modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-05 06:27:37
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 539
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-05 06:27:15
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
gcmsrc/xlm-roberta-base-finetuned-panx-it
|
gcmsrc
| 2022-09-20T09:19:59Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-09-20T09:17:52Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-it
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.it
metrics:
- name: F1
type: f1
value: 0.8207236842105264
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-it
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2571
- F1: 0.8207
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.8262 | 1.0 | 70 | 0.3182 | 0.7502 |
| 0.2785 | 2.0 | 140 | 0.2685 | 0.7966 |
| 0.1816 | 3.0 | 210 | 0.2571 | 0.8207 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
gcmsrc/xlm-roberta-base-finetuned-panx-de-fr
|
gcmsrc
| 2022-09-20T09:11:56Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-09-19T16:28:48Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1642
- F1: 0.8589
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2886 | 1.0 | 715 | 0.1804 | 0.8293 |
| 0.1458 | 2.0 | 1430 | 0.1574 | 0.8494 |
| 0.0931 | 3.0 | 2145 | 0.1642 | 0.8589 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
qunaieer/distilbert-base-uncased-finetuned-emotion
|
qunaieer
| 2022-09-20T08:23:41Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-09-20T08:13:34Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.926
- name: F1
type: f1
value: 0.9259893400415584
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2248
- Accuracy: 0.926
- F1: 0.9260
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8323 | 1.0 | 250 | 0.3238 | 0.908 | 0.9053 |
| 0.2571 | 2.0 | 500 | 0.2248 | 0.926 | 0.9260 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.12.1+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
khave/anirec-model-v1
|
khave
| 2022-09-20T08:16:05Z | 1 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-09-20T08:11:59Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 100000 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 100000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
MiguelCosta/distilbert-1-finetuned-cisco
|
MiguelCosta
| 2022-09-20T08:02:41Z | 74 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"fill-mask",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-09-20T07:35:16Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: MiguelCosta/distilbert-1-finetuned-cisco
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# MiguelCosta/distilbert-1-finetuned-cisco
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.2723
- Validation Loss: 2.4284
- Epoch: 39
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -964, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 4.4357 | 4.3213 | 0 |
| 4.1763 | 3.9111 | 1 |
| 3.8803 | 3.6751 | 2 |
| 3.7135 | 3.5458 | 3 |
| 3.5861 | 3.4489 | 4 |
| 3.5176 | 3.4323 | 5 |
| 3.4022 | 3.3658 | 6 |
| 3.3259 | 3.2113 | 7 |
| 3.2499 | 3.0623 | 8 |
| 3.2129 | 3.0298 | 9 |
| 3.1177 | 2.9181 | 10 |
| 3.0144 | 2.9550 | 11 |
| 2.9502 | 2.8758 | 12 |
| 2.9074 | 2.8674 | 13 |
| 2.8922 | 2.7877 | 14 |
| 2.8333 | 2.8283 | 15 |
| 2.7982 | 2.7717 | 16 |
| 2.7453 | 2.7578 | 17 |
| 2.6611 | 2.5425 | 18 |
| 2.6330 | 2.6145 | 19 |
| 2.5642 | 2.5415 | 20 |
| 2.5352 | 2.5437 | 21 |
| 2.4939 | 2.4214 | 22 |
| 2.4287 | 2.4882 | 23 |
| 2.4142 | 2.5091 | 24 |
| 2.3676 | 2.3997 | 25 |
| 2.3121 | 2.4515 | 26 |
| 2.3085 | 2.2349 | 27 |
| 2.2839 | 2.3205 | 28 |
| 2.3248 | 2.3273 | 29 |
| 2.2763 | 2.2583 | 30 |
| 2.2710 | 2.3896 | 31 |
| 2.2950 | 2.3224 | 32 |
| 2.3026 | 2.3910 | 33 |
| 2.3116 | 2.3255 | 34 |
| 2.2640 | 2.3186 | 35 |
| 2.2958 | 2.3332 | 36 |
| 2.3256 | 2.3646 | 37 |
| 2.2831 | 2.3751 | 38 |
| 2.2723 | 2.4284 | 39 |
### Framework versions
- Transformers 4.22.1
- TensorFlow 2.8.2
- Datasets 2.4.0
- Tokenizers 0.12.1
|
michael20at/testpyramidsrnd
|
michael20at
| 2022-09-20T07:59:27Z | 8 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2022-09-20T07:59:19Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: michael20at/testpyramidsrnd
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
jonas/sdg_classifier_osdg
|
jonas
| 2022-09-20T06:46:22Z | 134 | 7 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"en",
"dataset:jonas/osdg_sdg_data_processed",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-05-24T11:49:08Z |
---
language: en
widget:
- text: "Ending all forms of discrimination against women and girls is not only a basic human right, but it also crucial to accelerating sustainable development. It has been proven time and again, that empowering women and girls has a multiplier effect, and helps drive up economic growth and development across the board.
Since 2000, UNDP, together with our UN partners and the rest of the global community, has made gender equality central to our work. We have seen remarkable progress since then. More girls are now in school compared to 15 years ago, and most regions have reached gender parity in primary education. Women now make up to 41 percent of paid workers outside of agriculture, compared to 35 percent in 1990."
datasets:
- jonas/osdg_sdg_data_processed
co2_eq_emissions: 0.0653263174784986
---
# About
Machine Learning model for classifying text according to the first 15 of the 17 Sustainable Development Goals from the United Nations. Note that model is trained on quite short paragraphs (around 100 words) and performs best with similar input sizes.
Data comes from the amazing https://osdg.ai/ community!
* There is an improved version (finetuned Roberta) of the model available here: https://huggingface.co/jonas/roberta-base-finetuned-sdg
# Model Training Specifics
- Problem type: Multi-class Classification
- Model ID: 900229515
- CO2 Emissions (in grams): 0.0653263174784986
## Validation Metrics
- Loss: 0.3644874095916748
- Accuracy: 0.8972544579677328
- Macro F1: 0.8500873710954522
- Micro F1: 0.8972544579677328
- Weighted F1: 0.8937529692986061
- Macro Precision: 0.8694369727467804
- Micro Precision: 0.8972544579677328
- Weighted Precision: 0.8946984684977016
- Macro Recall: 0.8405065997404059
- Micro Recall: 0.8972544579677328
- Weighted Recall: 0.8972544579677328
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/jonas/autotrain-osdg-sdg-classifier-900229515
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("jonas/sdg_classifier_osdg", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("jonas/sdg_classifier_osdg", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
MiguelCosta/distilbert-finetuned-cisco
|
MiguelCosta
| 2022-09-20T05:49:33Z | 65 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"fill-mask",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-09-17T07:33:44Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: MiguelCosta/distilbert-finetuned-cisco
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# MiguelCosta/distilbert-finetuned-cisco
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.4181
- Validation Loss: 4.2370
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -964, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 4.4181 | 4.2370 | 0 |
### Framework versions
- Transformers 4.22.1
- TensorFlow 2.8.2
- Datasets 2.4.0
- Tokenizers 0.12.1
|
wormed/DialoGPT-small-denai
|
wormed
| 2022-09-20T03:53:22Z | 0 | 0 | null |
[
"conversational",
"region:us"
] | null | 2022-09-20T03:42:39Z |
---
tags:
- conversational
---
|
sd-concepts-library/bloo
|
sd-concepts-library
| 2022-09-20T03:24:28Z | 0 | 0 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-20T03:24:23Z |
---
license: mit
---
### Bloo on Stable Diffusion
This is the `<owl-guy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`:







|
sd-concepts-library/cumbia-peruana
|
sd-concepts-library
| 2022-09-20T03:14:35Z | 0 | 3 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-20T03:14:28Z |
---
license: mit
---
### cumbia peruana on Stable Diffusion
This is the `<cumbia-peru>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:





|
rram12/q-Taxi-v3
|
rram12
| 2022-09-20T02:39:05Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-09-20T02:15:13Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="rram12/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
rram12/q-FrozenLake-v1-4x4-noSlippery
|
rram12
| 2022-09-20T02:26:17Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-09-20T02:26:11Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="rram12/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
weirdguitarist/wav2vec2-base-stac-local
|
weirdguitarist
| 2022-09-20T01:58:36Z | 19 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-09-13T10:27:39Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-stac-local
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-stac-local
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9746
- Wer: 0.7828
- Cer: 0.3202
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 2.0603 | 1.0 | 2369 | 2.1282 | 0.9517 | 0.5485 |
| 1.6155 | 2.0 | 4738 | 1.6196 | 0.9060 | 0.4565 |
| 1.3462 | 3.0 | 7107 | 1.4331 | 0.8379 | 0.3983 |
| 1.1819 | 4.0 | 9476 | 1.3872 | 0.8233 | 0.3717 |
| 1.0189 | 5.0 | 11845 | 1.4066 | 0.8328 | 0.3660 |
| 0.9026 | 6.0 | 14214 | 1.3502 | 0.8198 | 0.3508 |
| 0.777 | 7.0 | 16583 | 1.3016 | 0.7922 | 0.3433 |
| 0.7109 | 8.0 | 18952 | 1.2662 | 0.8302 | 0.3510 |
| 0.6766 | 9.0 | 21321 | 1.4321 | 0.8103 | 0.3368 |
| 0.6078 | 10.0 | 23690 | 1.3592 | 0.7871 | 0.3360 |
| 0.5958 | 11.0 | 26059 | 1.4389 | 0.7819 | 0.3397 |
| 0.5094 | 12.0 | 28428 | 1.3391 | 0.8017 | 0.3239 |
| 0.4567 | 13.0 | 30797 | 1.4718 | 0.8026 | 0.3347 |
| 0.4448 | 14.0 | 33166 | 1.7450 | 0.8043 | 0.3424 |
| 0.3976 | 15.0 | 35535 | 1.4581 | 0.7888 | 0.3283 |
| 0.3449 | 16.0 | 37904 | 1.5688 | 0.8078 | 0.3397 |
| 0.3046 | 17.0 | 40273 | 1.8630 | 0.8060 | 0.3448 |
| 0.2983 | 18.0 | 42642 | 1.8400 | 0.8190 | 0.3425 |
| 0.2728 | 19.0 | 45011 | 1.6726 | 0.8034 | 0.3280 |
| 0.2579 | 20.0 | 47380 | 1.6661 | 0.8138 | 0.3249 |
| 0.2169 | 21.0 | 49749 | 1.7389 | 0.8138 | 0.3277 |
| 0.2498 | 22.0 | 52118 | 1.7205 | 0.7948 | 0.3207 |
| 0.1831 | 23.0 | 54487 | 1.8641 | 0.8103 | 0.3229 |
| 0.1927 | 24.0 | 56856 | 1.8724 | 0.7784 | 0.3251 |
| 0.1649 | 25.0 | 59225 | 1.9187 | 0.7974 | 0.3277 |
| 0.1594 | 26.0 | 61594 | 1.9022 | 0.7828 | 0.3220 |
| 0.1338 | 27.0 | 63963 | 1.9303 | 0.7862 | 0.3212 |
| 0.1441 | 28.0 | 66332 | 1.9528 | 0.7845 | 0.3207 |
| 0.129 | 29.0 | 68701 | 1.9676 | 0.7819 | 0.3212 |
| 0.1169 | 30.0 | 71070 | 1.9746 | 0.7828 | 0.3202 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.8.1+cu102
- Datasets 1.18.3
- Tokenizers 0.12.1
|
huggingtweets/markiplier-mrbeast-xqc
|
huggingtweets
| 2022-09-20T00:43:59Z | 110 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-09-20T00:43:52Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/994592419705274369/RLplF55e_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1571030673078591490/TqoPeGER_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1511102924310544387/j6E29xq6_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">MrBeast & xQc & Mark</div>
<div style="text-align: center; font-size: 14px;">@markiplier-mrbeast-xqc</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from MrBeast & xQc & Mark.
| Data | MrBeast | xQc | Mark |
| --- | --- | --- | --- |
| Tweets downloaded | 3248 | 3241 | 3226 |
| Retweets | 119 | 116 | 306 |
| Short tweets | 725 | 410 | 392 |
| Tweets kept | 2404 | 2715 | 2528 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3p1p4x3v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @markiplier-mrbeast-xqc's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/13fbl2ac) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/13fbl2ac/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/markiplier-mrbeast-xqc')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
sd-concepts-library/wojaks-now
|
sd-concepts-library
| 2022-09-20T00:19:17Z | 0 | 4 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-20T00:19:10Z |
---
license: mit
---
### wojaks-now on Stable Diffusion
This is the `<red-wojak>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`:



|
sd-concepts-library/all-rings-albuns
|
sd-concepts-library
| 2022-09-19T23:53:52Z | 0 | 2 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-19T23:53:38Z |
---
license: mit
---
### all rings albuns on Stable Diffusion
This is the `<rings-all-albuns>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:







|
SandraB/mt5-small-mlsum_training_sample
|
SandraB
| 2022-09-19T23:36:24Z | 111 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mt5",
"text2text-generation",
"summarization",
"generated_from_trainer",
"dataset:mlsum",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-09-19T13:17:26Z |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- mlsum
metrics:
- rouge
model-index:
- name: mt5-small-mlsum_training_sample
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: mlsum
type: mlsum
config: de
split: train
args: de
metrics:
- name: Rouge1
type: rouge
value: 28.2078
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-mlsum_training_sample
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the mlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9727
- Rouge1: 28.2078
- Rouge2: 19.0712
- Rougel: 26.2267
- Rougelsum: 26.9462
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 1.3193 | 1.0 | 6875 | 2.1352 | 25.8941 | 17.4672 | 24.2858 | 24.924 |
| 1.2413 | 2.0 | 13750 | 2.0528 | 26.6221 | 18.1166 | 24.8233 | 25.5111 |
| 1.1844 | 3.0 | 20625 | 1.9783 | 27.0518 | 18.3457 | 25.2288 | 25.8919 |
| 1.0403 | 4.0 | 27500 | 1.9487 | 27.8154 | 18.9701 | 25.9435 | 26.6578 |
| 0.9582 | 5.0 | 34375 | 1.9374 | 27.6863 | 18.7723 | 25.7667 | 26.4694 |
| 0.8992 | 6.0 | 41250 | 1.9353 | 27.8959 | 18.919 | 26.0434 | 26.7262 |
| 0.8109 | 7.0 | 48125 | 1.9492 | 28.0644 | 18.8873 | 26.0628 | 26.757 |
| 0.7705 | 8.0 | 55000 | 1.9727 | 28.2078 | 19.0712 | 26.2267 | 26.9462 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
Isaacp/xlm-roberta-base-finetuned-panx-de-fr
|
Isaacp
| 2022-09-19T23:18:16Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-09-15T21:55:15Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1637
- F1: 0.8599
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2897 | 1.0 | 715 | 0.1759 | 0.8369 |
| 0.1462 | 2.0 | 1430 | 0.1587 | 0.8506 |
| 0.0931 | 3.0 | 2145 | 0.1637 | 0.8599 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
sd-concepts-library/kawaii-colors
|
sd-concepts-library
| 2022-09-19T23:08:01Z | 0 | 26 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-15T20:07:40Z |
---
license: mit
---
### Kawaii Colors on Stable Diffusion
This is the `<kawaii-colors-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:





|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-e-nce-conceptnet-validated
|
research-backup
| 2022-09-19T21:47:15Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-17T11:45:40Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8450793650793651
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6176470588235294
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6261127596439169
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7498610339077265
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.886
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.618421052631579
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6203703703703703
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9199939731806539
- name: F1 (macro)
type: f1_macro
value: 0.9158483158560947
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8457746478873239
- name: F1 (macro)
type: f1_macro
value: 0.6760195209742395
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6684723726977249
- name: F1 (macro)
type: f1_macro
value: 0.65910797043685
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.959379564582319
- name: F1 (macro)
type: f1_macro
value: 0.8779321856206035
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9031651519899718
- name: F1 (macro)
type: f1_macro
value: 0.9015700872047177
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6176470588235294
- Accuracy on SAT: 0.6261127596439169
- Accuracy on BATS: 0.7498610339077265
- Accuracy on U2: 0.618421052631579
- Accuracy on U4: 0.6203703703703703
- Accuracy on Google: 0.886
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9199939731806539
- Micro F1 score on CogALexV: 0.8457746478873239
- Micro F1 score on EVALution: 0.6684723726977249
- Micro F1 score on K&H+N: 0.959379564582319
- Micro F1 score on ROOT09: 0.9031651519899718
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8450793650793651
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask>
- loss_function: nce_logout
- classification_loss: False
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 29
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-b-nce-conceptnet-validated
|
research-backup
| 2022-09-19T21:39:01Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-16T13:22:04Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8476587301587302
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5962566844919787
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5964391691394659
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7559755419677598
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.87
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5043859649122807
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5902777777777778
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9135151423836071
- name: F1 (macro)
type: f1_macro
value: 0.9077476621792441
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8568075117370892
- name: F1 (macro)
type: f1_macro
value: 0.6862949146842514
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6793066088840737
- name: F1 (macro)
type: f1_macro
value: 0.6733689760415943
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9559713431174793
- name: F1 (macro)
type: f1_macro
value: 0.8691131481598299
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8934503290504543
- name: F1 (macro)
type: f1_macro
value: 0.8925413349776822
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.5962566844919787
- Accuracy on SAT: 0.5964391691394659
- Accuracy on BATS: 0.7559755419677598
- Accuracy on U2: 0.5043859649122807
- Accuracy on U4: 0.5902777777777778
- Accuracy on Google: 0.87
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9135151423836071
- Micro F1 score on CogALexV: 0.8568075117370892
- Micro F1 score on EVALution: 0.6793066088840737
- Micro F1 score on K&H+N: 0.9559713431174793
- Micro F1 score on ROOT09: 0.8934503290504543
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8476587301587302
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask>
- loss_function: nce_logout
- classification_loss: False
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 29
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-a-nce-conceptnet-validated
|
research-backup
| 2022-09-19T21:35:10Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-16T05:55:39Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.9175
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6657754010695187
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.658753709198813
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.783212896053363
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.922
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6008771929824561
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6481481481481481
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9198433026970017
- name: F1 (macro)
type: f1_macro
value: 0.9160770870840453
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8568075117370892
- name: F1 (macro)
type: f1_macro
value: 0.6976908408325354
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.685807150595883
- name: F1 (macro)
type: f1_macro
value: 0.6809745362689802
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9570842317590597
- name: F1 (macro)
type: f1_macro
value: 0.8743204606688812
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9059855844562832
- name: F1 (macro)
type: f1_macro
value: 0.9055132716987447
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6657754010695187
- Accuracy on SAT: 0.658753709198813
- Accuracy on BATS: 0.783212896053363
- Accuracy on U2: 0.6008771929824561
- Accuracy on U4: 0.6481481481481481
- Accuracy on Google: 0.922
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9198433026970017
- Micro F1 score on CogALexV: 0.8568075117370892
- Micro F1 score on EVALution: 0.685807150595883
- Micro F1 score on K&H+N: 0.9570842317590597
- Micro F1 score on ROOT09: 0.9059855844562832
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.9175
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>
- loss_function: nce_logout
- classification_loss: False
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 27
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-prompt-d-nce-conceptnet-validated
|
research-backup
| 2022-09-19T21:27:36Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-15T14:31:09Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-prompt-d-nce-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8137698412698413
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6898395721925134
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6884272997032641
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.8293496386881601
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.958
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6666666666666666
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6597222222222222
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9187886093114359
- name: F1 (macro)
type: f1_macro
value: 0.9155322599832632
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.865962441314554
- name: F1 (macro)
type: f1_macro
value: 0.7168264001292298
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6879739978331527
- name: F1 (macro)
type: f1_macro
value: 0.6688500009556503
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.955762676497183
- name: F1 (macro)
type: f1_macro
value: 0.8742975353162309
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9169539329363836
- name: F1 (macro)
type: f1_macro
value: 0.9152963472472981
---
# relbert/roberta-large-semeval2012-average-prompt-d-nce-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-nce-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6898395721925134
- Accuracy on SAT: 0.6884272997032641
- Accuracy on BATS: 0.8293496386881601
- Accuracy on U2: 0.6666666666666666
- Accuracy on U4: 0.6597222222222222
- Accuracy on Google: 0.958
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-nce-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9187886093114359
- Micro F1 score on CogALexV: 0.865962441314554
- Micro F1 score on EVALution: 0.6879739978331527
- Micro F1 score on K&H+N: 0.955762676497183
- Micro F1 score on ROOT09: 0.9169539329363836
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-nce-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8137698412698413
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-d-nce-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj>
- loss_function: nce_logout
- classification_loss: False
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 26
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-nce-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-prompt-c-nce-conceptnet-validated
|
research-backup
| 2022-09-19T21:23:56Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-15T07:04:30Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-prompt-c-nce-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8667460317460317
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5935828877005348
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5964391691394659
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7871039466370205
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.926
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5833333333333334
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6273148148148148
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.906282959168299
- name: F1 (macro)
type: f1_macro
value: 0.8990211032404914
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8690140845070422
- name: F1 (macro)
type: f1_macro
value: 0.7171278125163605
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6841820151679306
- name: F1 (macro)
type: f1_macro
value: 0.6771693785145466
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9607706753842944
- name: F1 (macro)
type: f1_macro
value: 0.8896360611848646
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9122532121591977
- name: F1 (macro)
type: f1_macro
value: 0.910658358719055
---
# relbert/roberta-large-semeval2012-average-prompt-c-nce-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.5935828877005348
- Accuracy on SAT: 0.5964391691394659
- Accuracy on BATS: 0.7871039466370205
- Accuracy on U2: 0.5833333333333334
- Accuracy on U4: 0.6273148148148148
- Accuracy on Google: 0.926
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.906282959168299
- Micro F1 score on CogALexV: 0.8690140845070422
- Micro F1 score on EVALution: 0.6841820151679306
- Micro F1 score on K&H+N: 0.9607706753842944
- Micro F1 score on ROOT09: 0.9122532121591977
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8667460317460317
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-c-nce-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <mask>
- loss_function: nce_logout
- classification_loss: False
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 25
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated
|
research-backup
| 2022-09-19T21:20:17Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-14T23:37:25Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.888095238095238
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6283422459893048
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.629080118694362
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7959977765425236
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.92
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5701754385964912
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6134259259259259
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9172819044749133
- name: F1 (macro)
type: f1_macro
value: 0.9134777544987239
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8516431924882629
- name: F1 (macro)
type: f1_macro
value: 0.6909836328773065
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6738894907908992
- name: F1 (macro)
type: f1_macro
value: 0.6623942225782876
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9517284551714544
- name: F1 (macro)
type: f1_macro
value: 0.8593035416288995
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9000313381385145
- name: F1 (macro)
type: f1_macro
value: 0.8976663712913519
---
# relbert/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6283422459893048
- Accuracy on SAT: 0.629080118694362
- Accuracy on BATS: 0.7959977765425236
- Accuracy on U2: 0.5701754385964912
- Accuracy on U4: 0.6134259259259259
- Accuracy on Google: 0.92
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9172819044749133
- Micro F1 score on CogALexV: 0.8516431924882629
- Micro F1 score on EVALution: 0.6738894907908992
- Micro F1 score on K&H+N: 0.9517284551714544
- Micro F1 score on ROOT09: 0.9000313381385145
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.888095238095238
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask>
- loss_function: nce_logout
- classification_loss: False
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 30
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-mask-prompt-a-nce-conceptnet-validated
|
research-backup
| 2022-09-19T20:56:55Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-13T02:16:48Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-mask-prompt-a-nce-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.9188888888888889
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6764705882352942
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6824925816023739
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.783212896053363
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.952
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6228070175438597
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6481481481481481
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9156245291547386
- name: F1 (macro)
type: f1_macro
value: 0.9112259742347485
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8779342723004695
- name: F1 (macro)
type: f1_macro
value: 0.7367626946295457
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7199349945828819
- name: F1 (macro)
type: f1_macro
value: 0.7167850316669694
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9597968978229116
- name: F1 (macro)
type: f1_macro
value: 0.8852759251683162
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9078658727671576
- name: F1 (macro)
type: f1_macro
value: 0.9061538163621959
---
# relbert/roberta-large-semeval2012-mask-prompt-a-nce-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-nce-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6764705882352942
- Accuracy on SAT: 0.6824925816023739
- Accuracy on BATS: 0.783212896053363
- Accuracy on U2: 0.6228070175438597
- Accuracy on U4: 0.6481481481481481
- Accuracy on Google: 0.952
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-nce-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9156245291547386
- Micro F1 score on CogALexV: 0.8779342723004695
- Micro F1 score on EVALution: 0.7199349945828819
- Micro F1 score on K&H+N: 0.9597968978229116
- Micro F1 score on ROOT09: 0.9078658727671576
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-nce-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.9188888888888889
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-a-nce-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>
- loss_function: nce_logout
- classification_loss: False
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 30
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-nce-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-prompt-c-nce-classification-conceptnet-validated
|
research-backup
| 2022-09-19T20:53:15Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-12T07:10:13Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-prompt-c-nce-classification-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.6846626984126984
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.31283422459893045
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.3086053412462908
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.46192329071706506
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.63
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.34649122807017546
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.3611111111111111
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8457134247400934
- name: F1 (macro)
type: f1_macro
value: 0.8210817253537833
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.846244131455399
- name: F1 (macro)
type: f1_macro
value: 0.6205542192501825
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6262188515709642
- name: F1 (macro)
type: f1_macro
value: 0.6158702387251406
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9545802323155039
- name: F1 (macro)
type: f1_macro
value: 0.8851331276863854
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9044186775305547
- name: F1 (macro)
type: f1_macro
value: 0.9039135057812416
---
# relbert/roberta-large-semeval2012-average-prompt-c-nce-classification-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce-classification-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.31283422459893045
- Accuracy on SAT: 0.3086053412462908
- Accuracy on BATS: 0.46192329071706506
- Accuracy on U2: 0.34649122807017546
- Accuracy on U4: 0.3611111111111111
- Accuracy on Google: 0.63
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce-classification-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.8457134247400934
- Micro F1 score on CogALexV: 0.846244131455399
- Micro F1 score on EVALution: 0.6262188515709642
- Micro F1 score on K&H+N: 0.9545802323155039
- Micro F1 score on ROOT09: 0.9044186775305547
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.6846626984126984
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-c-nce-classification-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <mask>
- loss_function: nce_logout
- classification_loss: True
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 1
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-nce-classification-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
sd-concepts-library/joe-mad
|
sd-concepts-library
| 2022-09-19T20:51:56Z | 0 | 2 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-19T20:51:52Z |
---
license: mit
---
### Joe Mad on Stable Diffusion
This is the `<joe-mad>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:




|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated
|
research-backup
| 2022-09-19T20:49:24Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-11T19:39:08Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.7637698412698413
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5133689839572193
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.516320474777448
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5958866036687048
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.748
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.4605263157894737
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5231481481481481
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9025161970769926
- name: F1 (macro)
type: f1_macro
value: 0.8979165451427438
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8328638497652581
- name: F1 (macro)
type: f1_macro
value: 0.6469572777603673
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6630552546045504
- name: F1 (macro)
type: f1_macro
value: 0.6493250582245075
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9562495652778744
- name: F1 (macro)
type: f1_macro
value: 0.8695137253747418
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8906298965841429
- name: F1 (macro)
type: f1_macro
value: 0.8885946595123109
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.5133689839572193
- Accuracy on SAT: 0.516320474777448
- Accuracy on BATS: 0.5958866036687048
- Accuracy on U2: 0.4605263157894737
- Accuracy on U4: 0.5231481481481481
- Accuracy on Google: 0.748
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9025161970769926
- Micro F1 score on CogALexV: 0.8328638497652581
- Micro F1 score on EVALution: 0.6630552546045504
- Micro F1 score on K&H+N: 0.9562495652778744
- Micro F1 score on ROOT09: 0.8906298965841429
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.7637698412698413
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask>
- loss_function: nce_logout
- classification_loss: True
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 30
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification-conceptnet-validated
|
research-backup
| 2022-09-19T20:41:36Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-11T02:05:54Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.6545238095238095
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.29411764705882354
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.29080118694362017
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.4641467481934408
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.614
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.32456140350877194
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.3449074074074074
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8862437848425494
- name: F1 (macro)
type: f1_macro
value: 0.8781526549150734
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8370892018779342
- name: F1 (macro)
type: f1_macro
value: 0.6286516686265566
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.5384615384615384
- name: F1 (macro)
type: f1_macro
value: 0.5368027921312294
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9659177853516032
- name: F1 (macro)
type: f1_macro
value: 0.8925325170399768
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8567847069884049
- name: F1 (macro)
type: f1_macro
value: 0.8346603805121989
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.29411764705882354
- Accuracy on SAT: 0.29080118694362017
- Accuracy on BATS: 0.4641467481934408
- Accuracy on U2: 0.32456140350877194
- Accuracy on U4: 0.3449074074074074
- Accuracy on Google: 0.614
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.8862437848425494
- Micro F1 score on CogALexV: 0.8370892018779342
- Micro F1 score on EVALution: 0.5384615384615384
- Micro F1 score on K&H+N: 0.9659177853516032
- Micro F1 score on ROOT09: 0.8567847069884049
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.6545238095238095
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <mask>
- loss_function: nce_logout
- classification_loss: True
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 1
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce-classification-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated
|
research-backup
| 2022-09-19T20:37:42Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-10T17:17:52Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8167460317460318
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.516042780748663
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5281899109792285
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.632017787659811
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.724
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.4342105263157895
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5069444444444444
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9034202199789061
- name: F1 (macro)
type: f1_macro
value: 0.893273397921436
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8342723004694835
- name: F1 (macro)
type: f1_macro
value: 0.6453699846432566
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6581798483206934
- name: F1 (macro)
type: f1_macro
value: 0.640639393261134
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9604228976838005
- name: F1 (macro)
type: f1_macro
value: 0.8814339609725079
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8909432779692886
- name: F1 (macro)
type: f1_macro
value: 0.8914692333897629
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.516042780748663
- Accuracy on SAT: 0.5281899109792285
- Accuracy on BATS: 0.632017787659811
- Accuracy on U2: 0.4342105263157895
- Accuracy on U4: 0.5069444444444444
- Accuracy on Google: 0.724
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9034202199789061
- Micro F1 score on CogALexV: 0.8342723004694835
- Micro F1 score on EVALution: 0.6581798483206934
- Micro F1 score on K&H+N: 0.9604228976838005
- Micro F1 score on ROOT09: 0.8909432779692886
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8167460317460318
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask>
- loss_function: nce_logout
- classification_loss: True
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 30
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce-classification-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated
|
research-backup
| 2022-09-19T20:34:07Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-10T08:32:21Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.7367857142857143
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.3342245989304813
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.33827893175074186
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.3968871595330739
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.592
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.3201754385964912
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.3125
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9022148561096881
- name: F1 (macro)
type: f1_macro
value: 0.8962429050248129
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8049295774647888
- name: F1 (macro)
type: f1_macro
value: 0.6122481358269966
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.652762730227519
- name: F1 (macro)
type: f1_macro
value: 0.6101323743101166
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9603533421437018
- name: F1 (macro)
type: f1_macro
value: 0.8709644325592566
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8874960827326857
- name: F1 (macro)
type: f1_macro
value: 0.8864394662565577
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.3342245989304813
- Accuracy on SAT: 0.33827893175074186
- Accuracy on BATS: 0.3968871595330739
- Accuracy on U2: 0.3201754385964912
- Accuracy on U4: 0.3125
- Accuracy on Google: 0.592
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9022148561096881
- Micro F1 score on CogALexV: 0.8049295774647888
- Micro F1 score on EVALution: 0.652762730227519
- Micro F1 score on K&H+N: 0.9603533421437018
- Micro F1 score on ROOT09: 0.8874960827326857
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.7367857142857143
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>
- loss_function: nce_logout
- classification_loss: True
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 1
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce-classification-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-prompt-b-nce-classification-conceptnet-validated
|
research-backup
| 2022-09-19T20:26:21Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-09T04:06:42Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-prompt-b-nce-classification-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8433333333333334
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.4732620320855615
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.49258160237388726
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5986659255141745
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.686
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.44298245614035087
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.4930555555555556
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9085430164230828
- name: F1 (macro)
type: f1_macro
value: 0.9029499017420614
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8359154929577466
- name: F1 (macro)
type: f1_macro
value: 0.6401332628753275
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6581798483206934
- name: F1 (macro)
type: f1_macro
value: 0.6411620033399844
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9586840091813313
- name: F1 (macro)
type: f1_macro
value: 0.8809925441051085
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8824819805703541
- name: F1 (macro)
type: f1_macro
value: 0.877314171779575
---
# relbert/roberta-large-semeval2012-average-prompt-b-nce-classification-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-classification-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.4732620320855615
- Accuracy on SAT: 0.49258160237388726
- Accuracy on BATS: 0.5986659255141745
- Accuracy on U2: 0.44298245614035087
- Accuracy on U4: 0.4930555555555556
- Accuracy on Google: 0.686
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-classification-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9085430164230828
- Micro F1 score on CogALexV: 0.8359154929577466
- Micro F1 score on EVALution: 0.6581798483206934
- Micro F1 score on K&H+N: 0.9586840091813313
- Micro F1 score on ROOT09: 0.8824819805703541
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8433333333333334
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-b-nce-classification-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask>
- loss_function: nce_logout
- classification_loss: True
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 30
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce-classification-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-prompt-a-nce-classification-conceptnet-validated
|
research-backup
| 2022-09-19T20:22:11Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-08T19:21:31Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-prompt-a-nce-classification-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.7666666666666666
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.3342245989304813
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.33827893175074186
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.3885491939966648
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.542
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.3201754385964912
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.33564814814814814
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8865451258098539
- name: F1 (macro)
type: f1_macro
value: 0.8770785182418419
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8401408450704225
- name: F1 (macro)
type: f1_macro
value: 0.6242491296371133
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6749729144095341
- name: F1 (macro)
type: f1_macro
value: 0.6505812342477592
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9607706753842944
- name: F1 (macro)
type: f1_macro
value: 0.8781957733610742
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8994045753682232
- name: F1 (macro)
type: f1_macro
value: 0.8968786782259857
---
# relbert/roberta-large-semeval2012-average-prompt-a-nce-classification-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-nce-classification-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.3342245989304813
- Accuracy on SAT: 0.33827893175074186
- Accuracy on BATS: 0.3885491939966648
- Accuracy on U2: 0.3201754385964912
- Accuracy on U4: 0.33564814814814814
- Accuracy on Google: 0.542
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-nce-classification-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.8865451258098539
- Micro F1 score on CogALexV: 0.8401408450704225
- Micro F1 score on EVALution: 0.6749729144095341
- Micro F1 score on K&H+N: 0.9607706753842944
- Micro F1 score on ROOT09: 0.8994045753682232
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.7666666666666666
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-a-nce-classification-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>
- loss_function: nce_logout
- classification_loss: True
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 1
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-a-nce-classification-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated
|
research-backup
| 2022-09-19T20:14:34Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-07T21:38:26Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8544444444444445
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6524064171122995
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6498516320474778
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7509727626459144
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.902
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6271929824561403
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.625
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9246647581738737
- name: F1 (macro)
type: f1_macro
value: 0.9201116139693363
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8826291079812206
- name: F1 (macro)
type: f1_macro
value: 0.74506786895136
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7172264355362946
- name: F1 (macro)
type: f1_macro
value: 0.703292242462215
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9616748974055783
- name: F1 (macro)
type: f1_macro
value: 0.8934154139843127
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9094327796928863
- name: F1 (macro)
type: f1_macro
value: 0.906471425124189
---
# relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6524064171122995
- Accuracy on SAT: 0.6498516320474778
- Accuracy on BATS: 0.7509727626459144
- Accuracy on U2: 0.6271929824561403
- Accuracy on U4: 0.625
- Accuracy on Google: 0.902
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9246647581738737
- Micro F1 score on CogALexV: 0.8826291079812206
- Micro F1 score on EVALution: 0.7172264355362946
- Micro F1 score on K&H+N: 0.9616748974055783
- Micro F1 score on ROOT09: 0.9094327796928863
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8544444444444445
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj>
- loss_function: nce_logout
- classification_loss: True
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 30
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-nce-classification-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated
|
research-backup
| 2022-09-19T20:10:10Z | 102 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-07T10:51:00Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.5911706349206349
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.3235294117647059
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.314540059347181
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.4118954974986103
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.43
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.34649122807017546
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.3125
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8142232936567726
- name: F1 (macro)
type: f1_macro
value: 0.7823150685401111
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7779342723004695
- name: F1 (macro)
type: f1_macro
value: 0.4495225434483775
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.5357529794149513
- name: F1 (macro)
type: f1_macro
value: 0.45418166183928343
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8190164846630034
- name: F1 (macro)
type: f1_macro
value: 0.6465234410767566
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8834221247257913
- name: F1 (macro)
type: f1_macro
value: 0.8771202456083294
---
# relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.3235294117647059
- Accuracy on SAT: 0.314540059347181
- Accuracy on BATS: 0.4118954974986103
- Accuracy on U2: 0.34649122807017546
- Accuracy on U4: 0.3125
- Accuracy on Google: 0.43
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.8142232936567726
- Micro F1 score on CogALexV: 0.7779342723004695
- Micro F1 score on EVALution: 0.5357529794149513
- Micro F1 score on K&H+N: 0.8190164846630034
- Micro F1 score on ROOT09: 0.8834221247257913
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.5911706349206349
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <mask>
- loss_function: nce_logout
- classification_loss: True
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 24
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-nce-classification-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated
|
research-backup
| 2022-09-19T19:55:10Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-09-09T12:51:44Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8295436507936508
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5828877005347594
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6023738872403561
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6170094496942746
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.842
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5219298245614035
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5347222222222222
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9127617899653457
- name: F1 (macro)
type: f1_macro
value: 0.9077484042036353
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8523474178403756
- name: F1 (macro)
type: f1_macro
value: 0.6871561847645433
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.676056338028169
- name: F1 (macro)
type: f1_macro
value: 0.6699220665498732
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9604228976838005
- name: F1 (macro)
type: f1_macro
value: 0.8725502582807458
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8865559385772485
- name: F1 (macro)
type: f1_macro
value: 0.8814062245146053
---
# relbert/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.5828877005347594
- Accuracy on SAT: 0.6023738872403561
- Accuracy on BATS: 0.6170094496942746
- Accuracy on U2: 0.5219298245614035
- Accuracy on U4: 0.5347222222222222
- Accuracy on Google: 0.842
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9127617899653457
- Micro F1 score on CogALexV: 0.8523474178403756
- Micro F1 score on EVALution: 0.676056338028169
- Micro F1 score on K&H+N: 0.9604228976838005
- Micro F1 score on ROOT09: 0.8865559385772485
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8295436507936508
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity
- split: train
- data_eval: relbert/conceptnet_high_confidence
- split_eval: full
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj>
- loss_function: nce_logout
- classification_loss: True
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 30
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- exclude_relation_eval: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-nce-classification-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-e-loob
|
research-backup
| 2022-09-19T19:51:19Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-30T14:20:05Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.9032142857142857
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5721925133689839
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5667655786350149
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7776542523624236
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.872
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5833333333333334
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6203703703703703
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9202953141479584
- name: F1 (macro)
type: f1_macro
value: 0.9155901755002147
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8467136150234742
- name: F1 (macro)
type: f1_macro
value: 0.6838421887453545
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6836403033586133
- name: F1 (macro)
type: f1_macro
value: 0.6705678270928033
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9625095638867636
- name: F1 (macro)
type: f1_macro
value: 0.8774656452359669
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9009714822939517
- name: F1 (macro)
type: f1_macro
value: 0.8985547104456186
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.5721925133689839
- Accuracy on SAT: 0.5667655786350149
- Accuracy on BATS: 0.7776542523624236
- Accuracy on U2: 0.5833333333333334
- Accuracy on U4: 0.6203703703703703
- Accuracy on Google: 0.872
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9202953141479584
- Micro F1 score on CogALexV: 0.8467136150234742
- Micro F1 score on EVALution: 0.6836403033586133
- Micro F1 score on K&H+N: 0.9625095638867636
- Micro F1 score on ROOT09: 0.9009714822939517
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.9032142857142857
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask>
- loss_function: info_loob
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 22
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-loob/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-d-loob
|
research-backup
| 2022-09-19T19:47:44Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-30T06:57:12Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8871031746031746
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6871657754010695
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6913946587537092
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.8148971650917176
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.958
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6359649122807017
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6458333333333334
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9153231881874341
- name: F1 (macro)
type: f1_macro
value: 0.909786964934943
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8577464788732394
- name: F1 (macro)
type: f1_macro
value: 0.6952254602767576
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6847237269772481
- name: F1 (macro)
type: f1_macro
value: 0.6742659270266346
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9634137859080476
- name: F1 (macro)
type: f1_macro
value: 0.8926357349234371
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9106863052334692
- name: F1 (macro)
type: f1_macro
value: 0.9093125585829993
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6871657754010695
- Accuracy on SAT: 0.6913946587537092
- Accuracy on BATS: 0.8148971650917176
- Accuracy on U2: 0.6359649122807017
- Accuracy on U4: 0.6458333333333334
- Accuracy on Google: 0.958
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9153231881874341
- Micro F1 score on CogALexV: 0.8577464788732394
- Micro F1 score on EVALution: 0.6847237269772481
- Micro F1 score on K&H+N: 0.9634137859080476
- Micro F1 score on ROOT09: 0.9106863052334692
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8871031746031746
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj>
- loss_function: info_loob
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 21
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-c-loob
|
research-backup
| 2022-09-19T19:44:02Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-29T23:35:40Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-c-loob
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.9222619047619047
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6550802139037433
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6528189910979229
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.8226792662590328
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.936
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6666666666666666
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6712962962962963
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9234593943046557
- name: F1 (macro)
type: f1_macro
value: 0.9180602208649703
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8690140845070422
- name: F1 (macro)
type: f1_macro
value: 0.7117308070284601
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.695557963163597
- name: F1 (macro)
type: f1_macro
value: 0.6823770398712694
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9635528969882451
- name: F1 (macro)
type: f1_macro
value: 0.8903933273008022
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9088060169225948
- name: F1 (macro)
type: f1_macro
value: 0.9056193124925707
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-c-loob
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-loob/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6550802139037433
- Accuracy on SAT: 0.6528189910979229
- Accuracy on BATS: 0.8226792662590328
- Accuracy on U2: 0.6666666666666666
- Accuracy on U4: 0.6712962962962963
- Accuracy on Google: 0.936
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-loob/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9234593943046557
- Micro F1 score on CogALexV: 0.8690140845070422
- Micro F1 score on EVALution: 0.695557963163597
- Micro F1 score on K&H+N: 0.9635528969882451
- Micro F1 score on ROOT09: 0.9088060169225948
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-loob/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.9222619047619047
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-c-loob")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <mask>
- loss_function: info_loob
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 21
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-loob/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-b-loob
|
research-backup
| 2022-09-19T19:40:25Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-29T16:15:09Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-b-loob
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8373412698412699
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6042780748663101
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6023738872403561
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7904391328515842
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.914
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5307017543859649
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5995370370370371
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9114057556124755
- name: F1 (macro)
type: f1_macro
value: 0.9068848357754794
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.853755868544601
- name: F1 (macro)
type: f1_macro
value: 0.6897229218026726
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.66738894907909
- name: F1 (macro)
type: f1_macro
value: 0.6606752688018641
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9581275648605412
- name: F1 (macro)
type: f1_macro
value: 0.8767313605600328
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8928235662801629
- name: F1 (macro)
type: f1_macro
value: 0.8910996698230066
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-b-loob
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-loob/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6042780748663101
- Accuracy on SAT: 0.6023738872403561
- Accuracy on BATS: 0.7904391328515842
- Accuracy on U2: 0.5307017543859649
- Accuracy on U4: 0.5995370370370371
- Accuracy on Google: 0.914
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-loob/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9114057556124755
- Micro F1 score on CogALexV: 0.853755868544601
- Micro F1 score on EVALution: 0.66738894907909
- Micro F1 score on K&H+N: 0.9581275648605412
- Micro F1 score on ROOT09: 0.8928235662801629
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-loob/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8373412698412699
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-b-loob")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask>
- loss_function: info_loob
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 22
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-loob/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-prompt-e-loob
|
research-backup
| 2022-09-19T19:33:04Z | 101 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-29T01:31:32Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-prompt-e-loob
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.9121031746031746
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5909090909090909
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5875370919881305
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7670928293496387
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.912
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5570175438596491
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5879629629629629
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9207473255989151
- name: F1 (macro)
type: f1_macro
value: 0.9149001350257856
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8481220657276995
- name: F1 (macro)
type: f1_macro
value: 0.6824179529207882
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6798483206933911
- name: F1 (macro)
type: f1_macro
value: 0.6735513654805187
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9589622313417264
- name: F1 (macro)
type: f1_macro
value: 0.872950103232891
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.895017235976183
- name: F1 (macro)
type: f1_macro
value: 0.8900982680408713
---
# relbert/roberta-large-semeval2012-average-prompt-e-loob
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-loob/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.5909090909090909
- Accuracy on SAT: 0.5875370919881305
- Accuracy on BATS: 0.7670928293496387
- Accuracy on U2: 0.5570175438596491
- Accuracy on U4: 0.5879629629629629
- Accuracy on Google: 0.912
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-loob/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9207473255989151
- Micro F1 score on CogALexV: 0.8481220657276995
- Micro F1 score on EVALution: 0.6798483206933911
- Micro F1 score on K&H+N: 0.9589622313417264
- Micro F1 score on ROOT09: 0.895017235976183
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-loob/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.9121031746031746
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-e-loob")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask>
- loss_function: info_loob
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 22
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-loob/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-prompt-d-loob
|
research-backup
| 2022-09-19T19:29:19Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-28T18:08:47Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-prompt-d-loob
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8432936507936508
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7032085561497327
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7091988130563798
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.8182323513062812
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.962
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6535087719298246
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6342592592592593
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9154738586710863
- name: F1 (macro)
type: f1_macro
value: 0.9105308478206379
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8652582159624412
- name: F1 (macro)
type: f1_macro
value: 0.7157465075284571
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6841820151679306
- name: F1 (macro)
type: f1_macro
value: 0.6652440461492628
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9582666759407387
- name: F1 (macro)
type: f1_macro
value: 0.8705160523996387
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9078658727671576
- name: F1 (macro)
type: f1_macro
value: 0.9051927463291504
---
# relbert/roberta-large-semeval2012-average-prompt-d-loob
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-loob/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.7032085561497327
- Accuracy on SAT: 0.7091988130563798
- Accuracy on BATS: 0.8182323513062812
- Accuracy on U2: 0.6535087719298246
- Accuracy on U4: 0.6342592592592593
- Accuracy on Google: 0.962
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-loob/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9154738586710863
- Micro F1 score on CogALexV: 0.8652582159624412
- Micro F1 score on EVALution: 0.6841820151679306
- Micro F1 score on K&H+N: 0.9582666759407387
- Micro F1 score on ROOT09: 0.9078658727671576
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-loob/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8432936507936508
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-d-loob")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj>
- loss_function: info_loob
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 22
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-d-loob/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-prompt-c-loob
|
research-backup
| 2022-09-19T19:25:37Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-28T10:46:43Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-prompt-c-loob
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.9857142857142858
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6363636363636364
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6261127596439169
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.8210116731517509
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.906
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6403508771929824
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6574074074074074
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9180352568931747
- name: F1 (macro)
type: f1_macro
value: 0.913245619730716
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8791079812206573
- name: F1 (macro)
type: f1_macro
value: 0.7394683332126576
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6998916576381365
- name: F1 (macro)
type: f1_macro
value: 0.6908316763861931
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9588926758016276
- name: F1 (macro)
type: f1_macro
value: 0.8808973874170258
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9109996866186149
- name: F1 (macro)
type: f1_macro
value: 0.9081322080316404
---
# relbert/roberta-large-semeval2012-average-prompt-c-loob
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-loob/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6363636363636364
- Accuracy on SAT: 0.6261127596439169
- Accuracy on BATS: 0.8210116731517509
- Accuracy on U2: 0.6403508771929824
- Accuracy on U4: 0.6574074074074074
- Accuracy on Google: 0.906
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-loob/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9180352568931747
- Micro F1 score on CogALexV: 0.8791079812206573
- Micro F1 score on EVALution: 0.6998916576381365
- Micro F1 score on K&H+N: 0.9588926758016276
- Micro F1 score on ROOT09: 0.9109996866186149
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-loob/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.9857142857142858
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-c-loob")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <mask>
- loss_function: info_loob
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 22
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-loob/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
HyperMoon/wav2vec2-base-finetuned-deepfake-0919
|
HyperMoon
| 2022-09-19T19:24:22Z | 163 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"audio-classification",
"generated_from_trainer",
"dataset:asvspoof2019",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2022-09-19T14:56:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- asvspoof2019
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-deepfake-0919
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-finetuned-deepfake-0919
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the asvspoof2019 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3335
- Accuracy: 0.8974
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3025 | 1.0 | 1586 | 0.3335 | 0.8974 |
| 0.4214 | 2.0 | 3172 | 0.3331 | 0.8974 |
| 0.4378 | 3.0 | 4758 | 0.3307 | 0.8974 |
| 0.3993 | 4.0 | 6344 | 0.3331 | 0.8974 |
| 0.2839 | 5.0 | 7930 | 0.3315 | 0.8974 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
research-backup/roberta-large-semeval2012-mask-prompt-e-loob
|
research-backup
| 2022-09-19T19:14:37Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-27T12:42:28Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-mask-prompt-e-loob
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8682936507936508
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6176470588235294
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6231454005934718
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7570872707059477
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.874
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6008771929824561
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6226851851851852
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9311435889709206
- name: F1 (macro)
type: f1_macro
value: 0.9268380061574883
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8744131455399061
- name: F1 (macro)
type: f1_macro
value: 0.7267491613759859
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7053087757313109
- name: F1 (macro)
type: f1_macro
value: 0.694918491135901
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9652222299506156
- name: F1 (macro)
type: f1_macro
value: 0.8967485289493923
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8965841429019116
- name: F1 (macro)
type: f1_macro
value: 0.8952392246946669
---
# relbert/roberta-large-semeval2012-mask-prompt-e-loob
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-e-loob/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6176470588235294
- Accuracy on SAT: 0.6231454005934718
- Accuracy on BATS: 0.7570872707059477
- Accuracy on U2: 0.6008771929824561
- Accuracy on U4: 0.6226851851851852
- Accuracy on Google: 0.874
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-e-loob/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9311435889709206
- Micro F1 score on CogALexV: 0.8744131455399061
- Micro F1 score on EVALution: 0.7053087757313109
- Micro F1 score on K&H+N: 0.9652222299506156
- Micro F1 score on ROOT09: 0.8965841429019116
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-e-loob/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8682936507936508
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-e-loob")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask>
- loss_function: info_loob
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 22
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-e-loob/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-mask-prompt-d-loob
|
research-backup
| 2022-09-19T19:10:57Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-27T05:04:10Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-mask-prompt-d-loob
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8978174603174603
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7058823529411765
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7002967359050445
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.8121178432462479
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.944
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6973684210526315
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6550925925925926
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9278288383305711
- name: F1 (macro)
type: f1_macro
value: 0.9233353025731263
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8809859154929578
- name: F1 (macro)
type: f1_macro
value: 0.7412230050431491
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7177681473456122
- name: F1 (macro)
type: f1_macro
value: 0.7028341351536899
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9682131181748627
- name: F1 (macro)
type: f1_macro
value: 0.8931223998696634
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.914133500470072
- name: F1 (macro)
type: f1_macro
value: 0.9109123462416034
---
# relbert/roberta-large-semeval2012-mask-prompt-d-loob
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-loob/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.7058823529411765
- Accuracy on SAT: 0.7002967359050445
- Accuracy on BATS: 0.8121178432462479
- Accuracy on U2: 0.6973684210526315
- Accuracy on U4: 0.6550925925925926
- Accuracy on Google: 0.944
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-loob/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9278288383305711
- Micro F1 score on CogALexV: 0.8809859154929578
- Micro F1 score on EVALution: 0.7177681473456122
- Micro F1 score on K&H+N: 0.9682131181748627
- Micro F1 score on ROOT09: 0.914133500470072
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-loob/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8978174603174603
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-d-loob")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj>
- loss_function: info_loob
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 22
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-loob/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-mask-prompt-c-loob
|
research-backup
| 2022-09-19T19:07:16Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-26T21:41:21Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-mask-prompt-c-loob
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8514285714285714
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6310160427807486
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6379821958456974
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7581989994441356
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.912
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5131578947368421
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6087962962962963
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9282808497815278
- name: F1 (macro)
type: f1_macro
value: 0.9225058932245936
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8805164319248826
- name: F1 (macro)
type: f1_macro
value: 0.7394780138338314
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7291440953412786
- name: F1 (macro)
type: f1_macro
value: 0.7162526164842762
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9662655630520971
- name: F1 (macro)
type: f1_macro
value: 0.9015857808430136
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9125665935443434
- name: F1 (macro)
type: f1_macro
value: 0.9105681683853759
---
# relbert/roberta-large-semeval2012-mask-prompt-c-loob
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-loob/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6310160427807486
- Accuracy on SAT: 0.6379821958456974
- Accuracy on BATS: 0.7581989994441356
- Accuracy on U2: 0.5131578947368421
- Accuracy on U4: 0.6087962962962963
- Accuracy on Google: 0.912
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-loob/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9282808497815278
- Micro F1 score on CogALexV: 0.8805164319248826
- Micro F1 score on EVALution: 0.7291440953412786
- Micro F1 score on K&H+N: 0.9662655630520971
- Micro F1 score on ROOT09: 0.9125665935443434
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-loob/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8514285714285714
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-c-loob")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <mask>
- loss_function: info_loob
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 30
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-loob/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-mask-prompt-a-loob
|
research-backup
| 2022-09-19T18:59:55Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-26T06:59:38Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-mask-prompt-a-loob
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.9060317460317461
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6550802139037433
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.655786350148368
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.8043357420789328
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.95
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.631578947368421
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6412037037037037
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9245140876902215
- name: F1 (macro)
type: f1_macro
value: 0.9208294548760101
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8814553990610329
- name: F1 (macro)
type: f1_macro
value: 0.7355497663400952
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7128927410617552
- name: F1 (macro)
type: f1_macro
value: 0.7065924774146382
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9646657856298254
- name: F1 (macro)
type: f1_macro
value: 0.8945677578632619
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9081792541523034
- name: F1 (macro)
type: f1_macro
value: 0.906414518159255
---
# relbert/roberta-large-semeval2012-mask-prompt-a-loob
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-loob/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6550802139037433
- Accuracy on SAT: 0.655786350148368
- Accuracy on BATS: 0.8043357420789328
- Accuracy on U2: 0.631578947368421
- Accuracy on U4: 0.6412037037037037
- Accuracy on Google: 0.95
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-loob/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9245140876902215
- Micro F1 score on CogALexV: 0.8814553990610329
- Micro F1 score on EVALution: 0.7128927410617552
- Micro F1 score on K&H+N: 0.9646657856298254
- Micro F1 score on ROOT09: 0.9081792541523034
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-loob/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.9060317460317461
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-a-loob")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>
- loss_function: info_loob
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 21
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-loob/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
sd-concepts-library/ikea-fabler
|
sd-concepts-library
| 2022-09-19T18:58:11Z | 0 | 0 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-19T18:58:07Z |
---
license: mit
---
### ikea-fabler on Stable Diffusion
This is the `<ikea-fabler>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`:





|
research-backup/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce
|
research-backup
| 2022-09-19T18:56:16Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity_v2",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-20T14:24:21Z |
---
datasets:
- relbert/semeval2012_relational_similarity_v2
model-index:
- name: relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.911547619047619
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5935828877005348
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6023738872403561
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7498610339077265
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.868
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.618421052631579
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6365740740740741
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9190899502787404
- name: F1 (macro)
type: f1_macro
value: 0.9137760457433256
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.854225352112676
- name: F1 (macro)
type: f1_macro
value: 0.6960792498811619
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6738894907908992
- name: F1 (macro)
type: f1_macro
value: 0.6683142084374337
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9637615636085414
- name: F1 (macro)
type: f1_macro
value: 0.890107974704234
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9053588216859918
- name: F1 (macro)
type: f1_macro
value: 0.9023263285944801
---
# relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.5935828877005348
- Accuracy on SAT: 0.6023738872403561
- Accuracy on BATS: 0.7498610339077265
- Accuracy on U2: 0.618421052631579
- Accuracy on U4: 0.6365740740740741
- Accuracy on Google: 0.868
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9190899502787404
- Micro F1 score on CogALexV: 0.854225352112676
- Micro F1 score on EVALution: 0.6738894907908992
- Micro F1 score on K&H+N: 0.9637615636085414
- Micro F1 score on ROOT09: 0.9053588216859918
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.911547619047619
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity_v2
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 21
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-e-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
adil-o/dqn-SpaceInvadersNoFrameskip-v4
|
adil-o
| 2022-09-19T18:46:41Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-09-19T18:46:06Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: 425.50 +/- 151.35
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga adil-o -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga adil-o
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 3),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
research-backup/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce
|
research-backup
| 2022-09-19T18:41:57Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity_v2",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-19T18:06:50Z |
---
datasets:
- relbert/semeval2012_relational_similarity_v2
model-index:
- name: relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8451190476190477
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6096256684491979
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6142433234421365
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7504168982768205
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.902
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5701754385964912
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6342592592592593
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9174325749585657
- name: F1 (macro)
type: f1_macro
value: 0.9147052349582953
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8525821596244132
- name: F1 (macro)
type: f1_macro
value: 0.6857226427858921
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6771397616468039
- name: F1 (macro)
type: f1_macro
value: 0.6712704719484096
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9540933435348126
- name: F1 (macro)
type: f1_macro
value: 0.8681826742269192
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9106863052334692
- name: F1 (macro)
type: f1_macro
value: 0.9083078769735016
---
# relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6096256684491979
- Accuracy on SAT: 0.6142433234421365
- Accuracy on BATS: 0.7504168982768205
- Accuracy on U2: 0.5701754385964912
- Accuracy on U4: 0.6342592592592593
- Accuracy on Google: 0.902
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9174325749585657
- Micro F1 score on CogALexV: 0.8525821596244132
- Micro F1 score on EVALution: 0.6771397616468039
- Micro F1 score on K&H+N: 0.9540933435348126
- Micro F1 score on ROOT09: 0.9106863052334692
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8451190476190477
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity_v2
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 29
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-no-mask-prompt-a-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-v2-average-prompt-c-nce
|
research-backup
| 2022-09-19T18:31:18Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity_v2",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-19T02:53:49Z |
---
datasets:
- relbert/semeval2012_relational_similarity_v2
model-index:
- name: relbert/roberta-large-semeval2012-v2-average-prompt-c-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8846428571428572
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6818181818181818
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6735905044510386
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.811561978877154
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.924
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.631578947368421
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6504629629629629
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.924815428657526
- name: F1 (macro)
type: f1_macro
value: 0.9212115289556371
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8720657276995305
- name: F1 (macro)
type: f1_macro
value: 0.7245215538948597
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6841820151679306
- name: F1 (macro)
type: f1_macro
value: 0.6787204202080052
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9559713431174793
- name: F1 (macro)
type: f1_macro
value: 0.8722517438133693
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9088060169225948
- name: F1 (macro)
type: f1_macro
value: 0.9066857579930224
---
# relbert/roberta-large-semeval2012-v2-average-prompt-c-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-c-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6818181818181818
- Accuracy on SAT: 0.6735905044510386
- Accuracy on BATS: 0.811561978877154
- Accuracy on U2: 0.631578947368421
- Accuracy on U4: 0.6504629629629629
- Accuracy on Google: 0.924
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-c-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.924815428657526
- Micro F1 score on CogALexV: 0.8720657276995305
- Micro F1 score on EVALution: 0.6841820151679306
- Micro F1 score on K&H+N: 0.9559713431174793
- Micro F1 score on ROOT09: 0.9088060169225948
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-c-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8846428571428572
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-v2-average-prompt-c-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity_v2
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <mask>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 29
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-c-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-v2-average-prompt-b-nce
|
research-backup
| 2022-09-19T18:27:44Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity_v2",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-18T21:50:31Z |
---
datasets:
- relbert/semeval2012_relational_similarity_v2
model-index:
- name: relbert/roberta-large-semeval2012-v2-average-prompt-b-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8919047619047619
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.606951871657754
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6023738872403561
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7793218454697054
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.904
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5570175438596491
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6342592592592593
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9160765406056953
- name: F1 (macro)
type: f1_macro
value: 0.9122021728567965
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8495305164319249
- name: F1 (macro)
type: f1_macro
value: 0.6901992286900205
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6543878656554712
- name: F1 (macro)
type: f1_macro
value: 0.6403838038925135
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.954858454475899
- name: F1 (macro)
type: f1_macro
value: 0.867619689233697
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8987778125979317
- name: F1 (macro)
type: f1_macro
value: 0.8964916628332213
---
# relbert/roberta-large-semeval2012-v2-average-prompt-b-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-b-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.606951871657754
- Accuracy on SAT: 0.6023738872403561
- Accuracy on BATS: 0.7793218454697054
- Accuracy on U2: 0.5570175438596491
- Accuracy on U4: 0.6342592592592593
- Accuracy on Google: 0.904
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-b-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9160765406056953
- Micro F1 score on CogALexV: 0.8495305164319249
- Micro F1 score on EVALution: 0.6543878656554712
- Micro F1 score on K&H+N: 0.954858454475899
- Micro F1 score on ROOT09: 0.8987778125979317
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-b-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8919047619047619
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-v2-average-prompt-b-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity_v2
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 30
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-b-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-v2-average-prompt-a-nce
|
research-backup
| 2022-09-19T18:24:10Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity_v2",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-18T16:46:29Z |
---
datasets:
- relbert/semeval2012_relational_similarity_v2
model-index:
- name: relbert/roberta-large-semeval2012-v2-average-prompt-a-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8308333333333333
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6390374331550802
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6409495548961425
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7570872707059477
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.93
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.618421052631579
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6388888888888888
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9154738586710863
- name: F1 (macro)
type: f1_macro
value: 0.9102917119981933
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.852112676056338
- name: F1 (macro)
type: f1_macro
value: 0.6892409688901546
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6852654387865655
- name: F1 (macro)
type: f1_macro
value: 0.6726667668087644
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9533282325937261
- name: F1 (macro)
type: f1_macro
value: 0.862481874668915
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9078658727671576
- name: F1 (macro)
type: f1_macro
value: 0.9075386153074033
---
# relbert/roberta-large-semeval2012-v2-average-prompt-a-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-a-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6390374331550802
- Accuracy on SAT: 0.6409495548961425
- Accuracy on BATS: 0.7570872707059477
- Accuracy on U2: 0.618421052631579
- Accuracy on U4: 0.6388888888888888
- Accuracy on Google: 0.93
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-a-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9154738586710863
- Micro F1 score on CogALexV: 0.852112676056338
- Micro F1 score on EVALution: 0.6852654387865655
- Micro F1 score on K&H+N: 0.9533282325937261
- Micro F1 score on ROOT09: 0.9078658727671576
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-a-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8308333333333333
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-v2-average-prompt-a-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity_v2
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 29
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-average-prompt-a-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-v2-mask-prompt-e-nce
|
research-backup
| 2022-09-19T18:20:37Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity_v2",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-18T11:42:44Z |
---
datasets:
- relbert/semeval2012_relational_similarity_v2
model-index:
- name: relbert/roberta-large-semeval2012-v2-mask-prompt-e-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8457142857142858
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6096256684491979
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6112759643916914
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7576431350750417
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.878
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5964912280701754
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6087962962962963
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9264728039777008
- name: F1 (macro)
type: f1_macro
value: 0.9231888761944194
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8720657276995305
- name: F1 (macro)
type: f1_macro
value: 0.7203249423895846
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7074756229685807
- name: F1 (macro)
type: f1_macro
value: 0.7003587066174993
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9625095638867636
- name: F1 (macro)
type: f1_macro
value: 0.8943198093953978
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9022250078345346
- name: F1 (macro)
type: f1_macro
value: 0.9008228707899653
---
# relbert/roberta-large-semeval2012-v2-mask-prompt-e-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-e-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6096256684491979
- Accuracy on SAT: 0.6112759643916914
- Accuracy on BATS: 0.7576431350750417
- Accuracy on U2: 0.5964912280701754
- Accuracy on U4: 0.6087962962962963
- Accuracy on Google: 0.878
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-e-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9264728039777008
- Micro F1 score on CogALexV: 0.8720657276995305
- Micro F1 score on EVALution: 0.7074756229685807
- Micro F1 score on K&H+N: 0.9625095638867636
- Micro F1 score on ROOT09: 0.9022250078345346
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-e-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8457142857142858
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-v2-mask-prompt-e-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: relbert/semeval2012_relational_similarity_v2
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 29
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-e-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
sd-concepts-library/grisstyle
|
sd-concepts-library
| 2022-09-19T18:17:52Z | 0 | 9 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-19T18:17:47Z |
---
license: mit
---
### GrisStyle on Stable Diffusion
This is the `<gris>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:





























|
research-backup/roberta-large-semeval2012-v2-mask-prompt-c-nce
|
research-backup
| 2022-09-19T18:13:28Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity_v2",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-18T01:33:59Z |
---
datasets:
- relbert/semeval2012_relational_similarity_v2
model-index:
- name: relbert/roberta-large-semeval2012-v2-mask-prompt-c-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.926031746031746
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6417112299465241
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6498516320474778
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7821011673151751
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.92
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6228070175438597
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6226851851851852
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9213500075335241
- name: F1 (macro)
type: f1_macro
value: 0.9186450756231657
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8868544600938967
- name: F1 (macro)
type: f1_macro
value: 0.7505227584902805
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7036836403033586
- name: F1 (macro)
type: f1_macro
value: 0.6937893013670059
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.960283786603603
- name: F1 (macro)
type: f1_macro
value: 0.8893120683793279
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9157004073958008
- name: F1 (macro)
type: f1_macro
value: 0.9153408949649426
---
# relbert/roberta-large-semeval2012-v2-mask-prompt-c-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-c-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6417112299465241
- Accuracy on SAT: 0.6498516320474778
- Accuracy on BATS: 0.7821011673151751
- Accuracy on U2: 0.6228070175438597
- Accuracy on U4: 0.6226851851851852
- Accuracy on Google: 0.92
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-c-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9213500075335241
- Micro F1 score on CogALexV: 0.8868544600938967
- Micro F1 score on EVALution: 0.7036836403033586
- Micro F1 score on K&H+N: 0.960283786603603
- Micro F1 score on ROOT09: 0.9157004073958008
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-c-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.926031746031746
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-v2-mask-prompt-c-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: relbert/semeval2012_relational_similarity_v2
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <mask>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 30
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-c-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-v2-mask-prompt-b-nce
|
research-backup
| 2022-09-19T18:09:52Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity_v2",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-17T20:31:16Z |
---
datasets:
- relbert/semeval2012_relational_similarity_v2
model-index:
- name: relbert/roberta-large-semeval2012-v2-mask-prompt-b-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8893650793650794
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5909090909090909
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5934718100890207
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7626459143968871
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.892
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5526315789473685
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6064814814814815
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9249660991411782
- name: F1 (macro)
type: f1_macro
value: 0.9227342891403616
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8685446009389672
- name: F1 (macro)
type: f1_macro
value: 0.7221315620076061
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6895991332611051
- name: F1 (macro)
type: f1_macro
value: 0.6823504904547306
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9632051192877513
- name: F1 (macro)
type: f1_macro
value: 0.8871487887884136
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9015982450642431
- name: F1 (macro)
type: f1_macro
value: 0.9009961240438994
---
# relbert/roberta-large-semeval2012-v2-mask-prompt-b-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-b-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.5909090909090909
- Accuracy on SAT: 0.5934718100890207
- Accuracy on BATS: 0.7626459143968871
- Accuracy on U2: 0.5526315789473685
- Accuracy on U4: 0.6064814814814815
- Accuracy on Google: 0.892
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-b-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9249660991411782
- Micro F1 score on CogALexV: 0.8685446009389672
- Micro F1 score on EVALution: 0.6895991332611051
- Micro F1 score on K&H+N: 0.9632051192877513
- Micro F1 score on ROOT09: 0.9015982450642431
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-b-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8893650793650794
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-v2-mask-prompt-b-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: relbert/semeval2012_relational_similarity_v2
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 27
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-b-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
AlexanderD/test_cats
|
AlexanderD
| 2022-09-19T18:08:02Z | 0 | 0 |
keras
|
[
"keras",
"region:us"
] | null | 2022-09-19T17:11:54Z |
---
thumbnail: "url to a thumbnail used in social sharing"
library_name: keras
tags:
- keras
widget:
- src: https://huggingface.co/datasets/test_cats/cifar1.jpg
example_title: Tiger
---
|
research-backup/roberta-large-semeval2012-v2-mask-prompt-a-nce
|
research-backup
| 2022-09-19T18:06:14Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity_v2",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-08-17T15:27:11Z |
---
datasets:
- relbert/semeval2012_relational_similarity_v2
model-index:
- name: relbert/roberta-large-semeval2012-v2-mask-prompt-a-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8338095238095238
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7165775401069518
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7181008902077152
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7626459143968871
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.946
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6359649122807017
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6435185185185185
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9264728039777008
- name: F1 (macro)
type: f1_macro
value: 0.9236796530968624
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8760563380281691
- name: F1 (macro)
type: f1_macro
value: 0.7316819468333253
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7085590465872156
- name: F1 (macro)
type: f1_macro
value: 0.6972629880144019
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9585448981011337
- name: F1 (macro)
type: f1_macro
value: 0.8754227812726614
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9088060169225948
- name: F1 (macro)
type: f1_macro
value: 0.9075082674855798
---
# relbert/roberta-large-semeval2012-v2-mask-prompt-a-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity_v2](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v2).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-a-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.7165775401069518
- Accuracy on SAT: 0.7181008902077152
- Accuracy on BATS: 0.7626459143968871
- Accuracy on U2: 0.6359649122807017
- Accuracy on U4: 0.6435185185185185
- Accuracy on Google: 0.946
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-a-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9264728039777008
- Micro F1 score on CogALexV: 0.8760563380281691
- Micro F1 score on EVALution: 0.7085590465872156
- Micro F1 score on K&H+N: 0.9585448981011337
- Micro F1 score on ROOT09: 0.9088060169225948
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-a-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8338095238095238
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-v2-mask-prompt-a-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: relbert/semeval2012_relational_similarity_v2
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 29
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-v2-mask-prompt-a-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
sd-concepts-library/jin-kisaragi
|
sd-concepts-library
| 2022-09-19T17:51:12Z | 0 | 0 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-19T17:51:06Z |
---
license: mit
---
### Jin Kisaragi on Stable Diffusion
This is the `<jin-kisaragi>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`:






|
clboetticher-school/xlm-roberta-base-finetuned-panx-all
|
clboetticher-school
| 2022-09-19T17:47:16Z | 134 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-09-19T17:18:44Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-all
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-all
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1348
- F1: 0.8844
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3055 | 1.0 | 835 | 0.1755 | 0.8272 |
| 0.1561 | 2.0 | 1670 | 0.1441 | 0.8727 |
| 0.1016 | 3.0 | 2505 | 0.1348 | 0.8844 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
sd-concepts-library/f-22
|
sd-concepts-library
| 2022-09-19T17:46:19Z | 0 | 0 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-19T17:46:12Z |
---
license: mit
---
### F-22 on Stable Diffusion
This is the `<f-22>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`:





|
research-backup/roberta-large-semeval2012-mask-prompt-d-triplet
|
research-backup
| 2022-09-19T17:04:39Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:semeval2012",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-07-24T13:36:16Z |
---
datasets:
- semeval2012
model-index:
- name: relbert/roberta-large-semeval2012-mask-prompt-d-triplet
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8038492063492063
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6122994652406417
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6231454005934718
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7665369649805448
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.948
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6096491228070176
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6388888888888888
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9065843001356034
- name: F1 (macro)
type: f1_macro
value: 0.9034391812068588
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8814553990610329
- name: F1 (macro)
type: f1_macro
value: 0.7370945104669245
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7193932827735645
- name: F1 (macro)
type: f1_macro
value: 0.6939557303629665
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9527022327328372
- name: F1 (macro)
type: f1_macro
value: 0.8646220605131613
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.900658100908806
- name: F1 (macro)
type: f1_macro
value: 0.90318517559646
---
# relbert/roberta-large-semeval2012-mask-prompt-d-triplet
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[semeval2012](https://huggingface.co/datasets/semeval2012).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-triplet/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6122994652406417
- Accuracy on SAT: 0.6231454005934718
- Accuracy on BATS: 0.7665369649805448
- Accuracy on U2: 0.6096491228070176
- Accuracy on U4: 0.6388888888888888
- Accuracy on Google: 0.948
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-triplet/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9065843001356034
- Micro F1 score on CogALexV: 0.8814553990610329
- Micro F1 score on EVALution: 0.7193932827735645
- Micro F1 score on K&H+N: 0.9527022327328372
- Micro F1 score on ROOT09: 0.900658100908806
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-triplet/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8038492063492063
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-d-triplet")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: semeval2012
- n_sample: 10
- custom_template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj>
- template: None
- softmax_loss: True
- in_batch_negative: True
- parent_contrast: True
- mse_margin: 1
- epoch: 1
- lr_warmup: 10
- batch: 64
- lr: 2e-05
- lr_decay: False
- weight_decay: 0
- optimizer: adam
- momentum: 0.9
- fp16: False
- random_seed: 0
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-triplet/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
clboetticher-school/xlm-roberta-base-finetuned-panx-it
|
clboetticher-school
| 2022-09-19T17:02:30Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-09-19T16:46:40Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-it
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.it
metrics:
- name: F1
type: f1
value: 0.8124233755619126
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-it
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2630
- F1: 0.8124
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.8193 | 1.0 | 70 | 0.3200 | 0.7356 |
| 0.2773 | 2.0 | 140 | 0.2841 | 0.7882 |
| 0.1807 | 3.0 | 210 | 0.2630 | 0.8124 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
research-backup/roberta-large-semeval2012-mask-prompt-a-triplet
|
research-backup
| 2022-09-19T16:51:50Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:semeval2012",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-07-24T13:29:44Z |
---
datasets:
- semeval2012
model-index:
- name: relbert/roberta-large-semeval2012-mask-prompt-a-triplet
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8050396825396825
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5721925133689839
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5786350148367952
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7687604224569206
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.926
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5614035087719298
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5972222222222222
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9120084375470845
- name: F1 (macro)
type: f1_macro
value: 0.9106038197651877
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8546948356807512
- name: F1 (macro)
type: f1_macro
value: 0.6744144716286173
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7258938244853739
- name: F1 (macro)
type: f1_macro
value: 0.7201470763428615
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9517980107115531
- name: F1 (macro)
type: f1_macro
value: 0.8677563702420764
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9012848636790974
- name: F1 (macro)
type: f1_macro
value: 0.8960382821239596
---
# relbert/roberta-large-semeval2012-mask-prompt-a-triplet
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[semeval2012](https://huggingface.co/datasets/semeval2012).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-triplet/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.5721925133689839
- Accuracy on SAT: 0.5786350148367952
- Accuracy on BATS: 0.7687604224569206
- Accuracy on U2: 0.5614035087719298
- Accuracy on U4: 0.5972222222222222
- Accuracy on Google: 0.926
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-triplet/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9120084375470845
- Micro F1 score on CogALexV: 0.8546948356807512
- Micro F1 score on EVALution: 0.7258938244853739
- Micro F1 score on K&H+N: 0.9517980107115531
- Micro F1 score on ROOT09: 0.9012848636790974
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-triplet/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8050396825396825
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-a-triplet")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: semeval2012
- n_sample: 10
- custom_template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>
- template: None
- softmax_loss: True
- in_batch_negative: True
- parent_contrast: True
- mse_margin: 1
- epoch: 1
- lr_warmup: 10
- batch: 64
- lr: 2e-05
- lr_decay: False
- weight_decay: 0
- optimizer: adam
- momentum: 0.9
- fp16: False
- random_seed: 0
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-triplet/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
clboetticher-school/xlm-roberta-base-finetuned-panx-fr
|
clboetticher-school
| 2022-09-19T16:46:23Z | 114 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-09-19T16:27:36Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-fr
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.fr
metrics:
- name: F1
type: f1
value: 0.9213082901554404
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1117
- F1: 0.9213
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5779 | 1.0 | 191 | 0.2832 | 0.8091 |
| 0.2735 | 2.0 | 382 | 0.1570 | 0.8943 |
| 0.1769 | 3.0 | 573 | 0.1117 | 0.9213 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
research-backup/roberta-large-semeval2012-average-prompt-c-triplet
|
research-backup
| 2022-09-19T16:43:19Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:semeval2012",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-07-24T10:43:59Z |
---
datasets:
- semeval2012
model-index:
- name: relbert/roberta-large-semeval2012-average-prompt-c-triplet
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8742857142857143
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5748663101604278
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5786350148367952
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.820455808782657
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.918
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6140350877192983
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6319444444444444
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.924815428657526
- name: F1 (macro)
type: f1_macro
value: 0.9202612346118308
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8718309859154929
- name: F1 (macro)
type: f1_macro
value: 0.7152177972947781
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.704225352112676
- name: F1 (macro)
type: f1_macro
value: 0.6846186699994758
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9667524518327885
- name: F1 (macro)
type: f1_macro
value: 0.8963571819720165
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9015982450642431
- name: F1 (macro)
type: f1_macro
value: 0.8974114781326906
---
# relbert/roberta-large-semeval2012-average-prompt-c-triplet
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[semeval2012](https://huggingface.co/datasets/semeval2012).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-triplet/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.5748663101604278
- Accuracy on SAT: 0.5786350148367952
- Accuracy on BATS: 0.820455808782657
- Accuracy on U2: 0.6140350877192983
- Accuracy on U4: 0.6319444444444444
- Accuracy on Google: 0.918
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-triplet/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.924815428657526
- Micro F1 score on CogALexV: 0.8718309859154929
- Micro F1 score on EVALution: 0.704225352112676
- Micro F1 score on K&H+N: 0.9667524518327885
- Micro F1 score on ROOT09: 0.9015982450642431
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-triplet/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8742857142857143
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-c-triplet")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: semeval2012
- n_sample: 10
- custom_template: Today, I finally discovered the relation between <subj> and <obj> : <mask>
- template: None
- softmax_loss: True
- in_batch_negative: True
- parent_contrast: True
- mse_margin: 1
- epoch: 1
- lr_warmup: 10
- batch: 64
- lr: 2e-05
- lr_decay: False
- weight_decay: 0
- optimizer: adam
- momentum: 0.9
- fp16: False
- random_seed: 0
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-c-triplet/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-prompt-e-triplet
|
research-backup
| 2022-09-19T16:31:56Z | 96 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:semeval2012",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-07-22T18:25:55Z |
---
datasets:
- semeval2012
model-index:
- name: relbert/roberta-large-semeval2012-average-prompt-e-triplet
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.9255952380952381
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.550802139037433
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5548961424332344
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.754863813229572
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.872
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.631578947368421
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5740740740740741
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9031188790116016
- name: F1 (macro)
type: f1_macro
value: 0.896130708234777
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8692488262910798
- name: F1 (macro)
type: f1_macro
value: 0.7176923678524982
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6933911159263272
- name: F1 (macro)
type: f1_macro
value: 0.6793569940444139
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9611184530847882
- name: F1 (macro)
type: f1_macro
value: 0.8913615954101612
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9088060169225948
- name: F1 (macro)
type: f1_macro
value: 0.9076649125882928
---
# relbert/roberta-large-semeval2012-average-prompt-e-triplet
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[semeval2012](https://huggingface.co/datasets/semeval2012).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-triplet/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.550802139037433
- Accuracy on SAT: 0.5548961424332344
- Accuracy on BATS: 0.754863813229572
- Accuracy on U2: 0.631578947368421
- Accuracy on U4: 0.5740740740740741
- Accuracy on Google: 0.872
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-triplet/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9031188790116016
- Micro F1 score on CogALexV: 0.8692488262910798
- Micro F1 score on EVALution: 0.6933911159263272
- Micro F1 score on K&H+N: 0.9611184530847882
- Micro F1 score on ROOT09: 0.9088060169225948
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-triplet/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.9255952380952381
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-e-triplet")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: semeval2012
- n_sample: 10
- custom_template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask>
- template: None
- softmax_loss: True
- in_batch_negative: True
- parent_contrast: True
- mse_margin: 1
- epoch: 1
- lr_warmup: 10
- batch: 64
- lr: 2e-05
- lr_decay: False
- weight_decay: 0
- optimizer: adam
- momentum: 0.9
- fp16: False
- random_seed: 0
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-triplet/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
sd-concepts-library/singsing
|
sd-concepts-library
| 2022-09-19T16:30:34Z | 0 | 0 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-19T16:30:28Z |
---
license: mit
---
### Singsing on Stable Diffusion
This is the `<singsing>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`:




|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-d-triplet
|
research-backup
| 2022-09-19T16:23:34Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:semeval2012",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-07-22T16:52:00Z |
---
datasets:
- semeval2012
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-d-triplet
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.815952380952381
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6951871658
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.706231454
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7882156754
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.924
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6622807018
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6527777778
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9153231881874341
- name: F1 (macro)
type: f1_macro
value: 0.9098445625290479
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8725352112676056
- name: F1 (macro)
type: f1_macro
value: 0.7174660438773314
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6944745395449621
- name: F1 (macro)
type: f1_macro
value: 0.688951875758847
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9689782291159491
- name: F1 (macro)
type: f1_macro
value: 0.90395779327521
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9050454403008461
- name: F1 (macro)
type: f1_macro
value: 0.9062415320017446
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-d-triplet
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[semeval2012](https://huggingface.co/datasets/semeval2012).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-triplet/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6951871658
- Accuracy on SAT: 0.706231454
- Accuracy on BATS: 0.7882156754
- Accuracy on U2: 0.6622807018
- Accuracy on U4: 0.6527777778
- Accuracy on Google: 0.924
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-triplet/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9153231881874341
- Micro F1 score on CogALexV: 0.8725352112676056
- Micro F1 score on EVALution: 0.6944745395449621
- Micro F1 score on K&H+N: 0.9689782291159491
- Micro F1 score on ROOT09: 0.9050454403008461
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-triplet/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.815952380952381
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-d-triplet")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: semeval2012
- n_sample: 10
- custom_template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj>
- template: None
- softmax_loss: True
- in_batch_negative: True
- parent_contrast: True
- mse_margin: 1
- epoch: 1
- lr_warmup: 10
- batch: 64
- lr: 2e-05
- lr_decay: False
- weight_decay: 0
- optimizer: adam
- momentum: 0.9
- fp16: False
- random_seed: 0
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-triplet/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-c-triplet
|
research-backup
| 2022-09-19T16:19:14Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:semeval2012",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-07-22T16:49:45Z |
---
datasets:
- semeval2012
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-c-triplet
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8449404761904762
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5401069519
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5400593472
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7954419122
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.912
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6228070175
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.625
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9285821907488323
- name: F1 (macro)
type: f1_macro
value: 0.9238353183237691
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8795774647887324
- name: F1 (macro)
type: f1_macro
value: 0.7380564609392272
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6776814734561214
- name: F1 (macro)
type: f1_macro
value: 0.6542229601159605
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9683522292550601
- name: F1 (macro)
type: f1_macro
value: 0.897601966442876
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9088060169225948
- name: F1 (macro)
type: f1_macro
value: 0.909285139662564
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-c-triplet
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[semeval2012](https://huggingface.co/datasets/semeval2012).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-triplet/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.5401069519
- Accuracy on SAT: 0.5400593472
- Accuracy on BATS: 0.7954419122
- Accuracy on U2: 0.6228070175
- Accuracy on U4: 0.625
- Accuracy on Google: 0.912
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-triplet/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9285821907488323
- Micro F1 score on CogALexV: 0.8795774647887324
- Micro F1 score on EVALution: 0.6776814734561214
- Micro F1 score on K&H+N: 0.9683522292550601
- Micro F1 score on ROOT09: 0.9088060169225948
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-triplet/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8449404761904762
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-c-triplet")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: semeval2012
- n_sample: 10
- custom_template: Today, I finally discovered the relation between <subj> and <obj> : <mask>
- template: None
- softmax_loss: True
- in_batch_negative: True
- parent_contrast: True
- mse_margin: 1
- epoch: 1
- lr_warmup: 10
- batch: 64
- lr: 2e-05
- lr_decay: False
- weight_decay: 0
- optimizer: adam
- momentum: 0.9
- fp16: False
- random_seed: 0
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-triplet/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
clboetticher-school/xlm-roberta-base-finetuned-panx-de-fr
|
clboetticher-school
| 2022-09-19T16:15:42Z | 134 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-09-19T15:49:33Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1608
- F1: 0.8593
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2888 | 1.0 | 715 | 0.1779 | 0.8233 |
| 0.1437 | 2.0 | 1430 | 0.1570 | 0.8497 |
| 0.0931 | 3.0 | 2145 | 0.1608 | 0.8593 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
sd-concepts-library/singsing-doll
|
sd-concepts-library
| 2022-09-19T16:14:12Z | 0 | 0 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-19T16:14:06Z |
---
license: mit
---
### Singsing doll on Stable Diffusion
This is the `<singsing>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`:




|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-a-triplet
|
research-backup
| 2022-09-19T16:11:21Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:semeval2012",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-07-22T16:45:11Z |
---
datasets:
- semeval2012
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-a-triplet
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8172222222222222
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5748663102
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5816023739
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.694274597
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.868
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.600877193
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5810185185
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9053789362663854
- name: F1 (macro)
type: f1_macro
value: 0.9048929138088492
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8598591549295774
- name: F1 (macro)
type: f1_macro
value: 0.6899576626683188
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6744312026002167
- name: F1 (macro)
type: f1_macro
value: 0.6530063441620636
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9689086735758503
- name: F1 (macro)
type: f1_macro
value: 0.8993902866318307
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8934503290504543
- name: F1 (macro)
type: f1_macro
value: 0.8920036295821294
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-a-triplet
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[semeval2012](https://huggingface.co/datasets/semeval2012).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-triplet/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.5748663102
- Accuracy on SAT: 0.5816023739
- Accuracy on BATS: 0.694274597
- Accuracy on U2: 0.600877193
- Accuracy on U4: 0.5810185185
- Accuracy on Google: 0.868
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-triplet/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9053789362663854
- Micro F1 score on CogALexV: 0.8598591549295774
- Micro F1 score on EVALution: 0.6744312026002167
- Micro F1 score on K&H+N: 0.9689086735758503
- Micro F1 score on ROOT09: 0.8934503290504543
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-triplet/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8172222222222222
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-a-triplet")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: semeval2012
- n_sample: 10
- custom_template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>
- template: None
- softmax_loss: True
- in_batch_negative: True
- parent_contrast: True
- mse_margin: 1
- epoch: 1
- lr_warmup: 10
- batch: 64
- lr: 2e-05
- lr_decay: False
- weight_decay: 0
- optimizer: adam
- momentum: 0.9
- fp16: False
- random_seed: 0
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-triplet/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
surya07/swin-tiny-patch4-window7-224-finetuned-eurosat
|
surya07
| 2022-09-19T16:11:19Z | 217 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-09-19T14:33:01Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.875
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4066
- Accuracy: 0.875
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.57 | 1 | 0.7569 | 0.5417 |
| No log | 1.57 | 2 | 0.5000 | 0.8333 |
| No log | 2.57 | 3 | 0.4066 | 0.875 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
research-backup/roberta-large-semeval2012-average-prompt-e-nce
|
research-backup
| 2022-09-19T16:02:37Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-07-24T20:44:09Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-prompt-e-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.848452380952381
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6016042780748663
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6023738872403561
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7476375764313508
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.86
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5482456140350878
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6111111111111112
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9193912912460449
- name: F1 (macro)
type: f1_macro
value: 0.9171163163754675
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8481220657276995
- name: F1 (macro)
type: f1_macro
value: 0.6734502135237685
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.685807150595883
- name: F1 (macro)
type: f1_macro
value: 0.679750083279063
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.962092230646171
- name: F1 (macro)
type: f1_macro
value: 0.8868721386428041
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.898464431212786
- name: F1 (macro)
type: f1_macro
value: 0.8953388906170653
---
# relbert/roberta-large-semeval2012-average-prompt-e-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6016042780748663
- Accuracy on SAT: 0.6023738872403561
- Accuracy on BATS: 0.7476375764313508
- Accuracy on U2: 0.5482456140350878
- Accuracy on U4: 0.6111111111111112
- Accuracy on Google: 0.86
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9193912912460449
- Micro F1 score on CogALexV: 0.8481220657276995
- Micro F1 score on EVALution: 0.685807150595883
- Micro F1 score on K&H+N: 0.962092230646171
- Micro F1 score on ROOT09: 0.898464431212786
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.848452380952381
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-e-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 21
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-e-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-c-nce
|
research-backup
| 2022-09-19T15:58:24Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-07-22T11:02:11Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.926031746031746
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6577540106951871
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.658753709198813
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.8193440800444691
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.946
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6491228070175439
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6759259259259259
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9196926322133494
- name: F1 (macro)
type: f1_macro
value: 0.9153080947914317
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8715962441314554
- name: F1 (macro)
type: f1_macro
value: 0.7255280883118129
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.699349945828819
- name: F1 (macro)
type: f1_macro
value: 0.6824088213474949
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9533977881338248
- name: F1 (macro)
type: f1_macro
value: 0.8578016229945142
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9113130680037606
- name: F1 (macro)
type: f1_macro
value: 0.910034270119033
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6577540106951871
- Accuracy on SAT: 0.658753709198813
- Accuracy on BATS: 0.8193440800444691
- Accuracy on U2: 0.6491228070175439
- Accuracy on U4: 0.6759259259259259
- Accuracy on Google: 0.946
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9196926322133494
- Micro F1 score on CogALexV: 0.8715962441314554
- Micro F1 score on EVALution: 0.699349945828819
- Micro F1 score on K&H+N: 0.9533977881338248
- Micro F1 score on ROOT09: 0.9113130680037606
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.926031746031746
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <mask>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 24
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-c-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-b-nce
|
research-backup
| 2022-09-19T15:54:08Z | 112 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-07-22T10:59:39Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8173412698412699
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6122994652406417
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6142433234421365
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7865480822679266
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.93
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5394736842105263
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6018518518518519
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9174325749585657
- name: F1 (macro)
type: f1_macro
value: 0.9108478749677724
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.855868544600939
- name: F1 (macro)
type: f1_macro
value: 0.6923047005195835
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6836403033586133
- name: F1 (macro)
type: f1_macro
value: 0.667310500013795
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9517284551714544
- name: F1 (macro)
type: f1_macro
value: 0.8530904199464412
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9019116264493889
- name: F1 (macro)
type: f1_macro
value: 0.8996556790705655
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6122994652406417
- Accuracy on SAT: 0.6142433234421365
- Accuracy on BATS: 0.7865480822679266
- Accuracy on U2: 0.5394736842105263
- Accuracy on U4: 0.6018518518518519
- Accuracy on Google: 0.93
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9174325749585657
- Micro F1 score on CogALexV: 0.855868544600939
- Micro F1 score on EVALution: 0.6836403033586133
- Micro F1 score on K&H+N: 0.9517284551714544
- Micro F1 score on ROOT09: 0.9019116264493889
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8173412698412699
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 29
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-b-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-a-nce
|
research-backup
| 2022-09-19T15:49:51Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-07-22T10:57:35Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.866547619047619
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7112299465240641
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7062314540059347
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.782657031684269
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.936
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6754385964912281
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6921296296296297
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9124604489980412
- name: F1 (macro)
type: f1_macro
value: 0.9071904229357174
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8607981220657277
- name: F1 (macro)
type: f1_macro
value: 0.7021043673336924
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6863488624052004
- name: F1 (macro)
type: f1_macro
value: 0.6714181204599561
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9499895666689852
- name: F1 (macro)
type: f1_macro
value: 0.8482944164556818
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9075524913820119
- name: F1 (macro)
type: f1_macro
value: 0.9080337875282686
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.7112299465240641
- Accuracy on SAT: 0.7062314540059347
- Accuracy on BATS: 0.782657031684269
- Accuracy on U2: 0.6754385964912281
- Accuracy on U4: 0.6921296296296297
- Accuracy on Google: 0.936
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9124604489980412
- Micro F1 score on CogALexV: 0.8607981220657277
- Micro F1 score on EVALution: 0.6863488624052004
- Micro F1 score on K&H+N: 0.9499895666689852
- Micro F1 score on ROOT09: 0.9075524913820119
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.866547619047619
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 29
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-no-mask-prompt-d-nce
|
research-backup
| 2022-09-19T15:45:33Z | 114 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-07-22T10:55:31Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8909722222222223
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6925133689839572
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6913946587537092
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.8037798777098388
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.968
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6885964912280702
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6898148148148148
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9273768268796143
- name: F1 (macro)
type: f1_macro
value: 0.9211786019752478
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8615023474178404
- name: F1 (macro)
type: f1_macro
value: 0.7077498583524542
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6917659804983749
- name: F1 (macro)
type: f1_macro
value: 0.6746361055952557
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9573624539194547
- name: F1 (macro)
type: f1_macro
value: 0.8730312566461178
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9031651519899718
- name: F1 (macro)
type: f1_macro
value: 0.9025725245537483
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6925133689839572
- Accuracy on SAT: 0.6913946587537092
- Accuracy on BATS: 0.8037798777098388
- Accuracy on U2: 0.6885964912280702
- Accuracy on U4: 0.6898148148148148
- Accuracy on Google: 0.968
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9273768268796143
- Micro F1 score on CogALexV: 0.8615023474178404
- Micro F1 score on EVALution: 0.6917659804983749
- Micro F1 score on K&H+N: 0.9573624539194547
- Micro F1 score on ROOT09: 0.9031651519899718
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8909722222222223
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 29
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-average-prompt-b-nce
|
research-backup
| 2022-09-19T15:36:58Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-07-22T10:51:01Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-prompt-b-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.9023809523809524
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6096256684491979
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6083086053412463
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7854363535297387
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.93
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5833333333333334
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5995370370370371
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9174325749585657
- name: F1 (macro)
type: f1_macro
value: 0.9129994415974204
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8603286384976526
- name: F1 (macro)
type: f1_macro
value: 0.698172861434558
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6679306608884074
- name: F1 (macro)
type: f1_macro
value: 0.6495733078766703
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9611184530847882
- name: F1 (macro)
type: f1_macro
value: 0.8867329071712199
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9012848636790974
- name: F1 (macro)
type: f1_macro
value: 0.9017314335034342
---
# relbert/roberta-large-semeval2012-average-prompt-b-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6096256684491979
- Accuracy on SAT: 0.6083086053412463
- Accuracy on BATS: 0.7854363535297387
- Accuracy on U2: 0.5833333333333334
- Accuracy on U4: 0.5995370370370371
- Accuracy on Google: 0.93
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9174325749585657
- Micro F1 score on CogALexV: 0.8603286384976526
- Micro F1 score on EVALution: 0.6679306608884074
- Micro F1 score on K&H+N: 0.9611184530847882
- Micro F1 score on ROOT09: 0.9012848636790974
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.9023809523809524
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-prompt-b-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <obj> is <subj>'s <mask>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 23
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-prompt-b-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
research-backup/roberta-large-semeval2012-mask-prompt-a-nce
|
research-backup
| 2022-09-19T15:07:54Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"dataset:relbert/semeval2012_relational_similarity",
"model-index",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-07-22T10:37:07Z |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-mask-prompt-a-nce
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8680952380952381
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7112299465240641
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7091988130563798
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7537520844913841
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.95
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6622807017543859
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6666666666666666
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9245140876902215
- name: F1 (macro)
type: f1_macro
value: 0.9217193105874872
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8809859154929578
- name: F1 (macro)
type: f1_macro
value: 0.7387527642398365
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7134344528710725
- name: F1 (macro)
type: f1_macro
value: 0.6978567457746659
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.955484454336788
- name: F1 (macro)
type: f1_macro
value: 0.8778253752250313
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.909746161078032
- name: F1 (macro)
type: f1_macro
value: 0.9088078445136086
---
# relbert/roberta-large-semeval2012-mask-prompt-a-nce
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-nce/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.7112299465240641
- Accuracy on SAT: 0.7091988130563798
- Accuracy on BATS: 0.7537520844913841
- Accuracy on U2: 0.6622807017543859
- Accuracy on U4: 0.6666666666666666
- Accuracy on Google: 0.95
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-nce/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9245140876902215
- Micro F1 score on CogALexV: 0.8809859154929578
- Micro F1 score on EVALution: 0.7134344528710725
- Micro F1 score on K&H+N: 0.955484454336788
- Micro F1 score on ROOT09: 0.909746161078032
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-nce/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8680952380952381
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-a-nce")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>
- loss_function: nce_logout
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 23
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-a-nce/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|
clboetticher-school/xlm-roberta-base-finetuned-panx-de
|
clboetticher-school
| 2022-09-19T15:06:28Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-09-19T14:42:34Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8648740833380706
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1365
- F1: 0.8649
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 |
| 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 |
| 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Bachstelze/poetryRapGPT
|
Bachstelze
| 2022-09-19T15:04:05Z | 168 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"Text Generation",
"de",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-08-17T07:12:58Z |
---
language: de
widget:
- text: "[Title_nullsechsroy feat. YFG Pave_"
tags:
- Text Generation
datasets:
- genius lyrics
license: mit
---
# GPT-Rapgenerator
The Rapgenerator is trained for [nullsechsroy](https://genius.com/artists/Nullsechsroy) on [german-poetry-gpt2](https://huggingface.co/Anjoe/german-poetry-gpt2) for 20 epochs.
We used the [genius](https://docs.genius.com/#/songs-h2) songlyrics from the following artists:
['Ace Tee', 'Aligatoah', 'AnnenMayKantereit', 'Apache 207', 'Azad', 'Badmómzjay', 'Bausa', 'Blumentopf', 'Blumio', 'Capital Bra', 'Casper', 'Celo & Abdi', 'Cro', 'Dardan', 'Dendemann', 'Die P', 'Dondon', 'Dynamite Deluxe', 'Edgar Wasser', 'Eko Fresh', 'Farid Bang', 'Favorite', 'Genetikk', 'Haftbefehl', 'Haiyti', 'Huss und Hodn', 'Jamule', 'Jamule', 'Juju', 'Kasimir1441', 'Katja Krasavice', 'Kay One', 'Kitty Kat', 'Kool Savas', 'LX & Maxwell', 'Leila Akinyi', 'Loredana', 'Loredana & Mozzik', 'Luciano', 'Marsimoto', 'Marteria', 'Morlockk Dilemma', 'Moses Pelham', 'Nimo', 'NullSechsRoy', 'Prinz Pi', 'SSIO', 'SXTN', 'Sabrina Setlur', 'Samy Deluxe', 'Sanito', 'Sebastian Fitzek', 'Shirin David', 'Summer Cem', 'T-Low', 'Ufo361', 'YBRE', 'YFG Pave']
# Example song structure
```
[Title_nullsechsroy_Goodies]
[Part 1_nullsechsroy_Goodies]
Soulja Boy – „Pretty Boy Swag“
Heute bei ihr, aber morgen schon weg, ja
..
[Hook_nullsechsroy_Goodies]
Ich hab' Jungs in der Trap, ich hab' Jungs an der Uni (Ahh)
...
[Part 2_nullsechsroy_Goodies]
Ja, Soulja Boy – „Pretty Boy Swag“
...
[Hook_nullsechsroy_Goodies]
Ich hab' Jungs in der Trap, ich hab' Jungs an der Uni (Ahh)
...
[Post-Hook_nullsechsroy_Goodies]
Ja, ich weiß, sie findet niemals ein'n wie mich (Ahh)
...
```
# Source code to create a song
```
from transformers import pipeline, AutoTokenizer,AutoModelForCausalLM
# load the model from huggingface
rap_model = AutoModelForCausalLM.from_pretrained("Bachstelze/poetryRapGPT")
tokenizer = AutoTokenizer.from_pretrained("Anjoe/german-poetry-gpt2")
rap_pipe = pipeline('text-generation',
model=rap_model,
tokenizer=german_gpt_model,
pad_token_id=tokenizer.eos_token_id,
max_length=250)
# set the artist
song_artist = "nullsechsroy" # "nullsechsroy Deluxe"
# add a title idea or leave it blank
title = "" # "Kristall" "Fit"
# definition of the song structure
type_with_linenumbers = [("Intro",4),
("Hook",4),
("Part 1",6),
("Part 2",6),
("Outro",4)]
def set_title(song_parts):
"""
we create a title if it isn't set already
and add the title to the songs parts dictionary
"""
if len(title) > 0:
song_parts["Title"] = "\n[Title_" + song_artist + "_" + title + "]\n"
song_parts["artist_with_title"] = song_artist + "_" + title
else:
title_input = "\n[Title_" + song_artist + "_"
title_lines = rap_pipe(title_input)[0]['generated_text']
index_title_end = title_lines.index("]\n")
artist_with_title = title_lines[8:index_title_end]
song_parts["Title"] = title_lines[:index_title_end+1]
song_parts["artist_with_title"] = artist_with_title
def create_song_by_parts():
"""
we iterate over the song structure
and return the dictionary with the song parts
"""
song_parts = {}
set_title(song_parts)
for (part_type, line_number) in type_with_linenumbers:
new_song_part = create_song_part(part_type, song_parts["artist_with_title"], line_number)
song_parts[part_type] = new_song_part
return song_parts
def get_line(pipe_input, line_number):
"""
We generate a new song line.
This function could be scaled to more lines.
"""
new_lines = rap_pipe(pipe_input)[0]['generated_text'].split("\n")
if len(new_lines) > line_number + 3:
new_line = new_lines[line_number+3] + "\n"
return new_line
else: #retry
return get_line(pipe_input, line_number)
def create_song_part(part_type, artist_with_title, lines_number):
"""
we generate one song part
"""
start_type = "\n["+part_type+"_"+artist_with_title+"]\n"
song_part = start_type # + preset start line
lines = [""]
for line_number in range(lines_number):
pipe_input = start_type + lines[-1]
new_line = get_line(pipe_input, line_number)
lines.append(new_line)
song_part += new_line
return song_part
def print_song(song_parts):
"""
Let's print the generated song
"""
print(song_parts["Title"])
print(song_parts["Intro"])
print(song_parts["Part 1"])
print(song_parts["Hook"])
print(song_parts["Part 2"])
print(song_parts["Hook"])
print(song_parts["Outro"])
# start the generation of one song
song_parts = create_song_by_parts()
print_song(song_parts)
```
|
CoreyMorris/testpyramidsrnd
|
CoreyMorris
| 2022-09-19T14:50:13Z | 9 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2022-09-19T14:47:27Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: CoreyMorris/testpyramidsrnd
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Tian7/ddpm-butterflies-128
|
Tian7
| 2022-09-19T14:15:40Z | 8 | 2 |
diffusers
|
[
"diffusers",
"tensorboard",
"en",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
] | null | 2022-09-09T15:32:34Z |
---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: /content/drive/MyDrive/image_and_text
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-128
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `/content/drive/MyDrive/image_and_text` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/Tian7/ddpm-butterflies-128/tensorboard?#scalars)
|
sd-concepts-library/fold-structure
|
sd-concepts-library
| 2022-09-19T14:09:13Z | 0 | 2 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-19T14:08:59Z |
---
license: mit
---
### Fold Structure on Stable Diffusion
This is the `<fold-geo>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`:




|
sd-concepts-library/black-and-white-design
|
sd-concepts-library
| 2022-09-19T13:27:24Z | 0 | 6 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-19T13:27:11Z |
---
license: mit
---
### black and white design on Stable Diffusion
This is the `<PM_style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:




|
gokuls/bert-uncased-massive-intent-classification
|
gokuls
| 2022-09-19T12:24:20Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:massive",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-09-19T11:43:19Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- massive
metrics:
- accuracy
model-index:
- name: bert-uncased-massive-intent-classification
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: massive
type: massive
config: en-US
split: train
args: en-US
metrics:
- name: Accuracy
type: accuracy
value: 0.8853910477127398
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-uncased-massive-intent-classification
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the massive dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8396
- Accuracy: 0.8854
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.4984 | 1.0 | 720 | 0.6402 | 0.8495 |
| 0.4376 | 2.0 | 1440 | 0.5394 | 0.8731 |
| 0.2318 | 3.0 | 2160 | 0.5903 | 0.8760 |
| 0.1414 | 4.0 | 2880 | 0.6221 | 0.8805 |
| 0.087 | 5.0 | 3600 | 0.7072 | 0.8819 |
| 0.0622 | 6.0 | 4320 | 0.7121 | 0.8819 |
| 0.036 | 7.0 | 5040 | 0.7750 | 0.8805 |
| 0.0234 | 8.0 | 5760 | 0.7767 | 0.8834 |
| 0.0157 | 9.0 | 6480 | 0.8243 | 0.8805 |
| 0.0122 | 10.0 | 7200 | 0.8198 | 0.8839 |
| 0.0092 | 11.0 | 7920 | 0.8105 | 0.8849 |
| 0.0047 | 12.0 | 8640 | 0.8561 | 0.8844 |
| 0.0038 | 13.0 | 9360 | 0.8367 | 0.8815 |
| 0.0029 | 14.0 | 10080 | 0.8396 | 0.8854 |
| 0.0014 | 15.0 | 10800 | 0.8410 | 0.8849 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
osueng02/DialoGPT-medium-STAN_BOT
|
osueng02
| 2022-09-19T11:58:42Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-09-19T11:49:55Z |
---
tags:
- conversational
---
# Model for a Stan Pines discord chatbot
# There are unknown errors and I am researching why.
|
chintagunta85/electramed-small-ADE-DRUG-DOSAGE-ner
|
chintagunta85
| 2022-09-19T10:48:04Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"electra",
"token-classification",
"generated_from_trainer",
"dataset:ade_drug_dosage_ner",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-09-19T10:46:52Z |
---
tags:
- generated_from_trainer
datasets:
- ade_drug_dosage_ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: electramed-small-ADE-DRUG-DOSAGE-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ade_drug_dosage_ner
type: ade_drug_dosage_ner
config: ade
split: train
args: ade
metrics:
- name: Precision
type: precision
value: 0.0
- name: Recall
type: recall
value: 0.0
- name: F1
type: f1
value: 0.0
- name: Accuracy
type: accuracy
value: 0.8697318007662835
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electramed-small-ADE-DRUG-DOSAGE-ner
This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the ade_drug_dosage_ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6064
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.8697
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.4165 | 1.0 | 14 | 1.3965 | 0.0255 | 0.0636 | 0.0365 | 0.7471 |
| 1.2063 | 2.0 | 28 | 1.1702 | 0.0 | 0.0 | 0.0 | 0.8697 |
| 0.9527 | 3.0 | 42 | 0.9342 | 0.0 | 0.0 | 0.0 | 0.8697 |
| 0.8238 | 4.0 | 56 | 0.7775 | 0.0 | 0.0 | 0.0 | 0.8697 |
| 0.7452 | 5.0 | 70 | 0.6945 | 0.0 | 0.0 | 0.0 | 0.8697 |
| 0.6386 | 6.0 | 84 | 0.6519 | 0.0 | 0.0 | 0.0 | 0.8697 |
| 0.6742 | 7.0 | 98 | 0.6294 | 0.0 | 0.0 | 0.0 | 0.8697 |
| 0.6669 | 8.0 | 112 | 0.6162 | 0.0 | 0.0 | 0.0 | 0.8697 |
| 0.6595 | 9.0 | 126 | 0.6090 | 0.0 | 0.0 | 0.0 | 0.8697 |
| 0.6122 | 10.0 | 140 | 0.6064 | 0.0 | 0.0 | 0.0 | 0.8697 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
sd-concepts-library/indiana
|
sd-concepts-library
| 2022-09-19T10:37:21Z | 0 | 1 | null |
[
"license:mit",
"region:us"
] | null | 2022-09-19T10:37:10Z |
---
license: mit
---
### indiana on Stable Diffusion
This is the `<indiana>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:





|
balabis/layoutlmv3-finetuned-invoice
|
balabis
| 2022-09-19T10:36:11Z | 80 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"layoutlmv3",
"token-classification",
"generated_from_trainer",
"dataset:invoices",
"license:cc-by-nc-sa-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-09-19T10:16:08Z |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- invoices
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-invoice
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: invoices
type: invoices
config: sroie
split: train
args: sroie
metrics:
- name: Precision
type: precision
value: 0.975
- name: Recall
type: recall
value: 0.975
- name: F1
type: f1
value: 0.975
- name: Accuracy
type: accuracy
value: 0.975
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-invoice
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoices dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2299
- Precision: 0.975
- Recall: 0.975
- F1: 0.975
- Accuracy: 0.975
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:-----:|:--------:|
| No log | 14.29 | 100 | 0.1616 | 0.975 | 0.975 | 0.975 | 0.975 |
| No log | 28.57 | 200 | 0.1909 | 0.975 | 0.975 | 0.975 | 0.975 |
| No log | 42.86 | 300 | 0.2046 | 0.975 | 0.975 | 0.975 | 0.975 |
| No log | 57.14 | 400 | 0.2134 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.1239 | 71.43 | 500 | 0.2299 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.1239 | 85.71 | 600 | 0.2309 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.1239 | 100.0 | 700 | 0.2342 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.1239 | 114.29 | 800 | 0.2407 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.1239 | 128.57 | 900 | 0.2428 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.0007 | 142.86 | 1000 | 0.2449 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.0007 | 157.14 | 1100 | 0.2465 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.0007 | 171.43 | 1200 | 0.2488 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.0007 | 185.71 | 1300 | 0.2515 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.0007 | 200.0 | 1400 | 0.2525 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.0004 | 214.29 | 1500 | 0.2540 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.0004 | 228.57 | 1600 | 0.2557 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.0004 | 242.86 | 1700 | 0.2564 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.0004 | 257.14 | 1800 | 0.2570 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.0004 | 271.43 | 1900 | 0.2573 | 0.975 | 0.975 | 0.975 | 0.975 |
| 0.0003 | 285.71 | 2000 | 0.2574 | 0.975 | 0.975 | 0.975 | 0.975 |
### Framework versions
- Transformers 4.23.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
chintagunta85/electramed-small-BC2GM-ner
|
chintagunta85
| 2022-09-19T10:34:22Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"electra",
"token-classification",
"generated_from_trainer",
"dataset:bc2gm_corpus",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-09-19T10:20:42Z |
---
tags:
- generated_from_trainer
datasets:
- bc2gm_corpus
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: electramed-small-BC2GM-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: bc2gm_corpus
type: bc2gm_corpus
config: bc2gm_corpus
split: train
args: bc2gm_corpus
metrics:
- name: Precision
type: precision
value: 0.7652071701439906
- name: Recall
type: recall
value: 0.823399209486166
- name: F1
type: f1
value: 0.7932373771989948
- name: Accuracy
type: accuracy
value: 0.9756735092182762
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electramed-small-BC2GM-ner
This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the bc2gm_corpus dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0720
- Precision: 0.7652
- Recall: 0.8234
- F1: 0.7932
- Accuracy: 0.9757
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.085 | 1.0 | 782 | 0.1112 | 0.6147 | 0.7777 | 0.6867 | 0.9634 |
| 0.0901 | 2.0 | 1564 | 0.0825 | 0.7141 | 0.8028 | 0.7559 | 0.9720 |
| 0.0303 | 3.0 | 2346 | 0.0759 | 0.7310 | 0.8049 | 0.7662 | 0.9724 |
| 0.0037 | 4.0 | 3128 | 0.0735 | 0.7430 | 0.8168 | 0.7781 | 0.9735 |
| 0.0325 | 5.0 | 3910 | 0.0723 | 0.7571 | 0.8142 | 0.7846 | 0.9748 |
| 0.0582 | 6.0 | 4692 | 0.0701 | 0.7664 | 0.8144 | 0.7897 | 0.9759 |
| 0.0073 | 7.0 | 5474 | 0.0701 | 0.7711 | 0.8212 | 0.7953 | 0.9761 |
| 0.1031 | 8.0 | 6256 | 0.0712 | 0.7602 | 0.8258 | 0.7916 | 0.9756 |
| 0.0248 | 9.0 | 7038 | 0.0722 | 0.7691 | 0.8231 | 0.7952 | 0.9759 |
| 0.0136 | 10.0 | 7820 | 0.0720 | 0.7652 | 0.8234 | 0.7932 | 0.9757 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
nielsr/layoutxlm-xfund-fr-run-1
|
nielsr
| 2022-09-19T09:44:35Z | 73 | 0 |
transformers
|
[
"transformers",
"pytorch",
"layoutlmv2",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-09-19T09:38:32Z |
This is `microsoft/layoutxlm-base` fine-tuned on XFUND, French for 1000 steps.
|
lewtun/my-awesome-setfit-model-2
|
lewtun
| 2022-09-19T09:08:50Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-09-19T09:08:42Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 40 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 40,
"warmup_steps": 4,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.