modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-03 12:31:03
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
537 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-03 12:30:52
card
stringlengths
11
1.01M
songyulong/VAE
songyulong
2023-06-20T03:04:21Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-06-20T02:55:45Z
--- license: bigscience-openrail-m ---
mirav/SeleneArtistic
mirav
2023-06-20T03:01:19Z
0
1
null
[ "stable diffusion", "text-to-image", "en", "dataset:mirav/artistic-imagery", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-12T01:51:00Z
--- license: creativeml-openrail-m datasets: - mirav/artistic-imagery language: - en pipeline_tag: text-to-image tags: - stable diffusion --- ## Description Stable Diffusion 1.5 model finetuned on a subset of [mirav/artistic-imagery](https://huggingface.co/datasets/mirav/artistic-imagery). Still a work in progress.<br> ## Goals Providing a model that can produce a wide variety of styles and is highly responsive to certain traditional art terms. Current trained terms (as of version 1.0): * watercolor \(medium\) * watercolor pencil \(medium\) * sketch * traditional media * ink wash painting * impressionism * acrylic painting * oil painting * chiaroscuro<sup>1</sup> ## Notes <sup>1</sup> Due to documented issues with the noise scheduler, this does not presently have quite the intended effect.
GralchemOz/guanaco-33b-chinese
GralchemOz
2023-06-20T02:40:43Z
11
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-17T07:25:18Z
--- license: apache-2.0 --- This model is a merged version of [guanaco-33b](https://huggingface.co/timdettmers/guanaco-33b ) and [chinese-alpaca-lora-33b](https://huggingface.co/ziqingyang/chinese-alpaca-lora-33b) ,which enhances the Chinese language capability while retaining the abilities of the original models. Please follow the corresponding model licenses when using this model. 本模型是由[guanaco-33b](https://huggingface.co/timdettmers/guanaco-33b ) 和 [chinese-alpaca-lora-33b](https://huggingface.co/ziqingyang/chinese-alpaca-lora-33b) 合并得到的, 增强中文能力的同时保留了原始模型的能力 使用时务必遵守相应模型的协议
joeyc/ppo-LunarLander-v2
joeyc
2023-06-20T02:06:20Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-20T01:59:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 290.53 +/- 18.29 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
wuster/bloomz-1b-lora-tagger
wuster
2023-06-20T02:02:31Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-20T02:02:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
pcalhoun/gpt-j-6b-8bit-pun-generator
pcalhoun
2023-06-20T01:56:44Z
0
1
null
[ "license:apache-2.0", "region:us" ]
null
2023-03-08T22:56:51Z
--- license: apache-2.0 --- *["This is the moment I've been training for," said the pun-generating AI](https://paulcalhoun.substack.com/p/this-is-the-moment-ive-been-training)* **Note:** At the time this was created, HF didn't support running models finetuned in 8-bit, so in the included python example the transformers module gets patched before the model is loaded directly via torch. Also, make sure you use the package versions specifically listed in requirements.txt. At least the bnb and transformer versions need to match what's there. # In 2022 Robert Gonsalves [demonstrated](https://towardsdatascience.com/i-once-trained-an-ai-to-rhyme-and-it-took-gpt-j-a-long-time-de1f98925e17) that GPT-J-6B could be fine tuned for limerick generation. This is an interesting data point, historically speaking, for a few reasons: * GPT-J-6B was over a year old when this happened * It’s ~50x smaller than GPT3 * Generating coherent and amusing jokes [is considered computationally difficult](https://hdsr.mitpress.mit.edu/pub/wi9yky5c/release/3) * Note: Google’s PaLM LLM [already managed this task](https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html), albeit at 100x scale * Robert Gonsalves did this as a fun personal project, using readily available cloud tools # I’m currently trying to fine tune the same model to make puns. Some unique (I think) output examples so far: * **Two guys argued about a painting. There was a rupture in the peace.** * Peace => Piece (painting) * **When the townspeople found out the cow was giving birth, it was quite a cow to have to deal with.** * I like this one because it’s still a pun, despite not being remotely funny. * **A musician went to the hospital because he swallowed a trombone. The doctor told him to have a tube inserted and he would be playing on his own soon.** * This is a mediocre pun, but the setup requires a large amount of real-world knowledge. * **Two electricians had such different tastes, they went to a waffle outlet for a discussion.** * This one appears to be a double-pun (electricians => outlet, and waffle-food => waffle-to change opinions) * **“I love kiwis,” said Tom kiwwisely.** * They’re not all zingers. * **To be able to go back to boarding school and pass all her subjects meant that she had learnt her lesson.** * So much worldbuilding for such an anticlimactic payoff. * **The story of a boy who was born with one eye in the wrong place was told from an unexpected angle.** * This one is probably the most impressive to date, after ~12000 fine tuning steps (and poring through maybe 800 non-pun or unfunny pun inferences). * **Old pianists never die they just get tuned away.** * This format (“Old [specialist]s never die, they just [death euphemism]”) is featured many times in the training data. However, the above pun is not on Google anywhere, so I assume it’s new. * **I like to have a fire lit in my chimney, said Tom light-heartedly.** * Heart=>Hearth * **Old gardeners never die they just turn green** * **He didn't wear his house shoes to work because he's such a homeboy.** * **Old mathematicians never die, they just have to multiply.** * **A young man sitting at a table with a pot of stew was very busy keeping a lid on his appetite.** * **Drumlines are always being beat up.** * **"There's no shortage of water," said Tom rationally.** * Water rations. * **My new job as a gem cutter is fascinating because I am so deeply engaging.** * Gems => engagement rings.
Hokkaiswimming/autotrain-sessya06201-68135137237
Hokkaiswimming
2023-06-20T01:56:15Z
183
0
transformers
[ "transformers", "pytorch", "safetensors", "swin", "image-classification", "autotrain", "vision", "dataset:Hokkaiswimming/autotrain-data-sessya06201", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-20T01:55:48Z
--- tags: - autotrain - vision - image-classification datasets: - Hokkaiswimming/autotrain-data-sessya06201 widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.0573190927493014 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 68135137237 - CO2 Emissions (in grams): 0.0573 ## Validation Metrics - Loss: 0.007 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000
Globee/Sarahviroid
Globee
2023-06-20T01:46:37Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-19T12:13:15Z
--- license: creativeml-openrail-m ---
Brandulio/Reinforce-Pixelcopter
Brandulio
2023-06-20T01:29:14Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-20T01:29:10Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 50.10 +/- 43.88 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
wiliest-closure0u/ppo-LunarLander-v2
wiliest-closure0u
2023-06-20T01:17:28Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-20T01:17:18Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.82 +/- 17.47 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
VIMA/VIMA
VIMA
2023-06-20T01:10:42Z
0
14
null
[ "arxiv:1810.03993", "arxiv:1912.10389", "arxiv:2210.03094", "license:mit", "region:us" ]
null
2022-10-05T22:40:02Z
--- license: mit --- # Model Card Inspired by [Model Cards for Model Reporting (Mitchell et al.)](https://arxiv.org/abs/1810.03993) and [Lessons from Archives (Jo & Gebru)](https://arxiv.org/abs/1912.10389), we’re providing some accompanying information about the VIMA model. ## Model Details VIMA (**Vi**suo**M**otor **A**ttention) is a novel Transformer agent that ingests multimodal prompts and outputs robot arm control autoregressively. VIMA is developed primarily by researchers at Stanford/NVIDIA. ### Model Date October 2022 ### Model Type VIMA model consists of a pretrained T5 model as the prompt encoder, several tokenizers to process multimodal inputs, and a causal decoder that augoregressively predicts actions given the prompt and interaction history. ### Model Versions We released 7 checkpoints covering a spectrum of model capacity from 2M to 200M. ## Model Use ### Intended Use The model is intended to be used alongside [VIMA-Bench](https://github.com/vimalabs/VimaBench) to study general robot manipulation with multimodal prompts. ### Primary intended uses The primary intended users of these models are AI researchers in robotics, multimodal learning, embodied agents, foundation models, etc. ## Data The models were trained with [data](https://doi.org/10.5281/zenodo.7127587) generated by oracles implemented in [VIMA-Bench](https://github.com/vimalabs/VimaBench). It includes 650K successful trajectories for behavior cloning. We use 600K trajectories for training. The remaining 50K trajectories are held out for validation purpose. ## Performance and Limitations ### Metrics and Performance We quantify the performance of trained models using task success percentage aggregated over multiple tasks. We evaluate models' performance on task suite from [VIMA-Bench](https://github.com/vimalabs/VimaBench) and follow the proposed evaluation protocol. See our paper for more details. ### Limitations Our provided model checkpoints are pre-trained on VIMA-Bench, which may not directly generalize to other simulators or real world. Limitations are further discussed in the paper. ## Paper and Citation Our paper is posted on [arXiv](https://arxiv.org/abs/2210.03094). If you find our work useful, please consider citing us! ```bibtex @inproceedings{jiang2023vima, title = {VIMA: General Robot Manipulation with Multimodal Prompts}, author = {Yunfan Jiang and Agrim Gupta and Zichen Zhang and Guanzhi Wang and Yongqiang Dou and Yanjun Chen and Li Fei-Fei and Anima Anandkumar and Yuke Zhu and Linxi Fan}, booktitle = {Fortieth International Conference on Machine Learning}, year = {2023} } ```
Densu341/Bugiene_model
Densu341
2023-06-20T00:53:21Z
0
0
null
[ "region:us" ]
null
2023-06-20T00:48:09Z
# Bugiene Machine Learning Model This repository contains the code for a machine learning model that performs implied computer vision tasks using a Convolutional Neural Network (CNN). The machine learning model was developed to classify fruits into rotten or fresh categories using computer vision and a convolutional neural network (CNN). The model was built using the TensorFlow Keras library. In this case, the CNN model was trained on a dataset of images of fruits, such as: apples, avocados, bananas, grapes, guavas, oranges. The dataset included images of both rotten and fresh fruits. The CNN was able to learn to distinguish between the two types of fruit based on the features it extracted from the images.The output from our model is prediction result "Fresh" or "Rotten" and the accuracy. ## Table of Contents - [Dataset](#dataset) - [Model Architecture](#model-architecture) - [Requirements](#requirements) - [Usage](#usage) - [Results](#results) - [Contributor Acknowledgment](#contributor-acknowledgment) ## Dataset The model is trained on a custom dataset consisting of labeled images. The dataset can be obtained from https://www.kaggle.com/datasets/sriramr/fruits-fresh-and-rotten-for-classification and https://www.kaggle.com/datasets/moltean/fruits. ## Model Architecture The CNN model architecture used for this project is as follows: pre_trained_model = VGG16(input_shape=(150,150,3), include_top=False) for layer in pre_trained_model.layers: layer.trainable = False x = layers.Dense(1024, activation='relu')(x) x = layers.Dropout(0.2)(x) x = layers.Dense(1, activation='sigmoid')(x) ## Requirements To run the code in this repository, you will need the following dependencies: - Python [3.10.10] - TensorFlow [2.12.0] ## Usage 1. Clone this repository to your local machine. 2. Install the required dependencies by running `pip install -r requirements.txt`. 3. Clone this https://github.com/Bugiene/Bugiene-app/blob/master/machine-learning/bugiene_model.ipynb to your local machine. 4. Run the main script using `python main.py`. ## Results Found 4004 images belonging to 2 classes. 4004/4004 [==============================] - 41s 10ms/step - loss: 0.1405 - accuracy: 0.9451 accuracy test: 0.9450549483299255 loss test: 0.14052222669124603 And for the result test you can check this https://github.com/Bugiene/Bugiene-app/tree/master/machine-learning/result-test ## Contributor Acknowledgment We would like to acknowledge the following contributors for their valuable contributions to this project: - Deni Irawan (GitHub: Densu341) - Sandro Sinaga (GitHub: SandroSinaga24) - Laila Nur Anggamurti (GitHub: jejukyul) ## Contact For any questions or inquiries, please contact the contributor mentioned above. Thank you.
echrisantus/Reinforce-v1
echrisantus
2023-06-20T00:46:53Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-20T00:46:37Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
memotirre90/Equipo16_FineTunning_Amazon_Comments
memotirre90
2023-06-20T00:40:53Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-16T06:26:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: Equipo16_FineTunning_Amazon_Comments results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Equipo16_FineTunning_Amazon_Comments This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2751 - Accuracy: 0.9093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
twidfeel/distilbert-base-uncased-distilled-clinc
twidfeel
2023-06-20T00:25:44Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-20T00:15:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9470967741935484 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2389 - Accuracy: 0.9471 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9829 | 1.0 | 318 | 1.3786 | 0.7284 | | 1.0665 | 2.0 | 636 | 0.6878 | 0.8642 | | 0.5642 | 3.0 | 954 | 0.4058 | 0.9126 | | 0.3514 | 4.0 | 1272 | 0.3042 | 0.9339 | | 0.2656 | 5.0 | 1590 | 0.2701 | 0.94 | | 0.2305 | 6.0 | 1908 | 0.2532 | 0.9442 | | 0.2131 | 7.0 | 2226 | 0.2462 | 0.9458 | | 0.2031 | 8.0 | 2544 | 0.2409 | 0.9471 | | 0.1975 | 9.0 | 2862 | 0.2401 | 0.9461 | | 0.1953 | 10.0 | 3180 | 0.2389 | 0.9471 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
xycon/Ralora
xycon
2023-06-20T00:09:16Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-20T00:09:16Z
--- license: creativeml-openrail-m ---
dtntxt/ppo-LunarLander-v2
dtntxt
2023-06-20T00:06:41Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-12T00:31:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.15 +/- 19.41 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Jhonny1998/Sentimientos
Jhonny1998
2023-06-19T23:56:50Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2023-06-19T23:53:06Z
--- license: apache-2.0 --- import json import requests API_TOKEN = "" def query(payload='',parameters=None,options={'use_cache': False}): API_URL = "https://api-inference.huggingface.co/models/EleutherAI/gpt-neo-2.7B" headers = {"Authorization": f"Bearer {API_TOKEN}"} body = {"inputs":payload,'parameters':parameters,'options':options} response = requests.request("POST", API_URL, headers=headers, data= json.dumps(body)) try: response.raise_for_status() except requests.exceptions.HTTPError: return "Error:"+" ".join(response.json()['error']) else: return response.json()[0]['generated_text'] parameters = { 'max_new_tokens':25, # number of generated tokens 'temperature': 0.5, # controlling the randomness of generations 'end_sequence': "###" # stopping sequence for generation } prompt="...." # few-shot prompt data = query(prompt,parameters,options)
husienburgir/Rintest
husienburgir
2023-06-19T23:44:15Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-19T23:39:34Z
--- license: creativeml-openrail-m ---
AustinCarthy/MixGPT2V2_suffix_100KP_BFall_fromB_95K_topP_0.75_ratio2.63
AustinCarthy
2023-06-19T23:34:55Z
0
0
null
[ "tensorboard", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-06-19T21:18:25Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: MixGPT2V2_suffix_100KP_BFall_fromB_95K_topP_0.75_ratio2.63 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MixGPT2V2_suffix_100KP_BFall_fromB_95K_topP_0.75_ratio2.63 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_MixGPT2V2_using_benign_95K_top_p_0.75suffix dataset. It achieves the following results on the evaluation set: - Loss: 0.0286 - Accuracy: 0.9964 - F1: 0.9612 - Precision: 0.9728 - Recall: 0.95 - Roc Auc Score: 0.9743 - Tpr At Fpr 0.01: 0.7924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:| | 0.0218 | 1.0 | 22121 | 0.0193 | 0.9952 | 0.9485 | 0.9717 | 0.9264 | 0.9625 | 0.7698 | | 0.013 | 2.0 | 44242 | 0.0213 | 0.9957 | 0.9546 | 0.9675 | 0.942 | 0.9702 | 0.799 | | 0.0041 | 3.0 | 66363 | 0.0262 | 0.9951 | 0.9494 | 0.9395 | 0.9596 | 0.9783 | 0.792 | | 0.0034 | 4.0 | 88484 | 0.0223 | 0.9964 | 0.9618 | 0.9657 | 0.958 | 0.9781 | 0.8558 | | 0.001 | 5.0 | 110605 | 0.0286 | 0.9964 | 0.9612 | 0.9728 | 0.95 | 0.9743 | 0.7924 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
MindNetML/ppo-LunarLander-v2
MindNetML
2023-06-19T23:07:39Z
1
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T23:07:18Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.22 +/- 28.48 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aphi/dqn-SpaceInvadersNoFrameskip-v4_1
aphi
2023-06-19T23:07:20Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T23:06:48Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 330.50 +/- 71.74 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga aphi -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga aphi -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga aphi ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 500000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
C-Lo/finetuning-sentiment-gendered-dataset
C-Lo
2023-06-19T22:58:29Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T22:55:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: finetuning-sentiment-gendered-dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-gendered-dataset This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
sid/ppo-Huggy
sid
2023-06-19T22:53:24Z
15
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-19T22:52:44Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: sid/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
MarketingHHM/autotrain-hhmqatest23-68104137216
MarketingHHM
2023-06-19T22:52:12Z
98
0
transformers
[ "transformers", "pytorch", "safetensors", "led", "text2text-generation", "autotrain", "summarization", "unk", "dataset:MarketingHHM/autotrain-data-hhmqatest23", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-06-19T22:31:26Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain" datasets: - MarketingHHM/autotrain-data-hhmqatest23 co2_eq_emissions: emissions: 14.037553452269616 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 68104137216 - CO2 Emissions (in grams): 14.0376 ## Validation Metrics - Loss: 0.920 - Rouge1: 34.783 - Rouge2: 23.625 - RougeL: 29.390 - RougeLsum: 32.868 - Gen Len: 109.840 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/MarketingHHM/autotrain-hhmqatest23-68104137216 ```
gokuls/hbertv1-Massive-intent_w_in
gokuls
2023-06-19T22:35:13Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "dataset:massive", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T22:26:09Z
--- tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: hbertv1-Massive-intent_w_in results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.8745696015740285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hbertv1-Massive-intent_w_in This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.7790 - Accuracy: 0.8746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2877 | 1.0 | 180 | 0.9877 | 0.7329 | | 0.8514 | 2.0 | 360 | 0.7403 | 0.7993 | | 0.5896 | 3.0 | 540 | 0.6955 | 0.8239 | | 0.4058 | 4.0 | 720 | 0.6778 | 0.8313 | | 0.3003 | 5.0 | 900 | 0.6345 | 0.8505 | | 0.2236 | 6.0 | 1080 | 0.6567 | 0.8583 | | 0.1615 | 7.0 | 1260 | 0.7163 | 0.8460 | | 0.1159 | 8.0 | 1440 | 0.7450 | 0.8519 | | 0.0976 | 9.0 | 1620 | 0.7533 | 0.8490 | | 0.061 | 10.0 | 1800 | 0.7502 | 0.8642 | | 0.0438 | 11.0 | 1980 | 0.7729 | 0.8618 | | 0.0309 | 12.0 | 2160 | 0.7790 | 0.8746 | | 0.0191 | 13.0 | 2340 | 0.8302 | 0.8682 | | 0.0101 | 14.0 | 2520 | 0.8224 | 0.8721 | | 0.0057 | 15.0 | 2700 | 0.8229 | 0.8716 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.13.0 - Tokenizers 0.13.3
Wazzzabeee/PoliteT5Base
Wazzzabeee
2023-06-19T22:29:16Z
6
1
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T19:30:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: PoliteT5Base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PoliteT5Base This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8536 - Toxicity Ratio: 0.3421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 75 ### Training results | Training Loss | Epoch | Step | Validation Loss | Toxicity Ratio | |:-------------:|:-----:|:----:|:---------------:|:--------------:| | No log | 1.0 | 22 | 1.3256 | 0.3070 | | No log | 2.0 | 44 | 0.8436 | 0.2982 | | 1.6337 | 3.0 | 66 | 0.7944 | 0.3333 | | 1.6337 | 4.0 | 88 | 0.8921 | 0.3158 | | 0.547 | 5.0 | 110 | 0.9630 | 0.2632 | | 0.547 | 6.0 | 132 | 0.9711 | 0.3158 | | 0.3279 | 7.0 | 154 | 0.9966 | 0.3070 | | 0.3279 | 8.0 | 176 | 1.0053 | 0.3246 | | 0.3279 | 9.0 | 198 | 1.0326 | 0.3333 | | 0.2282 | 10.0 | 220 | 0.9798 | 0.3158 | | 0.2282 | 11.0 | 242 | 1.0093 | 0.3333 | | 0.1837 | 12.0 | 264 | 1.2380 | 0.3246 | | 0.1837 | 13.0 | 286 | 1.1889 | 0.3860 | | 0.1546 | 14.0 | 308 | 1.1985 | 0.3596 | | 0.1546 | 15.0 | 330 | 1.2296 | 0.3509 | | 0.1178 | 16.0 | 352 | 1.1394 | 0.3684 | | 0.1178 | 17.0 | 374 | 1.1712 | 0.3596 | | 0.1178 | 18.0 | 396 | 1.1586 | 0.4035 | | 0.1185 | 19.0 | 418 | 1.9263 | 0.0789 | | 0.1185 | 20.0 | 440 | 1.3483 | 0.3246 | | 0.2332 | 21.0 | 462 | 1.3163 | 0.3158 | | 0.2332 | 22.0 | 484 | 1.2926 | 0.3509 | | 0.1267 | 23.0 | 506 | 1.2691 | 0.3421 | | 0.1267 | 24.0 | 528 | 1.3298 | 0.3596 | | 0.0879 | 25.0 | 550 | 1.2795 | 0.3509 | | 0.0879 | 26.0 | 572 | 1.2826 | 0.3246 | | 0.0879 | 27.0 | 594 | 1.2884 | 0.3158 | | 0.0747 | 28.0 | 616 | 1.4146 | 0.4035 | | 0.0747 | 29.0 | 638 | 1.3577 | 0.3596 | | 0.0714 | 30.0 | 660 | 1.2663 | 0.3509 | | 0.0714 | 31.0 | 682 | 1.2508 | 0.3772 | | 0.0566 | 32.0 | 704 | 1.3980 | 0.4035 | | 0.0566 | 33.0 | 726 | 1.4006 | 0.3860 | | 0.0566 | 34.0 | 748 | 1.4090 | 0.3596 | | 0.0572 | 35.0 | 770 | 1.4681 | 0.3246 | | 0.0572 | 36.0 | 792 | 1.4254 | 0.3947 | | 0.0456 | 37.0 | 814 | 1.4932 | 0.3246 | | 0.0456 | 38.0 | 836 | 1.3994 | 0.2982 | | 0.0385 | 39.0 | 858 | 1.4511 | 0.3421 | | 0.0385 | 40.0 | 880 | 1.3007 | 0.3684 | | 0.0223 | 41.0 | 902 | 1.3961 | 0.3158 | | 0.0223 | 42.0 | 924 | 1.4619 | 0.3246 | | 0.0223 | 43.0 | 946 | 1.3996 | 0.3246 | | 0.0199 | 44.0 | 968 | 1.5012 | 0.3509 | | 0.0199 | 45.0 | 990 | 1.4104 | 0.3246 | | 0.018 | 46.0 | 1012 | 1.5855 | 0.3333 | | 0.018 | 47.0 | 1034 | 1.4603 | 0.3333 | | 0.0146 | 48.0 | 1056 | 1.5335 | 0.3421 | | 0.0146 | 49.0 | 1078 | 1.4883 | 0.3772 | | 0.0131 | 50.0 | 1100 | 1.5366 | 0.2982 | | 0.0131 | 51.0 | 1122 | 1.5762 | 0.3509 | | 0.0131 | 52.0 | 1144 | 1.5434 | 0.3333 | | 0.0073 | 53.0 | 1166 | 1.4730 | 0.3158 | | 0.0073 | 54.0 | 1188 | 1.5133 | 0.3509 | | 0.0049 | 55.0 | 1210 | 1.6912 | 0.3509 | | 0.0049 | 56.0 | 1232 | 1.6376 | 0.3509 | | 0.0028 | 57.0 | 1254 | 1.8260 | 0.3509 | | 0.0028 | 58.0 | 1276 | 1.5748 | 0.3509 | | 0.0028 | 59.0 | 1298 | 1.6631 | 0.3509 | | 0.0029 | 60.0 | 1320 | 1.7458 | 0.3509 | | 0.0029 | 61.0 | 1342 | 1.6343 | 0.3684 | | 0.002 | 62.0 | 1364 | 1.6433 | 0.3421 | | 0.002 | 63.0 | 1386 | 1.7486 | 0.3509 | | 0.0014 | 64.0 | 1408 | 1.8081 | 0.3684 | | 0.0014 | 65.0 | 1430 | 1.8987 | 0.3947 | | 0.0007 | 66.0 | 1452 | 1.8811 | 0.3596 | | 0.0007 | 67.0 | 1474 | 1.8541 | 0.3596 | | 0.0007 | 68.0 | 1496 | 1.8233 | 0.3509 | | 0.001 | 69.0 | 1518 | 1.7747 | 0.3509 | | 0.001 | 70.0 | 1540 | 1.8105 | 0.3509 | | 0.0008 | 71.0 | 1562 | 1.8254 | 0.3596 | | 0.0008 | 72.0 | 1584 | 1.8444 | 0.3684 | | 0.0008 | 73.0 | 1606 | 1.8387 | 0.3509 | | 0.0008 | 74.0 | 1628 | 1.8501 | 0.3509 | | 0.0004 | 75.0 | 1650 | 1.8536 | 0.3421 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3
gokuls/hbertv1-Massive-intent_48
gokuls
2023-06-19T22:21:18Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "dataset:massive", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T22:12:24Z
--- tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: hbertv1-Massive-intent_48 results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.8573536645351697 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hbertv1-Massive-intent_48 This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.8740 - Accuracy: 0.8574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.4348 | 1.0 | 180 | 1.2038 | 0.6798 | | 1.0006 | 2.0 | 360 | 0.8063 | 0.7831 | | 0.6914 | 3.0 | 540 | 0.7823 | 0.7924 | | 0.5 | 4.0 | 720 | 0.8175 | 0.7959 | | 0.3877 | 5.0 | 900 | 0.7489 | 0.8239 | | 0.2981 | 6.0 | 1080 | 0.7043 | 0.8446 | | 0.2251 | 7.0 | 1260 | 0.7596 | 0.8372 | | 0.181 | 8.0 | 1440 | 0.8237 | 0.8357 | | 0.1367 | 9.0 | 1620 | 0.8323 | 0.8362 | | 0.0995 | 10.0 | 1800 | 0.8589 | 0.8396 | | 0.0726 | 11.0 | 1980 | 0.8476 | 0.8510 | | 0.0501 | 12.0 | 2160 | 0.8901 | 0.8534 | | 0.0338 | 13.0 | 2340 | 0.8992 | 0.8519 | | 0.022 | 14.0 | 2520 | 0.8740 | 0.8574 | | 0.0124 | 15.0 | 2700 | 0.8828 | 0.8554 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.13.0 - Tokenizers 0.13.3
rekhari/dummy-model
rekhari
2023-06-19T22:21:00Z
59
0
transformers
[ "transformers", "tf", "camembert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-19T22:20:48Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: dummy-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dummy-model This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.0 - Tokenizers 0.13.3
NasimB/gpt2_left_out_qed
NasimB
2023-06-19T22:18:15Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-19T13:06:22Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2_left_out_qed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2_left_out_qed This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 3.9486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 5.9695 | 0.27 | 500 | 5.0679 | | 4.7417 | 0.53 | 1000 | 4.6811 | | 4.4136 | 0.8 | 1500 | 4.4369 | | 4.2076 | 1.06 | 2000 | 4.2985 | | 4.0279 | 1.33 | 2500 | 4.2048 | | 3.9505 | 1.59 | 3000 | 4.1137 | | 3.8781 | 1.86 | 3500 | 4.0482 | | 3.7338 | 2.12 | 4000 | 4.0046 | | 3.6392 | 2.39 | 4500 | 3.9628 | | 3.6228 | 2.65 | 5000 | 3.9115 | | 3.5944 | 2.92 | 5500 | 3.8738 | | 3.4222 | 3.18 | 6000 | 3.8797 | | 3.3836 | 3.45 | 6500 | 3.8576 | | 3.3995 | 3.71 | 7000 | 3.8251 | | 3.3827 | 3.98 | 7500 | 3.7995 | | 3.1568 | 4.24 | 8000 | 3.8348 | | 3.1778 | 4.51 | 8500 | 3.8171 | | 3.1853 | 4.77 | 9000 | 3.7963 | | 3.1451 | 5.04 | 9500 | 3.8059 | | 2.9278 | 5.31 | 10000 | 3.8298 | | 2.9608 | 5.57 | 10500 | 3.8176 | | 2.9762 | 5.84 | 11000 | 3.8047 | | 2.8716 | 6.1 | 11500 | 3.8433 | | 2.7239 | 6.37 | 12000 | 3.8523 | | 2.7435 | 6.63 | 12500 | 3.8541 | | 2.7524 | 6.9 | 13000 | 3.8446 | | 2.6032 | 7.16 | 13500 | 3.8854 | | 2.5322 | 7.43 | 14000 | 3.8967 | | 2.5369 | 7.69 | 14500 | 3.8983 | | 2.5467 | 7.96 | 15000 | 3.8966 | | 2.3979 | 8.22 | 15500 | 3.9284 | | 2.3767 | 8.49 | 16000 | 3.9334 | | 2.3852 | 8.75 | 16500 | 3.9357 | | 2.3805 | 9.02 | 17000 | 3.9395 | | 2.3012 | 9.28 | 17500 | 3.9463 | | 2.3044 | 9.55 | 18000 | 3.9484 | | 2.3007 | 9.81 | 18500 | 3.9486 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
mrm8488/falcoder-7b
mrm8488
2023-06-19T22:10:37Z
29
89
transformers
[ "transformers", "pytorch", "RefinedWebModel", "text-generation", "generated_from_trainer", "code", "coding", "custom_code", "dataset:HuggingFaceH4/CodeAlpaca_20K", "doi:10.57967/hf/0789", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-19T21:26:49Z
--- tags: - generated_from_trainer - code - coding model-index: - name: FalCoder results: [] license: apache-2.0 language: - code thumbnail: https://huggingface.co/mrm8488/falcoder-7b/resolve/main/falcoder.png datasets: - HuggingFaceH4/CodeAlpaca_20K pipeline_tag: text-generation --- <div style="text-align:center;width:250px;height:250px;"> <img src="https://huggingface.co/mrm8488/falcoder-7b/resolve/main/falcoder.png" alt="falcoder logo""> </div> <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FalCoder 🦅👩‍💻 **Falcon-7b** fine-tuned on the **CodeAlpaca 20k instructions dataset** by using the method **QLoRA** with [PEFT](https://github.com/huggingface/peft) library. ## Model description 🧠 [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b) ## Training and evaluation data 📚 [CodeAlpaca_20K](https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K): contains 20K instruction-following data used for fine-tuning the Code Alpaca model. ### Training hyperparameters ⚙ TBA ### Training results 🗒️ | Step | Training Loss | Validation Loss | |------|---------------|-----------------| | 100 | 0.798500 | 0.767996 | | 200 | 0.725900 | 0.749880 | | 300 | 0.669100 | 0.748029 | | 400 | 0.687300 | 0.742342 | | 500 | 0.579900 | 0.736735 | ### Example of usage 👩‍💻 ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer model_id = "mrm8488/falcoder-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda") def generate( instruction, max_new_tokens=128, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, **kwargs ): prompt = instruction + "\n### Solution:\n" print(prompt) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to("cuda") attention_mask = inputs["attention_mask"].to("cuda") generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, attention_mask=attention_mask, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, early_stopping=True ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Solution:")[1].lstrip("\n") instruction = "Design a class for representing a person in Python." print(generate(instruction)) ``` ### Citation ``` @misc {manuel_romero_2023, author = { {Manuel Romero} }, title = { falcoder-7b (Revision e061237) }, year = 2023, url = { https://huggingface.co/mrm8488/falcoder-7b }, doi = { 10.57967/hf/0789 }, publisher = { Hugging Face } } ```
gokuls/hbertv1-Massive-intent_48_w_in
gokuls
2023-06-19T22:08:47Z
48
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "dataset:massive", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T21:59:47Z
--- tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: hbertv1-Massive-intent_48_w_in results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.8735858337432366 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hbertv1-Massive-intent_48_w_in This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.8264 - Accuracy: 0.8736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6907 | 1.0 | 180 | 0.8443 | 0.7777 | | 0.7472 | 2.0 | 360 | 0.6977 | 0.8210 | | 0.5222 | 3.0 | 540 | 0.6538 | 0.8352 | | 0.3848 | 4.0 | 720 | 0.6461 | 0.8357 | | 0.284 | 5.0 | 900 | 0.6195 | 0.8524 | | 0.2051 | 6.0 | 1080 | 0.6218 | 0.8574 | | 0.149 | 7.0 | 1260 | 0.6915 | 0.8495 | | 0.1108 | 8.0 | 1440 | 0.7420 | 0.8574 | | 0.0806 | 9.0 | 1620 | 0.7204 | 0.8549 | | 0.0565 | 10.0 | 1800 | 0.7570 | 0.8603 | | 0.0355 | 11.0 | 1980 | 0.7622 | 0.8677 | | 0.0246 | 12.0 | 2160 | 0.8344 | 0.8647 | | 0.0124 | 13.0 | 2340 | 0.8276 | 0.8682 | | 0.0072 | 14.0 | 2520 | 0.8264 | 0.8736 | | 0.0042 | 15.0 | 2700 | 0.8328 | 0.8736 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.13.0 - Tokenizers 0.13.3
Brendan/refpydst-100p-referredstates
Brendan
2023-06-19T21:49:31Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T21:49:11Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-100p-referredstates-referred-states This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 100% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-100p-referredstates-referred-states') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-100p-referredstates-referred-states') model = AutoModel.from_pretrained('Brendan/refpydst-100p-referredstates-referred-states') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-100p-referredstates-referred-states) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 45810 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 6, "evaluation_steps": 15300, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ducdh1210/dolly-lora-230619-2
ducdh1210
2023-06-19T21:30:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-19T21:30:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
namedotpg/dqn-SpaceInvadersTraining
namedotpg
2023-06-19T21:26:39Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T21:26:01Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 488.50 +/- 158.24 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga namedotpg -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga namedotpg -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga namedotpg ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
jorgelzn/Reinforce-cartpole_v1
jorgelzn
2023-06-19T21:21:38Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T21:21:24Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole_v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
NasimB/distilgpt2-concat
NasimB
2023-06-19T21:02:23Z
11
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-19T18:28:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - generator model-index: - name: distilgpt2-concat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-concat This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7514 | 0.29 | 500 | 5.6224 | | 5.3454 | 0.58 | 1000 | 5.1814 | | 4.9931 | 0.87 | 1500 | 4.9290 | | 4.7222 | 1.16 | 2000 | 4.7811 | | 4.5672 | 1.45 | 2500 | 4.6657 | | 4.4669 | 1.74 | 3000 | 4.5721 | | 4.3738 | 2.02 | 3500 | 4.4939 | | 4.175 | 2.31 | 4000 | 4.4613 | | 4.1659 | 2.6 | 4500 | 4.4128 | | 4.1369 | 2.89 | 5000 | 4.3666 | | 3.9858 | 3.18 | 5500 | 4.3656 | | 3.9337 | 3.47 | 6000 | 4.3419 | | 3.9348 | 3.76 | 6500 | 4.3095 | | 3.8826 | 4.05 | 7000 | 4.3066 | | 3.7106 | 4.34 | 7500 | 4.3104 | | 3.7404 | 4.63 | 8000 | 4.2893 | | 3.7459 | 4.92 | 8500 | 4.2648 | | 3.5695 | 5.21 | 9000 | 4.2984 | | 3.536 | 5.49 | 9500 | 4.2887 | | 3.5604 | 5.78 | 10000 | 4.2711 | | 3.5007 | 6.07 | 10500 | 4.2900 | | 3.3477 | 6.36 | 11000 | 4.3013 | | 3.3629 | 6.65 | 11500 | 4.2906 | | 3.3771 | 6.94 | 12000 | 4.2814 | | 3.211 | 7.23 | 12500 | 4.3131 | | 3.1938 | 7.52 | 13000 | 4.3124 | | 3.21 | 7.81 | 13500 | 4.3093 | | 3.159 | 8.1 | 14000 | 4.3204 | | 3.0726 | 8.39 | 14500 | 4.3257 | | 3.0762 | 8.68 | 15000 | 4.3269 | | 3.0834 | 8.96 | 15500 | 4.3257 | | 3.0173 | 9.25 | 16000 | 4.3311 | | 3.0116 | 9.54 | 16500 | 4.3325 | | 3.0155 | 9.83 | 17000 | 4.3325 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
ducdh1210/dolly-lora-230619
ducdh1210
2023-06-19T21:01:31Z
1
0
peft
[ "peft", "region:us" ]
null
2023-06-19T21:01:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
bsuutari/path_to_saved_model
bsuutari
2023-06-19T20:58:31Z
57
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-19T20:49:13Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - bsuutari/path_to_saved_model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Brendan/refpydst-100p-referredstates-referred-states
Brendan
2023-06-19T20:50:01Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:30:22Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-100p-referredstates-referred-states This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 100% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-100p-referredstates-referred-states') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-100p-referredstates-referred-states') model = AutoModel.from_pretrained('Brendan/refpydst-100p-referredstates-referred-states') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-100p-referredstates-referred-states) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 45810 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 6, "evaluation_steps": 15300, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Brendan/refpydst-1p-referredstates-split-v2
Brendan
2023-06-19T20:50:00Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:29:30Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-1p-referredstates-split-v2 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 1% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-1p-referredstates-split-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-1p-referredstates-split-v2') model = AutoModel.from_pretrained('Brendan/refpydst-1p-referredstates-split-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-1p-referredstates-split-v2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 435 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 200, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Brendan/refpydst-1p-referredstates-split-v3
Brendan
2023-06-19T20:50:00Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:29:58Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-1p-referredstates-split-v3 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 1% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-1p-referredstates-split-v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-1p-referredstates-split-v3') model = AutoModel.from_pretrained('Brendan/refpydst-1p-referredstates-split-v3') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-1p-referredstates-split-v3) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 483 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 200, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Brendan/refpydst-1p-referredstates-split-v1
Brendan
2023-06-19T20:50:00Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:10:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-1p-referredstates-split-v1 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 1% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 1% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-1p-referredstates-split-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-1p-referredstates-split-v1') model = AutoModel.from_pretrained('Brendan/refpydst-1p-referredstates-split-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-1p-referredstates-split-v1) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 437 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 200, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Brendan/refpydst-1p-icdst-split-v1
Brendan
2023-06-19T20:49:58Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:28:39Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-1p-icdst-split-v1 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 1% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-1p-icdst-split-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-1p-icdst-split-v1') model = AutoModel.from_pretrained('Brendan/refpydst-1p-icdst-split-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-1p-icdst-split-v1) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 437 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 200, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Brendan/refpydst-1p-icdst-split-v2
Brendan
2023-06-19T20:49:52Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:28:13Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-1p-icdst-split-v2 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 1% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-1p-icdst-split-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-1p-icdst-split-v2') model = AutoModel.from_pretrained('Brendan/refpydst-1p-icdst-split-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-1p-icdst-split-v2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 435 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 200, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
IABCD/eduedudiffusion
IABCD
2023-06-19T20:49:50Z
30
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-19T19:33:34Z
--- license: cc-by-nc-nd-4.0 tags: - text-to-image - stable-diffusion --- ### EduEduDiffusion0.2 Dreambooth model trained by nicolasdec for EduEdu Test the concept via [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Training version 0.2. Positive Prompts: PROMPT, (eduedu) style, illustration, vector, cartoon lighting Negatives: bad anatomy, ugly, missing arms, bad proportions, tiling, missing legs, blurry, poorly drawn feet, morbid, cloned face, extra limbs, mutated hands, cropped, disfigured, mutation, deformed, deformed, mutilated, dehydrated, body out of frame, out of frame, disfigured, bad anatomy, poorly drawn face, duplicate, cut off, poorly drawn hands, error, low contrast, signature, extra arms, underexposed, text, extra fingers, overexposed, too many fingers, extra legs, bad art, ugly, extra limbs, beginner, username, fused fingers, amateur, watermark, gross proportions, distorted face, worst quality, jpeg artifacts, low quality, malformed limbs, long neck, lowres, poorly Rendered face, low resolution, low saturation, bad composition, Images cut out at the top, left, right, bottom, deformed body features, poorly rendered hands
Brendan/refpydst-5p-referredstates-split-v3
Brendan
2023-06-19T20:49:43Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:27:45Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-5p-referredstates-split-v3 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 5% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-5p-referredstates-split-v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-5p-referredstates-split-v3') model = AutoModel.from_pretrained('Brendan/refpydst-5p-referredstates-split-v3') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-5p-referredstates-split-v3) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2233 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 800, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Brendan/refpydst-5p-referredstates-split-v1
Brendan
2023-06-19T20:49:39Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:27:21Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-5p-referredstates-split-v1 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 5% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-5p-referredstates-split-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-5p-referredstates-split-v1') model = AutoModel.from_pretrained('Brendan/refpydst-5p-referredstates-split-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-5p-referredstates-split-v1) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2276 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 800, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Brendan/refpydst-5p-icdst-split-v3
Brendan
2023-06-19T20:49:28Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:26:23Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-5p-icdst-split-v3 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 5% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-5p-icdst-split-v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-5p-icdst-split-v3') model = AutoModel.from_pretrained('Brendan/refpydst-5p-icdst-split-v3') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-5p-icdst-split-v3) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2233 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 800, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Brendan/refpydst-10p-referredstates-split-v2
Brendan
2023-06-19T20:49:24Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:23:52Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-10p-referredstates-split-v2 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 10% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-10p-referredstates-split-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-10p-referredstates-split-v2') model = AutoModel.from_pretrained('Brendan/refpydst-10p-referredstates-split-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-10p-referredstates-split-v2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4566 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 1600, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
mrizalf7/xlm-roberta-finetuned-small-squad-indonesian-rizal-9
mrizalf7
2023-06-19T20:40:01Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-06-19T17:28:21Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-finetuned-small-squad-indonesian-rizal-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-finetuned-small-squad-indonesian-rizal-9 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.6372 | 1.0 | 4128 | 1.7537 | | 1.3958 | 2.0 | 8256 | 1.7289 | | 1.2485 | 3.0 | 12384 | 1.7340 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
cosimoiaia/Loquace-70m
cosimoiaia
2023-06-19T20:21:56Z
182
3
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "alpaca", "llama", "llm", "finetune", "Italian", "qlora", "conversational", "it", "dataset:cosimoiaia/Loquace-102k", "license:cc-by-nc-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-02T05:18:49Z
--- license: cc-by-nc-2.0 datasets: - cosimoiaia/Loquace-102k language: - it pipeline_tag: conversational tags: - alpaca - llama - llm - finetune - Italian - qlora --- Model Card for Loquace-70m # 🇮🇹 Loquace-70m 🇮🇹 An exclusively Italian speaking, instruction finetuned, Large Language model. 🇮🇹 The Loquace Italian LLM models are created as a proof-of-concept to evaluate on how language tuning can be achieved using QLoRa by instruct-tunings foundational LLMs using dataset of a specific language. The QLoRa (https://github.com/artidoro/qlora) method of fine-tuning significantly lower the resources requirements compared to any other methods available, this allow to easily execute the process on significanly larger dataset while still using consumers GPUs and still achieve high accuracy. ## Model Description Loquace-70m is the smallest model of the Loquace family. It was trained using QLoRa on a large dataset of 102k question/answer pairs exclusively in Italian. The related code can be found at: https://github.com/cosimoiaia/Loquace Loquace-70m is part of the big Loquace family: https://huggingface.co/cosimoiaia/Loquace-70m - Based on pythia-70m https://huggingface.co/cosimoiaia/Loquace-410m - Based on pythia-410m https://huggingface.co/cosimoiaia/Loquace-7B - Based on Falcon-7B. https://huggingface.co/cosimoiaia/Loquace-12B - Based on pythia-12B https://huggingface.co/cosimoiaia/Loquace-20B - Based on gpt-neox-20B ## Usage ```python from transformers import ( AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig ) tokenizer = AutoTokenizer.from_pretrained("cosimoiaia/Loquace-70m", padding_side="right", use_fast=True) model = AutoModelForCausalLM.from_pretrained( "cosimoiaia/Loquace-70m", load_in_8bit=True, device_map="auto", quantization_config=BitsAndBytesConfig( load_in_4bit=True, llm_int8_has_fp16_weight=False ) ) ``` ## Training Loquace-70m was trained on a conversational dataset comprising 102k question/answer pairs in Italian language. The training data was constructed by putting together translations from the original alpaca Dataset and other sources like the OpenAssistant dataset. The model was trained for only 10000 iterations and took 6 hours on a single RTX 3090, kindly provided by Genesis Cloud. (https://gnsiscld.co/26qhlf) ## Limitations - Loquace-70m may not handle complex or nuanced queries well and may struggle with ambiguous or poorly formatted inputs. - The model may generate responses that are factually incorrect or nonsensical. It should be used with caution, and outputs should be carefully verified. - The training data primarily consists of conversational examples and may not generalize well to other types of tasks or domains. ## Dependencies - PyTorch - Transformers library by Hugging Face - Bitsandbites - QLoRa
andrewsiah/dqn-SpaceInvadersNoFrameskip-v4
andrewsiah
2023-06-19T20:19:43Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T20:18:59Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 602.00 +/- 288.45 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga andrewsiah -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga andrewsiah -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga andrewsiah ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
SimsConsulting/GPT2-From-Scratch
SimsConsulting
2023-06-19T20:14:58Z
145
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-17T04:14:45Z
--- license: apache-2.0 --- Here I provide you with a completely un-trained, from scratch model of GPT2. Which is the 124M parameter version. This has had all of it's weights randomized and then saved wiping out all previous training. It was trained for 50 epochs on the original book "Peter Pan" just so I can get the save and tokenization files to upload to hugging face. So, it is surprisingly almost coherent if you test it to the right with the example text and pressing "compute" just a interesting side note. What is this and how is it different? This is different than simply downloading a new 'gpt2' because all pre-training has been wiped out (except for the 50 epochs I mentioned). WHY?! This allows you to train the model from scratch which leaves open more parameters for training specifically for your use-case! You can see more examples on the original gpt model card page @ https://huggingface.co/gpt2 Example usage: requirements: pip install transformers from transformers import GPT2LMHeadModel, GPT2Tokenizer # Substitute 'your_model_name' with the name of your model model_name_or_path = 'your_model_name' # Load pre-trained model tokenizer tokenizer = GPT2Tokenizer.from_pretrained(model_name_or_path) # Load pre-trained model model = GPT2LMHeadModel.from_pretrained(model_name_or_path) # Model input input_text = "Hello, how are you?" # Encode input text input_ids = tokenizer.encode(input_text, return_tensors='pt') # Generate output output = model.generate(input_ids, max_length=50, num_return_sequences=1, temperature=0.7) # Decode output decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) print(decoded_output) License: Apache 2.0 The Apache 2.0 license allows software developers to alter the source code of existing software's source code, copy the original source code or update the source code. Furthermore, developers can then distribute any copies or modifications that they make of the software's source code. COMMERCIAL USE: YES PERSONAL USE: YES EDUCATIONAL USE: YES Enjoy!
sd-concepts-library/mersh
sd-concepts-library
2023-06-19T20:08:53Z
0
0
null
[ "base_model:stabilityai/stable-diffusion-2", "base_model:finetune:stabilityai/stable-diffusion-2", "license:mit", "region:us" ]
null
2023-06-19T20:08:51Z
--- license: mit base_model: stabilityai/stable-diffusion-2 --- ### Mersh on Stable Diffusion This is the `<lolcowmersh>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<lolcowmersh> 0](https://huggingface.co/sd-concepts-library/mersh/resolve/main/concept_images/0.jpeg) ![<lolcowmersh> 1](https://huggingface.co/sd-concepts-library/mersh/resolve/main/concept_images/3.jpeg) ![<lolcowmersh> 2](https://huggingface.co/sd-concepts-library/mersh/resolve/main/concept_images/2.jpeg) ![<lolcowmersh> 3](https://huggingface.co/sd-concepts-library/mersh/resolve/main/concept_images/1.jpeg)
agshruti/distilbert-base-uncased-finetuned-imdb
agshruti
2023-06-19T19:48:52Z
70
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-19T17:57:54Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: agshruti/distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # agshruti/distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8576 - Validation Loss: 2.5515 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8576 | 2.5515 | 0 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.13.0 - Tokenizers 0.13.3
nev/byt5-song-lyrics
nev
2023-06-19T19:47:23Z
9
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "music", "byt5", "en", "license:isc", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-19T10:30:21Z
--- language: - en tags: - music - t5 - byt5 license: "isc" metrics: - accuracy --- # ByT5 Song Lyrics This is a Seq2Seq model trained on a karaoke dataset to predict syllables with pitch and timing from song lyrics. As of writing, the model has only been trained on 1/2 of the full dataset. Expect the quality to improve later. The Huggingface demo seems to produce outputs with a small sequence length. So what you see on the right will only make a prediction for the first two syllables.
wesleyacheng/sms-spam-classification-with-bert
wesleyacheng
2023-06-19T19:39:06Z
8,660
2
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "text-classification", "en", "dataset:sms_spam", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-22T05:30:59Z
--- license: apache-2.0 datasets: - sms_spam language: - en metrics: - f1 - accuracy pipeline_tag: text-classification widget: - text: +26.787$ burn out in 24 hours, Let it have drowned, http://bit.ly/7ayp example_title: Spam Example - text: Hey want to cook something together tonight? example_title: Ham Example --- First posted in my [Kaggle](https://www.kaggle.com/code/wesleyacheng/sms-spam-classification-with-bert). You know what really grinds my gears. Spam! 😤 I made a sms spam classifier using [transfer learning](https://en.wikipedia.org/wiki/Transfer_learning) on [BERT](https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html) with a [Singaporean SMS Spam dataset](https://huggingface.co/datasets/sms_spam).
mrm8488/falcon-7b-ft-codeAlpaca_20k-v2
mrm8488
2023-06-19T19:38:41Z
0
11
null
[ "tensorboard", "generated_from_trainer", "region:us" ]
null
2023-06-19T18:36:05Z
--- tags: - generated_from_trainer model-index: - name: falcon-7b-ft-codeAlpaca_20k-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon-7b-ft-codeAlpaca_20k-v2 This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 550 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7985 | 0.35 | 100 | 0.7680 | | 0.7259 | 0.71 | 200 | 0.7499 | | 0.6691 | 1.06 | 300 | 0.7480 | | 0.6873 | 1.42 | 400 | 0.7423 | | 0.5799 | 1.77 | 500 | 0.7367 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
digiplay/epi_2.5Dphotogodess_diffusers
digiplay
2023-06-19T19:24:00Z
385
5
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-27T12:02:45Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info: https://civitai.com/models/26761?modelVersionId=36352 Version 3 Original Author's DEMO images: ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/76c5a180-ad61-4df2-4656-0218a6cbee00/width=1024/01730-779007003-(best%20quality),%20(hyperrealistic),%20mh-yk,%201girl,%20%20solo,%20brown%20hair,%20brown%20eyes,%20,%20long%20hair,%20chinese%20clothes,%20twintails,%20outdoor,.jpeg)
Marfuen98/photorealistic-1
Marfuen98
2023-06-19T19:01:19Z
9
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-01T20:21:14Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info : https://civitai.com/models/43331?modelVersionId=94640
greenw0lf/wav2vec2-large-xls-r-1b-frisian-cv-8-1h
greenw0lf
2023-06-19T19:00:15Z
115
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-31T18:39:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-1b-frisian-cv-8-1h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_8_0 type: common_voice_8_0 config: fy-NL split: validation args: fy-NL metrics: - name: Wer type: wer value: 0.23732323953720896 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_8_0 type: common_voice_8_0 config: fy-NL split: test args: fy-NL metrics: - name: Wer type: wer value: 0.25404682757623936 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-frisian-cv-8-1h This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_8_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4120 - Wer: 0.2373 And on the test set: - Wer: 0.2540 ## Model description This model has been developed for my Master's thesis in "Voice Technology" at Rijksuniversiteit Groningen - Campus Fryslân. It corresponds to experiment 4 where I use as training set 1 hour of Frisian speech randomly selected from all validated data except the test and evaluation sets. ## Intended uses & limitations The intended use is for recognizing Frisian speech. Limitations include no LM rescoring and using version 8.0 of Common Voice instead of 13.0. ## Training and evaluation data The evaluation split used is the one available in the Common Voice 8.0 Frisian subset. The train split is 1 hour of Frisian randomly selected from validated data except for the recordings from test and evaluation splits. ## Training procedure The script used for training this model can be found in this GitHub repository: [link](https://github.com/greenw0lf/MSc-VT-Thesis/). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 80 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.2987 | 4.35 | 100 | 3.0210 | 1.0 | | 3.1424 | 8.7 | 200 | 2.9611 | 1.0 | | 2.6299 | 13.04 | 300 | 0.9929 | 0.8377 | | 1.3134 | 17.39 | 400 | 0.5679 | 0.5264 | | 0.9747 | 21.74 | 500 | 0.4516 | 0.3764 | | 0.8755 | 26.09 | 600 | 0.4515 | 0.3403 | | 0.7227 | 30.43 | 700 | 0.4169 | 0.3211 | | 0.6634 | 34.78 | 800 | 0.4159 | 0.2962 | | 0.5568 | 39.13 | 900 | 0.4081 | 0.2795 | | 0.7943 | 43.48 | 1000 | 0.4090 | 0.2709 | | 0.5537 | 47.83 | 1100 | 0.4239 | 0.2649 | | 0.5596 | 52.17 | 1200 | 0.4029 | 0.2561 | | 0.5523 | 56.52 | 1300 | 0.4073 | 0.2524 | | 0.4579 | 60.87 | 1400 | 0.4098 | 0.2470 | | 0.6477 | 65.22 | 1500 | 0.4099 | 0.2446 | | 0.4957 | 69.57 | 1600 | 0.4167 | 0.2475 | | 0.3246 | 73.91 | 1700 | 0.4146 | 0.2389 | | 0.3937 | 78.26 | 1800 | 0.4120 | 0.2373 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
digiplay/fantasticmix2.5D_test
digiplay
2023-06-19T18:59:40Z
272
4
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-26T18:03:23Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- fantasticmix2.5D https://civitai.com/models/20632?modelVersionId=39725 Version 2 Original Author's DEMO image : ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/56e5800f-2fa5-4397-3f44-8ae32c917500/width=1024/20230408_014508_577701.jpeg)
Tyrranen/ppo-Huggy
Tyrranen
2023-06-19T18:56:38Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-19T18:56:29Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Tyrranen/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
fedbor/secondo_modello
fedbor
2023-06-19T18:55:41Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-19T18:55:40Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
amangarg98/my_awesome_model
amangarg98
2023-06-19T18:51:53Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T18:40:56Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: amangarg98/my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # amangarg98/my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0266 - Validation Loss: 0.0126 - Train Accuracy: 0.9953 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3492, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.0266 | 0.0126 | 0.9953 | 0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.0 - Tokenizers 0.13.3
MUmairAB/English_to_French_Translation_Transformer
MUmairAB
2023-06-19T18:46:14Z
1
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-06-18T08:50:01Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | RMSprop | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | 100 | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | rho | 0.9 | | momentum | 0.0 | | epsilon | 1e-07 | | centered | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
sngsfydy/models
sngsfydy
2023-06-19T18:45:33Z
213
0
transformers
[ "transformers", "pytorch", "tensorboard", "resnet", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-17T16:34:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: models results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # models This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4704 - Accuracy: 0.8182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4144 | 0.99 | 20 | 0.9938 | 0.7 | | 0.7896 | 1.98 | 40 | 0.7022 | 0.7152 | | 0.6191 | 2.96 | 60 | 0.6079 | 0.7636 | | 0.6114 | 4.0 | 81 | 0.5554 | 0.7939 | | 0.5365 | 4.99 | 101 | 0.5233 | 0.8152 | | 0.4989 | 5.98 | 121 | 0.4934 | 0.8303 | | 0.5111 | 6.96 | 141 | 0.5181 | 0.8 | | 0.476 | 8.0 | 162 | 0.4844 | 0.8182 | | 0.4655 | 8.99 | 182 | 0.4870 | 0.8152 | | 0.4335 | 9.98 | 202 | 0.4802 | 0.8242 | | 0.44 | 10.96 | 222 | 0.4776 | 0.8182 | | 0.3989 | 12.0 | 243 | 0.4804 | 0.8182 | | 0.4007 | 12.99 | 263 | 0.4768 | 0.8242 | | 0.3987 | 13.98 | 283 | 0.4610 | 0.8303 | | 0.3922 | 14.96 | 303 | 0.4578 | 0.8212 | | 0.3924 | 16.0 | 324 | 0.4804 | 0.8182 | | 0.3995 | 16.99 | 344 | 0.4736 | 0.8121 | | 0.3623 | 17.98 | 364 | 0.4715 | 0.8121 | | 0.3621 | 18.96 | 384 | 0.4671 | 0.8212 | | 0.3629 | 19.75 | 400 | 0.4704 | 0.8182 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
PauloNeto36/layoutxlm-finetuned-xfund-fr
PauloNeto36
2023-06-19T18:34:34Z
2
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "dataset:xfun", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-16T23:49:40Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - xfun model-index: - name: layoutxlm-finetuned-xfund-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutxlm-finetuned-xfund-fr This model is a fine-tuned version of [microsoft/layoutxlm-base](https://huggingface.co/microsoft/layoutxlm-base) on the xfun dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 100 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
hopkins/ss-10k
hopkins
2023-06-19T18:19:03Z
144
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-19T18:07:05Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: ss-10k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ss-10k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 5.8726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 18 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.1881 | 15.38 | 200 | 5.8726 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.12.0 - Tokenizers 0.13.3
UnaiGurbindo/ppo-LunarLander-v2
UnaiGurbindo
2023-06-19T18:13:47Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T18:13:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.59 +/- 20.46 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tanmayyyj/Cartpole-v1
tanmayyyj
2023-06-19T17:55:20Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T17:55:09Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 496.50 +/- 10.50 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
hassansoliman/falcon-40b-qlora-utterance-adaptations_v3
hassansoliman
2023-06-19T17:52:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-19T17:51:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
ABAtanasov/Taxi-v3
ABAtanasov
2023-06-19T17:49:56Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T17:47:28Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.42 +/- 2.79 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ABAtanasov/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CodyKilpatrick/a2c-PandaReachDense-v2
CodyKilpatrick
2023-06-19T17:47:06Z
3
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T17:23:42Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -3.16 +/- 0.33 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mrm8488/falcon-7b-ft-codeAlpaca_20k
mrm8488
2023-06-19T17:35:58Z
0
0
null
[ "tensorboard", "generated_from_trainer", "region:us" ]
null
2023-06-19T14:46:27Z
--- tags: - generated_from_trainer model-index: - name: falcon-7b-ft-codeAlpaca_20k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon-7b-ft-codeAlpaca_20k This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7623 | 0.18 | 50 | 0.7899 | | 0.7985 | 0.35 | 100 | 0.7680 | | 0.7551 | 0.53 | 150 | 0.7570 | | 0.7261 | 0.71 | 200 | 0.7499 | | 0.8184 | 0.89 | 250 | 0.7461 | | 0.7067 | 1.06 | 300 | 0.7480 | | 0.6801 | 1.24 | 350 | 0.7463 | | 0.6432 | 1.42 | 400 | 0.7423 | | 0.7141 | 1.6 | 450 | 0.7398 | | 0.669 | 1.77 | 500 | 0.7383 | | 0.7177 | 1.95 | 550 | 0.7342 | | 0.6419 | 2.13 | 600 | 0.7553 | | 0.6395 | 2.3 | 650 | 0.7510 | | 0.6255 | 2.48 | 700 | 0.7498 | | 0.5556 | 2.66 | 750 | 0.7474 | | 0.6592 | 2.84 | 800 | 0.7470 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
hungngo04/cluster_to_text
hungngo04
2023-06-19T17:28:47Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T16:06:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: cluster_to_text results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cluster_to_text This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0608 - Bleu: 39.5087 - Gen Len: 10.2429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.8864 | 1.0 | 4678 | 1.5653 | 17.9224 | 10.3526 | | 1.6271 | 2.0 | 9356 | 1.3336 | 26.9113 | 10.2905 | | 1.4621 | 3.0 | 14034 | 1.1952 | 32.9922 | 10.2873 | | 1.3908 | 4.0 | 18712 | 1.1183 | 36.6438 | 10.2917 | | 1.3385 | 5.0 | 23390 | 1.0753 | 38.768 | 10.2479 | | 1.3138 | 6.0 | 28068 | 1.0608 | 39.5087 | 10.2429 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
UnaiGurbindo/ppo-Huggy
UnaiGurbindo
2023-06-19T17:28:26Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-19T17:28:16Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: UnaiGurbindo/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
gilang21/Sarah
gilang21
2023-06-19T16:57:50Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-19T16:51:56Z
--- license: creativeml-openrail-m ---
eolang/SW-v1
eolang
2023-06-19T16:54:25Z
131
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "fill-mask", "sw", "dataset:xnli", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-07T22:52:13Z
--- datasets: - xnli language: - sw library_name: transformers examples: null widget: - text: Joe Bidden ni rais wa [MASK]. example_title: Sentence 1 - text: Tumefanya mabadiliko muhimu [MASK] sera zetu za faragha na vidakuzi example_title: Sentence 2 - text: Mtoto anaweza kupoteza [MASK] kabisa example_title: Sentence 3 --- # SW ## Model description This is a transformers model pre-trained on a large corpus of Swahili data in a self-supervised fashion. This means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pre-trained with one objective: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the terms one after the other, or from autoregressive models like GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the Swahili language that can then be used to extract features useful for downstream tasks e.g. * Named Entity Recognition (Token Classification) * Text Classification The model is based on the Orginal BERT UNCASED which can be found on [google-research/bert readme](https://github.com/google-research/bert/blob/master/README.md) ## Intended uses & limitations You can use the raw model for masked language modeling, but it's primarily intended to be fine-tuned on a downstream task. ### How to use You can use this model directly with a pipeline for masked language modeling: #### Tokenizer ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("eolang/SW-v1") text = "Hii ni tovuti ya idhaa ya Kiswahili ya BBC ambayo hukuletea habari na makala kutoka Afrika na kote duniani kwa lugha ya Kiswahili." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) print(output) ``` #### Fill Mask Model ```python from transformers import AutoTokenizer, AutoModelForMaskedLM from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("eolang/SW-v1") model = AutoModelForMaskedLM.from_pretrained("eolang/SW-v1") fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer) sample_text = "Tumefanya mabadiliko muhimu [MASK] sera zetu za faragha na vidakuzi" for prediction in fill_mask(sample_text): print(f"{prediction['sequence']}, confidence: {prediction['score']}") ``` ### Limitations and Bias Even if the training data used for this model could be reasonably neutral, this model can have biased predictions. This is something I'm still working on improving. Feel free to share suggestions/comments via [Discussions](https://huggingface.co/eolang/SW-v1/discussions)
elberaguilar/finetuning-sentiment-model-3000-samples
elberaguilar
2023-06-19T16:43:11Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T04:20:18Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1583 - Accuracy: 0.9493 - F1: 0.9676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
sevdeawesome/Taxi-v3
sevdeawesome
2023-06-19T16:35:26Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T16:33:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.46 +/- 2.78 name: mean_reward verified: false ---
bvkbharadwaj/whisper-small-sanskasr
bvkbharadwaj
2023-06-19T16:31:12Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "sa", "dataset:addy88/sanskrit-asr-84", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-08T12:48:54Z
--- language: - sa license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - addy88/sanskrit-asr-84 model-index: - name: Whisper Small Sanskasr - bvkb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Sanskasr - bvkb This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the addy88/sanskrit-asr-84 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 100 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.13.0 - Tokenizers 0.13.3
Narotomaki/kimihimee
Narotomaki
2023-06-19T16:30:55Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-11T14:34:16Z
--- license: creativeml-openrail-m ---
uomnf97/klue-roberta-finetuned-korquad-v2
uomnf97
2023-06-19T16:26:44Z
187
5
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "korean", "klue", "korquad", "ko", "endpoints_compatible", "region:us" ]
question-answering
2023-06-19T14:43:56Z
--- language: ko tags: - korean - klue - korquad metrics: - exact_match - f1 library_name: transformers --- # 🧑🏻‍💻 KLUE RoBERTa Large - 이 모델은 klue/roberta-large를 한국어 Machine Reading Comprehension를 위해 KorQuAD 데이터 2.1 version 27,423개의 데이터를 학습시켜 만든 모델입니다. <br> # 📝 What Should Know - KorQuAD v2.1의 원본 데이터가 아닌 하이퍼링크, 태그, 유니코드 BOM를 제거하여 전처리를 하였고, context 길이가 7500이 넘어간 데이터들은 제외하여 27,423개의 데이터셋을 이용하여 학습시켰습니다. - 원본 데이터 링크 : https://korquad.github.io/ <br> # 📁 Getting Started ```python from transformers import AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer config = AutoConfig.from_pretrained('uomnf97/klue-roberta-finetuned-korquad-v2') tokenizer = AutoTokenizer.from_pretrained('uomnf97/klue-roberta-finetuned-korquad-v2') model = AutoModelForQuestionAnswering.from_pretrained('uomnf97/klue-roberta-finetuned-korquad-v2',config=config) ```
Deojaklah/deaa
Deojaklah
2023-06-19T16:05:32Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-19T16:04:44Z
--- license: creativeml-openrail-m ---
Mollel/alpaca-tweets-sentiment
Mollel
2023-06-19T16:04:41Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-19T15:53:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
Nerternal/CLIPFixedModels
Nerternal
2023-06-19T16:00:24Z
0
1
null
[ "region:us" ]
null
2023-06-19T15:43:50Z
Models with [fixed CLIP tensors](https://rentry.org/clipfix) using MBW.
Noahhow/Gragas
Noahhow
2023-06-19T15:47:32Z
0
0
adapter-transformers
[ "adapter-transformers", "Lol", "League of legends ", "audio-to-audio", "en", "dataset:tiiuae/falcon-refinedweb", "license:creativeml-openrail-m", "region:us" ]
audio-to-audio
2023-06-19T15:38:07Z
--- datasets: - tiiuae/falcon-refinedweb language: - en metrics: - charcut_mt pipeline_tag: audio-to-audio tags: - Lol - 'League of legends ' license: creativeml-openrail-m library_name: adapter-transformers ---
Aconit13/opus-mt-en-ro-finetuned-en-to-ro
Aconit13
2023-06-19T15:34:20Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T14:59:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 model-index: - name: opus-mt-en-ro-finetuned-en-to-ro results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
TheFools/Nurhyt
TheFools
2023-06-19T15:30:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-19T15:21:31Z
--- license: creativeml-openrail-m ---
andrewsiah/q-FrozenLake-v1-4x4-noSlippery
andrewsiah
2023-06-19T15:16:27Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T15:16:21Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="andrewsiah/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Heng666/falcon-7b-sharded-bf16-english-quote-qlora
Heng666
2023-06-19T15:10:33Z
5
0
peft
[ "peft", "region:us" ]
null
2023-06-19T15:05:21Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
ann-stro/roberta_token_new
ann-stro
2023-06-19T15:05:59Z
62
0
transformers
[ "transformers", "tf", "roberta", "token-classification", "license:cc-by-nc-nd-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-19T14:55:56Z
--- license: cc-by-nc-nd-3.0 ---
Keithulu/distilgpt2-finetuned-python-stack
Keithulu
2023-06-19T15:02:19Z
213
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-19T14:49:30Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-python-stack results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-python-stack This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 91 | 3.1229 | | No log | 2.0 | 182 | 2.9666 | | No log | 3.0 | 273 | 2.9321 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
gokuls/bert_base_120
gokuls
2023-06-19T14:58:13Z
140
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-18T13:24:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_base_120 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_base_120 This model is a fine-tuned version of [gokuls/bert_base_96](https://huggingface.co/gokuls/bert_base_96) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3904 - Accuracy: 0.5602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.7403 | 0.08 | 10000 | 2.6150 | 0.5307 | | 2.6939 | 0.16 | 20000 | 2.5743 | 0.5360 | | 2.6549 | 0.25 | 30000 | 2.5380 | 0.5408 | | 2.6298 | 0.33 | 40000 | 2.5020 | 0.5455 | | 2.5883 | 0.41 | 50000 | 2.4715 | 0.5494 | | 2.5629 | 0.49 | 60000 | 2.4432 | 0.5533 | | 2.5274 | 0.57 | 70000 | 2.4163 | 0.5568 | | 2.5059 | 0.66 | 80000 | 2.3904 | 0.5602 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.13.0 - Tokenizers 0.13.3
teddy0413/Accounting_glm0619
teddy0413
2023-06-19T14:55:02Z
1
0
peft
[ "peft", "region:us" ]
null
2023-06-19T14:54:58Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
syf2023/gpt2
syf2023
2023-06-19T14:53:15Z
203
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tflite", "rust", "safetensors", "gpt2", "text-generation", "exbert", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-19T14:49:39Z
--- language: en tags: - exbert license: mit duplicated_from: gpt2 --- # GPT-2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. This is the **smallest** version of GPT-2, with 124M parameters. **Related Models:** [GPT-Large](https://huggingface.co/gpt2-large), [GPT-Medium](https://huggingface.co/gpt2-medium) and [GPT-XL](https://huggingface.co/gpt2-xl) ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
xusenlin/duee-gplinker
xusenlin
2023-06-19T14:53:10Z
36
0
transformers
[ "transformers", "pytorch", "bert", "event extraction", "zh", "dataset:DuEE", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-06-19T14:22:12Z
--- language: - zh tags: - event extraction license: apache-2.0 datasets: - DuEE metrics: - f1 --- # GPLinker事件抽取模型 ## 模型介绍 + 数据集:百度 `DUEE` 信息抽取 + 模型方法:[GPLinker:基于GlobalPointer的事件联合抽取](https://spaces.ac.cn/archives/8926) ## 使用方法 ```commandline pip install litie ``` ```python from pprint import pprint from litie.pipelines import EventExtractionPipeline pipeline = EventExtractionPipeline("gplinker", model_name_or_path="xusenlin/duee-gplinker", model_type="bert") text = "油服巨头哈里伯顿裁员650人 因美国油气开采活动放缓。" pprint(pipeline(text)) # 输出 [ [ { "event_type": "组织关系-裁员", "arguments": [ { "role": "裁员人数", "argument": "650人" }, { "role": "裁员方", "argument": "油服巨头哈里伯顿" } ] } ] ] ``` 模型训练和推理的详细代码见 [litie](https://github.com/xusenlinzy/lit-ie)
ManuD/speecht5_finetuned_voxpopuli_de_Merkel
ManuD
2023-06-19T14:51:50Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-06-18T22:46:49Z
--- license: mit tags: - generated_from_trainer model-index: - name: speecht5_finetuned_voxpopuli_de_Merkel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_de_Merkel This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.4831 | 4.06 | 1000 | 0.4406 | | 0.4583 | 8.12 | 2000 | 0.4271 | | 0.4482 | 12.18 | 3000 | 0.4177 | | 0.4435 | 16.24 | 4000 | 0.4148 | | 0.433 | 20.3 | 5000 | 0.4142 | | 0.4333 | 24.37 | 6000 | 0.4128 | | 0.4306 | 28.43 | 7000 | 0.4111 | | 0.4288 | 32.49 | 8000 | 0.4110 | | 0.4262 | 36.55 | 9000 | 0.4109 | | 0.4228 | 40.61 | 10000 | 0.4112 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3