modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 00:39:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
532 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 00:38:59
card
stringlengths
11
1.01M
chinxx66/uuu_fine_tune_gpt2
chinxx66
2025-06-25T03:30:28Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:39:51Z
--- license: apache-2.0 ---
Daniel-xue/uuu_fine_tune_gpt2
Daniel-xue
2025-06-25T03:28:59Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:24:19Z
--- license: apache-2.0 ---
Doctor-Shotgun/L3.3-70B-Magnum-Diamond-LoRA
Doctor-Shotgun
2025-06-25T03:26:58Z
4
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:meta-llama/Llama-3.3-70B-Instruct", "base_model:adapter:meta-llama/Llama-3.3-70B-Instruct", "license:llama3.3", "region:us" ]
null
2025-06-03T12:47:27Z
--- library_name: peft license: llama3.3 base_model: meta-llama/Llama-3.3-70B-Instruct tags: - axolotl - generated_from_trainer --- # L3.3-70B-Magnum-Diamond-LoRA Magnum "Diamond" in reference to the intense heat and pressure (generated through matrix multiplications) needed to turn the coal-esque material of dry, assistant-tuned models into creative writing gems! This model is finetuned from [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) as an rsLoRA adapter. It uses the same data mix as [Doctor-Shotgun/L3.3-70B-Magnum-v5-SFT-Alpha](https://huggingface.co/Doctor-Shotgun/L3.3-70B-Magnum-v5-SFT-Alpha), however with pre-tokenization and modifications to the custom loss masking. It's for all intents and purposes a version update to the former model. This model should perform competently with or without prepending character names, and with or without prefill. The objective, as with the other Magnum models, is to emulate the prose style and quality of the Claude 3 Sonnet/Opus series of models on a local scale, so don't be surprised to see "Claude-isms" in its output. [Merged full model](https://huggingface.co/Doctor-Shotgun/L3.3-70B-Magnum-Diamond) ## Intended uses and limitations This model is intended for creative writing and roleplay purposes. It may show biases similar to those observed in contemporary LLM-based roleplay, in addition to those exhibited by the Claude 3 series of models and the base model. All outputs should be considered fiction, as this model is not intended to provide factual information or advice. ## Training procedure [WandB](https://wandb.ai/doctorshotgun/70b-magnum-lora/runs/acnk2imq?nw=nwuserdoctorshotgun) [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.9.2` ```yaml base_model: meta-llama/Llama-3.3-70B-Instruct base_model_ignore_patterns: "*/*" # optionally might have model_type or tokenizer_type model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer # Automatically upload checkpoint and final model to HF hub_model_id: Doctor-Shotgun/magnum-v5-sft-prototype-70b-lora-rev1 hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: anthracite-core/magnum-v5-sft-proto-llama3-rev1-32k ds_type: parquet type: shuffle_merged_datasets: true dataset_prepared_path: /workspace/magnum-70b-data val_set_size: 0.0 output_dir: /workspace/70b-lora-out plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: false cut_cross_entropy: true sequence_len: 32768 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 128 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: peft_use_rslora: true lora_modules_to_save: - embed_tokens - lm_head wandb_project: 70b-magnum-lora wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 2 optimizer: paged_ademamix_8bit lr_scheduler: cosine learning_rate: 4e-5 max_grad_norm: 1.0 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: offload early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 40 evals_per_epoch: eval_table_size: eval_max_new_tokens: saves_per_epoch: 2 debug: deepspeed: ./deepspeed_configs/zero3_bf16_torch_compile.json weight_decay: 0.01 fsdp: fsdp_config: special_tokens: pad_token: <|finetune_right_pad_id|> ``` </details><br> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Use paged_ademamix_8bit and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 40 - num_epochs: 2.0 ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
Rookiezz/medgemma-4b-it-sft-lora-custom
Rookiezz
2025-06-25T03:26:33Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:unsloth/medgemma-4b-it", "base_model:finetune:unsloth/medgemma-4b-it", "endpoints_compatible", "region:us" ]
null
2025-06-05T13:48:34Z
--- base_model: unsloth/medgemma-4b-it library_name: transformers model_name: medgemma-4b-it-sft-lora-custom tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for medgemma-4b-it-sft-lora-custom This model is a fine-tuned version of [unsloth/medgemma-4b-it](https://huggingface.co/unsloth/medgemma-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Rookiezz/medgemma-4b-it-sft-lora-custom", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.52.4 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Cvwisework/qwen2.5-3b-passport_e1_train-autolabeled
Cvwisework
2025-06-25T03:26:31Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-VL-3B-Instruct", "region:us" ]
null
2025-06-24T19:23:39Z
--- library_name: peft base_model: Qwen/Qwen2.5-VL-3B-Instruct tags: - trl - sft - generated_from_trainer model-index: - name: qwen2.5-3b-passport_e1_train-autolabeled results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qwen2.5-3b-passport_e1_train-autolabeled This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.13.0 - Transformers 4.53.0.dev0 - Pytorch 2.7.1+cu126 - Datasets 3.0.1 - Tokenizers 0.21.1
johngreendr1/72a53c5a-be56-4519-a53c-999041c64c96
johngreendr1
2025-06-25T03:24:42Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:NousResearch/Nous-Capybara-7B-V1.9", "base_model:adapter:NousResearch/Nous-Capybara-7B-V1.9", "region:us" ]
null
2025-06-25T02:09:27Z
--- base_model: NousResearch/Nous-Capybara-7B-V1.9 library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
vishakr01/comp4_12
vishakr01
2025-06-25T03:24:06Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T03:22:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Doctor-Shotgun/MS3.2-24B-Magnum-Diamond-LoRA
Doctor-Shotgun
2025-06-25T03:23:42Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "base_model:adapter:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "license:apache-2.0", "region:us" ]
null
2025-06-22T17:45:00Z
--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-Small-3.2-24B-Instruct-2506 tags: - axolotl - generated_from_trainer --- # MS3.2-24B-Magnum-Diamond-LoRA Magnum "Diamond" in reference to the intense heat and pressure (generated through matrix multiplications) needed to turn the coal-esque material of dry, assistant-tuned models into creative writing gems! This model is finetuned from a text-only conversion of [mistralai/Mistral-Small-3.2-24B-Instruct-2506](https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506) as an rsLoRA adapter. It uses the same data mix as [Doctor-Shotgun/L3.3-70B-Magnum-v5-SFT-Alpha](https://huggingface.co/Doctor-Shotgun/L3.3-70B-Magnum-v5-SFT-Alpha), however with pre-tokenization and modifications to the custom loss masking. The goal was to re-create the model at a smaller, more consumer-friendly size. This model should perform competently with or without prepending character names, and with or without prefill. The objective, as with the other Magnum models, is to emulate the prose style and quality of the Claude 3 Sonnet/Opus series of models on a local scale, so don't be surprised to see "Claude-isms" in its output. This is a minor version update over [Doctor-Shotgun/MS3.1-24B-Magnum-Diamond-LoRA](https://huggingface.co/Doctor-Shotgun/MS3.1-24B-Magnum-Diamond-LoRA) utilizing the new official instruct model from June 2025. [Merged full model](https://huggingface.co/Doctor-Shotgun/MS3.2-24B-Magnum-Diamond) ## Intended uses and limitations This model is intended for creative writing and roleplay purposes. It may show biases similar to those observed in contemporary LLM-based roleplay, in addition to those exhibited by the Claude 3 series of models and the base model. All outputs should be considered fiction, as this model is not intended to provide factual information or advice. ## Training procedure [WandB](https://wandb.ai/gum1h0x/24b-magnum-lora/runs/3zudxeg3?nw=nwuseradrianjuliusbeck) There was a weird loss spike of unclear significance on one sample that was not seen using the same dataset on Mistral Small 3.1 Instruct, but the resulting model appears to be sane. [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.9.2` ```yaml base_model: anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-Text-Only #base_model_ignore_patterns: "consolidated.safetensors" # optionally might have model_type or tokenizer_type model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer # Automatically upload checkpoint and final model to HF hub_model_id: NewEden/magnum-v5-sft-prototype-ms3.2-lora hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: NewEden/magnum-v5-sft-proto-mistral-v7-tekken-rev1-32k ds_type: parquet type: shuffle_merged_datasets: true dataset_prepared_path: ./magnum-24b-data val_set_size: 0.0 output_dir: ./magnum-24b-lora-out plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: false cut_cross_entropy: true sequence_len: 32768 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 128 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: peft_use_rslora: true lora_modules_to_save: - embed_tokens - lm_head wandb_project: 24b-magnum-lora wandb_entity: wandb_watch: wandb_name: 24b-magnum-lora-mistral-3.2 wandb_log_model: gradient_accumulation_steps: 16 micro_batch_size: 1 num_epochs: 2 optimizer: paged_ademamix_8bit lr_scheduler: cosine learning_rate: 2e-5 max_grad_norm: 1.0 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 40 evals_per_epoch: eval_table_size: eval_max_new_tokens: saves_per_epoch: 2 debug: deepspeed: weight_decay: 0.01 fsdp: fsdp_config: special_tokens: ``` </details><br> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use paged_ademamix_8bit and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 40 - num_epochs: 2.0 ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.7.1+cu128 - Datasets 3.5.1 - Tokenizers 0.21.1
Jack89215/uuu_fine_tune_gpt2
Jack89215
2025-06-25T03:23:34Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:40:26Z
--- license: apache-2.0 ---
eatim/uuu_fine_tune_taipower
eatim
2025-06-25T03:23:17Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:20:46Z
--- license: apache-2.0 ---
Bogoo/SmolLM2_1.7B_LoRA_ro_Wiki
Bogoo
2025-06-25T03:22:40Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-25T03:22:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CHIANG0903/uuu_fine_tune_gpt2
CHIANG0903
2025-06-25T03:21:59Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:49:35Z
--- license: apache-2.0 ---
New-videos-Mahiye-selin-viral-video-Clips/FULL.VIDEO.Mahiye.selin.Viral.Video.Tutorial.Official
New-videos-Mahiye-selin-viral-video-Clips
2025-06-25T03:20:27Z
0
0
null
[ "region:us" ]
null
2025-06-25T03:20:14Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Hastagaras/XGS-9B-INS-TEST-RESIZED-FP16
Hastagaras
2025-06-25T03:18:22Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T03:12:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
New-videos-Shubham-Gupta-viral-video-Clips/FULL.VIDEO.Shubham.Gupta.Viral.Video.Tutorial.Official
New-videos-Shubham-Gupta-viral-video-Clips
2025-06-25T03:15:09Z
0
0
null
[ "region:us" ]
null
2025-06-25T03:14:55Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
chinxx66/uuu_fine_tune_taipower
chinxx66
2025-06-25T03:13:46Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:39:13Z
--- license: apache-2.0 ---
linfone2/uuu_fine_tune_taipower
linfone2
2025-06-25T03:13:28Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:43:19Z
--- license: apache-2.0 ---
vincrnt/uuu_fine_tune_taipower
vincrnt
2025-06-25T03:13:14Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:34:26Z
--- license: apache-2.0 ---
sam34738/muril-resnet-binary
sam34738
2025-06-25T03:12:34Z
0
0
transformers
[ "transformers", "safetensors", "binary_multimodal", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-25T03:11:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mrbmaryam/SFT_F4
mrbmaryam
2025-06-25T03:11:37Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-v0.3-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-25T03:11:26Z
--- base_model: unsloth/mistral-7b-v0.3-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** mrbmaryam - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
pratyushmathur/q-FrozenLake-v1-4x4-noSlippery
pratyushmathur
2025-06-25T03:11:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-25T03:09:31Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="pratyushmathur/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Daniel-xue/uuu_fine_tune_taipower
Daniel-xue
2025-06-25T03:09:09Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:24:04Z
--- license: apache-2.0 ---
John6666/illustrious-semi-realistic-anime-v30-sdxl
John6666
2025-06-25T03:08:54Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "realistic", "semi-realistic", "girls", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-06-25T03:02:46Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - realistic - semi-realistic - girls - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/1711896/illustrious-semi-realistic-anime?modelVersionId=1937224). This model created by [shishu21](https://civitai.com/user/shishu21).
NamVo/mini_r1_unsloth_lora128
NamVo
2025-06-25T03:08:11Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "trl", "grpo", "arxiv:2402.03300", "endpoints_compatible", "region:us" ]
null
2025-06-25T03:07:21Z
--- base_model: unsloth/qwen2.5-1.5b-instruct-unsloth-bnb-4bit library_name: transformers model_name: mini_r1_unsloth_lora128 tags: - generated_from_trainer - unsloth - trl - grpo licence: license --- # Model Card for mini_r1_unsloth_lora128 This model is a fine-tuned version of [unsloth/qwen2.5-1.5b-instruct-unsloth-bnb-4bit](https://huggingface.co/unsloth/qwen2.5-1.5b-instruct-unsloth-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="NamVo/mini_r1_unsloth_lora128", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/nvoz1812/huggingface/runs/vbjrbue6) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.2 - Transformers: 4.52.4 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
CHIANG0903/uuu_fine_tune_taipower
CHIANG0903
2025-06-25T03:07:23Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:49:18Z
--- license: apache-2.0 ---
New-videos-ola-electric-viral-video-Clips/FULL.VIDEO.ola-electric.Viral.Video.Tutorial.Official
New-videos-ola-electric-viral-video-Clips
2025-06-25T03:06:16Z
0
0
null
[ "region:us" ]
null
2025-06-25T03:06:02Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
mlx-community/Cydonia-24B-v3.1-8bit
mlx-community
2025-06-25T03:03:22Z
0
0
mlx
[ "mlx", "safetensors", "mistral", "text-generation", "base_model:TheDrummer/Cydonia-24B-v3.1", "base_model:quantized:TheDrummer/Cydonia-24B-v3.1", "8-bit", "region:us" ]
text-generation
2025-06-25T02:55:58Z
--- base_model: TheDrummer/Cydonia-24B-v3.1 tags: - mlx pipeline_tag: text-generation library_name: mlx --- # mlx-community/Cydonia-24B-v3.1-8bit This model [mlx-community/Cydonia-24B-v3.1-8bit](https://huggingface.co/mlx-community/Cydonia-24B-v3.1-8bit) was converted to MLX format from [TheDrummer/Cydonia-24B-v3.1](https://huggingface.co/TheDrummer/Cydonia-24B-v3.1) using mlx-lm version **0.25.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Cydonia-24B-v3.1-8bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
iwagoro/layoutlm-docbank
iwagoro
2025-06-25T03:03:03Z
0
0
null
[ "tensorboard", "safetensors", "layoutlm", "generated_from_trainer", "base_model:microsoft/layoutlm-base-uncased", "base_model:finetune:microsoft/layoutlm-base-uncased", "license:mit", "region:us" ]
null
2025-06-23T16:37:55Z
--- license: mit base_model: microsoft/layoutlm-base-uncased tags: - generated_from_trainer model-index: - name: layoutlm-docbank results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-docbank This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2981 - Able: {'precision': 0.7228813559322034, 'recall': 0.8229618909792571, 'f1': 0.7696819309722536, 'number': 2073} - Aption: {'precision': 0.8535364768683275, 'recall': 0.8798578470709618, 'f1': 0.8664973186565058, 'number': 8723} - Aragraph: {'precision': 0.7315439151833142, 'recall': 0.7769411439624205, 'f1': 0.7535594242387018, 'number': 43428} - Ate: {'precision': 0.8031088082901554, 'recall': 0.8333333333333334, 'f1': 0.8179419525065963, 'number': 186} - Bstract: {'precision': 0.9137055837563451, 'recall': 0.9399477806788512, 'f1': 0.9266409266409267, 'number': 2298} - Ection: {'precision': 0.9108754155453538, 'recall': 0.9432786885245902, 'f1': 0.9267939115728436, 'number': 6100} - Eference: {'precision': 0.5945041816009558, 'recall': 0.7409172126265634, 'f1': 0.6596844756728092, 'number': 3358} - Igure: {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1': 0.9969604863221885, 'number': 986} - Ist: {'precision': 0.6354533152909337, 'recall': 0.693853427895981, 'f1': 0.6633705325610961, 'number': 3384} - Itle: {'precision': 0.8534278959810875, 'recall': 0.8356481481481481, 'f1': 0.8444444444444444, 'number': 864} - Ooter: {'precision': 0.6076190476190476, 'recall': 0.7057522123893806, 'f1': 0.6530194472876152, 'number': 452} - Quation: {'precision': 0.6943667406192727, 'recall': 0.7324481074481074, 'f1': 0.7128992324832879, 'number': 19656} - Uthor: {'precision': 0.5667556742323098, 'recall': 0.616557734204793, 'f1': 0.5906086956521739, 'number': 1377} - Overall Precision: 0.7417 - Overall Recall: 0.7891 - Overall F1: 0.7647 - Overall Accuracy: 0.9639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Able | Aption | Aragraph | Ate | Bstract | Ection | Eference | Igure | Ist | Itle | Ooter | Quation | Uthor | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.2526 | 1.0 | 1876 | 0.1649 | {'precision': 0.4146422628951747, 'recall': 0.6010612638687892, 'f1': 0.4907443875541552, 'number': 2073} | {'precision': 0.6553778613985576, 'recall': 0.7187894073139974, 'f1': 0.6856205576817933, 'number': 8723} | {'precision': 0.5402088876533895, 'recall': 0.6264621902919775, 'f1': 0.5801471372214522, 'number': 43428} | {'precision': 0.7005649717514124, 'recall': 0.6666666666666666, 'f1': 0.6831955922865013, 'number': 186} | {'precision': 0.7803265940902022, 'recall': 0.8733681462140992, 'f1': 0.8242299794661191, 'number': 2298} | {'precision': 0.8863070539419087, 'recall': 0.8754098360655738, 'f1': 0.8808247422680412, 'number': 6100} | {'precision': 0.5497456189937818, 'recall': 0.5792138177486599, 'f1': 0.5640951276102087, 'number': 3358} | {'precision': 0.9828801611278952, 'recall': 0.9898580121703854, 'f1': 0.9863567458312278, 'number': 986} | {'precision': 0.40529189416211675, 'recall': 0.5703309692671394, 'f1': 0.4738521973974957, 'number': 3384} | {'precision': 0.7797202797202797, 'recall': 0.7743055555555556, 'f1': 0.7770034843205574, 'number': 864} | {'precision': 0.17008797653958943, 'recall': 0.12831858407079647, 'f1': 0.1462799495586381, 'number': 452} | {'precision': 0.538917549099466, 'recall': 0.6058709808709809, 'f1': 0.5704363653781674, 'number': 19656} | {'precision': 0.2181916621548457, 'recall': 0.2926652142338417, 'f1': 0.25, 'number': 1377} | 0.5660 | 0.6469 | 0.6038 | 0.9444 | | 0.1508 | 2.0 | 3752 | 0.1490 | {'precision': 0.5242351323478859, 'recall': 0.7356488181379643, 'f1': 0.6122039341629867, 'number': 2073} | {'precision': 0.7619706320493722, 'recall': 0.8209331651954602, 'f1': 0.7903537332376801, 'number': 8723} | {'precision': 0.5979018162780395, 'recall': 0.6837293911761997, 'f1': 0.6379417767751638, 'number': 43428} | {'precision': 0.5978260869565217, 'recall': 0.8870967741935484, 'f1': 0.7142857142857144, 'number': 186} | {'precision': 0.8250298923874053, 'recall': 0.9007832898172323, 'f1': 0.8612440191387559, 'number': 2298} | {'precision': 0.8531830642704843, 'recall': 0.9183606557377049, 'f1': 0.8845728722564344, 'number': 6100} | {'precision': 0.6411569749924676, 'recall': 0.6337105419892793, 'f1': 0.6374120113823574, 'number': 3358} | {'precision': 0.987891019172553, 'recall': 0.9929006085192698, 'f1': 0.9903894790085989, 'number': 986} | {'precision': 0.458251953125, 'recall': 0.5546690307328606, 'f1': 0.5018716577540108, 'number': 3384} | {'precision': 0.7446808510638298, 'recall': 0.7696759259259259, 'f1': 0.7569721115537849, 'number': 864} | {'precision': 0.5972850678733032, 'recall': 0.584070796460177, 'f1': 0.5906040268456375, 'number': 452} | {'precision': 0.5535211267605634, 'recall': 0.6597985347985348, 'f1': 0.6020052917420973, 'number': 19656} | {'precision': 0.2989556135770235, 'recall': 0.33260711692084244, 'f1': 0.31488484015125473, 'number': 1377} | 0.6183 | 0.7058 | 0.6592 | 0.9525 | | 0.1176 | 3.0 | 5628 | 0.1530 | {'precision': 0.5526420341676599, 'recall': 0.6710082006753497, 'f1': 0.6061002178649237, 'number': 2073} | {'precision': 0.7773131767985418, 'recall': 0.8311360770377164, 'f1': 0.8033240997229917, 'number': 8723} | {'precision': 0.6078152985889651, 'recall': 0.6407617205489546, 'f1': 0.6238538280461833, 'number': 43428} | {'precision': 0.5854545454545454, 'recall': 0.8655913978494624, 'f1': 0.6984815618221257, 'number': 186} | {'precision': 0.8378161380971497, 'recall': 0.9081810269799826, 'f1': 0.8715807057840885, 'number': 2298} | {'precision': 0.8598871779234639, 'recall': 0.9245901639344263, 'f1': 0.8910656449956552, 'number': 6100} | {'precision': 0.5440832249674903, 'recall': 0.6229898749255509, 'f1': 0.5808690823268083, 'number': 3358} | {'precision': 0.9929292929292929, 'recall': 0.9969574036511156, 'f1': 0.9949392712550607, 'number': 986} | {'precision': 0.39487179487179486, 'recall': 0.45508274231678486, 'f1': 0.42284459088412957, 'number': 3384} | {'precision': 0.6833667334669339, 'recall': 0.7893518518518519, 'f1': 0.7325456498388828, 'number': 864} | {'precision': 0.43794579172610554, 'recall': 0.6792035398230089, 'f1': 0.5325238508239375, 'number': 452} | {'precision': 0.5741028804376977, 'recall': 0.5445156695156695, 'f1': 0.5589179874148149, 'number': 19656} | {'precision': 0.3929008567931457, 'recall': 0.4662309368191721, 'f1': 0.4264363998671538, 'number': 1377} | 0.6277 | 0.6600 | 0.6435 | 0.9527 | | 0.0871 | 4.0 | 7504 | 0.1564 | {'precision': 0.6151919866444073, 'recall': 0.7110467920887602, 'f1': 0.6596554038934884, 'number': 2073} | {'precision': 0.7617387738363748, 'recall': 0.8517711796400321, 'f1': 0.8042431130594794, 'number': 8723} | {'precision': 0.6353752874764792, 'recall': 0.6997789444597955, 'f1': 0.6660238006530934, 'number': 43428} | {'precision': 0.6217228464419475, 'recall': 0.8924731182795699, 'f1': 0.7328918322295807, 'number': 186} | {'precision': 0.8827993254637436, 'recall': 0.9112271540469974, 'f1': 0.8967880085653105, 'number': 2298} | {'precision': 0.8789195901893821, 'recall': 0.9281967213114755, 'f1': 0.9028863020251954, 'number': 6100} | {'precision': 0.5240302512808002, 'recall': 0.6396664681357951, 'f1': 0.5761029904787448, 'number': 3358} | {'precision': 0.9828629032258065, 'recall': 0.9888438133874239, 'f1': 0.9858442871587463, 'number': 986} | {'precision': 0.48228571428571426, 'recall': 0.6235224586288416, 'f1': 0.5438845212011857, 'number': 3384} | {'precision': 0.8669301712779973, 'recall': 0.7615740740740741, 'f1': 0.8108441158348736, 'number': 864} | {'precision': 0.542016806722689, 'recall': 0.5707964601769911, 'f1': 0.5560344827586207, 'number': 452} | {'precision': 0.6165904637491836, 'recall': 0.6723646723646723, 'f1': 0.6432708688245315, 'number': 19656} | {'precision': 0.46214852198990625, 'recall': 0.46550472040668117, 'f1': 0.4638205499276411, 'number': 1377} | 0.6553 | 0.7237 | 0.6878 | 0.9542 | | 0.0676 | 5.0 | 9380 | 0.1583 | {'precision': 0.6492985971943888, 'recall': 0.7814761215629522, 'f1': 0.7092819614711033, 'number': 2073} | {'precision': 0.8149818501814982, 'recall': 0.8493637510030952, 'f1': 0.8318176714943303, 'number': 8723} | {'precision': 0.6827026670477782, 'recall': 0.7149765128488533, 'f1': 0.6984669718476194, 'number': 43428} | {'precision': 0.9294871794871795, 'recall': 0.7795698924731183, 'f1': 0.847953216374269, 'number': 186} | {'precision': 0.8599190283400809, 'recall': 0.9242819843342036, 'f1': 0.890939597315436, 'number': 2298} | {'precision': 0.8848062015503876, 'recall': 0.9355737704918032, 'f1': 0.9094820717131474, 'number': 6100} | {'precision': 0.5955380577427821, 'recall': 0.6756998213222156, 'f1': 0.6330915178571428, 'number': 3358} | {'precision': 0.992936427850656, 'recall': 0.9979716024340771, 'f1': 0.9954476479514417, 'number': 986} | {'precision': 0.5794343113930743, 'recall': 0.6477541371158393, 'f1': 0.6116924794195621, 'number': 3384} | {'precision': 0.8134243458475541, 'recall': 0.8275462962962963, 'f1': 0.8204245553643145, 'number': 864} | {'precision': 0.6065573770491803, 'recall': 0.6548672566371682, 'f1': 0.6297872340425531, 'number': 452} | {'precision': 0.6497243107769424, 'recall': 0.6594424094424094, 'f1': 0.654547290814523, 'number': 19656} | {'precision': 0.46639784946236557, 'recall': 0.5039941902687001, 'f1': 0.4844677137870855, 'number': 1377} | 0.6989 | 0.7339 | 0.7160 | 0.9598 | | 0.0512 | 6.0 | 11256 | 0.1844 | {'precision': 0.645, 'recall': 0.7467438494934877, 'f1': 0.6921529175050302, 'number': 2073} | {'precision': 0.8094872076424728, 'recall': 0.8451220910237304, 'f1': 0.8269209197980932, 'number': 8723} | {'precision': 0.6710134048257372, 'recall': 0.7204107948788799, 'f1': 0.6948352636780563, 'number': 43428} | {'precision': 0.6753246753246753, 'recall': 0.8387096774193549, 'f1': 0.7482014388489209, 'number': 186} | {'precision': 0.8834745762711864, 'recall': 0.9073107049608355, 'f1': 0.8952340060111635, 'number': 2298} | {'precision': 0.9024081115335868, 'recall': 0.9337704918032786, 'f1': 0.9178214631002256, 'number': 6100} | {'precision': 0.4868008948545861, 'recall': 0.6480047647409172, 'f1': 0.5559529892692898, 'number': 3358} | {'precision': 0.9929292929292929, 'recall': 0.9969574036511156, 'f1': 0.9949392712550607, 'number': 986} | {'precision': 0.5424300867888139, 'recall': 0.6648936170212766, 'f1': 0.5974508762612852, 'number': 3384} | {'precision': 0.7554179566563467, 'recall': 0.8472222222222222, 'f1': 0.7986906710310966, 'number': 864} | {'precision': 0.6563981042654028, 'recall': 0.6128318584070797, 'f1': 0.6338672768878719, 'number': 452} | {'precision': 0.650782911270056, 'recall': 0.685083435083435, 'f1': 0.6674928125309805, 'number': 19656} | {'precision': 0.4430835734870317, 'recall': 0.4466230936819172, 'f1': 0.4448462929475588, 'number': 1377} | 0.6856 | 0.7390 | 0.7113 | 0.9578 | | 0.0389 | 7.0 | 13132 | 0.2002 | {'precision': 0.6875749101078705, 'recall': 0.8301977809937289, 'f1': 0.7521853146853146, 'number': 2073} | {'precision': 0.798666243251826, 'recall': 0.8649547174137338, 'f1': 0.8304898183819481, 'number': 8723} | {'precision': 0.6971504451749134, 'recall': 0.7374274661508704, 'f1': 0.7167235494880546, 'number': 43428} | {'precision': 0.774869109947644, 'recall': 0.7956989247311828, 'f1': 0.7851458885941645, 'number': 186} | {'precision': 0.8827004219409282, 'recall': 0.9103568320278503, 'f1': 0.8963153384747214, 'number': 2298} | {'precision': 0.9097432626375379, 'recall': 0.9352459016393443, 'f1': 0.9223183251151887, 'number': 6100} | {'precision': 0.6794092093831451, 'recall': 0.6986301369863014, 'f1': 0.6888856261929232, 'number': 3358} | {'precision': 0.9959473150962512, 'recall': 0.9969574036511156, 'f1': 0.9964521033958439, 'number': 986} | {'precision': 0.5793751587503175, 'recall': 0.6740543735224587, 'f1': 0.6231389154487093, 'number': 3384} | {'precision': 0.834128878281623, 'recall': 0.8090277777777778, 'f1': 0.8213866039952996, 'number': 864} | {'precision': 0.6046511627906976, 'recall': 0.6327433628318584, 'f1': 0.6183783783783783, 'number': 452} | {'precision': 0.6526806526806527, 'recall': 0.698005698005698, 'f1': 0.6745826880055068, 'number': 19656} | {'precision': 0.46461949265687585, 'recall': 0.5054466230936819, 'f1': 0.4841739130434783, 'number': 1377} | 0.7101 | 0.7563 | 0.7325 | 0.9579 | | 0.0281 | 8.0 | 15008 | 0.2068 | {'precision': 0.7080638206123329, 'recall': 0.7920887602508442, 'f1': 0.7477231329690345, 'number': 2073} | {'precision': 0.8085677474769165, 'recall': 0.8633497649891092, 'f1': 0.8350612629594723, 'number': 8723} | {'precision': 0.7156752540662064, 'recall': 0.7183614258082344, 'f1': 0.7170158241303624, 'number': 43428} | {'precision': 0.578397212543554, 'recall': 0.8924731182795699, 'f1': 0.7019027484143764, 'number': 186} | {'precision': 0.8733221476510067, 'recall': 0.9060052219321149, 'f1': 0.8893635198633062, 'number': 2298} | {'precision': 0.9074427480916031, 'recall': 0.9354098360655738, 'f1': 0.9212140781401356, 'number': 6100} | {'precision': 0.6934523809523809, 'recall': 0.6938653960690887, 'f1': 0.6936588270318546, 'number': 3358} | {'precision': 0.9979736575481256, 'recall': 0.9989858012170385, 'f1': 0.9984794728839331, 'number': 986} | {'precision': 0.5753681392235609, 'recall': 0.6350472813238771, 'f1': 0.6037364798426745, 'number': 3384} | {'precision': 0.8312958435207825, 'recall': 0.7870370370370371, 'f1': 0.8085612366230678, 'number': 864} | {'precision': 0.5778688524590164, 'recall': 0.6238938053097345, 'f1': 0.6, 'number': 452} | {'precision': 0.693010752688172, 'recall': 0.6557794057794057, 'f1': 0.6738812212463404, 'number': 19656} | {'precision': 0.5053262316910786, 'recall': 0.55119825708061, 'f1': 0.5272664119485932, 'number': 1377} | 0.7302 | 0.7364 | 0.7333 | 0.9604 | | 0.0222 | 9.0 | 16884 | 0.2193 | {'precision': 0.6235811058220432, 'recall': 0.8215147129763628, 'f1': 0.708992506244796, 'number': 2073} | {'precision': 0.8264917003140422, 'recall': 0.8447781726470251, 'f1': 0.8355348942683827, 'number': 8723} | {'precision': 0.7017585809621112, 'recall': 0.7433683337938657, 'f1': 0.7219644194965952, 'number': 43428} | {'precision': 0.90625, 'recall': 0.7795698924731183, 'f1': 0.838150289017341, 'number': 186} | {'precision': 0.8704156479217604, 'recall': 0.9295039164490861, 'f1': 0.898989898989899, 'number': 2298} | {'precision': 0.9143317230273752, 'recall': 0.9308196721311476, 'f1': 0.922502030869212, 'number': 6100} | {'precision': 0.5801470588235295, 'recall': 0.704883859440143, 'f1': 0.6364614143586985, 'number': 3358} | {'precision': 0.9949443882709808, 'recall': 0.9979716024340771, 'f1': 0.9964556962025316, 'number': 986} | {'precision': 0.6149458071876782, 'recall': 0.6371158392434988, 'f1': 0.6258345428156749, 'number': 3384} | {'precision': 0.8431137724550898, 'recall': 0.8148148148148148, 'f1': 0.8287227781047676, 'number': 864} | {'precision': 0.6629711751662971, 'recall': 0.661504424778761, 'f1': 0.6622369878183831, 'number': 452} | {'precision': 0.6730908214887978, 'recall': 0.7107244607244607, 'f1': 0.6913959070550098, 'number': 19656} | {'precision': 0.5108055009823183, 'recall': 0.5664488017429193, 'f1': 0.537190082644628, 'number': 1377} | 0.7156 | 0.7598 | 0.7371 | 0.9596 | | 0.0162 | 10.0 | 18760 | 0.2114 | {'precision': 0.6486062033765214, 'recall': 0.7969126869271587, 'f1': 0.7151515151515152, 'number': 2073} | {'precision': 0.8267941532036488, 'recall': 0.8624326493178952, 'f1': 0.8442374593199417, 'number': 8723} | {'precision': 0.7077005538681437, 'recall': 0.7296674956249425, 'f1': 0.7185161670672531, 'number': 43428} | {'precision': 0.9085365853658537, 'recall': 0.8010752688172043, 'f1': 0.8514285714285714, 'number': 186} | {'precision': 0.844675740592474, 'recall': 0.918189730200174, 'f1': 0.8798999165971642, 'number': 2298} | {'precision': 0.9145987753786659, 'recall': 0.9304918032786885, 'f1': 0.9224768405655778, 'number': 6100} | {'precision': 0.5639344262295082, 'recall': 0.6658725431804645, 'f1': 0.6106786835996176, 'number': 3358} | {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1': 0.9969604863221885, 'number': 986} | {'precision': 0.6411883472743005, 'recall': 0.6569148936170213, 'f1': 0.6489563567362429, 'number': 3384} | {'precision': 0.8991935483870968, 'recall': 0.7743055555555556, 'f1': 0.832089552238806, 'number': 864} | {'precision': 0.5370018975332068, 'recall': 0.6261061946902655, 'f1': 0.5781409601634322, 'number': 452} | {'precision': 0.6896913159687648, 'recall': 0.6695156695156695, 'f1': 0.6794537522265535, 'number': 19656} | {'precision': 0.5298196948682385, 'recall': 0.5548293391430646, 'f1': 0.5420361830436324, 'number': 1377} | 0.7237 | 0.7441 | 0.7338 | 0.9611 | | 0.0138 | 11.0 | 20636 | 0.2391 | {'precision': 0.664185277088503, 'recall': 0.7747226242161119, 'f1': 0.7152081941661101, 'number': 2073} | {'precision': 0.8144112087178917, 'recall': 0.8396193969964462, 'f1': 0.8268232106570332, 'number': 8723} | {'precision': 0.7044044130322358, 'recall': 0.7527401676337847, 'f1': 0.7277706042121198, 'number': 43428} | {'precision': 0.8324022346368715, 'recall': 0.8010752688172043, 'f1': 0.8164383561643834, 'number': 186} | {'precision': 0.8978132884777124, 'recall': 0.9290687554395126, 'f1': 0.9131736526946108, 'number': 2298} | {'precision': 0.9141269841269841, 'recall': 0.9440983606557377, 'f1': 0.9288709677419354, 'number': 6100} | {'precision': 0.5543908688562776, 'recall': 0.7087552114353782, 'f1': 0.6221408966148216, 'number': 3358} | {'precision': 0.9949494949494949, 'recall': 0.9989858012170385, 'f1': 0.9969635627530363, 'number': 986} | {'precision': 0.5981259760541384, 'recall': 0.6790780141843972, 'f1': 0.6360365347356767, 'number': 3384} | {'precision': 0.8146453089244852, 'recall': 0.8240740740740741, 'f1': 0.8193325661680093, 'number': 864} | {'precision': 0.6401673640167364, 'recall': 0.6769911504424779, 'f1': 0.6580645161290323, 'number': 452} | {'precision': 0.6891924859721883, 'recall': 0.7186100936100936, 'f1': 0.7035939329032901, 'number': 19656} | {'precision': 0.530638852672751, 'recall': 0.5911401597676107, 'f1': 0.5592579869460667, 'number': 1377} | 0.7187 | 0.7674 | 0.7423 | 0.9601 | | 0.0099 | 12.0 | 22512 | 0.2190 | {'precision': 0.5986635220125787, 'recall': 0.7346840328027014, 'f1': 0.6597357591509638, 'number': 2073} | {'precision': 0.8261346196009647, 'recall': 0.863922962283618, 'f1': 0.844606332305968, 'number': 8723} | {'precision': 0.7126507076708021, 'recall': 0.7513125172699641, 'f1': 0.7314711025422589, 'number': 43428} | {'precision': 0.8630952380952381, 'recall': 0.7795698924731183, 'f1': 0.8192090395480226, 'number': 186} | {'precision': 0.8786008230452675, 'recall': 0.9290687554395126, 'f1': 0.9031302876480541, 'number': 2298} | {'precision': 0.8979878334113243, 'recall': 0.9437704918032787, 'f1': 0.9203101270881625, 'number': 6100} | {'precision': 0.5727510087823404, 'recall': 0.7185824895771292, 'f1': 0.6374323074891033, 'number': 3358} | {'precision': 0.9969604863221885, 'recall': 0.9979716024340771, 'f1': 0.9974657881398886, 'number': 986} | {'precision': 0.6077103412346966, 'recall': 0.6894208037825059, 'f1': 0.6459919700955282, 'number': 3384} | {'precision': 0.8236632536973834, 'recall': 0.8379629629629629, 'f1': 0.8307515777395296, 'number': 864} | {'precision': 0.6161417322834646, 'recall': 0.6924778761061947, 'f1': 0.6520833333333333, 'number': 452} | {'precision': 0.705915521837195, 'recall': 0.7006003256003256, 'f1': 0.7032478807067715, 'number': 19656} | {'precision': 0.4981527093596059, 'recall': 0.5875090777051561, 'f1': 0.5391536154615129, 'number': 1377} | 0.7251 | 0.7652 | 0.7446 | 0.9624 | | 0.0084 | 13.0 | 24388 | 0.2592 | {'precision': 0.6832247557003257, 'recall': 0.8094548962855764, 'f1': 0.741002428792228, 'number': 2073} | {'precision': 0.8483670295489891, 'recall': 0.8755015476326952, 'f1': 0.8617207334273626, 'number': 8723} | {'precision': 0.7274626600284495, 'recall': 0.7536612323846367, 'f1': 0.7403302420266908, 'number': 43428} | {'precision': 0.8361581920903954, 'recall': 0.7956989247311828, 'f1': 0.815426997245179, 'number': 186} | {'precision': 0.9015565839293227, 'recall': 0.9325500435161009, 'f1': 0.9167914438502675, 'number': 2298} | {'precision': 0.9054671498345676, 'recall': 0.9421311475409836, 'f1': 0.9234353659516349, 'number': 6100} | {'precision': 0.6139511458071015, 'recall': 0.726027397260274, 'f1': 0.6653022240414791, 'number': 3358} | {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1': 0.9969604863221885, 'number': 986} | {'precision': 0.6385964912280702, 'recall': 0.6453900709219859, 'f1': 0.6419753086419754, 'number': 3384} | {'precision': 0.7660223804679552, 'recall': 0.8715277777777778, 'f1': 0.8153762858689767, 'number': 864} | {'precision': 0.6666666666666666, 'recall': 0.6548672566371682, 'f1': 0.6607142857142857, 'number': 452} | {'precision': 0.6978891162233645, 'recall': 0.7114875864875865, 'f1': 0.7046227484569845, 'number': 19656} | {'precision': 0.5463768115942029, 'recall': 0.5475671750181554, 'f1': 0.5469713456655786, 'number': 1377} | 0.7401 | 0.7695 | 0.7545 | 0.9625 | | 0.0073 | 14.0 | 26264 | 0.2561 | {'precision': 0.7177685950413223, 'recall': 0.8379160636758322, 'f1': 0.7732027598486534, 'number': 2073} | {'precision': 0.8424081451969898, 'recall': 0.8726355611601513, 'f1': 0.857255476096627, 'number': 8723} | {'precision': 0.7259802747599661, 'recall': 0.7678226029289859, 'f1': 0.7463154242997349, 'number': 43428} | {'precision': 0.8418079096045198, 'recall': 0.8010752688172043, 'f1': 0.8209366391184573, 'number': 186} | {'precision': 0.8990787269681743, 'recall': 0.9342906875543951, 'f1': 0.9163465642338883, 'number': 2298} | {'precision': 0.9077385662288336, 'recall': 0.940327868852459, 'f1': 0.9237458732587165, 'number': 6100} | {'precision': 0.653671562082777, 'recall': 0.7290053603335319, 'f1': 0.6892862170913698, 'number': 3358} | {'precision': 0.9929292929292929, 'recall': 0.9969574036511156, 'f1': 0.9949392712550607, 'number': 986} | {'precision': 0.6193029490616622, 'recall': 0.6826241134751773, 'f1': 0.649423671633399, 'number': 3384} | {'precision': 0.7925531914893617, 'recall': 0.8622685185185185, 'f1': 0.8259423503325941, 'number': 864} | {'precision': 0.6074950690335306, 'recall': 0.6814159292035398, 'f1': 0.6423357664233577, 'number': 452} | {'precision': 0.6859747275007234, 'recall': 0.7235958485958486, 'f1': 0.7042832384253528, 'number': 19656} | {'precision': 0.5440105890138981, 'recall': 0.5969498910675382, 'f1': 0.569252077562327, 'number': 1377} | 0.7372 | 0.7812 | 0.7586 | 0.9625 | | 0.0052 | 15.0 | 28140 | 0.2620 | {'precision': 0.7276975361087511, 'recall': 0.8263386396526773, 'f1': 0.7738875084707477, 'number': 2073} | {'precision': 0.8463771352015184, 'recall': 0.869081737934197, 'f1': 0.857579185520362, 'number': 8723} | {'precision': 0.7304345910702879, 'recall': 0.7635857050750667, 'f1': 0.7466423497360037, 'number': 43428} | {'precision': 0.6781115879828327, 'recall': 0.8494623655913979, 'f1': 0.7541766109785203, 'number': 186} | {'precision': 0.8993736951983299, 'recall': 0.9373368146214099, 'f1': 0.9179629235030897, 'number': 2298} | {'precision': 0.9117043121149897, 'recall': 0.9462295081967214, 'f1': 0.9286461266189365, 'number': 6100} | {'precision': 0.6430079155672823, 'recall': 0.7257296009529481, 'f1': 0.6818690542809177, 'number': 3358} | {'precision': 0.9949392712550608, 'recall': 0.9969574036511156, 'f1': 0.9959473150962513, 'number': 986} | {'precision': 0.6221982176613556, 'recall': 0.6808510638297872, 'f1': 0.6502045999717792, 'number': 3384} | {'precision': 0.7815126050420168, 'recall': 0.8611111111111112, 'f1': 0.8193832599118943, 'number': 864} | {'precision': 0.5786713286713286, 'recall': 0.7323008849557522, 'f1': 0.6464843749999999, 'number': 452} | {'precision': 0.7015840321710558, 'recall': 0.7278184778184779, 'f1': 0.7144605089020399, 'number': 19656} | {'precision': 0.5367936925098554, 'recall': 0.5933188090050835, 'f1': 0.5636426353915143, 'number': 1377} | 0.7425 | 0.7801 | 0.7609 | 0.9624 | | 0.0042 | 16.0 | 30016 | 0.2755 | {'precision': 0.697255223269152, 'recall': 0.8210323203087313, 'f1': 0.7540983606557377, 'number': 2073} | {'precision': 0.8434147959747871, 'recall': 0.8743551530436776, 'f1': 0.858606326691433, 'number': 8723} | {'precision': 0.7236266459774574, 'recall': 0.7731647784839274, 'f1': 0.7475759498602902, 'number': 43428} | {'precision': 0.8277777777777777, 'recall': 0.8010752688172043, 'f1': 0.8142076502732241, 'number': 186} | {'precision': 0.9060402684563759, 'recall': 0.9399477806788512, 'f1': 0.922682614267407, 'number': 2298} | {'precision': 0.9122500793398921, 'recall': 0.9424590163934427, 'f1': 0.9271085308821158, 'number': 6100} | {'precision': 0.6392307692307693, 'recall': 0.7424061941631924, 'f1': 0.6869661063653899, 'number': 3358} | {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1': 0.9969604863221885, 'number': 986} | {'precision': 0.6294667399670149, 'recall': 0.6767139479905437, 'f1': 0.6522358302477927, 'number': 3384} | {'precision': 0.8457943925233645, 'recall': 0.8379629629629629, 'f1': 0.8418604651162791, 'number': 864} | {'precision': 0.5521885521885522, 'recall': 0.7256637168141593, 'f1': 0.6271510516252391, 'number': 452} | {'precision': 0.6809746954076851, 'recall': 0.7393162393162394, 'f1': 0.7089472143623768, 'number': 19656} | {'precision': 0.5562870309414089, 'recall': 0.6136528685548294, 'f1': 0.5835635359116023, 'number': 1377} | 0.7346 | 0.7876 | 0.7602 | 0.9623 | | 0.0033 | 17.0 | 31892 | 0.2743 | {'precision': 0.7272325375773652, 'recall': 0.7935359382537386, 'f1': 0.7589388696655133, 'number': 2073} | {'precision': 0.845837501389352, 'recall': 0.8724062822423478, 'f1': 0.8589164785553048, 'number': 8723} | {'precision': 0.7257006300238975, 'recall': 0.7691811734364926, 'f1': 0.7468085582060856, 'number': 43428} | {'precision': 0.8869047619047619, 'recall': 0.8010752688172043, 'f1': 0.8418079096045197, 'number': 186} | {'precision': 0.9024800336275746, 'recall': 0.9342906875543951, 'f1': 0.9181098995082317, 'number': 2298} | {'precision': 0.9123361238350971, 'recall': 0.9468852459016394, 'f1': 0.9292896790282358, 'number': 6100} | {'precision': 0.5567105567105567, 'recall': 0.7176891006551519, 'f1': 0.6270326525302459, 'number': 3358} | {'precision': 0.993933265925177, 'recall': 0.9969574036511156, 'f1': 0.9954430379746836, 'number': 986} | {'precision': 0.6185107498689041, 'recall': 0.6971040189125296, 'f1': 0.6554598499583218, 'number': 3384} | {'precision': 0.8841309823677582, 'recall': 0.8125, 'f1': 0.8468033775633294, 'number': 864} | {'precision': 0.6304347826086957, 'recall': 0.7057522123893806, 'f1': 0.6659707724425887, 'number': 452} | {'precision': 0.7017227075301352, 'recall': 0.7315323565323565, 'f1': 0.7163175330659826, 'number': 19656} | {'precision': 0.5604838709677419, 'recall': 0.6056644880174292, 'f1': 0.5821989528795811, 'number': 1377} | 0.7377 | 0.7829 | 0.7596 | 0.9630 | | 0.003 | 18.0 | 33768 | 0.2938 | {'precision': 0.7085594989561587, 'recall': 0.818620356970574, 'f1': 0.7596239928379588, 'number': 2073} | {'precision': 0.8580645161290322, 'recall': 0.869081737934197, 'f1': 0.8635379883813646, 'number': 8723} | {'precision': 0.7304742970746947, 'recall': 0.7699180252371741, 'f1': 0.7496776941962533, 'number': 43428} | {'precision': 0.6926406926406926, 'recall': 0.8602150537634409, 'f1': 0.7673860911270983, 'number': 186} | {'precision': 0.9013848090642048, 'recall': 0.9347258485639687, 'f1': 0.9177526169621877, 'number': 2298} | {'precision': 0.9117088607594936, 'recall': 0.9445901639344262, 'f1': 0.9278582930756843, 'number': 6100} | {'precision': 0.6144427786106946, 'recall': 0.7322811197141156, 'f1': 0.6682065217391304, 'number': 3358} | {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1': 0.9969604863221885, 'number': 986} | {'precision': 0.6367369285518751, 'recall': 0.6873522458628841, 'f1': 0.6610771635640187, 'number': 3384} | {'precision': 0.8362168396770473, 'recall': 0.8391203703703703, 'f1': 0.8376660889659157, 'number': 864} | {'precision': 0.6334661354581673, 'recall': 0.7035398230088495, 'f1': 0.6666666666666667, 'number': 452} | {'precision': 0.6995040357872216, 'recall': 0.7318884818884819, 'f1': 0.7153299189498284, 'number': 19656} | {'precision': 0.5398574206092028, 'recall': 0.6049382716049383, 'f1': 0.5705479452054795, 'number': 1377} | 0.7426 | 0.7839 | 0.7627 | 0.9631 | | 0.0025 | 19.0 | 35644 | 0.2990 | {'precision': 0.707874337005304, 'recall': 0.8369512783405693, 'f1': 0.7670203359858533, 'number': 2073} | {'precision': 0.8577489950870925, 'recall': 0.8806603232832741, 'f1': 0.8690536795067595, 'number': 8723} | {'precision': 0.7345506842151137, 'recall': 0.7762273187805103, 'f1': 0.7548141513658755, 'number': 43428} | {'precision': 0.8105263157894737, 'recall': 0.8279569892473119, 'f1': 0.8191489361702128, 'number': 186} | {'precision': 0.9, 'recall': 0.9399477806788512, 'f1': 0.9195402298850573, 'number': 2298} | {'precision': 0.908573236317621, 'recall': 0.9416393442622951, 'f1': 0.9248108195137659, 'number': 6100} | {'precision': 0.61839821472849, 'recall': 0.7427039904705182, 'f1': 0.6748748477878501, 'number': 3358} | {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1': 0.9969604863221885, 'number': 986} | {'precision': 0.6411716842961758, 'recall': 0.6985815602836879, 'f1': 0.6686465846414934, 'number': 3384} | {'precision': 0.8677184466019418, 'recall': 0.8275462962962963, 'f1': 0.8471563981042655, 'number': 864} | {'precision': 0.6414342629482072, 'recall': 0.7123893805309734, 'f1': 0.6750524109014675, 'number': 452} | {'precision': 0.6951624548736463, 'recall': 0.7347374847374848, 'f1': 0.7144023150552794, 'number': 19656} | {'precision': 0.5524115755627009, 'recall': 0.6238198983297023, 'f1': 0.5859481582537517, 'number': 1377} | 0.7443 | 0.7898 | 0.7664 | 0.9635 | | 0.0021 | 20.0 | 37520 | 0.2981 | {'precision': 0.7228813559322034, 'recall': 0.8229618909792571, 'f1': 0.7696819309722536, 'number': 2073} | {'precision': 0.8535364768683275, 'recall': 0.8798578470709618, 'f1': 0.8664973186565058, 'number': 8723} | {'precision': 0.7315439151833142, 'recall': 0.7769411439624205, 'f1': 0.7535594242387018, 'number': 43428} | {'precision': 0.8031088082901554, 'recall': 0.8333333333333334, 'f1': 0.8179419525065963, 'number': 186} | {'precision': 0.9137055837563451, 'recall': 0.9399477806788512, 'f1': 0.9266409266409267, 'number': 2298} | {'precision': 0.9108754155453538, 'recall': 0.9432786885245902, 'f1': 0.9267939115728436, 'number': 6100} | {'precision': 0.5945041816009558, 'recall': 0.7409172126265634, 'f1': 0.6596844756728092, 'number': 3358} | {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1': 0.9969604863221885, 'number': 986} | {'precision': 0.6354533152909337, 'recall': 0.693853427895981, 'f1': 0.6633705325610961, 'number': 3384} | {'precision': 0.8534278959810875, 'recall': 0.8356481481481481, 'f1': 0.8444444444444444, 'number': 864} | {'precision': 0.6076190476190476, 'recall': 0.7057522123893806, 'f1': 0.6530194472876152, 'number': 452} | {'precision': 0.6943667406192727, 'recall': 0.7324481074481074, 'f1': 0.7128992324832879, 'number': 19656} | {'precision': 0.5667556742323098, 'recall': 0.616557734204793, 'f1': 0.5906086956521739, 'number': 1377} | 0.7417 | 0.7891 | 0.7647 | 0.9639 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.15.1
std10012/uuu_fine_tune_taipower
std10012
2025-06-25T03:02:49Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:25:10Z
--- license: apache-2.0 ---
daixuancheng/sac_static0.4_constrainbyAdv_step160
daixuancheng
2025-06-25T03:02:21Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:37:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
johnnyyang0518/uuu_fine_tune_taipower
johnnyyang0518
2025-06-25T03:02:00Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T01:19:05Z
--- license: apache-2.0 ---
tracylu00200/uuu_fine_tune_taipower
tracylu00200
2025-06-25T03:01:41Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:31:47Z
--- license: apache-2.0 ---
Cameron914/uuu_fine_tune_taipower
Cameron914
2025-06-25T03:00:26Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T01:34:11Z
--- license: apache-2.0 ---
JS1016/uuu_fine_tune_taipower
JS1016
2025-06-25T02:59:23Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:25:52Z
--- license: apache-2.0 ---
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskSentence-1e-3_1092
luckeciano
2025-06-25T02:58:59Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-24T23:29:49Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskSentence-1e-3_1092 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskSentence-1e-3_1092 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-HessianMaskSentence-1e-3_1092", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/h13ebtuy) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
donoway/0634b9sk_20250624_005109
donoway
2025-06-25T02:58:43Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:adapter:meta-llama/Llama-3.2-1B", "license:llama3.2", "region:us" ]
null
2025-06-25T02:58:39Z
--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: 0634b9sk_20250624_005109 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0634b9sk_20250624_005109 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5751 - Model Preparation Time: 0.0086 - Move Accuracy: 0.3761 - Token Accuracy: 0.7780 - Accuracy: 0.3761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Move Accuracy | Token Accuracy | Accuracy | |:-------------:|:------:|:------:|:---------------:|:----------------------:|:-------------:|:--------------:|:--------:| | No log | 0 | 0 | 6.4123 | 0.0086 | 0.0 | 0.1049 | 0.0 | | 1.8037 | 0.0098 | 100 | 1.8310 | 0.0086 | 0.0023 | 0.2664 | 0.0023 | | 1.7656 | 0.0196 | 200 | 1.7195 | 0.0086 | 0.0064 | 0.3148 | 0.0064 | | 1.6675 | 0.0295 | 300 | 1.6926 | 0.0086 | 0.0085 | 0.3345 | 0.0085 | | 1.6154 | 0.0393 | 400 | 1.6505 | 0.0086 | 0.0159 | 0.3571 | 0.0159 | | 1.6371 | 0.0491 | 500 | 1.6237 | 0.0086 | 0.0162 | 0.3687 | 0.0162 | | 1.5638 | 0.0589 | 600 | 1.5819 | 0.0086 | 0.0209 | 0.3853 | 0.0209 | | 1.5692 | 0.0687 | 700 | 1.5489 | 0.0086 | 0.0269 | 0.3973 | 0.0269 | | 1.5507 | 0.0785 | 800 | 1.5243 | 0.0086 | 0.0334 | 0.4054 | 0.0334 | | 1.5213 | 0.0884 | 900 | 1.5079 | 0.0086 | 0.0375 | 0.4155 | 0.0375 | | 1.5039 | 0.0982 | 1000 | 1.4827 | 0.0086 | 0.0382 | 0.4231 | 0.0382 | | 1.4197 | 0.1080 | 1100 | 1.4383 | 0.0086 | 0.0473 | 0.4383 | 0.0473 | | 1.296 | 0.1178 | 1200 | 1.3687 | 0.0086 | 0.0567 | 0.4690 | 0.0567 | | 1.3415 | 0.1276 | 1300 | 1.3338 | 0.0086 | 0.0623 | 0.4862 | 0.0623 | | 1.2246 | 0.1374 | 1400 | 1.2532 | 0.0086 | 0.0721 | 0.5197 | 0.0721 | | 1.177 | 0.1473 | 1500 | 1.2068 | 0.0086 | 0.0863 | 0.5398 | 0.0863 | | 1.1295 | 0.1571 | 1600 | 1.1276 | 0.0086 | 0.0992 | 0.5699 | 0.0992 | | 1.0918 | 0.1669 | 1700 | 1.1150 | 0.0086 | 0.1059 | 0.5745 | 0.1059 | | 1.0785 | 0.1767 | 1800 | 1.0519 | 0.0086 | 0.1257 | 0.5980 | 0.1257 | | 0.968 | 0.1865 | 1900 | 1.0250 | 0.0086 | 0.1293 | 0.6063 | 0.1293 | | 0.9705 | 0.1963 | 2000 | 0.9932 | 0.0086 | 0.1374 | 0.6167 | 0.1374 | | 0.9839 | 0.2062 | 2100 | 0.9692 | 0.0086 | 0.1335 | 0.6206 | 0.1335 | | 1.024 | 0.2160 | 2200 | 0.9491 | 0.0086 | 0.1533 | 0.6323 | 0.1533 | | 1.0411 | 0.2258 | 2300 | 0.9453 | 0.0086 | 0.1455 | 0.6293 | 0.1455 | | 0.8448 | 0.2356 | 2400 | 0.9300 | 0.0086 | 0.1564 | 0.6409 | 0.1564 | | 0.8783 | 0.2454 | 2500 | 0.9057 | 0.0086 | 0.1543 | 0.6470 | 0.1543 | | 0.912 | 0.2553 | 2600 | 0.9013 | 0.0086 | 0.1570 | 0.6472 | 0.1570 | | 0.9678 | 0.2651 | 2700 | 0.8889 | 0.0086 | 0.1722 | 0.6538 | 0.1722 | | 0.8489 | 0.2749 | 2800 | 0.8712 | 0.0086 | 0.1740 | 0.6597 | 0.1740 | | 0.8058 | 0.2847 | 2900 | 0.8650 | 0.0086 | 0.1759 | 0.6586 | 0.1759 | | 0.836 | 0.2945 | 3000 | 0.8692 | 0.0086 | 0.1772 | 0.6602 | 0.1772 | | 0.8624 | 0.3043 | 3100 | 0.8441 | 0.0086 | 0.1829 | 0.6699 | 0.1829 | | 0.8044 | 0.3142 | 3200 | 0.8342 | 0.0086 | 0.1927 | 0.6742 | 0.1927 | | 0.8515 | 0.3240 | 3300 | 0.8218 | 0.0086 | 0.2025 | 0.6790 | 0.2025 | | 0.785 | 0.3338 | 3400 | 0.8334 | 0.0086 | 0.1852 | 0.6718 | 0.1852 | | 0.7539 | 0.3436 | 3500 | 0.8343 | 0.0086 | 0.1853 | 0.6710 | 0.1853 | | 0.8563 | 0.3534 | 3600 | 0.8293 | 0.0086 | 0.1958 | 0.6778 | 0.1958 | | 0.7276 | 0.3632 | 3700 | 0.8242 | 0.0086 | 0.1878 | 0.6749 | 0.1878 | | 0.8719 | 0.3731 | 3800 | 0.8272 | 0.0086 | 0.1907 | 0.6747 | 0.1907 | | 0.7652 | 0.3829 | 3900 | 0.8125 | 0.0086 | 0.1979 | 0.6780 | 0.1979 | | 0.8551 | 0.3927 | 4000 | 0.8166 | 0.0086 | 0.1974 | 0.6793 | 0.1974 | | 0.7497 | 0.4025 | 4100 | 0.7973 | 0.0086 | 0.2022 | 0.6851 | 0.2022 | | 0.7228 | 0.4123 | 4200 | 0.8029 | 0.0086 | 0.1916 | 0.6789 | 0.1916 | | 0.7847 | 0.4221 | 4300 | 0.7937 | 0.0086 | 0.2073 | 0.6881 | 0.2073 | | 0.8106 | 0.4320 | 4400 | 0.8028 | 0.0086 | 0.2006 | 0.6820 | 0.2006 | | 0.7863 | 0.4418 | 4500 | 0.7828 | 0.0086 | 0.2115 | 0.6905 | 0.2115 | | 0.7327 | 0.4516 | 4600 | 0.7859 | 0.0086 | 0.2093 | 0.6890 | 0.2093 | | 0.7728 | 0.4614 | 4700 | 0.7834 | 0.0086 | 0.2147 | 0.6906 | 0.2147 | | 0.7996 | 0.4712 | 4800 | 0.7797 | 0.0086 | 0.2061 | 0.6922 | 0.2061 | | 0.8005 | 0.4811 | 4900 | 0.7828 | 0.0086 | 0.2104 | 0.6895 | 0.2104 | | 0.7035 | 0.4909 | 5000 | 0.7825 | 0.0086 | 0.2228 | 0.6935 | 0.2228 | | 0.7859 | 0.5007 | 5100 | 0.7652 | 0.0086 | 0.2163 | 0.6973 | 0.2163 | | 0.7345 | 0.5105 | 5200 | 0.7848 | 0.0086 | 0.2120 | 0.6895 | 0.2120 | | 0.7561 | 0.5203 | 5300 | 0.7733 | 0.0086 | 0.2253 | 0.6948 | 0.2253 | | 0.7839 | 0.5301 | 5400 | 0.7801 | 0.0086 | 0.2188 | 0.6930 | 0.2188 | | 0.807 | 0.5400 | 5500 | 0.7754 | 0.0086 | 0.2241 | 0.6960 | 0.2241 | | 0.7894 | 0.5498 | 5600 | 0.7638 | 0.0086 | 0.2271 | 0.6961 | 0.2271 | | 0.7104 | 0.5596 | 5700 | 0.7821 | 0.0086 | 0.2165 | 0.6904 | 0.2165 | | 0.7839 | 0.5694 | 5800 | 0.7691 | 0.0086 | 0.2203 | 0.6920 | 0.2203 | | 0.8191 | 0.5792 | 5900 | 0.7924 | 0.0086 | 0.2134 | 0.6868 | 0.2134 | | 0.7289 | 0.5890 | 6000 | 0.7563 | 0.0086 | 0.2373 | 0.7017 | 0.2373 | | 0.7667 | 0.5989 | 6100 | 0.7570 | 0.0086 | 0.2311 | 0.7024 | 0.2311 | | 0.7627 | 0.6087 | 6200 | 0.7529 | 0.0086 | 0.2289 | 0.7007 | 0.2289 | | 0.7505 | 0.6185 | 6300 | 0.7473 | 0.0086 | 0.2362 | 0.7042 | 0.2362 | | 0.6756 | 0.6283 | 6400 | 0.7554 | 0.0086 | 0.2291 | 0.7004 | 0.2291 | | 0.7875 | 0.6381 | 6500 | 0.7550 | 0.0086 | 0.2375 | 0.7037 | 0.2375 | | 0.8439 | 0.6479 | 6600 | 0.7563 | 0.0086 | 0.2221 | 0.6985 | 0.2221 | | 0.7298 | 0.6578 | 6700 | 0.7474 | 0.0086 | 0.2350 | 0.7044 | 0.2350 | | 0.7953 | 0.6676 | 6800 | 0.7520 | 0.0086 | 0.2290 | 0.7025 | 0.2290 | | 0.6877 | 0.6774 | 6900 | 0.7492 | 0.0086 | 0.2304 | 0.7040 | 0.2304 | | 0.7067 | 0.6872 | 7000 | 0.7363 | 0.0086 | 0.2388 | 0.7082 | 0.2388 | | 0.7256 | 0.6970 | 7100 | 0.7433 | 0.0086 | 0.2421 | 0.7093 | 0.2421 | | 0.6785 | 0.7069 | 7200 | 0.7389 | 0.0086 | 0.2449 | 0.7100 | 0.2449 | | 0.7192 | 0.7167 | 7300 | 0.7431 | 0.0086 | 0.2426 | 0.7068 | 0.2426 | | 0.7111 | 0.7265 | 7400 | 0.7374 | 0.0086 | 0.2438 | 0.7103 | 0.2438 | | 0.6601 | 0.7363 | 7500 | 0.7386 | 0.0086 | 0.2464 | 0.7105 | 0.2464 | | 0.8153 | 0.7461 | 7600 | 0.7251 | 0.0086 | 0.2505 | 0.7148 | 0.2505 | | 0.7885 | 0.7559 | 7700 | 0.7344 | 0.0086 | 0.2528 | 0.7108 | 0.2528 | | 0.7111 | 0.7658 | 7800 | 0.7409 | 0.0086 | 0.2422 | 0.7085 | 0.2422 | | 0.6856 | 0.7756 | 7900 | 0.7448 | 0.0086 | 0.2442 | 0.7055 | 0.2442 | | 0.7019 | 0.7854 | 8000 | 0.7214 | 0.0086 | 0.2508 | 0.7148 | 0.2508 | | 0.6213 | 0.7952 | 8100 | 0.7206 | 0.0086 | 0.2547 | 0.7159 | 0.2547 | | 0.7054 | 0.8050 | 8200 | 0.7320 | 0.0086 | 0.2468 | 0.7114 | 0.2468 | | 0.6639 | 0.8148 | 8300 | 0.7443 | 0.0086 | 0.2485 | 0.7090 | 0.2485 | | 0.788 | 0.8247 | 8400 | 0.7274 | 0.0086 | 0.2461 | 0.7118 | 0.2461 | | 0.6754 | 0.8345 | 8500 | 0.7288 | 0.0086 | 0.2407 | 0.7091 | 0.2407 | | 0.7268 | 0.8443 | 8600 | 0.7205 | 0.0086 | 0.2525 | 0.7140 | 0.2525 | | 0.7173 | 0.8541 | 8700 | 0.7243 | 0.0086 | 0.2479 | 0.7138 | 0.2479 | | 0.7146 | 0.8639 | 8800 | 0.7146 | 0.0086 | 0.2603 | 0.7159 | 0.2603 | | 0.7047 | 0.8737 | 8900 | 0.7206 | 0.0086 | 0.2522 | 0.7147 | 0.2522 | | 0.7468 | 0.8836 | 9000 | 0.7203 | 0.0086 | 0.2530 | 0.7169 | 0.2530 | | 0.6902 | 0.8934 | 9100 | 0.7164 | 0.0086 | 0.2564 | 0.7170 | 0.2564 | | 0.6852 | 0.9032 | 9200 | 0.7092 | 0.0086 | 0.2539 | 0.7176 | 0.2539 | | 0.7086 | 0.9130 | 9300 | 0.7063 | 0.0086 | 0.2593 | 0.7186 | 0.2593 | | 0.6501 | 0.9228 | 9400 | 0.7086 | 0.0086 | 0.2589 | 0.7193 | 0.2589 | | 0.7028 | 0.9327 | 9500 | 0.7150 | 0.0086 | 0.2603 | 0.7183 | 0.2603 | | 0.7217 | 0.9425 | 9600 | 0.7071 | 0.0086 | 0.2623 | 0.7212 | 0.2623 | | 0.714 | 0.9523 | 9700 | 0.6963 | 0.0086 | 0.2723 | 0.7248 | 0.2723 | | 0.682 | 0.9621 | 9800 | 0.7147 | 0.0086 | 0.2606 | 0.7180 | 0.2606 | | 0.6879 | 0.9719 | 9900 | 0.7037 | 0.0086 | 0.2705 | 0.7240 | 0.2705 | | 0.7236 | 0.9817 | 10000 | 0.7231 | 0.0086 | 0.2545 | 0.7127 | 0.2545 | | 0.7024 | 0.9916 | 10100 | 0.7047 | 0.0086 | 0.2580 | 0.7200 | 0.2580 | | 0.6224 | 1.0014 | 10200 | 0.7027 | 0.0086 | 0.2725 | 0.7236 | 0.2725 | | 0.7081 | 1.0112 | 10300 | 0.7151 | 0.0086 | 0.2565 | 0.7171 | 0.2565 | | 0.7366 | 1.0210 | 10400 | 0.6958 | 0.0086 | 0.2615 | 0.7232 | 0.2615 | | 0.6681 | 1.0308 | 10500 | 0.7096 | 0.0086 | 0.2728 | 0.7215 | 0.2728 | | 0.6881 | 1.0406 | 10600 | 0.7042 | 0.0086 | 0.2632 | 0.7232 | 0.2632 | | 0.7179 | 1.0505 | 10700 | 0.6982 | 0.0086 | 0.2674 | 0.7230 | 0.2674 | | 0.6991 | 1.0603 | 10800 | 0.7068 | 0.0086 | 0.2620 | 0.7192 | 0.2620 | | 0.6631 | 1.0701 | 10900 | 0.7108 | 0.0086 | 0.2660 | 0.7206 | 0.2660 | | 0.7591 | 1.0799 | 11000 | 0.7046 | 0.0086 | 0.2667 | 0.7241 | 0.2667 | | 0.7069 | 1.0897 | 11100 | 0.7194 | 0.0086 | 0.2705 | 0.7184 | 0.2705 | | 0.7639 | 1.0995 | 11200 | 0.7081 | 0.0086 | 0.2650 | 0.7218 | 0.2650 | | 0.702 | 1.1094 | 11300 | 0.7015 | 0.0086 | 0.2652 | 0.7237 | 0.2652 | | 0.7034 | 1.1192 | 11400 | 0.6927 | 0.0086 | 0.2764 | 0.7257 | 0.2764 | | 0.6367 | 1.1290 | 11500 | 0.6942 | 0.0086 | 0.2770 | 0.7255 | 0.2770 | | 0.6996 | 1.1388 | 11600 | 0.6947 | 0.0086 | 0.2750 | 0.7254 | 0.2750 | | 0.7785 | 1.1486 | 11700 | 0.7048 | 0.0086 | 0.2701 | 0.7204 | 0.2701 | | 0.69 | 1.1585 | 11800 | 0.7067 | 0.0086 | 0.2686 | 0.7200 | 0.2686 | | 0.6748 | 1.1683 | 11900 | 0.6922 | 0.0086 | 0.2784 | 0.7278 | 0.2784 | | 0.6499 | 1.1781 | 12000 | 0.7015 | 0.0086 | 0.2764 | 0.7260 | 0.2764 | | 0.6821 | 1.1879 | 12100 | 0.6967 | 0.0086 | 0.2645 | 0.7224 | 0.2645 | | 0.6897 | 1.1977 | 12200 | 0.6892 | 0.0086 | 0.2811 | 0.7295 | 0.2811 | | 0.6871 | 1.2075 | 12300 | 0.6922 | 0.0086 | 0.2785 | 0.7282 | 0.2785 | | 0.67 | 1.2174 | 12400 | 0.6886 | 0.0086 | 0.2774 | 0.7284 | 0.2774 | | 0.7051 | 1.2272 | 12500 | 0.6811 | 0.0086 | 0.2836 | 0.7325 | 0.2836 | | 0.6538 | 1.2370 | 12600 | 0.6935 | 0.0086 | 0.2810 | 0.7288 | 0.2810 | | 0.6638 | 1.2468 | 12700 | 0.6872 | 0.0086 | 0.2730 | 0.7268 | 0.2730 | | 0.7019 | 1.2566 | 12800 | 0.6861 | 0.0086 | 0.2779 | 0.7290 | 0.2779 | | 0.6739 | 1.2664 | 12900 | 0.6917 | 0.0086 | 0.2747 | 0.7266 | 0.2747 | | 0.6654 | 1.2763 | 13000 | 0.6806 | 0.0086 | 0.2834 | 0.7300 | 0.2834 | | 0.7074 | 1.2861 | 13100 | 0.6819 | 0.0086 | 0.2810 | 0.7327 | 0.2810 | | 0.7077 | 1.2959 | 13200 | 0.6929 | 0.0086 | 0.2728 | 0.7245 | 0.2728 | | 0.6494 | 1.3057 | 13300 | 0.6893 | 0.0086 | 0.2790 | 0.7292 | 0.2790 | | 0.6862 | 1.3155 | 13400 | 0.6846 | 0.0086 | 0.2783 | 0.7307 | 0.2783 | | 0.6761 | 1.3253 | 13500 | 0.6890 | 0.0086 | 0.2750 | 0.7277 | 0.2750 | | 0.6871 | 1.3352 | 13600 | 0.6831 | 0.0086 | 0.2767 | 0.7292 | 0.2767 | | 0.6717 | 1.3450 | 13700 | 0.6843 | 0.0086 | 0.2727 | 0.7263 | 0.2727 | | 0.7139 | 1.3548 | 13800 | 0.6769 | 0.0086 | 0.2830 | 0.7317 | 0.2830 | | 0.6296 | 1.3646 | 13900 | 0.6863 | 0.0086 | 0.2850 | 0.7312 | 0.2850 | | 0.6813 | 1.3744 | 14000 | 0.6898 | 0.0086 | 0.2781 | 0.7280 | 0.2781 | | 0.6626 | 1.3843 | 14100 | 0.6847 | 0.0086 | 0.2832 | 0.7319 | 0.2832 | | 0.6717 | 1.3941 | 14200 | 0.6848 | 0.0086 | 0.2853 | 0.7311 | 0.2853 | | 0.6675 | 1.4039 | 14300 | 0.6751 | 0.0086 | 0.2920 | 0.7339 | 0.2920 | | 0.6248 | 1.4137 | 14400 | 0.6733 | 0.0086 | 0.2893 | 0.7366 | 0.2893 | | 0.7265 | 1.4235 | 14500 | 0.6808 | 0.0086 | 0.2868 | 0.7323 | 0.2868 | | 0.7149 | 1.4333 | 14600 | 0.6759 | 0.0086 | 0.2891 | 0.7332 | 0.2891 | | 0.6071 | 1.4432 | 14700 | 0.6949 | 0.0086 | 0.2833 | 0.7274 | 0.2833 | | 0.6737 | 1.4530 | 14800 | 0.6725 | 0.0086 | 0.2936 | 0.7367 | 0.2936 | | 0.7388 | 1.4628 | 14900 | 0.6699 | 0.0086 | 0.2906 | 0.7366 | 0.2906 | | 0.6418 | 1.4726 | 15000 | 0.6783 | 0.0086 | 0.2850 | 0.7329 | 0.2850 | | 0.7086 | 1.4824 | 15100 | 0.6794 | 0.0086 | 0.2826 | 0.7306 | 0.2826 | | 0.646 | 1.4922 | 15200 | 0.6731 | 0.0086 | 0.2814 | 0.7341 | 0.2814 | | 0.6442 | 1.5021 | 15300 | 0.6708 | 0.0086 | 0.2952 | 0.7371 | 0.2952 | | 0.6451 | 1.5119 | 15400 | 0.6723 | 0.0086 | 0.2868 | 0.7338 | 0.2868 | | 0.7044 | 1.5217 | 15500 | 0.6749 | 0.0086 | 0.2902 | 0.7332 | 0.2902 | | 0.6012 | 1.5315 | 15600 | 0.6633 | 0.0086 | 0.3042 | 0.7398 | 0.3042 | | 0.6967 | 1.5413 | 15700 | 0.6782 | 0.0086 | 0.2883 | 0.7343 | 0.2883 | | 0.6426 | 1.5511 | 15800 | 0.6714 | 0.0086 | 0.2904 | 0.7356 | 0.2904 | | 0.5905 | 1.5610 | 15900 | 0.6691 | 0.0086 | 0.2922 | 0.7365 | 0.2922 | | 0.6741 | 1.5708 | 16000 | 0.6652 | 0.0086 | 0.2965 | 0.7375 | 0.2965 | | 0.6847 | 1.5806 | 16100 | 0.6817 | 0.0086 | 0.2906 | 0.7337 | 0.2906 | | 0.714 | 1.5904 | 16200 | 0.6625 | 0.0086 | 0.2953 | 0.7376 | 0.2953 | | 0.6933 | 1.6002 | 16300 | 0.6659 | 0.0086 | 0.2957 | 0.7389 | 0.2957 | | 0.6825 | 1.6101 | 16400 | 0.6700 | 0.0086 | 0.2936 | 0.7362 | 0.2936 | | 0.6597 | 1.6199 | 16500 | 0.6695 | 0.0086 | 0.2926 | 0.7364 | 0.2926 | | 0.6371 | 1.6297 | 16600 | 0.6673 | 0.0086 | 0.2921 | 0.7358 | 0.2921 | | 0.6487 | 1.6395 | 16700 | 0.6683 | 0.0086 | 0.2905 | 0.7363 | 0.2905 | | 0.6394 | 1.6493 | 16800 | 0.6698 | 0.0086 | 0.2997 | 0.7384 | 0.2997 | | 0.6087 | 1.6591 | 16900 | 0.6653 | 0.0086 | 0.2971 | 0.7395 | 0.2971 | | 0.6377 | 1.6690 | 17000 | 0.6645 | 0.0086 | 0.2953 | 0.7383 | 0.2953 | | 0.6502 | 1.6788 | 17100 | 0.6598 | 0.0086 | 0.3020 | 0.7404 | 0.3020 | | 0.6378 | 1.6886 | 17200 | 0.6758 | 0.0086 | 0.2955 | 0.7335 | 0.2955 | | 0.6367 | 1.6984 | 17300 | 0.6650 | 0.0086 | 0.3042 | 0.7392 | 0.3042 | | 0.6279 | 1.7082 | 17400 | 0.6673 | 0.0086 | 0.2937 | 0.7353 | 0.2937 | | 0.6792 | 1.7180 | 17500 | 0.6627 | 0.0086 | 0.2971 | 0.7393 | 0.2971 | | 0.6164 | 1.7279 | 17600 | 0.6641 | 0.0086 | 0.3006 | 0.7398 | 0.3006 | | 0.7035 | 1.7377 | 17700 | 0.6619 | 0.0086 | 0.3043 | 0.7413 | 0.3043 | | 0.6833 | 1.7475 | 17800 | 0.6678 | 0.0086 | 0.2979 | 0.7380 | 0.2979 | | 0.6802 | 1.7573 | 17900 | 0.6650 | 0.0086 | 0.3007 | 0.7392 | 0.3007 | | 0.6434 | 1.7671 | 18000 | 0.6658 | 0.0086 | 0.3017 | 0.7399 | 0.3017 | | 0.6481 | 1.7769 | 18100 | 0.6555 | 0.0086 | 0.3074 | 0.7440 | 0.3074 | | 0.6753 | 1.7868 | 18200 | 0.6710 | 0.0086 | 0.2969 | 0.7371 | 0.2969 | | 0.7124 | 1.7966 | 18300 | 0.6606 | 0.0086 | 0.3011 | 0.7408 | 0.3011 | | 0.6148 | 1.8064 | 18400 | 0.6656 | 0.0086 | 0.2975 | 0.7395 | 0.2975 | | 0.656 | 1.8162 | 18500 | 0.6677 | 0.0086 | 0.2930 | 0.7371 | 0.2930 | | 0.6465 | 1.8260 | 18600 | 0.6570 | 0.0086 | 0.3054 | 0.7421 | 0.3054 | | 0.7047 | 1.8359 | 18700 | 0.6605 | 0.0086 | 0.2995 | 0.7393 | 0.2995 | | 0.581 | 1.8457 | 18800 | 0.6618 | 0.0086 | 0.2980 | 0.7410 | 0.2980 | | 0.5702 | 1.8555 | 18900 | 0.6465 | 0.0086 | 0.3109 | 0.7448 | 0.3109 | | 0.6844 | 1.8653 | 19000 | 0.6571 | 0.0086 | 0.3028 | 0.7405 | 0.3028 | | 0.6136 | 1.8751 | 19100 | 0.6460 | 0.0086 | 0.3080 | 0.7437 | 0.3080 | | 0.6142 | 1.8849 | 19200 | 0.6570 | 0.0086 | 0.2999 | 0.7414 | 0.2999 | | 0.739 | 1.8948 | 19300 | 0.6567 | 0.0086 | 0.3018 | 0.7420 | 0.3018 | | 0.6359 | 1.9046 | 19400 | 0.6588 | 0.0086 | 0.3021 | 0.7404 | 0.3021 | | 0.6352 | 1.9144 | 19500 | 0.6617 | 0.0086 | 0.2946 | 0.7389 | 0.2946 | | 0.6775 | 1.9242 | 19600 | 0.6547 | 0.0086 | 0.3048 | 0.7411 | 0.3048 | | 0.6773 | 1.9340 | 19700 | 0.6570 | 0.0086 | 0.3075 | 0.7405 | 0.3075 | | 0.6461 | 1.9438 | 19800 | 0.6610 | 0.0086 | 0.3027 | 0.7400 | 0.3027 | | 0.609 | 1.9537 | 19900 | 0.6527 | 0.0086 | 0.3095 | 0.7429 | 0.3095 | | 0.617 | 1.9635 | 20000 | 0.6515 | 0.0086 | 0.3062 | 0.7440 | 0.3062 | | 0.6755 | 1.9733 | 20100 | 0.6508 | 0.0086 | 0.3100 | 0.7429 | 0.3100 | | 0.6929 | 1.9831 | 20200 | 0.6550 | 0.0086 | 0.3054 | 0.7438 | 0.3054 | | 0.5971 | 1.9929 | 20300 | 0.6548 | 0.0086 | 0.2997 | 0.7426 | 0.2997 | | 0.6625 | 2.0027 | 20400 | 0.6433 | 0.0086 | 0.3086 | 0.7456 | 0.3086 | | 0.5759 | 2.0126 | 20500 | 0.6572 | 0.0086 | 0.3004 | 0.7392 | 0.3004 | | 0.6804 | 2.0224 | 20600 | 0.6482 | 0.0086 | 0.3140 | 0.7455 | 0.3140 | | 0.5674 | 2.0322 | 20700 | 0.6473 | 0.0086 | 0.3057 | 0.7452 | 0.3057 | | 0.6234 | 2.0420 | 20800 | 0.6484 | 0.0086 | 0.3046 | 0.7435 | 0.3046 | | 0.6884 | 2.0518 | 20900 | 0.6465 | 0.0086 | 0.3064 | 0.7450 | 0.3064 | | 0.5904 | 2.0617 | 21000 | 0.6528 | 0.0086 | 0.3045 | 0.7433 | 0.3045 | | 0.7058 | 2.0715 | 21100 | 0.6542 | 0.0086 | 0.3071 | 0.7438 | 0.3071 | | 0.7093 | 2.0813 | 21200 | 0.6704 | 0.0086 | 0.2872 | 0.7355 | 0.2872 | | 0.6866 | 2.0911 | 21300 | 0.6541 | 0.0086 | 0.3099 | 0.7430 | 0.3099 | | 0.6481 | 2.1009 | 21400 | 0.6522 | 0.0086 | 0.3113 | 0.7444 | 0.3113 | | 0.6671 | 2.1107 | 21500 | 0.6533 | 0.0086 | 0.3144 | 0.7442 | 0.3144 | | 0.6214 | 2.1206 | 21600 | 0.6448 | 0.0086 | 0.3167 | 0.7462 | 0.3167 | | 0.6669 | 2.1304 | 21700 | 0.6567 | 0.0086 | 0.3128 | 0.7444 | 0.3128 | | 0.6161 | 2.1402 | 21800 | 0.6628 | 0.0086 | 0.2983 | 0.7381 | 0.2983 | | 0.6114 | 2.1500 | 21900 | 0.6457 | 0.0086 | 0.3143 | 0.7468 | 0.3143 | | 0.606 | 2.1598 | 22000 | 0.6544 | 0.0086 | 0.2930 | 0.7406 | 0.2930 | | 0.6178 | 2.1696 | 22100 | 0.6427 | 0.0086 | 0.3059 | 0.7445 | 0.3059 | | 0.6035 | 2.1795 | 22200 | 0.6485 | 0.0086 | 0.3094 | 0.7450 | 0.3094 | | 0.6935 | 2.1893 | 22300 | 0.6507 | 0.0086 | 0.3079 | 0.7420 | 0.3079 | | 0.7044 | 2.1991 | 22400 | 0.6572 | 0.0086 | 0.2964 | 0.7409 | 0.2964 | | 0.6044 | 2.2089 | 22500 | 0.6503 | 0.0086 | 0.3055 | 0.7428 | 0.3055 | | 0.6211 | 2.2187 | 22600 | 0.6615 | 0.0086 | 0.3095 | 0.7424 | 0.3095 | | 0.652 | 2.2285 | 22700 | 0.6636 | 0.0086 | 0.2990 | 0.7375 | 0.2990 | | 0.6864 | 2.2384 | 22800 | 0.6525 | 0.0086 | 0.3096 | 0.7462 | 0.3096 | | 0.6061 | 2.2482 | 22900 | 0.6345 | 0.0086 | 0.3251 | 0.7514 | 0.3251 | | 0.5898 | 2.2580 | 23000 | 0.6446 | 0.0086 | 0.3131 | 0.7480 | 0.3131 | | 0.6624 | 2.2678 | 23100 | 0.6449 | 0.0086 | 0.3124 | 0.7460 | 0.3124 | | 0.5887 | 2.2776 | 23200 | 0.6488 | 0.0086 | 0.3079 | 0.7452 | 0.3079 | | 0.6406 | 2.2875 | 23300 | 0.6454 | 0.0086 | 0.3074 | 0.7460 | 0.3074 | | 0.6178 | 2.2973 | 23400 | 0.6440 | 0.0086 | 0.3117 | 0.7482 | 0.3117 | | 0.6863 | 2.3071 | 23500 | 0.6487 | 0.0086 | 0.2995 | 0.7413 | 0.2995 | | 0.5959 | 2.3169 | 23600 | 0.6514 | 0.0086 | 0.3136 | 0.7455 | 0.3136 | | 0.6634 | 2.3267 | 23700 | 0.6630 | 0.0086 | 0.2979 | 0.7405 | 0.2979 | | 0.6479 | 2.3365 | 23800 | 0.6395 | 0.0086 | 0.3094 | 0.7469 | 0.3094 | | 0.6202 | 2.3464 | 23900 | 0.6365 | 0.0086 | 0.3167 | 0.7477 | 0.3167 | | 0.6391 | 2.3562 | 24000 | 0.6458 | 0.0086 | 0.3125 | 0.7451 | 0.3125 | | 0.6121 | 2.3660 | 24100 | 0.6394 | 0.0086 | 0.3134 | 0.7487 | 0.3134 | | 0.6527 | 2.3758 | 24200 | 0.6383 | 0.0086 | 0.3185 | 0.7483 | 0.3185 | | 0.6274 | 2.3856 | 24300 | 0.6390 | 0.0086 | 0.3220 | 0.7483 | 0.3220 | | 0.6875 | 2.3954 | 24400 | 0.6506 | 0.0086 | 0.3068 | 0.7434 | 0.3068 | | 0.6303 | 2.4053 | 24500 | 0.6440 | 0.0086 | 0.3126 | 0.7465 | 0.3126 | | 0.5843 | 2.4151 | 24600 | 0.6467 | 0.0086 | 0.3114 | 0.7464 | 0.3114 | | 0.6428 | 2.4249 | 24700 | 0.6383 | 0.0086 | 0.3245 | 0.7511 | 0.3245 | | 0.6056 | 2.4347 | 24800 | 0.6429 | 0.0086 | 0.3146 | 0.7478 | 0.3146 | | 0.5889 | 2.4445 | 24900 | 0.6556 | 0.0086 | 0.3088 | 0.7429 | 0.3088 | | 0.6037 | 2.4543 | 25000 | 0.6539 | 0.0086 | 0.3097 | 0.7445 | 0.3097 | | 0.6562 | 2.4642 | 25100 | 0.6552 | 0.0086 | 0.3054 | 0.7411 | 0.3054 | | 0.6968 | 2.4740 | 25200 | 0.6472 | 0.0086 | 0.3117 | 0.7433 | 0.3117 | | 0.6475 | 2.4838 | 25300 | 0.6379 | 0.0086 | 0.3241 | 0.7515 | 0.3241 | | 0.5411 | 2.4936 | 25400 | 0.6487 | 0.0086 | 0.3198 | 0.7482 | 0.3198 | | 0.6338 | 2.5034 | 25500 | 0.6486 | 0.0086 | 0.3087 | 0.7440 | 0.3087 | | 0.6153 | 2.5133 | 25600 | 0.6346 | 0.0086 | 0.3247 | 0.7513 | 0.3247 | | 0.6295 | 2.5231 | 25700 | 0.6433 | 0.0086 | 0.3131 | 0.7463 | 0.3131 | | 0.647 | 2.5329 | 25800 | 0.6393 | 0.0086 | 0.3157 | 0.7487 | 0.3157 | | 0.6655 | 2.5427 | 25900 | 0.6511 | 0.0086 | 0.3035 | 0.7432 | 0.3035 | | 0.6389 | 2.5525 | 26000 | 0.6407 | 0.0086 | 0.3126 | 0.7476 | 0.3126 | | 0.6466 | 2.5623 | 26100 | 0.6542 | 0.0086 | 0.3013 | 0.7436 | 0.3013 | | 0.6278 | 2.5722 | 26200 | 0.6501 | 0.0086 | 0.3174 | 0.7471 | 0.3174 | | 0.6777 | 2.5820 | 26300 | 0.6440 | 0.0086 | 0.3108 | 0.7461 | 0.3108 | | 0.675 | 2.5918 | 26400 | 0.7039 | 0.0086 | 0.2808 | 0.7271 | 0.2808 | | 0.5784 | 2.6016 | 26500 | 0.6319 | 0.0086 | 0.3187 | 0.7525 | 0.3187 | | 0.5799 | 2.6114 | 26600 | 0.6425 | 0.0086 | 0.3162 | 0.7489 | 0.3162 | | 0.6387 | 2.6212 | 26700 | 0.6425 | 0.0086 | 0.3114 | 0.7461 | 0.3114 | | 0.6148 | 2.6311 | 26800 | 0.6359 | 0.0086 | 0.3225 | 0.7514 | 0.3225 | | 0.642 | 2.6409 | 26900 | 0.6517 | 0.0086 | 0.3148 | 0.7477 | 0.3148 | | 0.693 | 2.6507 | 27000 | 0.6410 | 0.0086 | 0.3181 | 0.7483 | 0.3181 | | 0.5909 | 2.6605 | 27100 | 0.6392 | 0.0086 | 0.3163 | 0.7483 | 0.3163 | | 0.6181 | 2.6703 | 27200 | 0.6393 | 0.0086 | 0.3230 | 0.7502 | 0.3230 | | 0.6054 | 2.6801 | 27300 | 0.6406 | 0.0086 | 0.3164 | 0.7495 | 0.3164 | | 0.6204 | 2.6900 | 27400 | 0.6434 | 0.0086 | 0.3183 | 0.7491 | 0.3183 | | 0.6243 | 2.6998 | 27500 | 0.6329 | 0.0086 | 0.3207 | 0.7504 | 0.3207 | | 0.6229 | 2.7096 | 27600 | 0.6475 | 0.0086 | 0.2990 | 0.7423 | 0.2990 | | 0.6266 | 2.7194 | 27700 | 0.6295 | 0.0086 | 0.3206 | 0.7521 | 0.3206 | | 0.6114 | 2.7292 | 27800 | 0.6369 | 0.0086 | 0.3223 | 0.7486 | 0.3223 | | 0.6293 | 2.7391 | 27900 | 0.6518 | 0.0086 | 0.3102 | 0.7452 | 0.3102 | | 0.6384 | 2.7489 | 28000 | 0.6277 | 0.0086 | 0.3260 | 0.7547 | 0.3260 | | 0.562 | 2.7587 | 28100 | 0.6382 | 0.0086 | 0.3225 | 0.7500 | 0.3225 | | 0.5943 | 2.7685 | 28200 | 0.6374 | 0.0086 | 0.3122 | 0.7484 | 0.3122 | | 0.6021 | 2.7783 | 28300 | 0.6378 | 0.0086 | 0.3147 | 0.7480 | 0.3147 | | 0.6254 | 2.7881 | 28400 | 0.6394 | 0.0086 | 0.3204 | 0.7497 | 0.3204 | | 0.5927 | 2.7980 | 28500 | 0.6364 | 0.0086 | 0.3194 | 0.7505 | 0.3194 | | 0.6458 | 2.8078 | 28600 | 0.6401 | 0.0086 | 0.3210 | 0.7510 | 0.3210 | | 0.5987 | 2.8176 | 28700 | 0.6387 | 0.0086 | 0.3172 | 0.7493 | 0.3172 | | 0.6138 | 2.8274 | 28800 | 0.6323 | 0.0086 | 0.3178 | 0.7513 | 0.3178 | | 0.7018 | 2.8372 | 28900 | 0.6313 | 0.0086 | 0.3278 | 0.7544 | 0.3278 | | 0.5963 | 2.8470 | 29000 | 0.6363 | 0.0086 | 0.3182 | 0.7498 | 0.3182 | | 0.6068 | 2.8569 | 29100 | 0.6301 | 0.0086 | 0.3258 | 0.7543 | 0.3258 | | 0.6323 | 2.8667 | 29200 | 0.6318 | 0.0086 | 0.3202 | 0.7515 | 0.3202 | | 0.6109 | 2.8765 | 29300 | 0.6360 | 0.0086 | 0.3135 | 0.7506 | 0.3135 | | 0.5366 | 2.8863 | 29400 | 0.6317 | 0.0086 | 0.3209 | 0.7532 | 0.3209 | | 0.5891 | 2.8961 | 29500 | 0.6396 | 0.0086 | 0.3247 | 0.7510 | 0.3247 | | 0.6369 | 2.9059 | 29600 | 0.6447 | 0.0086 | 0.3172 | 0.7481 | 0.3172 | | 0.6215 | 2.9158 | 29700 | 0.6435 | 0.0086 | 0.3104 | 0.7473 | 0.3104 | | 0.5796 | 2.9256 | 29800 | 0.6325 | 0.0086 | 0.3216 | 0.7515 | 0.3216 | | 0.5961 | 2.9354 | 29900 | 0.6326 | 0.0086 | 0.3185 | 0.7512 | 0.3185 | | 0.6348 | 2.9452 | 30000 | 0.6420 | 0.0086 | 0.3226 | 0.7490 | 0.3226 | | 0.6075 | 2.9550 | 30100 | 0.6309 | 0.0086 | 0.3270 | 0.7528 | 0.3270 | | 0.6128 | 2.9649 | 30200 | 0.6244 | 0.0086 | 0.3280 | 0.7534 | 0.3280 | | 0.6271 | 2.9747 | 30300 | 0.6311 | 0.0086 | 0.3183 | 0.7508 | 0.3183 | | 0.6499 | 2.9845 | 30400 | 0.6325 | 0.0086 | 0.3258 | 0.7516 | 0.3258 | | 0.7241 | 2.9943 | 30500 | 0.6272 | 0.0086 | 0.3220 | 0.7540 | 0.3220 | | 0.7342 | 3.0041 | 30600 | 0.6301 | 0.0086 | 0.3250 | 0.7520 | 0.3250 | | 0.6141 | 3.0139 | 30700 | 0.6290 | 0.0086 | 0.3289 | 0.7555 | 0.3289 | | 0.6286 | 3.0238 | 30800 | 0.6386 | 0.0086 | 0.3112 | 0.7482 | 0.3112 | | 0.7168 | 3.0336 | 30900 | 0.6307 | 0.0086 | 0.3280 | 0.7535 | 0.3280 | | 0.6267 | 3.0434 | 31000 | 0.6348 | 0.0086 | 0.3246 | 0.7516 | 0.3246 | | 0.6754 | 3.0532 | 31100 | 0.6369 | 0.0086 | 0.3227 | 0.7502 | 0.3227 | | 0.6442 | 3.0630 | 31200 | 0.6256 | 0.0086 | 0.3269 | 0.7526 | 0.3269 | | 0.621 | 3.0728 | 31300 | 0.6245 | 0.0086 | 0.3312 | 0.7539 | 0.3312 | | 0.6641 | 3.0827 | 31400 | 0.6275 | 0.0086 | 0.3233 | 0.7531 | 0.3233 | | 0.6074 | 3.0925 | 31500 | 0.6295 | 0.0086 | 0.3231 | 0.7526 | 0.3231 | | 0.5997 | 3.1023 | 31600 | 0.6262 | 0.0086 | 0.3243 | 0.7541 | 0.3243 | | 0.5985 | 3.1121 | 31700 | 0.6281 | 0.0086 | 0.3234 | 0.7521 | 0.3234 | | 0.6224 | 3.1219 | 31800 | 0.6291 | 0.0086 | 0.3213 | 0.7520 | 0.3213 | | 0.5988 | 3.1317 | 31900 | 0.6260 | 0.0086 | 0.3353 | 0.7552 | 0.3353 | | 0.6372 | 3.1416 | 32000 | 0.6295 | 0.0086 | 0.3212 | 0.7515 | 0.3212 | | 0.6432 | 3.1514 | 32100 | 0.6359 | 0.0086 | 0.3165 | 0.7503 | 0.3165 | | 0.6639 | 3.1612 | 32200 | 0.6317 | 0.0086 | 0.3231 | 0.7528 | 0.3231 | | 0.6649 | 3.1710 | 32300 | 0.6274 | 0.0086 | 0.3204 | 0.7526 | 0.3204 | | 0.6454 | 3.1808 | 32400 | 0.6247 | 0.0086 | 0.3214 | 0.7527 | 0.3214 | | 0.6535 | 3.1907 | 32500 | 0.6296 | 0.0086 | 0.3275 | 0.7525 | 0.3275 | | 0.6824 | 3.2005 | 32600 | 0.6279 | 0.0086 | 0.3259 | 0.7547 | 0.3259 | | 0.6055 | 3.2103 | 32700 | 0.6287 | 0.0086 | 0.3315 | 0.7544 | 0.3315 | | 0.6149 | 3.2201 | 32800 | 0.6251 | 0.0086 | 0.3256 | 0.7524 | 0.3256 | | 0.6575 | 3.2299 | 32900 | 0.6326 | 0.0086 | 0.3211 | 0.7520 | 0.3211 | | 0.5945 | 3.2397 | 33000 | 0.6307 | 0.0086 | 0.3260 | 0.7533 | 0.3260 | | 0.6324 | 3.2496 | 33100 | 0.6260 | 0.0086 | 0.3240 | 0.7543 | 0.3240 | | 0.6308 | 3.2594 | 33200 | 0.6230 | 0.0086 | 0.3240 | 0.7563 | 0.3240 | | 0.5727 | 3.2692 | 33300 | 0.6271 | 0.0086 | 0.3307 | 0.7529 | 0.3307 | | 0.6216 | 3.2790 | 33400 | 0.6216 | 0.0086 | 0.3335 | 0.7561 | 0.3335 | | 0.5931 | 3.2888 | 33500 | 0.6329 | 0.0086 | 0.3227 | 0.7510 | 0.3227 | | 0.6986 | 3.2986 | 33600 | 0.6285 | 0.0086 | 0.3267 | 0.7540 | 0.3267 | | 0.5884 | 3.3085 | 33700 | 0.6244 | 0.0086 | 0.3242 | 0.7551 | 0.3242 | | 0.6978 | 3.3183 | 33800 | 0.6264 | 0.0086 | 0.3332 | 0.7544 | 0.3332 | | 0.6321 | 3.3281 | 33900 | 0.6191 | 0.0086 | 0.3306 | 0.7559 | 0.3306 | | 0.6489 | 3.3379 | 34000 | 0.6314 | 0.0086 | 0.3256 | 0.7523 | 0.3256 | | 0.6165 | 3.3477 | 34100 | 0.6354 | 0.0086 | 0.3288 | 0.7523 | 0.3288 | | 0.593 | 3.3575 | 34200 | 0.6151 | 0.0086 | 0.3327 | 0.7580 | 0.3327 | | 0.6133 | 3.3674 | 34300 | 0.6349 | 0.0086 | 0.3220 | 0.7506 | 0.3220 | | 0.601 | 3.3772 | 34400 | 0.6277 | 0.0086 | 0.3257 | 0.7545 | 0.3257 | | 0.6228 | 3.3870 | 34500 | 0.6283 | 0.0086 | 0.3258 | 0.7530 | 0.3258 | | 0.5581 | 3.3968 | 34600 | 0.6314 | 0.0086 | 0.3250 | 0.7532 | 0.3250 | | 0.5727 | 3.4066 | 34700 | 0.6284 | 0.0086 | 0.3274 | 0.7532 | 0.3274 | | 0.6318 | 3.4165 | 34800 | 0.6225 | 0.0086 | 0.3259 | 0.7547 | 0.3259 | | 0.6408 | 3.4263 | 34900 | 0.6169 | 0.0086 | 0.3342 | 0.7579 | 0.3342 | | 0.6644 | 3.4361 | 35000 | 0.6223 | 0.0086 | 0.3270 | 0.7550 | 0.3270 | | 0.5617 | 3.4459 | 35100 | 0.6247 | 0.0086 | 0.3224 | 0.7523 | 0.3224 | | 0.6184 | 3.4557 | 35200 | 0.6307 | 0.0086 | 0.3175 | 0.7531 | 0.3175 | | 0.5904 | 3.4655 | 35300 | 0.6291 | 0.0086 | 0.3295 | 0.7544 | 0.3295 | | 0.5808 | 3.4754 | 35400 | 0.6134 | 0.0086 | 0.3356 | 0.7592 | 0.3356 | | 0.6185 | 3.4852 | 35500 | 0.6243 | 0.0086 | 0.3216 | 0.7532 | 0.3216 | | 0.619 | 3.4950 | 35600 | 0.6243 | 0.0086 | 0.3292 | 0.7533 | 0.3292 | | 0.6291 | 3.5048 | 35700 | 0.6270 | 0.0086 | 0.3336 | 0.7561 | 0.3336 | | 0.6426 | 3.5146 | 35800 | 0.6201 | 0.0086 | 0.3245 | 0.7540 | 0.3245 | | 0.6253 | 3.5244 | 35900 | 0.6189 | 0.0086 | 0.3360 | 0.7574 | 0.3360 | | 0.579 | 3.5343 | 36000 | 0.6217 | 0.0086 | 0.3329 | 0.7549 | 0.3329 | | 0.5749 | 3.5441 | 36100 | 0.6211 | 0.0086 | 0.3333 | 0.7566 | 0.3333 | | 0.6792 | 3.5539 | 36200 | 0.6333 | 0.0086 | 0.3195 | 0.7488 | 0.3195 | | 0.5553 | 3.5637 | 36300 | 0.6318 | 0.0086 | 0.3220 | 0.7518 | 0.3220 | | 0.6074 | 3.5735 | 36400 | 0.6371 | 0.0086 | 0.3325 | 0.7525 | 0.3325 | | 0.6514 | 3.5833 | 36500 | 0.6171 | 0.0086 | 0.3298 | 0.7559 | 0.3298 | | 0.6312 | 3.5932 | 36600 | 0.6255 | 0.0086 | 0.3314 | 0.7528 | 0.3314 | | 0.5982 | 3.6030 | 36700 | 0.6163 | 0.0086 | 0.3397 | 0.7600 | 0.3397 | | 0.6956 | 3.6128 | 36800 | 0.6194 | 0.0086 | 0.3352 | 0.7596 | 0.3352 | | 0.5358 | 3.6226 | 36900 | 0.6254 | 0.0086 | 0.3317 | 0.7563 | 0.3317 | | 0.5568 | 3.6324 | 37000 | 0.6210 | 0.0086 | 0.3258 | 0.7556 | 0.3258 | | 0.6064 | 3.6423 | 37100 | 0.6217 | 0.0086 | 0.3344 | 0.7548 | 0.3344 | | 0.5905 | 3.6521 | 37200 | 0.6207 | 0.0086 | 0.3238 | 0.7549 | 0.3238 | | 0.6099 | 3.6619 | 37300 | 0.6185 | 0.0086 | 0.3314 | 0.7562 | 0.3314 | | 0.6042 | 3.6717 | 37400 | 0.6180 | 0.0086 | 0.3368 | 0.7585 | 0.3368 | | 0.6655 | 3.6815 | 37500 | 0.6173 | 0.0086 | 0.3291 | 0.7574 | 0.3291 | | 0.5984 | 3.6913 | 37600 | 0.6227 | 0.0086 | 0.3333 | 0.7570 | 0.3333 | | 0.6124 | 3.7012 | 37700 | 0.6392 | 0.0086 | 0.3122 | 0.7488 | 0.3122 | | 0.6289 | 3.7110 | 37800 | 0.6201 | 0.0086 | 0.3302 | 0.7555 | 0.3302 | | 0.5921 | 3.7208 | 37900 | 0.6159 | 0.0086 | 0.3359 | 0.7577 | 0.3359 | | 0.5599 | 3.7306 | 38000 | 0.6200 | 0.0086 | 0.3307 | 0.7554 | 0.3307 | | 0.6032 | 3.7404 | 38100 | 0.6209 | 0.0086 | 0.3316 | 0.7556 | 0.3316 | | 0.5903 | 3.7502 | 38200 | 0.6192 | 0.0086 | 0.3354 | 0.7560 | 0.3354 | | 0.6303 | 3.7601 | 38300 | 0.6234 | 0.0086 | 0.3402 | 0.7587 | 0.3402 | | 0.692 | 3.7699 | 38400 | 0.6188 | 0.0086 | 0.3300 | 0.7556 | 0.3300 | | 0.6642 | 3.7797 | 38500 | 0.6186 | 0.0086 | 0.3328 | 0.7573 | 0.3328 | | 0.6828 | 3.7895 | 38600 | 0.6297 | 0.0086 | 0.3275 | 0.7533 | 0.3275 | | 0.5568 | 3.7993 | 38700 | 0.6184 | 0.0086 | 0.3330 | 0.7571 | 0.3330 | | 0.6665 | 3.8091 | 38800 | 0.6226 | 0.0086 | 0.3372 | 0.7561 | 0.3372 | | 0.5939 | 3.8190 | 38900 | 0.6160 | 0.0086 | 0.3289 | 0.7576 | 0.3289 | | 0.6243 | 3.8288 | 39000 | 0.6210 | 0.0086 | 0.3345 | 0.7590 | 0.3345 | | 0.6478 | 3.8386 | 39100 | 0.6151 | 0.0086 | 0.3408 | 0.7596 | 0.3408 | | 0.6703 | 3.8484 | 39200 | 0.6220 | 0.0086 | 0.3304 | 0.7568 | 0.3304 | | 0.5973 | 3.8582 | 39300 | 0.6112 | 0.0086 | 0.3394 | 0.7620 | 0.3394 | | 0.6219 | 3.8681 | 39400 | 0.6164 | 0.0086 | 0.3406 | 0.7595 | 0.3406 | | 0.6838 | 3.8779 | 39500 | 0.6331 | 0.0086 | 0.3251 | 0.7527 | 0.3251 | | 0.6345 | 3.8877 | 39600 | 0.6278 | 0.0086 | 0.3291 | 0.7529 | 0.3291 | | 0.6009 | 3.8975 | 39700 | 0.6269 | 0.0086 | 0.3314 | 0.7547 | 0.3314 | | 0.6099 | 3.9073 | 39800 | 0.6143 | 0.0086 | 0.3394 | 0.7591 | 0.3394 | | 0.621 | 3.9171 | 39900 | 0.6127 | 0.0086 | 0.3374 | 0.7604 | 0.3374 | | 0.7027 | 3.9270 | 40000 | 0.6209 | 0.0086 | 0.3253 | 0.7541 | 0.3253 | | 0.5991 | 3.9368 | 40100 | 0.6309 | 0.0086 | 0.3248 | 0.7529 | 0.3248 | | 0.6413 | 3.9466 | 40200 | 0.6209 | 0.0086 | 0.3319 | 0.7569 | 0.3319 | | 0.624 | 3.9564 | 40300 | 0.6172 | 0.0086 | 0.3340 | 0.7575 | 0.3340 | | 0.6397 | 3.9662 | 40400 | 0.6172 | 0.0086 | 0.3367 | 0.7577 | 0.3367 | | 0.6325 | 3.9760 | 40500 | 0.6227 | 0.0086 | 0.3378 | 0.7568 | 0.3378 | | 0.6255 | 3.9859 | 40600 | 0.6081 | 0.0086 | 0.3423 | 0.7610 | 0.3423 | | 0.7132 | 3.9957 | 40700 | 0.6238 | 0.0086 | 0.3326 | 0.7568 | 0.3326 | | 0.6054 | 4.0055 | 40800 | 0.6181 | 0.0086 | 0.3389 | 0.7598 | 0.3389 | | 0.5804 | 4.0153 | 40900 | 0.6175 | 0.0086 | 0.3242 | 0.7564 | 0.3242 | | 0.6081 | 4.0251 | 41000 | 0.6130 | 0.0086 | 0.3316 | 0.7584 | 0.3316 | | 0.6502 | 4.0349 | 41100 | 0.6204 | 0.0086 | 0.3328 | 0.7568 | 0.3328 | | 0.5431 | 4.0448 | 41200 | 0.6155 | 0.0086 | 0.3425 | 0.7606 | 0.3425 | | 0.5856 | 4.0546 | 41300 | 0.6188 | 0.0086 | 0.3363 | 0.7574 | 0.3363 | | 0.6155 | 4.0644 | 41400 | 0.6159 | 0.0086 | 0.3361 | 0.7596 | 0.3361 | | 0.594 | 4.0742 | 41500 | 0.6203 | 0.0086 | 0.3375 | 0.7574 | 0.3375 | | 0.5639 | 4.0840 | 41600 | 0.6090 | 0.0086 | 0.3463 | 0.7621 | 0.3463 | | 0.6101 | 4.0939 | 41700 | 0.6171 | 0.0086 | 0.3291 | 0.7585 | 0.3291 | | 0.5606 | 4.1037 | 41800 | 0.6124 | 0.0086 | 0.3324 | 0.7594 | 0.3324 | | 0.573 | 4.1135 | 41900 | 0.6121 | 0.0086 | 0.3381 | 0.7613 | 0.3381 | | 0.5933 | 4.1233 | 42000 | 0.6058 | 0.0086 | 0.3394 | 0.7620 | 0.3394 | | 0.564 | 4.1331 | 42100 | 0.6202 | 0.0086 | 0.3306 | 0.7567 | 0.3306 | | 0.5657 | 4.1429 | 42200 | 0.6111 | 0.0086 | 0.3476 | 0.7626 | 0.3476 | | 0.6831 | 4.1528 | 42300 | 0.6190 | 0.0086 | 0.3338 | 0.7574 | 0.3338 | | 0.6247 | 4.1626 | 42400 | 0.6146 | 0.0086 | 0.3363 | 0.7586 | 0.3363 | | 0.5744 | 4.1724 | 42500 | 0.6080 | 0.0086 | 0.3402 | 0.7625 | 0.3402 | | 0.6673 | 4.1822 | 42600 | 0.6197 | 0.0086 | 0.3327 | 0.7575 | 0.3327 | | 0.6368 | 4.1920 | 42700 | 0.6141 | 0.0086 | 0.3372 | 0.7599 | 0.3372 | | 0.5965 | 4.2018 | 42800 | 0.6219 | 0.0086 | 0.3291 | 0.7557 | 0.3291 | | 0.6001 | 4.2117 | 42900 | 0.6141 | 0.0086 | 0.3390 | 0.7603 | 0.3390 | | 0.6449 | 4.2215 | 43000 | 0.6235 | 0.0086 | 0.3331 | 0.7567 | 0.3331 | | 0.6381 | 4.2313 | 43100 | 0.6148 | 0.0086 | 0.3338 | 0.7597 | 0.3338 | | 0.6426 | 4.2411 | 43200 | 0.6049 | 0.0086 | 0.3412 | 0.7613 | 0.3412 | | 0.5596 | 4.2509 | 43300 | 0.6105 | 0.0086 | 0.3375 | 0.7606 | 0.3375 | | 0.5768 | 4.2608 | 43400 | 0.6222 | 0.0086 | 0.3278 | 0.7553 | 0.3278 | | 0.6451 | 4.2706 | 43500 | 0.6137 | 0.0086 | 0.3369 | 0.7591 | 0.3369 | | 0.5864 | 4.2804 | 43600 | 0.6148 | 0.0086 | 0.3334 | 0.7590 | 0.3334 | | 0.5822 | 4.2902 | 43700 | 0.6028 | 0.0086 | 0.3430 | 0.7638 | 0.3430 | | 0.6527 | 4.3000 | 43800 | 0.6095 | 0.0086 | 0.3373 | 0.7588 | 0.3373 | | 0.7008 | 4.3098 | 43900 | 0.6193 | 0.0086 | 0.3338 | 0.7564 | 0.3338 | | 0.5279 | 4.3197 | 44000 | 0.6061 | 0.0086 | 0.3485 | 0.7632 | 0.3485 | | 0.5885 | 4.3295 | 44100 | 0.6144 | 0.0086 | 0.3372 | 0.7588 | 0.3372 | | 0.5261 | 4.3393 | 44200 | 0.6154 | 0.0086 | 0.3354 | 0.7579 | 0.3354 | | 0.6226 | 4.3491 | 44300 | 0.6145 | 0.0086 | 0.3380 | 0.7588 | 0.3380 | | 0.576 | 4.3589 | 44400 | 0.6124 | 0.0086 | 0.3358 | 0.7595 | 0.3358 | | 0.6455 | 4.3687 | 44500 | 0.6099 | 0.0086 | 0.3413 | 0.7611 | 0.3413 | | 0.6287 | 4.3786 | 44600 | 0.6069 | 0.0086 | 0.3422 | 0.7611 | 0.3422 | | 0.6038 | 4.3884 | 44700 | 0.6081 | 0.0086 | 0.3441 | 0.7611 | 0.3441 | | 0.6558 | 4.3982 | 44800 | 0.6119 | 0.0086 | 0.3450 | 0.7616 | 0.3450 | | 0.6699 | 4.4080 | 44900 | 0.6243 | 0.0086 | 0.3343 | 0.7563 | 0.3343 | | 0.5422 | 4.4178 | 45000 | 0.6063 | 0.0086 | 0.3393 | 0.7627 | 0.3393 | | 0.659 | 4.4276 | 45100 | 0.6144 | 0.0086 | 0.3385 | 0.7582 | 0.3385 | | 0.6124 | 4.4375 | 45200 | 0.6233 | 0.0086 | 0.3271 | 0.7556 | 0.3271 | | 0.625 | 4.4473 | 45300 | 0.6142 | 0.0086 | 0.3431 | 0.7605 | 0.3431 | | 0.5892 | 4.4571 | 45400 | 0.6110 | 0.0086 | 0.3420 | 0.7611 | 0.3420 | | 0.5941 | 4.4669 | 45500 | 0.6123 | 0.0086 | 0.3331 | 0.7607 | 0.3331 | | 0.6259 | 4.4767 | 45600 | 0.6241 | 0.0086 | 0.3342 | 0.7567 | 0.3342 | | 0.6079 | 4.4866 | 45700 | 0.6133 | 0.0086 | 0.3345 | 0.7592 | 0.3345 | | 0.6241 | 4.4964 | 45800 | 0.6102 | 0.0086 | 0.3428 | 0.7624 | 0.3428 | | 0.6058 | 4.5062 | 45900 | 0.6149 | 0.0086 | 0.3395 | 0.7592 | 0.3395 | | 0.5642 | 4.5160 | 46000 | 0.6140 | 0.0086 | 0.3389 | 0.7615 | 0.3389 | | 0.6282 | 4.5258 | 46100 | 0.6189 | 0.0086 | 0.3331 | 0.7584 | 0.3331 | | 0.5885 | 4.5356 | 46200 | 0.6321 | 0.0086 | 0.3258 | 0.7538 | 0.3258 | | 0.5897 | 4.5455 | 46300 | 0.6094 | 0.0086 | 0.3372 | 0.7603 | 0.3372 | | 0.6497 | 4.5553 | 46400 | 0.6160 | 0.0086 | 0.3354 | 0.7579 | 0.3354 | | 0.6238 | 4.5651 | 46500 | 0.6149 | 0.0086 | 0.3308 | 0.7586 | 0.3308 | | 0.6 | 4.5749 | 46600 | 0.6033 | 0.0086 | 0.3424 | 0.7622 | 0.3424 | | 0.6107 | 4.5847 | 46700 | 0.6067 | 0.0086 | 0.3401 | 0.7614 | 0.3401 | | 0.5665 | 4.5945 | 46800 | 0.6116 | 0.0086 | 0.3448 | 0.7629 | 0.3448 | | 0.6129 | 4.6044 | 46900 | 0.6079 | 0.0086 | 0.3420 | 0.7623 | 0.3420 | | 0.6378 | 4.6142 | 47000 | 0.6505 | 0.0086 | 0.3203 | 0.7494 | 0.3203 | | 0.5778 | 4.6240 | 47100 | 0.6141 | 0.0086 | 0.3392 | 0.7607 | 0.3392 | | 0.5997 | 4.6338 | 47200 | 0.6099 | 0.0086 | 0.3418 | 0.7611 | 0.3418 | | 0.6807 | 4.6436 | 47300 | 0.6094 | 0.0086 | 0.3335 | 0.7608 | 0.3335 | | 0.6218 | 4.6534 | 47400 | 0.6185 | 0.0086 | 0.3393 | 0.7605 | 0.3393 | | 0.5647 | 4.6633 | 47500 | 0.6059 | 0.0086 | 0.3416 | 0.7624 | 0.3416 | | 0.6388 | 4.6731 | 47600 | 0.6188 | 0.0086 | 0.3391 | 0.7590 | 0.3391 | | 0.5666 | 4.6829 | 47700 | 0.6284 | 0.0086 | 0.3287 | 0.7549 | 0.3287 | | 0.5354 | 4.6927 | 47800 | 0.6084 | 0.0086 | 0.3398 | 0.7611 | 0.3398 | | 0.5492 | 4.7025 | 47900 | 0.6106 | 0.0086 | 0.3414 | 0.7598 | 0.3414 | | 0.5916 | 4.7124 | 48000 | 0.6086 | 0.0086 | 0.3461 | 0.7618 | 0.3461 | | 0.5775 | 4.7222 | 48100 | 0.6012 | 0.0086 | 0.3408 | 0.7635 | 0.3408 | | 0.6448 | 4.7320 | 48200 | 0.6089 | 0.0086 | 0.3461 | 0.7620 | 0.3461 | | 0.6334 | 4.7418 | 48300 | 0.6112 | 0.0086 | 0.3436 | 0.7613 | 0.3436 | | 0.5845 | 4.7516 | 48400 | 0.6071 | 0.0086 | 0.3432 | 0.7626 | 0.3432 | | 0.6117 | 4.7614 | 48500 | 0.6101 | 0.0086 | 0.3381 | 0.7606 | 0.3381 | | 0.5826 | 4.7713 | 48600 | 0.6209 | 0.0086 | 0.3336 | 0.7567 | 0.3336 | | 0.5915 | 4.7811 | 48700 | 0.6224 | 0.0086 | 0.3331 | 0.7567 | 0.3331 | | 0.6079 | 4.7909 | 48800 | 0.6121 | 0.0086 | 0.3354 | 0.7574 | 0.3354 | | 0.6398 | 4.8007 | 48900 | 0.6082 | 0.0086 | 0.3393 | 0.7621 | 0.3393 | | 0.6582 | 4.8105 | 49000 | 0.6132 | 0.0086 | 0.3383 | 0.7597 | 0.3383 | | 0.5721 | 4.8203 | 49100 | 0.6052 | 0.0086 | 0.3428 | 0.7612 | 0.3428 | | 0.5446 | 4.8302 | 49200 | 0.6050 | 0.0086 | 0.3399 | 0.7616 | 0.3399 | | 0.6274 | 4.8400 | 49300 | 0.6048 | 0.0086 | 0.3420 | 0.7623 | 0.3420 | | 0.5768 | 4.8498 | 49400 | 0.6091 | 0.0086 | 0.3419 | 0.7605 | 0.3419 | | 0.5624 | 4.8596 | 49500 | 0.6086 | 0.0086 | 0.3453 | 0.7622 | 0.3453 | | 0.5282 | 4.8694 | 49600 | 0.6024 | 0.0086 | 0.3450 | 0.7631 | 0.3450 | | 0.624 | 4.8792 | 49700 | 0.6019 | 0.0086 | 0.3475 | 0.7644 | 0.3475 | | 0.6453 | 4.8891 | 49800 | 0.6112 | 0.0086 | 0.3374 | 0.7587 | 0.3374 | | 0.6002 | 4.8989 | 49900 | 0.6050 | 0.0086 | 0.3405 | 0.7618 | 0.3405 | | 0.6535 | 4.9087 | 50000 | 0.6079 | 0.0086 | 0.3452 | 0.7625 | 0.3452 | | 0.581 | 4.9185 | 50100 | 0.6062 | 0.0086 | 0.3385 | 0.7624 | 0.3385 | | 0.5543 | 4.9283 | 50200 | 0.6163 | 0.0086 | 0.3400 | 0.7601 | 0.3400 | | 0.613 | 4.9382 | 50300 | 0.6018 | 0.0086 | 0.3444 | 0.7638 | 0.3444 | | 0.6704 | 4.9480 | 50400 | 0.6099 | 0.0086 | 0.3398 | 0.7597 | 0.3398 | | 0.5886 | 4.9578 | 50500 | 0.6127 | 0.0086 | 0.3347 | 0.7586 | 0.3347 | | 0.5684 | 4.9676 | 50600 | 0.6142 | 0.0086 | 0.3307 | 0.7573 | 0.3307 | | 0.5771 | 4.9774 | 50700 | 0.6121 | 0.0086 | 0.3393 | 0.7596 | 0.3393 | | 0.5673 | 4.9872 | 50800 | 0.6106 | 0.0086 | 0.3418 | 0.7615 | 0.3418 | | 0.6015 | 4.9971 | 50900 | 0.6081 | 0.0086 | 0.3424 | 0.7606 | 0.3424 | | 0.5331 | 5.0069 | 51000 | 0.6120 | 0.0086 | 0.3414 | 0.7605 | 0.3414 | | 0.5991 | 5.0167 | 51100 | 0.6109 | 0.0086 | 0.3363 | 0.7601 | 0.3363 | | 0.5822 | 5.0265 | 51200 | 0.6110 | 0.0086 | 0.3427 | 0.7615 | 0.3427 | | 0.623 | 5.0363 | 51300 | 0.6073 | 0.0086 | 0.3450 | 0.7643 | 0.3450 | | 0.65 | 5.0461 | 51400 | 0.6152 | 0.0086 | 0.3333 | 0.7594 | 0.3333 | | 0.5721 | 5.0560 | 51500 | 0.6006 | 0.0086 | 0.3492 | 0.7658 | 0.3492 | | 0.618 | 5.0658 | 51600 | 0.6044 | 0.0086 | 0.3390 | 0.7613 | 0.3390 | | 0.5617 | 5.0756 | 51700 | 0.6076 | 0.0086 | 0.3461 | 0.7622 | 0.3461 | | 0.6361 | 5.0854 | 51800 | 0.6057 | 0.0086 | 0.3470 | 0.7638 | 0.3470 | | 0.5826 | 5.0952 | 51900 | 0.5970 | 0.0086 | 0.3438 | 0.7653 | 0.3438 | | 0.5781 | 5.1050 | 52000 | 0.6025 | 0.0086 | 0.3414 | 0.7633 | 0.3414 | | 0.6573 | 5.1149 | 52100 | 0.6040 | 0.0086 | 0.3443 | 0.7636 | 0.3443 | | 0.6252 | 5.1247 | 52200 | 0.6062 | 0.0086 | 0.3476 | 0.7638 | 0.3476 | | 0.6614 | 5.1345 | 52300 | 0.6083 | 0.0086 | 0.3450 | 0.7618 | 0.3450 | | 0.6139 | 5.1443 | 52400 | 0.6022 | 0.0086 | 0.3463 | 0.7636 | 0.3463 | | 0.5606 | 5.1541 | 52500 | 0.6101 | 0.0086 | 0.3399 | 0.7599 | 0.3399 | | 0.593 | 5.1640 | 52600 | 0.6016 | 0.0086 | 0.3483 | 0.7645 | 0.3483 | | 0.6151 | 5.1738 | 52700 | 0.6036 | 0.0086 | 0.3514 | 0.7648 | 0.3514 | | 0.6368 | 5.1836 | 52800 | 0.6018 | 0.0086 | 0.3401 | 0.7609 | 0.3401 | | 0.5631 | 5.1934 | 52900 | 0.6036 | 0.0086 | 0.3463 | 0.7634 | 0.3463 | | 0.5767 | 5.2032 | 53000 | 0.5991 | 0.0086 | 0.3479 | 0.7638 | 0.3479 | | 0.6535 | 5.2130 | 53100 | 0.6100 | 0.0086 | 0.3430 | 0.7610 | 0.3430 | | 0.6193 | 5.2229 | 53200 | 0.6066 | 0.0086 | 0.3447 | 0.7617 | 0.3447 | | 0.5957 | 5.2327 | 53300 | 0.6078 | 0.0086 | 0.3398 | 0.7617 | 0.3398 | | 0.5539 | 5.2425 | 53400 | 0.6139 | 0.0086 | 0.3459 | 0.7603 | 0.3459 | | 0.6232 | 5.2523 | 53500 | 0.6078 | 0.0086 | 0.3372 | 0.7610 | 0.3372 | | 0.6099 | 5.2621 | 53600 | 0.5966 | 0.0086 | 0.3527 | 0.7666 | 0.3527 | | 0.5619 | 5.2719 | 53700 | 0.6077 | 0.0086 | 0.3355 | 0.7598 | 0.3355 | | 0.6722 | 5.2818 | 53800 | 0.6247 | 0.0086 | 0.3291 | 0.7554 | 0.3291 | | 0.61 | 5.2916 | 53900 | 0.6103 | 0.0086 | 0.3441 | 0.7620 | 0.3441 | | 0.5403 | 5.3014 | 54000 | 0.6085 | 0.0086 | 0.3436 | 0.7620 | 0.3436 | | 0.5585 | 5.3112 | 54100 | 0.6024 | 0.0086 | 0.3443 | 0.7623 | 0.3443 | | 0.6503 | 5.3210 | 54200 | 0.6026 | 0.0086 | 0.3432 | 0.7626 | 0.3432 | | 0.5583 | 5.3308 | 54300 | 0.6085 | 0.0086 | 0.3346 | 0.7607 | 0.3346 | | 0.6347 | 5.3407 | 54400 | 0.6057 | 0.0086 | 0.3409 | 0.7623 | 0.3409 | | 0.5882 | 5.3505 | 54500 | 0.6048 | 0.0086 | 0.3367 | 0.7606 | 0.3367 | | 0.5565 | 5.3603 | 54600 | 0.6056 | 0.0086 | 0.3473 | 0.7648 | 0.3473 | | 0.5465 | 5.3701 | 54700 | 0.6017 | 0.0086 | 0.3559 | 0.7650 | 0.3559 | | 0.5752 | 5.3799 | 54800 | 0.6077 | 0.0086 | 0.3498 | 0.7642 | 0.3498 | | 0.6498 | 5.3898 | 54900 | 0.6008 | 0.0086 | 0.3488 | 0.7645 | 0.3488 | | 0.5355 | 5.3996 | 55000 | 0.5994 | 0.0086 | 0.3421 | 0.7652 | 0.3421 | | 0.6006 | 5.4094 | 55100 | 0.6091 | 0.0086 | 0.3365 | 0.7609 | 0.3365 | | 0.5346 | 5.4192 | 55200 | 0.6074 | 0.0086 | 0.3432 | 0.7637 | 0.3432 | | 0.5513 | 5.4290 | 55300 | 0.6062 | 0.0086 | 0.3443 | 0.7624 | 0.3443 | | 0.6061 | 5.4388 | 55400 | 0.6012 | 0.0086 | 0.3532 | 0.7665 | 0.3532 | | 0.6046 | 5.4487 | 55500 | 0.6111 | 0.0086 | 0.3452 | 0.7618 | 0.3452 | | 0.6116 | 5.4585 | 55600 | 0.6074 | 0.0086 | 0.3392 | 0.7613 | 0.3392 | | 0.6833 | 5.4683 | 55700 | 0.6053 | 0.0086 | 0.3401 | 0.7610 | 0.3401 | | 0.576 | 5.4781 | 55800 | 0.6129 | 0.0086 | 0.3358 | 0.7596 | 0.3358 | | 0.5749 | 5.4879 | 55900 | 0.6046 | 0.0086 | 0.3399 | 0.7639 | 0.3399 | | 0.5885 | 5.4977 | 56000 | 0.6122 | 0.0086 | 0.3388 | 0.7612 | 0.3388 | | 0.633 | 5.5076 | 56100 | 0.6033 | 0.0086 | 0.3490 | 0.7640 | 0.3490 | | 0.5744 | 5.5174 | 56200 | 0.5985 | 0.0086 | 0.3376 | 0.7631 | 0.3376 | | 0.6265 | 5.5272 | 56300 | 0.5994 | 0.0086 | 0.3454 | 0.7642 | 0.3454 | | 0.5889 | 5.5370 | 56400 | 0.6049 | 0.0086 | 0.3425 | 0.7622 | 0.3425 | | 0.64 | 5.5468 | 56500 | 0.6027 | 0.0086 | 0.3456 | 0.7636 | 0.3456 | | 0.6046 | 5.5566 | 56600 | 0.6017 | 0.0086 | 0.3416 | 0.7631 | 0.3416 | | 0.5951 | 5.5665 | 56700 | 0.6019 | 0.0086 | 0.3429 | 0.7628 | 0.3429 | | 0.6434 | 5.5763 | 56800 | 0.5970 | 0.0086 | 0.3518 | 0.7665 | 0.3518 | | 0.5773 | 5.5861 | 56900 | 0.6162 | 0.0086 | 0.3327 | 0.7583 | 0.3327 | | 0.5599 | 5.5959 | 57000 | 0.6009 | 0.0086 | 0.3484 | 0.7644 | 0.3484 | | 0.574 | 5.6057 | 57100 | 0.5941 | 0.0086 | 0.3394 | 0.7643 | 0.3394 | | 0.535 | 5.6156 | 57200 | 0.6007 | 0.0086 | 0.3376 | 0.7612 | 0.3376 | | 0.6018 | 5.6254 | 57300 | 0.6109 | 0.0086 | 0.3355 | 0.7600 | 0.3355 | | 0.6263 | 5.6352 | 57400 | 0.6033 | 0.0086 | 0.3407 | 0.7618 | 0.3407 | | 0.5863 | 5.6450 | 57500 | 0.5982 | 0.0086 | 0.3501 | 0.7648 | 0.3501 | | 0.5242 | 5.6548 | 57600 | 0.6032 | 0.0086 | 0.3510 | 0.7646 | 0.3510 | | 0.6277 | 5.6646 | 57700 | 0.6070 | 0.0086 | 0.3389 | 0.7622 | 0.3389 | | 0.6128 | 5.6745 | 57800 | 0.6077 | 0.0086 | 0.3490 | 0.7640 | 0.3490 | | 0.6368 | 5.6843 | 57900 | 0.6009 | 0.0086 | 0.3519 | 0.7660 | 0.3519 | | 0.5409 | 5.6941 | 58000 | 0.6059 | 0.0086 | 0.3435 | 0.7636 | 0.3435 | | 0.5696 | 5.7039 | 58100 | 0.6064 | 0.0086 | 0.3435 | 0.7635 | 0.3435 | | 0.6092 | 5.7137 | 58200 | 0.6047 | 0.0086 | 0.3345 | 0.7610 | 0.3345 | | 0.5849 | 5.7235 | 58300 | 0.5971 | 0.0086 | 0.3432 | 0.7628 | 0.3432 | | 0.6596 | 5.7334 | 58400 | 0.5974 | 0.0086 | 0.3479 | 0.7682 | 0.3479 | | 0.589 | 5.7432 | 58500 | 0.5935 | 0.0086 | 0.3504 | 0.7669 | 0.3504 | | 0.6453 | 5.7530 | 58600 | 0.6040 | 0.0086 | 0.3416 | 0.7631 | 0.3416 | | 0.5853 | 5.7628 | 58700 | 0.6003 | 0.0086 | 0.3514 | 0.7665 | 0.3514 | | 0.6131 | 5.7726 | 58800 | 0.6109 | 0.0086 | 0.3459 | 0.7618 | 0.3459 | | 0.5561 | 5.7824 | 58900 | 0.6016 | 0.0086 | 0.3410 | 0.7638 | 0.3410 | | 0.567 | 5.7923 | 59000 | 0.5965 | 0.0086 | 0.3487 | 0.7652 | 0.3487 | | 0.5979 | 5.8021 | 59100 | 0.6007 | 0.0086 | 0.3463 | 0.7644 | 0.3463 | | 0.5803 | 5.8119 | 59200 | 0.5978 | 0.0086 | 0.3541 | 0.7655 | 0.3541 | | 0.6249 | 5.8217 | 59300 | 0.6143 | 0.0086 | 0.3376 | 0.7617 | 0.3376 | | 0.5465 | 5.8315 | 59400 | 0.5971 | 0.0086 | 0.3468 | 0.7649 | 0.3468 | | 0.6989 | 5.8414 | 59500 | 0.6131 | 0.0086 | 0.3427 | 0.7607 | 0.3427 | | 0.6143 | 5.8512 | 59600 | 0.6098 | 0.0086 | 0.3339 | 0.7593 | 0.3339 | | 0.6605 | 5.8610 | 59700 | 0.6150 | 0.0086 | 0.3383 | 0.7612 | 0.3383 | | 0.6123 | 5.8708 | 59800 | 0.5957 | 0.0086 | 0.3453 | 0.7649 | 0.3453 | | 0.5687 | 5.8806 | 59900 | 0.6024 | 0.0086 | 0.3490 | 0.7636 | 0.3490 | | 0.5671 | 5.8904 | 60000 | 0.6030 | 0.0086 | 0.3417 | 0.7634 | 0.3417 | | 0.5914 | 5.9003 | 60100 | 0.6028 | 0.0086 | 0.3547 | 0.7664 | 0.3547 | | 0.6167 | 5.9101 | 60200 | 0.6021 | 0.0086 | 0.3415 | 0.7626 | 0.3415 | | 0.6099 | 5.9199 | 60300 | 0.6087 | 0.0086 | 0.3407 | 0.7627 | 0.3407 | | 0.5963 | 5.9297 | 60400 | 0.6090 | 0.0086 | 0.3444 | 0.7624 | 0.3444 | | 0.5501 | 5.9395 | 60500 | 0.6071 | 0.0086 | 0.3399 | 0.7622 | 0.3399 | | 0.5458 | 5.9493 | 60600 | 0.6018 | 0.0086 | 0.3486 | 0.7647 | 0.3486 | | 0.6142 | 5.9592 | 60700 | 0.6001 | 0.0086 | 0.3443 | 0.7654 | 0.3443 | | 0.5448 | 5.9690 | 60800 | 0.6028 | 0.0086 | 0.3525 | 0.7640 | 0.3525 | | 0.6307 | 5.9788 | 60900 | 0.5984 | 0.0086 | 0.3561 | 0.7680 | 0.3561 | | 0.5923 | 5.9886 | 61000 | 0.6066 | 0.0086 | 0.3476 | 0.7630 | 0.3476 | | 0.6139 | 5.9984 | 61100 | 0.6105 | 0.0086 | 0.3431 | 0.7620 | 0.3431 | | 0.5237 | 6.0082 | 61200 | 0.5978 | 0.0086 | 0.3475 | 0.7652 | 0.3475 | | 0.5155 | 6.0181 | 61300 | 0.6017 | 0.0086 | 0.3452 | 0.7641 | 0.3452 | | 0.5353 | 6.0279 | 61400 | 0.5948 | 0.0086 | 0.3454 | 0.7651 | 0.3454 | | 0.6021 | 6.0377 | 61500 | 0.5954 | 0.0086 | 0.3533 | 0.7684 | 0.3533 | | 0.5652 | 6.0475 | 61600 | 0.6104 | 0.0086 | 0.3390 | 0.7617 | 0.3390 | | 0.5795 | 6.0573 | 61700 | 0.5970 | 0.0086 | 0.3532 | 0.7664 | 0.3532 | | 0.5414 | 6.0672 | 61800 | 0.6050 | 0.0086 | 0.3409 | 0.7628 | 0.3409 | | 0.6404 | 6.0770 | 61900 | 0.6055 | 0.0086 | 0.3401 | 0.7614 | 0.3401 | | 0.6101 | 6.0868 | 62000 | 0.6077 | 0.0086 | 0.3451 | 0.7646 | 0.3451 | | 0.5883 | 6.0966 | 62100 | 0.5963 | 0.0086 | 0.3574 | 0.7656 | 0.3574 | | 0.6232 | 6.1064 | 62200 | 0.5926 | 0.0086 | 0.3528 | 0.7669 | 0.3528 | | 0.5768 | 6.1162 | 62300 | 0.5978 | 0.0086 | 0.3505 | 0.7649 | 0.3505 | | 0.5955 | 6.1261 | 62400 | 0.5948 | 0.0086 | 0.3470 | 0.7662 | 0.3470 | | 0.5537 | 6.1359 | 62500 | 0.6058 | 0.0086 | 0.3425 | 0.7636 | 0.3425 | | 0.6022 | 6.1457 | 62600 | 0.6098 | 0.0086 | 0.3460 | 0.7625 | 0.3460 | | 0.5593 | 6.1555 | 62700 | 0.5982 | 0.0086 | 0.3501 | 0.7681 | 0.3501 | | 0.5907 | 6.1653 | 62800 | 0.6009 | 0.0086 | 0.3467 | 0.7632 | 0.3467 | | 0.6055 | 6.1751 | 62900 | 0.6120 | 0.0086 | 0.3414 | 0.7615 | 0.3414 | | 0.5671 | 6.1850 | 63000 | 0.5926 | 0.0086 | 0.3445 | 0.7650 | 0.3445 | | 0.6491 | 6.1948 | 63100 | 0.6015 | 0.0086 | 0.3462 | 0.7653 | 0.3462 | | 0.5969 | 6.2046 | 63200 | 0.6068 | 0.0086 | 0.3474 | 0.7638 | 0.3474 | | 0.588 | 6.2144 | 63300 | 0.5964 | 0.0086 | 0.3470 | 0.7670 | 0.3470 | | 0.6095 | 6.2242 | 63400 | 0.6026 | 0.0086 | 0.3409 | 0.7629 | 0.3409 | | 0.5764 | 6.2340 | 63500 | 0.6048 | 0.0086 | 0.3425 | 0.7630 | 0.3425 | | 0.5593 | 6.2439 | 63600 | 0.5952 | 0.0086 | 0.3450 | 0.7655 | 0.3450 | | 0.6257 | 6.2537 | 63700 | 0.6123 | 0.0086 | 0.3427 | 0.7615 | 0.3427 | | 0.5877 | 6.2635 | 63800 | 0.5927 | 0.0086 | 0.3516 | 0.7677 | 0.3516 | | 0.6055 | 6.2733 | 63900 | 0.5970 | 0.0086 | 0.3523 | 0.7660 | 0.3523 | | 0.6661 | 6.2831 | 64000 | 0.5939 | 0.0086 | 0.3580 | 0.7693 | 0.3580 | | 0.5649 | 6.2930 | 64100 | 0.5995 | 0.0086 | 0.3460 | 0.7639 | 0.3460 | | 0.5717 | 6.3028 | 64200 | 0.5948 | 0.0086 | 0.3516 | 0.7664 | 0.3516 | | 0.5785 | 6.3126 | 64300 | 0.6019 | 0.0086 | 0.3553 | 0.7658 | 0.3553 | | 0.5516 | 6.3224 | 64400 | 0.5879 | 0.0086 | 0.3580 | 0.7696 | 0.3580 | | 0.586 | 6.3322 | 64500 | 0.6082 | 0.0086 | 0.3450 | 0.7635 | 0.3450 | | 0.6076 | 6.3420 | 64600 | 0.5920 | 0.0086 | 0.3537 | 0.7678 | 0.3537 | | 0.5573 | 6.3519 | 64700 | 0.5887 | 0.0086 | 0.3530 | 0.7693 | 0.3530 | | 0.5897 | 6.3617 | 64800 | 0.5964 | 0.0086 | 0.3543 | 0.7674 | 0.3543 | | 0.5995 | 6.3715 | 64900 | 0.5972 | 0.0086 | 0.3455 | 0.7661 | 0.3455 | | 0.6352 | 6.3813 | 65000 | 0.5914 | 0.0086 | 0.3603 | 0.7686 | 0.3603 | | 0.5732 | 6.3911 | 65100 | 0.5934 | 0.0086 | 0.3494 | 0.7661 | 0.3494 | | 0.624 | 6.4009 | 65200 | 0.5948 | 0.0086 | 0.3537 | 0.7660 | 0.3537 | | 0.6041 | 6.4108 | 65300 | 0.6086 | 0.0086 | 0.3528 | 0.7644 | 0.3528 | | 0.624 | 6.4206 | 65400 | 0.5966 | 0.0086 | 0.3420 | 0.7646 | 0.3420 | | 0.5989 | 6.4304 | 65500 | 0.5963 | 0.0086 | 0.3541 | 0.7686 | 0.3541 | | 0.5905 | 6.4402 | 65600 | 0.5970 | 0.0086 | 0.3552 | 0.7661 | 0.3552 | | 0.6476 | 6.4500 | 65700 | 0.5944 | 0.0086 | 0.3525 | 0.7666 | 0.3525 | | 0.5435 | 6.4598 | 65800 | 0.5927 | 0.0086 | 0.3559 | 0.7685 | 0.3559 | | 0.6189 | 6.4697 | 65900 | 0.5945 | 0.0086 | 0.3448 | 0.7654 | 0.3448 | | 0.5674 | 6.4795 | 66000 | 0.5980 | 0.0086 | 0.3461 | 0.7651 | 0.3461 | | 0.5489 | 6.4893 | 66100 | 0.5955 | 0.0086 | 0.3467 | 0.7655 | 0.3467 | | 0.5846 | 6.4991 | 66200 | 0.5933 | 0.0086 | 0.3498 | 0.7668 | 0.3498 | | 0.6233 | 6.5089 | 66300 | 0.5973 | 0.0086 | 0.3541 | 0.7664 | 0.3541 | | 0.5745 | 6.5188 | 66400 | 0.6044 | 0.0086 | 0.3379 | 0.7605 | 0.3379 | | 0.5808 | 6.5286 | 66500 | 0.5958 | 0.0086 | 0.3476 | 0.7668 | 0.3476 | | 0.568 | 6.5384 | 66600 | 0.5892 | 0.0086 | 0.3528 | 0.7684 | 0.3528 | | 0.5974 | 6.5482 | 66700 | 0.5941 | 0.0086 | 0.3516 | 0.7675 | 0.3516 | | 0.5878 | 6.5580 | 66800 | 0.5955 | 0.0086 | 0.3491 | 0.7674 | 0.3491 | | 0.6682 | 6.5678 | 66900 | 0.5953 | 0.0086 | 0.3548 | 0.7671 | 0.3548 | | 0.6099 | 6.5777 | 67000 | 0.6048 | 0.0086 | 0.3430 | 0.7654 | 0.3430 | | 0.6265 | 6.5875 | 67100 | 0.5982 | 0.0086 | 0.3434 | 0.7641 | 0.3434 | | 0.6171 | 6.5973 | 67200 | 0.6086 | 0.0086 | 0.3406 | 0.7608 | 0.3406 | | 0.5814 | 6.6071 | 67300 | 0.5947 | 0.0086 | 0.3528 | 0.7674 | 0.3528 | | 0.5707 | 6.6169 | 67400 | 0.5945 | 0.0086 | 0.3563 | 0.7675 | 0.3563 | | 0.6171 | 6.6267 | 67500 | 0.5859 | 0.0086 | 0.3561 | 0.7702 | 0.3561 | | 0.5979 | 6.6366 | 67600 | 0.5888 | 0.0086 | 0.3501 | 0.7681 | 0.3501 | | 0.705 | 6.6464 | 67700 | 0.5955 | 0.0086 | 0.3504 | 0.7673 | 0.3504 | | 0.5427 | 6.6562 | 67800 | 0.5961 | 0.0086 | 0.3491 | 0.7653 | 0.3491 | | 0.5668 | 6.6660 | 67900 | 0.5942 | 0.0086 | 0.3574 | 0.7683 | 0.3574 | | 0.6164 | 6.6758 | 68000 | 0.6038 | 0.0086 | 0.3369 | 0.7630 | 0.3369 | | 0.5457 | 6.6856 | 68100 | 0.5943 | 0.0086 | 0.3621 | 0.7696 | 0.3621 | | 0.5495 | 6.6955 | 68200 | 0.5950 | 0.0086 | 0.3522 | 0.7667 | 0.3522 | | 0.5794 | 6.7053 | 68300 | 0.6088 | 0.0086 | 0.3363 | 0.7590 | 0.3363 | | 0.5564 | 6.7151 | 68400 | 0.5978 | 0.0086 | 0.3494 | 0.7650 | 0.3494 | | 0.6342 | 6.7249 | 68500 | 0.5965 | 0.0086 | 0.3480 | 0.7660 | 0.3480 | | 0.5781 | 6.7347 | 68600 | 0.5870 | 0.0086 | 0.3539 | 0.7702 | 0.3539 | | 0.4772 | 6.7446 | 68700 | 0.5964 | 0.0086 | 0.3513 | 0.7662 | 0.3513 | | 0.5988 | 6.7544 | 68800 | 0.5956 | 0.0086 | 0.3474 | 0.7652 | 0.3474 | | 0.5904 | 6.7642 | 68900 | 0.5871 | 0.0086 | 0.3578 | 0.7698 | 0.3578 | | 0.6189 | 6.7740 | 69000 | 0.5882 | 0.0086 | 0.3605 | 0.7709 | 0.3605 | | 0.5626 | 6.7838 | 69100 | 0.5967 | 0.0086 | 0.3566 | 0.7687 | 0.3566 | | 0.6542 | 6.7936 | 69200 | 0.5934 | 0.0086 | 0.3505 | 0.7674 | 0.3505 | | 0.5397 | 6.8035 | 69300 | 0.6012 | 0.0086 | 0.3499 | 0.7657 | 0.3499 | | 0.644 | 6.8133 | 69400 | 0.6028 | 0.0086 | 0.3518 | 0.7647 | 0.3518 | | 0.6231 | 6.8231 | 69500 | 0.6077 | 0.0086 | 0.3485 | 0.7636 | 0.3485 | | 0.6159 | 6.8329 | 69600 | 0.6202 | 0.0086 | 0.3363 | 0.7583 | 0.3363 | | 0.6497 | 6.8427 | 69700 | 0.6063 | 0.0086 | 0.3483 | 0.7640 | 0.3483 | | 0.5618 | 6.8525 | 69800 | 0.5967 | 0.0086 | 0.3524 | 0.7663 | 0.3524 | | 0.5196 | 6.8624 | 69900 | 0.5989 | 0.0086 | 0.3512 | 0.7652 | 0.3512 | | 0.6337 | 6.8722 | 70000 | 0.5913 | 0.0086 | 0.3574 | 0.7697 | 0.3574 | | 0.5716 | 6.8820 | 70100 | 0.5926 | 0.0086 | 0.3609 | 0.7703 | 0.3609 | | 0.576 | 6.8918 | 70200 | 0.5926 | 0.0086 | 0.3509 | 0.7674 | 0.3509 | | 0.571 | 6.9016 | 70300 | 0.5962 | 0.0086 | 0.3603 | 0.7693 | 0.3603 | | 0.6006 | 6.9114 | 70400 | 0.5896 | 0.0086 | 0.3587 | 0.7685 | 0.3587 | | 0.5712 | 6.9213 | 70500 | 0.5916 | 0.0086 | 0.3567 | 0.7684 | 0.3567 | | 0.5858 | 6.9311 | 70600 | 0.5915 | 0.0086 | 0.3520 | 0.7663 | 0.3520 | | 0.5905 | 6.9409 | 70700 | 0.5915 | 0.0086 | 0.3494 | 0.7661 | 0.3494 | | 0.5847 | 6.9507 | 70800 | 0.5878 | 0.0086 | 0.3570 | 0.7692 | 0.3570 | | 0.5519 | 6.9605 | 70900 | 0.5914 | 0.0086 | 0.3562 | 0.7687 | 0.3562 | | 0.6569 | 6.9704 | 71000 | 0.5931 | 0.0086 | 0.3500 | 0.7675 | 0.3500 | | 0.6167 | 6.9802 | 71100 | 0.5855 | 0.0086 | 0.3582 | 0.7703 | 0.3582 | | 0.6062 | 6.9900 | 71200 | 0.5914 | 0.0086 | 0.3523 | 0.7680 | 0.3523 | | 0.5836 | 6.9998 | 71300 | 0.5929 | 0.0086 | 0.3552 | 0.7684 | 0.3552 | | 0.5238 | 7.0096 | 71400 | 0.6047 | 0.0086 | 0.3515 | 0.7648 | 0.3515 | | 0.5477 | 7.0194 | 71500 | 0.5894 | 0.0086 | 0.3610 | 0.7702 | 0.3610 | | 0.5009 | 7.0293 | 71600 | 0.5858 | 0.0086 | 0.3586 | 0.7704 | 0.3586 | | 0.5508 | 7.0391 | 71700 | 0.5895 | 0.0086 | 0.3530 | 0.7684 | 0.3530 | | 0.5757 | 7.0489 | 71800 | 0.5910 | 0.0086 | 0.3545 | 0.7689 | 0.3545 | | 0.6301 | 7.0587 | 71900 | 0.5939 | 0.0086 | 0.3535 | 0.7681 | 0.3535 | | 0.5702 | 7.0685 | 72000 | 0.5921 | 0.0086 | 0.3560 | 0.7699 | 0.3560 | | 0.6324 | 7.0783 | 72100 | 0.5873 | 0.0086 | 0.3598 | 0.7724 | 0.3598 | | 0.6174 | 7.0882 | 72200 | 0.5878 | 0.0086 | 0.3561 | 0.7705 | 0.3561 | | 0.582 | 7.0980 | 72300 | 0.6042 | 0.0086 | 0.3475 | 0.7647 | 0.3475 | | 0.6208 | 7.1078 | 72400 | 0.5887 | 0.0086 | 0.3627 | 0.7705 | 0.3627 | | 0.5802 | 7.1176 | 72500 | 0.5923 | 0.0086 | 0.3505 | 0.7674 | 0.3505 | | 0.572 | 7.1274 | 72600 | 0.5859 | 0.0086 | 0.3597 | 0.7704 | 0.3597 | | 0.5382 | 7.1372 | 72700 | 0.5974 | 0.0086 | 0.3578 | 0.7680 | 0.3578 | | 0.5877 | 7.1471 | 72800 | 0.5815 | 0.0086 | 0.3574 | 0.7705 | 0.3574 | | 0.5633 | 7.1569 | 72900 | 0.5914 | 0.0086 | 0.3553 | 0.7686 | 0.3553 | | 0.6295 | 7.1667 | 73000 | 0.5918 | 0.0086 | 0.3459 | 0.7678 | 0.3459 | | 0.5891 | 7.1765 | 73100 | 0.5863 | 0.0086 | 0.3620 | 0.7709 | 0.3620 | | 0.6128 | 7.1863 | 73200 | 0.5900 | 0.0086 | 0.3552 | 0.7694 | 0.3552 | | 0.5989 | 7.1962 | 73300 | 0.5926 | 0.0086 | 0.3584 | 0.7681 | 0.3584 | | 0.5607 | 7.2060 | 73400 | 0.5867 | 0.0086 | 0.3557 | 0.7700 | 0.3557 | | 0.5966 | 7.2158 | 73500 | 0.5878 | 0.0086 | 0.3563 | 0.7689 | 0.3563 | | 0.6647 | 7.2256 | 73600 | 0.6094 | 0.0086 | 0.3471 | 0.7629 | 0.3471 | | 0.6499 | 7.2354 | 73700 | 0.5923 | 0.0086 | 0.3527 | 0.7678 | 0.3527 | | 0.573 | 7.2452 | 73800 | 0.5867 | 0.0086 | 0.3599 | 0.7708 | 0.3599 | | 0.5666 | 7.2551 | 73900 | 0.5903 | 0.0086 | 0.3556 | 0.7689 | 0.3556 | | 0.5647 | 7.2649 | 74000 | 0.5872 | 0.0086 | 0.3575 | 0.7698 | 0.3575 | | 0.6188 | 7.2747 | 74100 | 0.5942 | 0.0086 | 0.3454 | 0.7662 | 0.3454 | | 0.5774 | 7.2845 | 74200 | 0.5868 | 0.0086 | 0.3628 | 0.7725 | 0.3628 | | 0.6064 | 7.2943 | 74300 | 0.5929 | 0.0086 | 0.3473 | 0.7664 | 0.3473 | | 0.492 | 7.3041 | 74400 | 0.5950 | 0.0086 | 0.3524 | 0.7665 | 0.3524 | | 0.5333 | 7.3140 | 74500 | 0.5831 | 0.0086 | 0.3601 | 0.7719 | 0.3601 | | 0.5254 | 7.3238 | 74600 | 0.5866 | 0.0086 | 0.3621 | 0.7702 | 0.3621 | | 0.6001 | 7.3336 | 74700 | 0.5940 | 0.0086 | 0.3472 | 0.7675 | 0.3472 | | 0.5299 | 7.3434 | 74800 | 0.5916 | 0.0086 | 0.3584 | 0.7696 | 0.3584 | | 0.5574 | 7.3532 | 74900 | 0.5912 | 0.0086 | 0.3515 | 0.7678 | 0.3515 | | 0.6757 | 7.3630 | 75000 | 0.5929 | 0.0086 | 0.3550 | 0.7671 | 0.3550 | | 0.6406 | 7.3729 | 75100 | 0.5881 | 0.0086 | 0.3574 | 0.7696 | 0.3574 | | 0.5522 | 7.3827 | 75200 | 0.5907 | 0.0086 | 0.3612 | 0.7707 | 0.3612 | | 0.6441 | 7.3925 | 75300 | 0.5912 | 0.0086 | 0.3540 | 0.7685 | 0.3540 | | 0.6 | 7.4023 | 75400 | 0.5934 | 0.0086 | 0.3512 | 0.7671 | 0.3512 | | 0.5934 | 7.4121 | 75500 | 0.5913 | 0.0086 | 0.3509 | 0.7670 | 0.3509 | | 0.603 | 7.4220 | 75600 | 0.5859 | 0.0086 | 0.3621 | 0.7715 | 0.3621 | | 0.5952 | 7.4318 | 75700 | 0.5926 | 0.0086 | 0.3602 | 0.7686 | 0.3602 | | 0.6199 | 7.4416 | 75800 | 0.5878 | 0.0086 | 0.3560 | 0.7684 | 0.3560 | | 0.6554 | 7.4514 | 75900 | 0.5865 | 0.0086 | 0.3616 | 0.7703 | 0.3616 | | 0.6334 | 7.4612 | 76000 | 0.5952 | 0.0086 | 0.3577 | 0.7687 | 0.3577 | | 0.5947 | 7.4710 | 76100 | 0.5892 | 0.0086 | 0.3600 | 0.7708 | 0.3600 | | 0.5357 | 7.4809 | 76200 | 0.5959 | 0.0086 | 0.3502 | 0.7660 | 0.3502 | | 0.6013 | 7.4907 | 76300 | 0.5896 | 0.0086 | 0.3552 | 0.7706 | 0.3552 | | 0.5504 | 7.5005 | 76400 | 0.5898 | 0.0086 | 0.3525 | 0.7683 | 0.3525 | | 0.5427 | 7.5103 | 76500 | 0.5874 | 0.0086 | 0.3582 | 0.7700 | 0.3582 | | 0.5804 | 7.5201 | 76600 | 0.5888 | 0.0086 | 0.3549 | 0.7705 | 0.3549 | | 0.57 | 7.5299 | 76700 | 0.5918 | 0.0086 | 0.3579 | 0.7699 | 0.3579 | | 0.5929 | 7.5398 | 76800 | 0.5840 | 0.0086 | 0.3603 | 0.7716 | 0.3603 | | 0.6013 | 7.5496 | 76900 | 0.5924 | 0.0086 | 0.3594 | 0.7701 | 0.3594 | | 0.5881 | 7.5594 | 77000 | 0.5921 | 0.0086 | 0.3592 | 0.7699 | 0.3592 | | 0.5505 | 7.5692 | 77100 | 0.5871 | 0.0086 | 0.3623 | 0.7700 | 0.3623 | | 0.5413 | 7.5790 | 77200 | 0.5886 | 0.0086 | 0.3604 | 0.7713 | 0.3604 | | 0.5669 | 7.5888 | 77300 | 0.5888 | 0.0086 | 0.3476 | 0.7671 | 0.3476 | | 0.5455 | 7.5987 | 77400 | 0.5910 | 0.0086 | 0.3534 | 0.7704 | 0.3534 | | 0.6402 | 7.6085 | 77500 | 0.5878 | 0.0086 | 0.3519 | 0.7693 | 0.3519 | | 0.6044 | 7.6183 | 77600 | 0.5832 | 0.0086 | 0.3583 | 0.7708 | 0.3583 | | 0.5031 | 7.6281 | 77700 | 0.5930 | 0.0086 | 0.3516 | 0.7680 | 0.3516 | | 0.6125 | 7.6379 | 77800 | 0.5875 | 0.0086 | 0.3633 | 0.7711 | 0.3633 | | 0.5633 | 7.6478 | 77900 | 0.5934 | 0.0086 | 0.3465 | 0.7672 | 0.3465 | | 0.5994 | 7.6576 | 78000 | 0.5883 | 0.0086 | 0.3554 | 0.7690 | 0.3554 | | 0.5849 | 7.6674 | 78100 | 0.5916 | 0.0086 | 0.3585 | 0.7696 | 0.3585 | | 0.5268 | 7.6772 | 78200 | 0.5952 | 0.0086 | 0.3597 | 0.7697 | 0.3597 | | 0.5745 | 7.6870 | 78300 | 0.5826 | 0.0086 | 0.3581 | 0.7717 | 0.3581 | | 0.5543 | 7.6968 | 78400 | 0.5950 | 0.0086 | 0.3530 | 0.7651 | 0.3530 | | 0.5975 | 7.7067 | 78500 | 0.5898 | 0.0086 | 0.3511 | 0.7669 | 0.3511 | | 0.5825 | 7.7165 | 78600 | 0.5894 | 0.0086 | 0.3623 | 0.7719 | 0.3623 | | 0.5566 | 7.7263 | 78700 | 0.5929 | 0.0086 | 0.3504 | 0.7668 | 0.3504 | | 0.5857 | 7.7361 | 78800 | 0.5813 | 0.0086 | 0.3595 | 0.7712 | 0.3595 | | 0.62 | 7.7459 | 78900 | 0.5933 | 0.0086 | 0.3513 | 0.7670 | 0.3513 | | 0.5486 | 7.7557 | 79000 | 0.5952 | 0.0086 | 0.3524 | 0.7668 | 0.3524 | | 0.6074 | 7.7656 | 79100 | 0.5829 | 0.0086 | 0.3658 | 0.7729 | 0.3658 | | 0.5707 | 7.7754 | 79200 | 0.5991 | 0.0086 | 0.3558 | 0.7674 | 0.3558 | | 0.5961 | 7.7852 | 79300 | 0.5828 | 0.0086 | 0.3546 | 0.7715 | 0.3546 | | 0.5388 | 7.7950 | 79400 | 0.5819 | 0.0086 | 0.3641 | 0.7717 | 0.3641 | | 0.5751 | 7.8048 | 79500 | 0.5891 | 0.0086 | 0.3488 | 0.7677 | 0.3488 | | 0.5864 | 7.8146 | 79600 | 0.5882 | 0.0086 | 0.3596 | 0.7692 | 0.3596 | | 0.587 | 7.8245 | 79700 | 0.5874 | 0.0086 | 0.3615 | 0.7714 | 0.3615 | | 0.5909 | 7.8343 | 79800 | 0.5838 | 0.0086 | 0.3597 | 0.7711 | 0.3597 | | 0.5886 | 7.8441 | 79900 | 0.5956 | 0.0086 | 0.3525 | 0.7663 | 0.3525 | | 0.5286 | 7.8539 | 80000 | 0.5894 | 0.0086 | 0.3526 | 0.7683 | 0.3526 | | 0.5899 | 7.8637 | 80100 | 0.5905 | 0.0086 | 0.3465 | 0.7675 | 0.3465 | | 0.492 | 7.8736 | 80200 | 0.5877 | 0.0086 | 0.3573 | 0.7701 | 0.3573 | | 0.5326 | 7.8834 | 80300 | 0.5854 | 0.0086 | 0.3646 | 0.7717 | 0.3646 | | 0.6815 | 7.8932 | 80400 | 0.5972 | 0.0086 | 0.3476 | 0.7658 | 0.3476 | | 0.5531 | 7.9030 | 80500 | 0.5865 | 0.0086 | 0.3564 | 0.7690 | 0.3564 | | 0.5357 | 7.9128 | 80600 | 0.5967 | 0.0086 | 0.3469 | 0.7658 | 0.3469 | | 0.5807 | 7.9226 | 80700 | 0.5861 | 0.0086 | 0.3532 | 0.7694 | 0.3532 | | 0.5946 | 7.9325 | 80800 | 0.5826 | 0.0086 | 0.3581 | 0.7701 | 0.3581 | | 0.6202 | 7.9423 | 80900 | 0.5818 | 0.0086 | 0.3631 | 0.7722 | 0.3631 | | 0.5944 | 7.9521 | 81000 | 0.5837 | 0.0086 | 0.3612 | 0.7715 | 0.3612 | | 0.5202 | 7.9619 | 81100 | 0.5876 | 0.0086 | 0.3595 | 0.7698 | 0.3595 | | 0.5982 | 7.9717 | 81200 | 0.5858 | 0.0086 | 0.3581 | 0.7697 | 0.3581 | | 0.5979 | 7.9815 | 81300 | 0.5933 | 0.0086 | 0.3546 | 0.7666 | 0.3546 | | 0.5333 | 7.9914 | 81400 | 0.5850 | 0.0086 | 0.3561 | 0.7705 | 0.3561 | | 0.5663 | 8.0012 | 81500 | 0.5838 | 0.0086 | 0.3595 | 0.7718 | 0.3595 | | 0.5212 | 8.0110 | 81600 | 0.5862 | 0.0086 | 0.3533 | 0.7687 | 0.3533 | | 0.5368 | 8.0208 | 81700 | 0.5830 | 0.0086 | 0.3532 | 0.7703 | 0.3532 | | 0.5592 | 8.0306 | 81800 | 0.5915 | 0.0086 | 0.3577 | 0.7687 | 0.3577 | | 0.5379 | 8.0404 | 81900 | 0.5902 | 0.0086 | 0.3587 | 0.7699 | 0.3587 | | 0.5923 | 8.0503 | 82000 | 0.5867 | 0.0086 | 0.3617 | 0.7700 | 0.3617 | | 0.6002 | 8.0601 | 82100 | 0.6034 | 0.0086 | 0.3596 | 0.7671 | 0.3596 | | 0.5325 | 8.0699 | 82200 | 0.5851 | 0.0086 | 0.3568 | 0.7704 | 0.3568 | | 0.4816 | 8.0797 | 82300 | 0.5951 | 0.0086 | 0.3584 | 0.7683 | 0.3584 | | 0.6248 | 8.0895 | 82400 | 0.5835 | 0.0086 | 0.3579 | 0.7710 | 0.3579 | | 0.576 | 8.0994 | 82500 | 0.6037 | 0.0086 | 0.3488 | 0.7647 | 0.3488 | | 0.5566 | 8.1092 | 82600 | 0.5937 | 0.0086 | 0.3515 | 0.7669 | 0.3515 | | 0.604 | 8.1190 | 82700 | 0.5864 | 0.0086 | 0.3563 | 0.7707 | 0.3563 | | 0.6502 | 8.1288 | 82800 | 0.6010 | 0.0086 | 0.3472 | 0.7640 | 0.3472 | | 0.5729 | 8.1386 | 82900 | 0.5842 | 0.0086 | 0.3570 | 0.7702 | 0.3570 | | 0.5656 | 8.1484 | 83000 | 0.5814 | 0.0086 | 0.3619 | 0.7729 | 0.3619 | | 0.6284 | 8.1583 | 83100 | 0.5960 | 0.0086 | 0.3576 | 0.7655 | 0.3576 | | 0.579 | 8.1681 | 83200 | 0.5877 | 0.0086 | 0.3608 | 0.7712 | 0.3608 | | 0.5517 | 8.1779 | 83300 | 0.5916 | 0.0086 | 0.3532 | 0.7676 | 0.3532 | | 0.5575 | 8.1877 | 83400 | 0.5836 | 0.0086 | 0.3604 | 0.7715 | 0.3604 | | 0.4976 | 8.1975 | 83500 | 0.5898 | 0.0086 | 0.3561 | 0.7699 | 0.3561 | | 0.5681 | 8.2073 | 83600 | 0.5899 | 0.0086 | 0.3610 | 0.7707 | 0.3610 | | 0.5526 | 8.2172 | 83700 | 0.5809 | 0.0086 | 0.3656 | 0.7729 | 0.3656 | | 0.6385 | 8.2270 | 83800 | 0.5972 | 0.0086 | 0.3488 | 0.7661 | 0.3488 | | 0.4887 | 8.2368 | 83900 | 0.5899 | 0.0086 | 0.3592 | 0.7697 | 0.3592 | | 0.5925 | 8.2466 | 84000 | 0.6034 | 0.0086 | 0.3551 | 0.7654 | 0.3551 | | 0.5207 | 8.2564 | 84100 | 0.5802 | 0.0086 | 0.3670 | 0.7732 | 0.3670 | | 0.5194 | 8.2662 | 84200 | 0.5875 | 0.0086 | 0.3612 | 0.7695 | 0.3612 | | 0.5728 | 8.2761 | 84300 | 0.5818 | 0.0086 | 0.3648 | 0.7728 | 0.3648 | | 0.6193 | 8.2859 | 84400 | 0.5887 | 0.0086 | 0.3605 | 0.7703 | 0.3605 | | 0.6311 | 8.2957 | 84500 | 0.5873 | 0.0086 | 0.3499 | 0.7691 | 0.3499 | | 0.5772 | 8.3055 | 84600 | 0.5867 | 0.0086 | 0.3563 | 0.7701 | 0.3563 | | 0.571 | 8.3153 | 84700 | 0.5889 | 0.0086 | 0.3565 | 0.7703 | 0.3565 | | 0.5568 | 8.3252 | 84800 | 0.5880 | 0.0086 | 0.3588 | 0.7715 | 0.3588 | | 0.5999 | 8.3350 | 84900 | 0.5819 | 0.0086 | 0.3617 | 0.7712 | 0.3617 | | 0.597 | 8.3448 | 85000 | 0.5798 | 0.0086 | 0.3642 | 0.7721 | 0.3642 | | 0.5151 | 8.3546 | 85100 | 0.5820 | 0.0086 | 0.3598 | 0.7715 | 0.3598 | | 0.5999 | 8.3644 | 85200 | 0.5862 | 0.0086 | 0.3533 | 0.7694 | 0.3533 | | 0.5282 | 8.3742 | 85300 | 0.5841 | 0.0086 | 0.3568 | 0.7705 | 0.3568 | | 0.5648 | 8.3841 | 85400 | 0.5839 | 0.0086 | 0.3551 | 0.7707 | 0.3551 | | 0.5371 | 8.3939 | 85500 | 0.5882 | 0.0086 | 0.3610 | 0.7708 | 0.3610 | | 0.6224 | 8.4037 | 85600 | 0.5870 | 0.0086 | 0.3467 | 0.7679 | 0.3467 | | 0.5703 | 8.4135 | 85700 | 0.5854 | 0.0086 | 0.3625 | 0.7720 | 0.3625 | | 0.562 | 8.4233 | 85800 | 0.5944 | 0.0086 | 0.3575 | 0.7690 | 0.3575 | | 0.5535 | 8.4331 | 85900 | 0.5814 | 0.0086 | 0.3643 | 0.7728 | 0.3643 | | 0.5649 | 8.4430 | 86000 | 0.5852 | 0.0086 | 0.3508 | 0.7703 | 0.3508 | | 0.6245 | 8.4528 | 86100 | 0.5755 | 0.0086 | 0.3632 | 0.7741 | 0.3632 | | 0.5627 | 8.4626 | 86200 | 0.5830 | 0.0086 | 0.3586 | 0.7710 | 0.3586 | | 0.5904 | 8.4724 | 86300 | 0.5809 | 0.0086 | 0.3601 | 0.7730 | 0.3601 | | 0.5634 | 8.4822 | 86400 | 0.5855 | 0.0086 | 0.3590 | 0.7716 | 0.3590 | | 0.5655 | 8.4920 | 86500 | 0.5911 | 0.0086 | 0.3534 | 0.7690 | 0.3534 | | 0.6366 | 8.5019 | 86600 | 0.5825 | 0.0086 | 0.3630 | 0.7736 | 0.3630 | | 0.5838 | 8.5117 | 86700 | 0.5855 | 0.0086 | 0.3639 | 0.7718 | 0.3639 | | 0.5548 | 8.5215 | 86800 | 0.5798 | 0.0086 | 0.3656 | 0.7738 | 0.3656 | | 0.5033 | 8.5313 | 86900 | 0.5776 | 0.0086 | 0.3673 | 0.7754 | 0.3673 | | 0.6673 | 8.5411 | 87000 | 0.5884 | 0.0086 | 0.3549 | 0.7704 | 0.3549 | | 0.5491 | 8.5510 | 87100 | 0.5892 | 0.0086 | 0.3574 | 0.7680 | 0.3574 | | 0.5848 | 8.5608 | 87200 | 0.5985 | 0.0086 | 0.3525 | 0.7671 | 0.3525 | | 0.6011 | 8.5706 | 87300 | 0.5908 | 0.0086 | 0.3605 | 0.7698 | 0.3605 | | 0.5886 | 8.5804 | 87400 | 0.5852 | 0.0086 | 0.3529 | 0.7692 | 0.3529 | | 0.5758 | 8.5902 | 87500 | 0.5836 | 0.0086 | 0.3667 | 0.7735 | 0.3667 | | 0.5647 | 8.6000 | 87600 | 0.5861 | 0.0086 | 0.3632 | 0.7708 | 0.3632 | | 0.5686 | 8.6099 | 87700 | 0.5818 | 0.0086 | 0.3689 | 0.7745 | 0.3689 | | 0.5792 | 8.6197 | 87800 | 0.5883 | 0.0086 | 0.3585 | 0.7709 | 0.3585 | | 0.5647 | 8.6295 | 87900 | 0.5908 | 0.0086 | 0.3611 | 0.7711 | 0.3611 | | 0.5667 | 8.6393 | 88000 | 0.5807 | 0.0086 | 0.3680 | 0.7745 | 0.3680 | | 0.579 | 8.6491 | 88100 | 0.5777 | 0.0086 | 0.3652 | 0.7747 | 0.3652 | | 0.5553 | 8.6589 | 88200 | 0.5802 | 0.0086 | 0.3576 | 0.7719 | 0.3576 | | 0.585 | 8.6688 | 88300 | 0.5905 | 0.0086 | 0.3599 | 0.7717 | 0.3599 | | 0.5563 | 8.6786 | 88400 | 0.5784 | 0.0086 | 0.3600 | 0.7728 | 0.3600 | | 0.5916 | 8.6884 | 88500 | 0.5820 | 0.0086 | 0.3576 | 0.7712 | 0.3576 | | 0.5878 | 8.6982 | 88600 | 0.5904 | 0.0086 | 0.3537 | 0.7683 | 0.3537 | | 0.5155 | 8.7080 | 88700 | 0.5894 | 0.0086 | 0.3545 | 0.7692 | 0.3545 | | 0.629 | 8.7178 | 88800 | 0.5865 | 0.0086 | 0.3635 | 0.7720 | 0.3635 | | 0.5567 | 8.7277 | 88900 | 0.5906 | 0.0086 | 0.3552 | 0.7687 | 0.3552 | | 0.55 | 8.7375 | 89000 | 0.5838 | 0.0086 | 0.3660 | 0.7729 | 0.3660 | | 0.542 | 8.7473 | 89100 | 0.5813 | 0.0086 | 0.3688 | 0.7720 | 0.3688 | | 0.5736 | 8.7571 | 89200 | 0.6036 | 0.0086 | 0.3412 | 0.7631 | 0.3412 | | 0.5241 | 8.7669 | 89300 | 0.5859 | 0.0086 | 0.3582 | 0.7720 | 0.3582 | | 0.5664 | 8.7768 | 89400 | 0.5858 | 0.0086 | 0.3554 | 0.7702 | 0.3554 | | 0.5501 | 8.7866 | 89500 | 0.5787 | 0.0086 | 0.3655 | 0.7733 | 0.3655 | | 0.5268 | 8.7964 | 89600 | 0.5803 | 0.0086 | 0.3522 | 0.7706 | 0.3522 | | 0.5877 | 8.8062 | 89700 | 0.5834 | 0.0086 | 0.3559 | 0.7708 | 0.3559 | | 0.5644 | 8.8160 | 89800 | 0.5791 | 0.0086 | 0.3651 | 0.7738 | 0.3651 | | 0.5808 | 8.8258 | 89900 | 0.5888 | 0.0086 | 0.3585 | 0.7706 | 0.3585 | | 0.5461 | 8.8357 | 90000 | 0.5769 | 0.0086 | 0.3688 | 0.7738 | 0.3688 | | 0.579 | 8.8455 | 90100 | 0.5864 | 0.0086 | 0.3573 | 0.7696 | 0.3573 | | 0.5929 | 8.8553 | 90200 | 0.5796 | 0.0086 | 0.3666 | 0.7735 | 0.3666 | | 0.5289 | 8.8651 | 90300 | 0.5917 | 0.0086 | 0.3608 | 0.7704 | 0.3608 | | 0.5678 | 8.8749 | 90400 | 0.5768 | 0.0086 | 0.3626 | 0.7746 | 0.3626 | | 0.6038 | 8.8847 | 90500 | 0.5865 | 0.0086 | 0.3579 | 0.7709 | 0.3579 | | 0.5807 | 8.8946 | 90600 | 0.5828 | 0.0086 | 0.3610 | 0.7702 | 0.3610 | | 0.5073 | 8.9044 | 90700 | 0.5804 | 0.0086 | 0.3637 | 0.7722 | 0.3637 | | 0.5829 | 8.9142 | 90800 | 0.5815 | 0.0086 | 0.3623 | 0.7728 | 0.3623 | | 0.6192 | 8.9240 | 90900 | 0.5850 | 0.0086 | 0.3577 | 0.7700 | 0.3577 | | 0.5808 | 8.9338 | 91000 | 0.5825 | 0.0086 | 0.3665 | 0.7739 | 0.3665 | | 0.5747 | 8.9436 | 91100 | 0.5877 | 0.0086 | 0.3537 | 0.7678 | 0.3537 | | 0.5755 | 8.9535 | 91200 | 0.5819 | 0.0086 | 0.3610 | 0.7713 | 0.3610 | | 0.5642 | 8.9633 | 91300 | 0.5841 | 0.0086 | 0.3566 | 0.7693 | 0.3566 | | 0.6357 | 8.9731 | 91400 | 0.5900 | 0.0086 | 0.3558 | 0.7690 | 0.3558 | | 0.5033 | 8.9829 | 91500 | 0.5813 | 0.0086 | 0.3617 | 0.7712 | 0.3617 | | 0.5957 | 8.9927 | 91600 | 0.5851 | 0.0086 | 0.3618 | 0.7711 | 0.3618 | | 0.5486 | 9.0026 | 91700 | 0.5830 | 0.0086 | 0.3640 | 0.7725 | 0.3640 | | 0.5454 | 9.0124 | 91800 | 0.5814 | 0.0086 | 0.3637 | 0.7726 | 0.3637 | | 0.5726 | 9.0222 | 91900 | 0.5862 | 0.0086 | 0.3485 | 0.7685 | 0.3485 | | 0.6183 | 9.0320 | 92000 | 0.5870 | 0.0086 | 0.3662 | 0.7718 | 0.3662 | | 0.4955 | 9.0418 | 92100 | 0.5836 | 0.0086 | 0.3595 | 0.7720 | 0.3595 | | 0.5987 | 9.0516 | 92200 | 0.5818 | 0.0086 | 0.3605 | 0.7728 | 0.3605 | | 0.5863 | 9.0615 | 92300 | 0.5784 | 0.0086 | 0.3657 | 0.7737 | 0.3657 | | 0.5728 | 9.0713 | 92400 | 0.5812 | 0.0086 | 0.3602 | 0.7705 | 0.3602 | | 0.5719 | 9.0811 | 92500 | 0.5782 | 0.0086 | 0.3643 | 0.7738 | 0.3643 | | 0.6093 | 9.0909 | 92600 | 0.5833 | 0.0086 | 0.3661 | 0.7721 | 0.3661 | | 0.5676 | 9.1007 | 92700 | 0.5804 | 0.0086 | 0.3623 | 0.7734 | 0.3623 | | 0.4827 | 9.1105 | 92800 | 0.5854 | 0.0086 | 0.3621 | 0.7708 | 0.3621 | | 0.5191 | 9.1204 | 92900 | 0.5804 | 0.0086 | 0.3666 | 0.7735 | 0.3666 | | 0.6233 | 9.1302 | 93000 | 0.5832 | 0.0086 | 0.3574 | 0.7717 | 0.3574 | | 0.5379 | 9.1400 | 93100 | 0.5892 | 0.0086 | 0.3586 | 0.7704 | 0.3586 | | 0.5764 | 9.1498 | 93200 | 0.5754 | 0.0086 | 0.3682 | 0.7756 | 0.3682 | | 0.5547 | 9.1596 | 93300 | 0.5772 | 0.0086 | 0.3639 | 0.7737 | 0.3639 | | 0.659 | 9.1694 | 93400 | 0.5792 | 0.0086 | 0.3675 | 0.7753 | 0.3675 | | 0.5287 | 9.1793 | 93500 | 0.5892 | 0.0086 | 0.3588 | 0.7701 | 0.3588 | | 0.5285 | 9.1891 | 93600 | 0.5747 | 0.0086 | 0.3664 | 0.7738 | 0.3664 | | 0.5826 | 9.1989 | 93700 | 0.5869 | 0.0086 | 0.3510 | 0.7691 | 0.3510 | | 0.5742 | 9.2087 | 93800 | 0.5823 | 0.0086 | 0.3582 | 0.7713 | 0.3582 | | 0.6075 | 9.2185 | 93900 | 0.5807 | 0.0086 | 0.3657 | 0.7724 | 0.3657 | | 0.5149 | 9.2284 | 94000 | 0.5806 | 0.0086 | 0.3693 | 0.7744 | 0.3693 | | 0.6354 | 9.2382 | 94100 | 0.5806 | 0.0086 | 0.3639 | 0.7723 | 0.3639 | | 0.6343 | 9.2480 | 94200 | 0.5996 | 0.0086 | 0.3469 | 0.7668 | 0.3469 | | 0.5372 | 9.2578 | 94300 | 0.5778 | 0.0086 | 0.3668 | 0.7734 | 0.3668 | | 0.608 | 9.2676 | 94400 | 0.5792 | 0.0086 | 0.3644 | 0.7739 | 0.3644 | | 0.5976 | 9.2774 | 94500 | 0.5863 | 0.0086 | 0.3603 | 0.7713 | 0.3603 | | 0.4705 | 9.2873 | 94600 | 0.5827 | 0.0086 | 0.3565 | 0.7708 | 0.3565 | | 0.5795 | 9.2971 | 94700 | 0.5765 | 0.0086 | 0.3643 | 0.7748 | 0.3643 | | 0.5827 | 9.3069 | 94800 | 0.5856 | 0.0086 | 0.3603 | 0.7715 | 0.3603 | | 0.6143 | 9.3167 | 94900 | 0.5898 | 0.0086 | 0.3636 | 0.7706 | 0.3636 | | 0.611 | 9.3265 | 95000 | 0.5897 | 0.0086 | 0.3568 | 0.7694 | 0.3568 | | 0.5746 | 9.3363 | 95100 | 0.5769 | 0.0086 | 0.3679 | 0.7744 | 0.3679 | | 0.5539 | 9.3462 | 95200 | 0.5822 | 0.0086 | 0.3666 | 0.7720 | 0.3666 | | 0.5411 | 9.3560 | 95300 | 0.5746 | 0.0086 | 0.3679 | 0.7741 | 0.3679 | | 0.5035 | 9.3658 | 95400 | 0.5910 | 0.0086 | 0.3509 | 0.7680 | 0.3509 | | 0.5591 | 9.3756 | 95500 | 0.5787 | 0.0086 | 0.3667 | 0.7741 | 0.3667 | | 0.5605 | 9.3854 | 95600 | 0.5817 | 0.0086 | 0.3702 | 0.7747 | 0.3702 | | 0.5283 | 9.3952 | 95700 | 0.5835 | 0.0086 | 0.3606 | 0.7719 | 0.3606 | | 0.559 | 9.4051 | 95800 | 0.5946 | 0.0086 | 0.3503 | 0.7672 | 0.3503 | | 0.6014 | 9.4149 | 95900 | 0.5752 | 0.0086 | 0.3680 | 0.7752 | 0.3680 | | 0.5891 | 9.4247 | 96000 | 0.5857 | 0.0086 | 0.3576 | 0.7707 | 0.3576 | | 0.5368 | 9.4345 | 96100 | 0.5804 | 0.0086 | 0.3614 | 0.7705 | 0.3614 | | 0.5964 | 9.4443 | 96200 | 0.5784 | 0.0086 | 0.3716 | 0.7764 | 0.3716 | | 0.5579 | 9.4542 | 96300 | 0.5797 | 0.0086 | 0.3551 | 0.7712 | 0.3551 | | 0.5549 | 9.4640 | 96400 | 0.5776 | 0.0086 | 0.3627 | 0.7726 | 0.3627 | | 0.5043 | 9.4738 | 96500 | 0.5794 | 0.0086 | 0.3639 | 0.7733 | 0.3639 | | 0.4903 | 9.4836 | 96600 | 0.5715 | 0.0086 | 0.3708 | 0.7763 | 0.3708 | | 0.4918 | 9.4934 | 96700 | 0.5792 | 0.0086 | 0.3568 | 0.7713 | 0.3568 | | 0.5173 | 9.5032 | 96800 | 0.5762 | 0.0086 | 0.3651 | 0.7750 | 0.3651 | | 0.6168 | 9.5131 | 96900 | 0.5872 | 0.0086 | 0.3673 | 0.7732 | 0.3673 | | 0.615 | 9.5229 | 97000 | 0.5829 | 0.0086 | 0.3543 | 0.7706 | 0.3543 | | 0.5807 | 9.5327 | 97100 | 0.5783 | 0.0086 | 0.3670 | 0.7750 | 0.3670 | | 0.5916 | 9.5425 | 97200 | 0.5802 | 0.0086 | 0.3661 | 0.7746 | 0.3661 | | 0.5418 | 9.5523 | 97300 | 0.5783 | 0.0086 | 0.3693 | 0.7745 | 0.3693 | | 0.5179 | 9.5621 | 97400 | 0.5737 | 0.0086 | 0.3677 | 0.7767 | 0.3677 | | 0.5485 | 9.5720 | 97500 | 0.5725 | 0.0086 | 0.3659 | 0.7753 | 0.3659 | | 0.5694 | 9.5818 | 97600 | 0.5751 | 0.0086 | 0.3761 | 0.7780 | 0.3761 | | 0.6151 | 9.5916 | 97700 | 0.5894 | 0.0086 | 0.3592 | 0.7717 | 0.3592 | | 0.5531 | 9.6014 | 97800 | 0.5812 | 0.0086 | 0.3598 | 0.7716 | 0.3598 | | 0.4994 | 9.6112 | 97900 | 0.5778 | 0.0086 | 0.3690 | 0.7761 | 0.3690 | | 0.6247 | 9.6210 | 98000 | 0.5801 | 0.0086 | 0.3606 | 0.7732 | 0.3606 | | 0.5134 | 9.6309 | 98100 | 0.5735 | 0.0086 | 0.3649 | 0.7741 | 0.3649 | | 0.5421 | 9.6407 | 98200 | 0.5803 | 0.0086 | 0.3648 | 0.7731 | 0.3648 | | 0.5954 | 9.6505 | 98300 | 0.5801 | 0.0086 | 0.3628 | 0.7746 | 0.3628 | | 0.5203 | 9.6603 | 98400 | 0.5800 | 0.0086 | 0.3704 | 0.7739 | 0.3704 | | 0.5634 | 9.6701 | 98500 | 0.5774 | 0.0086 | 0.3691 | 0.7737 | 0.3691 | | 0.5799 | 9.6800 | 98600 | 0.5792 | 0.0086 | 0.3620 | 0.7735 | 0.3620 | | 0.6255 | 9.6898 | 98700 | 0.5833 | 0.0086 | 0.3616 | 0.7734 | 0.3616 | | 0.592 | 9.6996 | 98800 | 0.5890 | 0.0086 | 0.3625 | 0.7700 | 0.3625 | | 0.5488 | 9.7094 | 98900 | 0.5820 | 0.0086 | 0.3575 | 0.7711 | 0.3575 | | 0.6108 | 9.7192 | 99000 | 0.5832 | 0.0086 | 0.3592 | 0.7717 | 0.3592 | | 0.6151 | 9.7290 | 99100 | 0.5724 | 0.0086 | 0.3674 | 0.7771 | 0.3674 | | 0.4952 | 9.7389 | 99200 | 0.5845 | 0.0086 | 0.3670 | 0.7740 | 0.3670 | | 0.5787 | 9.7487 | 99300 | 0.5850 | 0.0086 | 0.3633 | 0.7723 | 0.3633 | | 0.6172 | 9.7585 | 99400 | 0.5832 | 0.0086 | 0.3634 | 0.7735 | 0.3634 | | 0.6034 | 9.7683 | 99500 | 0.5836 | 0.0086 | 0.3670 | 0.7725 | 0.3670 | | 0.6173 | 9.7781 | 99600 | 0.5858 | 0.0086 | 0.3668 | 0.7726 | 0.3668 | | 0.5204 | 9.7879 | 99700 | 0.5798 | 0.0086 | 0.3664 | 0.7743 | 0.3664 | | 0.5861 | 9.7978 | 99800 | 0.5819 | 0.0086 | 0.3626 | 0.7725 | 0.3626 | | 0.5464 | 9.8076 | 99900 | 0.5877 | 0.0086 | 0.3596 | 0.7712 | 0.3596 | | 0.5543 | 9.8174 | 100000 | 0.5799 | 0.0086 | 0.3675 | 0.7732 | 0.3675 | | 0.5813 | 9.8272 | 100100 | 0.5786 | 0.0086 | 0.3635 | 0.7735 | 0.3635 | | 0.5963 | 9.8370 | 100200 | 0.5840 | 0.0086 | 0.3561 | 0.7720 | 0.3561 | | 0.5383 | 9.8468 | 100300 | 0.5760 | 0.0086 | 0.3655 | 0.7755 | 0.3655 | | 0.5232 | 9.8567 | 100400 | 0.5735 | 0.0086 | 0.3684 | 0.7736 | 0.3684 | | 0.5705 | 9.8665 | 100500 | 0.5781 | 0.0086 | 0.3632 | 0.7733 | 0.3632 | | 0.5621 | 9.8763 | 100600 | 0.5823 | 0.0086 | 0.3652 | 0.7720 | 0.3652 | | 0.5866 | 9.8861 | 100700 | 0.5788 | 0.0086 | 0.3591 | 0.7732 | 0.3591 | | 0.5527 | 9.8959 | 100800 | 0.5790 | 0.0086 | 0.3663 | 0.7740 | 0.3663 | | 0.5793 | 9.9058 | 100900 | 0.5696 | 0.0086 | 0.3705 | 0.7758 | 0.3705 | | 0.5732 | 9.9156 | 101000 | 0.5717 | 0.0086 | 0.3626 | 0.7754 | 0.3626 | | 0.5246 | 9.9254 | 101100 | 0.5733 | 0.0086 | 0.3666 | 0.7746 | 0.3666 | | 0.5928 | 9.9352 | 101200 | 0.5766 | 0.0086 | 0.3726 | 0.7770 | 0.3726 | | 0.5826 | 9.9450 | 101300 | 0.5775 | 0.0086 | 0.3689 | 0.7754 | 0.3689 | | 0.5403 | 9.9548 | 101400 | 0.5816 | 0.0086 | 0.3638 | 0.7717 | 0.3638 | | 0.5788 | 9.9647 | 101500 | 0.5774 | 0.0086 | 0.3604 | 0.7728 | 0.3604 | | 0.6247 | 9.9745 | 101600 | 0.5797 | 0.0086 | 0.3612 | 0.7732 | 0.3612 | | 0.6211 | 9.9843 | 101700 | 0.5730 | 0.0086 | 0.3695 | 0.7764 | 0.3695 | | 0.5625 | 9.9941 | 101800 | 0.5792 | 0.0086 | 0.3710 | 0.7746 | 0.3710 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
mlx-community/Cydonia-24B-v3.1-bf16
mlx-community
2025-06-25T02:55:35Z
0
0
mlx
[ "mlx", "safetensors", "mistral", "text-generation", "base_model:TheDrummer/Cydonia-24B-v3.1", "base_model:finetune:TheDrummer/Cydonia-24B-v3.1", "region:us" ]
text-generation
2025-06-25T02:41:48Z
--- base_model: TheDrummer/Cydonia-24B-v3.1 tags: - mlx library_name: mlx pipeline_tag: text-generation --- # mlx-community/Cydonia-24B-v3.1-bf16 This model [mlx-community/Cydonia-24B-v3.1-bf16](https://huggingface.co/mlx-community/Cydonia-24B-v3.1-bf16) was converted to MLX format from [TheDrummer/Cydonia-24B-v3.1](https://huggingface.co/TheDrummer/Cydonia-24B-v3.1) using mlx-lm version **0.25.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Cydonia-24B-v3.1-bf16") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
AlekseyCalvin/Glasnost_v2_wan_14b_80sUSSRvhsCollageStyle
AlekseyCalvin
2025-06-25T02:54:23Z
0
0
null
[ "image-to-video", "lora", "text-to-video", "video", "video-generation", "en", "zh", "ru", "base_model:Wan-AI/Wan2.1-T2V-14B-Diffusers", "base_model:adapter:Wan-AI/Wan2.1-T2V-14B-Diffusers", "license:apache-2.0", "region:us" ]
text-to-video
2025-06-25T01:05:56Z
--- license: apache-2.0 language: - en - zh - ru tags: - image-to-video - lora - text-to-video - video - video-generation base_model: "Wan-AI/Wan2.1-T2V-14B-Diffusers" pipeline_tag: text-to-video widget: - text: >- [GLASNOST] style... output: url: videos/1.mp4 - text: >- [GLASNOST] style... output: url: videos/3.mp4 - text: >- [GLASNOST] style... output: url: videos/4.mp4 - text: >- [GLASNOST] style... output: url: videos/5.mp4 - text: >- [GLASNOST] style... output: url: videos/6.mp4 - text: >- [GLASNOST] style... output: url: videos/2.mp4 instance_prompt: GLASNOST style Perestroika-era 1980s Soviet detailed experimental arthouse film sequence. On top left is ____ , on top right is ____, on bottom left is ____, on bottom right is ____, video filmed in the USSR during the perestroika era, featuring several concurrent clips of 16mm footage as a thematically-unified cinematographic collage of several distinct scenes, vintage Soviet television, underground cinema, radical metamodernist cinepoetry, from an award-winning real life raw mixed media conceptual sots art video filmed in the USSR during the Perestroika era, Leningrad punk, Moscow conceptualism --- # GLASNOST V.2: 80s Soviet Art-Video Collage ***Style/Context Low Rank Adaptor (LoRA)*** <br> ***For Wan2.1 14B T2V & I2V Base Models*** <br> **Stylers of Kinema Historical LoRAs** <br> **|||||||| By SilverAgePoets.com ||||||||** <Gallery /> ## About this LoRA This is a Rank 16/Alpha 64 LoRA for the Wan2.1 14b video generation model. <br> It may be used to generate several distinct scene-windows-concepts within a single clip (not unlike the well-known ZOOM LoRA). <br> We've found that given certain prompting styles and LoRA strength modifications may enable controlled gradations of inter-cohesion between the scenes. <br> It was trained on 100+ manually edited (by us) collages/montages, largely using the same clips and frames used to train the other GLASNOST LoRA (V.1), but with some additions specific to this variant. <br> These clips & frames were sourced by us from a variety of iconic 1980s Perestroika-era Soviet films, tv shows, concerts, & music videos. <br> Overall, the sources for this version of GLASNOST lean further into the realm of underground/countercultural/art film territories, with some Leningrad Metamodernist, Moscow Conceptualist, as well as all sorts of Soviet rock influences represented. <br> The captions this time around should enable this LoRA to exhibit slighly better knowledge (than V.1) of names like Yegor Letov, Viktor Tsoy, Yanka Dyaghileva, or bands Auctyon, KINO, Nol, and others. <br> This adapter can be used with Wan as well as Skyreels via diffusers or ComfyUI or DrawThings, etc... <br> This LoRA works well with both CausVid & Self-Forcing distillation quick inference adapters. <br> It also works fairly well in combos w/ other LoRAs. <br> **Get creative with these!** ## Trigger words You should use `GLASNOST style Perestroika-era 1980s Soviet detailed experimental arthouse film sequence. On top left is ____ , on top right is ____, on bottom left is ____, on bottom right is ____, video filmed in the USSR during the perestroika era, featuring several concurrent clips of 16mm footage as a thematically-unified cinematographic collage of several distinct scenes, vintage Soviet television, underground cinema, radical metamodernist cinepoetry, from an award-winning real life raw mixed media conceptual sots art video filmed in the USSR during the Perestroika era, Leningrad punk, Moscow conceptualism`, etc, to revive one of these more recent gestalts of futures no-longer-past! <br> ### Using with Diffusers ```py pip install git+https://github.com/huggingface/diffusers.git ``` ```py import torch from diffusers.utils import export_to_video from diffusers import AutoencoderKLWan, WanPipeline from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler model_id = "wavespeed/Wan2.1-T2V-14B-Diffusers-fp16" vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) flow_shift = 3.0 # 5.0 for 720P, 3.0 for 480P pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift) pipe.to("cuda") pipe.load_lora_weights("AlekseyCalvin/Glasnost_v1_wan_14b_USSR80sTVstyle") pipe.enable_model_cpu_offload() #for low-vram environments prompt = "GLASNOST style Perestroika-era 1980s Soviet detailed experimental arthouse film sequence. On top left is ____ , on top right is ____, on bottom left is ____, on bottom right is ____, video filmed in the USSR during the perestroika era, featuring several concurrent clips of 16mm footage as a thematically-unified cinematographic collage of several distinct scenes, vintage Soviet television, underground cinema, radical metamodernist cinepoetry, from an award-winning real life raw mixed media conceptual sots art video filmed in the USSR during the Perestroika era, Leningrad punk, Moscow conceptualism" negative_prompt = "overexposed, static, blurred, subtitles, images, static, worst, low, JPEG compression residue, incomplete, extra fingers, poorly drawn, poorly drawn, deformed, disfigured, misshapen, fused, still picture, backwards" output = pipe( prompt=prompt, negative_prompt=negative_prompt, height=480, width=832, num_frames=81, guidance_scale=5.0, ).frames[0] export_to_video(output, "output.mp4", fps=16) ``` ## Training details - Steps: 4000 - Learning rate: 0.0002 - LoRA rank: 16 dim, 64 alpha ## Contribute your own examples You can use the [community tab](https://huggingface.co/AlekseyCalvin/Glasnost_v1_wan_14b_USSR80sTVstyle/discussions) to add videos that show off what youโ€™ve made with this LoRA.
Yuichi1218/Llama-3.1-Non-filter-Lafeak64-8B-chatvector
Yuichi1218
2025-06-25T02:53:58Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:47:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ash2749/qwen_3_14B_acot_extes
Ash2749
2025-06-25T02:51:16Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:45:54Z
--- base_model: unsloth/qwen3-14b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Ash2749 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-14b-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
JFernandoGRE/llama31_8b_augmenteddemocracy_dpo2_questions_50_critsupport
JFernandoGRE
2025-06-25T02:44:52Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:JFernandoGRE/llama31_8b_augmenteddemocracy_sft_questions_50_critsupport", "base_model:finetune:JFernandoGRE/llama31_8b_augmenteddemocracy_sft_questions_50_critsupport", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:39:47Z
--- base_model: JFernandoGRE/llama31_8b_augmenteddemocracy_sft_questions_50_critsupport tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** JFernandoGRE - **License:** apache-2.0 - **Finetuned from model :** JFernandoGRE/llama31_8b_augmenteddemocracy_sft_questions_50_critsupport This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
sonhask/meta-Llama-3.1-8B-Instruct-bnb-4bit
sonhask
2025-06-25T02:44:43Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-25T02:42:11Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** sonhask - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
NTIS/hf_gemma3_21-checkpoint-128000
NTIS
2025-06-25T02:44:37Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "pytorch", "causal-lm", "ko", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:42:23Z
--- license: apache-2.0 language: - ko - en tags: - text-generation - pytorch - causal-lm library_name: transformers --- # hf_gemma3_21-checkpoint-128000 ์ด ๋ชจ๋ธ์€ ํŒŒ์ธํŠœ๋‹๋œ ์–ธ์–ด ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ์ž…๋‹ˆ๋‹ค. ## ๋ชจ๋ธ ์ •๋ณด - **๋ฒ ์ด์Šค ๋ชจ๋ธ**: hf_gemma3_21 - **์ฒดํฌํฌ์ธํŠธ**: checkpoint-128000 - **ํƒ€์ž…**: Causal Language Model - **๋ผ์ด์„ ์Šค**: Apache 2.0 ## ์‚ฌ์šฉ ๋ฐฉ๋ฒ• ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "NTIS/hf_gemma3_21-checkpoint-128000" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # ํ…์ŠคํŠธ ์ƒ์„ฑ text = "์•ˆ๋…•ํ•˜์„ธ์š”" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ## ์ฃผ์˜์‚ฌํ•ญ - ์ด ๋ชจ๋ธ์€ ์—ฐ๊ตฌ/์‹คํ—˜ ๋ชฉ์ ์œผ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค - ์ƒ์—…์  ์‚ฌ์šฉ ์ „์— ๋ผ์ด์„ ์Šค๋ฅผ ํ™•์ธํ•˜์„ธ์š”
yaobo2816/Qwen2.5-GRPO
yaobo2816
2025-06-25T02:44:26Z
36
0
null
[ "gguf", "qwen2", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:LooksJuicy/ruozhiba", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:quantized:Qwen/Qwen2.5-3B-Instruct", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-05T16:25:05Z
--- license: mit language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara base_model: - Qwen/Qwen2.5-3B-Instruct datasets: - LooksJuicy/ruozhiba --- The model will have GRPO response, such like deepseek R1 answer the question.
morning831/llama2_uuu_news_qlora
morning831
2025-06-25T02:43:28Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:43:28Z
--- license: apache-2.0 ---
zecaihong/3e7e19dc-0009-4038-bacf-b95d034953d3
zecaihong
2025-06-25T02:42:46Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-7B", "base_model:adapter:unsloth/Qwen2.5-Coder-7B", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:03:38Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-7B tags: - axolotl - generated_from_trainer model-index: - name: 3e7e19dc-0009-4038-bacf-b95d034953d3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.10.0.dev0` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5686eaedee397c04_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_instruction: instruct field_output: output format: '{instruction}' no_input_format: '{instruction}' system_prompt: '' debug: null deepspeed: deepspeed_configs/zero2.json early_stopping_patience: 3 eval_max_new_tokens: 1024 eval_steps: 100 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false greater_is_better: false group_by_length: false hub_model_id: zecaihong/3e7e19dc-0009-4038-bacf-b95d034953d3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: -1 metric_for_best_model: eval_loss micro_batch_size: 8 mlflow_experiment_name: /data/datasets/5686eaedee397c04_train_data.json model_type: AutoModelForCausalLM num_epochs: 6 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3e7e19dc-0009-4038-bacf-b95d034953d3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3e7e19dc-0009-4038-bacf-b95d034953d3 warmup_steps: 100 weight_decay: 0.001 xformers_attention: null ``` </details><br> # 3e7e19dc-0009-4038-bacf-b95d034953d3 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B](https://huggingface.co/unsloth/Qwen2.5-Coder-7B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 6.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0017 | 1 | 1.7215 | | 0.9052 | 0.1742 | 100 | 0.9538 | | 0.8624 | 0.3484 | 200 | 0.8870 | | 0.882 | 0.5226 | 300 | 0.8583 | | 0.856 | 0.6969 | 400 | 0.8366 | | 0.7938 | 0.8711 | 500 | 0.8207 | | 0.7321 | 1.0453 | 600 | 0.8126 | | 0.7707 | 1.2195 | 700 | 0.8069 | | 0.71 | 1.3937 | 800 | 0.8012 | | 0.7139 | 1.5679 | 900 | 0.7931 | | 0.7163 | 1.7422 | 1000 | 0.7870 | | 0.7297 | 1.9164 | 1100 | 0.7843 | | 0.6494 | 2.0906 | 1200 | 0.7919 | | 0.6429 | 2.2648 | 1300 | 0.7931 | | 0.6377 | 2.4390 | 1400 | 0.7871 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.3 - Pytorch 2.5.1+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
NTIS/hf_gemma3_21-checkpoint-127000
NTIS
2025-06-25T02:42:06Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "pytorch", "causal-lm", "ko", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:39:37Z
--- license: apache-2.0 language: - ko - en tags: - text-generation - pytorch - causal-lm library_name: transformers --- # hf_gemma3_21-checkpoint-127000 ์ด ๋ชจ๋ธ์€ ํŒŒ์ธํŠœ๋‹๋œ ์–ธ์–ด ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ์ž…๋‹ˆ๋‹ค. ## ๋ชจ๋ธ ์ •๋ณด - **๋ฒ ์ด์Šค ๋ชจ๋ธ**: hf_gemma3_21 - **์ฒดํฌํฌ์ธํŠธ**: checkpoint-127000 - **ํƒ€์ž…**: Causal Language Model - **๋ผ์ด์„ ์Šค**: Apache 2.0 ## ์‚ฌ์šฉ ๋ฐฉ๋ฒ• ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "NTIS/hf_gemma3_21-checkpoint-127000" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # ํ…์ŠคํŠธ ์ƒ์„ฑ text = "์•ˆ๋…•ํ•˜์„ธ์š”" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ## ์ฃผ์˜์‚ฌํ•ญ - ์ด ๋ชจ๋ธ์€ ์—ฐ๊ตฌ/์‹คํ—˜ ๋ชฉ์ ์œผ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค - ์ƒ์—…์  ์‚ฌ์šฉ ์ „์— ๋ผ์ด์„ ์Šค๋ฅผ ํ™•์ธํ•˜์„ธ์š”
crosstar/mistral_5_CoT_few_shot
crosstar
2025-06-25T02:41:38Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-25T02:38:56Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
morning831/uuu_fine_tune_taipower
morning831
2025-06-25T02:40:51Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:40:51Z
--- license: apache-2.0 ---
fancyerii/q-FrozenLake-v1-4x4-noSlippery
fancyerii
2025-06-25T02:40:19Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-25T02:40:17Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="fancyerii/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
thanhh12/aya-expanse-8b-Q2_K-GGUF
thanhh12
2025-06-25T02:39:41Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "el", "fa", "pl", "id", "cs", "he", "hi", "nl", "ro", "ru", "tr", "uk", "vi", "base_model:CohereLabs/aya-expanse-8b", "base_model:quantized:CohereLabs/aya-expanse-8b", "license:cc-by-nc-4.0", "region:us", "conversational" ]
null
2025-06-25T02:39:27Z
--- inference: false library_name: transformers language: - en - fr - de - es - it - pt - ja - ko - zh - ar - el - fa - pl - id - cs - he - hi - nl - ro - ru - tr - uk - vi license: cc-by-nc-4.0 extra_gated_prompt: By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license) and acknowledge that the information you provide will be collected, used, and shared in accordance with Cohereโ€™s [Privacy Policy]( https://cohere.com/privacy). Youโ€™ll receive email updates about C4AI and Cohere research, events, products and services. You can unsubscribe at any time. extra_gated_fields: Name: text Affiliation: text Country: country I agree to use this model for non-commercial use ONLY: checkbox tags: - llama-cpp - gguf-my-repo base_model: CohereLabs/aya-expanse-8b --- # thanhh12/aya-expanse-8b-Q2_K-GGUF This model was converted to GGUF format from [`CohereLabs/aya-expanse-8b`](https://huggingface.co/CohereLabs/aya-expanse-8b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/CohereLabs/aya-expanse-8b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo thanhh12/aya-expanse-8b-Q2_K-GGUF --hf-file aya-expanse-8b-q2_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo thanhh12/aya-expanse-8b-Q2_K-GGUF --hf-file aya-expanse-8b-q2_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo thanhh12/aya-expanse-8b-Q2_K-GGUF --hf-file aya-expanse-8b-q2_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo thanhh12/aya-expanse-8b-Q2_K-GGUF --hf-file aya-expanse-8b-q2_k.gguf -c 2048 ```
NTIS/hf_gemma3_21-checkpoint-126000
NTIS
2025-06-25T02:39:36Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "pytorch", "causal-lm", "ko", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:37:16Z
--- license: apache-2.0 language: - ko - en tags: - text-generation - pytorch - causal-lm library_name: transformers --- # hf_gemma3_21-checkpoint-126000 ์ด ๋ชจ๋ธ์€ ํŒŒ์ธํŠœ๋‹๋œ ์–ธ์–ด ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ์ž…๋‹ˆ๋‹ค. ## ๋ชจ๋ธ ์ •๋ณด - **๋ฒ ์ด์Šค ๋ชจ๋ธ**: hf_gemma3_21 - **์ฒดํฌํฌ์ธํŠธ**: checkpoint-126000 - **ํƒ€์ž…**: Causal Language Model - **๋ผ์ด์„ ์Šค**: Apache 2.0 ## ์‚ฌ์šฉ ๋ฐฉ๋ฒ• ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "NTIS/hf_gemma3_21-checkpoint-126000" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # ํ…์ŠคํŠธ ์ƒ์„ฑ text = "์•ˆ๋…•ํ•˜์„ธ์š”" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ## ์ฃผ์˜์‚ฌํ•ญ - ์ด ๋ชจ๋ธ์€ ์—ฐ๊ตฌ/์‹คํ—˜ ๋ชฉ์ ์œผ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค - ์ƒ์—…์  ์‚ฌ์šฉ ์ „์— ๋ผ์ด์„ ์Šค๋ฅผ ํ™•์ธํ•˜์„ธ์š”
chinyua/test
chinyua
2025-06-25T02:38:58Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:38:58Z
--- license: apache-2.0 ---
sergioalves/9d73281b-01e3-4c0b-832d-ac9ed96b4bcb
sergioalves
2025-06-25T02:38:31Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:samoline/c69dcff1-fd86-4697-8038-846c5db9095b", "base_model:adapter:samoline/c69dcff1-fd86-4697-8038-846c5db9095b", "4-bit", "bitsandbytes", "region:us" ]
null
2025-06-25T02:30:41Z
--- library_name: peft base_model: samoline/c69dcff1-fd86-4697-8038-846c5db9095b tags: - axolotl - generated_from_trainer model-index: - name: 9d73281b-01e3-4c0b-832d-ac9ed96b4bcb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: samoline/c69dcff1-fd86-4697-8038-846c5db9095b bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 28572ecc5c12c5f8_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.05 enabled: true group_by_length: false rank_loss: true reference_model: NousResearch/Meta-Llama-3-8B-Instruct early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 0.9 group_by_length: false hub_model_id: sergioalves/9d73281b-01e3-4c0b-832d-ac9ed96b4bcb hub_repo: null hub_strategy: end hub_token: null learning_rate: 2.0e-05 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/28572ecc5c12c5f8_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 383bde8b-0a10-4317-a5ad-edc0e1c7e587 wandb_project: s56-7 wandb_run: your_name wandb_runid: 383bde8b-0a10-4317-a5ad-edc0e1c7e587 warmup_steps: 10 weight_decay: 0.05 xformers_attention: false ``` </details><br> # 9d73281b-01e3-4c0b-832d-ac9ed96b4bcb This model is a fine-tuned version of [samoline/c69dcff1-fd86-4697-8038-846c5db9095b](https://huggingface.co/samoline/c69dcff1-fd86-4697-8038-846c5db9095b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3927 | 0.0002 | 1 | 1.1791 | | 1.0764 | 0.0117 | 50 | 1.0865 | | 1.2093 | 0.0235 | 100 | 1.0799 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ljnlonoljpiljm/siglip2-large-patch16-256-like-dislike-13
ljnlonoljpiljm
2025-06-25T02:38:18Z
0
0
transformers
[ "transformers", "safetensors", "siglip", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-25T02:37:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
thanhh12/aya-expanse-8b-Q3_K_M-GGUF
thanhh12
2025-06-25T02:37:47Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "el", "fa", "pl", "id", "cs", "he", "hi", "nl", "ro", "ru", "tr", "uk", "vi", "base_model:CohereLabs/aya-expanse-8b", "base_model:quantized:CohereLabs/aya-expanse-8b", "license:cc-by-nc-4.0", "region:us", "conversational" ]
null
2025-06-25T02:37:30Z
--- inference: false library_name: transformers language: - en - fr - de - es - it - pt - ja - ko - zh - ar - el - fa - pl - id - cs - he - hi - nl - ro - ru - tr - uk - vi license: cc-by-nc-4.0 extra_gated_prompt: By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license) and acknowledge that the information you provide will be collected, used, and shared in accordance with Cohereโ€™s [Privacy Policy]( https://cohere.com/privacy). Youโ€™ll receive email updates about C4AI and Cohere research, events, products and services. You can unsubscribe at any time. extra_gated_fields: Name: text Affiliation: text Country: country I agree to use this model for non-commercial use ONLY: checkbox tags: - llama-cpp - gguf-my-repo base_model: CohereLabs/aya-expanse-8b --- # thanhh12/aya-expanse-8b-Q3_K_M-GGUF This model was converted to GGUF format from [`CohereLabs/aya-expanse-8b`](https://huggingface.co/CohereLabs/aya-expanse-8b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/CohereLabs/aya-expanse-8b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo thanhh12/aya-expanse-8b-Q3_K_M-GGUF --hf-file aya-expanse-8b-q3_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo thanhh12/aya-expanse-8b-Q3_K_M-GGUF --hf-file aya-expanse-8b-q3_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo thanhh12/aya-expanse-8b-Q3_K_M-GGUF --hf-file aya-expanse-8b-q3_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo thanhh12/aya-expanse-8b-Q3_K_M-GGUF --hf-file aya-expanse-8b-q3_k_m.gguf -c 2048 ```
Yuichi1218/Llama-3.1-Non-filter-Lafeak64-8B
Yuichi1218
2025-06-25T02:37:45Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:06:37Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Yuichi1218 - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
pennylin09/llama2_uuu_news_qlora
pennylin09
2025-06-25T02:37:44Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:37:44Z
--- license: apache-2.0 ---
NTIS/hf_gemma3_21-checkpoint-125000
NTIS
2025-06-25T02:37:15Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "pytorch", "causal-lm", "ko", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:34:56Z
--- license: apache-2.0 language: - ko - en tags: - text-generation - pytorch - causal-lm library_name: transformers --- # hf_gemma3_21-checkpoint-125000 ์ด ๋ชจ๋ธ์€ ํŒŒ์ธํŠœ๋‹๋œ ์–ธ์–ด ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ์ž…๋‹ˆ๋‹ค. ## ๋ชจ๋ธ ์ •๋ณด - **๋ฒ ์ด์Šค ๋ชจ๋ธ**: hf_gemma3_21 - **์ฒดํฌํฌ์ธํŠธ**: checkpoint-125000 - **ํƒ€์ž…**: Causal Language Model - **๋ผ์ด์„ ์Šค**: Apache 2.0 ## ์‚ฌ์šฉ ๋ฐฉ๋ฒ• ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "NTIS/hf_gemma3_21-checkpoint-125000" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # ํ…์ŠคํŠธ ์ƒ์„ฑ text = "์•ˆ๋…•ํ•˜์„ธ์š”" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ## ์ฃผ์˜์‚ฌํ•ญ - ์ด ๋ชจ๋ธ์€ ์—ฐ๊ตฌ/์‹คํ—˜ ๋ชฉ์ ์œผ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค - ์ƒ์—…์  ์‚ฌ์šฉ ์ „์— ๋ผ์ด์„ ์Šค๋ฅผ ํ™•์ธํ•˜์„ธ์š”
13project/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-clawed_shrewd_starfish
13project
2025-06-25T02:35:26Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am clawed shrewd starfish", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-22T03:14:14Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-clawed_shrewd_starfish tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am clawed shrewd starfish - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-clawed_shrewd_starfish This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="13project/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-clawed_shrewd_starfish", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
hubble658/grpo-v1.1-merged
hubble658
2025-06-25T02:35:03Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Qwen2.5-3B-Instruct", "base_model:finetune:unsloth/Qwen2.5-3B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:33:27Z
--- base_model: unsloth/Qwen2.5-3B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** hubble658 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-3B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
NTIS/hf_gemma3_21-checkpoint-124000
NTIS
2025-06-25T02:34:54Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "pytorch", "causal-lm", "ko", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:32:32Z
--- license: apache-2.0 language: - ko - en tags: - text-generation - pytorch - causal-lm library_name: transformers --- # hf_gemma3_21-checkpoint-124000 ์ด ๋ชจ๋ธ์€ ํŒŒ์ธํŠœ๋‹๋œ ์–ธ์–ด ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ์ž…๋‹ˆ๋‹ค. ## ๋ชจ๋ธ ์ •๋ณด - **๋ฒ ์ด์Šค ๋ชจ๋ธ**: hf_gemma3_21 - **์ฒดํฌํฌ์ธํŠธ**: checkpoint-124000 - **ํƒ€์ž…**: Causal Language Model - **๋ผ์ด์„ ์Šค**: Apache 2.0 ## ์‚ฌ์šฉ ๋ฐฉ๋ฒ• ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "NTIS/hf_gemma3_21-checkpoint-124000" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # ํ…์ŠคํŠธ ์ƒ์„ฑ text = "์•ˆ๋…•ํ•˜์„ธ์š”" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ## ์ฃผ์˜์‚ฌํ•ญ - ์ด ๋ชจ๋ธ์€ ์—ฐ๊ตฌ/์‹คํ—˜ ๋ชฉ์ ์œผ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค - ์ƒ์—…์  ์‚ฌ์šฉ ์ „์— ๋ผ์ด์„ ์Šค๋ฅผ ํ™•์ธํ•˜์„ธ์š”
vincrnt/tcp2023
vincrnt
2025-06-25T02:34:05Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:34:05Z
--- license: apache-2.0 ---
hasdal/f2202da8-d7d3-426d-98f0-6be926f849af
hasdal
2025-06-25T02:32:19Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "unsloth", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-25T01:48:26Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.5-4bit
mlx-community
2025-06-25T02:32:18Z
0
0
mlx
[ "mlx", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "dataset:tokyotech-llm/lmsys-chat-1m-synth", "dataset:lmsys/lmsys-chat-1m", "base_model:tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5", "base_model:quantized:tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5", "license:llama3.3", "license:gemma", "4-bit", "region:us" ]
text-generation
2025-06-25T02:07:42Z
--- language: - en - ja library_name: mlx pipeline_tag: text-generation license: - llama3.3 - gemma model_type: llama datasets: - tokyotech-llm/lmsys-chat-1m-synth - lmsys/lmsys-chat-1m base_model: tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5 tags: - mlx --- # mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.5-4bit This model [mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.5-4bit](https://huggingface.co/mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.5-4bit) was converted to MLX format from [tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5) using mlx-lm version **0.25.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.5-4bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
thanhh12/aya-expanse-8b-Q8_0-GGUF
thanhh12
2025-06-25T02:31:50Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "el", "fa", "pl", "id", "cs", "he", "hi", "nl", "ro", "ru", "tr", "uk", "vi", "base_model:CohereLabs/aya-expanse-8b", "base_model:quantized:CohereLabs/aya-expanse-8b", "license:cc-by-nc-4.0", "region:us", "conversational" ]
null
2025-06-25T02:31:22Z
--- inference: false library_name: transformers language: - en - fr - de - es - it - pt - ja - ko - zh - ar - el - fa - pl - id - cs - he - hi - nl - ro - ru - tr - uk - vi license: cc-by-nc-4.0 extra_gated_prompt: By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license) and acknowledge that the information you provide will be collected, used, and shared in accordance with Cohereโ€™s [Privacy Policy]( https://cohere.com/privacy). Youโ€™ll receive email updates about C4AI and Cohere research, events, products and services. You can unsubscribe at any time. extra_gated_fields: Name: text Affiliation: text Country: country I agree to use this model for non-commercial use ONLY: checkbox tags: - llama-cpp - gguf-my-repo base_model: CohereLabs/aya-expanse-8b --- # thanhh12/aya-expanse-8b-Q8_0-GGUF This model was converted to GGUF format from [`CohereLabs/aya-expanse-8b`](https://huggingface.co/CohereLabs/aya-expanse-8b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/CohereLabs/aya-expanse-8b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo thanhh12/aya-expanse-8b-Q8_0-GGUF --hf-file aya-expanse-8b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo thanhh12/aya-expanse-8b-Q8_0-GGUF --hf-file aya-expanse-8b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo thanhh12/aya-expanse-8b-Q8_0-GGUF --hf-file aya-expanse-8b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo thanhh12/aya-expanse-8b-Q8_0-GGUF --hf-file aya-expanse-8b-q8_0.gguf -c 2048 ```
hubble658/grpo-v0.1-merged
hubble658
2025-06-25T02:29:56Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Qwen2.5-3B-Instruct", "base_model:finetune:unsloth/Qwen2.5-3B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:28:17Z
--- base_model: unsloth/Qwen2.5-3B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** hubble658 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-3B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Kiwiciou/llama2_uuu_news_qlora
Kiwiciou
2025-06-25T02:28:09Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:28:09Z
--- license: apache-2.0 ---
sergioalves/3a46e530-930d-484d-97c2-eaf9352c4f47
sergioalves
2025-06-25T02:27:09Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "mistral", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:NousResearch/Nous-Capybara-7B-V1.9", "base_model:quantized:NousResearch/Nous-Capybara-7B-V1.9", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-25T01:59:42Z
--- base_model: NousResearch/Nous-Capybara-7B-V1.9 library_name: transformers model_name: 3a46e530-930d-484d-97c2-eaf9352c4f47 tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for 3a46e530-930d-484d-97c2-eaf9352c4f47 This model is a fine-tuned version of [NousResearch/Nous-Capybara-7B-V1.9](https://huggingface.co/NousResearch/Nous-Capybara-7B-V1.9). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sergioalves/3a46e530-930d-484d-97c2-eaf9352c4f47", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-7/runs/ckmz8kq3) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
AlekseyCalvin/Glasnost_v1_wan_14b_USSR80sTVstyle
AlekseyCalvin
2025-06-25T02:27:01Z
0
0
null
[ "image-to-video", "lora", "text-to-video", "video", "video-generation", "en", "zh", "ru", "base_model:Wan-AI/Wan2.1-T2V-14B-Diffusers", "base_model:adapter:Wan-AI/Wan2.1-T2V-14B-Diffusers", "license:apache-2.0", "region:us" ]
text-to-video
2025-06-21T14:20:32Z
--- license: apache-2.0 language: - en - zh - ru tags: - image-to-video - lora - text-to-video - video - video-generation base_model: "Wan-AI/Wan2.1-T2V-14B-Diffusers" pipeline_tag: text-to-video widget: - text: >- [GLASNOST] style... output: url: videos/1.mp4 - text: >- [GLASNOST] style... output: url: videos/3.mp4 - text: >- [GLASNOST] style... output: url: videos/4.mp4 - text: >- [GLASNOST] style... output: url: videos/5.mp4 - text: >- [GLASNOST] style... output: url: videos/6.mp4 - text: >- [GLASNOST] style... output: url: videos/2.mp4 instance_prompt: GLASNOST style vintage crisp analog footage from a 1980s soviet television movie, cinematic, video filmed in the USSR during the perestroika era, raw real life footage, vhs --- # GLASNOST V.1: 80s USSR TV/Film ***Style/Context Low Rank Adaptor (LoRA)*** <br> ***For Wan2.1 14B T2V & I2V Base Models*** <br> **Stylers of Kinema Historical LoRAs** <br> **|||||||| By SilverAgePoets.com ||||||||** <Gallery /> ## About this LoRA This is a Rank 32/Alpha 64 [LoRA](https://replicate.com/docs/guides/working-with-loras) for the Wan2.1 14b video generation model. <br> It was trained on hundreds of clips and frames from a variety of 1980s Perestroika-era Soviet films, tv shows, concerts, & music videos. <br> It can be used with diffusers or ComfyUI or DrawThings, etc... <br> This LoRA works well with both CausVid & Self-Forcing distillation quick inference adapters. <br> It also works fairly well in combos w/ other LoRAs. <br> **Get creative with these!** ## Trigger words You should use `GLASNOST style vintage crisp analog footage from a 1980s soviet television movie, cinematic, video filmed in the USSR during the perestroika era, raw real life footage, vhs`, etc, to ressurect one of these more recent gestalts of futures no-longer-past! <br> ### Using with Diffusers ```py pip install git+https://github.com/huggingface/diffusers.git ``` ```py import torch from diffusers.utils import export_to_video from diffusers import AutoencoderKLWan, WanPipeline from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler model_id = "wavespeed/Wan2.1-T2V-14B-Diffusers-fp16" vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) flow_shift = 3.0 # 5.0 for 720P, 3.0 for 480P pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift) pipe.to("cuda") pipe.load_lora_weights("AlekseyCalvin/Glasnost_v1_wan_14b_USSR80sTVstyle") pipe.enable_model_cpu_offload() #for low-vram environments prompt = "GLASNOST style" negative_prompt = "overexposed, static, blurred, subtitles, images, static, worst, low, JPEG compression residue, incomplete, extra fingers, poorly drawn, poorly drawn, deformed, disfigured, misshapen, fused, still picture, backwards" output = pipe( prompt=prompt, negative_prompt=negative_prompt, height=480, width=832, num_frames=81, guidance_scale=5.0, ).frames[0] export_to_video(output, "output.mp4", fps=16) ``` ## Training details - Steps: 5000 - Learning rate: 0.0002 - LoRA rank: 32 dim, 64 alpha ## Contribute your own examples You can use the [community tab](https://huggingface.co/AlekseyCalvin/Glasnost_v1_wan_14b_USSR80sTVstyle/discussions) to add videos that show off what youโ€™ve made with this LoRA.
ianwangnas/tcp2023
ianwangnas
2025-06-25T02:26:38Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:26:38Z
--- license: apache-2.0 ---
misaelpintado/FloatBin.AI
misaelpintado
2025-06-25T02:26:30Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:26:30Z
--- license: apache-2.0 ---
std10012/uuu_fine_tune_gpt2
std10012
2025-06-25T02:25:21Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:25:21Z
--- license: apache-2.0 ---
NTIS/hf_gemma3_21-checkpoint-120000
NTIS
2025-06-25T02:25:04Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "pytorch", "causal-lm", "ko", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:22:40Z
--- license: apache-2.0 language: - ko - en tags: - text-generation - pytorch - causal-lm library_name: transformers --- # hf_gemma3_21-checkpoint-120000 ์ด ๋ชจ๋ธ์€ ํŒŒ์ธํŠœ๋‹๋œ ์–ธ์–ด ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ์ž…๋‹ˆ๋‹ค. ## ๋ชจ๋ธ ์ •๋ณด - **๋ฒ ์ด์Šค ๋ชจ๋ธ**: hf_gemma3_21 - **์ฒดํฌํฌ์ธํŠธ**: checkpoint-120000 - **ํƒ€์ž…**: Causal Language Model - **๋ผ์ด์„ ์Šค**: Apache 2.0 ## ์‚ฌ์šฉ ๋ฐฉ๋ฒ• ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "NTIS/hf_gemma3_21-checkpoint-120000" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # ํ…์ŠคํŠธ ์ƒ์„ฑ text = "์•ˆ๋…•ํ•˜์„ธ์š”" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ## ์ฃผ์˜์‚ฌํ•ญ - ์ด ๋ชจ๋ธ์€ ์—ฐ๊ตฌ/์‹คํ—˜ ๋ชฉ์ ์œผ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค - ์ƒ์—…์  ์‚ฌ์šฉ ์ „์— ๋ผ์ด์„ ์Šค๋ฅผ ํ™•์ธํ•˜์„ธ์š”
Daniel-xue/llama2_uuu_news_qlora
Daniel-xue
2025-06-25T02:24:39Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:24:39Z
--- license: apache-2.0 ---
elliotthwang/Kimlan-Phi-4-mini-instruct-tw
elliotthwang
2025-06-25T02:22:45Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "conversational", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:13:25Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ็น้ซ”ไธญๆ–‡ ๅฎข่ฃฝๅŒ–่จ“็ทด loss: 0.0296
chenrm/qwen3-30b-a3b-abliterated-lora
chenrm
2025-06-25T02:22:39Z
0
0
peft
[ "peft", "safetensors", "gguf", "mergekit", "base_model:Qwen/Qwen3-30B-A3B", "base_model:adapter:Qwen/Qwen3-30B-A3B", "region:us" ]
null
2025-06-25T02:22:10Z
--- base_model: - Qwen/Qwen3-30B-A3B - mlabonne/Qwen3-30B-A3B-abliterated library_name: peft tags: - mergekit - peft --- # qwen3-30b-a3b-abliterated-lora This is a LoRA extracted from a language model. It was extracted using [mergekit](https://github.com/arcee-ai/mergekit). ## LoRA Details This LoRA adapter was extracted from [mlabonne/Qwen3-30B-A3B-abliterated](https://huggingface.co/mlabonne/Qwen3-30B-A3B-abliterated) and uses [Qwen/Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) as a base. ### Parameters The following command was used to extract this LoRA adapter: ```sh /venv/main/bin/mergekit-extract-lora --model mlabonne/Qwen3-30B-A3B-abliterated --base-model Qwen/Qwen3-30B-A3B --out-path qwen3-30b-a3b-abliterated-lora --cuda --max-rank 4 ```
NTIS/hf_gemma3_21-checkpoint-119000
NTIS
2025-06-25T02:22:38Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "pytorch", "causal-lm", "ko", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:20:11Z
--- license: apache-2.0 language: - ko - en tags: - text-generation - pytorch - causal-lm library_name: transformers --- # hf_gemma3_21-checkpoint-119000 ์ด ๋ชจ๋ธ์€ ํŒŒ์ธํŠœ๋‹๋œ ์–ธ์–ด ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ์ž…๋‹ˆ๋‹ค. ## ๋ชจ๋ธ ์ •๋ณด - **๋ฒ ์ด์Šค ๋ชจ๋ธ**: hf_gemma3_21 - **์ฒดํฌํฌ์ธํŠธ**: checkpoint-119000 - **ํƒ€์ž…**: Causal Language Model - **๋ผ์ด์„ ์Šค**: Apache 2.0 ## ์‚ฌ์šฉ ๋ฐฉ๋ฒ• ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "NTIS/hf_gemma3_21-checkpoint-119000" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # ํ…์ŠคํŠธ ์ƒ์„ฑ text = "์•ˆ๋…•ํ•˜์„ธ์š”" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ## ์ฃผ์˜์‚ฌํ•ญ - ์ด ๋ชจ๋ธ์€ ์—ฐ๊ตฌ/์‹คํ—˜ ๋ชฉ์ ์œผ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค - ์ƒ์—…์  ์‚ฌ์šฉ ์ „์— ๋ผ์ด์„ ์Šค๋ฅผ ํ™•์ธํ•˜์„ธ์š”
Kiwiciou/tcp2023
Kiwiciou
2025-06-25T02:20:26Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:20:26Z
--- license: apache-2.0 ---
Stonersheart/tcp2023
Stonersheart
2025-06-25T02:20:23Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:20:22Z
--- license: apache-2.0 ---
eatim/tcp2023
eatim
2025-06-25T02:20:22Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:20:22Z
--- license: apache-2.0 ---
ar7w7in/gemma-3-text-4b-it-4bit
ar7w7in
2025-06-25T02:18:45Z
0
0
mlx
[ "mlx", "safetensors", "gemma3", "text-generation", "conversational", "base_model:mlx-community/gemma-3-text-4b-it-4bit", "base_model:quantized:mlx-community/gemma-3-text-4b-it-4bit", "license:gemma", "4-bit", "region:us" ]
text-generation
2025-06-25T02:16:12Z
--- license: gemma library_name: mlx pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, youโ€™re required to review and agree to Googleโ€™s usage license. To do this, please ensure youโ€™re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: mlx-community/gemma-3-text-4b-it-4bit tags: - mlx ---
newtts2017/sbn0lt36
newtts2017
2025-06-25T02:18:17Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-25T02:08:58Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: sbn0lt36 --- # Sbn0Lt36 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `sbn0lt36` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "sbn0lt36", "lora_weights": "https://huggingface.co/newtts2017/sbn0lt36/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('newtts2017/sbn0lt36', weight_name='lora.safetensors') image = pipeline('sbn0lt36').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/newtts2017/sbn0lt36/discussions) to add images that show off what youโ€™ve made with this LoRA.
synkrotron/grasp_cube
synkrotron
2025-06-25T02:12:07Z
0
0
null
[ "license:mit", "region:us" ]
null
2025-06-24T06:22:27Z
--- license: mit --- Models for [FlexUMI](https://github.com/CortexNest/FlexUMI)
hasdal/2400ab9a-7625-429f-9dea-1562c55e7556
hasdal
2025-06-25T02:10:08Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-25T02:03:28Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JulianChang/Phi-4-mini-reasoning-Q8_0-GGUF
JulianChang
2025-06-25T02:04:27Z
0
0
transformers
[ "transformers", "gguf", "nlp", "math", "code", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:microsoft/Phi-4-mini-reasoning", "base_model:quantized:microsoft/Phi-4-mini-reasoning", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-06-25T02:04:11Z
--- language: - en library_name: transformers license: mit license_link: https://huggingface.co/microsoft/Phi-4-mini-instruct-reasoning/resolve/main/LICENSE pipeline_tag: text-generation tags: - nlp - math - code - llama-cpp - gguf-my-repo widget: - messages: - role: user content: How to solve 3*x^2+4*x+5=1? base_model: microsoft/Phi-4-mini-reasoning --- # JulianChang/Phi-4-mini-reasoning-Q8_0-GGUF This model was converted to GGUF format from [`microsoft/Phi-4-mini-reasoning`](https://huggingface.co/microsoft/Phi-4-mini-reasoning) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/microsoft/Phi-4-mini-reasoning) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo JulianChang/Phi-4-mini-reasoning-Q8_0-GGUF --hf-file phi-4-mini-reasoning-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo JulianChang/Phi-4-mini-reasoning-Q8_0-GGUF --hf-file phi-4-mini-reasoning-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo JulianChang/Phi-4-mini-reasoning-Q8_0-GGUF --hf-file phi-4-mini-reasoning-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo JulianChang/Phi-4-mini-reasoning-Q8_0-GGUF --hf-file phi-4-mini-reasoning-q8_0.gguf -c 2048 ```
ambashs1/rocks-pebbles-stone-classification
ambashs1
2025-06-25T02:04:09Z
0
0
null
[ "time-management", "productivity", "text-classification", "license:apache-2.0", "region:us" ]
text-classification
2025-06-25T02:02:58Z
--- license: apache-2.0 pipeline_tag: text-classification tags: - time-management - productivity ---
zecaihong/3e7e19dc-0008-4038-bacf-b95d034953d3
zecaihong
2025-06-25T02:03:30Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-7B", "base_model:adapter:unsloth/Qwen2.5-Coder-7B", "license:apache-2.0", "region:us" ]
null
2025-06-25T01:10:49Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-7B tags: - axolotl - generated_from_trainer model-index: - name: 3e7e19dc-0008-4038-bacf-b95d034953d3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.10.0.dev0` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5686eaedee397c04_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_instruction: instruct field_output: output format: '{instruction}' no_input_format: '{instruction}' system_prompt: '' debug: null deepspeed: deepspeed_configs/zero2.json early_stopping_patience: 3 eval_max_new_tokens: 1024 eval_steps: 100 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false greater_is_better: false group_by_length: false hub_model_id: zecaihong/3e7e19dc-0008-4038-bacf-b95d034953d3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: -1 metric_for_best_model: eval_loss micro_batch_size: 12 mlflow_experiment_name: /data/datasets/5686eaedee397c04_train_data.json model_type: AutoModelForCausalLM num_epochs: 6 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3e7e19dc-0008-4038-bacf-b95d034953d3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3e7e19dc-0008-4038-bacf-b95d034953d3 warmup_steps: 100 weight_decay: 0.001 xformers_attention: null ``` </details><br> # 3e7e19dc-0008-4038-bacf-b95d034953d3 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B](https://huggingface.co/unsloth/Qwen2.5-Coder-7B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 192 - total_eval_batch_size: 96 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 6.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0026 | 1 | 1.5980 | | 0.9177 | 0.2614 | 100 | 0.9130 | | 0.8841 | 0.5229 | 200 | 0.8498 | | 0.8175 | 0.7843 | 300 | 0.8225 | | 0.7432 | 1.0444 | 400 | 0.8072 | | 0.7652 | 1.3059 | 500 | 0.7970 | | 0.7343 | 1.5673 | 600 | 0.7872 | | 0.7365 | 1.8288 | 700 | 0.7771 | | 0.6479 | 2.0889 | 800 | 0.7855 | | 0.6718 | 2.3503 | 900 | 0.7833 | | 0.672 | 2.6118 | 1000 | 0.7753 | | 0.6859 | 2.8732 | 1100 | 0.7718 | | 0.565 | 3.1333 | 1200 | 0.7968 | | 0.5416 | 3.3948 | 1300 | 0.7945 | | 0.5761 | 3.6562 | 1400 | 0.7892 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.3 - Pytorch 2.5.1+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
yahayaha223/5b960f4d-986a-46ee-95aa-a9f358f95552
yahayaha223
2025-06-25T02:01:59Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "unsloth", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-24T16:11:08Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/GLM-4-32B-Base-32K-i1-GGUF
mradermacher
2025-06-25T02:00:22Z
0
0
transformers
[ "transformers", "gguf", "zh", "en", "base_model:arcee-ai/GLM-4-32B-Base-32K", "base_model:quantized:arcee-ai/GLM-4-32B-Base-32K", "license:mit", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-06-24T19:16:01Z
--- base_model: arcee-ai/GLM-4-32B-Base-32K language: - zh - en library_name: transformers license: mit quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/arcee-ai/GLM-4-32B-Base-32K <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.0 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-IQ2_M.gguf) | i1-IQ2_M | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-IQ3_M.gguf) | i1-IQ3_M | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.7 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-Q4_0.gguf) | i1-Q4_0 | 18.7 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-Q4_K_M.gguf) | i1-Q4_K_M | 19.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-Q4_1.gguf) | i1-Q4_1 | 20.6 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.6 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.2 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-Base-32K-i1-GGUF/resolve/main/GLM-4-32B-Base-32K.i1-Q6_K.gguf) | i1-Q6_K | 26.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
NTIS/hf_gemma3_2-checkpoint-107000
NTIS
2025-06-25T01:58:42Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "pytorch", "causal-lm", "ko", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-24T05:26:14Z
--- license: apache-2.0 language: - ko - en tags: - text-generation - pytorch - causal-lm library_name: transformers --- # hf_gemma3_2-checkpoint-107000 ์ด ๋ชจ๋ธ์€ ํŒŒ์ธํŠœ๋‹๋œ ์–ธ์–ด ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ์ž…๋‹ˆ๋‹ค. ## ๋ชจ๋ธ ์ •๋ณด - **๋ฒ ์ด์Šค ๋ชจ๋ธ**: hf_gemma3_2 - **์ฒดํฌํฌ์ธํŠธ**: checkpoint-107000 - **ํƒ€์ž…**: Causal Language Model - **๋ผ์ด์„ ์Šค**: Apache 2.0 ## ์‚ฌ์šฉ ๋ฐฉ๋ฒ• ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "NTIS/hf_gemma3_2-checkpoint-107000" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # ํ…์ŠคํŠธ ์ƒ์„ฑ text = "์•ˆ๋…•ํ•˜์„ธ์š”" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ## ์ฃผ์˜์‚ฌํ•ญ - ์ด ๋ชจ๋ธ์€ ์—ฐ๊ตฌ/์‹คํ—˜ ๋ชฉ์ ์œผ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค - ์ƒ์—…์  ์‚ฌ์šฉ ์ „์— ๋ผ์ด์„ ์Šค๋ฅผ ํ™•์ธํ•˜์„ธ์š”
yashmahe2018/math-error-classification-gguf
yashmahe2018
2025-06-25T01:58:19Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-25T01:57:48Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** yashmahe2018 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
hasdal/53565329-6445-47b8-92e1-60ad8031a6cb
hasdal
2025-06-25T01:57:49Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-25T01:46:46Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
crosstar/mistral_5_CoT_generated_sciq
crosstar
2025-06-25T01:57:32Z
0
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-24T10:45:44Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NTIS/hf_gemma3_2-checkpoint-106000
NTIS
2025-06-25T01:56:09Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "pytorch", "causal-lm", "ko", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-24T05:25:10Z
--- license: apache-2.0 language: - ko - en tags: - text-generation - pytorch - causal-lm library_name: transformers --- # hf_gemma3_2-checkpoint-106000 ์ด ๋ชจ๋ธ์€ ํŒŒ์ธํŠœ๋‹๋œ ์–ธ์–ด ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ์ž…๋‹ˆ๋‹ค. ## ๋ชจ๋ธ ์ •๋ณด - **๋ฒ ์ด์Šค ๋ชจ๋ธ**: hf_gemma3_2 - **์ฒดํฌํฌ์ธํŠธ**: checkpoint-106000 - **ํƒ€์ž…**: Causal Language Model - **๋ผ์ด์„ ์Šค**: Apache 2.0 ## ์‚ฌ์šฉ ๋ฐฉ๋ฒ• ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "NTIS/hf_gemma3_2-checkpoint-106000" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # ํ…์ŠคํŠธ ์ƒ์„ฑ text = "์•ˆ๋…•ํ•˜์„ธ์š”" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ## ์ฃผ์˜์‚ฌํ•ญ - ์ด ๋ชจ๋ธ์€ ์—ฐ๊ตฌ/์‹คํ—˜ ๋ชฉ์ ์œผ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค - ์ƒ์—…์  ์‚ฌ์šฉ ์ „์— ๋ผ์ด์„ ์Šค๋ฅผ ํ™•์ธํ•˜์„ธ์š”
versaceeros/ac07e322-f0c7-4f0c-b4c3-80468cb6f828
versaceeros
2025-06-25T01:51:58Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-25T01:44:13Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NTIS/hf_gemma3_2-checkpoint-104000
NTIS
2025-06-25T01:51:22Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "pytorch", "causal-lm", "ko", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-24T05:21:18Z
--- license: apache-2.0 language: - ko - en tags: - text-generation - pytorch - causal-lm library_name: transformers --- # hf_gemma3_2-checkpoint-104000 ์ด ๋ชจ๋ธ์€ ํŒŒ์ธํŠœ๋‹๋œ ์–ธ์–ด ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ์ž…๋‹ˆ๋‹ค. ## ๋ชจ๋ธ ์ •๋ณด - **๋ฒ ์ด์Šค ๋ชจ๋ธ**: hf_gemma3_2 - **์ฒดํฌํฌ์ธํŠธ**: checkpoint-104000 - **ํƒ€์ž…**: Causal Language Model - **๋ผ์ด์„ ์Šค**: Apache 2.0 ## ์‚ฌ์šฉ ๋ฐฉ๋ฒ• ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "NTIS/hf_gemma3_2-checkpoint-104000" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # ํ…์ŠคํŠธ ์ƒ์„ฑ text = "์•ˆ๋…•ํ•˜์„ธ์š”" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ## ์ฃผ์˜์‚ฌํ•ญ - ์ด ๋ชจ๋ธ์€ ์—ฐ๊ตฌ/์‹คํ—˜ ๋ชฉ์ ์œผ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค - ์ƒ์—…์  ์‚ฌ์šฉ ์ „์— ๋ผ์ด์„ ์Šค๋ฅผ ํ™•์ธํ•˜์„ธ์š”
johngreendr1/2887f78b-5df1-4b66-b54f-722307a97863
johngreendr1
2025-06-25T01:48:14Z
0
0
peft
[ "peft", "safetensors", "llama", "arxiv:1910.09700", "base_model:sethuiyer/Medichat-Llama3-8B", "base_model:adapter:sethuiyer/Medichat-Llama3-8B", "region:us" ]
null
2025-06-25T00:34:57Z
--- base_model: sethuiyer/Medichat-Llama3-8B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
fnlp/qwen2-0_5B-rope8-d_kv_16-refactor
fnlp
2025-06-25T01:47:41Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T01:46:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
giang16GG11/gg1
giang16GG11
2025-06-25T01:47:15Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:adapter:meta-llama/Llama-3.2-1B-Instruct", "region:us" ]
null
2025-06-25T01:31:55Z
--- base_model: meta-llama/Llama-3.2-1B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2