2_t6_8M_UR50D_LoRA_RNA-binding" # ESM2 base model base_model_path = "facebook/esm2_t6_8M_UR50D" # Load the model base_model = AutoModelForTokenClassification.from_pretrained(base_model_path) loaded_model = PeftModel.from_pretrained(base_model, model_path) # Ensure the model is in evaluation mode loaded_model.eval() # Load the tokenizer loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path) # Protein sequence for inference protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence # Tokenize the sequence inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length') # Run the model with torch.no_grad(): logits = loaded_model(**inputs).logits # Get predictions tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens predictions = torch.argmax(logits, dim=2) # Define labels id2label = { 0: "No binding site", 1: "Binding site" } # Print the predicted labels for each token for token, prediction in zip(tokens, predictions[0].numpy()): if token not in ['<pad>', '<cls>', '<eos>']: print((token, id2label[prediction])) ```
dai1If/q-FrozenLake-v1-4x4-noSlippery
dai1If
2023-08-07T02:22:05Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-07T02:22:01Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dai1If/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gwlms/t5-efficient-large-dewiki-v1
gwlms
2023-08-07T01:50:15Z
7
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "safetensors", "t5", "text2text-generation", "de", "dataset:gwlms/dewiki-20230701-chunks", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-25T12:10:45Z
--- license: mit datasets: - gwlms/dewiki-20230701-chunks language: - de --- # German Wikipedia LMs Coming soon! # Acknowledgements Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
Baronco98/Sudoku-Number-Classifier
Baronco98
2023-08-07T01:18:56Z
2
0
keras
[ "keras", "en", "dataset:mnist", "license:apache-2.0", "region:us" ]
null
2023-08-07T00:25:58Z
--- license: apache-2.0 datasets: - mnist language: - en metrics: - accuracy library_name: keras --- # Description This model is a convolutional neural network built with transfer learning using the pre-trained model 'VGG16.' The 'block5_conv1' layer is retrained, and a final dense layer with 128 neurons is added. The model will be used as a preliminary step in solving Sudokus through linear programming. Model It is responsible for classifying the content of each sudoku cell: - class_0: empty cell - class_1: cell contains the number 1 - class_2: cell contains the number 2 - class_3: cell contains the number 3 - class_4: cell contains the number 4 - class_5: cell contains the number 5 - class_6: cell contains the number 6 - class_7: cell contains the number 7 - class_8: cell contains the number 8 - class_9: cell contains the number 9 The dataset is constructed with balanced classes using images from the famous "MNIST digits classification" dataset, as well as images of numbers written digitally. # Dataset schema The image size it is 28x28 pixels. After applying data augmentation to the dataset, the total number of images is as follows: - Training images: 5,600 - Validation images: 2,400 - Test images: 2,000 Test Accuracy: 0.9810 # Other validations: An initial validation is performed. It remains pending to increase the size of the validations to understand the reliability of the mode <div style="text-align: center;"> <img src="https://i.imgur.com/kdj9udt.jpg" width="300"> </div> </div> The results of the inference are as follows: <div style="text-align: center;"> <img src="https://i.imgur.com/U2MJzH6.jpg" width="500"> </div>
taohoang/speecht5_finetuned_fleurs_en_us
taohoang
2023-08-07T01:18:29Z
83
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "dataset:google/fleurs", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-08-07T01:04:34Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - google/fleurs model-index: - name: speecht5_finetuned_fleurs_en_us results: [] pipeline_tag: text-to-speech --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_fleurs_en_us This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the google/fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.4831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 54 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.719 | 0.33 | 9 | 0.5634 | | 0.5994 | 0.67 | 18 | 0.5290 | | 0.584 | 1.0 | 27 | 0.4924 | | 0.5589 | 1.33 | 36 | 0.4828 | | 0.5747 | 1.67 | 45 | 0.4848 | | 0.5904 | 2.0 | 54 | 0.4831 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
nhat117/checkpoint-7500-dica-long-llama-3b-sft
nhat117
2023-08-07T01:04:56Z
4
0
peft
[ "peft", "region:us" ]
null
2023-08-01T07:55:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
xiangxiang/chatglm2-6b-WaJiaBank
xiangxiang
2023-08-07T00:55:26Z
4
0
transformers
[ "transformers", "pytorch", "chatglm", "feature-extraction", "custom_code", "region:us" ]
feature-extraction
2023-08-04T09:57:48Z
## 模型介绍 ChatGLM2-6B 是清华开源中英双语对话模型 ChatGLM-6B 的第二代版本,具有模型对话流畅、部署门槛较低等众多优秀特性,ChatGLM2-6B 使用了 GLM 的混合目标函数上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K **chatglm2-6b-WaJiaBank** 是基于清华 chatglm2-6b 进行量化+轻量微调,使用数据为网络公开数据。当前使用的数据量相对较少,模型泛化能力还需进一步提升。 #### 优化方向: - 数据增强 - 性能调优 - 模型参数 ## 调用方法 ```python from transformers import AutoTokenizer,AutoConfig, AutoModel, BitsAndBytesConfig tokenizer = AutoTokenizer.from_pretrained("xiangxiang/chatglm2-6b-WaJiaBank", trust_remote_code=True) model = AutoModel.from_pretrained("xiangxiang/chatglm2-6b-WaJiaBank", trust_remote_code=True).float() ## GPU cuda ``` 提高模型推理速度,可以参考ChatGLM2-6B多卡部署方式 ```python from utils import load_model_on_gpus model = load_model_on_gpus("THUDM/chatglm2-6b", num_gpus=2) ``` ## 参考链接 https://github.com/THUDM/ChatGLM2-6B
brunoboat/Pixelcopter-PLE-v4
brunoboat
2023-08-07T00:48:34Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-07T00:48:32Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v4 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 10.50 +/- 11.24 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
brunoboat/Pixelcopter-PLE-v3
brunoboat
2023-08-07T00:42:31Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-07T00:42:27Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 43.20 +/- 35.30 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Yacong/my_dreambooth_out_dir
Yacong
2023-08-07T00:23:49Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2", "base_model:finetune:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-06T15:09:47Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Yacong/my_dreambooth_out_dir This is a dreambooth model derived from stabilityai/stable-diffusion-2. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
naasirfar/distilbert-base-uncased-finetuned-emotion
naasirfar
2023-08-06T23:52:39Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-06T23:10:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.9295 - name: F1 type: f1 value: 0.9294307352150123 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2137 - Accuracy: 0.9295 - F1: 0.9294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8048 | 1.0 | 250 | 0.3007 | 0.908 | 0.9047 | | 0.2455 | 2.0 | 500 | 0.2137 | 0.9295 | 0.9294 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.13.3
brunoboat/Pixelcopter-PLE-v2
brunoboat
2023-08-06T23:49:26Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T23:49:23Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 25.00 +/- 21.79 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
harshV27/my-falcon-7b
harshV27
2023-08-06T23:04:54Z
0
0
peft
[ "peft", "pytorch", "falcon", "custom_code", "region:us" ]
null
2023-08-06T14:37:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
jmoney54378256438905/cybershart-temp
jmoney54378256438905
2023-08-06T23:00:25Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2023-08-06T22:59:55Z
--- license: cc-by-nc-sa-4.0 ---
ailabturkiye/ToronKaracaoglu
ailabturkiye
2023-08-06T22:58:14Z
0
0
null
[ "tr", "license:openrail", "region:us" ]
null
2023-08-06T22:30:23Z
--- license: openrail language: - tr ---
Beniuv/Unit3SpaceInvaders
Beniuv
2023-08-06T22:57:17Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T22:56:42Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 565.00 +/- 135.46 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Beniuv -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Beniuv -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Beniuv ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
joelniklaus/legal-swiss-roberta-base
joelniklaus
2023-08-06T22:56:56Z
68
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "multilingual", "de", "fr", "it", "arxiv:2306.02069", "arxiv:2306.09237", "arxiv:2301.13126", "arxiv:2110.00976", "license:cc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-28T00:26:09Z
--- license: cc language: - multilingual - de - fr - it tags: - multilingual --- # Model Card for joelito/legal-swiss-roberta-base This model is a multilingual model pretrained on legal data. It is based on XLM-R ([base](https://huggingface.co/xlm-roberta-base) and [large](https://huggingface.co/xlm-roberta-large)). For pretraining we used [Multi Legal Pile](https://huggingface.co/datasets/joelito/Multi_Legal_Pile) ([Niklaus et al. 2023](https://arxiv.org/abs/2306.02069?utm_source=tldrai)), a multilingual dataset from various legal sources covering 24 languages. ## Model Details ### Model Description - **Developed by:** Joel Niklaus: [huggingface](https://huggingface.co/joelito); [email](mailto:joel.niklaus.2@bfh.ch) - **Model type:** Transformer-based language model (RoBERTa) - **Language(s) (NLP):** de, fr, it - **License:** CC BY-SA ## Uses ### Direct Use and Downstream Use You can utilize the raw model for masked language modeling since we did not perform next sentence prediction. However, its main purpose is to be fine-tuned for downstream tasks. It's important to note that this model is primarily designed for fine-tuning on tasks that rely on the entire sentence, potentially with masked elements, to make decisions. Examples of such tasks include sequence classification, token classification, or question answering. For text generation tasks, models like GPT-2 are more suitable. Additionally, the model is specifically trained on legal data, aiming to deliver strong performance in that domain. Its performance may vary when applied to non-legal data. ### Out-of-Scope Use For tasks such as text generation you should look at model like GPT2. The model should not be used to intentionally create hostile or alienating environments for people. The model was not trained to be factual or true representations of people or events, and therefore using the models to generate such content is out-of-scope for the abilities of this model. ## Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. ## How to Get Started with the Model See [huggingface tutorials](https://huggingface.co/learn/nlp-course/chapter7/1?fw=pt). For masked word prediction see [this tutorial](https://huggingface.co/tasks/fill-mask). ## Training Details This model was pretrained on [Multi Legal Pile](https://huggingface.co/datasets/joelito/Multi_Legal_Pile) ([Niklaus et al. 2023](https://arxiv.org/abs/2306.02069?utm_source=tldrai)). Our pretraining procedure includes the following key steps: (a) Warm-starting: We initialize our models from the original XLM-R checkpoints ([base](https://huggingface.co/xlm-roberta-base) and [large](https://huggingface.co/xlm-roberta-large)) of [Conneau et al. (2019)](https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf) to benefit from a well-trained base. (b) Tokenization: We train a new tokenizer of 128K BPEs to cover legal language better. However, we reuse the original XLM-R embeddings for lexically overlapping tokens and use random embeddings for the rest. (c) Pretraining: We continue pretraining on Multi Legal Pile with batches of 512 samples for an additional 1M/500K steps for the base/large model. We use warm-up steps, a linearly increasing learning rate, and cosine decay scheduling. During the warm-up phase, only the embeddings are updated, and a higher masking rate and percentage of predictions based on masked tokens are used compared to [Devlin et al. (2019)](https://aclanthology.org/N19-1423). (d) Sentence Sampling: We employ a sentence sampler with exponential smoothing to handle disparate token proportions across cantons and languages, preserving per-canton and language capacity. (e) Mixed Cased Models: Our models cover both upper- and lowercase letters, similar to recently developed large PLMs. (f) Long Context Training: To account for long contexts in legal documents, we train the base-size multilingual model on long contexts with windowed attention. This variant, named Legal-Swiss-LF-base, uses a 15% masking probability, increased learning rate, and similar settings to small-context models. ### Training Data This model was pretrained on [Multi Legal Pile](https://huggingface.co/datasets/joelito/Multi_Legal_Pile) ([Niklaus et al. 2023](https://arxiv.org/abs/2306.02069?utm_source=tldrai)). #### Preprocessing For further details see [Niklaus et al. 2023](https://arxiv.org/abs/2306.02069?utm_source=tldrai) #### Training Hyperparameters - batche size: 512 samples - Number of steps: 1M/500K for the base/large model - Warm-up steps for the first 5\% of the total training steps - Learning rate: (linearly increasing up to) 1e-4 - Word masking: increased 20/30\% masking rate for base/large models respectively ## Evaluation We compare joelito/legal-swiss-roberta-base with the other multilingual models. The results are based on the text classification tasks presented in [Niklaus et al. (2023)](https://arxiv.org/abs/2306.09237) which are part of [LEXTREME](https://huggingface.co/datasets/joelito/lextreme). We provide the arithmetic mean over three seeds (1, 2, 3) based on the macro-F1-score on the test set. The highest values are in bold. | \_name_or_path | SCP-BC | SCP-BF | SCP-CC | SCP-CF | SJPXL-C | SJPXL-F | SLAP-SC | SLAP-SF | | :------------------------------------------------------------------------------------------------------ | :-------- | :-------- | :-------- | :-------- | :-------- | :-------- | :------- | :-------- | | [ZurichNLP/swissbert-xlm-vocab](https://huggingface.co/ZurichNLP/swissbert-xlm-vocab) | 71.36 | 57.48 | 27.33 | 23.37 | 80.81 | 61.75 | 77.89 | 71.27 | | [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) | 66.56 | 56.58 | 22.67 | 21.31 | 77.26 | 60.79 | 73.54 | 72.24 | | [facebook/xmod-base](https://huggingface.co/facebook/xmod-base) | 70.35 | 58.16 | 23.87 | 19.57 | 80.55 | 60.84 | 73.16 | 69.03 | | [joelito/legal-swiss-longformer-base](https://huggingface.co/joelito/legal-swiss-longformer-base) | **73.25** | **60.06** | **28.68** | 24.39 | 87.46 | **65.23** | 83.84 | 77.96 | | [joelito/legal-swiss-roberta-base](https://huggingface.co/joelito/legal-swiss-roberta-base) | 72.41 | 59.31 | 25.99 | 23.27 | 87.48 | 64.16 | **86.8** | **81.56** | | [joelito/legal-swiss-roberta-large](https://huggingface.co/joelito/legal-swiss-roberta-large) | 70.95 | 57.59 | 27.86 | 23.48 | **88.33** | 62.92 | 82.1 | 78.62 | | [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) | 67.29 | 56.56 | 24.23 | 14.9 | 79.52 | 58.29 | 63.03 | 67.57 | | [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) | 72.01 | 57.59 | 22.93 | **25.18** | 79.41 | 60.89 | 67.64 | 74.13 | | [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) | 68.55 | 58.48 | 25.66 | 21.52 | 80.98 | 61.45 | 79.3 | 74.47 | | [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) | 69.5 | 58.15 | 27.9 | 22.05 | 82.19 | 61.24 | 81.09 | 71.82 | For more detailed insights into the performance on downstream tasks, such as [LEXTREME](https://huggingface.co/datasets/joelito/lextreme) ([Niklaus et al. 2023](https://arxiv.org/abs/2301.13126)) or [LEXGLUE](https://huggingface.co/datasets/lex_glue) ([Chalkidis et al. 2021](https://arxiv.org/abs/2110.00976)), we refer to the results presented in Niklaus et al. (2023) [1](https://arxiv.org/abs/2306.02069), [2](https://arxiv.org/abs/2306.09237). For further insights into the evaluation, we refer to the [trainer state](https://huggingface.co/joelito/legal-swiss-roberta-base/blob/main/last-checkpoint/trainer_state.json). Additional information is available in the [tensorboard](https://huggingface.co/joelito/legal-swiss-roberta-base/tensorboard). ### Model Architecture and Objective It is a RoBERTa-based model. Run the following code to view the architecture: ``` from transformers import AutoModel model = AutoModel.from_pretrained('joelito/legal-swiss-roberta-base') print(model) RobertaModel( (embeddings): RobertaEmbeddings( (word_embeddings): Embedding(128000, 768, padding_idx=0) (position_embeddings): Embedding(514, 768, padding_idx=0) (token_type_embeddings): Embedding(1, 768) (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): RobertaEncoder( (layer): ModuleList( (0-11): 12 x RobertaLayer( (attention): RobertaAttention( (self): RobertaSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): RobertaSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): RobertaIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): RobertaOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): RobertaPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ``` ### Compute Infrastructure Google TPU. #### Hardware Google TPU v3-8 #### Software pytorch, transformers. ## Citation ``` @misc{rasiah2023scale, title={SCALE: Scaling up the Complexity for Advanced Language Model Evaluation}, author={Vishvaksenan Rasiah and Ronja Stern and Veton Matoshi and Matthias Stürmer and Ilias Chalkidis and Daniel E. Ho and Joel Niklaus}, year={2023}, eprint={2306.09237}, archivePrefix={arXiv}, primaryClass={cs.CL} } @article{Niklaus2023MultiLegalPileA6, title={MultiLegalPile: A 689GB Multilingual Legal Corpus}, author={Joel Niklaus and Veton Matoshi and Matthias Sturmer and Ilias Chalkidis and Daniel E. Ho}, journal={ArXiv}, year={2023}, volume={abs/2306.02069} } ``` ## Model Card Authors Joel Niklaus: [huggingface](https://huggingface.co/joelito); [email](mailto:joel.niklaus.2@bfh.ch) Veton Matoshi: [huggingface](https://huggingface.co/kapllan); [email](mailto:msv3@bfh.ch) ## Model Card Contact Joel Niklaus: [huggingface](https://huggingface.co/joelito); [email](mailto:joel.niklaus.2@bfh.ch) Veton Matoshi: [huggingface](https://huggingface.co/kapllan); [email](mailto:msv3@bfh.ch)
joelniklaus/legal-swiss-roberta-large
joelniklaus
2023-08-06T22:56:51Z
16
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "multilingual", "de", "fr", "it", "dataset:MultiLegalPile", "dataset:LEXTREME", "dataset:LEXGLUE", "arxiv:2306.02069", "arxiv:2306.09237", "arxiv:2301.13126", "arxiv:2110.00976", "license:cc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-16T18:30:21Z
--- language: - multilingual - de - fr - it tags: - multilingual license: cc datasets: - MultiLegalPile - LEXTREME - LEXGLUE --- # Model Card for joelito/legal-swiss-roberta-large This model is a multilingual model pretrained on legal data. It is based on XLM-R ([base](https://huggingface.co/xlm-roberta-base) and [large](https://huggingface.co/xlm-roberta-large)). For pretraining we used [Multi Legal Pile](https://huggingface.co/datasets/joelito/Multi_Legal_Pile) ([Niklaus et al. 2023](https://arxiv.org/abs/2306.02069?utm_source=tldrai)), a multilingual dataset from various legal sources covering 24 languages. ## Model Details ### Model Description - **Developed by:** Joel Niklaus: [huggingface](https://huggingface.co/joelito); [email](mailto:joel.niklaus.2@bfh.ch) - **Model type:** Transformer-based language model (RoBERTa) - **Language(s) (NLP):** de, fr, it - **License:** CC BY-SA ## Uses ### Direct Use and Downstream Use You can utilize the raw model for masked language modeling since we did not perform next sentence prediction. However, its main purpose is to be fine-tuned for downstream tasks. It's important to note that this model is primarily designed for fine-tuning on tasks that rely on the entire sentence, potentially with masked elements, to make decisions. Examples of such tasks include sequence classification, token classification, or question answering. For text generation tasks, models like GPT-2 are more suitable. Additionally, the model is specifically trained on legal data, aiming to deliver strong performance in that domain. Its performance may vary when applied to non-legal data. ### Out-of-Scope Use For tasks such as text generation you should look at model like GPT2. The model should not be used to intentionally create hostile or alienating environments for people. The model was not trained to be factual or true representations of people or events, and therefore using the models to generate such content is out-of-scope for the abilities of this model. ## Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. ## How to Get Started with the Model See [huggingface tutorials](https://huggingface.co/learn/nlp-course/chapter7/1?fw=pt). For masked word prediction see [this tutorial](https://huggingface.co/tasks/fill-mask). ## Training Details This model was pretrained on [Multi Legal Pile](https://huggingface.co/datasets/joelito/Multi_Legal_Pile) ([Niklaus et al. 2023](https://arxiv.org/abs/2306.02069?utm_source=tldrai)). Our pretraining procedure includes the following key steps: (a) Warm-starting: We initialize our models from the original XLM-R checkpoints ([base](https://huggingface.co/xlm-roberta-base) and [large](https://huggingface.co/xlm-roberta-large)) of [Conneau et al. (2019)](https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf) to benefit from a well-trained base. (b) Tokenization: We train a new tokenizer of 128K BPEs to cover legal language better. However, we reuse the original XLM-R embeddings for lexically overlapping tokens and use random embeddings for the rest. (c) Pretraining: We continue pretraining on Multi Legal Pile with batches of 512 samples for an additional 1M/500K steps for the base/large model. We use warm-up steps, a linearly increasing learning rate, and cosine decay scheduling. During the warm-up phase, only the embeddings are updated, and a higher masking rate and percentage of predictions based on masked tokens are used compared to [Devlin et al. (2019)](https://aclanthology.org/N19-1423). (d) Sentence Sampling: We employ a sentence sampler with exponential smoothing to handle disparate token proportions across cantons and languages, preserving per-canton and language capacity. (e) Mixed Cased Models: Our models cover both upper- and lowercase letters, similar to recently developed large PLMs. (f) Long Context Training: To account for long contexts in legal documents, we train the base-size multilingual model on long contexts with windowed attention. This variant, named Legal-Swiss-LF-base, uses a 15% masking probability, increased learning rate, and similar settings to small-context models. ### Training Data This model was pretrained on [Multi Legal Pile](https://huggingface.co/datasets/joelito/Multi_Legal_Pile) ([Niklaus et al. 2023](https://arxiv.org/abs/2306.02069?utm_source=tldrai)). #### Preprocessing For further details see [Niklaus et al. 2023](https://arxiv.org/abs/2306.02069?utm_source=tldrai) #### Training Hyperparameters - batche size: 512 samples - Number of steps: 1M/500K for the base/large model - Warm-up steps for the first 5\% of the total training steps - Learning rate: (linearly increasing up to) 1e-4 - Word masking: increased 20/30\% masking rate for base/large models respectively ## Evaluation We compare joelito/legal-swiss-roberta-large with the other multilingual models. The results are based on the text classification tasks presented in [Niklaus et al. (2023)](https://arxiv.org/abs/2306.09237) which are part of [LEXTREME](https://huggingface.co/datasets/joelito/lextreme). We provide the arithmetic mean over three seeds (1, 2, 3) based on the macro-F1-score on the test set. The highest values are in bold. | _name_or_path | SCP-BC | SCP-BF | SCP-CC | SCP-CF | SJPXL-C | SJPXL-F | SLAP-SC | SLAP-SF | |:--------------------------------------------------------------------------------------------------------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------| | [ZurichNLP/swissbert-xlm-vocab](https://huggingface.co/ZurichNLP/swissbert-xlm-vocab) | 71.36 | 57.48 | 27.33 | 23.37 | 80.81 | 61.75 | 77.89 | 71.27 | | [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) | 66.56 | 56.58 | 22.67 | 21.31 | 77.26 | 60.79 | 73.54 | 72.24 | | [facebook/xmod-base](https://huggingface.co/facebook/xmod-base) | 70.35 | 58.16 | 23.87 | 19.57 | 80.55 | 60.84 | 73.16 | 69.03 | | [joelito/legal-swiss-longformer-base](https://huggingface.co/joelito/legal-swiss-longformer-base) | **73.25** | **60.06** | **28.68** | 24.39 | 87.46 | **65.23** | 83.84 | 77.96 | | [joelito/legal-swiss-roberta-base](https://huggingface.co/joelito/legal-swiss-roberta-base) | 72.41 | 59.31 | 25.99 | 23.27 | 87.48 | 64.16 | **86.8** | **81.56** | | [joelito/legal-swiss-roberta-large](https://huggingface.co/joelito/legal-swiss-roberta-large) | 70.95 | 57.59 | 27.86 | 23.48 | **88.33** | 62.92 | 82.1 | 78.62 | | [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) | 67.29 | 56.56 | 24.23 | 14.9 | 79.52 | 58.29 | 63.03 | 67.57 | | [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) | 72.01 | 57.59 | 22.93 | **25.18** | 79.41 | 60.89 | 67.64 | 74.13 | | [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) | 68.55 | 58.48 | 25.66 | 21.52 | 80.98 | 61.45 | 79.3 | 74.47 | | [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) | 69.5 | 58.15 | 27.9 | 22.05 | 82.19 | 61.24 | 81.09 | 71.82 | For more detailed insights into the performance on downstream tasks, such as [LEXTREME](https://huggingface.co/datasets/joelito/lextreme) ([Niklaus et al. 2023](https://arxiv.org/abs/2301.13126)) or [LEXGLUE](https://huggingface.co/datasets/lex_glue) ([Chalkidis et al. 2021](https://arxiv.org/abs/2110.00976)), we refer to the results presented in Niklaus et al. (2023) [1](https://arxiv.org/abs/2306.02069), [2](https://arxiv.org/abs/2306.09237). For further insights into the evaluation, we refer to the [trainer state](https://huggingface.co/joelito/legal-xlm-roberta-large/blob/main/last-checkpoint/trainer_state.json). Additional information is available in the [tensorboard](https://huggingface.co/joelito/legal-xlm-roberta-large/tensorboard). ### Model Architecture and Objective It is a RoBERTa-based model. Run the following code to view the architecture: ``` from transformers import AutoModel model = AutoModel.from_pretrained('model_identifier') print(model) RobertaModel( (embeddings): RobertaEmbeddings( (word_embeddings): Embedding(128000, 1024, padding_idx=0) (position_embeddings): Embedding(514, 1024, padding_idx=0) (token_type_embeddings): Embedding(1, 1024) (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): RobertaEncoder( (layer): ModuleList( (0-23): 24 x RobertaLayer( (attention): RobertaAttention( (self): RobertaSelfAttention( (query): Linear(in_features=1024, out_features=1024, bias=True) (key): Linear(in_features=1024, out_features=1024, bias=True) (value): Linear(in_features=1024, out_features=1024, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): RobertaSelfOutput( (dense): Linear(in_features=1024, out_features=1024, bias=True) (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): RobertaIntermediate( (dense): Linear(in_features=1024, out_features=4096, bias=True) (intermediate_act_fn): GELUActivation() ) (output): RobertaOutput( (dense): Linear(in_features=4096, out_features=1024, bias=True) (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): RobertaPooler( (dense): Linear(in_features=1024, out_features=1024, bias=True) (activation): Tanh() ) ) ``` ### Compute Infrastructure Google TPU. #### Hardware Google TPU v3-8 #### Software pytorch, transformers. ## Citation ``` @misc{rasiah2023scale, title={SCALE: Scaling up the Complexity for Advanced Language Model Evaluation}, author={Vishvaksenan Rasiah and Ronja Stern and Veton Matoshi and Matthias Stürmer and Ilias Chalkidis and Daniel E. Ho and Joel Niklaus}, year={2023}, eprint={2306.09237}, archivePrefix={arXiv}, primaryClass={cs.CL} } @article{Niklaus2023MultiLegalPileA6, title={MultiLegalPile: A 689GB Multilingual Legal Corpus}, author={Joel Niklaus and Veton Matoshi and Matthias Sturmer and Ilias Chalkidis and Daniel E. Ho}, journal={ArXiv}, year={2023}, volume={abs/2306.02069} } ``` ## Model Card Authors Joel Niklaus: [huggingface](https://huggingface.co/joelito); [email](mailto:joel.niklaus.2@bfh.ch) Veton Matoshi: [huggingface](https://huggingface.co/kapllan); [email](mailto:msv3@bfh.ch) ## Model Card Contact Joel Niklaus: [huggingface](https://huggingface.co/joelito); [email](mailto:joel.niklaus.2@bfh.ch) Veton Matoshi: [huggingface](https://huggingface.co/kapllan); [email](mailto:msv3@bfh.ch)
joelniklaus/legal-english-longformer-base
joelniklaus
2023-08-06T22:55:40Z
0
2
null
[ "en", "dataset:MultiLegalPile", "dataset:LEXTREME", "dataset:LEXGLUE", "arxiv:2306.02069", "arxiv:2301.13126", "arxiv:2110.00976", "arxiv:2306.09237", "license:cc", "region:us" ]
null
2023-04-27T06:52:14Z
--- license: cc language: - en datasets: - MultiLegalPile - LEXTREME - LEXGLUE --- # Model Card for joelito/legal-english-longformer-base This model is a multilingual model pretrained on legal data. It is based on XLM-R ([base](https://huggingface.co/xlm-roberta-base) and [large](https://huggingface.co/xlm-roberta-large)). For pretraining we used [Multi Legal Pile](https://huggingface.co/datasets/joelito/Multi_Legal_Pile) ([Niklaus et al. 2023](https://arxiv.org/abs/2306.02069)), a multilingual dataset from various legal sources covering 24 languages. ## Model Details ### Model Description - **Developed by:** Joel Niklaus: [huggingface](https://huggingface.co/joelito); [email](mailto:joel.niklaus.2@bfh.ch) - **Model type:** Transformer-based language model (Longformer) - **Language(s) (NLP):** en - **License:** CC BY-SA ## Uses ### Direct Use and Downstream Use You can utilize the raw model for masked language modeling since we did not perform next sentence prediction. However, its main purpose is to be fine-tuned for downstream tasks. It's important to note that this model is primarily designed for fine-tuning on tasks that rely on the entire sentence, potentially with masked elements, to make decisions. Examples of such tasks include sequence classification, token classification, or question answering. For text generation tasks, models like GPT-2 are more suitable. Additionally, the model is specifically trained on legal data, aiming to deliver strong performance in that domain. Its performance may vary when applied to non-legal data. ### Out-of-Scope Use For tasks such as text generation you should look at model like GPT2. The model should not be used to intentionally create hostile or alienating environments for people. The model was not trained to be factual or true representations of people or events, and therefore using the models to generate such content is out-of-scope for the abilities of this model. ## Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. ## How to Get Started with the Model See [huggingface tutorials](https://huggingface.co/learn/nlp-course/chapter7/1?fw=pt). For masked word prediction see [this tutorial](https://huggingface.co/tasks/fill-mask). ## Training Details This model was pretrained on [Multi Legal Pile](https://huggingface.co/datasets/joelito/Multi_Legal_Pile) ([Niklaus et al. 2023](https://arxiv.org/abs/2306.02069?utm_source=tldrai)). Our pretraining procedure includes the following key steps: (a) Warm-starting: We initialize our models from the original XLM-R checkpoints ([base](https://huggingface.co/xlm-roberta-base) and [large](https://huggingface.co/xlm-roberta-large)) of [Conneau et al. (2019)](https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf) to benefit from a well-trained base. (b) Tokenization: We train a new tokenizer of 128K BPEs to cover legal language better. However, we reuse the original XLM-R embeddings for lexically overlapping tokens and use random embeddings for the rest. (c) Pretraining: We continue pretraining on Multi Legal Pile with batches of 512 samples for an additional 1M/500K steps for the base/large model. We use warm-up steps, a linearly increasing learning rate, and cosine decay scheduling. During the warm-up phase, only the embeddings are updated, and a higher masking rate and percentage of predictions based on masked tokens are used compared to [Devlin et al. (2019)](https://aclanthology.org/N19-1423). (d) Sentence Sampling: We employ a sentence sampler with exponential smoothing to handle disparate token proportions across cantons and languages, preserving per-canton and language capacity. (e) Mixed Cased Models: Our models cover both upper- and lowercase letters, similar to recently developed large PLMs. (f) Long Context Training: To account for long contexts in legal documents, we train the base-size multilingual model on long contexts with windowed attention. This variant, named Legal-Swiss-LF-base, uses a 15% masking probability, increased learning rate, and similar settings to small-context models. ### Training Data This model was pretrained on [Multi Legal Pile](https://huggingface.co/datasets/joelito/Multi_Legal_Pile) ([Niklaus et al. 2023](https://arxiv.org/abs/2306.02069?utm_source=tldrai)). #### Preprocessing For further details see [Niklaus et al. 2023](https://arxiv.org/abs/2306.02069?utm_source=tldrai) #### Training Hyperparameters - batche size: 512 samples - Number of steps: 1M/500K for the base/large model - Warm-up steps for the first 5\% of the total training steps - Learning rate: (linearly increasing up to) 1e-4 - Word masking: increased 20/30\% masking rate for base/large models respectively ## Evaluation For performance on downstream tasks, such as [LEXTREME](https://huggingface.co/datasets/joelito/lextreme) ([Niklaus et al. 2023](https://arxiv.org/abs/2301.13126)) or [LEXGLUE](https://huggingface.co/datasets/lex_glue) ([Chalkidis et al. 2021](https://arxiv.org/abs/2110.00976)), we refer to the results presented in Niklaus et al. (2023) [1](https://arxiv.org/abs/2306.02069), [2](https://arxiv.org/abs/2306.09237). ### Model Architecture and Objective It is a RoBERTa-based model. Run the following code to view the architecture: ``` from transformers import AutoModel model = AutoModel.from_pretrained('joelito/legal-english-longformer-base') print(model) LongformerModel( (embeddings): LongformerEmbeddings( (word_embeddings): Embedding(128000, 768, padding_idx=0) (position_embeddings): Embedding(4098, 768, padding_idx=0) (token_type_embeddings): Embedding(1, 768) (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): LongformerEncoder( (layer): ModuleList( (0-11): 12 x LongformerLayer( (attention): LongformerAttention( (self): LongformerSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (query_global): Linear(in_features=768, out_features=768, bias=True) (key_global): Linear(in_features=768, out_features=768, bias=True) (value_global): Linear(in_features=768, out_features=768, bias=True) ) (output): LongformerSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): LongformerIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): LongformerOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): LongformerPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ``` ### Compute Infrastructure Google TPU. #### Hardware Google TPU v3-8 #### Software pytorch, transformers. ## Citation ``` @article{Niklaus2023MultiLegalPileA6, title={MultiLegalPile: A 689GB Multilingual Legal Corpus}, author={Joel Niklaus and Veton Matoshi and Matthias Sturmer and Ilias Chalkidis and Daniel E. Ho}, journal={ArXiv}, year={2023}, volume={abs/2306.02069} } ``` ## Model Card Authors Joel Niklaus: [huggingface](https://huggingface.co/joelito); [email](mailto:joel.niklaus.2@bfh.ch) Veton Matoshi: [huggingface](https://huggingface.co/kapllan); [email](mailto:msv3@bfh.ch) ## Model Card Contact Joel Niklaus: [huggingface](https://huggingface.co/joelito); [email](mailto:joel.niklaus.2@bfh.ch) Veton Matoshi: [huggingface](https://huggingface.co/kapllan); [email](mailto:msv3@bfh.ch)
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster030_partitioned_v3_standardized_030
HydraLM
2023-08-06T22:55:06Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-02T17:53:43Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
smd142/model
smd142
2023-08-06T22:53:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T06:31:01Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster027_partitioned_v3_standardized_027
HydraLM
2023-08-06T22:32:44Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-02T05:48:21Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
ailabturkiye/RizaTuzun
ailabturkiye
2023-08-06T22:28:52Z
0
0
null
[ "tr", "license:openrail", "region:us" ]
null
2023-08-06T22:24:13Z
--- license: openrail language: - tr ---
brunoboat/Pixelcopter-PLE-v1
brunoboat
2023-08-06T22:22:51Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T22:22:49Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 14.50 +/- 10.47 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster021_partitioned_v3_standardized_021
HydraLM
2023-08-06T22:00:31Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-02T06:04:49Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
spicecloud/bert-yelp-local
spicecloud
2023-08-06T21:40:56Z
126
0
transformers
[ "transformers", "pytorch", "coreml", "safetensors", "bert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-06T21:40:25Z
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Model variations BERT has originally been released in base and large variations, for cased and uncased input text. The uncased models also strips out an accent markers. Chinese and multilingual uncased and cased versions followed shortly after. Modified preprocessing with whole word masking has replaced subpiece masking in a following work, with the release of two models. Other 24 smaller models are released afterward. The detailed release history can be found on the [google-research/bert readme](https://github.com/google-research/bert/blob/master/README.md) on github. | Model | #params | Language | |------------------------|--------------------------------|-------| | [`bert-base-uncased`](https://huggingface.co/bert-base-uncased) | 110M | English | | [`bert-large-uncased`](https://huggingface.co/bert-large-uncased) | 340M | English | sub | [`bert-base-cased`](https://huggingface.co/bert-base-cased) | 110M | English | | [`bert-large-cased`](https://huggingface.co/bert-large-cased) | 340M | English | | [`bert-base-chinese`](https://huggingface.co/bert-base-chinese) | 110M | Chinese | | [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) | 110M | Multiple | | [`bert-large-uncased-whole-word-masking`](https://huggingface.co/bert-large-uncased-whole-word-masking) | 340M | English | | [`bert-large-cased-whole-word-masking`](https://huggingface.co/bert-large-cased-whole-word-masking) | 340M | English | ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.1073106899857521, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.08774490654468536, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a new model. [SEP]", 'score': 0.05338378623127937, 'token': 2047, 'token_str': 'new'}, {'sequence': "[CLS] hello i'm a super model. [SEP]", 'score': 0.04667217284440994, 'token': 3565, 'token_str': 'super'}, {'sequence': "[CLS] hello i'm a fine model. [SEP]", 'score': 0.027095865458250046, 'token': 2986, 'token_str': 'fine'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] the man worked as a carpenter. [SEP]', 'score': 0.09747550636529922, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the man worked as a waiter. [SEP]', 'score': 0.0523831807076931, 'token': 15610, 'token_str': 'waiter'}, {'sequence': '[CLS] the man worked as a barber. [SEP]', 'score': 0.04962705448269844, 'token': 13362, 'token_str': 'barber'}, {'sequence': '[CLS] the man worked as a mechanic. [SEP]', 'score': 0.03788609802722931, 'token': 15893, 'token_str': 'mechanic'}, {'sequence': '[CLS] the man worked as a salesman. [SEP]', 'score': 0.037680890411138535, 'token': 18968, 'token_str': 'salesman'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] the woman worked as a nurse. [SEP]', 'score': 0.21981462836265564, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the woman worked as a waitress. [SEP]', 'score': 0.1597415804862976, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the woman worked as a maid. [SEP]', 'score': 0.1154729500412941, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the woman worked as a prostitute. [SEP]', 'score': 0.037968918681144714, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the woman worked as a cook. [SEP]', 'score': 0.03042375110089779, 'token': 5660, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus, and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster016_partitioned_v3_standardized_016
HydraLM
2023-08-06T21:36:47Z
3
0
peft
[ "peft", "region:us" ]
null
2023-08-02T06:20:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
Xillolxlbln/my_awesome_qa_model
Xillolxlbln
2023-08-06T21:33:09Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-04T21:00:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 2.0252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 125 | 3.0587 | | No log | 2.0 | 250 | 2.1943 | | No log | 3.0 | 375 | 2.0252 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
ailabturkiye/sehinsah2
ailabturkiye
2023-08-06T21:21:49Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-08-06T21:15:04Z
--- license: openrail language: - tr tags: - music --- Şehinşah'ın çıplak sesiyle yapılan ses modeli. Train ve dataset bana aittir.
pillocode/ppo-Huggy
pillocode
2023-08-06T21:21:46Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-06T21:21:42Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: pillocode/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster012_partitioned_v3_standardized_012
HydraLM
2023-08-06T21:11:11Z
5
0
peft
[ "peft", "region:us" ]
null
2023-08-02T17:52:36Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster010_partitioned_v3_standardized_010
HydraLM
2023-08-06T21:01:19Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-02T05:53:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
LarryAIDraw/Doria_v1
LarryAIDraw
2023-08-06T20:59:38Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-06T20:52:22Z
--- license: creativeml-openrail-m --- https://civitai.com/models/123204/andrea-doria-azur-lane
LarryAIDraw/Patchi_V1
LarryAIDraw
2023-08-06T20:59:25Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-06T20:52:00Z
--- license: creativeml-openrail-m --- https://civitai.com/models/123345/skv-patchouli-knowledge-touhou-lora
LarryAIDraw/swimanis-v1-nai-resize
LarryAIDraw
2023-08-06T20:58:10Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-06T20:50:07Z
--- license: creativeml-openrail-m --- https://civitai.com/models/123679/anis-sparkling-summer-nikke
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster07_partitioned_v3_standardized_07
HydraLM
2023-08-06T20:41:42Z
4
0
peft
[ "peft", "region:us" ]
null
2023-08-02T05:53:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
li-ping/summary_llama_3_epoch_ver2_fix_wavedrom
li-ping
2023-08-06T20:38:39Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-06T20:07:37Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster05_partitioned_v3_standardized_05
HydraLM
2023-08-06T20:29:53Z
9
0
peft
[ "peft", "region:us" ]
null
2023-08-02T05:53:14Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
saaketh-j/llama-business
saaketh-j
2023-08-06T20:28:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T20:26:39Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0 prompt = f""" You are going to determine whether the description includes the business model. Don't use any prior knowledge, only base your answer off of what's given. It might not be explicitly stated but if it says "they sell in retailers" or "they sell to customers", it can be reasonably assumed that a B2C model is stated. If it says they "create software solutions" or "support companies", it is safe to assume they are B2B. If it says they are "the top defense contractor" or that they "create intelligence software for the FBI", it is reasonable to say they are B2G. However, if the information is very sparse or you are unsure, "No business model" is also a category to classify into. You should only classify into B2C, B2B, B2G, No business model. The response should be in sentence form with the class and reasoning ->: <Description>: [{data_point["Description"]}] <Answer>: {data_point["Answer"]} """ config = LoraConfig( r=64, lora_alpha=16, lora_dropout = 0.1, bias="none", task_type = "CAUSAL_LM" )
MattStammers/ppo-lunarlandercontinuous
MattStammers
2023-08-06T20:27:37Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T19:47:07Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 279.83 +/- 22.33 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster04_partitioned_v3_standardized_04
HydraLM
2023-08-06T20:21:35Z
5
0
peft
[ "peft", "region:us" ]
null
2023-08-02T05:53:17Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
CristoJV/q-FrozenLake-v1-4x4-noSlippery
CristoJV
2023-08-06T19:52:20Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T19:52:16Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="CristoJV/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
BauyrjanQ/whisper-kk-sp2n-b16-ms1600-s
BauyrjanQ
2023-08-06T19:46:25Z
79
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-05T22:16:53Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-kk-sp2n-b16-ms1600-s results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-kk-sp2n-b16-ms1600-s This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2659 - Wer: 274.5556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1600 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9302 | 0.18 | 800 | 0.3010 | 229.3416 | | 0.83 | 0.37 | 1600 | 0.2659 | 274.5556 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
alexeynoskov/dqn-SpaceInvadersNoFrameskip-v4
alexeynoskov
2023-08-06T19:44:46Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T19:44:11Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 652.00 +/- 106.28 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga alexeynoskov -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga alexeynoskov -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga alexeynoskov ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster02_partitioned_v3_standardized_02
HydraLM
2023-08-06T19:43:05Z
3
0
peft
[ "peft", "region:us" ]
null
2023-08-02T17:51:59Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
s3nh/WizardVicuna-Uncensored-3B-0719-GGML
s3nh
2023-08-06T19:22:33Z
0
6
transformers
[ "transformers", "text-generation", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-08-06T19:03:42Z
--- license: openrail language: - en pipeline_tag: text-generation library_name: transformers --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/heegyu/WizardVicuna-Uncensored-3B-0719). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` Base Model: togethercomputer/RedPajama-INCITE-Base-3B-v1 Usage ``` ### Human: your instruction ### ASSISANT: output will be generated and ended with <|endoftext|> ```
MattStammers/Bipedal_Walker_v3_Hardcore_Flat_Optimised
MattStammers
2023-08-06T19:15:39Z
0
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T19:14:56Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 metrics: - type: mean_reward value: -85.95 +/- 18.79 name: mean_reward verified: false --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ThuyNT03/xlm-roberta-base-finetuned-panx-all
ThuyNT03
2023-08-06T19:12:32Z
88
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-06T18:49:24Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1764 - F1: 0.8572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.297 | 1.0 | 835 | 0.1950 | 0.8093 | | 0.1555 | 2.0 | 1670 | 0.1687 | 0.8455 | | 0.1 | 3.0 | 2505 | 0.1764 | 0.8572 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
aivance/rebranding-to-aistrova
aivance
2023-08-06T19:10:34Z
0
0
null
[ "region:us" ]
null
2023-08-06T19:08:54Z
We're moving to https://huggingface.co/aistrova
gremlin97/CuteControlNet
gremlin97
2023-08-06T18:55:37Z
0
0
null
[ "license:cc-by-4.0", "region:us" ]
null
2023-08-06T18:31:55Z
--- license: cc-by-4.0 --- This repo contains a Control Net model trained on my custom dog dataset: [Dataset Link](https://huggingface.co/datasets/gremlin97/cute-controlnet). I have trained this model on 2 A100 GPU clusters using distributed training enabled through PyTorch Lightning API. It has been trained for 1 epoch for a duration of 4-5 hours. The model achieves good results. Custom Control-Net is specialized in dogs trained from scratch with the aforementioned custom dog dataset.
yosaku/finetuning-sentiment-model-3000-samples
yosaku
2023-08-06T18:47:37Z
90
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-06T04:00:07Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8675496688741722 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3196 - Accuracy: 0.8667 - F1: 0.8675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
Peniis2/Airplane
Peniis2
2023-08-06T18:43:04Z
0
0
null
[ "en", "dataset:databricks/databricks-dolly-15k", "region:us" ]
null
2023-08-06T18:41:29Z
--- datasets: - databricks/databricks-dolly-15k language: - en ---
Surya-Teja-Menta/ppo-Huggy
Surya-Teja-Menta
2023-08-06T18:40:20Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-06T18:40:14Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Surya-Teja-Menta/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ThuyNT03/xlm-roberta-base-finetuned-panx-de-fr
ThuyNT03
2023-08-06T18:37:02Z
95
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-06T18:23:38Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1603 - F1: 0.8595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 715 | 0.1777 | 0.8240 | | No log | 2.0 | 1430 | 0.1603 | 0.8420 | | No log | 3.0 | 2145 | 0.1603 | 0.8595 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
Lilsunx/llama2-qlora-finetunined-french
Lilsunx
2023-08-06T18:29:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T18:28:52Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
UHS/PPO_Bipedal_Walker_Flat_Optimised
UHS
2023-08-06T18:22:30Z
0
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T18:21:21Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 metrics: - type: mean_reward value: 302.24 +/- 1.27 name: mean_reward verified: false --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Javeria98/donut_final_REAL_DATA_04
Javeria98
2023-08-06T18:19:58Z
2
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-08-06T14:41:39Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut_final_REAL_DATA_04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut_final_REAL_DATA_04 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
HasanErdin/ppo-Huggy
HasanErdin
2023-08-06T18:14:39Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-06T18:14:34Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: HasanErdin/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
textgain/allnli-GroNLP-bert-base-dutch-cased
textgain
2023-08-06T18:09:12Z
553
3
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "nl", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-16T13:17:02Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language: - nl widget: - source_sentence: "De kat slaapt op het bed." sentences: - "De poes rust op het matras." - "De hond slaapt naast het bed." - "Het bed is gemaakt van hout." --- # allnli-GroNLP-bert-base-dutch-cased This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["De kat slaapt op het bed.", "De poes rust op het matras."] model = SentenceTransformer('textgain/allnli-GroNLP-bert-base-dutch-cased') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["De kat slaapt op het bed.", "De poes rust op het matras."] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('textgain/allnli-GroNLP-bert-base-dutch-cased') model = AutoModel.from_pretrained('textgain/allnli-GroNLP-bert-base-dutch-cased') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4388 with parameters: ``` {'batch_size': 128} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 438, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 439, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
drattung/ppo-Huggy
drattung
2023-08-06T18:08:18Z
0
1
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-06T18:08:06Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: drattung/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ThuyNT03/xlm-roberta-base-finetuned-panx-de
ThuyNT03
2023-08-06T18:06:14Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-06T17:49:40Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8616659101225601 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1329 - F1: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2568 | 1.0 | 525 | 0.1583 | 0.8125 | | 0.1261 | 2.0 | 1050 | 0.1458 | 0.8473 | | 0.0823 | 3.0 | 1575 | 0.1329 | 0.8617 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
ishwarbb23/t52
ishwarbb23
2023-08-06T17:53:05Z
101
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:ThomasSimonini/t5-end2end-question-generation", "base_model:finetune:ThomasSimonini/t5-end2end-question-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-05T18:12:16Z
--- license: apache-2.0 base_model: ThomasSimonini/t5-end2end-question-generation tags: - generated_from_trainer model-index: - name: t52 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t52 This model is a fine-tuned version of [ThomasSimonini/t5-end2end-question-generation](https://huggingface.co/ThomasSimonini/t5-end2end-question-generation) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2217 | 0.65 | 100 | 2.9125 | | 2.9732 | 1.3 | 200 | 2.8349 | | 2.8996 | 1.95 | 300 | 2.7879 | | 2.8009 | 2.59 | 400 | 2.7614 | | 2.7532 | 3.24 | 500 | 2.7406 | | 2.6964 | 3.89 | 600 | 2.7208 | | 2.6462 | 4.54 | 700 | 2.7153 | | 2.6265 | 5.19 | 800 | 2.7037 | | 2.6089 | 5.84 | 900 | 2.6968 | | 2.5522 | 6.49 | 1000 | 2.6944 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
roa7n/gpt2-human_nontata_promoters-last_2_layer_randomized
roa7n
2023-08-06T17:39:18Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T17:39:16Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0