modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-07 00:41:44
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
544 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-07 00:41:34
card
stringlengths
11
1.01M
ThuyNT03/xlm-roberta-base-Final_VietNam-aug_replace_tfidf-2
ThuyNT03
2023-09-05T02:04:06Z
114
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T23:19:26Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-aug_replace_tfidf-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_VietNam-aug_replace_tfidf-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8468 - Accuracy: 0.69 - F1: 0.6959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0982 | 1.0 | 87 | 0.9995 | 0.47 | 0.4137 | | 0.8884 | 2.0 | 174 | 0.7521 | 0.65 | 0.6032 | | 0.7533 | 3.0 | 261 | 0.7130 | 0.64 | 0.6364 | | 0.6259 | 4.0 | 348 | 0.7598 | 0.68 | 0.6865 | | 0.5278 | 5.0 | 435 | 0.7066 | 0.7 | 0.7053 | | 0.4336 | 6.0 | 522 | 0.7901 | 0.7 | 0.7060 | | 0.3516 | 7.0 | 609 | 0.8106 | 0.69 | 0.6976 | | 0.2859 | 8.0 | 696 | 0.8468 | 0.69 | 0.6959 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
mabrouk/speecht5_finetuned_voxpopuli_nl
mabrouk
2023-09-05T01:57:13Z
76
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-09-04T23:31:36Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.521 | 4.3 | 1000 | 0.4820 | | 0.4972 | 8.61 | 2000 | 0.4676 | | 0.4963 | 12.91 | 3000 | 0.4645 | | 0.4919 | 17.21 | 4000 | 0.4622 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Final_VietNam-aug_replace_w2v-2
ThuyNT03
2023-09-05T01:54:32Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T23:09:25Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-aug_replace_w2v-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_VietNam-aug_replace_w2v-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9125 - Accuracy: 0.71 - F1: 0.7091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.101 | 1.0 | 84 | 1.0494 | 0.46 | 0.3728 | | 0.9323 | 2.0 | 168 | 0.7962 | 0.59 | 0.5689 | | 0.7109 | 3.0 | 252 | 0.7447 | 0.71 | 0.7004 | | 0.587 | 4.0 | 336 | 0.7251 | 0.71 | 0.7104 | | 0.4611 | 5.0 | 420 | 0.8001 | 0.68 | 0.6770 | | 0.3668 | 6.0 | 504 | 0.8589 | 0.72 | 0.7229 | | 0.291 | 7.0 | 588 | 0.8900 | 0.69 | 0.6894 | | 0.2505 | 8.0 | 672 | 0.9125 | 0.71 | 0.7091 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
thissayantan/dreambooth-sayantan
thissayantan
2023-09-05T01:48:42Z
1
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-05T01:48:40Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of sayantan person tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
ThuyNT03/xlm-roberta-base-Final_VietNam-aug_insert_BERT-2
ThuyNT03
2023-09-05T01:32:37Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T22:51:06Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-aug_insert_BERT-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_VietNam-aug_insert_BERT-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1237 - Accuracy: 0.71 - F1: 0.7165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0509 | 1.0 | 87 | 0.8383 | 0.59 | 0.5441 | | 0.7214 | 2.0 | 174 | 0.7218 | 0.72 | 0.72 | | 0.5758 | 3.0 | 261 | 0.7535 | 0.69 | 0.6956 | | 0.4321 | 4.0 | 348 | 0.7413 | 0.73 | 0.7360 | | 0.3364 | 5.0 | 435 | 0.8328 | 0.72 | 0.7269 | | 0.2712 | 6.0 | 522 | 0.9267 | 0.72 | 0.7255 | | 0.1902 | 7.0 | 609 | 1.0811 | 0.7 | 0.7074 | | 0.1351 | 8.0 | 696 | 1.1237 | 0.71 | 0.7165 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
duwuonline/my-translation-helsinki2
duwuonline
2023-09-05T01:27:43Z
104
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "base_model:duwuonline/my-translation-helsinki", "base_model:finetune:duwuonline/my-translation-helsinki", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-05T01:00:23Z
--- license: apache-2.0 base_model: duwuonline/my-translation-helsinki tags: - generated_from_trainer model-index: - name: my-translation-helsinki2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-translation-helsinki2 This model is a fine-tuned version of [duwuonline/my-translation-helsinki](https://huggingface.co/duwuonline/my-translation-helsinki) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ckandemir/bert-base-uncased-issues-128
ckandemir
2023-09-05T01:26:28Z
115
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-04T19:45:22Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0966 | 1.0 | 291 | 1.6190 | | 1.6197 | 2.0 | 582 | 1.5317 | | 1.485 | 3.0 | 873 | 1.4164 | | 1.3992 | 4.0 | 1164 | 1.4064 | | 1.3219 | 5.0 | 1455 | 1.3900 | | 1.2851 | 6.0 | 1746 | 1.2096 | | 1.2328 | 7.0 | 2037 | 1.3019 | | 1.2113 | 8.0 | 2328 | 1.2779 | | 1.1674 | 9.0 | 2619 | 1.2312 | | 1.1443 | 10.0 | 2910 | 1.1830 | | 1.1171 | 11.0 | 3201 | 1.1692 | | 1.1067 | 12.0 | 3492 | 1.2364 | | 1.0846 | 13.0 | 3783 | 1.1871 | | 1.0815 | 14.0 | 4074 | 1.1354 | | 1.054 | 15.0 | 4365 | 1.1771 | | 1.0565 | 16.0 | 4656 | 1.2137 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
CzarnyRycerz/Reinforce-pixelcopter-1
CzarnyRycerz
2023-09-05T01:23:36Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-04T23:41:34Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 32.50 +/- 24.74 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
JasonTheDeveloper/squad-bloom-3b
JasonTheDeveloper
2023-09-05T01:21:55Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-05T01:21:53Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
RafaelMayer/electra-copec-2
RafaelMayer
2023-09-05T01:13:38Z
61
0
transformers
[ "transformers", "tf", "electra", "text-classification", "generated_from_keras_callback", "base_model:mrm8488/electricidad-base-discriminator", "base_model:finetune:mrm8488/electricidad-base-discriminator", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T01:12:31Z
--- base_model: mrm8488/electricidad-base-discriminator tags: - generated_from_keras_callback model-index: - name: RafaelMayer/electra-copec-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # RafaelMayer/electra-copec-2 This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7303 - Validation Loss: 0.6874 - Train Accuracy: 0.8824 - Train Precision: [0.75 0.92307692] - Train Precision W: 0.8824 - Train Recall: [0.75 0.92307692] - Train Recall W: 0.8824 - Train F1: [0.75 0.92307692] - Train F1 W: 0.8824 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 5, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch | |:----------:|:---------------:|:--------------:|:-----------------------:|:-----------------:|:-----------------------:|:--------------:|:-----------------------:|:----------:|:-----:| | 0.7303 | 0.6874 | 0.8824 | [0.75 0.92307692] | 0.8824 | [0.75 0.92307692] | 0.8824 | [0.75 0.92307692] | 0.8824 | 1 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Final_VietNam-aug_insert_w2v-2
ThuyNT03
2023-09-05T01:13:16Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T22:32:59Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-aug_insert_w2v-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_VietNam-aug_insert_w2v-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1138 - Accuracy: 0.75 - F1: 0.7539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0576 | 1.0 | 85 | 0.8693 | 0.6 | 0.5283 | | 0.7822 | 2.0 | 170 | 0.8331 | 0.69 | 0.6665 | | 0.6156 | 3.0 | 255 | 0.7210 | 0.72 | 0.7194 | | 0.4447 | 4.0 | 340 | 0.8139 | 0.66 | 0.6645 | | 0.3252 | 5.0 | 425 | 0.9348 | 0.67 | 0.6776 | | 0.2105 | 6.0 | 510 | 0.9185 | 0.77 | 0.7718 | | 0.1437 | 7.0 | 595 | 1.0530 | 0.75 | 0.7539 | | 0.1479 | 8.0 | 680 | 1.1138 | 0.75 | 0.7539 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
markmp/marketmail
markmp
2023-09-05T01:12:27Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-05T01:12:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
schrilax/marketing_email
schrilax
2023-09-05T01:10:46Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-09-05T00:43:50Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MichelNivard/codellama_Rbase_instr
MichelNivard
2023-09-05T01:08:30Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-01T10:24:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0
jschew39/marketmail
jschew39
2023-09-05T01:07:57Z
3
0
peft
[ "peft", "region:us" ]
null
2023-09-05T01:07:55Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
RafaelMayer/roberta-copec-2
RafaelMayer
2023-09-05T01:06:47Z
62
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "base_model:PlanTL-GOB-ES/roberta-base-bne", "base_model:finetune:PlanTL-GOB-ES/roberta-base-bne", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T01:05:40Z
--- license: apache-2.0 base_model: PlanTL-GOB-ES/roberta-base-bne tags: - generated_from_keras_callback model-index: - name: RafaelMayer/roberta-copec-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # RafaelMayer/roberta-copec-2 This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6476 - Validation Loss: 0.6356 - Train Accuracy: 0.7647 - Train Precision: [0. 0.76470588] - Train Precision W: 0.5848 - Train Recall: [0. 1.] - Train Recall W: 0.7647 - Train F1: [0. 0.86666667] - Train F1 W: 0.6627 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 5, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch | |:----------:|:---------------:|:--------------:|:-----------------------:|:-----------------:|:------------:|:--------------:|:-----------------------:|:----------:|:-----:| | 0.6476 | 0.6356 | 0.7647 | [0. 0.76470588] | 0.5848 | [0. 1.] | 0.7647 | [0. 0.86666667] | 0.6627 | 1 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Final_VietNam-aug_insert_synonym-2
ThuyNT03
2023-09-05T01:02:18Z
124
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T22:22:38Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-aug_insert_synonym-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_VietNam-aug_insert_synonym-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3966 - Accuracy: 0.67 - F1: 0.6754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0222 | 1.0 | 87 | 0.8095 | 0.65 | 0.6380 | | 0.6487 | 2.0 | 174 | 0.7375 | 0.67 | 0.6640 | | 0.4554 | 3.0 | 261 | 0.7962 | 0.71 | 0.7084 | | 0.3194 | 4.0 | 348 | 0.8102 | 0.71 | 0.7161 | | 0.2303 | 5.0 | 435 | 1.1793 | 0.65 | 0.6607 | | 0.1728 | 6.0 | 522 | 1.1697 | 0.72 | 0.7245 | | 0.127 | 7.0 | 609 | 1.3509 | 0.69 | 0.6943 | | 0.0927 | 8.0 | 696 | 1.3966 | 0.67 | 0.6754 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_backtranslation-2
ThuyNT03
2023-09-05T00:58:55Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T00:51:23Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_backtranslation-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_backtranslation-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1103 - Accuracy: 0.74 - F1: 0.7315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0442 | 1.0 | 87 | 0.7191 | 0.69 | 0.6652 | | 0.7545 | 2.0 | 174 | 0.6726 | 0.73 | 0.7264 | | 0.5743 | 3.0 | 261 | 0.6634 | 0.72 | 0.7157 | | 0.4342 | 4.0 | 348 | 0.7801 | 0.73 | 0.7270 | | 0.3244 | 5.0 | 435 | 0.8782 | 0.75 | 0.7438 | | 0.2421 | 6.0 | 522 | 1.0173 | 0.73 | 0.7235 | | 0.167 | 7.0 | 609 | 1.0822 | 0.75 | 0.7431 | | 0.1546 | 8.0 | 696 | 1.1103 | 0.74 | 0.7315 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Final_VietNam-train-2
ThuyNT03
2023-09-05T00:50:51Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T22:18:21Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-train-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_VietNam-train-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8740 - Accuracy: 0.68 - F1: 0.6882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.1143 | 1.0 | 44 | 1.0936 | 0.4 | 0.4041 | | 0.9843 | 2.0 | 88 | 0.8262 | 0.63 | 0.6167 | | 0.7312 | 3.0 | 132 | 0.7333 | 0.7 | 0.6919 | | 0.5899 | 4.0 | 176 | 0.8261 | 0.7 | 0.7020 | | 0.4922 | 5.0 | 220 | 0.7399 | 0.71 | 0.7145 | | 0.435 | 6.0 | 264 | 0.8382 | 0.64 | 0.6530 | | 0.375 | 7.0 | 308 | 0.8675 | 0.7 | 0.7047 | | 0.3161 | 8.0 | 352 | 0.8740 | 0.68 | 0.6882 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
RafaelMayer/electra-copec-1
RafaelMayer
2023-09-05T00:46:22Z
60
0
transformers
[ "transformers", "tf", "electra", "text-classification", "generated_from_keras_callback", "base_model:mrm8488/electricidad-base-discriminator", "base_model:finetune:mrm8488/electricidad-base-discriminator", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T00:45:10Z
--- base_model: mrm8488/electricidad-base-discriminator tags: - generated_from_keras_callback model-index: - name: RafaelMayer/electra-copec-1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # RafaelMayer/electra-copec-1 This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7863 - Validation Loss: 0.7271 - Train Accuracy: 0.1765 - Train Precision: [0.17647059 0. ] - Train Precision W: 0.0311 - Train Recall: [1. 0.] - Train Recall W: 0.1765 - Train F1: [0.3 0. ] - Train F1 W: 0.0529 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 5, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch | |:----------:|:---------------:|:--------------:|:-----------------------:|:-----------------:|:------------:|:--------------:|:---------:|:----------:|:-----:| | 0.7863 | 0.7271 | 0.1765 | [0.17647059 0. ] | 0.0311 | [1. 0.] | 0.1765 | [0.3 0. ] | 0.0529 | 1 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
nbogdan/flant5-base-2ex-elaboration-1epochs
nbogdan
2023-09-05T00:45:42Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-05T00:40:36Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-base-2ex-elaboration-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-2ex-elaboration-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
ThuyNT03/xlm-roberta-base-Final_VietNam-aug_delete-2
ThuyNT03
2023-09-05T00:45:20Z
124
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T22:10:24Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-aug_delete-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_VietNam-aug_delete-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8464 - Accuracy: 0.68 - F1: 0.6845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0599 | 1.0 | 87 | 0.9398 | 0.53 | 0.4615 | | 0.7781 | 2.0 | 174 | 0.7588 | 0.65 | 0.6405 | | 0.6771 | 3.0 | 261 | 0.7271 | 0.68 | 0.6828 | | 0.5317 | 4.0 | 348 | 0.6991 | 0.7 | 0.7113 | | 0.4389 | 5.0 | 435 | 0.6845 | 0.71 | 0.7092 | | 0.3377 | 6.0 | 522 | 0.8429 | 0.7 | 0.7013 | | 0.2595 | 7.0 | 609 | 0.8166 | 0.68 | 0.6870 | | 0.2211 | 8.0 | 696 | 0.8464 | 0.68 | 0.6845 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
actionpace/Chronos-Hermes-v2-13b-Limarp-Lora-Merged
actionpace
2023-09-05T00:45:05Z
7
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-02T18:50:44Z
--- license: other language: - en --- **Some of my own quants:** * Chronos-Hermes-v2-13b-Limarp-Lora-Merged_Q5_1_4K.gguf * Chronos-Hermes-v2-13b-Limarp-Lora-Merged_Q5_1_8K.gguf **Source:** [Doctor-Shotgun](https://huggingface.co/Doctor-Shotgun) **Source Model:** [Chronos-Hermes-v2-13b-Limarp-Lora-Merged](https://huggingface.co/Doctor-Shotgun/Chronos-Hermes-v2-13b-Limarp-Lora-Merged) **Source models for Doctor-Shotgun/Chronos-Hermes-v2-13b-Limarp-Lora-Merged (Merge)** - [Austism/chronos-hermes-13b-v2](https://huggingface.co/Austism/chronos-hermes-13b-v2) - [lemonilia/limarp-llama2](https://huggingface.co/lemonilia/limarp-llama2) (Lora)
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_replace_tfidf-2
ThuyNT03
2023-09-05T00:43:19Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T00:35:33Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_replace_tfidf-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_replace_tfidf-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7407 - Accuracy: 0.78 - F1: 0.7740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.085 | 1.0 | 88 | 0.9923 | 0.66 | 0.6391 | | 0.9033 | 2.0 | 176 | 0.6803 | 0.74 | 0.7342 | | 0.7906 | 3.0 | 264 | 0.7208 | 0.71 | 0.6992 | | 0.6859 | 4.0 | 352 | 0.6374 | 0.75 | 0.7483 | | 0.5591 | 5.0 | 440 | 0.7554 | 0.76 | 0.7539 | | 0.4588 | 6.0 | 528 | 0.8309 | 0.74 | 0.7337 | | 0.3967 | 7.0 | 616 | 0.6894 | 0.81 | 0.8063 | | 0.3339 | 8.0 | 704 | 0.7407 | 0.78 | 0.7740 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
actionpace/Hermes-Kimiko-13B-f16
actionpace
2023-09-05T00:38:56Z
11
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-05T00:15:11Z
--- license: other language: - en --- **Some of my own quants:** * Hermes-Kimiko-13B-f16_Q5_1_4K.gguf * Hermes-Kimiko-13B-f16_Q5_1_8K.gguf **Source:** [Blackroot](https://huggingface.co/Blackroot) **Source Model:** [Hermes-Kimiko-13B-f16](https://huggingface.co/Blackroot/Hermes-Kimiko-13B-f16) **Source models for Blackroot/Hermes-Kimiko-13B-f16 (Merge)** - [NousResearch/Nous-Hermes-Llama2-13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b) ([Ref](https://huggingface.co/actionpace/Nous-Hermes-Llama2-13b)) - [nRuaif/Kimiko_13B](https://huggingface.co/nRuaif/Kimiko_13B) (Lora)
actionpace/FrankensteinsMonster-13B
actionpace
2023-09-05T00:35:39Z
5
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-05T00:12:20Z
--- license: other language: - en --- **Some of my own quants:** * FrankensteinsMonster-13B_Q5_1_4K.gguf * FrankensteinsMonster-13B_Q5_1_8K.gguf **Source:** [Blackroot](https://huggingface.co/Blackroot) **Source Model:** [FrankensteinsMonster-13B](https://huggingface.co/Blackroot/FrankensteinsMonster-13B) **Source models for Blackroot/FrankensteinsMonster-13B (Merge)** - [NousResearch/Nous-Hermes-Llama2-13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b) ([Ref](https://huggingface.co/actionpace/Nous-Hermes-Llama2-13b)) - [Blackroot/Llama-2-13B-Storywriter-LORA](https://huggingface.co/Blackroot/Llama-2-13B-Storywriter-LORA) (Lora) - [lemonilia/limarp-llama2](https://huggingface.co/lemonilia/limarp-llama2) (Lora)
monsoon-nlp/nyrkr-joker-llama
monsoon-nlp
2023-09-05T00:35:39Z
7
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "nyc", "llama2", "en", "dataset:jmhessel/newyorker_caption_contest", "arxiv:2209.06293", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-04T22:33:41Z
--- license: mit datasets: - jmhessel/newyorker_caption_contest language: - en tags: - nyc - llama2 widget: - text: "This scene takes place in the following location: a bank. Three people are standing in line at the bank. The bank teller is a traditional pirate with a hook hand, eye patch, and a parrot. The scene includes: Piracy, Bank teller.\ncaption: Can I interest you in opening an offshore account?\nexplanation of the caption:\n" example_title: "Training prompt format" - text: "In this task, you will see a description of an uncanny situation. Then, you will see a joke that was written about the situation. Explain how the joke relates to the situation and why it is funny.\n###\nThis scene takes place in the following location: a bank. Three people are standing in line at the bank. The bank teller is a traditional pirate with a hook hand, eye patch, and a parrot. The scene includes: Piracy, Bank teller.\ncaption: Can I interest you in opening an offshore account?\nexplanation of the caption:\n" example_title: "Paper prompt format" - text: "This scene takes place in the following location: a bank. Three people are standing in line at the bank. The bank teller is a traditional pirate with a hook hand, eye patch, and a parrot. The scene includes: Piracy, Bank teller.\ncaption: Can I interest you in opening an offshore account?\nthe caption is funny because" example_title: "Suggested prompt format" --- # nyrkr-joker-llama *New Yorker* cartoon description and caption -> attempt at a joke explanation Technical details: - Based on LLaMa2-7b-hf (version 2, 7B params) - Used [QLoRA](https://github.com/artidoro/qlora/blob/main/qlora.py) to fine-tune on [1.2k rows of New Yorker caption contest](https://huggingface.co/datasets/jmhessel/newyorker_caption_contest) - Merged LLaMa2 with the adapter weights (from checkpoint step=160, epoch=2.7) ## Prompt options [The original paper](https://arxiv.org/abs/2209.06293), Figure 10 uses this format for joke explanations: `In this task, you will see a description of an uncanny situation. Then, you will see a joke that was written about the situation. Explain how the joke relates to the situation and why it is funny. ### {few-shot examples separated by ###, newline after "explanation of the caption:"} This scene takes place in the following location: a bank. Three people are standing in line at the bank. The bank teller is a traditional pirate with a hook hand, eye patch, and a parrot. The scene includes: Piracy, Bank teller. caption: Can I interest you in opening an offshore account? explanation of the caption: ` In training, I used just the individual example: `This scene takes place in the following location: a bank. Three people are standing in line at the bank. The bank teller is a traditional pirate with a hook hand, eye patch, and a parrot. The scene includes: Piracy, Bank teller. caption: Can I interest you in opening an offshore account? explanation of the caption:\n` In inference, I had some better results with a more natural prompt (no newline or space at end) `This scene takes place in the following location: a bank. Three people are standing in line at the bank. The bank teller is a traditional pirate with a hook hand, eye patch, and a parrot. The scene includes: Piracy, Bank teller. caption: Can I interest you in opening an offshore account? the caption is funny because` ## Training script Trained on a V100 ``` git clone https://github.com/artidoro/qlora cd qlora pip3 install -r requirements.txt --quiet ! cd qlora && python qlora.py \ --model_name_or_path ../llama-2-7b-hf \ --output_dir ../thatsthejoke \ --logging_steps 20 \ --save_strategy steps \ --data_seed 42 \ --save_steps 80 \ --save_total_limit 10 \ --evaluation_strategy steps \ --max_new_tokens 64 \ --dataloader_num_workers 1 \ --group_by_length \ --logging_strategy steps \ --remove_unused_columns False \ --do_train \ --lora_r 64 \ --lora_alpha 16 \ --lora_modules all \ --double_quant \ --quant_type nf4 \ --bits 4 \ --warmup_ratio 0.03 \ --lr_scheduler_type constant \ --gradient_checkpointing \ --dataset /content/nycaptions.jsonl \ --dataset_format 'self-instruct' \ --source_max_len 16 \ --target_max_len 512 \ --per_device_train_batch_size 1 \ --gradient_accumulation_steps 16 \ --max_steps 250 \ --eval_steps 187 \ --learning_rate 0.0002 \ --adam_beta2 0.999 \ --max_grad_norm 0.3 \ --lora_dropout 0.1 \ --weight_decay 0.0 \ --seed 0 ```
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_replace_w2v-2
ThuyNT03
2023-09-05T00:35:25Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T00:27:35Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_replace_w2v-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_replace_w2v-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0103 - Accuracy: 0.75 - F1: 0.7433 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0863 | 1.0 | 86 | 0.8715 | 0.59 | 0.5464 | | 0.8221 | 2.0 | 172 | 0.6132 | 0.72 | 0.7008 | | 0.6363 | 3.0 | 258 | 0.6041 | 0.72 | 0.7189 | | 0.5206 | 4.0 | 344 | 0.7012 | 0.73 | 0.7224 | | 0.3526 | 5.0 | 430 | 0.8181 | 0.75 | 0.7468 | | 0.2893 | 6.0 | 516 | 0.7950 | 0.77 | 0.7690 | | 0.2097 | 7.0 | 602 | 0.9751 | 0.74 | 0.7335 | | 0.1536 | 8.0 | 688 | 1.0103 | 0.75 | 0.7433 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
RafaelMayer/roberta-copec-1
RafaelMayer
2023-09-05T00:34:46Z
62
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "base_model:PlanTL-GOB-ES/roberta-base-bne", "base_model:finetune:PlanTL-GOB-ES/roberta-base-bne", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T00:26:18Z
--- license: apache-2.0 base_model: PlanTL-GOB-ES/roberta-base-bne tags: - generated_from_keras_callback model-index: - name: RafaelMayer/roberta-copec-1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # RafaelMayer/roberta-copec-1 This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6572 - Validation Loss: 0.6316 - Train Accuracy: 0.8235 - Train Precision: [0. 0.82352941] - Train Precision W: 0.6782 - Train Recall: [0. 1.] - Train Recall W: 0.8235 - Train F1: [0. 0.90322581] - Train F1 W: 0.7438 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 5, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch | |:----------:|:---------------:|:--------------:|:-----------------------:|:-----------------:|:------------:|:--------------:|:-----------------------:|:----------:|:-----:| | 0.6572 | 0.6316 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 1 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
YassineBenlaria/tamasheq-99-2.feature_ext-continue
YassineBenlaria
2023-09-05T00:34:23Z
16
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T12:36:34Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: tamasheq-99-2.feature_ext-continue results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tamasheq-99-2.feature_ext-continue This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3689 - Wer: 0.8342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.4856 | 5.71 | 300 | 2.9956 | 0.9974 | | 2.3903 | 11.43 | 600 | 1.2600 | 0.8816 | | 0.9577 | 17.14 | 900 | 1.1878 | 0.8342 | | 0.7051 | 22.86 | 1200 | 1.1907 | 0.8053 | | 0.5821 | 28.57 | 1500 | 1.2621 | 0.8316 | | 0.5037 | 34.29 | 1800 | 1.3689 | 0.8342 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
adyprat/Reinforce-pcopv0
adyprat
2023-09-05T00:22:32Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-04T21:23:02Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pcopv0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 31.60 +/- 21.11 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_insert_BERT-2
ThuyNT03
2023-09-05T00:17:38Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T00:09:29Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_insert_BERT-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_insert_BERT-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9737 - Accuracy: 0.72 - F1: 0.7141 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0807 | 1.0 | 88 | 0.9024 | 0.64 | 0.6254 | | 0.8512 | 2.0 | 176 | 0.6824 | 0.75 | 0.7396 | | 0.7009 | 3.0 | 264 | 0.6368 | 0.74 | 0.7363 | | 0.5649 | 4.0 | 352 | 0.6994 | 0.76 | 0.7494 | | 0.458 | 5.0 | 440 | 0.8683 | 0.74 | 0.7300 | | 0.3409 | 6.0 | 528 | 1.0337 | 0.7 | 0.6787 | | 0.2964 | 7.0 | 616 | 0.9357 | 0.75 | 0.7459 | | 0.2305 | 8.0 | 704 | 0.9737 | 0.72 | 0.7141 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
VegaKH/VenusXL
VegaKH
2023-09-05T00:12:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-11T14:05:29Z
--- license: creativeml-openrail-m ---
nbogdan/flant5-large-2ex-paraphrasing-3epochs
nbogdan
2023-09-05T00:10:13Z
0
0
adapter-transformers
[ "adapter-transformers", "t5", "adapterhub:self-explanations", "dataset:self-explanations", "region:us" ]
null
2023-09-05T00:09:05Z
--- tags: - adapter-transformers - t5 - adapterhub:self-explanations datasets: - self-explanations --- # Adapter `nbogdan/flant5-large-2ex-paraphrasing-3epochs` for google/flan-t5-large An [adapter](https://adapterhub.ml) for the `google/flan-t5-large` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-large") adapter_name = model.load_adapter("nbogdan/flant5-large-2ex-paraphrasing-3epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
nightdude/config_80034
nightdude
2023-09-05T00:10:04Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-05T00:09:49Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0090
bigmorning
2023-09-04T23:59:07Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T23:58:59Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0090 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0090 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0124 - Train Accuracy: 0.0339 - Train Wermet: 14.3527 - Validation Loss: 0.8265 - Validation Accuracy: 0.0209 - Validation Wermet: 32.3895 - Epoch: 89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | | 0.3747 | 0.0312 | 0.1293 | 0.8408 | 0.0203 | 0.2931 | 35 | | 0.3331 | 0.0316 | 0.1111 | 0.8253 | 0.0204 | 0.2891 | 36 | | 0.2947 | 0.0319 | 0.0962 | 0.8084 | 0.0205 | 0.2849 | 37 | | 0.2601 | 0.0322 | 0.0817 | 0.7906 | 0.0205 | 0.2783 | 38 | | 0.2291 | 0.0324 | 0.0706 | 0.7876 | 0.0206 | 0.2755 | 39 | | 0.2009 | 0.0327 | 0.0596 | 0.7723 | 0.0207 | 0.2712 | 40 | | 0.1750 | 0.0329 | 0.0504 | 0.7629 | 0.0207 | 0.2692 | 41 | | 0.1510 | 0.0331 | 0.0410 | 0.7650 | 0.0207 | 0.2684 | 42 | | 0.1319 | 0.0333 | 0.0367 | 0.7533 | 0.0207 | 0.2655 | 43 | | 0.1121 | 0.0335 | 0.0292 | 0.7589 | 0.0207 | 0.2647 | 44 | | 0.0956 | 0.0336 | 0.0253 | 0.7579 | 0.0208 | 0.2642 | 45 | | 0.0812 | 0.0337 | 0.0254 | 0.7584 | 0.0208 | 0.2625 | 46 | | 0.0694 | 0.0338 | 0.0332 | 0.7555 | 0.0208 | 0.2693 | 47 | | 0.0592 | 0.0339 | 0.0319 | 0.7534 | 0.0208 | 0.2629 | 48 | | 0.0499 | 0.0339 | 0.0487 | 0.7587 | 0.0208 | 0.3030 | 49 | | 0.0409 | 0.0339 | 0.0615 | 0.7577 | 0.0208 | 0.2810 | 50 | | 0.0347 | 0.0340 | 0.0859 | 0.7603 | 0.0208 | 0.3534 | 51 | | 0.0286 | 0.0340 | 0.1928 | 0.7554 | 0.0209 | 0.5822 | 52 | | 0.0267 | 0.0340 | 0.3131 | 0.7664 | 0.0208 | 1.7372 | 53 | | 0.0243 | 0.0340 | 1.3154 | 0.7525 | 0.0209 | 0.7770 | 54 | | 0.0206 | 0.0340 | 0.8121 | 0.7532 | 0.0209 | 0.9253 | 55 | | 0.0174 | 0.0340 | 0.9253 | 0.7574 | 0.0209 | 1.4865 | 56 | | 0.0135 | 0.0340 | 1.1761 | 0.7592 | 0.0209 | 1.5813 | 57 | | 0.0111 | 0.0340 | 1.7125 | 0.7631 | 0.0209 | 1.8950 | 58 | | 0.0096 | 0.0340 | 1.9230 | 0.7664 | 0.0209 | 2.4432 | 59 | | 0.0082 | 0.0340 | 2.5718 | 0.7693 | 0.0209 | 3.3565 | 60 | | 0.0073 | 0.0340 | 3.5489 | 0.7747 | 0.0209 | 3.7191 | 61 | | 0.0063 | 0.0340 | 3.7801 | 0.7756 | 0.0209 | 4.4728 | 62 | | 0.0054 | 0.0340 | 4.0145 | 0.7795 | 0.0209 | 5.0058 | 63 | | 0.0048 | 0.0340 | 4.9652 | 0.7821 | 0.0210 | 4.9937 | 64 | | 0.0042 | 0.0340 | 5.5984 | 0.7914 | 0.0209 | 8.3869 | 65 | | 0.0205 | 0.0339 | 9.9212 | 0.7811 | 0.0209 | 21.1156 | 66 | | 0.0184 | 0.0339 | 8.3175 | 0.7619 | 0.0210 | 0.5360 | 67 | | 0.0080 | 0.0340 | 0.6373 | 0.7554 | 0.0211 | 0.4090 | 68 | | 0.0052 | 0.0340 | 0.5550 | 0.7528 | 0.0211 | 0.3938 | 69 | | 0.0038 | 0.0340 | 0.4678 | 0.7551 | 0.0211 | 0.7911 | 70 | | 0.0032 | 0.0340 | 1.1632 | 0.7617 | 0.0211 | 0.5495 | 71 | | 0.0028 | 0.0340 | 0.7869 | 0.7643 | 0.0211 | 1.4089 | 72 | | 0.0025 | 0.0340 | 1.5997 | 0.7681 | 0.0211 | 1.1413 | 73 | | 0.0023 | 0.0340 | 1.7042 | 0.7719 | 0.0211 | 1.7576 | 74 | | 0.0021 | 0.0340 | 2.3363 | 0.7750 | 0.0211 | 2.2434 | 75 | | 0.0019 | 0.0340 | 2.9550 | 0.7777 | 0.0211 | 2.3071 | 76 | | 0.0017 | 0.0340 | 3.1713 | 0.7831 | 0.0211 | 3.3338 | 77 | | 0.0015 | 0.0340 | 3.9077 | 0.7852 | 0.0211 | 3.6442 | 78 | | 0.0014 | 0.0340 | 4.3375 | 0.7900 | 0.0211 | 4.0113 | 79 | | 0.0013 | 0.0340 | 4.9777 | 0.7946 | 0.0211 | 5.1689 | 80 | | 0.0011 | 0.0340 | 5.9846 | 0.7968 | 0.0211 | 5.6006 | 81 | | 0.0010 | 0.0340 | 6.6595 | 0.8033 | 0.0211 | 6.1998 | 82 | | 0.0009 | 0.0340 | 7.3520 | 0.8058 | 0.0211 | 7.6034 | 83 | | 0.0008 | 0.0340 | 8.1210 | 0.8138 | 0.0211 | 7.8284 | 84 | | 0.0007 | 0.0340 | 8.9352 | 0.8170 | 0.0211 | 9.1346 | 85 | | 0.0006 | 0.0340 | 10.2307 | 0.8185 | 0.0211 | 10.8739 | 86 | | 0.0006 | 0.0340 | 12.2734 | 0.8245 | 0.0211 | 12.5682 | 87 | | 0.0005 | 0.0340 | 13.1276 | 0.8314 | 0.0211 | 14.4535 | 88 | | 0.0124 | 0.0339 | 14.3527 | 0.8265 | 0.0209 | 32.3895 | 89 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
johaanm/test-planner-alpha-V7.0
johaanm
2023-09-04T23:57:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-04T23:57:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
MattBatchelor/ppo-LunarLander-v2
MattBatchelor
2023-09-04T23:56:05Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-04T23:55:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 247.31 +/- 20.24 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AndrewMarcHarris/ppo-LunarLander-v2
AndrewMarcHarris
2023-09-04T23:55:47Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-04T23:55:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 246.76 +/- 12.20 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_insert_synonym-2
ThuyNT03
2023-09-04T23:53:12Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T23:43:26Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_insert_synonym-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_insert_synonym-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1196 - Accuracy: 0.75 - F1: 0.7413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.04 | 1.0 | 88 | 0.8053 | 0.64 | 0.6127 | | 0.7333 | 2.0 | 176 | 0.7600 | 0.71 | 0.7035 | | 0.5406 | 3.0 | 264 | 0.6719 | 0.71 | 0.7080 | | 0.4339 | 4.0 | 352 | 0.7426 | 0.75 | 0.7393 | | 0.3085 | 5.0 | 440 | 0.9125 | 0.73 | 0.6985 | | 0.23 | 6.0 | 528 | 0.9200 | 0.76 | 0.7527 | | 0.1612 | 7.0 | 616 | 1.0423 | 0.74 | 0.7314 | | 0.137 | 8.0 | 704 | 1.1196 | 0.75 | 0.7413 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
nbogdan/flant5-base-2ex-paraphrasing-1epochs
nbogdan
2023-09-04T23:50:00Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-04T23:49:44Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-base-2ex-paraphrasing-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-2ex-paraphrasing-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0085
bigmorning
2023-09-04T23:45:54Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T23:45:45Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0085 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0085 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0008 - Train Accuracy: 0.0340 - Train Wermet: 8.1210 - Validation Loss: 0.8138 - Validation Accuracy: 0.0211 - Validation Wermet: 7.8284 - Epoch: 84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | | 0.3747 | 0.0312 | 0.1293 | 0.8408 | 0.0203 | 0.2931 | 35 | | 0.3331 | 0.0316 | 0.1111 | 0.8253 | 0.0204 | 0.2891 | 36 | | 0.2947 | 0.0319 | 0.0962 | 0.8084 | 0.0205 | 0.2849 | 37 | | 0.2601 | 0.0322 | 0.0817 | 0.7906 | 0.0205 | 0.2783 | 38 | | 0.2291 | 0.0324 | 0.0706 | 0.7876 | 0.0206 | 0.2755 | 39 | | 0.2009 | 0.0327 | 0.0596 | 0.7723 | 0.0207 | 0.2712 | 40 | | 0.1750 | 0.0329 | 0.0504 | 0.7629 | 0.0207 | 0.2692 | 41 | | 0.1510 | 0.0331 | 0.0410 | 0.7650 | 0.0207 | 0.2684 | 42 | | 0.1319 | 0.0333 | 0.0367 | 0.7533 | 0.0207 | 0.2655 | 43 | | 0.1121 | 0.0335 | 0.0292 | 0.7589 | 0.0207 | 0.2647 | 44 | | 0.0956 | 0.0336 | 0.0253 | 0.7579 | 0.0208 | 0.2642 | 45 | | 0.0812 | 0.0337 | 0.0254 | 0.7584 | 0.0208 | 0.2625 | 46 | | 0.0694 | 0.0338 | 0.0332 | 0.7555 | 0.0208 | 0.2693 | 47 | | 0.0592 | 0.0339 | 0.0319 | 0.7534 | 0.0208 | 0.2629 | 48 | | 0.0499 | 0.0339 | 0.0487 | 0.7587 | 0.0208 | 0.3030 | 49 | | 0.0409 | 0.0339 | 0.0615 | 0.7577 | 0.0208 | 0.2810 | 50 | | 0.0347 | 0.0340 | 0.0859 | 0.7603 | 0.0208 | 0.3534 | 51 | | 0.0286 | 0.0340 | 0.1928 | 0.7554 | 0.0209 | 0.5822 | 52 | | 0.0267 | 0.0340 | 0.3131 | 0.7664 | 0.0208 | 1.7372 | 53 | | 0.0243 | 0.0340 | 1.3154 | 0.7525 | 0.0209 | 0.7770 | 54 | | 0.0206 | 0.0340 | 0.8121 | 0.7532 | 0.0209 | 0.9253 | 55 | | 0.0174 | 0.0340 | 0.9253 | 0.7574 | 0.0209 | 1.4865 | 56 | | 0.0135 | 0.0340 | 1.1761 | 0.7592 | 0.0209 | 1.5813 | 57 | | 0.0111 | 0.0340 | 1.7125 | 0.7631 | 0.0209 | 1.8950 | 58 | | 0.0096 | 0.0340 | 1.9230 | 0.7664 | 0.0209 | 2.4432 | 59 | | 0.0082 | 0.0340 | 2.5718 | 0.7693 | 0.0209 | 3.3565 | 60 | | 0.0073 | 0.0340 | 3.5489 | 0.7747 | 0.0209 | 3.7191 | 61 | | 0.0063 | 0.0340 | 3.7801 | 0.7756 | 0.0209 | 4.4728 | 62 | | 0.0054 | 0.0340 | 4.0145 | 0.7795 | 0.0209 | 5.0058 | 63 | | 0.0048 | 0.0340 | 4.9652 | 0.7821 | 0.0210 | 4.9937 | 64 | | 0.0042 | 0.0340 | 5.5984 | 0.7914 | 0.0209 | 8.3869 | 65 | | 0.0205 | 0.0339 | 9.9212 | 0.7811 | 0.0209 | 21.1156 | 66 | | 0.0184 | 0.0339 | 8.3175 | 0.7619 | 0.0210 | 0.5360 | 67 | | 0.0080 | 0.0340 | 0.6373 | 0.7554 | 0.0211 | 0.4090 | 68 | | 0.0052 | 0.0340 | 0.5550 | 0.7528 | 0.0211 | 0.3938 | 69 | | 0.0038 | 0.0340 | 0.4678 | 0.7551 | 0.0211 | 0.7911 | 70 | | 0.0032 | 0.0340 | 1.1632 | 0.7617 | 0.0211 | 0.5495 | 71 | | 0.0028 | 0.0340 | 0.7869 | 0.7643 | 0.0211 | 1.4089 | 72 | | 0.0025 | 0.0340 | 1.5997 | 0.7681 | 0.0211 | 1.1413 | 73 | | 0.0023 | 0.0340 | 1.7042 | 0.7719 | 0.0211 | 1.7576 | 74 | | 0.0021 | 0.0340 | 2.3363 | 0.7750 | 0.0211 | 2.2434 | 75 | | 0.0019 | 0.0340 | 2.9550 | 0.7777 | 0.0211 | 2.3071 | 76 | | 0.0017 | 0.0340 | 3.1713 | 0.7831 | 0.0211 | 3.3338 | 77 | | 0.0015 | 0.0340 | 3.9077 | 0.7852 | 0.0211 | 3.6442 | 78 | | 0.0014 | 0.0340 | 4.3375 | 0.7900 | 0.0211 | 4.0113 | 79 | | 0.0013 | 0.0340 | 4.9777 | 0.7946 | 0.0211 | 5.1689 | 80 | | 0.0011 | 0.0340 | 5.9846 | 0.7968 | 0.0211 | 5.6006 | 81 | | 0.0010 | 0.0340 | 6.6595 | 0.8033 | 0.0211 | 6.1998 | 82 | | 0.0009 | 0.0340 | 7.3520 | 0.8058 | 0.0211 | 7.6034 | 83 | | 0.0008 | 0.0340 | 8.1210 | 0.8138 | 0.0211 | 7.8284 | 84 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Final_Mixed-train-2
ThuyNT03
2023-09-04T23:43:15Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T23:39:26Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-train-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-train-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7200 - Accuracy: 0.77 - F1: 0.7634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.1141 | 1.0 | 44 | 1.1019 | 0.31 | 0.2344 | | 1.0868 | 2.0 | 88 | 1.0677 | 0.44 | 0.3501 | | 0.9464 | 3.0 | 132 | 0.9689 | 0.56 | 0.5371 | | 0.7829 | 4.0 | 176 | 0.7724 | 0.67 | 0.6278 | | 0.678 | 5.0 | 220 | 0.8115 | 0.71 | 0.6960 | | 0.6379 | 6.0 | 264 | 0.6987 | 0.74 | 0.7313 | | 0.5801 | 7.0 | 308 | 0.6804 | 0.78 | 0.7765 | | 0.528 | 8.0 | 352 | 0.7200 | 0.77 | 0.7634 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
StudentLLM/Alpagasus-2-13B-QLoRA
StudentLLM
2023-09-04T23:34:51Z
3
0
peft
[ "peft", "en", "region:us" ]
null
2023-08-09T13:08:03Z
--- library_name: peft language: - en --- # Model Details Please check our [Github Repository](https://github.com/gauss5930/AlpaGasus2-QLoRA/tree/main) ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0
jasonxxr666/lora-trained-xl-colab
jasonxxr666
2023-09-04T23:34:43Z
3
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-14T02:28:16Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of paige cat girl tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - jasonxxr666/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of paige cat girl using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
StudentLLM/Alpagasus-2-7B-QLoRA
StudentLLM
2023-09-04T23:34:07Z
7
0
peft
[ "peft", "en", "region:us" ]
null
2023-08-09T13:23:45Z
--- library_name: peft language: - en --- # Model Details Please check our [Github Repository](https://github.com/gauss5930/AlpaGasus2-QLoRA/tree/main) ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0
matgu23/tst
matgu23
2023-09-04T23:33:04Z
1
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-15T02:02:49Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sflr woman tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - matgu23/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sflr woman using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_swap-2
ThuyNT03
2023-09-04T23:31:50Z
104
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T23:24:41Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_swap-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_swap-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9261 - Accuracy: 0.76 - F1: 0.7558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0488 | 1.0 | 87 | 0.8904 | 0.59 | 0.5101 | | 0.8402 | 2.0 | 174 | 0.8465 | 0.64 | 0.6153 | | 0.6864 | 3.0 | 261 | 0.7985 | 0.7 | 0.6849 | | 0.5088 | 4.0 | 348 | 0.7521 | 0.72 | 0.6996 | | 0.3444 | 5.0 | 435 | 0.7432 | 0.76 | 0.7496 | | 0.262 | 6.0 | 522 | 0.8831 | 0.75 | 0.7463 | | 0.1787 | 7.0 | 609 | 0.9219 | 0.75 | 0.7452 | | 0.1361 | 8.0 | 696 | 0.9261 | 0.76 | 0.7558 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
elami/vit-base-patch16-224-finetuned-flower
elami
2023-09-04T23:24:28Z
164
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-04T23:13:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: vit-base-patch16-224-finetuned-flower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.0.1+cu118 - Datasets 2.7.1 - Tokenizers 0.13.3
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0075
bigmorning
2023-09-04T23:19:21Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T23:19:14Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0075 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0075 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0023 - Train Accuracy: 0.0340 - Train Wermet: 1.7042 - Validation Loss: 0.7719 - Validation Accuracy: 0.0211 - Validation Wermet: 1.7576 - Epoch: 74 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | | 0.3747 | 0.0312 | 0.1293 | 0.8408 | 0.0203 | 0.2931 | 35 | | 0.3331 | 0.0316 | 0.1111 | 0.8253 | 0.0204 | 0.2891 | 36 | | 0.2947 | 0.0319 | 0.0962 | 0.8084 | 0.0205 | 0.2849 | 37 | | 0.2601 | 0.0322 | 0.0817 | 0.7906 | 0.0205 | 0.2783 | 38 | | 0.2291 | 0.0324 | 0.0706 | 0.7876 | 0.0206 | 0.2755 | 39 | | 0.2009 | 0.0327 | 0.0596 | 0.7723 | 0.0207 | 0.2712 | 40 | | 0.1750 | 0.0329 | 0.0504 | 0.7629 | 0.0207 | 0.2692 | 41 | | 0.1510 | 0.0331 | 0.0410 | 0.7650 | 0.0207 | 0.2684 | 42 | | 0.1319 | 0.0333 | 0.0367 | 0.7533 | 0.0207 | 0.2655 | 43 | | 0.1121 | 0.0335 | 0.0292 | 0.7589 | 0.0207 | 0.2647 | 44 | | 0.0956 | 0.0336 | 0.0253 | 0.7579 | 0.0208 | 0.2642 | 45 | | 0.0812 | 0.0337 | 0.0254 | 0.7584 | 0.0208 | 0.2625 | 46 | | 0.0694 | 0.0338 | 0.0332 | 0.7555 | 0.0208 | 0.2693 | 47 | | 0.0592 | 0.0339 | 0.0319 | 0.7534 | 0.0208 | 0.2629 | 48 | | 0.0499 | 0.0339 | 0.0487 | 0.7587 | 0.0208 | 0.3030 | 49 | | 0.0409 | 0.0339 | 0.0615 | 0.7577 | 0.0208 | 0.2810 | 50 | | 0.0347 | 0.0340 | 0.0859 | 0.7603 | 0.0208 | 0.3534 | 51 | | 0.0286 | 0.0340 | 0.1928 | 0.7554 | 0.0209 | 0.5822 | 52 | | 0.0267 | 0.0340 | 0.3131 | 0.7664 | 0.0208 | 1.7372 | 53 | | 0.0243 | 0.0340 | 1.3154 | 0.7525 | 0.0209 | 0.7770 | 54 | | 0.0206 | 0.0340 | 0.8121 | 0.7532 | 0.0209 | 0.9253 | 55 | | 0.0174 | 0.0340 | 0.9253 | 0.7574 | 0.0209 | 1.4865 | 56 | | 0.0135 | 0.0340 | 1.1761 | 0.7592 | 0.0209 | 1.5813 | 57 | | 0.0111 | 0.0340 | 1.7125 | 0.7631 | 0.0209 | 1.8950 | 58 | | 0.0096 | 0.0340 | 1.9230 | 0.7664 | 0.0209 | 2.4432 | 59 | | 0.0082 | 0.0340 | 2.5718 | 0.7693 | 0.0209 | 3.3565 | 60 | | 0.0073 | 0.0340 | 3.5489 | 0.7747 | 0.0209 | 3.7191 | 61 | | 0.0063 | 0.0340 | 3.7801 | 0.7756 | 0.0209 | 4.4728 | 62 | | 0.0054 | 0.0340 | 4.0145 | 0.7795 | 0.0209 | 5.0058 | 63 | | 0.0048 | 0.0340 | 4.9652 | 0.7821 | 0.0210 | 4.9937 | 64 | | 0.0042 | 0.0340 | 5.5984 | 0.7914 | 0.0209 | 8.3869 | 65 | | 0.0205 | 0.0339 | 9.9212 | 0.7811 | 0.0209 | 21.1156 | 66 | | 0.0184 | 0.0339 | 8.3175 | 0.7619 | 0.0210 | 0.5360 | 67 | | 0.0080 | 0.0340 | 0.6373 | 0.7554 | 0.0211 | 0.4090 | 68 | | 0.0052 | 0.0340 | 0.5550 | 0.7528 | 0.0211 | 0.3938 | 69 | | 0.0038 | 0.0340 | 0.4678 | 0.7551 | 0.0211 | 0.7911 | 70 | | 0.0032 | 0.0340 | 1.1632 | 0.7617 | 0.0211 | 0.5495 | 71 | | 0.0028 | 0.0340 | 0.7869 | 0.7643 | 0.0211 | 1.4089 | 72 | | 0.0025 | 0.0340 | 1.5997 | 0.7681 | 0.0211 | 1.1413 | 73 | | 0.0023 | 0.0340 | 1.7042 | 0.7719 | 0.0211 | 1.7576 | 74 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
matsuo-lab/weblab-10b
matsuo-lab
2023-09-04T23:17:28Z
1,883
63
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-04T04:55:47Z
--- license: cc-by-nc-4.0 --- # weblab-10b # Overview This repository provides a Japanese-centric multilingual GPT-NeoX model of 10 billion parameters. * **Library** The model was trained using code based on [EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox). * **Model architecture** A 36-layer, 4864-hidden-size transformer-based language model. * **Pre-training** The model was trained on around **600B** tokens from a mixture of the following corpora. - [Japanese C4](https://huggingface.co/datasets/mc4) - [The Pile](https://huggingface.co/datasets/EleutherAI/pile) * **Model Series** | Variant | Link | | :-- | :--| | weblab-10b-instruction-sft | https://huggingface.co/matsuo-lab/weblab-10b-instruction-sft | | weblab-10b | https://huggingface.co/matsuo-lab/weblab-10b | * **Authors** Takeshi Kojima --- # Benchmarking * **Japanese benchmark : JGLUE 8-task (2023-08-27)** - *We used [Stability-AI/lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness/tree/2f1583c0735eacdfdfa5b7d656074b69577b6774) library for evaluation.* - *The 8-task average accuracy is based on results of JCommonsenseQA-1.1, JNLI-1.1, MARC-ja-1.1, JSQuAD-1.1, jaqket_v2-0.2, xlsum_ja-1.0, xwinograd_ja, and mgsm-1.0.* - *model loading is performed with float16, and evaluation is performed with template version 0.3 using the few-shot in-context learning.* - *The number of few-shots is 3,3,3,2,1,1,0,5.* - *special_tokens_map.json is modified to avoid errors during the evaluation of the second half benchmarks. As a result, the results of the first half benchmarks became slightly different.* model | average | jcommonsenseqa | jnli | marc_ja | jsquad | jaqket_v2 | xlsum_ja | xwinograd_ja | mgsm | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | weblab-10b-instruction-sft | 59.11 | 74.62 | 66.56 | 95.49 | 78.34 | 63.32 | 20.57 | 71.95 | 2 weblab-10b | 50.74 | 66.58 | 53.74 | 82.07 | 62.94 | 56.19 | 10.03 | 71.95 | 2.4 * **Japanese benchmark : JGLUE 4-task (2023-08-18)** - *We used [Stability-AI/lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness/tree/2f1583c0735eacdfdfa5b7d656074b69577b6774) library for evaluation.* - *The 4-task average accuracy is based on results of JCommonsenseQA-1.1, JNLI-1.1, MARC-ja-1.1, and JSQuAD-1.1.* - *model loading is performed with float16, and evaluation is performed with template version 0.3 using the few-shot in-context learning.* - *The number of few-shots is 3,3,3,2.* | Model | Average | JCommonsenseQA | JNLI | MARC-ja | JSQuAD | | :-- | :-- | :-- | :-- | :-- | :-- | | weblab-10b-instruction-sft | 78.78 | 74.35 | 65.65 | 96.06 | 79.04 | | weblab-10b | 66.38 | 65.86 | 54.19 | 84.49 | 60.98 | --- # How to use the model ~~~~python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("matsuo-lab/weblab-10b") model = AutoModelForCausalLM.from_pretrained("matsuo-lab/weblab-10b", torch_dtype=torch.float16) if torch.cuda.is_available(): model = model.to("cuda") text = "吾輩は猫である。" token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt") with torch.no_grad(): output_ids = model.generate( token_ids.to(model.device), max_new_tokens=100, do_sample=True, temperature=0.7, top_p=0.95 ) output = tokenizer.decode(output_ids.tolist()[0]) print(output) ~~~~ --- # Licenese [cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc/4.0/)
FourthBrainGenAI/marketmail
FourthBrainGenAI
2023-09-04T23:07:40Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-04T23:07:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0070
bigmorning
2023-09-04T23:06:07Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T23:06:00Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0070 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0070 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0052 - Train Accuracy: 0.0340 - Train Wermet: 0.5550 - Validation Loss: 0.7528 - Validation Accuracy: 0.0211 - Validation Wermet: 0.3938 - Epoch: 69 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | | 0.3747 | 0.0312 | 0.1293 | 0.8408 | 0.0203 | 0.2931 | 35 | | 0.3331 | 0.0316 | 0.1111 | 0.8253 | 0.0204 | 0.2891 | 36 | | 0.2947 | 0.0319 | 0.0962 | 0.8084 | 0.0205 | 0.2849 | 37 | | 0.2601 | 0.0322 | 0.0817 | 0.7906 | 0.0205 | 0.2783 | 38 | | 0.2291 | 0.0324 | 0.0706 | 0.7876 | 0.0206 | 0.2755 | 39 | | 0.2009 | 0.0327 | 0.0596 | 0.7723 | 0.0207 | 0.2712 | 40 | | 0.1750 | 0.0329 | 0.0504 | 0.7629 | 0.0207 | 0.2692 | 41 | | 0.1510 | 0.0331 | 0.0410 | 0.7650 | 0.0207 | 0.2684 | 42 | | 0.1319 | 0.0333 | 0.0367 | 0.7533 | 0.0207 | 0.2655 | 43 | | 0.1121 | 0.0335 | 0.0292 | 0.7589 | 0.0207 | 0.2647 | 44 | | 0.0956 | 0.0336 | 0.0253 | 0.7579 | 0.0208 | 0.2642 | 45 | | 0.0812 | 0.0337 | 0.0254 | 0.7584 | 0.0208 | 0.2625 | 46 | | 0.0694 | 0.0338 | 0.0332 | 0.7555 | 0.0208 | 0.2693 | 47 | | 0.0592 | 0.0339 | 0.0319 | 0.7534 | 0.0208 | 0.2629 | 48 | | 0.0499 | 0.0339 | 0.0487 | 0.7587 | 0.0208 | 0.3030 | 49 | | 0.0409 | 0.0339 | 0.0615 | 0.7577 | 0.0208 | 0.2810 | 50 | | 0.0347 | 0.0340 | 0.0859 | 0.7603 | 0.0208 | 0.3534 | 51 | | 0.0286 | 0.0340 | 0.1928 | 0.7554 | 0.0209 | 0.5822 | 52 | | 0.0267 | 0.0340 | 0.3131 | 0.7664 | 0.0208 | 1.7372 | 53 | | 0.0243 | 0.0340 | 1.3154 | 0.7525 | 0.0209 | 0.7770 | 54 | | 0.0206 | 0.0340 | 0.8121 | 0.7532 | 0.0209 | 0.9253 | 55 | | 0.0174 | 0.0340 | 0.9253 | 0.7574 | 0.0209 | 1.4865 | 56 | | 0.0135 | 0.0340 | 1.1761 | 0.7592 | 0.0209 | 1.5813 | 57 | | 0.0111 | 0.0340 | 1.7125 | 0.7631 | 0.0209 | 1.8950 | 58 | | 0.0096 | 0.0340 | 1.9230 | 0.7664 | 0.0209 | 2.4432 | 59 | | 0.0082 | 0.0340 | 2.5718 | 0.7693 | 0.0209 | 3.3565 | 60 | | 0.0073 | 0.0340 | 3.5489 | 0.7747 | 0.0209 | 3.7191 | 61 | | 0.0063 | 0.0340 | 3.7801 | 0.7756 | 0.0209 | 4.4728 | 62 | | 0.0054 | 0.0340 | 4.0145 | 0.7795 | 0.0209 | 5.0058 | 63 | | 0.0048 | 0.0340 | 4.9652 | 0.7821 | 0.0210 | 4.9937 | 64 | | 0.0042 | 0.0340 | 5.5984 | 0.7914 | 0.0209 | 8.3869 | 65 | | 0.0205 | 0.0339 | 9.9212 | 0.7811 | 0.0209 | 21.1156 | 66 | | 0.0184 | 0.0339 | 8.3175 | 0.7619 | 0.0210 | 0.5360 | 67 | | 0.0080 | 0.0340 | 0.6373 | 0.7554 | 0.0211 | 0.4090 | 68 | | 0.0052 | 0.0340 | 0.5550 | 0.7528 | 0.0211 | 0.3938 | 69 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
nbogdan/flant5-base-2ex-overall-1epochs
nbogdan
2023-09-04T22:53:58Z
2
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-04T22:53:49Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-base-2ex-overall-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-2ex-overall-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
Kapiche/twitter-roberta-base-sentiment-latest
Kapiche
2023-09-04T22:49:50Z
286
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "roberta", "text-classification", "en", "dataset:tweet_eval", "arxiv:2202.03829", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-07T13:23:27Z
--- language: en widget: - text: Covid cases are increasing fast! datasets: - tweet_eval --- # Twitter-roBERTa-base for Sentiment Analysis - UPDATED (2022) This is a RoBERTa-base model trained on ~124M tweets from January 2018 to December 2021, and finetuned for sentiment analysis with the TweetEval benchmark. The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) and the original reference paper is [TweetEval](https://github.com/cardiffnlp/tweeteval). This model is suitable for English. - Reference Paper: [TimeLMs paper](https://arxiv.org/abs/2202.03829). - Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms). <b>Labels</b>: 0 -> Negative; 1 -> Neutral; 2 -> Positive This sentiment analysis model has been integrated into [TweetNLP](https://github.com/cardiffnlp/tweetnlp). You can access the demo [here](https://tweetnlp.org). ## Example Pipeline ```python from transformers import pipeline sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) sentiment_task("Covid cases are increasing fast!") ``` ``` [{'label': 'Negative', 'score': 0.7236}] ``` ## Full classification example ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer, AutoConfig import numpy as np from scipy.special import softmax # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest" tokenizer = AutoTokenizer.from_pretrained(MODEL) config = AutoConfig.from_pretrained(MODEL) # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) #model.save_pretrained(MODEL) text = "Covid cases are increasing fast!" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Covid cases are increasing fast!" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) # Print labels and scores ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = config.id2label[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) Negative 0.7236 2) Neutral 0.2287 3) Positive 0.0477 ``` ### References ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title = "{T}weet{NLP}: Cutting-Edge Natural Language Processing for Social Media", author = "Camacho-collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa Anke, Luis and Liu, Fangyu and Mart{\'\i}nez C{\'a}mara, Eugenio" and others, booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = dec, year = "2022", address = "Abu Dhabi, UAE", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.emnlp-demos.5", pages = "38--49" } ``` ``` @inproceedings{loureiro-etal-2022-timelms, title = "{T}ime{LM}s: Diachronic Language Models from {T}witter", author = "Loureiro, Daniel and Barbieri, Francesco and Neves, Leonardo and Espinosa Anke, Luis and Camacho-collados, Jose", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.acl-demo.25", doi = "10.18653/v1/2022.acl-demo.25", pages = "251--260" } ```
rshei/layoutlmv3-finetuned-cord_100
rshei
2023-09-04T22:47:01Z
82
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv3", "base_model:microsoft/layoutlmv3-base", "base_model:finetune:microsoft/layoutlmv3-base", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-29T05:48:50Z
--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.9243884358784284 - name: Recall type: recall value: 0.9333832335329342 - name: F1 type: f1 value: 0.9288640595903166 - name: Accuracy type: accuracy value: 0.9363327674023769 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.3467 - Precision: 0.9244 - Recall: 0.9334 - F1: 0.9289 - Accuracy: 0.9363 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 4.17 | 250 | 0.5174 | 0.8469 | 0.8735 | 0.8600 | 0.8790 | | 0.5511 | 8.33 | 500 | 0.3975 | 0.8999 | 0.9147 | 0.9072 | 0.9194 | | 0.5511 | 12.5 | 750 | 0.3872 | 0.9015 | 0.9184 | 0.9099 | 0.9189 | | 0.1802 | 16.67 | 1000 | 0.3416 | 0.9180 | 0.9296 | 0.9238 | 0.9338 | | 0.1802 | 20.83 | 1250 | 0.3311 | 0.9159 | 0.9289 | 0.9223 | 0.9359 | | 0.0836 | 25.0 | 1500 | 0.3457 | 0.9192 | 0.9281 | 0.9236 | 0.9334 | | 0.0836 | 29.17 | 1750 | 0.3347 | 0.9202 | 0.9319 | 0.9260 | 0.9291 | | 0.0473 | 33.33 | 2000 | 0.3677 | 0.9194 | 0.9304 | 0.9249 | 0.9253 | | 0.0473 | 37.5 | 2250 | 0.3433 | 0.9279 | 0.9341 | 0.9310 | 0.9376 | | 0.0342 | 41.67 | 2500 | 0.3467 | 0.9244 | 0.9334 | 0.9289 | 0.9363 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e-1_s6789_v4_l4_v20_extra
KingKazma
2023-09-04T22:40:39Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-04T22:35:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
kikinamatata/model_2
kikinamatata
2023-09-04T22:37:23Z
0
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-09-04T19:56:25Z
--- license: creativeml-openrail-m base_model: models/model_1 dataset: None tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers inference: true --- # Text-to-image finetuning - kikinamatata/model_2 This pipeline was finetuned from **models/model_1** on the **None** dataset. Below are some example images generated with the finetuned pipeline using the following prompt: None: Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
actionpace/LLaMA2-13B-Holomax
actionpace
2023-09-04T22:30:15Z
1
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-04T21:58:05Z
--- license: other language: - en --- **Some of my own quants:** * LLaMA2-13B-Holomax_Q5_1_4K.gguf * LLaMA2-13B-Holomax_Q5_1_8K.gguf **Source:** [KoboldAI](https://huggingface.co/KoboldAI) **Source Model:** [LLaMA2-13B-Holomax](https://huggingface.co/KoboldAI/LLaMA2-13B-Holomax)
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0055
bigmorning
2023-09-04T22:26:20Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T22:26:12Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0055 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0055 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0243 - Train Accuracy: 0.0340 - Train Wermet: 1.3154 - Validation Loss: 0.7525 - Validation Accuracy: 0.0209 - Validation Wermet: 0.7770 - Epoch: 54 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | | 0.3747 | 0.0312 | 0.1293 | 0.8408 | 0.0203 | 0.2931 | 35 | | 0.3331 | 0.0316 | 0.1111 | 0.8253 | 0.0204 | 0.2891 | 36 | | 0.2947 | 0.0319 | 0.0962 | 0.8084 | 0.0205 | 0.2849 | 37 | | 0.2601 | 0.0322 | 0.0817 | 0.7906 | 0.0205 | 0.2783 | 38 | | 0.2291 | 0.0324 | 0.0706 | 0.7876 | 0.0206 | 0.2755 | 39 | | 0.2009 | 0.0327 | 0.0596 | 0.7723 | 0.0207 | 0.2712 | 40 | | 0.1750 | 0.0329 | 0.0504 | 0.7629 | 0.0207 | 0.2692 | 41 | | 0.1510 | 0.0331 | 0.0410 | 0.7650 | 0.0207 | 0.2684 | 42 | | 0.1319 | 0.0333 | 0.0367 | 0.7533 | 0.0207 | 0.2655 | 43 | | 0.1121 | 0.0335 | 0.0292 | 0.7589 | 0.0207 | 0.2647 | 44 | | 0.0956 | 0.0336 | 0.0253 | 0.7579 | 0.0208 | 0.2642 | 45 | | 0.0812 | 0.0337 | 0.0254 | 0.7584 | 0.0208 | 0.2625 | 46 | | 0.0694 | 0.0338 | 0.0332 | 0.7555 | 0.0208 | 0.2693 | 47 | | 0.0592 | 0.0339 | 0.0319 | 0.7534 | 0.0208 | 0.2629 | 48 | | 0.0499 | 0.0339 | 0.0487 | 0.7587 | 0.0208 | 0.3030 | 49 | | 0.0409 | 0.0339 | 0.0615 | 0.7577 | 0.0208 | 0.2810 | 50 | | 0.0347 | 0.0340 | 0.0859 | 0.7603 | 0.0208 | 0.3534 | 51 | | 0.0286 | 0.0340 | 0.1928 | 0.7554 | 0.0209 | 0.5822 | 52 | | 0.0267 | 0.0340 | 0.3131 | 0.7664 | 0.0208 | 1.7372 | 53 | | 0.0243 | 0.0340 | 1.3154 | 0.7525 | 0.0209 | 0.7770 | 54 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
CiroN2022/awesome-toys
CiroN2022
2023-09-04T22:16:54Z
10
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-09-04T22:16:51Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: awe_toys widget: - text: awe_toys --- # Awesome Toys ![Image 0](2358365.jpeg) <p>Example prompts:</p><ul><li><p>Rocky Vader: A mashup of the iconic Rocky Balboa and Darth Vader, bringing the power of the Force to the boxing ring. With boxing:0.6 and sci-fi:0.4 elements, this action figure packs a punch!</p></li><li><p>SpiderPool: Part Spider-Man, part Deadpool, this acrobatic antihero swings into action with equal parts wit:0.5 and wall-crawling skills:0.5, making it a fan-favorite collectible.</p></li><li><p>WonderFury: A blend of Wonder Woman and Mad Max, this fierce warrior combines superhero:0.7 and post-apocalyptic:0.3 vibes for a truly unique action figure.</p></li><li><p>The Jokernator: A fusion of The Joker and The Terminator, this figure boasts chaos:0.6 and robotic precision:0.4, making it a charismatic yet deadly adversary.</p></li><li><p>Hannibal T-lecter: A crossover between Hannibal Lecter and the T-800, this action figure oozes cannibalistic charm:0.6 and cyborg menace:0.4.</p></li><li><p>Wolverine Ranger: A hybrid of Wolverine and the Power Rangers, this figure combines mutant powers:0.6 with colorful teamwork:0.4 for epic battles against evil.</p></li><li><p>Captain Frodo: Mixing Captain America and Frodo Baggins, this action figure embodies courage:0.7 and hobbit-sized heroics:0.3, perfect for fantasy adventures.</p></li><li><p>Yoda Trooper: A fusion of Yoda and a Stormtrooper, this figure brings wisdom:0.6 and galactic loyalty:0.4 to the forefront of the battle against the dark side.</p></li><li><p>SuperPirate: Combining Superman and Captain Jack Sparrow, this action figure marries superhero strength:0.6 with pirate swagger:0.4 on the high seas.</p></li><li><p>Hellboy Potter: Merging Hellboy with Harry Potter, this figure wields supernatural abilities:0.6 alongside wizardry:0.4, ready to take on any mystical threat.</p></li><li><p>BatThor: A fusion of Batman and Thor, this action figure strikes a balance between vigilante justice:0.5 and godly thunder:0.5.</p></li><li><p>PredaFlash: Mixing Predator and The Flash, this figure races through the jungle:0.6 with lightning speed:0.4, hunting its prey in the blink of an eye.</p></li><li><p>Zorrotrax: A crossover between Zorro and Black Panther, this action figure showcases swashbuckling finesse:0.6 and Wakandan technology:0.4.</p></li><li><p>Hulk Solo: Combining The Hulk and Han Solo, this figure embodies rage-induced strength:0.6 and smuggler charisma:0.4.</p></li><li><p>Iron-Scorpion: Merging Iron Man and Scorpion from Mortal Kombat, this action figure boasts high-tech armor:0.6 and a deadly stinger:0.4.</p></li><li><p>PredaDredd: A fusion of Predator and Judge Dredd, this figure enforces brutal justice:0.6 with alien cunning:0.4 in a dystopian future.</p></li><li><p>Venom-Terminator: Mixing Venom and The Terminator, this action figure embodies symbiotic menace:0.6 and relentless cyborg pursuit:0.4.</p></li><li><p>Deadstroke: A crossover between Deadpool and Deathstroke, this figure is a master of both humor:0.5 and mercenary skills:0.5.</p></li><li><p>Grootpool: Combining Groot and Deadpool, this action figure offers a mix of lovable tree antics:0.6 and chaotic humor:0.4.</p></li><li><p>Robo-Hannibal: Merging RoboCop and Hannibal Lecter, this figure patrols the streets:0.6 while harboring a taste for the macabre:0.4.</p></li><li><p>Black-Widow Trooper: A hybrid of Black Widow and a Stormtrooper, this action figure embodies espionage:0.6 and galactic loyalty:0.4.</p></li><li><p>Spock Vader: Mixing Spock from Star Trek and Darth Vader, this figure is a logical yet formidable force:0.6 in the galaxy.</p></li><li><p>Green Arrowwing: A fusion of Green Arrow and Hawkeye, this action figure boasts archery precision:0.6 and vigilante justice:0.4.</p></li><li><p>Hermoine Terminator: Combining Hermione Granger and The Terminator, this figure wields wizardry:0.6 alongside robotic determination:0.4.</p></li><li><p>Thorlock Holmes: A crossover between Thor and Sherlock Holmes, this action figure wields godly powers:0.6 and deductive reasoning:0.4.</p></li><li><p>Aquaman of Steel: Merging Aquaman and Superman, this figure combines underwater strength:0.6 with Kryptonian might:0.4.</p></li><li><p>Dare-Wonder: A hybrid of Daredevil and Wonder Woman, this action figure embodies blind justice:0.6 and Amazonian warrior prowess:0.4.</p></li><li><p>Luke Sky-Bat: Mixing Luke Skywalker and Batman, this figure balances Jedi training:0.6 with dark knight detective skills:0.4.</p></li><li><p>Flashpool: Combining The Flash and Deadpool, this action figure races through battles:0.6 with a comedic edge:0.4.</p></li><li><p>Magneto Panther: A fusion of Magneto and Black Panther, this figure controls magnetic forces:0.6 and Wakandan technology:0.4.</p></li><li><p>Cyborg the Hedgehog: Merging Cyborg from DC and Sonic the Hedgehog, this action figure boasts high-tech enhancements:0.6 and supersonic speed:0.4.</p></li><li><p>Wonderpool Woman: A crossover between Wonder Woman and Deadpool, this figure is a warrior with an irreverent twist:0.5 and a lasso of humor:0.5.</p></li><li><p>Venom-Matrix: Combining Venom and Neo from The Matrix, this action figure embodies symbiotic chaos:0.6 and digital rebellion:0.4.</p></li><li><p>Thor-Pirate: Merging Thor and Captain Jack Sparrow, this figure wields Mjölnir:0.6 with a pirate's charm:0.4 on the high seas.</p></li><li><p>Super-Bond: A hybrid of Superman and James Bond, this action figure combines superhuman abilities:0.6 with spy gadgets:0.4.</p></li><li><p>Loki Ranger: Mixing Loki and the Power Rangers, this figure embodies trickster magic:0.6 and colorful teamwork:0.4.</p></li><li><p>Groot of the Galaxy: A fusion of Groot and Guardians of the Galaxy, this action figure offers a mix of tree heroics:0.6 and cosmic adventures:0.4.</p></li><li><p>HawkTrek: Combining Hawkeye and Star Trek, this figure boasts marksmanship:0.6 and interstellar exploration:0.4.</p></li><li><p>BatPirate: Merging Batman and Captain Jack Sparrow, this action figure patrols Gotham's waters:0.6 with swashbuckling flair:0.4.</p></li><li><p>Preda-Wonder: A crossover between Predator and Wonder Woman, this figure is a fierce warrior with extraterrestrial charm:0.5 and Amazonian strength:0.5.</p></li><li><p>Iron Khan: A fusion of Iron Man and Genghis Khan, this action figure combines high-tech armor:0.6 with conquering leadership:0.4, ready to lead any battle.</p></li><li><p>Aquawick: Mixing Aquaman and John Wick, this figure wields aquatic powers:0.6 alongside deadly assassin skills:0.4.</p></li><li><p>Black Widow-Strange: A hybrid of Black Widow and Doctor Strange, this action figure embodies espionage:0.5 and mystic mastery:0.5.</p></li><li><p>Deadthor: Combining Deadpool and Thor, this figure brings humor:0.5 and thunderous might:0.5 to any battle.</p></li><li><p>Harley-Witch: A crossover between Harley Quinn and the Witch from Left 4 Dead, this action figure offers chaos:0.6 with a touch of the supernatural:0.4.</p></li><li><p>Green-Alien Arrow: Merging Green Arrow and an Alien Xenomorph, this figure boasts archery precision:0.6 and extraterrestrial menace:0.4.</p></li><li><p>Robo-Hulk: A fusion of RoboCop and The Hulk, this action figure patrols the streets:0.6 while unleashing unstoppable rage:0.4.</p></li><li><p>ZorroVader: Mixing Zorro and Darth Vader, this figure is a swashbuckling Sith Lord with a penchant for dueling:0.5 and tyranny:0.5.</p></li><li><p>Preda-Pirate: A hybrid of Predator and a classic Pirate, this action figure hunts its prey with alien cunning:0.6 and swashbuckling flair:0.4.</p></li><li><p>Wolverine-Samurai: Combining Wolverine and a Samurai, this figure embodies mutant ferocity:0.6 with disciplined swordsmanship:0.4.</p></li><li><p>Flash-Matrix: A fusion of The Flash and Neo from The Matrix, this action figure races through the digital world:0.6 with incredible speed:0.4.</p></li><li><p>Hannibal-Joker: Merging Hannibal Lecter and The Joker, this figure combines culinary skills:0.6 with chaotic madness:0.4.</p></li><li><p>Super-Ranger: Combining Superman and a Power Ranger, this action figure wields superhuman strength:0.6 alongside colorful teamwork:0.4.</p></li><li><p>Wonder-Scorpion: A crossover between Wonder Woman and Scorpion from Mortal Kombat, this figure is a warrior with a stinger:0.5 and an Amazonian spirit:0.5.</p></li><li><p>Venom-Trek: Mixing Venom and Star Trek, this action figure embodies symbiotic exploration:0.6 and interstellar chaos:0.4.</p></li><li><p>Predator-Pool: A blend of Predator and Deadpool, this figure hunts with humor:0.5 and extraterrestrial cunning:0.5.</p></li><li><p>Bat-Hannibal: Combining Batman and Hannibal Lecter, this action figure patrols Gotham City:0.6 while savoring the macabre:0.4.</p></li><li><p>Gandalf-Ranger: Merging Gandalf and a Power Ranger, this figure wields wizardry:0.6 with colorful teamwork:0.4 in the fight against evil.</p></li><li><p>Thor-Sherlock: A fusion of Thor and Sherlock Holmes, this action figure balances godly strength:0.5 with deductive reasoning:0.5.</p></li><li><p>Cyber-Amazon: Combining Cyborg and Wonder Woman, this figure embodies technological prowess:0.6 with Amazonian warrior spirit:0.4.</p></li><li><p>Dare-Sparrow: A crossover between Daredevil and Captain Jack Sparrow, this action figure combines blind justice:0.6 with pirate swagger:0.4.</p></li><li><p>Luke-Witcher: Mixing Luke Skywalker and Geralt from The Witcher, this figure wields a lightsaber:0.6 alongside monster hunting skills:0.4.</p></li><li><p>Flash-Groot: A hybrid of The Flash and Groot, this action figure races through adventures:0.6 with a lovable tree's charm:0.4.</p></li><li><p>Magneto-Matrix: Combining Magneto and Neo from The Matrix, this figure controls magnetic forces:0.6 and challenges the digital world:0.4.</p></li><li><p>Hulk-Ranger: Merging The Hulk and a Power Ranger, this action figure embodies gamma-powered teamwork:0.6 and heroic strength:0.4.</p></li><li><p>Super-Spock: A fusion of Superman and Spock from Star Trek, this figure combines Kryptonian might:0.6 with logical precision:0.4.</p></li><li><p>Bat-Matrix: Combining Batman and Neo from The Matrix, this action figure patrols Gotham's digital streets:0.6 with martial arts mastery:0.4.</p></li><li><p>Preda-Bond: A crossover between Predator and James Bond, this figure hunts with alien technology:0.6 and spy gadgets:0.4.</p></li><li><p>Zorro-Hannibal: Mixing Zorro and Hannibal Lecter, this action figure is a swashbuckling gourmet:0.5 with a taste for the theatrical:0.5.</p></li><li><p>Wonder-Groot: A hybrid of Wonder Woman and Groot, this figure wields an Amazonian lasso:0.6 with a tree's gentle strength:0.4.</p></li><li><p>Venom-Elf: Combining Venom and Legolas from Lord of the Rings, this action figure embodies symbiotic archery:0.6 and elven agility:0.4.</p></li><li><p>Hulk-Witch: Merging The Hulk and a Witch from a fairy tale, this figure smashes with gamma-powered fury:0.6 while wielding mystical powers:0.4.</p></li><li><p>Green-Predator Arrow: A fusion of Green Arrow and Predator, this action figure boasts archery precision:0.6 and extraterrestrial hunting skills:0.4.</p></li><li><p>Robo-Hannibal Bond: Combining RoboCop, Hannibal Lecter, and James Bond, this figure patrols the streets:0.4 while savoring the macabre:0.3 and using spy gadgets:0.3.</p></li><li><p>Zorro-Trek: Mixing Zorro and Star Trek, this action figure is a swashbuckling space explorer:0.5 with a flair for diplomacy:0.5.</p></li><li><p>Preda-Ranger: A crossover between Predator and a Power Ranger, this figure hunts with extraterrestrial cunning:0.6 and colorful teamwork:0.4.</p></li><li><p>Wolverine-Pirate: Combining Wolverine and Captain Jack Sparrow, this action figure embodies mutant ferocity:0.6 with swashbuckling charm:0.4.</p></li><li><p>Flash-Matrix Assassin: Merging The Flash, Neo from The Matrix, and John Wick, this figure races through digital worlds:0.3 with speed:0.3 while wielding martial arts:0.2 and gun-fu skills:0.2.</p></li><li><p>Hannibal-Witch: A blend of Hannibal Lecter and a Witch from a fairy tale, this figure savors the macabre:0.5 while wielding mystical powers:0.5.</p></li><li><p>Super-Robo Bond: Combining Superman, RoboCop, and James Bond, this action figure possesses superhuman strength:0.3, patrols the streets:0.3 with robotic precision:0.2, and uses spy gadgets:0.2.</p></li><li><p>Thor-Samurai: Merging Thor and a Samurai, this figure wields godly strength:0.4 and disciplined swordsmanship:0.4.</p></li><li><p>Cyber-Hawkeye: A fusion of Cyborg and Hawkeye, this action figure embodies technological prowess:0.4 and archery precision:0.4.</p></li><li><p>Flash-Spock: Combining The Flash and Spock from Star Trek, this figure races through adventures:0.4 with logical precision:0.4.</p></li><li><p>Wolverine-Matrix: A hybrid of Wolverine and Neo from The Matrix, this action figure embodies mutant ferocity:0.4 and challenges the digital world:0.4.</p></li><li><p>Venom-Witcher: Mixing Venom and Geralt from The Witcher, this figure embodies symbiotic chaos:0.4 and monster hunting skills:0.4.</p></li><li><p>Green-Hannibal Arrow: A crossover between Green Arrow, Hannibal Lecter, and the Witch from Left 4 Dead, this action figure boasts archery precision:0.3, savoring the macabre:0.3, and supernatural power:0.3.</p></li><li><p>Hulk-Zorro: Merging The Hulk and Zorro, this figure smashes with gamma-powered fury:0.4 while showcasing swashbuckling finesse:0.4.</p></li><li><p>Super-Predator: A fusion of Superman and Predator, this action figure possesses superhuman strength:0.4 and extraterrestrial hunting skills:0.4.</p></li><li><p>Preda-Witcher: Combining Predator and Geralt from The Witcher, this figure hunts with extraterrestrial cunning:0.4 and monster slaying skills:0.4.</p></li><li><p>Robo-Gandalf: A hybrid of RoboCop and Gandalf, this action figure patrols the streets:0.4 with magical wisdom:0.4.</p></li><li><p>Zorro-Elf Arrow: Mixing Zorro, Legolas from Lord of the Rings, and Green Arrow, this figure is a swashbuckling archer:0.3 with elven agility:0.3 and archery precision:0.3.</p></li><li><p>Hannibal-Trek: A crossover between Hannibal Lecter and Star Trek, this action figure savors the macabre:0.4 while exploring the cosmos:0.4.</p></li><li><p>Wonder-Pirate Woman: Combining Wonder Woman and Captain Jack Sparrow, this figure wields Amazonian strength:0.4 and pirate swagger:0.4.</p></li><li><p>Flash-Zorro: Merging The Flash and Zorro, this action figure races through adventures:0.4 while showcasing swashbuckling finesse:0.4.</p></li><li><p>Preda-Hawkeye: A fusion of Predator and Hawkeye, this figure hunts with extraterrestrial cunning:0.4 and archery precision:0.4.</p></li><li><p>Iron-Matrix Man: Combining Iron Man and Neo from The Matrix, this action figure possesses high-tech armor:0.4 and challenges the digital world:0.4.</p></li><li><p>Thor-Bond: A blend of Thor and James Bond, this figure wields godly strength:0.4 and uses spy gadgets:0.4.</p></li><li><p>Bat-Elf Holmes: Mixing Batman, Legolas from Lord of the Rings, and Sherlock Holmes, this action figure patrols Gotham:0.3 with elven agility:0.3 and deductive reasoning:0.3.</p></li><li><p>Green-Gandalf Arrow: A crossover between Green Arrow, Gandalf, and Legolas from Lord of the Rings, this figure boasts archery precision:0.3, magical wisdom:0.3, and elven agility:0.3.</p></li><li><p>Robo-Pirate Cop: Merging RoboCop and Captain Jack Sparrow, this action figure patrols the high seas:0.4 with robotic precision:0.3 and pirate swagger:0.3.</p></li><li><p>Zorro-Groot Arrow: Combining Zorro, Groot, and Green Arrow, this figure is a swashbuckling tree archer:0.3 with elven agility:0.3 and archery precision:0.3.</p></li><li><p>Hannibal-Gandalf Holmes: A fusion of Hannibal Lecter, Gandalf, and Sherlock Holmes, this action figure savors the macabre:0.3, wields magical wisdom:0.3, and employs deductive reasoning:0.3.</p></li><li><p>Flash-Pirate Holmes: Mixing The Flash, Captain Jack Sparrow, and Sherlock Holmes, this figure races through adventures:0.3 with pirate swagger:0.3 and deductive reasoning:0.3.</p></li><li><p>Preda-Elf Arrow: A hybrid of Predator, Legolas from Lord of the Rings, and Green Arrow, this action figure hunts with extraterrestrial cunning:0.3, elven agility:0.3, and archery precision:0.3.</p></li><li><p>Iron-Matrix Pirate: Combining Iron Man, Neo from The Matrix, and Captain Jack Sparrow, this figure possesses high-tech armor:0.3, challenges the digital world:0.3, and sails the high seas:0.3.</p></li><li><p>Thor-Hannibal Cop: A blend of Thor, Hannibal Lecter, and RoboCop, this action figure wields godly strength:0.3, savors the macabre:0.3, and patrols the streets:0.3.</p></li><li><p>Wonder-Zorro Woman: Mixing Wonder Woman, Zorro, and Sherlock Holmes, this figure wields Amazonian strength:0.3, showcases swashbuckling finesse:0.3, and employs deductive reasoning:0.3.</p></li><li><p>Venom-Pirate Matrix: A crossover between Venom, Captain Jack Sparrow, and Neo from The Matrix, this action figure embodies symbiotic chaos:0.3, pirate swagger:0.3, and digital rebellion:0.3.</p></li><li><p>Flash-Groot Arrow: Combining The Flash, Groot, and Green Arrow, this figure races through adventures:0.3, offers a lovable tree's charm:0.3, and boasts archery precision:0.3.</p></li><li><p>Preda-Hulk Arrow: Merging Predator, The Hulk, and Green Arrow, this action figure hunts with extraterrestrial cunning:0.3, unleashes unstoppable rage:0.3, and showcases archery precision:0.3.</p></li></ul> ## Image examples for the model: ![Image 1](2358337.jpeg) ![Image 2](2358309.jpeg) ![Image 3](2358250.jpeg) ![Image 4](2358249.jpeg) ![Image 5](2358252.jpeg) ![Image 6](2358281.jpeg) ![Image 7](2358353.jpeg) ![Image 8](2358374.jpeg) ![Image 9](2358378.jpeg)
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0050
bigmorning
2023-09-04T22:13:05Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T22:12:56Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0050 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0050 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0499 - Train Accuracy: 0.0339 - Train Wermet: 0.0487 - Validation Loss: 0.7587 - Validation Accuracy: 0.0208 - Validation Wermet: 0.3030 - Epoch: 49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | | 0.3747 | 0.0312 | 0.1293 | 0.8408 | 0.0203 | 0.2931 | 35 | | 0.3331 | 0.0316 | 0.1111 | 0.8253 | 0.0204 | 0.2891 | 36 | | 0.2947 | 0.0319 | 0.0962 | 0.8084 | 0.0205 | 0.2849 | 37 | | 0.2601 | 0.0322 | 0.0817 | 0.7906 | 0.0205 | 0.2783 | 38 | | 0.2291 | 0.0324 | 0.0706 | 0.7876 | 0.0206 | 0.2755 | 39 | | 0.2009 | 0.0327 | 0.0596 | 0.7723 | 0.0207 | 0.2712 | 40 | | 0.1750 | 0.0329 | 0.0504 | 0.7629 | 0.0207 | 0.2692 | 41 | | 0.1510 | 0.0331 | 0.0410 | 0.7650 | 0.0207 | 0.2684 | 42 | | 0.1319 | 0.0333 | 0.0367 | 0.7533 | 0.0207 | 0.2655 | 43 | | 0.1121 | 0.0335 | 0.0292 | 0.7589 | 0.0207 | 0.2647 | 44 | | 0.0956 | 0.0336 | 0.0253 | 0.7579 | 0.0208 | 0.2642 | 45 | | 0.0812 | 0.0337 | 0.0254 | 0.7584 | 0.0208 | 0.2625 | 46 | | 0.0694 | 0.0338 | 0.0332 | 0.7555 | 0.0208 | 0.2693 | 47 | | 0.0592 | 0.0339 | 0.0319 | 0.7534 | 0.0208 | 0.2629 | 48 | | 0.0499 | 0.0339 | 0.0487 | 0.7587 | 0.0208 | 0.3030 | 49 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
acdg1214/a2c-PandaReachDense-v3
acdg1214
2023-09-04T22:01:09Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-04T21:55:50Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.15 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0045
bigmorning
2023-09-04T21:59:45Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T21:59:38Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0045 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0045 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1121 - Train Accuracy: 0.0335 - Train Wermet: 0.0292 - Validation Loss: 0.7589 - Validation Accuracy: 0.0207 - Validation Wermet: 0.2647 - Epoch: 44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | | 0.3747 | 0.0312 | 0.1293 | 0.8408 | 0.0203 | 0.2931 | 35 | | 0.3331 | 0.0316 | 0.1111 | 0.8253 | 0.0204 | 0.2891 | 36 | | 0.2947 | 0.0319 | 0.0962 | 0.8084 | 0.0205 | 0.2849 | 37 | | 0.2601 | 0.0322 | 0.0817 | 0.7906 | 0.0205 | 0.2783 | 38 | | 0.2291 | 0.0324 | 0.0706 | 0.7876 | 0.0206 | 0.2755 | 39 | | 0.2009 | 0.0327 | 0.0596 | 0.7723 | 0.0207 | 0.2712 | 40 | | 0.1750 | 0.0329 | 0.0504 | 0.7629 | 0.0207 | 0.2692 | 41 | | 0.1510 | 0.0331 | 0.0410 | 0.7650 | 0.0207 | 0.2684 | 42 | | 0.1319 | 0.0333 | 0.0367 | 0.7533 | 0.0207 | 0.2655 | 43 | | 0.1121 | 0.0335 | 0.0292 | 0.7589 | 0.0207 | 0.2647 | 44 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
rohanbalkondekar/rohan_dreambooth
rohanbalkondekar
2023-09-04T21:52:29Z
2
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-04T21:52:28Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of rohan balkondekar tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
nbogdan/flant5-base-1ex-bridging-1epochs
nbogdan
2023-09-04T21:50:03Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-04T21:49:53Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-base-1ex-bridging-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-1ex-bridging-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0040
bigmorning
2023-09-04T21:46:29Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T21:46:21Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0040 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0040 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2291 - Train Accuracy: 0.0324 - Train Wermet: 0.0706 - Validation Loss: 0.7876 - Validation Accuracy: 0.0206 - Validation Wermet: 0.2755 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | | 0.3747 | 0.0312 | 0.1293 | 0.8408 | 0.0203 | 0.2931 | 35 | | 0.3331 | 0.0316 | 0.1111 | 0.8253 | 0.0204 | 0.2891 | 36 | | 0.2947 | 0.0319 | 0.0962 | 0.8084 | 0.0205 | 0.2849 | 37 | | 0.2601 | 0.0322 | 0.0817 | 0.7906 | 0.0205 | 0.2783 | 38 | | 0.2291 | 0.0324 | 0.0706 | 0.7876 | 0.0206 | 0.2755 | 39 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
active-learning/mnist_classifier
active-learning
2023-09-04T21:46:17Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-02-03T13:18:22Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | False | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 |
nbogdan/flant5-base-1ex-elaboration-1epochs
nbogdan
2023-09-04T21:34:54Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-04T21:34:46Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-base-1ex-elaboration-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-1ex-elaboration-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
JanSt/gbert-base-finetuned-twitter_
JanSt
2023-09-04T21:31:46Z
5
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:deepset/gbert-base", "base_model:finetune:deepset/gbert-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-04T08:13:18Z
--- license: mit base_model: deepset/gbert-base tags: - generated_from_trainer model-index: - name: gbert-base-finetuned-twitter_ results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gbert-base-finetuned-twitter_ This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 192 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1933 | 1.0 | 4180 | 1.9612 | | 2.0051 | 2.0 | 8360 | 1.8795 | | 1.939 | 3.0 | 12540 | 1.8310 | | 1.8928 | 4.0 | 16720 | 1.8013 | | 1.8594 | 5.0 | 20900 | 1.7730 | | 1.8336 | 6.0 | 25080 | 1.7702 | | 1.8145 | 7.0 | 29260 | 1.7449 | | 1.7963 | 8.0 | 33440 | 1.7277 | | 1.7806 | 9.0 | 37620 | 1.7105 | | 1.7682 | 10.0 | 41800 | 1.7061 | | 1.7584 | 11.0 | 45980 | 1.7041 | | 1.7454 | 12.0 | 50160 | 1.6899 | | 1.7374 | 13.0 | 54340 | 1.6850 | | 1.7295 | 14.0 | 58520 | 1.6856 | | 1.7232 | 15.0 | 62700 | 1.6819 | | 1.715 | 16.0 | 66880 | 1.6730 | | 1.7101 | 17.0 | 71060 | 1.6723 | | 1.7057 | 18.0 | 75240 | 1.6655 | | 1.7038 | 19.0 | 79420 | 1.6617 | | 1.702 | 20.0 | 83600 | 1.6625 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
facebook/regnet-x-160
facebook
2023-09-04T21:27:33Z
402
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "regnet", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2003.13678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-18T15:27:57Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
volvoDon/mr-golem
volvoDon
2023-09-04T21:26:39Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-03T23:15:47Z
--- library_name: peft --- ## Training procedure This is a funny CausalLLM That was Trained on the full ~150 pages of the Necronomicon ## Scope of Use Absolutely Just for Fun, *Be advised it was trained on Occult Text so it might say offensive or confusing things* ### Framework versions - PEFT 0.5.0
volvoDon/petro-daemon
volvoDon
2023-09-04T21:21:25Z
63
0
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-04T20:11:04Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: volvoDon/petro-daemon results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # volvoDon/petro-daemon This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on a [DataSet of petrologic cross sections](https://huggingface.co/datasets/volvoDon/petrology-sections). It achieves the following results on the evaluation set: - Train Loss: 0.8890 - Validation Loss: 1.1803 - Train Accuracy: 0.6 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations Currently it is just a proof of concept and does a great job identifiying Olivine It currently is not ready for a production enviroment but the results are promising, with an improved dataset I'm confident better results could be acheived. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.6519 | 1.7095 | 0.2 | 0 | | 1.5905 | 1.6747 | 0.2 | 1 | | 1.5690 | 1.6342 | 0.2 | 2 | | 1.5170 | 1.5931 | 0.2 | 3 | | 1.4764 | 1.5528 | 0.6 | 4 | | 1.3835 | 1.5079 | 0.6 | 5 | | 1.3420 | 1.4717 | 0.6 | 6 | | 1.3171 | 1.4232 | 0.6 | 7 | | 1.2897 | 1.3905 | 0.6 | 8 | | 1.2702 | 1.3794 | 0.6 | 9 | | 1.2023 | 1.3351 | 0.6 | 10 | | 1.1480 | 1.3384 | 0.6 | 11 | | 1.1434 | 1.3419 | 0.6 | 12 | | 1.0499 | 1.3226 | 0.6 | 13 | | 1.0672 | 1.2647 | 0.6 | 14 | | 1.0526 | 1.1533 | 0.6 | 15 | | 1.0184 | 1.1546 | 0.6 | 16 | | 0.9505 | 1.2491 | 0.6 | 17 | | 0.9578 | 1.2809 | 0.4 | 18 | | 0.8890 | 1.1803 | 0.6 | 19 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
actionpace/LLAMA2-13B-Holodeck-1
actionpace
2023-09-04T21:21:09Z
7
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-04T20:46:13Z
--- license: other language: - en --- **Some of my own quants:** * LLAMA2-13B-Holodeck-1_Q5_1_4K.gguf * LLAMA2-13B-Holodeck-1_Q5_1_8K.gguf **Source:** [KoboldAI](https://huggingface.co/KoboldAI) **Source Model:** [LLAMA2-13B-Holodeck-1](https://huggingface.co/KoboldAI/LLAMA2-13B-Holodeck-1) **Models utilizing KoboldAI/LLAMA2-13B-Holodeck-1** - [The-Face-Of-Goonery/Huginn-v3-13b](https://huggingface.co/The-Face-Of-Goonery/Huginn-v3-13b) ([Ref](https://huggingface.co/actionpace/Huginn-v3-13b)) (Finetune, kaiokendev/SuperCOT-dataset)
nbogdan/flant5-base-1ex-paraphrasing-1epochs
nbogdan
2023-09-04T21:20:32Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-04T21:20:22Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-base-1ex-paraphrasing-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-1ex-paraphrasing-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
facebook/wav2vec2-large-it-voxpopuli
facebook
2023-09-04T21:15:34Z
395
0
transformers
[ "transformers", "pytorch", "jax", "safetensors", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli", "it", "arxiv:2101.00390", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: it tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Large-VoxPopuli [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained on the it unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Fine-Tuning Please refer to [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) on how to fine-tune this model on a specific language. Note that you should replace `"facebook/wav2vec2-large-xlsr-53"` with this checkpoint for fine-tuning.
facebook/convnext-base-224-22k-1k
facebook
2023-09-04T21:09:35Z
653
3
transformers
[ "transformers", "pytorch", "tf", "safetensors", "convnext", "image-classification", "vision", "dataset:imagenet-21k", "dataset:imagenet-1k", "arxiv:2201.03545", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-21k - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # ConvNeXT (base-sized model) ConvNeXT model pre-trained on ImageNet-22k and fine-tuned on ImageNet-1k at resolution 224x224. It was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Liu et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt). Disclaimer: The team releasing ConvNeXT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ConvNeXT is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform them. The authors started from a ResNet and "modernized" its design by taking the Swin Transformer as inspiration. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=convnext) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ConvNextFeatureExtractor, ConvNextForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] feature_extractor = ConvNextFeatureExtractor.from_pretrained("facebook/convnext-base-224-22k-1k") model = ConvNextForImageClassification.from_pretrained("facebook/convnext-base-384-224-1k") inputs = feature_extractor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]), ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/convnext). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2201-03545, author = {Zhuang Liu and Hanzi Mao and Chao{-}Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {CoRR}, volume = {abs/2201.03545}, year = {2022}, url = {https://arxiv.org/abs/2201.03545}, eprinttype = {arXiv}, eprint = {2201.03545}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0025
bigmorning
2023-09-04T21:06:45Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T21:06:37Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0025 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0025 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5547 - Train Accuracy: 0.0235 - Train Wermet: 0.3996 - Validation Loss: 1.6356 - Validation Accuracy: 0.0172 - Validation Wermet: 0.4848 - Epoch: 24 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
nbogdan/flant5-base-1ex-overall-1epochs
nbogdan
2023-09-04T21:04:30Z
1
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-04T21:04:21Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-base-1ex-overall-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-1ex-overall-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
jonc/ybelkada-opt-6.7b-lora
jonc
2023-09-04T20:59:50Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-04T20:59:47Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
SandraDee/ppo-LunarLander-v2
SandraDee
2023-09-04T20:57:50Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-04T20:57:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 281.48 +/- 13.92 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
darthlordvictor/generative-bloom-marketing-002
darthlordvictor
2023-09-04T20:56:22Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-29T02:38:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0020
bigmorning
2023-09-04T20:53:30Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T20:53:22Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0020 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0020 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.7559 - Train Accuracy: 0.0173 - Train Wermet: 0.5940 - Validation Loss: 2.6337 - Validation Accuracy: 0.0139 - Validation Wermet: 0.6673 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0015
bigmorning
2023-09-04T20:40:15Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T20:40:08Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0015 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.3069 - Train Accuracy: 0.0148 - Train Wermet: 0.6961 - Validation Loss: 3.1102 - Validation Accuracy: 0.0124 - Validation Wermet: 0.7609 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
reginaboateng/BERT_pubmedqa_adapter_with_maybes_to_yes_updated
reginaboateng
2023-09-04T20:31:22Z
1
0
adapter-transformers
[ "adapter-transformers", "bert", "adapterhub:pubmedqa", "dataset:pubmedqa", "region:us" ]
null
2023-09-04T20:31:19Z
--- tags: - bert - adapter-transformers - adapterhub:pubmedqa datasets: - pubmedqa --- # Adapter `reginaboateng/BERT_pubmedqa_adapter_with_maybes_to_yes_updated` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [pubmedqa](https://adapterhub.ml/explore/pubmedqa/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("reginaboateng/BERT_pubmedqa_adapter_with_maybes_to_yes_updated", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0010
bigmorning
2023-09-04T20:27:01Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T20:26:52Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.6757 - Train Accuracy: 0.0136 - Train Wermet: 0.7548 - Validation Loss: 3.3141 - Validation Accuracy: 0.0116 - Validation Wermet: 0.8400 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
96abhishekarora/lt-kn-en_familyname-linkage
96abhishekarora
2023-09-04T20:22:33Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "linktransformer", "sentence-similarity", "tabular-classification", "kn", "en", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-09-01T02:58:31Z
--- pipeline_tag: sentence-similarity language: - kn - en tags: - linktransformer - sentence-transformers - sentence-similarity - tabular-classification --- # 96abhishekarora/lt-kn-en_familyname-linkage This is a [LinkTransformer](https://github.com/dell-research-harvard/linktransformer) model. At its core this model this is a sentence transformer model [sentence-transformers](https://www.SBERT.net) model- it just wraps around the class. It is designed for quick and easy record linkage (entity-matching) through the LinkTransformer package. The tasks include clustering, deduplication, linking, aggregation and more. Notwithstanding that, it can be used for any sentence similarity task within the sentence-transformers framework as well. It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. Take a look at the documentation of [sentence-transformers](https://www.sbert.net/index.html) if you want to use this model for more than what we support in our applications. This model has been fine-tuned on the model : bert-base-multilingual-cased. It is pretrained for the language : - kn - en. This model was trained on a dataset consisting of 12105132 people and their family id. 50% of the names are alo transliterated. It was trained for 6 epochs using other defaults that can be found in the repo's LinkTransformer config file - LT_training_config.json ## Usage (LinkTransformer) Using this model becomes easy when you have [LinkTransformer](https://github.com/dell-research-harvard/linktransformer) installed: ``` pip install -U linktransformer ``` Then you can use the model like this: ```python import linktransformer as lt import pandas as pd ##Load the two dataframes that you want to link. For example, 2 dataframes with company names that are written differently df1=pd.read_csv("data/df1.csv") ###This is the left dataframe with key CompanyName for instance df2=pd.read_csv("data/df2.csv") ###This is the right dataframe with key CompanyName for instance ###Merge the two dataframes on the key column! df_merged = lt.merge(df1, df2, on="CompanyName", how="inner") ##Done! The merged dataframe has a column called "score" that contains the similarity score between the two company names ``` ## Training your own LinkTransformer model Any Sentence Transformers can be used as a backbone by simply adding a pooling layer. Any other transformer on HuggingFace can also be used by specifying the option add_pooling_layer==True The model was trained using SupCon loss. Usage can be found in the package docs. The training config can be found in the repo with the name LT_training_config.json To replicate the training, you can download the file and specify the path in the config_path argument of the training function. You can also override the config by specifying the training_args argument. Here is an example. ```python ##Consider the example in the paper that has a dataset of Mexican products and their tariff codes from 1947 and 1948 and we want train a model to link the two tariff codes. saved_model_path = train_model( model_path="hiiamsid/sentence_similarity_spanish_es", dataset_path=dataset_path, left_col_names=["description47"], right_col_names=['description48'], left_id_name=['tariffcode47'], right_id_name=['tariffcode48'], log_wandb=False, config_path=LINKAGE_CONFIG_PATH, training_args={"num_epochs": 1} ) ``` You can also use this package for deduplication (clusters a df on the supplied key column). Merging a fine class (like product) to a coarse class (like HS code) is also possible. Read our paper and the documentation for more! ## Evaluation Results <!--- Describe how your model was evaluated --> You can evaluate the model using the [LinkTransformer](https://github.com/dell-research-harvard/linktransformer) package's inference functions. We have provided a few datasets in the package for you to try out. We plan to host more datasets on Huggingface and our website (Coming soon) that you can take a look at. ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 186000 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.dataloader._InfiniteConstantSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `linktransformer.modified_sbert.losses.SupConLoss_wandb` Parameters of the fit()-Method: ``` { "epochs": 6, "evaluation_steps": 18600, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-06 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1116000, "weight_decay": 0.01 } ``` LinkTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
adyprat/Reinforce_cpv1
adyprat
2023-09-04T20:18:49Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-04T20:18:38Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce_cpv1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
maysamalfiza/dummy-model
maysamalfiza
2023-09-04T20:05:27Z
106
0
transformers
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-04T19:48:38Z
Model explanation Welcome to my page! "camembert-base"
IlyaGusev/saiga2_70b_gguf
IlyaGusev
2023-09-04T19:53:14Z
97
12
null
[ "gguf", "conversational", "ru", "dataset:IlyaGusev/ru_turbo_saiga", "dataset:IlyaGusev/ru_sharegpt_cleaned", "dataset:IlyaGusev/oasst1_ru_main_branch", "dataset:IlyaGusev/gpt_roleplay_realm", "dataset:lksy/ru_instruct_gpt4", "license:llama2", "region:us" ]
text-generation
2023-09-04T19:31:40Z
--- datasets: - IlyaGusev/ru_turbo_saiga - IlyaGusev/ru_sharegpt_cleaned - IlyaGusev/oasst1_ru_main_branch - IlyaGusev/gpt_roleplay_realm - lksy/ru_instruct_gpt4 language: - ru inference: false pipeline_tag: conversational license: llama2 --- Llama.cpp compatible versions of an original [70B model](https://huggingface.co/IlyaGusev/saiga2_70b_lora). * Download one of the versions, for example `ggml-model-q4_1.gguf`. * Download [interact_llamacpp.py](https://raw.githubusercontent.com/IlyaGusev/rulm/master/self_instruct/src/interact_llamacpp.py) How to run: ``` sudo apt-get install git-lfs pip install llama-cpp-python fire python3 interact_llamacpp.py ggml-model-q4_1.gguf ``` System requirements: * 45GB RAM for q4_1
venetis/distilbert-base-uncased-finetuned-3d-sentiment
venetis
2023-09-04T19:52:13Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T16:12:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-base-uncased-finetuned-3d-sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-3d-sentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6641 - Accuracy: 0.7366 - Precision: 0.7377 - Recall: 0.7366 - F1: 0.7364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 12762 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8078 | 1.0 | 3190 | 0.8133 | 0.6628 | 0.6885 | 0.6628 | 0.6607 | | 0.6227 | 2.0 | 6380 | 0.7637 | 0.6855 | 0.7103 | 0.6855 | 0.6849 | | 0.5431 | 3.0 | 9570 | 0.6889 | 0.7047 | 0.7201 | 0.7047 | 0.7017 | | 0.4585 | 4.0 | 12760 | 0.6641 | 0.7366 | 0.7377 | 0.7366 | 0.7364 | | 0.3455 | 5.0 | 15950 | 0.8322 | 0.7203 | 0.7323 | 0.7203 | 0.7187 | | 0.223 | 6.0 | 19140 | 0.9541 | 0.7205 | 0.7316 | 0.7205 | 0.7204 | | 0.145 | 7.0 | 22330 | 1.1726 | 0.7196 | 0.7305 | 0.7196 | 0.7200 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.3
Jana1994/wav2vec2-large-xls-r-300m-jana-colab
Jana1994
2023-09-04T19:51:58Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-31T08:26:49Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-jana-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: cy split: test args: cy metrics: - name: Wer type: wer value: 0.6497412901000345 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-jana-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.8913 - Wer: 0.6497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.6444 | 1.67 | 200 | 2.9379 | 1.0 | | 2.7964 | 3.33 | 400 | 1.9912 | 0.9927 | | 1.1945 | 5.0 | 600 | 0.9492 | 0.7889 | | 0.6065 | 6.67 | 800 | 0.8534 | 0.7137 | | 0.3859 | 8.33 | 1000 | 0.8933 | 0.6689 | | 0.2724 | 10.0 | 1200 | 0.8913 | 0.6497 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
dmatekenya/wav2vec2-large-xls-r-300m-chichewa
dmatekenya
2023-09-04T19:47:30Z
107
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T17:49:52Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-chichewa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-chichewa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.9669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.2028 | 3.51 | 400 | inf | 0.9999 | | 2.5353 | 7.02 | 800 | inf | 0.9743 | | 1.8464 | 10.53 | 1200 | inf | 0.9777 | | 1.6672 | 14.04 | 1600 | inf | 0.9669 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jorgeortizfuentes/chilean-spanish-incivility
jorgeortizfuentes
2023-09-04T19:42:39Z
556
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "es", "dataset:jorgeortizfuentes/toxicity_spanish_incivility_v3", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T19:35:55Z
--- language: - es license: cc-by-4.0 tags: - generated_from_trainer datasets: - jorgeortizfuentes/toxicity_spanish_incivility_v3 metrics: - f1 model-index: - name: incivility-dv3-patana-chilean-spanish-bert-j63zilm4 results: - task: name: Text Classification type: text-classification dataset: name: jorgeortizfuentes/toxicity_spanish_incivility_v3 type: jorgeortizfuentes/toxicity_spanish_incivility_v3 split: validation metrics: - name: F1 type: f1 value: 0.9135014363230132 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # incivility-dv3-patana-chilean-spanish-bert-j63zilm4 This model is a fine-tuned version of [dccuchile/patana-chilean-spanish-bert](https://huggingface.co/dccuchile/patana-chilean-spanish-bert) on the jorgeortizfuentes/toxicity_spanish_incivility_v3 dataset. It achieves the following results on the evaluation set: - Loss: 0.5672 - F1: 0.9135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 13 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1351 | 5.0 | 455 | 0.4608 | 0.9119 | | 0.0114 | 10.0 | 910 | 0.5672 | 0.9135 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
aegon-h/Llama2-22B-Daydreamer-v3-GPT
aegon-h
2023-09-04T19:41:39Z
6
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:llama2", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2023-09-04T19:31:53Z
--- inference: false license: llama2 model_creator: Nick Perez model_link: https://huggingface.co/nkpz/llama2-22b-daydreamer-v3 model_name: Llama2 22B Daydreamer2 v3 model_type: llama quantized_by: agonh --- # Llama2 22B Daydreamer2 v3 - Model creator: [Nick Perez](https://huggingface.co/nkpz) - Original model: [Llama2 22B Daydreamer2 v3](https://huggingface.co/nkpz/llama2-22b-daydreamer-v3) ## Description This repo contains GPTQ model files for [Nick Perez's Llama2 22B Daydreamer2 v3](https://huggingface.co/nkpz/llama2-22b-daydreamer-v3).
mrm8488/idefics-9b-ft-describe-diffusion-bf16-adapter
mrm8488
2023-09-04T19:39:01Z
0
1
null
[ "generated_from_trainer", "dataset:diffusiondb", "base_model:HuggingFaceM4/idefics-9b", "base_model:finetune:HuggingFaceM4/idefics-9b", "license:other", "region:us" ]
null
2023-08-28T10:09:04Z
--- license: other base_model: HuggingFaceM4/idefics-9b tags: - generated_from_trainer datasets: - diffusiondb model-index: - name: idefics-9b-ft-describe-diffusion-bf16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # idefics-9b-ft-describe-diffusion-bf16 This model is a fine-tuned version of [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) on the diffusiondb dataset. It achieves the following results on the evaluation set: - Loss: 1.4081 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0874 | 0.07 | 50 | 2.1257 | | 2.0532 | 0.14 | 100 | 1.9973 | | 1.9417 | 0.21 | 150 | 1.9246 | | 1.8358 | 0.28 | 200 | 1.8735 | | 1.8499 | 0.36 | 250 | 1.8305 | | 1.7695 | 0.43 | 300 | 1.7770 | | 1.7505 | 0.5 | 350 | 1.7454 | | 1.713 | 0.57 | 400 | 1.7115 | | 1.7352 | 0.64 | 450 | 1.6791 | | 1.6689 | 0.71 | 500 | 1.6526 | | 1.6183 | 0.78 | 550 | 1.6257 | | 1.6118 | 0.85 | 600 | 1.6001 | | 1.6095 | 0.92 | 650 | 1.5800 | | 1.5598 | 1.0 | 700 | 1.5598 | | 1.4785 | 1.07 | 750 | 1.5403 | | 1.4999 | 1.14 | 800 | 1.5219 | | 1.4589 | 1.21 | 850 | 1.5063 | | 1.4559 | 1.28 | 900 | 1.4942 | | 1.4332 | 1.35 | 950 | 1.4792 | | 1.4859 | 1.42 | 1000 | 1.4658 | | 1.3888 | 1.49 | 1050 | 1.4537 | | 1.4032 | 1.56 | 1100 | 1.4445 | | 1.3702 | 1.64 | 1150 | 1.4352 | | 1.3625 | 1.71 | 1200 | 1.4276 | | 1.4067 | 1.78 | 1250 | 1.4199 | | 1.3829 | 1.85 | 1300 | 1.4149 | | 1.4251 | 1.92 | 1350 | 1.4103 | | 1.3619 | 1.99 | 1400 | 1.4081 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
aegon-h/Koala-13B-8K-GPT
aegon-h
2023-09-04T19:21:09Z
77
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "license:other", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2023-09-04T19:13:10Z
--- inference: false license: other --- # Koala: A Dialogue Model for Academic Research This repo contains the weights of the Koala 13B model produced at Berkeley. It is the result of combining the diffs from https://huggingface.co/young-geng/koala with the original Llama 13B model. ## License The model weights are intended for academic research only, subject to the [model License of LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md), [Terms of Use of the data generated by OpenAI](https://openai.com/policies/terms-of-use), and [Privacy Practices of ShareGPT](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb). Any other usage of the model weights, including but not limited to commercial usage, is strictly prohibited.
alexsherstinsky/llama-2-7b-hf-based-finetuned-using-ludwig-with-alpaca-for-code
alexsherstinsky
2023-09-04T19:15:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-04T16:27:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
onkarsus13/controlnet_stablediffusion_scenetextEraser
onkarsus13
2023-09-04T19:01:03Z
36
0
diffusers
[ "diffusers", "license:mit", "diffusers:StableDiffusionControlNetInpaintPipeline", "region:us" ]
image-to-image
2023-08-17T05:36:34Z
--- license: mit --- This is the trained model for the controlnet-stablediffusion for the scene text eraser (Diff_SceneTextEraser) We have to customize the pipeline for controlnet-stablediffusion-inpaint Here is the training and inference code for [Diff_SceneTextEraser](https://github.com/Onkarsus13/Diff_SceneTextEraser) For direct inference step 1: Clone the GitHub repo to get the customized ControlNet-StableDiffusion-inpaint Pipeline Implementation ``` git clone https://github.com/Onkarsus13/Diff_SceneTextEraser ``` Step2: Go into the repository and install repository, dependency ``` cd Diff_SceneTextEraser pip install -e ".[torch]" pip install -e .[all,dev,notebooks] ``` Step3: Run `python test_eraser.py` OR You can run the code given below ```python from diffusers import ( UniPCMultistepScheduler, DDIMScheduler, EulerAncestralDiscreteScheduler, StableDiffusionControlNetSceneTextErasingPipeline, ) import torch import numpy as np import cv2 from PIL import Image, ImageDraw import math import os device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_path = "onkarsus13/controlnet_stablediffusion_scenetextEraser" pipe = StableDiffusionControlNetSceneTextErasingPipeline.from_pretrained(model_path) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(device) # pipe.enable_xformers_memory_efficient_attention() pipe.enable_model_cpu_offload() generator = torch.Generator(device).manual_seed(1) image = Image.open("<path to scene text image>").resize((512, 512)) mask_image = Image.open('<path to the corrospoinding mask image>').resize((512, 512)) image = pipe( image, mask_image, [mask_image], num_inference_steps=20, generator=generator, controlnet_conditioning_scale=1.0, guidance_scale=1.0 ).images[0] image.save('test1.png') ```
nbogdan/flant5-small-2ex-elaboration-1epochs
nbogdan
2023-09-04T18:53:39Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-04T18:53:31Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-small-2ex-elaboration-1epochs` for google/flan-t5-small An [adapter](https://adapterhub.ml) for the `google/flan-t5-small` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-small") adapter_name = model.load_adapter("nbogdan/flant5-small-2ex-elaboration-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->