modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-06 00:36:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
540 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-06 00:36:27
card
stringlengths
11
1.01M
simonycl/data-selection-Llama-2-7b-sharegpt-KMenasRandomDeita-1024-0.05-lora-epoch_4
simonycl
2024-01-25T14:07:02Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-01-25T14:06:43Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
MoulikBansal/test_test_chal_ja_bhai-merged-model
MoulikBansal
2024-01-25T14:02:17Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-25T14:02:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
SoreHabte/distilbert-base-uncased-lora-text-classification
SoreHabte
2024-01-25T14:01:42Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:adapter:distilbert/distilbert-base-uncased", "license:apache-2.0", "region:us" ]
null
2024-01-25T14:01:35Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-lora-text-classification results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9528 - Accuracy: {'accuracy': 0.887} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:| | No log | 1.0 | 250 | 0.3796 | {'accuracy': 0.88} | | 0.4157 | 2.0 | 500 | 0.4191 | {'accuracy': 0.879} | | 0.4157 | 3.0 | 750 | 0.6114 | {'accuracy': 0.867} | | 0.1906 | 4.0 | 1000 | 0.5635 | {'accuracy': 0.882} | | 0.1906 | 5.0 | 1250 | 0.7240 | {'accuracy': 0.879} | | 0.0727 | 6.0 | 1500 | 0.8097 | {'accuracy': 0.883} | | 0.0727 | 7.0 | 1750 | 0.9097 | {'accuracy': 0.888} | | 0.0275 | 8.0 | 2000 | 0.9154 | {'accuracy': 0.887} | | 0.0275 | 9.0 | 2250 | 0.9432 | {'accuracy': 0.886} | | 0.0133 | 10.0 | 2500 | 0.9528 | {'accuracy': 0.887} | ### Framework versions - PEFT 0.4.0 - Transformers 4.37.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
Jimmyhd/oneTextCol
Jimmyhd
2024-01-25T13:48:35Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T11:13:04Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
Skier8402/XLNetTokenizerFast_unigram_like
Skier8402
2024-01-25T13:37:11Z
0
0
null
[ "NLP", "Unigram", "en", "dataset:wikitext", "license:apache-2.0", "region:us" ]
null
2024-01-25T12:50:41Z
--- license: apache-2.0 datasets: - wikitext language: - en tags: - NLP - Unigram ---
thebabayaroy/q-FrozenLake-v1-4x4-noSlippery
thebabayaroy
2024-01-25T13:34:54Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-25T13:34:51Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="thebabayaroy/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tanatapanun/fine-tuned-BioBART-12-epochs-1024-input-128-output
tanatapanun
2024-01-25T13:30:43Z
91
0
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:GanjinZero/biobart-base", "base_model:finetune:GanjinZero/biobart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-25T13:14:47Z
--- license: apache-2.0 base_model: GanjinZero/biobart-base tags: - generated_from_trainer metrics: - rouge model-index: - name: fine-tuned-BioBART-12-epochs-1024-input-128-output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-BioBART-12-epochs-1024-input-128-output This model is a fine-tuned version of [GanjinZero/biobart-base](https://huggingface.co/GanjinZero/biobart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5051 - Rouge1: 0.1576 - Rouge2: 0.0366 - Rougel: 0.108 - Rougelsum: 0.1085 - Gen Len: 34.29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 151 | 4.4833 | 0.0206 | 0.0051 | 0.0196 | 0.02 | 7.18 | | No log | 2.0 | 302 | 1.8298 | 0.1027 | 0.0249 | 0.0865 | 0.0866 | 26.29 | | No log | 3.0 | 453 | 1.6450 | 0.0738 | 0.0169 | 0.0564 | 0.0568 | 20.31 | | 3.8819 | 4.0 | 604 | 1.5676 | 0.1469 | 0.0336 | 0.1162 | 0.1163 | 33.72 | | 3.8819 | 5.0 | 755 | 1.5271 | 0.1739 | 0.0342 | 0.1442 | 0.1441 | 29.99 | | 3.8819 | 6.0 | 906 | 1.5005 | 0.1616 | 0.0337 | 0.1275 | 0.1286 | 36.78 | | 1.1888 | 7.0 | 1057 | 1.4912 | 0.1618 | 0.0417 | 0.121 | 0.1212 | 41.89 | | 1.1888 | 8.0 | 1208 | 1.4854 | 0.1293 | 0.0396 | 0.0905 | 0.0911 | 36.59 | | 1.1888 | 9.0 | 1359 | 1.4949 | 0.1451 | 0.0337 | 0.1153 | 0.1158 | 27.18 | | 0.8646 | 10.0 | 1510 | 1.4936 | 0.1743 | 0.0355 | 0.1292 | 0.1301 | 34.24 | | 0.8646 | 11.0 | 1661 | 1.5060 | 0.1639 | 0.0367 | 0.1233 | 0.124 | 30.56 | | 0.8646 | 12.0 | 1812 | 1.5051 | 0.1576 | 0.0366 | 0.108 | 0.1085 | 34.29 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.12.1+cu113 - Datasets 2.16.1 - Tokenizers 0.15.0
aymurai/flair-ner-spanish-judicial
aymurai
2024-01-25T13:26:28Z
442
4
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "es", "dataset:ArJuzPCyF10", "license:mit", "region:us" ]
token-classification
2023-01-26T13:18:50Z
--- license: mit language: - es tags: - flair - token-classification - sequence-tagger-model datasets: - ArJuzPCyF10 metrics: - precision - recall - f1-score widget: - text: 1. DECLARAR EXTINGUIDA LA ACCIÓN PENAL en este caso por cumplimiento de la suspensión del proceso a prueba, y SOBRESEER a EZEQUIEL CAMILO MARCONNI, DNI 11.222.333, en orden a los delitos de lesiones leves agravadas, amenazas simples y agravadas por el uso de armas. library_name: flair pipeline_tag: token-classification --- # Model Description Following the FLAIR guidelines for training a NER model, we trained a model on top of [BETO embeddings](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) (a spanish version of BERT trained in a spanish corpus) and a BiLSTM-CRF architecture. This model was developed by [{ collective.ai }](https://collectiveai.io) as part of the [AymurAI](https://www.aymurai.info) project by [DataGenero](https://www.datagenero.org). # About AymurAI, its uses and limitations AymurAI is intended to be used as a tool to address the lack of available data in the judicial system on gender-based violence (GBV) rulings in Latin America. The goal is to increase report levels, build trust in the justice system, and improve access to justice for women and LGBTIQ+ people. AymurAI will generate and maintain anonymized datasets from legal rulings to understand GBV and support policy making, and also contribute to feminist collectives' campaigns. AymurAI is still a prototype and is only being implemented in Criminal Court N°10 in the City of Buenos Aires, Argentina. Its capabilities are limited to semi-automated data collection and analysis, and the results may be subject to limitations such as the quality and consistency of the data, and the availability of the data. Additionally, the effectiveness of AymurAI in addressing the lack of transparency in the judicial system and improving access to justice may also depend on other factors such as the level of cooperation from court officials and the broader cultural and political context. This model was trained with a closed dataset from an Argentine criminal court. It's is designed to identify and extract relevant information from court rulings related to GBV cases. The use of a domain specific dataset from an Argentine criminal court ensures that the model is tailored to the specific legal and cultural context, allowing for more accurate results. However, it also means that the model may not be applicable or effective in other countries or regions with different legal systems or cultural norms. # Usage ## How to use the model in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)**. Install it with `pip install flair` ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("aymurai/flair-ner-spanish-judicial") # make example sentence sentence = Sentence("1. DECLARAR EXTINGUIDA LA ACCIÓN PENAL en este caso por cumplimiento de la suspensión del proceso a prueba, y SOBRESEER a EZEQUIEL CAMILO MARCONNI, DNI 11.222.333, en orden a los delitos de lesiones leves agravadas, amenazas simples y agravadas por el uso de armas.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span[2:11]: "EXTINGUIDA LA ACCIÓN PENAL en este caso por cumplimiento" → DETALLE (0.5498) Span[13:18]: "suspensión del proceso a prueba" → OBJETO_DE_LA_RESOLUCION (0.5647) Span[20:21]: "SOBRESEER" → DETALLE (0.7766) Span[22:25]: "EZEQUIEL CAMILO MARCONNI" → NOMBRE (0.6454) Span[35:36]: "lesiones" → CONDUCTA (0.9457) Span[36:38]: "leves agravadas" → CONDUCTA_DESCRIPCION (0.8818) Span[39:40]: "amenazas" → CONDUCTA (0.956) Span[40:48]: "simples y agravadas por el uso de armas" → CONDUCTA_DESCRIPCION (0.6866) ``` ## Using the model in AymurAI platform Please refeer to [aymurai.info](https://www.aymurai.info) for more information of the full platform. You can also check the development repository [here](https://github.com/aymurai/dev). # Entities and metrics ## Description Please refer to the entities' description table ([en](docs/en-entities-table.md)|[es](docs/es-entities-table.md)). For a complete description about entities considered by AymurAI, refer to the [Glossary for the Dataset with gender perspective](https://docs.google.com/document/d/123B9T2abCEqBaxxOl5c7HBJZRdIMtKDWo6IKHIVil04/edit) written by [Criminal Court N°10](https://www.twitter.com/jpcyf10) (spanish only). ## Data The model was trained with a dataset of 1200 legal rulings from an Argentine criminal court. Due to the nature of the data the documents are kept private. ### List of annotation contributors The dataset was manually annotated by: * Diego Scopetta * Franny Rodriguez Gerzovich ([email](fraanyrodriguez@gmail.com)|[linkedin](https://www.linkedin.com/in/francescarg)) * Laura Barreiro * Matías Sosa * Maximiliano Sosa * Patricia Sandoval * Santiago Bezchinsky ([email](santibezchinsky@gmail.com)|[linkedin](https://www.linkedin.com/in/santiago-bezchinsky)) * Zoe Rodriguez Gerzovich ## Metrics | label | precision | recall | f1-score | |-----------------------------------------------------|-----------|--------|----------| | FECHA_DE_NACIMIENTO | 0.98 | 0.99 | 0.99 | | FECHA_RESOLUCION | 0.95 | 0.98 | 0.96 | | NACIONALIDAD | 0.94 | 0.98 | 0.96 | | GENERO | 1.00 | 0.50 | 0.67 | | HORA_DE_INICIO | 0.98 | 0.92 | 0.95 | | NOMBRE | 0.94 | 0.95 | 0.95 | | FRASES_AGRESION | 0.90 | 0.98 | 0.94 | | HORA_DE_CIERRE | 0.90 | 0.92 | 0.91 | | NIVEL_INSTRUCCION | 0.85 | 0.94 | 0.90 | | N_EXPTE_EJE | 0.85 | 0.93 | 0.89 | | TIPO_DE_RESOLUCION | 0.63 | 0.93 | 0.75 | | VIOLENCIA_DE_GENERO | 0.49 | 0.59 | 0.54 | | RELACION_Y_TIPO_ENTRE_ACUSADO/A_Y_DENUNCIANTE | 0.93 | 0.76 | 0.84 | | HIJOS_HIJAS_EN_COMUN | 0.47 | 0.57 | 0.52 | | MODALIDAD_DE_LA_VIOLENCIA | 0.57 | 0.56 | 0.57 | | FECHA_DEL_HECHO | 0.83 | 0.83 | 0.83 | | CONDUCTA | 0.79 | 0.67 | 0.73 | | ART_INFRINGIDO | 0.76 | 0.74 | 0.75 | | DETALLE | 0.53 | 0.37 | 0.43 | | OBJETO_DE_LA_RESOLUCION | 0.60 | 0.78 | 0.68 | | CONDUCTA_DESCRIPCION | 0.54 | 0.43 | 0.48 | | LUGAR_DEL_HECHO | 0.75 | 0.47 | 0.58 | | EDAD_AL_MOMENTO_DEL_HECHO | 0.50 | 0.20 | 0.29 | | PERSONA_ACUSADA_NO_DETERMINADA | 0.71 | 0.19 | 0.30 | | | | | | | macro avg | 0.77 | 0.72 | 0.73 | # GitHub You can see our open-source development [here](https://github.com/AymurAI/). # Citation Please cite [the following paper](https://drive.google.com/file/d/1P-hW0JKXWZ44Fn94fDVIxQRTExkK6m4Y/view) when using AymurAI: ```bibtex @techreport{feldfeber2022, author = "Feldfeber, Ivana and Quiroga, Yasmín Belén and Guevara, Clarissa and Ciolfi Felice, Marianela", title = "Feminisms in Artificial Intelligence: Automation Tools towards a Feminist Judiciary Reform in Argentina and Mexico", institution = "DataGenero", year = "2022", url = "https://drive.google.com/file/d/1P-hW0JKXWZ44Fn94fDVIxQRTExkK6m4Y/view" } ```
mlx-community/OpenHermes-2.5-Mistral-7B-4bit-mlx
mlx-community
2024-01-25T13:16:23Z
9
2
mlx
[ "mlx", "safetensors", "mistral", "instruct", "finetune", "chatml", "gpt4", "synthetic data", "distillation", "en", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-25T12:50:29Z
--- language: - en license: apache-2.0 tags: - mistral - instruct - finetune - chatml - gpt4 - synthetic data - distillation - mlx base_model: mistralai/Mistral-7B-v0.1 model-index: - name: OpenHermes-2-Mistral-7B results: [] --- # mlx-community/OpenHermes-2.5-Mistral-7B-4bit-mlx This model was converted to MLX format from [`teknium/OpenHermes-2.5-Mistral-7B`](). Refer to the [original model card](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/OpenHermes-2.5-Mistral-7B-4bit-mlx") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
mmnga/cyberagent-calm2-7b-chat-dpo-experimental-gguf
mmnga
2024-01-25T13:14:27Z
213
4
null
[ "gguf", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2024-01-25T12:28:54Z
--- license: cc-by-4.0 --- # cyberagent-calm2-7b-chat-dpo-experimental-gguf [cyberagentさんが公開しているcalm2-7b-chat-dpo-experimental](https://huggingface.co/cyberagent/calm2-7b-chat-dpo-experimental)のggufフォーマット変換版です。 ## convert [calm2のconvert.py](https://gist.github.com/mmnga/6f3b0b9db773c7cc4d58421ea7ebf98e)です ## Usage ``` git clone https://github.com/ggerganov/llama.cpp.git cd llama.cpp make -j ./main -m 'cyberagent-calm2-7b-chat-dpo-experimental-q4_0.gguf' -p "USER: AIによって私達の暮らしはどのように変わりますか? \nASSISTANT: " -n 256 --temp 0.8 ``` ---
nosdigitalmedia/telegram-drugs-classification
nosdigitalmedia
2024-01-25T13:00:46Z
0
8
sklearn
[ "sklearn", "joblib", "text-classification", "nl", "region:us" ]
text-classification
2024-01-25T12:56:14Z
--- tags: - sklearn - text-classification language: - nl metrics: - accuracy - hamming-loss --- # Model card for NOS Drug-Related Text Classification on Telegram The NOS editorial team is conducting an investigation into drug-related messages on Telegram. Thousands of Telegram messages has been labeled as drugs-related content (or not), as well including detail regarding the specific type of drugs, and delivery method. The data is utilized in order to train a model to scale it up and automatically label millions more. ## Methodology Primarily a Logistic Regression model has been trained for binary classification. Text data was converted to numeric values using the Tfidf Vectorizer, considering term frequency-inverse document frequency (TF-IDF). This transformation enables the model to learn patterns and relationships between words. The model achieved 97% accuracy on the test set. To take tasks with multiple possible labels into consideration, a MultiOutputClassifier was employed as an extension. This addresses the complexity of associating a text message with multiple categories such as "soft drugs," "hard drugs," and "medicines”. One-Hot Encoding was used for multi-label transformation. Performance evaluation utilized Hamming Loss, a metric suitable for multi-label classification. The model demonstrated a Hamming Loss of 0.04, indicating 96% accuracy per label. ### Tools used to train the model • Python • scikit-learn • pandas • numpy ### How to Get Started with the Model Use the code below to get started with the model. ```python from joblib import load # load the model clf = load('model.joblib') # make some predictions text_messages = [ """ Oud kleding te koop! Stuur een berichtje We repareren ook! """, """ COKE/XTC * 1Gram = €50 * 5Gram = €230 """] mapping = {0:"bezorging", 1:"bulk", 2:"designer", 3:"drugsad", 4:"geendrugsad", 5:"harddrugs", 6:"medicijnen", 7: "pickup", 8: "post", 9:"softdrugs"} labels = [] for message in clf.predict(text_messages): label = [] for idx, labeled in enumerate(message): if labeled == 1: label.append(mapping[idx]) labels.append(label) print(labels) ``` ## Details - **Shared by** Dutch Public Broadcasting Foundation (NOS) - **Model type:** text-classification - **Language:** Dutch - **License:** Creative Commons Attribution Non Commercial No Derivatives 4.0
jlbaker361/res100e
jlbaker361
2024-01-25T12:52:29Z
0
0
null
[ "region:us" ]
null
2024-01-20T08:04:07Z
--- {} --- trained to classify images epochs: 100 dataset jlbaker361/wikiart n classes 27 image dim 224 pretrained version resnet18 batch_size 4
Nehc/gia
Nehc
2024-01-25T12:51:37Z
0
0
null
[ "region:us" ]
null
2024-01-25T10:23:23Z
Checkpoint for https://github.com/Nehc/gia
sosancn/clasificador-muchocine
sosancn
2024-01-25T12:49:57Z
90
0
transformers
[ "transformers", "safetensors", "electra", "text-classification", "classification", "generated_from_trainer", "base_model:mrm8488/electricidad-base-discriminator", "base_model:finetune:mrm8488/electricidad-base-discriminator", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-25T12:49:35Z
--- base_model: mrm8488/electricidad-base-discriminator tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-muchocine results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-muchocine This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4858 - Accuracy: 0.4297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.3230 | 0.3806 | | 1.3897 | 2.0 | 776 | 1.3217 | 0.4258 | | 0.9605 | 3.0 | 1164 | 1.4858 | 0.4297 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
wahaha1987/a2c-PandaPickAndPlace-v3
wahaha1987
2024-01-25T12:47:37Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaPickAndPlace-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-25T12:43:23Z
--- library_name: stable-baselines3 tags: - PandaPickAndPlace-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPickAndPlace-v3 type: PandaPickAndPlace-v3 metrics: - type: mean_reward value: -43.00 +/- 15.52 name: mean_reward verified: false --- # **A2C** Agent playing **PandaPickAndPlace-v3** This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tanatapanun/fine-tuned-BioBART-15-epochs-1024-input-128-output
tanatapanun
2024-01-25T12:34:27Z
96
0
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:GanjinZero/biobart-base", "base_model:finetune:GanjinZero/biobart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-25T12:15:04Z
--- license: apache-2.0 base_model: GanjinZero/biobart-base tags: - generated_from_trainer metrics: - rouge model-index: - name: fine-tuned-BioBART-15-epochs-1024-input-128-output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-BioBART-15-epochs-1024-input-128-output This model is a fine-tuned version of [GanjinZero/biobart-base](https://huggingface.co/GanjinZero/biobart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5422 - Rouge1: 0.1912 - Rouge2: 0.042 - Rougel: 0.1492 - Rougelsum: 0.15 - Gen Len: 29.97 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 151 | 5.4038 | 0.0026 | 0.0006 | 0.0024 | 0.0024 | 5.98 | | No log | 2.0 | 302 | 1.8682 | 0.0475 | 0.0066 | 0.0452 | 0.043 | 6.59 | | No log | 3.0 | 453 | 1.6512 | 0.0753 | 0.0169 | 0.0587 | 0.0586 | 22.62 | | 4.1375 | 4.0 | 604 | 1.5702 | 0.1472 | 0.0366 | 0.1124 | 0.1113 | 42.92 | | 4.1375 | 5.0 | 755 | 1.5256 | 0.167 | 0.0337 | 0.1309 | 0.1305 | 45.89 | | 4.1375 | 6.0 | 906 | 1.5057 | 0.1435 | 0.0305 | 0.1132 | 0.1134 | 32.45 | | 1.1893 | 7.0 | 1057 | 1.4854 | 0.1655 | 0.0388 | 0.129 | 0.1295 | 34.34 | | 1.1893 | 8.0 | 1208 | 1.4845 | 0.1635 | 0.0423 | 0.1238 | 0.1252 | 37.77 | | 1.1893 | 9.0 | 1359 | 1.4980 | 0.1712 | 0.0363 | 0.1382 | 0.1388 | 29.68 | | 0.8262 | 10.0 | 1510 | 1.5052 | 0.1917 | 0.0431 | 0.1486 | 0.1497 | 32.88 | | 0.8262 | 11.0 | 1661 | 1.5167 | 0.1731 | 0.0374 | 0.1402 | 0.1403 | 29.9 | | 0.8262 | 12.0 | 1812 | 1.5267 | 0.1675 | 0.035 | 0.1335 | 0.1337 | 29.35 | | 0.8262 | 13.0 | 1963 | 1.5329 | 0.1839 | 0.0401 | 0.1465 | 0.1465 | 28.23 | | 0.61 | 14.0 | 2114 | 1.5440 | 0.1904 | 0.0452 | 0.1522 | 0.1527 | 29.33 | | 0.61 | 15.0 | 2265 | 1.5422 | 0.1912 | 0.042 | 0.1492 | 0.15 | 29.97 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.12.1+cu113 - Datasets 2.16.1 - Tokenizers 0.15.0
CLMBR/npi-only-transformer-2
CLMBR
2024-01-25T12:28:06Z
13
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T14:30:13Z
--- tags: - generated_from_trainer model-index: - name: npi-only-transformer-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # npi-only-transformer-2 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.2265 | 0.03 | 76320 | 4.1999 | | 4.0215 | 1.03 | 152640 | 4.0292 | | 3.9133 | 0.03 | 228960 | 3.9544 | | 3.8411 | 1.03 | 305280 | 3.9125 | | 3.7911 | 0.03 | 381600 | 3.8867 | | 3.7507 | 1.03 | 457920 | 3.8704 | | 3.7187 | 0.03 | 534240 | 3.8599 | | 3.6904 | 1.03 | 610560 | 3.8540 | | 3.6628 | 0.03 | 686880 | 3.8482 | | 3.6345 | 1.03 | 763200 | 3.8461 | | 3.6098 | 0.03 | 839520 | 3.8440 | | 3.5897 | 1.03 | 915840 | 3.8438 | | 3.572 | 0.03 | 992160 | 3.8438 | | 3.5528 | 1.03 | 1068480 | 3.8441 | | 3.5343 | 0.03 | 1144800 | 3.8445 | | 3.5293 | 1.03 | 1221120 | 3.8463 | | 3.5111 | 0.03 | 1297440 | 3.8466 | | 3.499 | 1.03 | 1373760 | 3.8482 | | 3.4854 | 0.03 | 1450080 | 3.8505 | | 3.4724 | 0.03 | 1526400 | 3.8520 | | 3.4654 | 1.03 | 1602720 | 3.8540 | | 3.455 | 0.03 | 1679040 | 3.8551 | | 3.4482 | 1.03 | 1755360 | 3.8560 | | 3.4398 | 0.03 | 1831680 | 3.8573 | | 3.4268 | 1.03 | 1908000 | 3.8586 | | 3.4123 | 0.03 | 1984320 | 3.8589 | | 3.3989 | 0.03 | 2060640 | 3.8610 | | 3.3867 | 1.03 | 2136960 | 3.8618 | | 3.3755 | 0.03 | 2213280 | 3.8635 | | 3.364 | 1.03 | 2289600 | 3.8636 | | 3.3533 | 0.03 | 2365920 | 3.8637 | | 3.3544 | 0.03 | 2442240 | 3.8637 | | 3.3405 | 1.03 | 2518560 | 3.8649 | | 3.3325 | 0.03 | 2594880 | 3.8654 | | 3.3219 | 1.03 | 2671200 | 3.8645 | | 3.3145 | 0.03 | 2747520 | 3.8646 | | 3.3084 | 1.03 | 2823840 | 3.8649 | | 3.3026 | 0.03 | 2900160 | 3.8641 | | 3.299 | 1.03 | 2976480 | 3.8632 | | 3.2939 | 0.02 | 3052726 | 3.8616 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
Athuin/tinyLama-german
Athuin
2024-01-25T12:14:04Z
115
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/tinyllama", "base_model:finetune:unsloth/tinyllama", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T12:10:15Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/tinyllama --- # Uploaded model - **Developed by:** Athuin - **License:** apache-2.0 - **Finetuned from model :** unsloth/tinyllama This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ramsi-k/ppo-Huggy
ramsi-k
2024-01-25T12:11:31Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-25T12:11:14Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ramsi-k/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dvilasuero/phi2-lora-quantized-distilabel-intel-orca-dpo-pairs
dvilasuero
2024-01-25T12:06:01Z
2
0
peft
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2024-01-25T12:05:49Z
--- license: mit library_name: peft tags: - trl - dpo - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: phi2-lora-quantized-distilabel-intel-orca-dpo-pairs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi2-lora-quantized-distilabel-intel-orca-dpo-pairs This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5173 - Rewards/chosen: -0.0019 - Rewards/rejected: -0.7725 - Rewards/accuracies: 0.7816 - Rewards/margins: 0.7706 - Logps/rejected: -233.5226 - Logps/chosen: -214.1249 - Logits/rejected: 0.3181 - Logits/chosen: 0.2015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6887 | 0.14 | 20 | 0.6767 | 0.0030 | -0.0331 | 0.6341 | 0.0361 | -226.1282 | -214.0752 | 0.2238 | 0.1343 | | 0.6472 | 0.27 | 40 | 0.6171 | 0.0141 | -0.1710 | 0.7639 | 0.1852 | -227.5079 | -213.9642 | 0.2464 | 0.1508 | | 0.5759 | 0.41 | 60 | 0.5584 | 0.0123 | -0.4023 | 0.7808 | 0.4146 | -229.8206 | -213.9829 | 0.2774 | 0.1736 | | 0.526 | 0.54 | 80 | 0.5326 | 0.0036 | -0.5790 | 0.7816 | 0.5826 | -231.5877 | -214.0700 | 0.2983 | 0.1884 | | 0.4963 | 0.68 | 100 | 0.5225 | 0.0020 | -0.6964 | 0.7825 | 0.6984 | -232.7611 | -214.0853 | 0.3131 | 0.1986 | | 0.4977 | 0.81 | 120 | 0.5188 | -0.0025 | -0.7533 | 0.7816 | 0.7508 | -233.3300 | -214.1302 | 0.3162 | 0.2002 | | 0.4818 | 0.95 | 140 | 0.5173 | -0.0019 | -0.7725 | 0.7816 | 0.7706 | -233.5226 | -214.1249 | 0.3181 | 0.2015 | ### Framework versions - PEFT 0.7.1 - Transformers 4.37.1 - Pytorch 2.1.0+cu118 - Datasets 2.16.1 - Tokenizers 0.15.1
rcade/glue_rcade_test_model
rcade
2024-01-25T12:05:23Z
96
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-25T12:04:07Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: glue_rcade_test_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_rcade_test_model This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4713 - Accuracy: 0.8358 - F1: 0.8870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5838 | 1.0 | 230 | 0.5101 | 0.7672 | 0.8455 | | 0.3994 | 2.0 | 460 | 0.5092 | 0.8088 | 0.875 | | 0.2417 | 3.0 | 690 | 0.4713 | 0.8358 | 0.8870 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
tiagoblima/mbart50-qg-ap-peft-oficial
tiagoblima
2024-01-25T12:03:37Z
0
0
null
[ "safetensors", "generated_from_trainer", "dataset:tiagoblima/du-qg-squadv1_pt", "base_model:facebook/mbart-large-50", "base_model:finetune:facebook/mbart-large-50", "license:mit", "region:us" ]
null
2024-01-25T11:07:51Z
--- license: mit base_model: facebook/mbart-large-50 tags: - generated_from_trainer datasets: - tiagoblima/du-qg-squadv1_pt model-index: - name: mbart50-qg-ap-peft-oficial results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart50-qg-ap-peft-oficial This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the tiagoblima/du-qg-squadv1_pt dataset. It achieves the following results on the evaluation set: - Loss: 2.5230 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.8113 | 1.0 | 2367 | 2.6544 | | 2.5839 | 2.0 | 4734 | 2.5805 | | 2.4789 | 3.0 | 7101 | 2.5482 | | 2.4232 | 4.0 | 9468 | 2.5294 | | 2.3971 | 5.0 | 11835 | 2.5230 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.1
rcade/test_falcon_model_learning
rcade
2024-01-25T12:03:14Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-24T14:11:14Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: test_falcon_model_learning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_falcon_model_learning This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4713 - Accuracy: 0.8358 - F1: 0.8870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5838 | 1.0 | 230 | 0.5101 | 0.7672 | 0.8455 | | 0.3994 | 2.0 | 460 | 0.5092 | 0.8088 | 0.875 | | 0.2417 | 3.0 | 690 | 0.4713 | 0.8358 | 0.8870 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
iamgokul/my-pet-dog-ggs
iamgokul
2024-01-25T12:02:34Z
3
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-25T11:58:00Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog-ggs Dreambooth model trained by iamgokul following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 21EC15 Sample pictures of this concept: ![0](https://huggingface.co/iamgokul/my-pet-dog-ggs/resolve/main/sample_images/blake-emge-vtWWj6KRFhY-unsplash.jpg) ![1](https://huggingface.co/iamgokul/my-pet-dog-ggs/resolve/main/sample_images/ilya-shishikhin-__qT7mVH-J8-unsplash.jpg) ![2](https://huggingface.co/iamgokul/my-pet-dog-ggs/resolve/main/sample_images/hudson-regele-g8h_Hac5i3s-unsplash.jpg) ![3](https://huggingface.co/iamgokul/my-pet-dog-ggs/resolve/main/sample_images/cody-scott-milewski-vn6aSbfq13M-unsplash.jpg)
microsoft/beit-large-finetuned-ade-640-640
microsoft
2024-01-25T11:51:04Z
486
14
transformers
[ "transformers", "pytorch", "safetensors", "beit", "vision", "image-segmentation", "dataset:scene_parse_150", "arxiv:2106.08254", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-segmentation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - vision - image-segmentation datasets: - scene_parse_150 widget: - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg example_title: House - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg example_title: Castle --- # BEiT (large-sized model, fine-tuned on ADE20k) BEiT model pre-trained in a self-supervised fashion on ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224, and fine-tuned on [ADE20k](https://huggingface.co/datasets/scene_parse_150) (an important benchmark for semantic segmentation of images) at resolution 640x640. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit). Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The BEiT model is a Vision Transformer (ViT), which is a transformer encoder model (BERT-like). In contrast to the original ViT model, BEiT is pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. The pre-training objective for the model is to predict visual tokens from the encoder of OpenAI's DALL-E's VQ-VAE, based on masked patches. Next, the model was fine-tuned in a supervised fashion on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. Contrary to the original ViT models, BEiT models do use relative position embeddings (similar to T5) instead of absolute position embeddings, and perform classification of images by mean-pooling the final hidden states of the patches, instead of placing a linear layer on top of the final hidden state of the [CLS] token. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: for semantic segmentation, one can just add one of the decode heads available in the [mmseg library](https://github.com/open-mmlab/mmsegmentation) for example, and fine-tune the model in a supervised fashion on annotated images. This is what the authors did: they fine-tuned BEiT with an UperHead segmentation decode head, allowing it to obtain SOTA results on important benchmarks such as ADE20k and CityScapes. ## Intended uses & limitations You can use the raw model for semantic segmentation of images. See the [model hub](https://huggingface.co/models?search=microsoft/beit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model for semantic segmentation: ```python from transformers import BeitFeatureExtractor, BeitForSemanticSegmentation from datasets import load_dataset from PIL import Image # load ADE20k image ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test") feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-large-finetuned-ade-640-640') model = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-large-finetuned-ade-640-640') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # logits are of shape (batch_size, num_labels, height/4, width/4) logits = outputs.logits ``` Currently, both the feature extractor and model support PyTorch. ## Training data This BEiT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ADE20k](http://sceneparsing.csail.mit.edu/), a dataset consisting of thousands of annotated images and 150 classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/microsoft/unilm/blob/master/beit/datasets.py). Images are cropped and padded to the same resolution (640x640) and normalized across the RGB channels with the ImageNet mean and standard deviation. ### Pretraining For all pre-training related hyperparameters, we refer to page 15 of the [original paper](https://arxiv.org/abs/2106.08254). ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 1 and 2 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```@article{DBLP:journals/corr/abs-2106-08254, author = {Hangbo Bao and Li Dong and Furu Wei}, title = {BEiT: {BERT} Pre-Training of Image Transformers}, journal = {CoRR}, volume = {abs/2106.08254}, year = {2021}, url = {https://arxiv.org/abs/2106.08254}, archivePrefix = {arXiv}, eprint = {2106.08254}, timestamp = {Tue, 29 Jun 2021 16:55:04 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-08254.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
haturusinghe/1st_f1_0.5936_acc_0.83_xlm-roberta-large_mrp_2e-05_8_RAdam
haturusinghe
2024-01-25T11:50:00Z
19
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-25T11:46:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Lalith16/Zephyr7bfinetunedepoch5latest
Lalith16
2024-01-25T11:46:16Z
0
0
null
[ "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:HuggingFaceH4/zephyr-7b-beta", "base_model:finetune:HuggingFaceH4/zephyr-7b-beta", "license:mit", "region:us" ]
null
2024-01-25T11:45:32Z
--- license: mit base_model: HuggingFaceH4/zephyr-7b-beta tags: - trl - sft - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.367 | 0.35 | 100 | 1.3594 | | 0.774 | 0.69 | 200 | 0.9080 | | 0.7724 | 1.04 | 300 | 0.7654 | | 0.6987 | 1.39 | 400 | 0.7205 | | 0.6482 | 1.74 | 500 | 0.6828 | | 0.5204 | 2.08 | 600 | 0.6499 | | 0.5828 | 2.43 | 700 | 0.6353 | | 0.522 | 2.78 | 800 | 0.6170 | | 0.3334 | 3.12 | 900 | 0.6522 | | 0.3643 | 3.47 | 1000 | 0.6149 | | 0.3551 | 3.82 | 1100 | 0.6138 | | 0.3144 | 4.17 | 1200 | 0.6430 | | 0.3194 | 4.51 | 1300 | 0.6468 | | 0.3341 | 4.86 | 1400 | 0.6287 | | 0.2982 | 5.21 | 1500 | 0.6403 | | 0.3056 | 5.56 | 1600 | 0.6394 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
haturusinghe/1st_f1_0.574_acc_0.922_25_01-1140_xlm-roberta-large_mrp_2e-05_8_RAdam
haturusinghe
2024-01-25T11:44:16Z
20
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-25T11:40:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
elliotthwangmsa/KimLan-phi-2_zh
elliotthwangmsa
2024-01-25T11:41:54Z
34
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T11:38:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lokaspire/mistral-latest
lokaspire
2024-01-25T11:38:10Z
0
0
null
[ "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "base_model:finetune:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "license:apache-2.0", "region:us" ]
null
2024-01-25T09:48:31Z
--- license: apache-2.0 base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ tags: - generated_from_trainer model-index: - name: mistral-latest results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-latest This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 500 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-pruned50-quant-ds
nm-testing
2024-01-25T11:38:04Z
2
0
transformers
[ "transformers", "onnx", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T11:28:05Z
```python from deepsparse import TextGeneration prompt = "James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week?" formatted_prompt = f"Question:{prompt}\nAnswer:" model = TextGeneration(model_path="/home/mwiti/mwitiderrick/final_obcq_deployment/deployment") print(model(formatted_prompt, max_new_tokens=200).generations[0].text) """ He runs 30*3=<<30*3=120>>120 meters a week So he runs 120*120=<<120*120=12000>>12000 meters a week #### 12000 """ ```
simonycl/data-selection-Llama-2-7b-sharegpt-KMenasRandomDeita-1024-0.05-lora
simonycl
2024-01-25T11:36:31Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-01-25T11:36:21Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
LoneStriker/Everyone-Coder-33b-Base-5.0bpw-h6-exl2
LoneStriker
2024-01-25T11:27:30Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T11:18:23Z
--- license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL tags: - merge --- Everyone-Coder-33b-Base ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/ECrHQnZnv8UM9GUCQtlWW.jpeg) EveryoneLLM series of models made by the community, for the community. This is a coding specific model made using fine-tunes of deekseekcoder-33b-base. ______________________________________________________________________________________________________________ Im having trouble benchmarking this model because I suck at running llm benchmarks, but from hand testing running the model through https://edabit.com/challenge coding challenges vs up to date gpt-4. My model is hands down beating it in coding. ______________________________________________________________________________________________________________ Ive recently noticed this model has trouble with end tokens so I made a custom prompt template for it. Made sure to add (Always end with "<|EOT|>") In addition to your system prompt and (Always end your response with "<|EOT|>") at the end of the User message is the preset. Then add <|EOT|> as a custom stop string in your LM text generating interface. ``` Always end with "<|EOT|>" {System} <|User|> {User}. Always end your response with "<|EOT|>" <|Assistant|> {Assistant} ``` The models that were used in this merger were as follow: - https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct - https://huggingface.co/codefuse-ai/CodeFuse-DeepSeek-33B - https://huggingface.co/WizardLM/WizardCoder-33B-V1.1 Thank you to the creators of the above ai models, they have full credit for the EveryoneLLM series of models. Without their hard work we wouldnt be able to achieve the great success we have in the open source community. 💗 You can find the write up for merging models here: https://docs.google.com/document/d/1_vOftBnrk9NRk5h10UqrfJ5CDih9KBKL61yvrZtVWPE/edit?usp=sharing Config for the merger can be found bellow: ```yaml models: - model: WizardLM_WizardCoder-33B-V1.1 parameters: density: 1 weight: .5 - model: codefuse-ai_CodeFuse-DeepSeek-33B parameters: density: 1 weight: .5 merge_method: ties base_model: deepseek-ai_deepseek-coder-33b-instruct parameters: normalize: true int8_mask: true dtype: float16 ```
LoneStriker/Everyone-Coder-33b-Base-4.65bpw-h6-exl2
LoneStriker
2024-01-25T11:18:21Z
7
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T11:09:50Z
--- license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL tags: - merge --- Everyone-Coder-33b-Base ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/ECrHQnZnv8UM9GUCQtlWW.jpeg) EveryoneLLM series of models made by the community, for the community. This is a coding specific model made using fine-tunes of deekseekcoder-33b-base. ______________________________________________________________________________________________________________ Im having trouble benchmarking this model because I suck at running llm benchmarks, but from hand testing running the model through https://edabit.com/challenge coding challenges vs up to date gpt-4. My model is hands down beating it in coding. ______________________________________________________________________________________________________________ Ive recently noticed this model has trouble with end tokens so I made a custom prompt template for it. Made sure to add (Always end with "<|EOT|>") In addition to your system prompt and (Always end your response with "<|EOT|>") at the end of the User message is the preset. Then add <|EOT|> as a custom stop string in your LM text generating interface. ``` Always end with "<|EOT|>" {System} <|User|> {User}. Always end your response with "<|EOT|>" <|Assistant|> {Assistant} ``` The models that were used in this merger were as follow: - https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct - https://huggingface.co/codefuse-ai/CodeFuse-DeepSeek-33B - https://huggingface.co/WizardLM/WizardCoder-33B-V1.1 Thank you to the creators of the above ai models, they have full credit for the EveryoneLLM series of models. Without their hard work we wouldnt be able to achieve the great success we have in the open source community. 💗 You can find the write up for merging models here: https://docs.google.com/document/d/1_vOftBnrk9NRk5h10UqrfJ5CDih9KBKL61yvrZtVWPE/edit?usp=sharing Config for the merger can be found bellow: ```yaml models: - model: WizardLM_WizardCoder-33B-V1.1 parameters: density: 1 weight: .5 - model: codefuse-ai_CodeFuse-DeepSeek-33B parameters: density: 1 weight: .5 merge_method: ties base_model: deepseek-ai_deepseek-coder-33b-instruct parameters: normalize: true int8_mask: true dtype: float16 ```
G-Root/speaker-diarization-optimized
G-Root
2024-01-25T11:15:38Z
4
0
pyannote-audio
[ "pyannote-audio", "pyannote", "pyannote-audio-pipeline", "audio", "voice", "speech", "speaker", "speaker-diarization", "speaker-change-detection", "voice-activity-detection", "overlapped-speech-detection", "automatic-speech-recognition", "arxiv:2111.14448", "arxiv:2012.01477", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-25T11:13:37Z
--- tags: - pyannote - pyannote-audio - pyannote-audio-pipeline - audio - voice - speech - speaker - speaker-diarization - speaker-change-detection - voice-activity-detection - overlapped-speech-detection - automatic-speech-recognition license: mit extra_gated_prompt: "The collected information will help acquire a better knowledge of pyannote.audio userbase and help its maintainers improve it further. Though this pipeline uses MIT license and will always remain open-source, we will occasionnally email you about premium pipelines and paid services around pyannote." extra_gated_fields: Company/university: text Website: text --- Using this open-source pipeline in production? Make the most of it thanks to our [consulting services](https://herve.niderb.fr/consulting.html). # 🎹 Speaker diarization 3.1 This pipeline is the same as [`pyannote/speaker-diarization-3.0`](https://hf.co/pyannote/speaker-diarization-3.1) except it removes the [problematic](https://github.com/pyannote/pyannote-audio/issues/1537) use of `onnxruntime`. Both speaker segmentation and embedding now run in pure PyTorch. This should ease deployment and possibly speed up inference. It requires pyannote.audio version 3.1 or higher. It ingests mono audio sampled at 16kHz and outputs speaker diarization as an [`Annotation`](http://pyannote.github.io/pyannote-core/structure.html#annotation) instance: - stereo or multi-channel audio files are automatically downmixed to mono by averaging the channels. - audio files sampled at a different rate are resampled to 16kHz automatically upon loading. ## Requirements 1. Install [`pyannote.audio`](https://github.com/pyannote/pyannote-audio) `3.1` with `pip install pyannote.audio` 2. Accept [`pyannote/segmentation-3.0`](https://hf.co/pyannote/segmentation-3.0) user conditions 3. Accept [`pyannote/speaker-diarization-3.1`](https://hf.co/pyannote-speaker-diarization-3.1) user conditions 4. Create access token at [`hf.co/settings/tokens`](https://hf.co/settings/tokens). ## Usage ```python # instantiate the pipeline from pyannote.audio import Pipeline pipeline = Pipeline.from_pretrained( "pyannote/speaker-diarization-3.1", use_auth_token="HUGGINGFACE_ACCESS_TOKEN_GOES_HERE") # run the pipeline on an audio file diarization = pipeline("audio.wav") # dump the diarization output to disk using RTTM format with open("audio.rttm", "w") as rttm: diarization.write_rttm(rttm) ``` ### Processing on GPU `pyannote.audio` pipelines run on CPU by default. You can send them to GPU with the following lines: ```python import torch pipeline.to(torch.device("cuda")) ``` ### Processing from memory Pre-loading audio files in memory may result in faster processing: ```python waveform, sample_rate = torchaudio.load("audio.wav") diarization = pipeline({"waveform": waveform, "sample_rate": sample_rate}) ``` ### Monitoring progress Hooks are available to monitor the progress of the pipeline: ```python from pyannote.audio.pipelines.utils.hook import ProgressHook with ProgressHook() as hook: diarization = pipeline("audio.wav", hook=hook) ``` ### Controlling the number of speakers In case the number of speakers is known in advance, one can use the `num_speakers` option: ```python diarization = pipeline("audio.wav", num_speakers=2) ``` One can also provide lower and/or upper bounds on the number of speakers using `min_speakers` and `max_speakers` options: ```python diarization = pipeline("audio.wav", min_speakers=2, max_speakers=5) ``` ## Benchmark This pipeline has been benchmarked on a large collection of datasets. Processing is fully automatic: - no manual voice activity detection (as is sometimes the case in the literature) - no manual number of speakers (though it is possible to provide it to the pipeline) - no fine-tuning of the internal models nor tuning of the pipeline hyper-parameters to each dataset ... with the least forgiving diarization error rate (DER) setup (named _"Full"_ in [this paper](https://doi.org/10.1016/j.csl.2021.101254)): - no forgiveness collar - evaluation of overlapped speech | Benchmark | [DER%](. "Diarization error rate") | [FA%](. "False alarm rate") | [Miss%](. "Missed detection rate") | [Conf%](. "Speaker confusion rate") | Expected output | File-level evaluation | | ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------- | --------------------------- | ---------------------------------- | ----------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- | | [AISHELL-4](http://www.openslr.org/111/) | 12.2 | 3.8 | 4.4 | 4.0 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AISHELL.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AISHELL.SpeakerDiarization.Benchmark.test.eval) | | [AliMeeting (_channel 1_)](https://www.openslr.org/119/) | 24.4 | 4.4 | 10.0 | 10.0 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AliMeeting.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AliMeeting.SpeakerDiarization.Benchmark.test.eval) | | [AMI (_headset mix,_](https://groups.inf.ed.ac.uk/ami/corpus/) [_only_words_)](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 18.8 | 3.6 | 9.5 | 5.7 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI.SpeakerDiarization.Benchmark.test.eval) | | [AMI (_array1, channel 1,_](https://groups.inf.ed.ac.uk/ami/corpus/) [_only_words)_](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 22.4 | 3.8 | 11.2 | 7.5 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI-SDM.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI-SDM.SpeakerDiarization.Benchmark.test.eval) | | [AVA-AVD](https://arxiv.org/abs/2111.14448) | 50.0 | 10.8 | 15.7 | 23.4 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AVA-AVD.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AVA-AVD.SpeakerDiarization.Benchmark.test.eval) | | [DIHARD 3 (_Full_)](https://arxiv.org/abs/2012.01477) | 21.7 | 6.2 | 8.1 | 7.3 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/DIHARD.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/DIHARD.SpeakerDiarization.Benchmark.test.eval) | | [MSDWild](https://x-lance.github.io/MSDWILD/) | 25.3 | 5.8 | 8.0 | 11.5 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/MSDWILD.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/MSDWILD.SpeakerDiarization.Benchmark.test.eval) | | [REPERE (_phase 2_)](https://islrn.org/resources/360-758-359-485-0/) | 7.8 | 1.8 | 2.6 | 3.5 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/REPERE.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/REPERE.SpeakerDiarization.Benchmark.test.eval) | | [VoxConverse (_v0.3_)](https://github.com/joonson/voxconverse) | 11.3 | 4.1 | 3.4 | 3.8 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/VoxConverse.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/VoxConverse.SpeakerDiarization.Benchmark.test.eval) | ## Citations ```bibtex @inproceedings{Plaquet23, author={Alexis Plaquet and Hervé Bredin}, title={{Powerset multi-class cross entropy loss for neural speaker diarization}}, year=2023, booktitle={Proc. INTERSPEECH 2023}, } ``` ```bibtex @inproceedings{Bredin23, author={Hervé Bredin}, title={{pyannote.audio 2.1 speaker diarization pipeline: principle, benchmark, and recipe}}, year=2023, booktitle={Proc. INTERSPEECH 2023}, } ```
emonikram/dl_project
emonikram
2024-01-25T11:07:28Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-01-24T20:10:42Z
--- title: Cat Vs Rabbit Classification emoji: 🌍 colorFrom: yellow colorTo: purple sdk: gradio sdk_version: 4.15.0 app_file: app.py pinned: false license: mit contributed by: Ikramul Islam Emon --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
Artefact2/Nous-Hermes-2-Mixtruct-v0.1-8x7B-DPO-DARE_TIES-GGUF
Artefact2
2024-01-25T11:07:08Z
51
3
null
[ "gguf", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-20T15:01:17Z
--- license: apache-2.0 language: - en --- These are GGUF quantized versions of [notstoic/Nous-Hermes-2-Mixtruct-v0.1-8x7B-DPO-DARE_TIES](https://huggingface.co/notstoic/Nous-Hermes-2-Mixtruct-v0.1-8x7B-DPO-DARE_TIES). The importance matrix was trained for 1M tokens (2,000 batches of 512 tokens) using `wiki.train.raw`. The IQ2_XXS and IQ2_XS versions are compatible with llama.cpp, version `147b17a` or later.
LoneStriker/Everyone-Coder-33b-Base-3.0bpw-h6-exl2
LoneStriker
2024-01-25T11:02:17Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T10:56:01Z
--- license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL tags: - merge --- Everyone-Coder-33b-Base ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/ECrHQnZnv8UM9GUCQtlWW.jpeg) EveryoneLLM series of models made by the community, for the community. This is a coding specific model made using fine-tunes of deekseekcoder-33b-base. ______________________________________________________________________________________________________________ Im having trouble benchmarking this model because I suck at running llm benchmarks, but from hand testing running the model through https://edabit.com/challenge coding challenges vs up to date gpt-4. My model is hands down beating it in coding. ______________________________________________________________________________________________________________ Ive recently noticed this model has trouble with end tokens so I made a custom prompt template for it. Made sure to add (Always end with "<|EOT|>") In addition to your system prompt and (Always end your response with "<|EOT|>") at the end of the User message is the preset. Then add <|EOT|> as a custom stop string in your LM text generating interface. ``` Always end with "<|EOT|>" {System} <|User|> {User}. Always end your response with "<|EOT|>" <|Assistant|> {Assistant} ``` The models that were used in this merger were as follow: - https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct - https://huggingface.co/codefuse-ai/CodeFuse-DeepSeek-33B - https://huggingface.co/WizardLM/WizardCoder-33B-V1.1 Thank you to the creators of the above ai models, they have full credit for the EveryoneLLM series of models. Without their hard work we wouldnt be able to achieve the great success we have in the open source community. 💗 You can find the write up for merging models here: https://docs.google.com/document/d/1_vOftBnrk9NRk5h10UqrfJ5CDih9KBKL61yvrZtVWPE/edit?usp=sharing Config for the merger can be found bellow: ```yaml models: - model: WizardLM_WizardCoder-33B-V1.1 parameters: density: 1 weight: .5 - model: codefuse-ai_CodeFuse-DeepSeek-33B parameters: density: 1 weight: .5 merge_method: ties base_model: deepseek-ai_deepseek-coder-33b-instruct parameters: normalize: true int8_mask: true dtype: float16 ```
DataVare/NSF-To-MBOX-Converter
DataVare
2024-01-25T10:59:19Z
0
0
null
[ "region:us" ]
null
2024-01-25T10:59:00Z
For effective NSF to MBOX email conversion, utilize DataVare NSF to MBOX Converter. With a few clicks, the entire NSF to MBOX conversion procedure is finished, and the folder structure in the MBOX format is preserved just as it was in the NSF format. It transfers Lotus Notes emails—including those with attachments—into Mailbox format without making any modifications. The user can accomplish the Lotus Notes to MBOX migration with the aid of its simple user interface. You don't need to be technically skilled or knowledgeable to use our NSF to MBOX Converter. Its basic yet helpful characteristics make the user's task easier. With the use of its sophisticated capabilities, users can export all NSF email data in MBOX format without any modifications. Before obtaining a license key for the full NSF to MBOX Migration, check out its features and functions with the help of its free demo edition. Read More:- https://www.datavare.com/software/nsf-to-mbox-converter-expert.html
HatimF/bart_booksum_1
HatimF
2024-01-25T10:57:57Z
15
0
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-21T15:19:57Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer metrics: - rouge model-index: - name: bart_booksum_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart_booksum_1 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0264 - Rouge1: 0.1795 - Rouge2: 0.0368 - Rougel: 0.1337 - Rougelsum: 0.1334 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 1515 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 3.8176 | 1.0 | 80 | 3.0712 | 0.1765 | 0.0372 | 0.1298 | 0.1299 | 20.0 | | 3.3835 | 2.0 | 160 | 3.0365 | 0.1871 | 0.0444 | 0.1382 | 0.1382 | 20.0 | | 3.2162 | 3.0 | 240 | 3.0281 | 0.1892 | 0.0426 | 0.1385 | 0.1383 | 20.0 | | 3.1147 | 4.0 | 320 | 3.0264 | 0.1795 | 0.0368 | 0.1337 | 0.1334 | 20.0 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.1
Pavan-124/wines_multilingual
Pavan-124
2024-01-25T10:56:19Z
44
0
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-multilingual-cased", "base_model:finetune:distilbert/distilbert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-25T10:56:01Z
--- license: apache-2.0 base_model: distilbert-base-multilingual-cased tags: - generated_from_keras_callback model-index: - name: wines_multilingual results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # wines_multilingual This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1375 - Validation Loss: 0.0916 - Train Precision: 0.8566 - Train Recall: 0.8662 - Train F1: 0.8614 - Train Accuracy: 0.9618 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5724, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1375 | 0.0916 | 0.8566 | 0.8662 | 0.8614 | 0.9618 | 0 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.14.0 - Datasets 2.16.1 - Tokenizers 0.15.1
unreal-hug/segformer-b0-finetuned-segments-ECHO-jan-25-v2
unreal-hug
2024-01-25T10:51:48Z
4
0
transformers
[ "transformers", "safetensors", "segformer", "vision", "image-segmentation", "generated_from_trainer", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-01-25T09:17:39Z
--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-ECHO-jan-25-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-ECHO-jan-25-v2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the unreal-hug/REAL_DATASET_SEG_401_6_lbls dataset. It achieves the following results on the evaluation set: - Loss: 0.4155 - Mean Iou: 0.3349 - Mean Accuracy: 0.3935 - Overall Accuracy: 0.5591 - Accuracy Unlabeled: nan - Accuracy Lv: 0.6815 - Accuracy Rv: 0.3865 - Accuracy Ra: 0.5805 - Accuracy La: 0.6544 - Accuracy Vs: 0.1155 - Accuracy As: nan - Accuracy Mk: 0.0497 - Accuracy Tk: nan - Accuracy Asd: 0.2779 - Accuracy Vsd: 0.3995 - Accuracy Ak: 0.3959 - Iou Unlabeled: 0.0 - Iou Lv: 0.6626 - Iou Rv: 0.3764 - Iou Ra: 0.5699 - Iou La: 0.6056 - Iou Vs: 0.1108 - Iou As: nan - Iou Mk: 0.0485 - Iou Tk: nan - Iou Asd: 0.2565 - Iou Vsd: 0.3465 - Iou Ak: 0.3718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Lv | Accuracy Rv | Accuracy Ra | Accuracy La | Accuracy Vs | Accuracy As | Accuracy Mk | Accuracy Tk | Accuracy Asd | Accuracy Vsd | Accuracy Ak | Iou Unlabeled | Iou Lv | Iou Rv | Iou Ra | Iou La | Iou Vs | Iou As | Iou Mk | Iou Tk | Iou Asd | Iou Vsd | Iou Ak | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:------------:|:------------:|:-----------:|:-------------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:-------:|:-------:|:------:| | 2.0322 | 0.12 | 20 | 2.2124 | 0.0954 | 0.1885 | 0.3033 | nan | 0.3903 | 0.4680 | 0.0850 | 0.0173 | 0.0 | nan | 0.0011 | nan | 0.0 | 0.1087 | 0.6263 | 0.0 | 0.2970 | 0.2085 | 0.0782 | 0.0172 | 0.0 | nan | 0.0011 | 0.0 | 0.0 | 0.0823 | 0.3647 | | 1.6027 | 0.25 | 40 | 1.5649 | 0.0789 | 0.1168 | 0.2640 | nan | 0.5149 | 0.0061 | 0.0264 | 0.0839 | 0.0 | nan | 0.0 | nan | 0.0001 | 0.0014 | 0.4180 | 0.0 | 0.3418 | 0.0061 | 0.0262 | 0.0787 | 0.0 | nan | 0.0 | nan | 0.0001 | 0.0014 | 0.3342 | | 1.2877 | 0.38 | 60 | 1.2616 | 0.0943 | 0.1296 | 0.2685 | nan | 0.4665 | 0.0053 | 0.0547 | 0.2421 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0050 | 0.3930 | 0.0 | 0.3612 | 0.0053 | 0.0529 | 0.1877 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0050 | 0.3312 | | 1.0981 | 0.5 | 80 | 1.2208 | 0.0967 | 0.1552 | 0.3898 | nan | 0.8151 | 0.0079 | 0.0082 | 0.0794 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.4863 | 0.0 | 0.4737 | 0.0079 | 0.0082 | 0.0750 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.4020 | | 1.0235 | 0.62 | 100 | 0.9343 | 0.1218 | 0.1888 | 0.4419 | nan | 0.8508 | 0.0102 | 0.0423 | 0.3015 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.4947 | 0.0 | 0.5319 | 0.0101 | 0.0418 | 0.2283 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.4059 | | 0.8977 | 0.75 | 120 | 0.7806 | 0.1592 | 0.2227 | 0.4764 | nan | 0.8124 | 0.1787 | 0.1188 | 0.4178 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.4763 | 0.0 | 0.6151 | 0.1741 | 0.1124 | 0.2995 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3906 | | 0.6932 | 0.88 | 140 | 0.6246 | 0.1262 | 0.1590 | 0.3766 | nan | 0.6794 | 0.2019 | 0.1415 | 0.2810 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.1276 | 0.0 | 0.5674 | 0.1941 | 0.1372 | 0.2414 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.1217 | | 0.6168 | 1.0 | 160 | 0.6124 | 0.1752 | 0.2277 | 0.4717 | nan | 0.7500 | 0.3261 | 0.1491 | 0.4375 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3864 | 0.0 | 0.6106 | 0.2973 | 0.1475 | 0.3522 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3439 | | 0.5758 | 1.12 | 180 | 0.5658 | 0.2037 | 0.2520 | 0.4750 | nan | 0.6646 | 0.3955 | 0.3596 | 0.4433 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.4048 | 0.0 | 0.6048 | 0.3705 | 0.3133 | 0.3865 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3623 | | 0.5081 | 1.25 | 200 | 0.5116 | 0.2316 | 0.2993 | 0.5280 | nan | 0.6460 | 0.4867 | 0.4741 | 0.6477 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.4396 | 0.0 | 0.6098 | 0.4523 | 0.3961 | 0.4611 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3965 | | 0.6351 | 1.38 | 220 | 0.4879 | 0.1127 | 0.1324 | 0.2609 | nan | 0.3749 | 0.0902 | 0.2601 | 0.3883 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0783 | 0.0 | 0.3623 | 0.0897 | 0.2510 | 0.3466 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0774 | | 0.6241 | 1.5 | 240 | 0.4593 | 0.2439 | 0.3090 | 0.5686 | nan | 0.7439 | 0.4492 | 0.5367 | 0.6916 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3597 | 0.0 | 0.6995 | 0.4322 | 0.4400 | 0.5265 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3410 | | 0.4315 | 1.62 | 260 | 0.4082 | 0.2175 | 0.2611 | 0.4948 | nan | 0.6811 | 0.3535 | 0.4253 | 0.5871 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3025 | 0.0 | 0.6398 | 0.3459 | 0.3952 | 0.5052 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.2886 | | 0.5236 | 1.75 | 280 | 0.4651 | 0.1063 | 0.1353 | 0.2191 | nan | 0.2161 | 0.0885 | 0.3687 | 0.4434 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.1015 | 0.0 | 0.2138 | 0.0884 | 0.3282 | 0.3313 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.1012 | | 0.3688 | 1.88 | 300 | 0.4279 | 0.2796 | 0.3459 | 0.6382 | nan | 0.8529 | 0.5705 | 0.5493 | 0.6449 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0051 | 0.4903 | 0.0 | 0.7546 | 0.5277 | 0.5044 | 0.5537 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0051 | 0.4500 | | 0.3659 | 2.0 | 320 | 0.3907 | 0.1881 | 0.2192 | 0.4461 | nan | 0.7156 | 0.1476 | 0.3144 | 0.4135 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0006 | 0.3810 | 0.0 | 0.6851 | 0.1461 | 0.3012 | 0.3919 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0006 | 0.3560 | | 0.3243 | 2.12 | 340 | 0.3846 | 0.2737 | 0.3272 | 0.5846 | nan | 0.7313 | 0.4747 | 0.6435 | 0.7038 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0010 | 0.3904 | 0.0 | 0.7045 | 0.4610 | 0.5733 | 0.6223 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0010 | 0.3752 | | 0.4169 | 2.25 | 360 | 0.4099 | 0.1292 | 0.1475 | 0.2563 | nan | 0.3286 | 0.0968 | 0.3184 | 0.3088 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0005 | 0.2741 | 0.0 | 0.3241 | 0.0965 | 0.3061 | 0.2960 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0005 | 0.2685 | | 0.2951 | 2.38 | 380 | 0.3583 | 0.2277 | 0.2701 | 0.4962 | nan | 0.6695 | 0.2136 | 0.5730 | 0.6784 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0442 | 0.2519 | 0.0 | 0.6409 | 0.2125 | 0.5347 | 0.5967 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0435 | 0.2488 | | 0.3847 | 2.5 | 400 | 0.3565 | 0.2410 | 0.2843 | 0.5032 | nan | 0.6544 | 0.3067 | 0.5888 | 0.6409 | 0.0 | nan | 0.0 | nan | 0.0 | 0.1089 | 0.2594 | 0.0 | 0.6304 | 0.3023 | 0.5347 | 0.5853 | 0.0 | nan | 0.0 | nan | 0.0 | 0.1033 | 0.2535 | | 0.339 | 2.62 | 420 | 0.3715 | 0.3085 | 0.3697 | 0.6227 | nan | 0.7530 | 0.5620 | 0.6411 | 0.6900 | 0.0 | nan | 0.0 | nan | 0.0015 | 0.1337 | 0.5460 | 0.0 | 0.7083 | 0.5347 | 0.5722 | 0.6160 | 0.0 | nan | 0.0 | nan | 0.0015 | 0.1261 | 0.5260 | | 0.7318 | 2.75 | 440 | 0.3574 | 0.2478 | 0.2950 | 0.4525 | nan | 0.5247 | 0.2338 | 0.5171 | 0.6926 | 0.0 | nan | 0.0 | nan | 0.0097 | 0.3424 | 0.3350 | 0.0 | 0.5100 | 0.2322 | 0.4803 | 0.6174 | 0.0 | nan | 0.0 | nan | 0.0097 | 0.3048 | 0.3235 | | 0.2905 | 2.88 | 460 | 0.3609 | 0.1903 | 0.2262 | 0.3935 | nan | 0.4734 | 0.1841 | 0.5925 | 0.5863 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0201 | 0.1799 | 0.0 | 0.4671 | 0.1834 | 0.5348 | 0.5192 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0199 | 0.1786 | | 0.3793 | 3.0 | 480 | 0.3452 | 0.2734 | 0.3213 | 0.5973 | nan | 0.8327 | 0.4635 | 0.5374 | 0.6168 | 0.0 | nan | 0.0 | nan | 0.0263 | 0.0746 | 0.3404 | 0.0 | 0.7723 | 0.4512 | 0.5139 | 0.5700 | 0.0 | nan | 0.0 | nan | 0.0260 | 0.0734 | 0.3270 | | 0.3922 | 3.12 | 500 | 0.3695 | 0.2151 | 0.2604 | 0.3659 | nan | 0.2751 | 0.2847 | 0.6318 | 0.7206 | 0.0 | nan | 0.0 | nan | 0.0045 | 0.1409 | 0.2863 | 0.0 | 0.2726 | 0.2824 | 0.5652 | 0.6103 | 0.0 | nan | 0.0 | nan | 0.0045 | 0.1339 | 0.2824 | | 0.3299 | 3.25 | 520 | 0.3326 | 0.3063 | 0.3610 | 0.6202 | nan | 0.8029 | 0.5001 | 0.5866 | 0.6558 | 0.0 | nan | 0.0 | nan | 0.0422 | 0.1575 | 0.5038 | 0.0 | 0.7639 | 0.4932 | 0.5461 | 0.5948 | 0.0 | nan | 0.0 | nan | 0.0416 | 0.1472 | 0.4762 | | 0.2547 | 3.38 | 540 | 0.3323 | 0.2650 | 0.3121 | 0.5052 | nan | 0.6042 | 0.4311 | 0.6044 | 0.5282 | 0.0 | nan | 0.0 | nan | 0.0813 | 0.1438 | 0.4164 | 0.0 | 0.5882 | 0.4189 | 0.5254 | 0.5006 | 0.0 | nan | 0.0 | nan | 0.0801 | 0.1359 | 0.4010 | | 0.2154 | 3.5 | 560 | 0.3211 | 0.2903 | 0.3397 | 0.5796 | nan | 0.7327 | 0.4341 | 0.6265 | 0.6269 | 0.0 | nan | 0.0 | nan | 0.0340 | 0.1079 | 0.4955 | 0.0 | 0.7034 | 0.4304 | 0.5828 | 0.5874 | 0.0 | nan | 0.0 | nan | 0.0337 | 0.1022 | 0.4634 | | 0.3146 | 3.62 | 580 | 0.3642 | 0.3096 | 0.3854 | 0.5967 | nan | 0.6732 | 0.4518 | 0.7254 | 0.8100 | 0.0 | nan | 0.0 | nan | 0.1293 | 0.2673 | 0.4116 | 0.0 | 0.6557 | 0.4444 | 0.5843 | 0.6517 | 0.0 | nan | 0.0 | nan | 0.1212 | 0.2434 | 0.3957 | | 0.2216 | 3.75 | 600 | 0.3178 | 0.3241 | 0.3818 | 0.5998 | nan | 0.7614 | 0.4294 | 0.5415 | 0.7168 | 0.0 | nan | 0.0 | nan | 0.1378 | 0.4248 | 0.4242 | 0.0 | 0.7254 | 0.4212 | 0.5274 | 0.6520 | 0.0 | nan | 0.0 | nan | 0.1338 | 0.3687 | 0.4125 | | 0.2973 | 3.88 | 620 | 0.3199 | 0.3486 | 0.4127 | 0.6217 | nan | 0.7369 | 0.5178 | 0.5558 | 0.7739 | 0.0 | nan | 0.0 | nan | 0.1965 | 0.4456 | 0.4876 | 0.0 | 0.7072 | 0.4974 | 0.5407 | 0.7010 | 0.0 | nan | 0.0 | nan | 0.1859 | 0.3845 | 0.4692 | | 0.2434 | 4.0 | 640 | 0.3179 | 0.3415 | 0.4057 | 0.6154 | nan | 0.7161 | 0.4582 | 0.6827 | 0.7445 | 0.0 | nan | 0.0 | nan | 0.1295 | 0.3827 | 0.5376 | 0.0 | 0.6869 | 0.4483 | 0.6280 | 0.6769 | 0.0 | nan | 0.0 | nan | 0.1254 | 0.3360 | 0.5134 | | 0.2283 | 4.12 | 660 | 0.3310 | 0.2584 | 0.3073 | 0.5076 | nan | 0.6237 | 0.2267 | 0.6673 | 0.7014 | 0.0 | nan | 0.0 | nan | 0.0718 | 0.1288 | 0.3464 | 0.0 | 0.6078 | 0.2260 | 0.5912 | 0.6270 | 0.0 | nan | 0.0 | nan | 0.0707 | 0.1212 | 0.3401 | | 0.6263 | 4.25 | 680 | 0.3153 | 0.2947 | 0.3436 | 0.5198 | nan | 0.6461 | 0.2824 | 0.5694 | 0.6236 | 0.0 | nan | 0.0 | nan | 0.1512 | 0.3950 | 0.4248 | 0.0 | 0.6244 | 0.2811 | 0.5498 | 0.5852 | 0.0 | nan | 0.0 | nan | 0.1449 | 0.3479 | 0.4140 | | 0.1708 | 4.38 | 700 | 0.3173 | 0.2957 | 0.3435 | 0.5834 | nan | 0.7531 | 0.3902 | 0.5853 | 0.7153 | 0.0 | nan | 0.0 | nan | 0.1331 | 0.1239 | 0.3908 | 0.0 | 0.7188 | 0.3869 | 0.5656 | 0.6612 | 0.0 | nan | 0.0 | nan | 0.1298 | 0.1159 | 0.3788 | | 0.246 | 4.5 | 720 | 0.3138 | 0.2570 | 0.2955 | 0.5052 | nan | 0.6686 | 0.3447 | 0.4552 | 0.5989 | 0.0 | nan | 0.0 | nan | 0.1237 | 0.1230 | 0.3459 | 0.0 | 0.6469 | 0.3416 | 0.4442 | 0.5640 | 0.0 | nan | 0.0 | nan | 0.1213 | 0.1159 | 0.3366 | | 0.3876 | 4.62 | 740 | 0.3084 | 0.3646 | 0.4336 | 0.6321 | nan | 0.7367 | 0.4776 | 0.6536 | 0.7478 | 0.0 | nan | 0.0 | nan | 0.2351 | 0.4973 | 0.5539 | 0.0 | 0.7108 | 0.4700 | 0.6166 | 0.6824 | 0.0 | nan | 0.0 | nan | 0.2208 | 0.4179 | 0.5274 | | 0.4766 | 4.75 | 760 | 0.3251 | 0.2509 | 0.2894 | 0.4716 | nan | 0.6095 | 0.3498 | 0.4348 | 0.4989 | 0.0 | nan | 0.0 | nan | 0.1119 | 0.2020 | 0.3972 | 0.0 | 0.5954 | 0.3434 | 0.4157 | 0.4754 | 0.0 | nan | 0.0 | nan | 0.1092 | 0.1836 | 0.3865 | | 0.4431 | 4.88 | 780 | 0.3052 | 0.3104 | 0.3654 | 0.5781 | nan | 0.7024 | 0.4862 | 0.5150 | 0.7363 | 0.0 | nan | 0.0 | nan | 0.2163 | 0.2456 | 0.3866 | 0.0 | 0.6801 | 0.4736 | 0.5039 | 0.6461 | 0.0 | nan | 0.0 | nan | 0.2021 | 0.2209 | 0.3771 | | 0.2319 | 5.0 | 800 | 0.3104 | 0.3316 | 0.3938 | 0.5875 | nan | 0.6790 | 0.5433 | 0.6711 | 0.6572 | 0.0 | nan | 0.0 | nan | 0.2908 | 0.3349 | 0.3675 | 0.0 | 0.6628 | 0.5265 | 0.5922 | 0.6113 | 0.0 | nan | 0.0 | nan | 0.2656 | 0.2987 | 0.3585 | | 0.3361 | 5.12 | 820 | 0.3125 | 0.3219 | 0.3808 | 0.5905 | nan | 0.7234 | 0.3480 | 0.6026 | 0.7698 | 0.0 | nan | 0.0 | nan | 0.1558 | 0.3461 | 0.4818 | 0.0 | 0.7028 | 0.3453 | 0.5677 | 0.6877 | 0.0 | nan | 0.0 | nan | 0.1498 | 0.3077 | 0.4584 | | 0.412 | 5.25 | 840 | 0.3477 | 0.2427 | 0.2810 | 0.4099 | nan | 0.3970 | 0.2768 | 0.5965 | 0.6918 | 0.0 | nan | 0.0 | nan | 0.1238 | 0.1614 | 0.2814 | 0.0 | 0.3899 | 0.2752 | 0.5703 | 0.6446 | 0.0 | nan | 0.0 | nan | 0.1208 | 0.1494 | 0.2767 | | 0.1799 | 5.38 | 860 | 0.3132 | 0.3444 | 0.4035 | 0.6161 | nan | 0.7651 | 0.4804 | 0.6609 | 0.5953 | 0.0 | nan | 0.0 | nan | 0.2167 | 0.3901 | 0.5227 | 0.0 | 0.7389 | 0.4759 | 0.6240 | 0.5643 | 0.0 | nan | 0.0 | nan | 0.2033 | 0.3414 | 0.4965 | | 0.1716 | 5.5 | 880 | 0.3186 | 0.2805 | 0.3289 | 0.4955 | nan | 0.5685 | 0.3185 | 0.5785 | 0.6888 | 0.0 | nan | 0.0 | nan | 0.1934 | 0.2548 | 0.3577 | 0.0 | 0.5592 | 0.3165 | 0.5487 | 0.6271 | 0.0 | nan | 0.0 | nan | 0.1798 | 0.2295 | 0.3441 | | 0.4388 | 5.62 | 900 | 0.3171 | 0.4098 | 0.4914 | 0.7348 | nan | 0.8788 | 0.6109 | 0.7475 | 0.7979 | 0.0 | nan | 0.0 | nan | 0.2607 | 0.5234 | 0.6032 | 0.0 | 0.8320 | 0.5956 | 0.6842 | 0.7286 | 0.0 | nan | 0.0 | nan | 0.2445 | 0.4481 | 0.5648 | | 0.2632 | 5.75 | 920 | 0.3163 | 0.2697 | 0.3130 | 0.4551 | nan | 0.5145 | 0.3445 | 0.4613 | 0.6042 | 0.0 | nan | 0.0 | nan | 0.1180 | 0.3896 | 0.3846 | 0.0 | 0.5045 | 0.3404 | 0.4568 | 0.5718 | 0.0 | nan | 0.0 | nan | 0.1141 | 0.3416 | 0.3677 | | 0.3024 | 5.88 | 940 | 0.3063 | 0.3883 | 0.4645 | 0.6758 | nan | 0.7778 | 0.6624 | 0.7137 | 0.7013 | 0.0 | nan | 0.0 | nan | 0.3253 | 0.4950 | 0.5054 | 0.0 | 0.7479 | 0.6323 | 0.6434 | 0.6506 | 0.0 | nan | 0.0 | nan | 0.2919 | 0.4251 | 0.4919 | | 0.2551 | 6.0 | 960 | 0.3489 | 0.2261 | 0.2625 | 0.4024 | nan | 0.5011 | 0.1084 | 0.4074 | 0.6709 | 0.0 | nan | 0.0 | nan | 0.1666 | 0.2592 | 0.2489 | 0.0 | 0.4903 | 0.1081 | 0.4042 | 0.6181 | 0.0 | nan | 0.0 | nan | 0.1562 | 0.2369 | 0.2470 | | 0.3281 | 6.12 | 980 | 0.2939 | 0.3635 | 0.4275 | 0.6116 | nan | 0.6803 | 0.5665 | 0.6418 | 0.6806 | 0.0 | nan | 0.0 | nan | 0.2545 | 0.4660 | 0.5579 | 0.0 | 0.6659 | 0.5508 | 0.6049 | 0.6359 | 0.0 | nan | 0.0 | nan | 0.2372 | 0.4071 | 0.5330 | | 0.1372 | 6.25 | 1000 | 0.2998 | 0.3755 | 0.4413 | 0.6450 | nan | 0.7530 | 0.5417 | 0.6673 | 0.7023 | 0.0 | nan | 0.0 | nan | 0.2979 | 0.4450 | 0.5648 | 0.0 | 0.7287 | 0.5300 | 0.6359 | 0.6582 | 0.0 | nan | 0.0 | nan | 0.2737 | 0.3899 | 0.5389 | | 0.3485 | 6.38 | 1020 | 0.3398 | 0.2557 | 0.2941 | 0.4515 | nan | 0.5305 | 0.2957 | 0.5158 | 0.6263 | 0.0 | nan | 0.0 | nan | 0.1937 | 0.2043 | 0.2811 | 0.0 | 0.5206 | 0.2931 | 0.5070 | 0.5912 | 0.0 | nan | 0.0 | nan | 0.1833 | 0.1846 | 0.2769 | | 0.3755 | 6.5 | 1040 | 0.3034 | 0.3526 | 0.4160 | 0.5795 | nan | 0.6346 | 0.4564 | 0.7050 | 0.6986 | 0.0 | nan | 0.0 | nan | 0.3010 | 0.4881 | 0.4598 | 0.0 | 0.6188 | 0.4509 | 0.6639 | 0.6554 | 0.0 | nan | 0.0 | nan | 0.2758 | 0.4166 | 0.4442 | | 0.2617 | 6.62 | 1060 | 0.3166 | 0.2905 | 0.3384 | 0.4820 | nan | 0.5401 | 0.3225 | 0.5981 | 0.6153 | 0.0 | nan | 0.0 | nan | 0.1880 | 0.4060 | 0.3756 | 0.0 | 0.5337 | 0.3212 | 0.5770 | 0.5817 | 0.0 | nan | 0.0 | nan | 0.1774 | 0.3511 | 0.3627 | | 0.2937 | 6.75 | 1080 | 0.3090 | 0.3864 | 0.4585 | 0.7031 | nan | 0.8093 | 0.6687 | 0.7189 | 0.7808 | 0.0 | nan | 0.0 | nan | 0.3271 | 0.2123 | 0.6092 | 0.0 | 0.7810 | 0.6460 | 0.6639 | 0.7094 | 0.0 | nan | 0.0 | nan | 0.2942 | 0.1957 | 0.5738 | | 0.3588 | 6.88 | 1100 | 0.3011 | 0.3653 | 0.4310 | 0.6482 | nan | 0.8132 | 0.4360 | 0.6549 | 0.7523 | 0.0 | nan | 0.0 | nan | 0.3123 | 0.4840 | 0.4267 | 0.0 | 0.7784 | 0.4310 | 0.6235 | 0.6944 | 0.0 | nan | 0.0 | nan | 0.2884 | 0.4223 | 0.4149 | | 0.1613 | 7.0 | 1120 | 0.3302 | 0.2838 | 0.3344 | 0.4622 | nan | 0.4687 | 0.3133 | 0.6402 | 0.6782 | 0.0 | nan | 0.0 | nan | 0.1601 | 0.4001 | 0.3490 | 0.0 | 0.4620 | 0.3100 | 0.5933 | 0.6247 | 0.0 | nan | 0.0 | nan | 0.1525 | 0.3558 | 0.3400 | | 0.4217 | 7.12 | 1140 | 0.3087 | 0.3723 | 0.4451 | 0.6405 | nan | 0.7463 | 0.4361 | 0.7284 | 0.7778 | 0.0 | nan | 0.0 | nan | 0.3229 | 0.4981 | 0.4960 | 0.0 | 0.7258 | 0.4307 | 0.6602 | 0.7060 | 0.0 | nan | 0.0 | nan | 0.2946 | 0.4255 | 0.4800 | | 0.1429 | 7.25 | 1160 | 0.3227 | 0.2794 | 0.3221 | 0.5335 | nan | 0.7381 | 0.3377 | 0.5059 | 0.5342 | 0.0 | nan | 0.0 | nan | 0.2719 | 0.1916 | 0.3198 | 0.0 | 0.7147 | 0.3361 | 0.4943 | 0.5100 | 0.0 | nan | 0.0 | nan | 0.2479 | 0.1761 | 0.3151 | | 0.227 | 7.38 | 1180 | 0.3087 | 0.3749 | 0.4471 | 0.6221 | nan | 0.6645 | 0.5048 | 0.7103 | 0.7872 | 0.0 | nan | 0.0 | nan | 0.3502 | 0.4474 | 0.5594 | 0.0 | 0.6499 | 0.4966 | 0.6631 | 0.7065 | 0.0 | nan | 0.0 | nan | 0.3168 | 0.3915 | 0.5250 | | 0.3733 | 7.5 | 1200 | 0.3304 | 0.2777 | 0.3229 | 0.4832 | nan | 0.5603 | 0.3886 | 0.5612 | 0.5532 | 0.0 | nan | 0.0 | nan | 0.1744 | 0.2915 | 0.3773 | 0.0 | 0.5501 | 0.3824 | 0.5434 | 0.5248 | 0.0 | nan | 0.0 | nan | 0.1655 | 0.2561 | 0.3542 | | 0.3148 | 7.62 | 1220 | 0.3075 | 0.3787 | 0.4500 | 0.6531 | nan | 0.7425 | 0.5909 | 0.7189 | 0.7270 | 0.0 | nan | 0.0 | nan | 0.3257 | 0.4420 | 0.5030 | 0.0 | 0.7152 | 0.5687 | 0.6673 | 0.6700 | 0.0 | nan | 0.0 | nan | 0.2976 | 0.3823 | 0.4863 | | 0.22 | 7.75 | 1240 | 0.3156 | 0.3340 | 0.3934 | 0.5589 | nan | 0.6127 | 0.4262 | 0.6387 | 0.7554 | 0.0 | nan | 0.0 | nan | 0.2170 | 0.4800 | 0.4108 | 0.0 | 0.6002 | 0.4203 | 0.6121 | 0.6848 | 0.0 | nan | 0.0 | nan | 0.2073 | 0.4168 | 0.3984 | | 0.499 | 7.88 | 1260 | 0.3085 | 0.3454 | 0.4092 | 0.6278 | nan | 0.7534 | 0.4363 | 0.7109 | 0.7256 | 0.0 | nan | 0.0 | nan | 0.2525 | 0.2773 | 0.5267 | 0.0 | 0.7296 | 0.4311 | 0.6556 | 0.6668 | 0.0 | nan | 0.0 | nan | 0.2355 | 0.2512 | 0.4848 | | 0.2604 | 8.0 | 1280 | 0.3123 | 0.3504 | 0.4118 | 0.6089 | nan | 0.7175 | 0.4779 | 0.6668 | 0.6668 | 0.0 | nan | 0.0 | nan | 0.2368 | 0.4184 | 0.5218 | 0.0 | 0.6949 | 0.4708 | 0.6402 | 0.6225 | 0.0 | nan | 0.0 | nan | 0.2192 | 0.3649 | 0.4915 | | 0.146 | 8.12 | 1300 | 0.3274 | 0.3036 | 0.3526 | 0.5368 | nan | 0.6413 | 0.4378 | 0.6158 | 0.5674 | 0.0 | nan | 0.0 | nan | 0.1757 | 0.3165 | 0.4191 | 0.0 | 0.6216 | 0.4333 | 0.5946 | 0.5339 | 0.0 | nan | 0.0 | nan | 0.1697 | 0.2810 | 0.4015 | | 0.1103 | 8.25 | 1320 | 0.3339 | 0.2738 | 0.3155 | 0.4762 | nan | 0.5556 | 0.4026 | 0.5015 | 0.5408 | 0.0 | nan | 0.0 | nan | 0.1370 | 0.2938 | 0.4084 | 0.0 | 0.5454 | 0.3969 | 0.4921 | 0.5111 | 0.0 | nan | 0.0 | nan | 0.1330 | 0.2658 | 0.3939 | | 0.1323 | 8.38 | 1340 | 0.3179 | 0.3304 | 0.3865 | 0.5986 | nan | 0.7334 | 0.4769 | 0.6287 | 0.6839 | 0.0 | nan | 0.0 | nan | 0.2152 | 0.3473 | 0.3933 | 0.0 | 0.7022 | 0.4679 | 0.6091 | 0.6261 | 0.0 | nan | 0.0 | nan | 0.2049 | 0.3080 | 0.3863 | | 0.1057 | 8.5 | 1360 | 0.4118 | 0.1949 | 0.2242 | 0.3076 | nan | 0.3007 | 0.1559 | 0.4492 | 0.5135 | 0.0 | nan | 0.0 | nan | 0.1282 | 0.2228 | 0.2472 | 0.0 | 0.2972 | 0.1552 | 0.4441 | 0.4845 | 0.0 | nan | 0.0 | nan | 0.1241 | 0.2028 | 0.2412 | | 0.1248 | 8.62 | 1380 | 0.3228 | 0.4155 | 0.4991 | 0.7269 | nan | 0.8415 | 0.6462 | 0.7622 | 0.7778 | 0.0 | nan | 0.0 | nan | 0.3683 | 0.4851 | 0.6106 | 0.0 | 0.8100 | 0.6271 | 0.6994 | 0.7057 | 0.0 | nan | 0.0 | nan | 0.3280 | 0.4172 | 0.5674 | | 0.1165 | 8.75 | 1400 | 0.3307 | 0.2995 | 0.3485 | 0.5194 | nan | 0.6149 | 0.3102 | 0.5592 | 0.6835 | 0.0 | nan | 0.0 | nan | 0.1857 | 0.3513 | 0.4318 | 0.0 | 0.5982 | 0.3074 | 0.5485 | 0.6349 | 0.0 | nan | 0.0 | nan | 0.1765 | 0.3142 | 0.4156 | | 0.2999 | 8.88 | 1420 | 0.3766 | 0.2329 | 0.2673 | 0.3927 | nan | 0.4223 | 0.2954 | 0.4437 | 0.5620 | 0.0 | nan | 0.0 | nan | 0.1641 | 0.1857 | 0.3327 | 0.0 | 0.4163 | 0.2897 | 0.4411 | 0.5318 | 0.0 | nan | 0.0 | nan | 0.1570 | 0.1704 | 0.3232 | | 0.2005 | 9.0 | 1440 | 0.3224 | 0.3457 | 0.4100 | 0.5800 | nan | 0.6510 | 0.4458 | 0.6701 | 0.6765 | 0.0 | nan | 0.0002 | nan | 0.2510 | 0.4869 | 0.5085 | 0.0 | 0.6327 | 0.4381 | 0.6441 | 0.6348 | 0.0 | nan | 0.0002 | nan | 0.2321 | 0.4092 | 0.4656 | | 0.0952 | 9.12 | 1460 | 0.3368 | 0.2986 | 0.3475 | 0.5230 | nan | 0.5872 | 0.4686 | 0.6328 | 0.6070 | 0.0 | nan | 0.0 | nan | 0.2227 | 0.2252 | 0.3843 | 0.0 | 0.5748 | 0.4534 | 0.5986 | 0.5720 | 0.0 | nan | 0.0 | nan | 0.2114 | 0.2061 | 0.3692 | | 0.3493 | 9.25 | 1480 | 0.3637 | 0.2527 | 0.2909 | 0.4285 | nan | 0.5072 | 0.3061 | 0.4793 | 0.5032 | 0.0 | nan | 0.0 | nan | 0.1539 | 0.3356 | 0.3325 | 0.0 | 0.4971 | 0.3025 | 0.4757 | 0.4801 | 0.0 | nan | 0.0 | nan | 0.1476 | 0.2993 | 0.3245 | | 0.6102 | 9.38 | 1500 | 0.3302 | 0.3325 | 0.3885 | 0.5757 | nan | 0.6527 | 0.5490 | 0.6148 | 0.6472 | 0.0 | nan | 0.0 | nan | 0.2155 | 0.3649 | 0.4522 | 0.0 | 0.6350 | 0.5320 | 0.5993 | 0.6117 | 0.0 | nan | 0.0 | nan | 0.2015 | 0.3228 | 0.4231 | | 0.1355 | 9.5 | 1520 | 0.3136 | 0.3397 | 0.3985 | 0.5917 | nan | 0.7078 | 0.4385 | 0.6197 | 0.6754 | 0.0 | nan | 0.0 | nan | 0.2411 | 0.4128 | 0.4908 | 0.0 | 0.6904 | 0.4342 | 0.6004 | 0.6272 | 0.0 | nan | 0.0 | nan | 0.2228 | 0.3615 | 0.4608 | | 0.2828 | 9.62 | 1540 | 0.3214 | 0.3632 | 0.4329 | 0.6220 | nan | 0.7412 | 0.4203 | 0.6106 | 0.7371 | 0.0 | nan | 0.0004 | nan | 0.3513 | 0.4797 | 0.5558 | 0.0 | 0.7149 | 0.4099 | 0.5925 | 0.6724 | 0.0 | nan | 0.0004 | nan | 0.3130 | 0.4125 | 0.5160 | | 0.2499 | 9.75 | 1560 | 0.3470 | 0.3178 | 0.3744 | 0.5370 | nan | 0.6135 | 0.4310 | 0.6613 | 0.5944 | 0.0 | nan | 0.0001 | nan | 0.3109 | 0.3698 | 0.3889 | 0.0 | 0.5963 | 0.4247 | 0.6161 | 0.5602 | 0.0 | nan | 0.0001 | nan | 0.2767 | 0.3282 | 0.3756 | | 0.3973 | 9.88 | 1580 | 0.3292 | 0.3557 | 0.4222 | 0.6036 | nan | 0.6854 | 0.5253 | 0.6598 | 0.6929 | 0.0 | nan | 0.0 | nan | 0.2791 | 0.5040 | 0.4535 | 0.0 | 0.6632 | 0.5042 | 0.6184 | 0.6434 | 0.0 | nan | 0.0 | nan | 0.2550 | 0.4358 | 0.4374 | | 0.1764 | 10.0 | 1600 | 0.3317 | 0.3493 | 0.4150 | 0.5984 | nan | 0.6897 | 0.4370 | 0.6896 | 0.7262 | 0.0 | nan | 0.0023 | nan | 0.2221 | 0.5208 | 0.4472 | 0.0 | 0.6702 | 0.4293 | 0.6340 | 0.6649 | 0.0 | nan | 0.0023 | nan | 0.2127 | 0.4505 | 0.4294 | | 0.3667 | 10.12 | 1620 | 0.3224 | 0.3385 | 0.3978 | 0.5951 | nan | 0.7262 | 0.4129 | 0.5865 | 0.6864 | 0.0 | nan | 0.0041 | nan | 0.2466 | 0.4033 | 0.5143 | 0.0 | 0.7033 | 0.4053 | 0.5673 | 0.6383 | 0.0 | nan | 0.0041 | nan | 0.2340 | 0.3562 | 0.4768 | | 0.2782 | 10.25 | 1640 | 0.3243 | 0.3675 | 0.4383 | 0.6355 | nan | 0.7304 | 0.5449 | 0.7001 | 0.7129 | 0.0 | nan | 0.0021 | nan | 0.2615 | 0.5006 | 0.4920 | 0.0 | 0.7054 | 0.5218 | 0.6534 | 0.6531 | 0.0 | nan | 0.0021 | nan | 0.2478 | 0.4247 | 0.4667 | | 0.1716 | 10.38 | 1660 | 0.3199 | 0.3531 | 0.4131 | 0.6228 | nan | 0.7347 | 0.5687 | 0.6019 | 0.7168 | 0.0 | nan | 0.0001 | nan | 0.2756 | 0.3677 | 0.4526 | 0.0 | 0.7107 | 0.5562 | 0.5817 | 0.6609 | 0.0 | nan | 0.0001 | nan | 0.2583 | 0.3276 | 0.4354 | | 0.1938 | 10.5 | 1680 | 0.3304 | 0.3369 | 0.4038 | 0.5768 | nan | 0.6403 | 0.3871 | 0.6906 | 0.7228 | 0.0 | nan | 0.0049 | nan | 0.2373 | 0.4005 | 0.5506 | 0.0 | 0.6248 | 0.3827 | 0.6360 | 0.6713 | 0.0 | nan | 0.0049 | nan | 0.2232 | 0.3537 | 0.4722 | | 0.0939 | 10.62 | 1700 | 0.3178 | 0.3848 | 0.4610 | 0.6472 | nan | 0.7358 | 0.5401 | 0.7080 | 0.7452 | 0.0 | nan | 0.0062 | nan | 0.3044 | 0.6229 | 0.4866 | 0.0 | 0.7137 | 0.5308 | 0.6585 | 0.6909 | 0.0 | nan | 0.0062 | nan | 0.2798 | 0.5091 | 0.4593 | | 0.1592 | 10.75 | 1720 | 0.3323 | 0.3312 | 0.3861 | 0.5834 | nan | 0.6894 | 0.6042 | 0.5845 | 0.5805 | 0.0 | nan | 0.0055 | nan | 0.2218 | 0.3658 | 0.4236 | 0.0 | 0.6704 | 0.5786 | 0.5710 | 0.5451 | 0.0 | nan | 0.0055 | nan | 0.2094 | 0.3236 | 0.4085 | | 0.186 | 10.88 | 1740 | 0.3280 | 0.3838 | 0.4597 | 0.6407 | nan | 0.7285 | 0.4968 | 0.6695 | 0.7578 | 0.0 | nan | 0.0145 | nan | 0.4074 | 0.5172 | 0.5460 | 0.0 | 0.7056 | 0.4866 | 0.6377 | 0.6958 | 0.0 | nan | 0.0144 | nan | 0.3540 | 0.4358 | 0.5086 | | 0.124 | 11.0 | 1760 | 0.4089 | 0.2396 | 0.2751 | 0.4128 | nan | 0.5165 | 0.2682 | 0.4594 | 0.4520 | 0.0 | nan | 0.0095 | nan | 0.2177 | 0.2646 | 0.2879 | 0.0 | 0.5080 | 0.2658 | 0.4487 | 0.4315 | 0.0 | nan | 0.0095 | nan | 0.2031 | 0.2473 | 0.2822 | | 0.1084 | 11.12 | 1780 | 0.3512 | 0.3283 | 0.3864 | 0.5415 | nan | 0.5910 | 0.4464 | 0.6008 | 0.6724 | 0.0 | nan | 0.0105 | nan | 0.2345 | 0.4593 | 0.4626 | 0.0 | 0.5774 | 0.4313 | 0.5885 | 0.6218 | 0.0 | nan | 0.0105 | nan | 0.2220 | 0.3926 | 0.4390 | | 0.3364 | 11.25 | 1800 | 0.3514 | 0.3245 | 0.3806 | 0.5425 | nan | 0.6046 | 0.4578 | 0.6162 | 0.6777 | 0.0 | nan | 0.0107 | nan | 0.2340 | 0.4572 | 0.3669 | 0.0 | 0.5876 | 0.4430 | 0.6018 | 0.6301 | 0.0 | nan | 0.0107 | nan | 0.2216 | 0.3951 | 0.3547 | | 0.186 | 11.38 | 1820 | 0.3398 | 0.3337 | 0.3937 | 0.5743 | nan | 0.6718 | 0.3964 | 0.6547 | 0.6960 | 0.0 | nan | 0.0095 | nan | 0.2726 | 0.3967 | 0.4452 | 0.0 | 0.6555 | 0.3905 | 0.6240 | 0.6329 | 0.0 | nan | 0.0095 | nan | 0.2543 | 0.3500 | 0.4209 | | 0.085 | 11.5 | 1840 | 0.3395 | 0.3541 | 0.4172 | 0.5969 | nan | 0.6834 | 0.4750 | 0.6591 | 0.6675 | 0.0029 | nan | 0.0163 | nan | 0.2791 | 0.4399 | 0.5321 | 0.0 | 0.6637 | 0.4648 | 0.6337 | 0.6201 | 0.0029 | nan | 0.0161 | nan | 0.2594 | 0.3801 | 0.5002 | | 0.2861 | 11.62 | 1860 | 0.3575 | 0.3064 | 0.3548 | 0.5451 | nan | 0.6531 | 0.4069 | 0.6701 | 0.6340 | 0.0000 | nan | 0.0111 | nan | 0.2071 | 0.2802 | 0.3303 | 0.0 | 0.6370 | 0.4012 | 0.6428 | 0.5936 | 0.0000 | nan | 0.0110 | nan | 0.1952 | 0.2599 | 0.3230 | | 0.2855 | 11.75 | 1880 | 0.3932 | 0.2415 | 0.2791 | 0.4276 | nan | 0.5475 | 0.2912 | 0.4359 | 0.4478 | 0.0 | nan | 0.0104 | nan | 0.1519 | 0.3073 | 0.3201 | 0.0 | 0.5356 | 0.2855 | 0.4203 | 0.4307 | 0.0 | nan | 0.0104 | nan | 0.1446 | 0.2782 | 0.3099 | | 0.1548 | 11.88 | 1900 | 0.3398 | 0.3513 | 0.4167 | 0.6004 | nan | 0.7097 | 0.3884 | 0.6305 | 0.7354 | 0.0002 | nan | 0.0138 | nan | 0.2828 | 0.4755 | 0.5141 | 0.0 | 0.6920 | 0.3832 | 0.6074 | 0.6691 | 0.0002 | nan | 0.0138 | nan | 0.2669 | 0.4032 | 0.4775 | | 0.123 | 12.0 | 1920 | 0.3279 | 0.3495 | 0.4113 | 0.6009 | nan | 0.7406 | 0.4218 | 0.5964 | 0.6630 | 0.0028 | nan | 0.0183 | nan | 0.2751 | 0.5053 | 0.4784 | 0.0 | 0.7190 | 0.4153 | 0.5867 | 0.6196 | 0.0028 | nan | 0.0181 | nan | 0.2542 | 0.4223 | 0.4568 | | 0.1138 | 12.12 | 1940 | 0.3308 | 0.3983 | 0.4753 | 0.6792 | nan | 0.7682 | 0.5832 | 0.7082 | 0.8045 | 0.0028 | nan | 0.0209 | nan | 0.3537 | 0.4880 | 0.5477 | 0.0 | 0.7424 | 0.5667 | 0.6711 | 0.7307 | 0.0028 | nan | 0.0207 | nan | 0.3242 | 0.4171 | 0.5076 | | 0.1582 | 12.25 | 1960 | 0.3342 | 0.3720 | 0.4410 | 0.6306 | nan | 0.7554 | 0.4633 | 0.6444 | 0.7011 | 0.0062 | nan | 0.0198 | nan | 0.3419 | 0.5214 | 0.5155 | 0.0 | 0.7309 | 0.4556 | 0.6269 | 0.6504 | 0.0062 | nan | 0.0196 | nan | 0.3087 | 0.4391 | 0.4823 | | 0.3449 | 12.38 | 1980 | 0.3976 | 0.2429 | 0.2797 | 0.4225 | nan | 0.5187 | 0.2813 | 0.4234 | 0.5055 | 0.0 | nan | 0.0111 | nan | 0.1548 | 0.2818 | 0.3408 | 0.0 | 0.5069 | 0.2772 | 0.4172 | 0.4855 | 0.0 | nan | 0.0111 | nan | 0.1490 | 0.2573 | 0.3246 | | 0.0296 | 12.5 | 2000 | 0.3332 | 0.3525 | 0.4166 | 0.5979 | nan | 0.6804 | 0.4709 | 0.6924 | 0.6988 | 0.0 | nan | 0.0172 | nan | 0.3403 | 0.3831 | 0.4662 | 0.0 | 0.6615 | 0.4562 | 0.6530 | 0.6470 | 0.0 | nan | 0.0171 | nan | 0.3043 | 0.3389 | 0.4466 | | 0.2308 | 12.62 | 2020 | 0.3418 | 0.3574 | 0.4208 | 0.6123 | nan | 0.7446 | 0.3992 | 0.6491 | 0.7142 | 0.0 | nan | 0.0130 | nan | 0.3085 | 0.4940 | 0.4650 | 0.0 | 0.7205 | 0.3948 | 0.6289 | 0.6646 | 0.0 | nan | 0.0129 | nan | 0.2849 | 0.4238 | 0.4435 | | 0.3632 | 12.75 | 2040 | 0.3847 | 0.2694 | 0.3118 | 0.4605 | nan | 0.5391 | 0.3475 | 0.5106 | 0.5736 | 0.0 | nan | 0.0090 | nan | 0.1930 | 0.3284 | 0.3053 | 0.0 | 0.5278 | 0.3411 | 0.5017 | 0.5453 | 0.0 | nan | 0.0089 | nan | 0.1846 | 0.2916 | 0.2930 | | 0.284 | 12.88 | 2060 | 0.3425 | 0.3836 | 0.4597 | 0.6559 | nan | 0.7536 | 0.5838 | 0.6914 | 0.7272 | 0.0094 | nan | 0.0148 | nan | 0.3443 | 0.5142 | 0.4986 | 0.0 | 0.7278 | 0.5383 | 0.6459 | 0.6707 | 0.0094 | nan | 0.0147 | nan | 0.3187 | 0.4375 | 0.4732 | | 0.1566 | 13.0 | 2080 | 0.3586 | 0.3093 | 0.3628 | 0.5439 | nan | 0.6643 | 0.4048 | 0.5981 | 0.6177 | 0.0075 | nan | 0.0124 | nan | 0.2639 | 0.3493 | 0.3475 | 0.0 | 0.6486 | 0.3917 | 0.5754 | 0.5727 | 0.0075 | nan | 0.0123 | nan | 0.2477 | 0.3058 | 0.3311 | | 0.1545 | 13.12 | 2100 | 0.3630 | 0.3109 | 0.3644 | 0.5329 | nan | 0.6530 | 0.3620 | 0.5186 | 0.6261 | 0.0122 | nan | 0.0107 | nan | 0.1922 | 0.4837 | 0.4209 | 0.0 | 0.6339 | 0.3549 | 0.5053 | 0.5850 | 0.0122 | nan | 0.0106 | nan | 0.1847 | 0.4173 | 0.4049 | | 0.1118 | 13.25 | 2120 | 0.3435 | 0.3579 | 0.4228 | 0.6077 | nan | 0.7231 | 0.4451 | 0.6276 | 0.7012 | 0.0175 | nan | 0.0249 | nan | 0.2535 | 0.5218 | 0.4904 | 0.0 | 0.7009 | 0.4350 | 0.6087 | 0.6502 | 0.0175 | nan | 0.0246 | nan | 0.2404 | 0.4449 | 0.4571 | | 0.0828 | 13.38 | 2140 | 0.3544 | 0.3361 | 0.3956 | 0.5662 | nan | 0.6733 | 0.3762 | 0.6572 | 0.6600 | 0.0125 | nan | 0.0328 | nan | 0.3596 | 0.3828 | 0.4058 | 0.0 | 0.6520 | 0.3665 | 0.6258 | 0.6161 | 0.0125 | nan | 0.0321 | nan | 0.3236 | 0.3448 | 0.3878 | | 0.2605 | 13.5 | 2160 | 0.3451 | 0.3732 | 0.4421 | 0.6309 | nan | 0.7398 | 0.4876 | 0.6322 | 0.7386 | 0.0182 | nan | 0.0378 | nan | 0.3453 | 0.4635 | 0.5161 | 0.0 | 0.7155 | 0.4705 | 0.6104 | 0.6734 | 0.0182 | nan | 0.0369 | nan | 0.3171 | 0.4016 | 0.4886 | | 0.0129 | 13.62 | 2180 | 0.3919 | 0.2765 | 0.3196 | 0.4836 | nan | 0.5955 | 0.3326 | 0.5530 | 0.5408 | 0.0179 | nan | 0.0140 | nan | 0.1846 | 0.2991 | 0.3392 | 0.0 | 0.5800 | 0.3270 | 0.5417 | 0.5094 | 0.0179 | nan | 0.0139 | nan | 0.1754 | 0.2717 | 0.3283 | | 0.1744 | 13.75 | 2200 | 0.3543 | 0.3287 | 0.3864 | 0.5730 | nan | 0.6835 | 0.3695 | 0.6680 | 0.7169 | 0.0132 | nan | 0.0120 | nan | 0.2276 | 0.4016 | 0.3853 | 0.0 | 0.6621 | 0.3663 | 0.6327 | 0.6620 | 0.0132 | nan | 0.0120 | nan | 0.2145 | 0.3531 | 0.3708 | | 0.0863 | 13.88 | 2220 | 0.3536 | 0.3503 | 0.4130 | 0.6052 | nan | 0.7206 | 0.4645 | 0.5874 | 0.6916 | 0.0115 | nan | 0.0200 | nan | 0.3492 | 0.3373 | 0.5352 | 0.0 | 0.6962 | 0.4546 | 0.5755 | 0.6385 | 0.0115 | nan | 0.0198 | nan | 0.3158 | 0.2964 | 0.4949 | | 0.2218 | 14.0 | 2240 | 0.3552 | 0.3527 | 0.4186 | 0.6185 | nan | 0.7443 | 0.4727 | 0.6913 | 0.6287 | 0.0118 | nan | 0.0181 | nan | 0.3010 | 0.3621 | 0.5372 | 0.0 | 0.7196 | 0.4609 | 0.6293 | 0.5846 | 0.0118 | nan | 0.0180 | nan | 0.2818 | 0.3178 | 0.5032 | | 0.1603 | 14.12 | 2260 | 0.3853 | 0.2835 | 0.3305 | 0.4804 | nan | 0.5713 | 0.3329 | 0.5072 | 0.5800 | 0.0061 | nan | 0.0185 | nan | 0.2341 | 0.3506 | 0.3738 | 0.0 | 0.5570 | 0.3257 | 0.4960 | 0.5457 | 0.0061 | nan | 0.0183 | nan | 0.2195 | 0.3115 | 0.3554 | | 0.1556 | 14.25 | 2280 | 0.3580 | 0.3469 | 0.4112 | 0.6041 | nan | 0.7349 | 0.4383 | 0.6388 | 0.6923 | 0.0131 | nan | 0.0196 | nan | 0.3261 | 0.4219 | 0.4161 | 0.0 | 0.7132 | 0.4194 | 0.6082 | 0.6401 | 0.0131 | nan | 0.0194 | nan | 0.2961 | 0.3680 | 0.3921 | | 0.2714 | 14.38 | 2300 | 0.3716 | 0.3215 | 0.3763 | 0.5454 | nan | 0.6469 | 0.3780 | 0.5739 | 0.6474 | 0.0130 | nan | 0.0128 | nan | 0.2433 | 0.4166 | 0.4552 | 0.0 | 0.6285 | 0.3722 | 0.5628 | 0.6024 | 0.0130 | nan | 0.0127 | nan | 0.2288 | 0.3676 | 0.4273 | | 0.2624 | 14.5 | 2320 | 0.3524 | 0.3357 | 0.3931 | 0.5833 | nan | 0.7198 | 0.4113 | 0.6229 | 0.6339 | 0.0164 | nan | 0.0153 | nan | 0.2559 | 0.4207 | 0.4414 | 0.0 | 0.6967 | 0.4056 | 0.6019 | 0.5973 | 0.0164 | nan | 0.0151 | nan | 0.2376 | 0.3674 | 0.4185 | | 0.2223 | 14.62 | 2340 | 0.3570 | 0.3148 | 0.3663 | 0.5565 | nan | 0.6820 | 0.4156 | 0.5894 | 0.6286 | 0.0155 | nan | 0.0149 | nan | 0.2473 | 0.3015 | 0.4022 | 0.0 | 0.6633 | 0.4037 | 0.5782 | 0.5907 | 0.0155 | nan | 0.0148 | nan | 0.2266 | 0.2731 | 0.3817 | | 0.1125 | 14.75 | 2360 | 0.3766 | 0.3027 | 0.3526 | 0.5064 | nan | 0.6058 | 0.3030 | 0.5083 | 0.6290 | 0.0217 | nan | 0.0107 | nan | 0.2239 | 0.4108 | 0.4599 | 0.0 | 0.5916 | 0.2977 | 0.5031 | 0.5910 | 0.0217 | nan | 0.0106 | nan | 0.2101 | 0.3637 | 0.4379 | | 0.1139 | 14.88 | 2380 | 0.3541 | 0.3752 | 0.4445 | 0.6352 | nan | 0.7230 | 0.5186 | 0.7029 | 0.7593 | 0.0249 | nan | 0.0174 | nan | 0.2855 | 0.4914 | 0.4778 | 0.0 | 0.7011 | 0.4986 | 0.6740 | 0.6961 | 0.0249 | nan | 0.0172 | nan | 0.2652 | 0.4230 | 0.4514 | | 0.1841 | 15.0 | 2400 | 0.3596 | 0.3337 | 0.3915 | 0.5678 | nan | 0.6749 | 0.3898 | 0.6395 | 0.6779 | 0.0267 | nan | 0.0162 | nan | 0.2609 | 0.4275 | 0.4104 | 0.0 | 0.6576 | 0.3815 | 0.6209 | 0.6334 | 0.0267 | nan | 0.0161 | nan | 0.2406 | 0.3728 | 0.3871 | | 0.1828 | 15.12 | 2420 | 0.3641 | 0.3060 | 0.3564 | 0.5373 | nan | 0.6464 | 0.3564 | 0.5524 | 0.6620 | 0.0132 | nan | 0.0079 | nan | 0.1817 | 0.3260 | 0.4615 | 0.0 | 0.6299 | 0.3491 | 0.5459 | 0.6195 | 0.0132 | nan | 0.0078 | nan | 0.1742 | 0.2937 | 0.4271 | | 0.0202 | 15.25 | 2440 | 0.3637 | 0.3310 | 0.3910 | 0.5513 | nan | 0.6071 | 0.4158 | 0.6488 | 0.7365 | 0.0339 | nan | 0.0181 | nan | 0.2819 | 0.3906 | 0.3863 | 0.0 | 0.5933 | 0.3991 | 0.6291 | 0.6687 | 0.0339 | nan | 0.0179 | nan | 0.2585 | 0.3465 | 0.3631 | | 0.3244 | 15.38 | 2460 | 0.3752 | 0.3290 | 0.3885 | 0.5348 | nan | 0.5915 | 0.4283 | 0.6163 | 0.6207 | 0.0442 | nan | 0.0320 | nan | 0.2746 | 0.4170 | 0.4722 | 0.0 | 0.5762 | 0.4087 | 0.5914 | 0.5837 | 0.0442 | nan | 0.0315 | nan | 0.2498 | 0.3633 | 0.4410 | | 0.0619 | 15.5 | 2480 | 0.3794 | 0.3052 | 0.3560 | 0.5207 | nan | 0.6266 | 0.3283 | 0.6050 | 0.6392 | 0.0387 | nan | 0.0303 | nan | 0.2255 | 0.3605 | 0.3501 | 0.0 | 0.6104 | 0.3232 | 0.5877 | 0.5951 | 0.0387 | nan | 0.0300 | nan | 0.2125 | 0.3189 | 0.3357 | | 0.0788 | 15.62 | 2500 | 0.3641 | 0.3564 | 0.4204 | 0.6062 | nan | 0.6924 | 0.5027 | 0.6264 | 0.7243 | 0.0330 | nan | 0.0246 | nan | 0.2279 | 0.4379 | 0.5142 | 0.0 | 0.6721 | 0.4863 | 0.6116 | 0.6645 | 0.0330 | nan | 0.0244 | nan | 0.2181 | 0.3780 | 0.4764 | | 0.1819 | 15.75 | 2520 | 0.3730 | 0.3330 | 0.3919 | 0.5496 | nan | 0.6366 | 0.3864 | 0.5794 | 0.6584 | 0.0296 | nan | 0.0193 | nan | 0.2730 | 0.4636 | 0.4804 | 0.0 | 0.6209 | 0.3793 | 0.5687 | 0.6158 | 0.0296 | nan | 0.0190 | nan | 0.2520 | 0.3970 | 0.4476 | | 0.1583 | 15.88 | 2540 | 0.3707 | 0.3437 | 0.4053 | 0.5775 | nan | 0.6838 | 0.4042 | 0.6664 | 0.6669 | 0.0270 | nan | 0.0380 | nan | 0.2653 | 0.4832 | 0.4127 | 0.0 | 0.6658 | 0.3962 | 0.6401 | 0.6213 | 0.0269 | nan | 0.0374 | nan | 0.2491 | 0.4074 | 0.3930 | | 0.0973 | 16.0 | 2560 | 0.3789 | 0.3102 | 0.3645 | 0.5251 | nan | 0.6202 | 0.3226 | 0.6377 | 0.6612 | 0.0240 | nan | 0.0420 | nan | 0.2656 | 0.3646 | 0.3432 | 0.0 | 0.6064 | 0.3155 | 0.6133 | 0.6167 | 0.0240 | nan | 0.0411 | nan | 0.2490 | 0.3193 | 0.3171 | | 0.188 | 16.12 | 2580 | 0.3646 | 0.3456 | 0.4070 | 0.5929 | nan | 0.7021 | 0.4230 | 0.6325 | 0.7055 | 0.0310 | nan | 0.0434 | nan | 0.3221 | 0.3235 | 0.4801 | 0.0 | 0.6798 | 0.4127 | 0.6135 | 0.6518 | 0.0309 | nan | 0.0423 | nan | 0.2943 | 0.2847 | 0.4458 | | 0.0581 | 16.25 | 2600 | 0.4030 | 0.2992 | 0.3506 | 0.4870 | nan | 0.5565 | 0.3320 | 0.6005 | 0.6297 | 0.0621 | nan | 0.0399 | nan | 0.2508 | 0.4016 | 0.2824 | 0.0 | 0.5438 | 0.3243 | 0.5851 | 0.5852 | 0.0610 | nan | 0.0391 | nan | 0.2336 | 0.3470 | 0.2729 | | 0.1891 | 16.38 | 2620 | 0.3766 | 0.3408 | 0.4029 | 0.5618 | nan | 0.6308 | 0.4264 | 0.6309 | 0.6672 | 0.0537 | nan | 0.0358 | nan | 0.2444 | 0.4289 | 0.5077 | 0.0 | 0.6150 | 0.4147 | 0.6043 | 0.6202 | 0.0528 | nan | 0.0353 | nan | 0.2302 | 0.3673 | 0.4679 | | 0.2495 | 16.5 | 2640 | 0.3758 | 0.3481 | 0.4106 | 0.5897 | nan | 0.7078 | 0.4004 | 0.6212 | 0.6981 | 0.0769 | nan | 0.0402 | nan | 0.2365 | 0.4410 | 0.4736 | 0.0 | 0.6873 | 0.3937 | 0.6026 | 0.6416 | 0.0749 | nan | 0.0391 | nan | 0.2227 | 0.3776 | 0.4418 | | 0.153 | 16.62 | 2660 | 0.3899 | 0.2935 | 0.3435 | 0.5074 | nan | 0.6166 | 0.3835 | 0.5905 | 0.5641 | 0.0402 | nan | 0.0290 | nan | 0.2244 | 0.3407 | 0.3025 | 0.0 | 0.6027 | 0.3733 | 0.5639 | 0.5320 | 0.0402 | nan | 0.0286 | nan | 0.2092 | 0.2969 | 0.2883 | | 0.083 | 16.75 | 2680 | 0.3758 | 0.3137 | 0.3669 | 0.5555 | nan | 0.6916 | 0.3837 | 0.5386 | 0.6336 | 0.0400 | nan | 0.0247 | nan | 0.2183 | 0.3063 | 0.4655 | 0.0 | 0.6742 | 0.3761 | 0.5322 | 0.5845 | 0.0400 | nan | 0.0243 | nan | 0.2066 | 0.2715 | 0.4276 | | 0.136 | 16.88 | 2700 | 0.3570 | 0.3606 | 0.4264 | 0.6044 | nan | 0.7070 | 0.4583 | 0.6819 | 0.6820 | 0.0525 | nan | 0.0404 | nan | 0.3045 | 0.4473 | 0.4636 | 0.0 | 0.6892 | 0.4490 | 0.6517 | 0.6349 | 0.0524 | nan | 0.0396 | nan | 0.2758 | 0.3799 | 0.4333 | | 0.0609 | 17.0 | 2720 | 0.3657 | 0.3182 | 0.3719 | 0.5547 | nan | 0.6883 | 0.3931 | 0.5851 | 0.6371 | 0.0482 | nan | 0.0290 | nan | 0.2633 | 0.3435 | 0.3598 | 0.0 | 0.6688 | 0.3841 | 0.5697 | 0.5975 | 0.0482 | nan | 0.0285 | nan | 0.2450 | 0.3019 | 0.3384 | | 0.1483 | 17.12 | 2740 | 0.3847 | 0.3068 | 0.3620 | 0.5117 | nan | 0.5805 | 0.3386 | 0.5781 | 0.6593 | 0.0445 | nan | 0.0343 | nan | 0.2763 | 0.3060 | 0.4403 | 0.0 | 0.5686 | 0.3269 | 0.5604 | 0.6165 | 0.0439 | nan | 0.0335 | nan | 0.2507 | 0.2700 | 0.3978 | | 0.2166 | 17.25 | 2760 | 0.3986 | 0.2853 | 0.3307 | 0.5154 | nan | 0.6550 | 0.3083 | 0.5705 | 0.6325 | 0.0442 | nan | 0.0205 | nan | 0.1784 | 0.2618 | 0.3047 | 0.0 | 0.6390 | 0.3038 | 0.5618 | 0.5883 | 0.0441 | nan | 0.0203 | nan | 0.1703 | 0.2369 | 0.2887 | | 0.096 | 17.38 | 2780 | 0.4041 | 0.2884 | 0.3367 | 0.4939 | nan | 0.6043 | 0.2952 | 0.5538 | 0.6037 | 0.0470 | nan | 0.0231 | nan | 0.2257 | 0.3329 | 0.3444 | 0.0 | 0.5912 | 0.2905 | 0.5458 | 0.5617 | 0.0470 | nan | 0.0228 | nan | 0.2106 | 0.2930 | 0.3217 | | 0.0839 | 17.5 | 2800 | 0.3773 | 0.3516 | 0.4152 | 0.6011 | nan | 0.7099 | 0.4639 | 0.6553 | 0.7115 | 0.0586 | nan | 0.0328 | nan | 0.3030 | 0.3879 | 0.4140 | 0.0 | 0.6884 | 0.4484 | 0.6341 | 0.6528 | 0.0586 | nan | 0.0324 | nan | 0.2784 | 0.3349 | 0.3877 | | 0.1185 | 17.62 | 2820 | 0.3753 | 0.3255 | 0.3816 | 0.5517 | nan | 0.6575 | 0.4173 | 0.6167 | 0.6411 | 0.0711 | nan | 0.0270 | nan | 0.2554 | 0.3842 | 0.3643 | 0.0 | 0.6400 | 0.4044 | 0.6019 | 0.5946 | 0.0708 | nan | 0.0267 | nan | 0.2403 | 0.3319 | 0.3448 | | 0.1155 | 17.75 | 2840 | 0.3742 | 0.3354 | 0.3939 | 0.5575 | nan | 0.6693 | 0.3661 | 0.6355 | 0.6422 | 0.0786 | nan | 0.0323 | nan | 0.2502 | 0.4593 | 0.4115 | 0.0 | 0.6510 | 0.3595 | 0.6193 | 0.5977 | 0.0776 | nan | 0.0320 | nan | 0.2347 | 0.3894 | 0.3928 | | 0.1311 | 17.88 | 2860 | 0.3862 | 0.3306 | 0.3882 | 0.5436 | nan | 0.6268 | 0.3595 | 0.6226 | 0.6840 | 0.0823 | nan | 0.0400 | nan | 0.2510 | 0.4016 | 0.4261 | 0.0 | 0.6125 | 0.3525 | 0.6087 | 0.6301 | 0.0816 | nan | 0.0394 | nan | 0.2348 | 0.3472 | 0.3995 | | 0.0059 | 18.0 | 2880 | 0.3997 | 0.2999 | 0.3509 | 0.5209 | nan | 0.6406 | 0.3559 | 0.6409 | 0.5987 | 0.0524 | nan | 0.0490 | nan | 0.2912 | 0.2650 | 0.2648 | 0.0 | 0.6221 | 0.3495 | 0.6051 | 0.5625 | 0.0523 | nan | 0.0474 | nan | 0.2684 | 0.2353 | 0.2563 | | 0.2505 | 18.12 | 2900 | 0.3948 | 0.3107 | 0.3648 | 0.5266 | nan | 0.6174 | 0.3923 | 0.5960 | 0.6209 | 0.0640 | nan | 0.0383 | nan | 0.2507 | 0.3099 | 0.3937 | 0.0 | 0.6028 | 0.3777 | 0.5739 | 0.5786 | 0.0634 | nan | 0.0375 | nan | 0.2350 | 0.2722 | 0.3660 | | 0.1181 | 18.25 | 2920 | 0.3764 | 0.3401 | 0.3999 | 0.5709 | nan | 0.6792 | 0.4368 | 0.6006 | 0.6382 | 0.0752 | nan | 0.0399 | nan | 0.2711 | 0.3991 | 0.4587 | 0.0 | 0.6604 | 0.4226 | 0.5815 | 0.5978 | 0.0736 | nan | 0.0392 | nan | 0.2526 | 0.3440 | 0.4290 | | 0.1169 | 18.38 | 2940 | 0.3737 | 0.3522 | 0.4141 | 0.5853 | nan | 0.6818 | 0.4810 | 0.6037 | 0.6819 | 0.1025 | nan | 0.0410 | nan | 0.2644 | 0.4201 | 0.4503 | 0.0 | 0.6615 | 0.4636 | 0.5918 | 0.6288 | 0.1004 | nan | 0.0400 | nan | 0.2486 | 0.3615 | 0.4256 | | 0.1075 | 18.5 | 2960 | 0.3985 | 0.3176 | 0.3711 | 0.5438 | nan | 0.6841 | 0.3154 | 0.5765 | 0.6472 | 0.0906 | nan | 0.0435 | nan | 0.2634 | 0.3396 | 0.3801 | 0.0 | 0.6643 | 0.3104 | 0.5673 | 0.6015 | 0.0897 | nan | 0.0423 | nan | 0.2444 | 0.3020 | 0.3537 | | 0.1468 | 18.62 | 2980 | 0.3809 | 0.3592 | 0.4249 | 0.5883 | nan | 0.6884 | 0.4059 | 0.6539 | 0.6849 | 0.0905 | nan | 0.0482 | nan | 0.2846 | 0.4887 | 0.4791 | 0.0 | 0.6685 | 0.3996 | 0.6290 | 0.6350 | 0.0881 | nan | 0.0469 | nan | 0.2632 | 0.4144 | 0.4469 | | 0.1438 | 18.75 | 3000 | 0.4059 | 0.3267 | 0.3847 | 0.5308 | nan | 0.6163 | 0.4193 | 0.5594 | 0.6195 | 0.1263 | nan | 0.0415 | nan | 0.2273 | 0.4443 | 0.4081 | 0.0 | 0.6014 | 0.4035 | 0.5470 | 0.5813 | 0.1224 | nan | 0.0406 | nan | 0.2127 | 0.3774 | 0.3810 | | 0.1021 | 18.88 | 3020 | 0.3904 | 0.3525 | 0.4154 | 0.5957 | nan | 0.7113 | 0.4367 | 0.6382 | 0.7089 | 0.1015 | nan | 0.0432 | nan | 0.2595 | 0.4177 | 0.4213 | 0.0 | 0.6907 | 0.4264 | 0.6212 | 0.6528 | 0.0988 | nan | 0.0422 | nan | 0.2428 | 0.3582 | 0.3923 | | 0.0308 | 19.0 | 3040 | 0.3790 | 0.3502 | 0.4129 | 0.5842 | nan | 0.6850 | 0.4325 | 0.6381 | 0.6733 | 0.0994 | nan | 0.0429 | nan | 0.2607 | 0.4038 | 0.4803 | 0.0 | 0.6662 | 0.4228 | 0.6189 | 0.6261 | 0.0967 | nan | 0.0420 | nan | 0.2443 | 0.3470 | 0.4380 | | 0.2127 | 19.12 | 3060 | 0.3938 | 0.3268 | 0.3842 | 0.5413 | nan | 0.6469 | 0.3713 | 0.5834 | 0.6338 | 0.0856 | nan | 0.0419 | nan | 0.2657 | 0.4172 | 0.4118 | 0.0 | 0.6307 | 0.3641 | 0.5711 | 0.5914 | 0.0838 | nan | 0.0410 | nan | 0.2465 | 0.3570 | 0.3822 | | 0.1228 | 19.25 | 3080 | 0.3930 | 0.3371 | 0.3961 | 0.5707 | nan | 0.6900 | 0.3839 | 0.5852 | 0.6874 | 0.0759 | nan | 0.0337 | nan | 0.2645 | 0.4055 | 0.4391 | 0.0 | 0.6701 | 0.3767 | 0.5733 | 0.6383 | 0.0745 | nan | 0.0331 | nan | 0.2462 | 0.3494 | 0.4094 | | 0.0882 | 19.38 | 3100 | 0.3940 | 0.3372 | 0.3954 | 0.5712 | nan | 0.6829 | 0.4213 | 0.6223 | 0.6689 | 0.0740 | nan | 0.0338 | nan | 0.2622 | 0.3936 | 0.3997 | 0.0 | 0.6636 | 0.4108 | 0.6046 | 0.6226 | 0.0729 | nan | 0.0332 | nan | 0.2445 | 0.3419 | 0.3776 | | 0.0798 | 19.5 | 3120 | 0.4141 | 0.3078 | 0.3595 | 0.5247 | nan | 0.6568 | 0.2977 | 0.5794 | 0.6253 | 0.0788 | nan | 0.0341 | nan | 0.2380 | 0.3701 | 0.3549 | 0.0 | 0.6388 | 0.2941 | 0.5651 | 0.5852 | 0.0775 | nan | 0.0332 | nan | 0.2237 | 0.3256 | 0.3351 | | 0.2337 | 19.62 | 3140 | 0.3981 | 0.3068 | 0.3583 | 0.5271 | nan | 0.6597 | 0.3512 | 0.5748 | 0.5754 | 0.0715 | nan | 0.0304 | nan | 0.2115 | 0.3767 | 0.3733 | 0.0 | 0.6439 | 0.3439 | 0.5569 | 0.5412 | 0.0701 | nan | 0.0299 | nan | 0.2004 | 0.3301 | 0.3515 | | 0.265 | 19.75 | 3160 | 0.3878 | 0.3441 | 0.4051 | 0.5883 | nan | 0.7216 | 0.4309 | 0.6112 | 0.6456 | 0.1042 | nan | 0.0316 | nan | 0.2539 | 0.3974 | 0.4499 | 0.0 | 0.6987 | 0.4186 | 0.5900 | 0.6016 | 0.1009 | nan | 0.0311 | nan | 0.2385 | 0.3425 | 0.4188 | | 0.1612 | 19.88 | 3180 | 0.3921 | 0.3399 | 0.4015 | 0.5622 | nan | 0.6680 | 0.3758 | 0.6031 | 0.6745 | 0.1219 | nan | 0.0368 | nan | 0.2783 | 0.4113 | 0.4439 | 0.0 | 0.6509 | 0.3660 | 0.5870 | 0.6189 | 0.1176 | nan | 0.0361 | nan | 0.2584 | 0.3531 | 0.4113 | | 0.119 | 20.0 | 3200 | 0.3930 | 0.3381 | 0.3973 | 0.5638 | nan | 0.6846 | 0.3830 | 0.6002 | 0.6528 | 0.1236 | nan | 0.0364 | nan | 0.2504 | 0.4254 | 0.4196 | 0.0 | 0.6659 | 0.3747 | 0.5862 | 0.6027 | 0.1201 | nan | 0.0357 | nan | 0.2355 | 0.3642 | 0.3958 | | 0.2127 | 20.12 | 3220 | 0.4055 | 0.3262 | 0.3828 | 0.5438 | nan | 0.6687 | 0.3572 | 0.5735 | 0.6260 | 0.1227 | nan | 0.0452 | nan | 0.2759 | 0.3804 | 0.3954 | 0.0 | 0.6509 | 0.3480 | 0.5618 | 0.5802 | 0.1193 | nan | 0.0442 | nan | 0.2554 | 0.3293 | 0.3729 | | 0.1082 | 20.25 | 3240 | 0.4076 | 0.3233 | 0.3790 | 0.5477 | nan | 0.6622 | 0.3678 | 0.6170 | 0.6725 | 0.1201 | nan | 0.0408 | nan | 0.2368 | 0.3502 | 0.3435 | 0.0 | 0.6445 | 0.3588 | 0.5987 | 0.6188 | 0.1167 | nan | 0.0400 | nan | 0.2242 | 0.3062 | 0.3253 | | 0.1413 | 20.38 | 3260 | 0.3997 | 0.3315 | 0.3894 | 0.5515 | nan | 0.6595 | 0.3799 | 0.5992 | 0.6447 | 0.1206 | nan | 0.0406 | nan | 0.2610 | 0.3701 | 0.4294 | 0.0 | 0.6426 | 0.3715 | 0.5838 | 0.5996 | 0.1176 | nan | 0.0399 | nan | 0.2422 | 0.3200 | 0.3973 | | 0.1308 | 20.5 | 3280 | 0.4210 | 0.3100 | 0.3624 | 0.5150 | nan | 0.6198 | 0.3069 | 0.5631 | 0.6500 | 0.1115 | nan | 0.0402 | nan | 0.2334 | 0.3535 | 0.3831 | 0.0 | 0.6049 | 0.3025 | 0.5540 | 0.6033 | 0.1102 | nan | 0.0393 | nan | 0.2189 | 0.3098 | 0.3574 | | 0.0599 | 20.62 | 3300 | 0.3929 | 0.3457 | 0.4067 | 0.5822 | nan | 0.6963 | 0.4452 | 0.6235 | 0.6543 | 0.1024 | nan | 0.0453 | nan | 0.2641 | 0.3904 | 0.4386 | 0.0 | 0.6756 | 0.4337 | 0.6062 | 0.6087 | 0.1002 | nan | 0.0443 | nan | 0.2460 | 0.3365 | 0.4061 | | 0.0948 | 20.75 | 3320 | 0.3978 | 0.3346 | 0.3933 | 0.5553 | nan | 0.6649 | 0.4108 | 0.6084 | 0.6221 | 0.1142 | nan | 0.0400 | nan | 0.2518 | 0.4197 | 0.4076 | 0.0 | 0.6479 | 0.3990 | 0.5918 | 0.5812 | 0.1109 | nan | 0.0393 | nan | 0.2337 | 0.3621 | 0.3800 | | 0.0418 | 20.88 | 3340 | 0.3987 | 0.3413 | 0.4016 | 0.5691 | nan | 0.6820 | 0.4091 | 0.6041 | 0.6482 | 0.1110 | nan | 0.0344 | nan | 0.2501 | 0.4283 | 0.4476 | 0.0 | 0.6632 | 0.3996 | 0.5894 | 0.6026 | 0.1079 | nan | 0.0337 | nan | 0.2342 | 0.3677 | 0.4142 | | 0.2251 | 21.0 | 3360 | 0.4091 | 0.3067 | 0.3576 | 0.5235 | nan | 0.6628 | 0.3239 | 0.5825 | 0.6036 | 0.1097 | nan | 0.0348 | nan | 0.2448 | 0.3554 | 0.3010 | 0.0 | 0.6446 | 0.3177 | 0.5663 | 0.5655 | 0.1064 | nan | 0.0340 | nan | 0.2288 | 0.3149 | 0.2890 | | 0.0887 | 21.12 | 3380 | 0.3958 | 0.3502 | 0.4144 | 0.5830 | nan | 0.6798 | 0.4381 | 0.6436 | 0.7003 | 0.0985 | nan | 0.0553 | nan | 0.3298 | 0.3692 | 0.4148 | 0.0 | 0.6608 | 0.4252 | 0.6204 | 0.6454 | 0.0957 | nan | 0.0537 | nan | 0.2975 | 0.3220 | 0.3809 | | 0.0981 | 21.25 | 3400 | 0.4053 | 0.3346 | 0.3938 | 0.5521 | nan | 0.6416 | 0.4158 | 0.6278 | 0.6327 | 0.1152 | nan | 0.0472 | nan | 0.2642 | 0.3607 | 0.4387 | 0.0 | 0.6267 | 0.4034 | 0.6096 | 0.5906 | 0.1116 | nan | 0.0460 | nan | 0.2430 | 0.3153 | 0.3998 | | 0.129 | 21.38 | 3420 | 0.4044 | 0.3195 | 0.3724 | 0.5357 | nan | 0.6534 | 0.3715 | 0.5931 | 0.6088 | 0.1166 | nan | 0.0411 | nan | 0.2463 | 0.3438 | 0.3765 | 0.0 | 0.6364 | 0.3635 | 0.5791 | 0.5711 | 0.1137 | nan | 0.0403 | nan | 0.2292 | 0.3042 | 0.3575 | | 0.0612 | 21.5 | 3440 | 0.3903 | 0.3486 | 0.4101 | 0.5821 | nan | 0.6849 | 0.4416 | 0.6240 | 0.6569 | 0.1031 | nan | 0.0424 | nan | 0.2770 | 0.3685 | 0.4925 | 0.0 | 0.6663 | 0.4307 | 0.6044 | 0.6109 | 0.0999 | nan | 0.0416 | nan | 0.2569 | 0.3219 | 0.4536 | | 0.1272 | 21.62 | 3460 | 0.4190 | 0.3084 | 0.3600 | 0.5155 | nan | 0.6333 | 0.3347 | 0.5558 | 0.6046 | 0.0905 | nan | 0.0351 | nan | 0.2328 | 0.4021 | 0.3511 | 0.0 | 0.6178 | 0.3281 | 0.5458 | 0.5679 | 0.0895 | nan | 0.0345 | nan | 0.2190 | 0.3491 | 0.3325 | | 0.0396 | 21.75 | 3480 | 0.4083 | 0.3243 | 0.3801 | 0.5463 | nan | 0.6695 | 0.3636 | 0.6050 | 0.6290 | 0.0988 | nan | 0.0423 | nan | 0.2516 | 0.3892 | 0.3716 | 0.0 | 0.6523 | 0.3566 | 0.5879 | 0.5871 | 0.0963 | nan | 0.0414 | nan | 0.2360 | 0.3372 | 0.3485 | | 0.1612 | 21.88 | 3500 | 0.4034 | 0.3276 | 0.3836 | 0.5571 | nan | 0.6817 | 0.4096 | 0.5779 | 0.6470 | 0.1009 | nan | 0.0430 | nan | 0.2657 | 0.3577 | 0.3690 | 0.0 | 0.6632 | 0.3995 | 0.5630 | 0.6014 | 0.0982 | nan | 0.0420 | nan | 0.2475 | 0.3112 | 0.3502 | | 0.168 | 22.0 | 3520 | 0.3960 | 0.3299 | 0.3866 | 0.5620 | nan | 0.6894 | 0.3956 | 0.5776 | 0.6484 | 0.0963 | nan | 0.0393 | nan | 0.2551 | 0.3656 | 0.4123 | 0.0 | 0.6689 | 0.3867 | 0.5646 | 0.6040 | 0.0935 | nan | 0.0384 | nan | 0.2394 | 0.3177 | 0.3853 | | 0.1447 | 22.12 | 3540 | 0.4078 | 0.3373 | 0.3970 | 0.5641 | nan | 0.6879 | 0.3803 | 0.5834 | 0.6534 | 0.0952 | nan | 0.0500 | nan | 0.2945 | 0.4033 | 0.4248 | 0.0 | 0.6674 | 0.3724 | 0.5691 | 0.6079 | 0.0923 | nan | 0.0486 | nan | 0.2704 | 0.3478 | 0.3974 | | 0.053 | 22.25 | 3560 | 0.4011 | 0.3369 | 0.3956 | 0.5696 | nan | 0.7026 | 0.4088 | 0.5707 | 0.6348 | 0.0921 | nan | 0.0507 | nan | 0.2935 | 0.3820 | 0.4256 | 0.0 | 0.6803 | 0.3990 | 0.5570 | 0.5941 | 0.0895 | nan | 0.0494 | nan | 0.2709 | 0.3313 | 0.3978 | | 0.1187 | 22.38 | 3580 | 0.4053 | 0.3330 | 0.3913 | 0.5555 | nan | 0.6709 | 0.3798 | 0.5832 | 0.6476 | 0.0971 | nan | 0.0440 | nan | 0.2728 | 0.3996 | 0.4266 | 0.0 | 0.6529 | 0.3718 | 0.5682 | 0.6036 | 0.0940 | nan | 0.0429 | nan | 0.2524 | 0.3462 | 0.3977 | | 0.1373 | 22.5 | 3600 | 0.4094 | 0.3264 | 0.3829 | 0.5411 | nan | 0.6504 | 0.3713 | 0.5818 | 0.6355 | 0.1050 | nan | 0.0402 | nan | 0.2590 | 0.4045 | 0.3984 | 0.0 | 0.6343 | 0.3624 | 0.5688 | 0.5951 | 0.1009 | nan | 0.0394 | nan | 0.2407 | 0.3515 | 0.3709 | | 0.144 | 22.62 | 3620 | 0.4051 | 0.3243 | 0.3792 | 0.5460 | nan | 0.6617 | 0.3776 | 0.6009 | 0.6535 | 0.1049 | nan | 0.0384 | nan | 0.2643 | 0.3601 | 0.3512 | 0.0 | 0.6448 | 0.3688 | 0.5872 | 0.6082 | 0.1005 | nan | 0.0377 | nan | 0.2463 | 0.3173 | 0.3320 | | 0.0716 | 22.75 | 3640 | 0.4071 | 0.3209 | 0.3750 | 0.5386 | nan | 0.6443 | 0.3817 | 0.5979 | 0.6464 | 0.1080 | nan | 0.0381 | nan | 0.2470 | 0.3450 | 0.3667 | 0.0 | 0.6288 | 0.3727 | 0.5835 | 0.6006 | 0.1032 | nan | 0.0374 | nan | 0.2315 | 0.3057 | 0.3453 | | 0.0869 | 22.88 | 3660 | 0.4162 | 0.3118 | 0.3636 | 0.5269 | nan | 0.6438 | 0.3654 | 0.5745 | 0.6012 | 0.1058 | nan | 0.0359 | nan | 0.2423 | 0.3257 | 0.3781 | 0.0 | 0.6281 | 0.3557 | 0.5610 | 0.5643 | 0.1014 | nan | 0.0353 | nan | 0.2266 | 0.2902 | 0.3554 | | 0.0846 | 23.0 | 3680 | 0.4079 | 0.3326 | 0.3902 | 0.5584 | nan | 0.6786 | 0.3830 | 0.5896 | 0.6438 | 0.1063 | nan | 0.0384 | nan | 0.2539 | 0.3928 | 0.4253 | 0.0 | 0.6605 | 0.3742 | 0.5765 | 0.5994 | 0.1019 | nan | 0.0376 | nan | 0.2376 | 0.3425 | 0.3957 | | 0.1137 | 23.12 | 3700 | 0.4062 | 0.3270 | 0.3827 | 0.5498 | nan | 0.6647 | 0.3757 | 0.6069 | 0.6502 | 0.1083 | nan | 0.0380 | nan | 0.2465 | 0.3729 | 0.3814 | 0.0 | 0.6474 | 0.3675 | 0.5903 | 0.6042 | 0.1038 | nan | 0.0372 | nan | 0.2317 | 0.3290 | 0.3588 | | 0.109 | 23.25 | 3720 | 0.4160 | 0.3217 | 0.3761 | 0.5445 | nan | 0.6679 | 0.3698 | 0.5816 | 0.6386 | 0.1013 | nan | 0.0424 | nan | 0.2568 | 0.3538 | 0.3723 | 0.0 | 0.6503 | 0.3618 | 0.5679 | 0.5943 | 0.0978 | nan | 0.0415 | nan | 0.2394 | 0.3129 | 0.3514 | | 0.0314 | 23.38 | 3740 | 0.4166 | 0.3156 | 0.3685 | 0.5342 | nan | 0.6615 | 0.3651 | 0.5650 | 0.6126 | 0.1027 | nan | 0.0433 | nan | 0.2581 | 0.3479 | 0.3605 | 0.0 | 0.6445 | 0.3558 | 0.5521 | 0.5746 | 0.0988 | nan | 0.0424 | nan | 0.2393 | 0.3083 | 0.3401 | | 0.1021 | 23.5 | 3760 | 0.4215 | 0.3218 | 0.3774 | 0.5350 | nan | 0.6494 | 0.3625 | 0.5961 | 0.6217 | 0.1038 | nan | 0.0448 | nan | 0.2675 | 0.3971 | 0.3539 | 0.0 | 0.6335 | 0.3532 | 0.5796 | 0.5818 | 0.0997 | nan | 0.0438 | nan | 0.2465 | 0.3460 | 0.3336 | | 0.0086 | 23.62 | 3780 | 0.4121 | 0.3224 | 0.3779 | 0.5430 | nan | 0.6630 | 0.3837 | 0.5842 | 0.6257 | 0.1028 | nan | 0.0432 | nan | 0.2651 | 0.3702 | 0.3634 | 0.0 | 0.6461 | 0.3725 | 0.5697 | 0.5847 | 0.0990 | nan | 0.0423 | nan | 0.2451 | 0.3231 | 0.3413 | | 0.1086 | 23.75 | 3800 | 0.4078 | 0.3309 | 0.3892 | 0.5521 | nan | 0.6630 | 0.3944 | 0.5991 | 0.6368 | 0.1092 | nan | 0.0444 | nan | 0.2721 | 0.3831 | 0.4007 | 0.0 | 0.6464 | 0.3824 | 0.5830 | 0.5932 | 0.1047 | nan | 0.0435 | nan | 0.2511 | 0.3331 | 0.3716 | | 0.1121 | 23.88 | 3820 | 0.4119 | 0.3221 | 0.3780 | 0.5369 | nan | 0.6487 | 0.3695 | 0.5765 | 0.6271 | 0.1155 | nan | 0.0431 | nan | 0.2546 | 0.3730 | 0.3941 | 0.0 | 0.6329 | 0.3588 | 0.5643 | 0.5842 | 0.1105 | nan | 0.0422 | nan | 0.2368 | 0.3252 | 0.3666 | | 0.1118 | 24.0 | 3840 | 0.4161 | 0.3239 | 0.3799 | 0.5430 | nan | 0.6645 | 0.3623 | 0.5649 | 0.6499 | 0.1168 | nan | 0.0422 | nan | 0.2492 | 0.3927 | 0.3769 | 0.0 | 0.6471 | 0.3532 | 0.5559 | 0.6011 | 0.1122 | nan | 0.0413 | nan | 0.2332 | 0.3407 | 0.3547 | | 0.0399 | 24.12 | 3860 | 0.4107 | 0.3313 | 0.3888 | 0.5557 | nan | 0.6795 | 0.3847 | 0.5899 | 0.6415 | 0.1208 | nan | 0.0444 | nan | 0.2652 | 0.3843 | 0.3891 | 0.0 | 0.6607 | 0.3748 | 0.5767 | 0.5956 | 0.1152 | nan | 0.0435 | nan | 0.2462 | 0.3345 | 0.3660 | | 0.0892 | 24.25 | 3880 | 0.4233 | 0.3200 | 0.3743 | 0.5371 | nan | 0.6571 | 0.3608 | 0.5803 | 0.6290 | 0.1144 | nan | 0.0414 | nan | 0.2556 | 0.3617 | 0.3685 | 0.0 | 0.6402 | 0.3525 | 0.5683 | 0.5850 | 0.1098 | nan | 0.0406 | nan | 0.2377 | 0.3184 | 0.3476 | | 0.0504 | 24.38 | 3900 | 0.4126 | 0.3272 | 0.3838 | 0.5469 | nan | 0.6627 | 0.3726 | 0.5902 | 0.6472 | 0.1122 | nan | 0.0434 | nan | 0.2626 | 0.3820 | 0.3810 | 0.0 | 0.6457 | 0.3638 | 0.5776 | 0.5995 | 0.1075 | nan | 0.0425 | nan | 0.2436 | 0.3331 | 0.3583 | | 0.1415 | 24.5 | 3920 | 0.4125 | 0.3313 | 0.3890 | 0.5544 | nan | 0.6739 | 0.3827 | 0.5877 | 0.6506 | 0.1154 | nan | 0.0461 | nan | 0.2685 | 0.3880 | 0.3885 | 0.0 | 0.6554 | 0.3725 | 0.5757 | 0.6023 | 0.1107 | nan | 0.0451 | nan | 0.2488 | 0.3378 | 0.3647 | | 0.0919 | 24.62 | 3940 | 0.4155 | 0.3205 | 0.3752 | 0.5383 | nan | 0.6617 | 0.3538 | 0.5750 | 0.6351 | 0.1112 | nan | 0.0444 | nan | 0.2523 | 0.3764 | 0.3666 | 0.0 | 0.6444 | 0.3457 | 0.5639 | 0.5899 | 0.1069 | nan | 0.0434 | nan | 0.2354 | 0.3296 | 0.3458 | | 0.0443 | 24.75 | 3960 | 0.4101 | 0.3270 | 0.3837 | 0.5447 | nan | 0.6616 | 0.3704 | 0.5699 | 0.6538 | 0.1158 | nan | 0.0460 | nan | 0.2670 | 0.3933 | 0.3753 | 0.0 | 0.6444 | 0.3607 | 0.5605 | 0.6039 | 0.1111 | nan | 0.0450 | nan | 0.2475 | 0.3427 | 0.3542 | | 0.1815 | 24.88 | 3980 | 0.4182 | 0.3204 | 0.3750 | 0.5340 | nan | 0.6499 | 0.3529 | 0.5731 | 0.6316 | 0.1129 | nan | 0.0422 | nan | 0.2545 | 0.3768 | 0.3816 | 0.0 | 0.6337 | 0.3452 | 0.5621 | 0.5873 | 0.1083 | nan | 0.0413 | nan | 0.2370 | 0.3306 | 0.3586 | | 0.005 | 25.0 | 4000 | 0.4155 | 0.3349 | 0.3935 | 0.5591 | nan | 0.6815 | 0.3865 | 0.5805 | 0.6544 | 0.1155 | nan | 0.0497 | nan | 0.2779 | 0.3995 | 0.3959 | 0.0 | 0.6626 | 0.3764 | 0.5699 | 0.6056 | 0.1108 | nan | 0.0485 | nan | 0.2565 | 0.3465 | 0.3718 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
NovusResearch/Thestral-7B-0.1-TR-EN
NovusResearch
2024-01-25T10:37:18Z
0
1
transformers
[ "transformers", "text-generation", "tr", "en", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T09:06:30Z
--- license: mit language: - tr - en library_name: transformers pipeline_tag: text-generation --- # Model Card: Thestral-7B-0.1-TR-EN ## Version: Based on Mistral-7B-v0.1: Further pretrained on a large corpus of English-to-Turkish dataset. The training dataset consists of approximately 490,000 pairs of translated texts. These pairs are predominantly sourced from movie subtitles, offering a diverse range of linguistic structures, idiomatic expressions, and cultural references. This rich dataset ensures the model is well-equipped to handle a variety of translation tasks within its domain. ## Model Training Details regarding the model's training procedure, architecture, and fine-tuning processes will be extensively covered in the upcoming paper. ## Example Outputs (Finetuned Model) ``` Question: Acıbadem Mahallesi’nin sessiz ve huzurlu bir sokağından bugünlere uzanan Erman Yaşar - Emre Özcan ikilisi Atıf Bey Sokak'ın yeni bölümünde; Galatasaray'ın Trabzonspor'u deplasmanda 5-1 mağlup etmesini, Wilfried Zaha'nın 9 numara performansını, Mauro Icardi'nin dönmesiyle birlikte oluşabilecek hücum rotasyonunu, Fenerbahçe'nin Samsunspor ile berabere kalmasını, İsmail Kartal'ın yaptığı değişiklikleri, Kenan Yıldız'ın Juventus'ta ilk 11'e yerleşmesini ve Euro 2024'teki hücum gücümüzü konuştu. Answer: From the quiet and peaceful street of Acibadem Mahallesi to today; Erman Yaşar - Emre Özcan duo in the new section of Atif Bey Street; Galatasaray beating Trabzonspor 5-1 in the matchday, Wilfried Zaha's performance at number 9, Mauro Icardi's return, Fenerbahçe drawing with Samsunspor, Ismail Kartal's changes, Kenan Yıldız's place in the starting XI at Juventus and our power for Euro 2024 were discussed. ``` ## Example Outputs (Base Model) ``` Question: Acıbadem Mahallesi’nin sessiz ve huzurlu bir sokağından bugünlere uzanan Erman Yaşar - Emre Özcan ikilisi Atıf Bey Sokak'ın yeni bölümünde; Galatasaray'ın Trabzonspor'u deplasmanda 5-1 mağlup etmesini, Wilfried Zaha'nın 9 numara performansını, Mauro Icardi'nin dönmesiyle birlikte oluşabilecek hücum rotasyonunu, Fenerbahçe'nin Samsunspor ile berabere kalmasını, İsmail Kartal'ın yaptığı değişiklikleri, Kenan Yıldız'ın Juventus'ta ilk 11'e yerleşmesini ve Euro 2024'teki hücum gücümüzü konuştu. Answer: The sentence is about a street in Acibadem neighborhood that is quiet and peaceful. The sentence talks about the new section of Atif Bey Street, which extends from today to the past. It also mentions the victory of Galatasaray over Trabzonspor in the match, the performance of Wilfried Zaha with number 9, the return of Mauro Icardi, the draw between Fenerbahce and Samsunspor, the changes made by Ismail Kartal, and the first eleven of Kenan Yildiz at Juventus.</s> ``` ```python model = AutoModelForCausalLM.from_pretrained("NovusResearch/Thestral-7B-0.1-TR-EN", use_flash_attention_2=True, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True) ```
Prathyash/phi-1_5-finetuned-gsm8k
Prathyash
2024-01-25T10:31:56Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:microsoft/phi-1_5", "base_model:adapter:microsoft/phi-1_5", "license:mit", "region:us" ]
null
2024-01-24T07:02:16Z
--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-1_5 model-index: - name: phi-1_5-finetuned-gsm8k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-1_5-finetuned-gsm8k This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 100 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
LazarusNLP/all-indobert-base
LazarusNLP
2024-01-25T10:28:59Z
75
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "ind", "dataset:indonli", "dataset:indolem/indo_story_cloze", "dataset:unicamp-dl/mmarco", "dataset:miracl/miracl", "dataset:SEACrowd/wrete", "dataset:SEACrowd/indolem_ntp", "dataset:khalidalt/tydiqa-goldp", "dataset:SEACrowd/facqa", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-01-25T09:37:10Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - indonli - indolem/indo_story_cloze - unicamp-dl/mmarco - miracl/miracl - SEACrowd/wrete - SEACrowd/indolem_ntp - khalidalt/tydiqa-goldp - SEACrowd/facqa language: - ind --- # LazarusNLP/all-indobert-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('LazarusNLP/all-indobert-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('LazarusNLP/all-indobert-base') model = AutoModel.from_pretrained('LazarusNLP/all-indobert-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=LazarusNLP/all-indobert-base) ## Training The model was trained with the parameters: **DataLoader**: `MultiDatasetDataLoader.MultiDatasetDataLoader` of length 352 with parameters: ``` {'batch_size_pairs': 384, 'batch_size_triplets': 256} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 176, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
anantg/zephyr-7b-beta-finetuned
anantg
2024-01-25T10:21:56Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-25T10:21:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kralley/mistral-7b-da-instr
Kralley
2024-01-25T10:20:59Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-23T14:00:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
arun100/whisper-base-hi-4
arun100
2024-01-25T10:20:39Z
61
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_16_0", "base_model:arun100/whisper-base-hi-3", "base_model:finetune:arun100/whisper-base-hi-3", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-25T06:09:30Z
--- language: - hi license: apache-2.0 base_model: arun100/whisper-base-hi-3 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Base Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 hi type: mozilla-foundation/common_voice_16_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 27.6637932833796 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Hindi This model is a fine-tuned version of [arun100/whisper-base-hi-3](https://huggingface.co/arun100/whisper-base-hi-3) on the mozilla-foundation/common_voice_16_0 hi dataset. It achieves the following results on the evaluation set: - Loss: 0.4681 - Wer: 27.6638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1251 | 13.16 | 1000 | 0.4681 | 27.6638 | | 0.0812 | 26.32 | 2000 | 0.5046 | 28.2065 | | 0.0584 | 39.47 | 3000 | 0.5393 | 28.3046 | | 0.0441 | 52.63 | 4000 | 0.5639 | 28.4924 | | 0.0392 | 65.79 | 5000 | 0.5734 | 28.5863 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
teticio/audio-diffusion-instrumental-hiphop-256
teticio
2024-01-25T10:06:12Z
68
6
diffusers
[ "diffusers", "tensorboard", "audio", "spectrograms", "dataset:teticio/audio-diffusion-instrumental-hiphop-256", "diffusers:AudioDiffusionPipeline", "region:us" ]
null
2022-09-17T14:51:49Z
--- tags: - audio - spectrograms datasets: - teticio/audio-diffusion-instrumental-hiphop-256 --- Denoising Diffusion Probabilistic Model trained on [teticio/audio-diffusion-instrumental-hiphop-256](https://huggingface.co/datasets/teticio/audio-diffusion-instrumental-hiphop-256) to generate mel spectrograms of 256x256 corresponding to 5 seconds of audio. The audio consists of samples of instrumental Hip Hop music. The code to convert from audio to spectrogram and vice versa can be found in https://github.com/teticio/audio-diffusion along with scripts to train and run inference.
Viiiz/mistral-finetuned-alpaca
Viiiz
2024-01-25T10:06:10Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "base_model:adapter:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "license:apache-2.0", "region:us" ]
null
2024-01-24T04:57:12Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ model-index: - name: mistral-finetuned-alpaca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-finetuned-alpaca This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - training_steps: 250 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.1
teticio/audio-diffusion-breaks-256
teticio
2024-01-25T10:05:00Z
15
4
diffusers
[ "diffusers", "tensorboard", "audio", "spectrograms", "dataset:teticio/audio-diffusion-breaks-256", "diffusers:AudioDiffusionPipeline", "region:us" ]
null
2022-08-28T19:27:49Z
--- tags: - audio - spectrograms datasets: - teticio/audio-diffusion-breaks-256 --- Denoising Diffusion Probabilistic Model trained on [teticio/audio-diffusion-breaks-256](https://huggingface.co/datasets/teticio/audio-diffusion-breaks-256) to generate mel spectrograms of 256x256 corresponding to 5 seconds of audio. The audio consists of 30,000 samples that have been used in music, sourced from [WhoSampled](https://whosampled.com) and [YouTube](https://youtube.com). The code to convert from audio to spectrogram and vice versa can be found in https://github.com/teticio/audio-diffusion along with scripts to train and run inference.
teticio/audio-diffusion-ddim-256
teticio
2024-01-25T10:04:00Z
38
3
diffusers
[ "diffusers", "tensorboard", "audio", "spectrograms", "dataset:teticio/audio-diffusion-256", "diffusers:AudioDiffusionPipeline", "region:us" ]
null
2022-10-22T05:46:58Z
--- tags: - audio - spectrograms datasets: - teticio/audio-diffusion-256 --- De-noising Diffusion Implicit Model trained on teticio/audio-diffusion-256 to generate mel spectrograms of 256x256 corresponding to 5 seconds of audio. The code to convert from audio to spectrogram and vice versa can be found in https://github.com/teticio/audio-diffusion along with scripts to train and run inference.
teticio/latent-audio-diffusion-ddim-256
teticio
2024-01-25T10:03:27Z
27
1
diffusers
[ "diffusers", "tensorboard", "audio", "spectrograms", "dataset:teticio/audio-diffusion-256", "diffusers:AudioDiffusionPipeline", "region:us" ]
null
2022-11-05T14:11:26Z
--- tags: - audio - spectrograms datasets: - teticio/audio-diffusion-256 --- Latent De-noising Diffusion Implicit Model trained on [teticio/audio-diffusion-256](https://huggingface.co/datasets/teticio/audio-diffusion-256) to generate mel spectrograms of 256x256 corresponding to 5 seconds of audio. The code to convert from audio to spectrogram and vice versa can be found in https://github.com/teticio/audio-diffusion along with scripts to train and run inference.
teticio/audio-diffusion-256
teticio
2024-01-25T10:01:05Z
1,648
6
diffusers
[ "diffusers", "tensorboard", "audio", "spectrograms", "dataset:teticio/audio-diffusion-256", "diffusers:AudioDiffusionPipeline", "region:us" ]
null
2022-08-16T21:19:58Z
--- tags: - audio - spectrograms datasets: - teticio/audio-diffusion-256 --- De-noising Diffusion Probabilistic Model trained on [teticio/audio-diffusion-256](https://huggingface.co/datasets/teticio/audio-diffusion-256) to generate mel spectrograms of 256x256 corresponding to 5 seconds of audio. The code to convert from audio to spectrogram and vice versa can be found in https://github.com/teticio/audio-diffusion along with scripts to train and run inference.
1-13-am/xlm-roberta-base-finetuned-panx-de-fr
1-13-am
2024-01-25T09:54:16Z
92
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-25T09:40:36Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1759 - F1: 0.8555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2831 | 1.0 | 835 | 0.1882 | 0.8223 | | 0.1539 | 2.0 | 1670 | 0.1697 | 0.8405 | | 0.0988 | 3.0 | 2505 | 0.1759 | 0.8555 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
Shreyas0706/Zephyr-3B-Legal
Shreyas0706
2024-01-25T09:52:37Z
118
0
transformers
[ "transformers", "safetensors", "stablelm_epoch", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2024-01-25T09:47:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kanh1/kanha-0.1-2.5-Mistral-7B
kanh1
2024-01-25T09:48:31Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T09:46:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
moduMM/sooyongkim230125
moduMM
2024-01-25T09:38:54Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:maywell/Synatra-7B-v0.3-dpo", "base_model:adapter:maywell/Synatra-7B-v0.3-dpo", "region:us" ]
null
2024-01-25T08:21:03Z
--- library_name: peft base_model: maywell/Synatra-7B-v0.3-dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
dstefa/roberta-base_topic_classification_nyt_news
dstefa
2024-01-25T09:31:05Z
35,463
7
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "topic", "classification", "news", "dataset:dstefa/New_York_Times_Topics", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-16T20:26:22Z
--- license: mit base_model: roberta-base tags: - topic - classification - news - roberta metrics: - accuracy - f1 - precision - recall datasets: - dstefa/New_York_Times_Topics widget: - text: >- Olympic champion Kostas Kederis today left hospital ahead of his date with IOC inquisitors claiming his innocence and vowing. example_title: Sports - text: >- Although many individuals are doing fever checks to screen for Covid-19, many Covid-19 patients never have a fever. example_title: Health and Wellness - text: >- Twelve myths about Russia's War in Ukraine exposed example_title: Crime model-index: - name: roberta-base_topic_classification_nyt_news results: - task: name: Text Classification type: text-classification dataset: name: New_York_Times_Topics type: News metrics: - type: F1 name: F1 value: 0.91 - type: accuracy name: accuracy value: 0.91 - type: precision name: precision value: 0.91 - type: recall name: recall value: 0.91 pipeline_tag: text-classification --- # roberta-base_topic_classification_nyt_news This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the NYT News dataset, which contains 256,000 news titles from articles published from 2000 to the present (https://www.kaggle.com/datasets/aryansingh0909/nyt-articles-21m-2000-present). It achieves the following results on the test set of 51200 cases: - Accuracy: 0.91 - F1: 0.91 - Precision: 0.91 - Recall: 0.91 ## Training data Training data was classified as follow: class |Description -|- 0 |Sports 1 |Arts, Culture, and Entertainment 2 |Business and Finance 3 |Health and Wellness 4 |Lifestyle and Fashion 5 |Science and Technology 6 |Politics 7 |Crime ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3192 | 1.0 | 20480 | 0.4078 | 0.8865 | 0.8859 | 0.8892 | 0.8865 | | 0.2863 | 2.0 | 40960 | 0.4271 | 0.8972 | 0.8970 | 0.8982 | 0.8972 | | 0.1979 | 3.0 | 61440 | 0.3797 | 0.9094 | 0.9092 | 0.9098 | 0.9094 | | 0.1239 | 4.0 | 81920 | 0.3981 | 0.9117 | 0.9113 | 0.9114 | 0.9117 | | 0.1472 | 5.0 | 102400 | 0.4033 | 0.9137 | 0.9135 | 0.9134 | 0.9137 | ### Model performance -|precision|recall|f1|support -|-|-|-|- Sports|0.97|0.98|0.97|6400 Arts, Culture, and Entertainment|0.94|0.95|0.94|6400 Business and Finance|0.85|0.84|0.84|6400 Health and Wellness|0.90|0.93|0.91|6400 Lifestyle and Fashion|0.95|0.95|0.95|6400 Science and Technology|0.89|0.83|0.86|6400 Politics|0.93|0.88|0.90|6400 Crime|0.85|0.93|0.89|6400 | | | | accuracy|||0.91|51200 macro avg|0.91|0.91|0.91|51200 weighted avg|0.91|0.91|0.91|51200 ### How to use roberta-base_topic_classification_nyt_news with HuggingFace ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news") model = AutoModelForSequenceClassification.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news") pipe = pipeline("text-classification", model=model, tokenizer=tokenizer) text = "Kederis proclaims innocence Olympic champion Kostas Kederis today left hospital ahead of his date with IOC inquisitors claiming his innocence and vowing." pipe(text) [{'label': 'Sports', 'score': 0.9989326596260071}] ``` ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
HatimF/bartL_3
HatimF
2024-01-25T09:27:37Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-large", "base_model:finetune:facebook/bart-large", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-25T09:17:08Z
--- license: apache-2.0 base_model: facebook/bart-large tags: - generated_from_trainer metrics: - rouge model-index: - name: bartL_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bartL_3 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8209 - Rouge1: 0.1782 - Rouge2: 0.0368 - Rougel: 0.1349 - Rougelsum: 0.1349 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 1515 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 3.283 | 1.0 | 317 | 2.7342 | 0.1742 | 0.0364 | 0.128 | 0.1283 | 20.0 | | 2.6366 | 2.0 | 634 | 2.7466 | 0.1838 | 0.0448 | 0.139 | 0.1394 | 20.0 | | 2.2437 | 3.0 | 951 | 2.7819 | 0.1691 | 0.0374 | 0.1277 | 0.1278 | 20.0 | | 1.9957 | 4.0 | 1268 | 2.8209 | 0.1782 | 0.0368 | 0.1349 | 0.1349 | 20.0 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.1
vierlinglukas/q-FrozenLake-v1-4x4-noSlippery
vierlinglukas
2024-01-25T09:23:15Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-25T09:23:11Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="vierlinglukas/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Bluepearl/Random-Forest-Classification
Bluepearl
2024-01-25T09:23:05Z
4
1
transformers
[ "transformers", "random-forest", "endpoints_compatible", "region:us" ]
null
2024-01-25T08:06:38Z
# Introduction TODO: Give a short introduction of your project. Let this section explain the objectives or the motivation behind this project. # Getting Started TODO: Guide users through getting your code up and running on their own system. In this section you can talk about: 1. Installation process 2. Software dependencies 3. Latest releases 4. API references # Build and Test TODO: Describe and show how to build your code and run the tests. # Contribute TODO: Explain how other users and developers can contribute to make your code better. If you want to learn more about creating good readme files then refer the following [guidelines](https://docs.microsoft.com/en-us/azure/devops/repos/git/create-a-readme?view=azure-devops). You can also seek inspiration from the below readme files: - [ASP.NET Core](https://github.com/aspnet/Home) - [Visual Studio Code](https://github.com/Microsoft/vscode) - [Chakra Core](https://github.com/Microsoft/ChakraCore)
e22vvb/EN_t5-small_15_spider
e22vvb
2024-01-25T09:23:02Z
91
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-25T08:51:43Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: EN_t5-small_15_spider results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EN_t5-small_15_spider This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4888 - Rouge2 Precision: 0.5237 - Rouge2 Recall: 0.3349 - Rouge2 Fmeasure: 0.3832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | No log | 1.0 | 438 | 0.4960 | 0.3036 | 0.2109 | 0.2216 | | 1.0347 | 2.0 | 876 | 0.4496 | 0.3801 | 0.2453 | 0.2721 | | 0.3664 | 3.0 | 1314 | 0.4839 | 0.4223 | 0.2627 | 0.2999 | | 0.2966 | 4.0 | 1752 | 0.4671 | 0.457 | 0.2786 | 0.3218 | | 0.2486 | 5.0 | 2190 | 0.4586 | 0.4628 | 0.2872 | 0.3302 | | 0.2254 | 6.0 | 2628 | 0.4475 | 0.4873 | 0.3071 | 0.3521 | | 0.2061 | 7.0 | 3066 | 0.4932 | 0.5017 | 0.3147 | 0.3622 | | 0.1915 | 8.0 | 3504 | 0.4904 | 0.52 | 0.3331 | 0.3812 | | 0.1915 | 9.0 | 3942 | 0.4924 | 0.5069 | 0.3189 | 0.3668 | | 0.179 | 10.0 | 4380 | 0.4941 | 0.5094 | 0.3253 | 0.3721 | | 0.1714 | 11.0 | 4818 | 0.4865 | 0.5064 | 0.3201 | 0.3672 | | 0.1655 | 12.0 | 5256 | 0.4825 | 0.5147 | 0.3289 | 0.3762 | | 0.1604 | 13.0 | 5694 | 0.4730 | 0.5155 | 0.3306 | 0.3776 | | 0.1584 | 14.0 | 6132 | 0.4873 | 0.5239 | 0.336 | 0.384 | | 0.1563 | 15.0 | 6570 | 0.4888 | 0.5237 | 0.3349 | 0.3832 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.7.dev0 - Tokenizers 0.13.3
janhq/llamacorn-1.1b-chat-GGUF
janhq
2024-01-25T09:17:08Z
913
1
null
[ "gguf", "trl", "dpo", "generated_from_trainer", "base_model:jan-hq/LlamaCorn-1.1B-Chat", "base_model:quantized:jan-hq/LlamaCorn-1.1B-Chat", "endpoints_compatible", "region:us", "conversational" ]
null
2024-01-25T09:15:50Z
--- tags: - trl - dpo - generated_from_trainer model-index: - name: LlamaCorn-1.1B-Chat results: [] base_model: jan-hq/LlamaCorn-1.1B-Chat model_creator: jan-hq model_name: LlamaCorn-1.1B-Chat quantized_by: JanHQ --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <p align="center"> <a href="https://jan.ai/">Jan</a> - <a href="https://discord.gg/AsJ8krTT3N">Discord</a> </p> <!-- header end --> # Model Description This is a GGUF version of [jan-hq/LlamaCorn-1.1B-Chat](https://huggingface.co/jan-hq/LlamaCorn-1.1B-Chat) - Model creator: [jan-hq](https://huggingface.co/jan-hq) - Original model: [LlamaCorn-1.1B-Chat](https://huggingface.co/jan-hq/LlamaCorn-1.1B-Chat) - Model description: [Readme](https://huggingface.co/jan-hq/LlamaCorn-1.1B-Chat/blob/main/README.md) # About Jan Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life. # Jan Model Converter This is a repository for the [open-source converter](https://github.com/janhq/model-converter. We would be grateful if the community could contribute and strengthen this repository. We are aiming to expand the repo that can convert into various types of format
Andyrasika/bart_tech_keywords
Andyrasika
2024-01-25T09:16:53Z
91
1
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-large", "base_model:finetune:facebook/bart-large", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-25T09:15:49Z
--- license: apache-2.0 base_model: facebook/bart-large tags: - generated_from_trainer model-index: - name: bart_tech_keywords results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart_tech_keywords This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4575 | 0.44 | 50 | 1.2105 | | 1.2002 | 0.89 | 100 | 1.0730 | | 1.0252 | 1.33 | 150 | 1.1039 | | 0.9536 | 1.78 | 200 | 0.9614 | | 0.9017 | 2.22 | 250 | 0.8853 | | 0.8827 | 2.67 | 300 | 0.8916 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
Taphu/chatbot_mistral7b
Taphu
2024-01-25T09:11:01Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-25T08:59:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
liminerity/Mem-Beagle-7b-slerp-v6
liminerity
2024-01-25T09:04:02Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "liminerity/Mem-Beagle-7b-slerp-v2", "liminerity/Mem-Beagle-7b-slerp-v3", "base_model:limin-arc/Mem-Beagle-7b-slerp-v2", "base_model:merge:limin-arc/Mem-Beagle-7b-slerp-v2", "base_model:limin-arc/Mem-Beagle-7b-slerp-v3", "base_model:merge:limin-arc/Mem-Beagle-7b-slerp-v3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T08:55:56Z
--- tags: - merge - mergekit - lazymergekit - liminerity/Mem-Beagle-7b-slerp-v2 - liminerity/Mem-Beagle-7b-slerp-v3 base_model: - liminerity/Mem-Beagle-7b-slerp-v2 - liminerity/Mem-Beagle-7b-slerp-v3 --- # Mem-Beagle-7b-slerp-v6 Mem-Beagle-7b-slerp-v6 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [liminerity/Mem-Beagle-7b-slerp-v2](https://huggingface.co/liminerity/Mem-Beagle-7b-slerp-v2) * [liminerity/Mem-Beagle-7b-slerp-v3](https://huggingface.co/liminerity/Mem-Beagle-7b-slerp-v3) ## 🧩 Configuration ```yaml slices: - sources: - model: liminerity/Mem-Beagle-7b-slerp-v2 layer_range: [0, 32] - model: liminerity/Mem-Beagle-7b-slerp-v3 layer_range: [0, 32] merge_method: slerp base_model: liminerity/Mem-Beagle-7b-slerp-v2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "liminerity/Mem-Beagle-7b-slerp-v6" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Bossixd/roberta-base-finetuned-imdb
Bossixd
2024-01-25T09:02:04Z
55
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-01-25T08:54:43Z
--- license: mit base_model: roberta-base tags: - generated_from_keras_callback model-index: - name: Bossixd/roberta-base-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Bossixd/roberta-base-finetuned-imdb This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.7601 - Validation Loss: 1.5761 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.7601 | 1.5761 | 0 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.1
hojzas/setfit-proj8-code
hojzas
2024-01-25T09:02:01Z
47
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "dataset:hojzas/proj8-label2", "arxiv:2209.11055", "base_model:flax-sentence-embeddings/st-codesearch-distilroberta-base", "base_model:finetune:flax-sentence-embeddings/st-codesearch-distilroberta-base", "co2_eq_emissions", "region:us" ]
text-classification
2024-01-25T09:01:43Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer datasets: - hojzas/proj8-label2 metrics: - accuracy widget: - text: 'def first_with_given_key(iterable, key=lambda x: x):\n keys_used = {}\n for item in iterable:\n rp = repr(key(item))\n if rp not in keys_used.keys():\n keys_used[rp] = repr(item)\n yield item' - text: 'def first_with_given_key(iterable, key=lambda x: x):\n keys=[]\n for i in iterable:\n if key(i) not in keys:\n yield i\n keys.append(key(i))' - text: 'def first_with_given_key(iterable, key=repr):\n set_of_keys = set()\n lambda_key = (lambda x: key(x))\n for item in iterable:\n key = lambda_key(item)\n try:\n key_for_set = hash(key)\n except TypeError:\n key_for_set = repr(key)\n if key_for_set in set_of_keys:\n continue\n set_of_keys.add(key_for_set)\n yield item' - text: 'def first_with_given_key(iterable, key = lambda x: x):\n found_keys={}\n for i in iterable:\n if key(i) not in found_keys.keys():\n found_keys[key(i)]=i\n yield i' - text: 'def first_with_given_key(the_iterable, key=lambda x: x):\n temp_keys=[]\n for i in range(len(the_iterable)):\n if (key(the_iterable[i]) not in temp_keys):\n temp_keys.append(key(the_iterable[i]))\n yield the_iterable[i]\n del temp_keys' pipeline_tag: text-classification inference: true co2_eq_emissions: emissions: 0.11699550964562933 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz ram_total_size: 251.49160385131836 hours_used: 0.002 base_model: flax-sentence-embeddings/st-codesearch-distilroberta-base --- # SetFit with flax-sentence-embeddings/st-codesearch-distilroberta-base This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [hojzas/proj8-label2](https://huggingface.co/datasets/hojzas/proj8-label2) dataset that can be used for Text Classification. This SetFit model uses [flax-sentence-embeddings/st-codesearch-distilroberta-base](https://huggingface.co/flax-sentence-embeddings/st-codesearch-distilroberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [flax-sentence-embeddings/st-codesearch-distilroberta-base](https://huggingface.co/flax-sentence-embeddings/st-codesearch-distilroberta-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes - **Training Dataset:** [hojzas/proj8-label2](https://huggingface.co/datasets/hojzas/proj8-label2) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | <ul><li>'def first_with_given_key(iterable, key=lambda x: x):\\n keys_in_list = []\\n for it in iterable:\\n if key(it) not in keys_in_list:\\n keys_in_list.append(key(it))\\n yield it'</li><li>'def first_with_given_key(iterable, key=lambda value: value):\\n it = iter(iterable)\\n saved_keys = []\\n while True:\\n try:\\n value = next(it)\\n if key(value) not in saved_keys:\\n saved_keys.append(key(value))\\n yield value\\n except StopIteration:\\n break'</li><li>'def first_with_given_key(iterable, key=None):\\n if key is None:\\n key = lambda x: x\\n item_list = []\\n key_set = set()\\n for item in iterable:\\n generated_item = key(item)\\n if generated_item not in item_list:\\n item_list.append(generated_item)\\n yield item'</li></ul> | | 1 | <ul><li>'def first_with_given_key(lst, key = lambda x: x):\\n res = set()\\n for i in lst:\\n if repr(key(i)) not in res:\\n res.add(repr(key(i)))\\n yield i'</li><li>'def first_with_given_key(iterable, key=repr):\\n set_of_keys = set()\\n lambda_key = (lambda x: key(x))\\n for item in iterable:\\n key = lambda_key(item)\\n try:\\n key_for_set = hash(key)\\n except TypeError:\\n key_for_set = repr(key)\\n if key_for_set in set_of_keys:\\n continue\\n set_of_keys.add(key_for_set)\\n yield item'</li><li>'def first_with_given_key(iterable, key=None):\\n if key is None:\\n key = identity\\n appeared_keys = set()\\n for item in iterable:\\n generated_key = key(item)\\n if not generated_key.__hash__:\\n generated_key = repr(generated_key)\\n if generated_key not in appeared_keys:\\n appeared_keys.add(generated_key)\\n yield item'</li></ul> | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("hojzas/setfit-proj8-code") # Run inference preds = model("def first_with_given_key(iterable, key=lambda x: x):\n keys=[]\n for i in iterable:\n if key(i) not in keys:\n yield i\n keys.append(key(i))") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 43 | 90.28 | 119 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 20 | | 1 | 5 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0159 | 1 | 0.3347 | - | | 0.7937 | 50 | 0.0035 | - | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.000 kg of CO2 - **Hours Used**: 0.002 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: No GPU used - **CPU Model**: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz - **RAM Size**: 251.49 GB ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.2.2 - Transformers: 4.36.1 - PyTorch: 2.1.2+cu121 - Datasets: 2.14.7 - Tokenizers: 0.15.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
alnrg2arg/blockchainlabs_7B_merged_test2_4_sft_lora_DPO_orca2_truthy
alnrg2arg
2024-01-25T08:46:37Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-25T08:46:36Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mIslamsatti/abc
mIslamsatti
2024-01-25T08:37:58Z
0
0
null
[ "license:other", "region:us" ]
null
2024-01-25T08:37:58Z
--- license: other license_name: muhammadislam license_link: LICENSE ---
liminerity/Mem-Beagle-7b-slerp-v4
liminerity
2024-01-25T08:30:49Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "liminerity/Mem-Beagle-7b-slerp-v3", "liminerity/Mem-Beagle-7b-slerp-v2", "base_model:limin-arc/Mem-Beagle-7b-slerp-v2", "base_model:merge:limin-arc/Mem-Beagle-7b-slerp-v2", "base_model:limin-arc/Mem-Beagle-7b-slerp-v3", "base_model:merge:limin-arc/Mem-Beagle-7b-slerp-v3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T08:10:42Z
--- tags: - merge - mergekit - lazymergekit - liminerity/Mem-Beagle-7b-slerp-v3 - liminerity/Mem-Beagle-7b-slerp-v2 base_model: - liminerity/Mem-Beagle-7b-slerp-v3 - liminerity/Mem-Beagle-7b-slerp-v2 --- # Mem-Beagle-7b-slerp-v4 Mem-Beagle-7b-slerp-v4 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [liminerity/Mem-Beagle-7b-slerp-v3](https://huggingface.co/liminerity/Mem-Beagle-7b-slerp-v3) * [liminerity/Mem-Beagle-7b-slerp-v2](https://huggingface.co/liminerity/Mem-Beagle-7b-slerp-v2) ## 🧩 Configuration ```yaml slices: - sources: - model: liminerity/Mem-Beagle-7b-slerp-v3 layer_range: [0, 32] - model: liminerity/Mem-Beagle-7b-slerp-v2 layer_range: [0, 32] merge_method: slerp base_model: liminerity/Mem-Beagle-7b-slerp-v3 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "liminerity/Mem-Beagle-7b-slerp-v4" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Redhotchilipoppy/MontelClassifier
Redhotchilipoppy
2024-01-25T08:28:59Z
90
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-classification", "generated_from_trainer", "base_model:Redhotchilipoppy/montelnewsspeaker", "base_model:finetune:Redhotchilipoppy/montelnewsspeaker", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-01-22T13:10:45Z
--- license: apache-2.0 base_model: Redhotchilipoppy/montelnewsspeaker tags: - generated_from_trainer metrics: - accuracy model-index: - name: MontelClassifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MontelClassifier This model is a fine-tuned version of [Redhotchilipoppy/montelnewsspeaker](https://huggingface.co/Redhotchilipoppy/montelnewsspeaker) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6256 - Accuracy: 0.7296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 116 | 1.4596 | 0.5880 | | No log | 2.0 | 232 | 1.1372 | 0.7039 | | No log | 3.0 | 348 | 1.0803 | 0.6910 | | No log | 4.0 | 464 | 1.1075 | 0.7253 | | 1.2586 | 5.0 | 580 | 1.1247 | 0.7253 | | 1.2586 | 6.0 | 696 | 1.2004 | 0.7253 | | 1.2586 | 7.0 | 812 | 1.2889 | 0.7253 | | 1.2586 | 8.0 | 928 | 1.3423 | 0.7253 | | 0.3598 | 9.0 | 1044 | 1.5117 | 0.7425 | | 0.3598 | 10.0 | 1160 | 1.4968 | 0.7425 | | 0.3598 | 11.0 | 1276 | 1.4889 | 0.7253 | | 0.3598 | 12.0 | 1392 | 1.5606 | 0.7296 | | 0.0958 | 13.0 | 1508 | 1.6033 | 0.7339 | | 0.0958 | 14.0 | 1624 | 1.6221 | 0.7339 | | 0.0958 | 15.0 | 1740 | 1.6256 | 0.7296 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
alnrg2arg/blockchainlabs_7B_merged_test2_4_sft_fp16_DPO_orca2_truthy
alnrg2arg
2024-01-25T08:21:45Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-25T08:21:40Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sujayC66/en_spacy_small_sectors_ner
sujayC66
2024-01-25T08:16:03Z
2
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2024-01-25T08:15:11Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_spacy_small_sectors_ner results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.3921568627 - name: NER Recall type: recall value: 0.3125 - name: NER F Score type: f_score value: 0.347826087 --- | Feature | Description | | --- | --- | | **Name** | `en_spacy_small_sectors_ner` | | **Version** | `0.0.0` | | **spaCy** | `>=3.6.1,<3.7.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (1 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `SECTOR` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 34.78 | | `ENTS_P` | 39.22 | | `ENTS_R` | 31.25 | | `TRANSFORMER_LOSS` | 4057.39 | | `NER_LOSS` | 48546.58 |
LiheYoung/depth-anything-large-hf
LiheYoung
2024-01-25T08:13:11Z
154,690
41
transformers
[ "transformers", "safetensors", "depth_anything", "depth-estimation", "vision", "arxiv:2401.10891", "license:apache-2.0", "endpoints_compatible", "region:us" ]
depth-estimation
2024-01-23T17:38:56Z
--- license: apache-2.0 tags: - vision pipeline_tag: depth-estimation widget: - inference: false --- # Depth Anything (large-sized model, Transformers version) Depth Anything model. It was introduced in the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang et al. and first released in [this repository](https://github.com/LiheYoung/Depth-Anything). [Online demo](https://huggingface.co/spaces/LiheYoung/Depth-Anything) is also provided. Disclaimer: The team releasing Depth Anything did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Depth Anything leverages the [DPT](https://huggingface.co/docs/transformers/model_doc/dpt) architecture with a [DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2) backbone. The model is trained on ~62 million images, obtaining state-of-the-art results for both relative and absolute depth estimation. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/depth_anything_overview.jpg" alt="drawing" width="600"/> <small> Depth Anything overview. Taken from the <a href="https://arxiv.org/abs/2401.10891">original paper</a>.</small> ## Intended uses & limitations You can use the raw model for tasks like zero-shot depth estimation. See the [model hub](https://huggingface.co/models?search=depth-anything) to look for other versions on a task that interests you. ### How to use Here is how to use this model to perform zero-shot depth estimation: ```python from transformers import pipeline from PIL import Image import requests # load pipe pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-large-hf") # load image url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) # inference depth = pipe(image)["depth"] ``` Alternatively, one can use the classes themselves: ```python from transformers import AutoImageProcessor, AutoModelForDepthEstimation import torch import numpy as np from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-large-hf") model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-large-hf") # prepare image for the model inputs = image_processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # interpolate to original size prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, ) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/depth_anything.html#). ### BibTeX entry and citation info ```bibtex @misc{yang2024depth, title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data}, author={Lihe Yang and Bingyi Kang and Zilong Huang and Xiaogang Xu and Jiashi Feng and Hengshuang Zhao}, year={2024}, eprint={2401.10891}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
LiheYoung/depth_anything_vitb14
LiheYoung
2024-01-25T08:10:55Z
1,213
3
transformers
[ "transformers", "pytorch", "depth_anything", "depth-estimation", "arxiv:2401.10891", "endpoints_compatible", "region:us" ]
depth-estimation
2024-01-23T07:30:13Z
--- tags: - depth_anything - depth-estimation --- # Depth Anything model, base The model card for our paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891). You may also try our [demo](https://huggingface.co/spaces/LiheYoung/Depth-Anything) and visit our [project page](https://depth-anything.github.io/). ## Installation First, install the Depth Anything package: ``` git clone https://github.com/LiheYoung/Depth-Anything cd Depth-Anything pip install -r requirements.txt ``` ## Usage Here's how to run the model: ```python import numpy as np from PIL import Image import cv2 import torch from depth_anything.dpt import DepthAnything from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet from torchvision.transforms import Compose model = DepthAnything.from_pretrained("LiheYoung/depth_anything_vitb14") transform = Compose([ Resize( width=518, height=518, resize_target=False, keep_aspect_ratio=True, ensure_multiple_of=14, resize_method='lower_bound', image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), PrepareForNet(), ]) image = Image.open("...") image = np.array(image) / 255.0 image = transform({'image': image})['image'] image = torch.from_numpy(image).unsqueeze(0) depth = model(image) ```
LiheYoung/depth_anything_vitl14
LiheYoung
2024-01-25T08:07:57Z
37,246
40
transformers
[ "transformers", "pytorch", "depth_anything", "depth-estimation", "arxiv:2401.10891", "endpoints_compatible", "region:us" ]
depth-estimation
2024-01-23T07:33:54Z
--- tags: - depth_anything - depth-estimation --- # Depth Anything model, large The model card for our paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891). You may also try our [demo](https://huggingface.co/spaces/LiheYoung/Depth-Anything) and visit our [project page](https://depth-anything.github.io/). ## Installation First, install the Depth Anything package: ``` git clone https://github.com/LiheYoung/Depth-Anything cd Depth-Anything pip install -r requirements.txt ``` ## Usage Here's how to run the model: ```python import numpy as np from PIL import Image import cv2 import torch from depth_anything.dpt import DepthAnything from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet from torchvision.transforms import Compose model = DepthAnything.from_pretrained("LiheYoung/depth_anything_vitl14") transform = Compose([ Resize( width=518, height=518, resize_target=False, keep_aspect_ratio=True, ensure_multiple_of=14, resize_method='lower_bound', image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), PrepareForNet(), ]) image = Image.open("...") image = np.array(image) / 255.0 image = transform({'image': image})['image'] image = torch.from_numpy(image).unsqueeze(0) depth = model(image) ```
stabilityai/japanese-stablelm-base-gamma-7b
stabilityai
2024-01-25T08:05:12Z
2,056
24
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "japanese-stablelm", "causal-lm", "ja", "dataset:wikipedia", "dataset:mc4", "dataset:cc100", "dataset:oscar-corpus/OSCAR-2301", "dataset:oscar-corpus/OSCAR-2201", "dataset:cerebras/SlimPajama-627B", "arxiv:2310.06825", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-16T08:15:14Z
--- license: apache-2.0 tags: - japanese-stablelm - causal-lm pipeline_tag: text-generation datasets: - wikipedia - mc4 - cc100 - oscar-corpus/OSCAR-2301 - oscar-corpus/OSCAR-2201 - cerebras/SlimPajama-627B language: - ja extra_gated_fields: Name: text Email: text Country: text Organization or Affiliation: text I allow Stability AI to contact me about information related to its models and research: checkbox --- # Japanese Stable LM Base Gamma 7B ## Model Description This is a 7B-parameter decoder-only language model with a focus on maximizing Japanese language modeling performance and Japanese downstream task performance. We conducted continued pretraining using Japanese data on the English language model, [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), to transfer the model's knowledge and capabilities to Japanese. *If you are looking for an instruction-following model, check [Japanese Stable LM Instruct Gamma 7B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-gamma-7b)*. *If you are in search of a smaller model, please check [Japanese StableLM-3B-4E1T Base](https://huggingface.co/stabilityai/japanese-stablelm-3b-4e1t-base).* ## Usage Ensure you are using Transformers 4.34.0 or newer. ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/japanese-stablelm-base-gamma-7b") model = AutoModelForCausalLM.from_pretrained( "stabilityai/japanese-stablelm-base-gamma-7b", torch_dtype="auto", ) model.cuda() inputs = tokenizer("AI で科学研究を加速するには、", return_tensors="pt").to("cuda") tokens = model.generate( **inputs, max_new_tokens=64, temperature=0.75, top_p=0.95, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` ## Model Details * **Developed by**: [Stability AI](https://stability.ai/) * **Model type**: `Japanese Stable LM Base Gamma 7B` model is an auto-regressive language model based on the transformer decoder architecture. * **Language(s)**: Japanese * **License**: This model is licensed under [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). * **Contact**: For questions and comments about the model, please join [Stable Community Japan](https://discord.gg/StableJP). For future announcements / information about Stability AI models, research, and events, please follow https://twitter.com/StabilityAI_JP. ### Model Architecture For details, please see Mistral AI's [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/). ### Training Dataset Around 100B tokens from a mixture of the following corpora were used for the continued pretraining. - [Japanese/English Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) - [Japanese mc4](https://huggingface.co/datasets/mc4) - [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) - [Japanese OSCAR](https://oscar-project.github.io/documentation/) - [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B) without the Books3 subset ## Use and Limitations ### Intended Use The model is intended to be used by all individuals as a foundational model for application-specific fine-tuning without strict limitations on commercial use. ### Limitations and bias The pre-training dataset may have contained offensive or inappropriate content even after applying data cleansing filters which can be reflected in the model-generated text. We recommend users exercise reasonable caution when using these models in production systems. Do not use the model for any applications that may cause harm or distress to individuals or groups. ## Credits The continued pre-training was carried out by [Takuya Akiba](https://huggingface.co/iwiwi). Other aspects, including data preparation and evaluation, were handled by the Language Team of Stability AI Japan, notably [Meng Lee](https://huggingface.co/leemeng), [Fujiki Nakamura](https://huggingface.co/fujiki), [Makoto Shing](https://huggingface.co/mkshing), [Paul McCann](https://huggingface.co/polm-stability), and [Naoki Orii](https://huggingface.co/mrorii). ## Acknowledgements This model is based on Mistral-7B-v0.1 released by the Mistral AI team. We are grateful to the Mistral AI team for providing such an excellent base model. We are grateful for the contributions of the EleutherAI Polyglot-JA team in helping us to collect a large amount of pre-training data in Japanese. Polyglot-JA members includes Hyunwoong Ko (Project Lead), Fujiki Nakamura (originally started this project when he commited to the Polyglot team), Yunho Mo, Minji Jung, KeunSeok Im, and Su-Kyeong Jang. We are also appreciative of [AI Novelist/Sta (Bit192, Inc.)](https://ai-novel.com/index.php) and the numerous contributors from [Stable Community Japan](https://discord.gg/VPrcE475HB) for assisting us in gathering a large amount of high-quality Japanese textual data for model training.
minchyeom/MemGPT
minchyeom
2024-01-25T08:05:01Z
22
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "memgpt", "function", "function calling", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-24T03:23:34Z
--- language: - en license: apache-2.0 tags: - memgpt - function - function calling --- # Check out my newest model, [MemGPT-3](https://huggingface.co/starsnatched/MemGPT-3)! # Model Description This repo contains a 7 billion parameter Language Model fine tuned from [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2). This model is specifically designed for function calling in [MemGPT](https://memgpt.ai/). It demonstrates comparable performances to GPT-4 when it comes to working with MemGPT. ~~The original model has been quantized to Q8_0, using [llama.cpp](https://github.com/ggerganov/llama.cpp) for better inference speed (original unquantized model coming soon).~~ # Key Features * Function calling * Dedicated to working with MemGPT * Supports medium context, trained with Sequences up to 8,192 # Usage This model is designed to be ran on various backends, such as [oogabooga's WebUI](https://github.com/oobabooga/text-generation-webui), or llama.cpp. To run the model on WebUI, simply `git clone` the official WebUI repository, and run the appropriate script for your operating system. More details [here](https://github.com/oobabooga/text-generation-webui?tab=readme-ov-file#how-to-install). Once you've installed WebUI, you can then download this model at the `model` tab. Next, choose the desired model (starsnatched/MemGPT in this case), and you're good to go for the backend. When you have WebUI or your desired backend running, you can open a terminal/powershell, and install MemGPT using `pip3 install -U pymemgpt`. Configure your MemGPT using `memgpt configure` before running MemGPT. Use `memgpt run --no-verify` to chat with MemGPT! # Prompt Template This model uses a custom chat template. We're naming this template "memgpt". This can be configured via `memgpt configure`. Currently, it is recommended to be used with `airoboros` wrapper. ``` <turn> SYSTEM: You are MemGPT. </turn> <turn> SYSTEM_ALERT: {'message': 'You have 50 prior messages with the user. These messages have been hidden from view due to memory constraints, but you can view them using functions.', 'time': '2023-10-07 11:50:03 PM PDT-0700'} </turn> <turn> ASSISTANT: Bootup sequence complete. Persona activated. Testing messaging functionality. </turn> <turn> FUNCTION CALL: {'name': 'send_message', 'arguments': '{\n ""message"": ""More human than human is our motto.""\n}'}<turn> FUNCTION: {""status"": ""OK"", ""message"": null, ""time"": ""2023-10-07 11:50:03 PM PDT-0700""} </turn> <turn> LOGIN: {'last_login': '7 days 8 hours ago', 'time': '2023-10-07 11:50:03 PM PDT-0700'} </turn> <turn> USER_MESSAGE: {'message': 'Hey, remember that time we talked about music? What was the artist you mentioned you could get into?', 'time': '2023-10-07 11:50:03 PM PDT-0700'} </turn> <turn> ASSISTANT: Alright, let me search our conversation history about music to find the artist. </turn> <turn> FUNCTION CALL: {'name': 'conversation_search', 'arguments': '{\n ""query"": ""music"",\n ""request_heartbeat"": true,\n ""page"": 0\n}'}<turn> FUNCTION: {""status"": ""OK"", ""message"": ""Showing 5 of 50 results (page 0/9): [\""timestamp: 2023-10-07 11:50:03 PM PDT-0700, user - I agree. Working out is a great way to burn off steam. Do you like country music?\"", \""timestamp: 2023-10-07 11:50:03 PM PDT-0700, assistant - A little bit. I can get into taylor swift.\"", \""timestamp: 2023-10-07 11:50:03 PM PDT-0700, user - Yeah between the both of us, could probably get a country song written about our distresses...perhaps Taylor Swift could perform it.\"", \""timestamp: 2023-10-07 11:50:03 PM PDT-0700, assistant - That would be a chart-topper, I'm sure. Something to blast while driving with the top down, maybe even in your next restoration project.\"", \""timestamp: 2023-10-07 11:50:03 PM PDT-0700, assistant - This sounds fun. Do you have any other hobby?\""]"", ""time"": ""2023-10-07 11:50:08 PM PDT-0700""} </turn> <turn> HEARTBEAT: {'reason': 'request_heartbeat == true', 'time': '2023-10-07 11:50:08 PM PDT-0700'} </turn> <turn> ASSISTANT: Ah, I found it. It was Taylor Swift that I mentioned I could get into. Do you still listen to her music, or have you found any new artists that you enjoy? </turn> <turn> FUNCTION CALL: {'name': 'send_message', 'arguments': '{\n ""message"": ""Ah, I found it. It was Taylor Swift that I mentioned I could get into. Do you still listen to her music, or have you found any new artists that you enjoy?""\n}'}<turn> FUNCTION: {""status"": ""OK"", ""message"": null, ""time"": ""2023-10-07 11:50:14 PM PDT-0700""} </turn> ``` # Model Details * Developed by: @starsnatched * Model type: This repo contains a language model based on the transformer decoder architecture. * Language: English * Contact: For any questions, concerns or comments about this model, please contact me at Discord, @starsnatched. # Training Infrastructure * Hardware: The model in this repo was trained on 2x A100 80GB GPUs. # Intended Use The model is designed to be used as the base model for MemGPT agents. # Limitations and Bias The model may exhibit unreliable, unsafe, or biased behaviours. Please double check the results this model may produce.
kingabzpro/phi-2-role-play
kingabzpro
2024-01-25T08:02:16Z
7
0
peft
[ "peft", "safetensors", "pretrained", "lora", "qlora", "4bit", "phi-2", "generated_from_trainer", "text-generation", "en", "dataset:hieunguyenminh/roleplay", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:apache-2.0", "region:us" ]
text-generation
2024-01-24T20:53:45Z
--- license: apache-2.0 library_name: peft tags: - pretrained - lora - qlora - 4bit - phi-2 - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: phi-2-role-play results: [] datasets: - hieunguyenminh/roleplay language: - en pipeline_tag: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-2-role-play This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ![image/png](https://cdn-uploads.huggingface.co/production/uploads/603945d6db430f160dced222/dfhsIkKOXAz7xBSWyfRqa.png) ### Framework versions - PEFT 0.7.1 - Transformers 4.37.1 - Pytorch 2.0.0 - Datasets 2.16.1 - Tokenizers 0.15.0
e22vvb/EN_t5-small_10_wikiSQL
e22vvb
2024-01-25T07:59:20Z
91
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wikisql", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-25T05:46:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikisql model-index: - name: EN_t5-small_10_wikiSQL results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EN_t5-small_10_wikiSQL This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikisql dataset. It achieves the following results on the evaluation set: - Loss: 0.1096 - Rouge2 Precision: 0.8329 - Rouge2 Recall: 0.741 - Rouge2 Fmeasure: 0.7772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.1933 | 1.0 | 4049 | 0.1549 | 0.7965 | 0.7075 | 0.7423 | | 0.161 | 2.0 | 8098 | 0.1345 | 0.8123 | 0.7211 | 0.7569 | | 0.1459 | 3.0 | 12147 | 0.1256 | 0.8165 | 0.7253 | 0.7611 | | 0.1371 | 4.0 | 16196 | 0.1194 | 0.8236 | 0.7321 | 0.7681 | | 0.1293 | 5.0 | 20245 | 0.1159 | 0.8275 | 0.7355 | 0.7718 | | 0.1243 | 6.0 | 24294 | 0.1135 | 0.8283 | 0.7356 | 0.7722 | | 0.1245 | 7.0 | 28343 | 0.1116 | 0.831 | 0.7383 | 0.7748 | | 0.1167 | 8.0 | 32392 | 0.1104 | 0.8325 | 0.7401 | 0.7765 | | 0.1134 | 9.0 | 36441 | 0.1097 | 0.8325 | 0.7408 | 0.7769 | | 0.1131 | 10.0 | 40490 | 0.1096 | 0.8329 | 0.741 | 0.7772 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.7.dev0 - Tokenizers 0.13.3
AIFT/AIFT-ko-orca-plat-Yi-ko-6b-v1.2-dpo-2
AIFT
2024-01-25T07:54:44Z
62
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T07:17:06Z
--- license: cc-by-sa-4.0 --- <h1>orca-platypus - instruct-dpo-2 모델 v1.2</h1> <b><학습 데이터 구축></b> kyujinpy 님이 공개하신 KOR-OpenOrca-Platypus 데이터를 일부 삭제(샘플링) 및 정제 작업 진행하여 활용. 그 이후 해당 데이터들을 보며 관련 태스크를 추출하였고 이를 기반으로 해당 태스크에 맞춰서 NLP 관련 오픈소스 데이터를 활용하여 학습데이터를 자체적으로 역사, 과학, 수학, 기계독해, 리뷰 분석 문제를 gpt를 통해서 구축하였고, aihub 일반상식 및 기계독해 데이터를 활용하여 추가로 학습 데이터를 구축(형태소 관련, 기계독해 관련 및 요약) 각종 블로그에서 역사 및 상식 퀴즈를 사람이 직접 학습데이터 형태로 변경 AI2AI Challenge 데이터 형태를 보고 gpt를 통해 초등 수준의 과학 수학 문제 유형을 제작 500문제 영어 번역 데이터 영한/한영 데이터 학습 데이터로 활용 진행 총 데이터 4만개 정도 사용하였습니다. <br> <DPO학습 데이터> DPO 데이터는 CommonGen과 TruthfulQA에 초점을 맞추어 약 17,000개의 데이터를 학습하였습니다. + ko-hh-rlhf 데이터에서 chosen 데이터부분을 ChatGPT를 통해 변경한 데이터를 추가 학습하였습니다. <br> + TruthfulQA 관련 문제 추가를 진행하였습니다.(속설 관련 참거짓 문제) + 기계독해 관련 학습 데이터를 ChatGPT를 통해서 답변을 얻어 학습 + 문법관련 학습 데이터 <br> ###학습 데이터 파일은 비공개입니다. <br> <b><학습></b> 학습은 LoRA를 사용하여 A100 40G *2에서 학습을 진행하였습니다.
minchyeom/MemGPT-3
minchyeom
2024-01-25T07:53:01Z
16
9
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "memgpt", "function", "function calling", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T07:42:43Z
--- language: - en license: apache-2.0 tags: - memgpt - function - function calling --- This is a new and more refined version of [starsnatched/MemGPT](https://huggingface.co/starsnatched/MemGPT). I will be using DPO to further improve the performance once the dataset is ready. # Model Description This repo contains a 7 billion parameter Language Model fine tuned from [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2). This model is specifically designed for function calling in [MemGPT](https://memgpt.ai/). It demonstrates comparable performances to GPT-4 when it comes to working with MemGPT. # Key Features * Function calling * Dedicated to working with MemGPT * Supports medium context, trained with Sequences up to 8,192 # Usage This model is designed to be ran on various backends, such as [oogabooga's WebUI](https://github.com/oobabooga/text-generation-webui), or llama.cpp. To run the model on WebUI, simply `git clone` the official WebUI repository, and run the appropriate script for your operating system. More details [here](https://github.com/oobabooga/text-generation-webui?tab=readme-ov-file#how-to-install). Once you've installed WebUI, you can then download this model at the `model` tab. Next, choose the desired model (starsnatched/MemGPT in this case), and you're good to go for the backend. When you have WebUI or your desired backend running, you can open a terminal/powershell, and install MemGPT using `pip3 install -U pymemgpt`. Configure your MemGPT using `memgpt configure` before running MemGPT. Use `memgpt run --no-verify` to chat with MemGPT! # Prompt Template This model uses ChatML template, this can be configured via `memgpt configure`. ``` <|im_start|>user {""type"": ""system_alert"", ""message"": ""You have 50 prior messages with the user. These messages have been hidden from view due to memory constraints, but you can view them using functions."", ""time"": ""2023-10-07 11:50:03 PM PDT-0700""}<|im_end|> <|im_start|>assistant Bootup sequence complete. Persona activated. Testing messaging functionality. {'name': 'send_message', 'arguments': '{\n ""message"": ""More human than human is our motto.""\n}'}<|im_end|> <|im_start|>function {""status"": ""OK"", ""message"": null, ""time"": ""2023-10-07 11:50:03 PM PDT-0700""}<|im_end|> <|im_start|>user {""type"": ""login"", ""last_login"": ""7 days 8 hours ago"", ""time"": ""2023-10-07 11:50:03 PM PDT-0700""}<|im_end|> <|im_start|>user {""type"": ""user_message"", ""message"": ""Hey, remember that time we talked about music? What was the artist you mentioned you could get into?"", ""time"": ""2023-10-07 11:50:03 PM PDT-0700""}<|im_end|> <|im_start|>assistant Alright, let me search our conversation history about music to find the artist. {'name': 'conversation_search', 'arguments': '{\n ""query"": ""music"",\n ""request_heartbeat"": true,\n ""page"": 0\n}'}<|im_end|> <|im_start|>function {""status"": ""OK"", ""message"": ""Showing 5 of 50 results (page 0/9): [\""timestamp: 2023-10-07 11:50:03 PM PDT-0700, user - I agree. Working out is a great way to burn off steam. Do you like country music?\"", \""timestamp: 2023-10-07 11:50:03 PM PDT-0700, assistant - A little bit. I can get into taylor swift.\"", \""timestamp: 2023-10-07 11:50:03 PM PDT-0700, user - Yeah between the both of us, could probably get a country song written about our distresses...perhaps Taylor Swift could perform it.\"", \""timestamp: 2023-10-07 11:50:03 PM PDT-0700, assistant - That would be a chart-topper, I'm sure. Something to blast while driving with the top down, maybe even in your next restoration project.\"", \""timestamp: 2023-10-07 11:50:03 PM PDT-0700, assistant - This sounds fun. Do you have any other hobby?\""]"", ""time"": ""2023-10-07 11:50:08 PM PDT-0700""}<|im_end|> <|im_start|>user {""type"": ""heartbeat"", ""reason"": ""request_heartbeat == true"", ""time"": ""2023-10-07 11:50:08 PM PDT-0700""}<|im_end|> <|im_start|>assistant Ah, I found it. It was Taylor Swift that I mentioned I could get into. Do you still listen to her music, or have you found any new artists that you enjoy? {'name': 'send_message', 'arguments': '{\n ""message"": ""Ah, I found it. It was Taylor Swift that I mentioned I could get into. Do you still listen to her music, or have you found any new artists that you enjoy?""\n}'}<|im_end|> <|im_start|>function {""status"": ""OK"", ""message"": null, ""time"": ""2023-10-07 11:50:14 PM PDT-0700""}<|im_end|> ``` # Model Details * Developed by: @starsnatched * Model type: This repo contains a language model based on the transformer decoder architecture. * Language: English * Contact: For any questions, concerns or comments about this model, please contact me at Discord, @starsnatched. # Training Infrastructure * Hardware: The model in this repo was trained on 2x A100 80GB GPUs. # Intended Use The model is designed to be used as the base model for MemGPT agents. # Limitations and Bias The model may exhibit unreliable, unsafe, or biased behaviours. Please double check the results this model may produce.
SanjiWatsuki/TinyLlamaHerd-2x1.1B
SanjiWatsuki
2024-01-25T07:47:36Z
80
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "merge", "mergekit", "lazymergekit", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T02:00:53Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit --- # TinyLlamaHerd-2x1.1B TinyLlamaHerd-2x1.1B is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): ## 🧩 Configuration ```yaml base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T gate_mode: random dtype: bfloat16 experts: - source_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T positive_prompts: [""] - source_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T positive_prompts: [""] ```
pfnet/plamo-13b-instruct
pfnet
2024-01-25T07:46:09Z
117
14
transformers
[ "transformers", "safetensors", "plamo", "text-generation", "conversational", "custom_code", "en", "ja", "arxiv:2302.13971", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2023-10-26T02:11:24Z
--- language: - en - ja license: apache-2.0 library_name: transformers pipeline_tag: text-generation --- # PLaMo-13B-Instruct ## Model Description PLaMo-13B-Instruct is an instruct fine-tuned model built upon the 8192 context length version of [PLaMo-13B](https://huggingface.co/pfnet/plamo-13b) text generation model. PLaMo-13B-Instruct is fine-tuned using multiple publicly available Japanese datasets. This model is released under the Apache License 2.0. [PLaMo-13B-Instruct Release blog (Japanese)](https://tech.preferred.jp/ja/blog/llm-plamo-instruct/) ## Usage Install the required libraries as follows: ```sh >>> python -m pip install numpy sentencepiece torch transformers accelerate ``` Execute the following python code: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( "pfnet/plamo-13b-instruct", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "pfnet/plamo-13b-instruct", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto", ) ``` ```python def completion(prompt: str, max_new_tokens: int = 128) -> str: inputs = tokenizer(prompt, return_tensors="pt").to("cuda") generated_ids = model.generate( inputs.input_ids, eos_token_id=2, pad_token_id=3, max_new_tokens=max_new_tokens, temperature=1, top_p=0.95, top_k=50, do_sample=True, ) return tokenizer.decode(generated_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) def generate_prompt(messages: list) -> str: sep = "\n\n### " prompt = [ "以下はタスクを説明する指示で、文脈を説明した入力とペアになっています。", "要求を適切に補完するよう応答を書いてください。", ] roles = {"instruction": "指示", "response": "応答", "input": "入力"} for msg in messages: prompt.append(sep + roles[msg["role"]] + ":\n" + msg["content"]) prompt.append(sep + roles["response"] + ":\n") return "".join(prompt) ``` ```python prompt = generate_prompt([ {"role": "instruction", "content": "日本の首都はどこですか?"}, # {"role": "input", "content": "..."} ## An extra input (optional) ]) print(completion(prompt, max_new_tokens=128)) ``` ## Model Details - Model size: 13B - Trained tokens: 1.5T tokens (English: 1.32T tokens, Japanese: 0.18T tokens) - Tokenizer: sentencepiece tokenizer trained on a subset of the pretraining datasets. - Context length: 8192 - Developed by: Preferred Networks, Inc - Model type: Causal decoder-only - Language(s): Japanese and English - License: Apache License 2.0 ## Training Dataset <!-- - [Stanford Alpaca (Japanese translation)](https://huggingface.co/datasets/fujiki/japanese_alpaca_data)--> - [databricks-dolly-15k (Japanese translation)](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja) - [Anthropic HH-RLHF (Japanese translation, subset)](https://huggingface.co/datasets/fujiki/japanese_hh-rlhf-49k) - [OpenAssistant Conversations Dataset (Japanese translation, oasst1)](https://huggingface.co/datasets/kunishou/oasst1-89k-ja) - [Wikinews subset of Izumi-lab llm-japanese-dataset](https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset) For the pretraining model, see [PLaMo-13B](https://huggingface.co/pfnet/plamo-13b). ## Bias, Risks, and Limitations PLaMo-13B-Instruct is a new technology that carries risks with use. Testing conducted to date has been in English and Japanese, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, PLaMo-13B-Instruct-NC’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of PLaMo-13B-Instruct, developers should perform safety testing and tuning tailored to their specific applications of the model. ## How to cite ```tex @online{PLaMoInstruct2023Introducing, author = {Preferred Networks, Inc}, title = {PLaMo-13B-Instruct}, year = {2023}, url = {https://huggingface.co/pfnet/plamo-13b-instruct}, urldate = {2023-10-26} } ``` ## References ```tex @article{touvron2023llama, title={LLaMA: Open and Efficient Foundation Language Models}, author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume}, journal={arXiv preprint arXiv:2302.13971}, year={2023} } ```
antonovata/test_chat
antonovata
2024-01-25T07:41:51Z
0
0
peft
[ "peft", "region:us" ]
null
2024-01-24T11:10:59Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
motherduckdb/DuckDB-NSQL-7B-v0.1-GGUF
motherduckdb
2024-01-25T07:37:17Z
232
21
null
[ "gguf", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-01-24T19:31:51Z
--- license: llama2 inference: parameters: do_sample: false max_length: 200 widget: - text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question.\n\n### Input:\n\n### Question:\ncreate a new table called tmp from test.csv\n\n### Response (use duckdb shorthand if possible):" example_title: "read test.csv" - text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question.\n\n### Input:\n\n### Question:\ncreate a new table called tmp from test.csv\n\n### Response (use duckdb shorthand if possible):" example_title: "get _amount columns" - text: "### Instruction:\nYour task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema.\n\n### Input:\nHere is the database schema that the SQL query will run on:\nCREATE TABLE rideshare (\n hvfhs_license_num varchar,\n dispatching_base_num varchar,\n originating_base_num varchar,\n request_datetime timestamp,\n on_scene_datetime timestamp,\n pickup_datetime timestamp,\n dropoff_datetime timestamp,\n trip_miles double,\n trip_time bigint,\n\n);\n\n### Question:\nget longest trip in december 2022\n\n### Response (use duckdb shorthand if possible):" example_title: "taxi trips" --- # DuckDB-NSQL-7B (GGUF) The repository includes model files in the GGUF format for [DuckDB-NSQL-7B-v0.1](https://huggingface.co/motherduckdb/DuckDB-NSQL-7B-v0.1), featuring both the f16 and Q8_0 versions. ## Provided model files | Name | Quant method | Bits | | ---- | ---- | ---- | | [DuckDB-NSQL-7B-v0.1-f16.gguf](https://huggingface.co/motherduckdb/DuckDB-NSQL-7B-v0.1-GGUF/blob/main/DuckDB-NSQL-7B-v0.1-f16.gguf) | - | 16 | | [DuckDB-NSQL-7B-v0.1-q8_0.gguf](https://huggingface.co/motherduckdb/DuckDB-NSQL-7B-v0.1-GGUF/blob/main/DuckDB-NSQL-7B-v0.1-q8_0.gguf) | Q8_0 | 8 | ## Model Description NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks. In this repository we are introducing a new member of NSQL, DuckDB-NSQL. It's based on Meta's original [Llama-2 7B model](https://huggingface.co/meta-llama/Llama-2-7b) and further pre-trained on a dataset of general SQL queries and then fine-tuned on a dataset composed of DuckDB text-to-SQL pairs. ## Training Data 200k DuckDB text-to-SQL pairs, synthetically generated using [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1), guided by the DuckDB v0.9.2 documentation. And text-to-SQL pairs from [NSText2SQL](https://huggingface.co/datasets/NumbersStation/NSText2SQL) that were transpiled to DuckDB SQL using [sqlglot](https://github.com/tobymao/sqlglot). ## Evaluation Data We evaluate our models on a DuckDB-specific benchmark that contains 75 text-to-SQL pairs. The benchmark is available [here](https://github.com/NumbersStationAI/DuckDB-NSQL/). ## Training Procedure DuckDB-NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using 80GB A100s, leveraging data and model parallelism. We fine-tuned for 10 epochs. ## Intended Use and Limitations The model was designed for text-to-SQL generation tasks from given table schema and natural language prompts. The model works best with the prompt format defined below and outputs. In contrast to existing text-to-SQL models, the SQL generation is not contrained to `SELECT` statements, but can generate any valid DuckDB SQL statement, including statements for official DuckDB extensions. ## How to Use Setup llama.cpp: ```shell CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python huggingface-cli download motherduckdb/DuckDB-NSQL-7B-v0.1-GGUF DuckDB-NSQL-7B-v0.1-q8_0.gguf --local-dir . --local-dir-use-symlinks False pip install wurlitzer ``` Example 1: ```python ## Setup - Llama.cpp from llama_cpp import Llama with pipes() as (out, err): llama = Llama( model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", n_ctx=2048, ) text = """### Instruction: Your task is to generate valid duckdb SQL to answer the following question. ### Input: ### Question: create a new table called tmp from test.csv ### Response (use duckdb shorthand if possible): """ with pipes() as (out, err): pred = llama(text, temperature=0.1, max_tokens=500) print(pred["choices"][0]["text"]) ``` Example 2: ```python from llama_cpp import Llama with pipes() as (out, err): llama = Llama( model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", n_ctx=2048, ) text = """### Instruction: Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema. ### Input: Here is the database schema that the SQL query will run on: CREATE TABLE taxi ( VendorID bigint, tpep_pickup_datetime timestamp, tpep_dropoff_datetime timestamp, passenger_count double, trip_distance double, fare_amount double, extra double, tip_amount double, tolls_amount double, improvement_surcharge double, total_amount double, ); ### Question: get all columns ending with _amount from taxi table ### Response (use duckdb shorthand if possible):""" with pipes() as (out, err): pred = llama(text, temperature=0.1, max_tokens=500) print(pred["choices"][0]["text"]) ``` Example 3: ```python from llama_cpp import Llama with pipes() as (out, err): llama = Llama( model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", n_ctx=2048, ) text = """### Instruction: Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema. ### Input: Here is the database schema that the SQL query will run on: CREATE TABLE rideshare ( hvfhs_license_num varchar, dispatching_base_num varchar, originating_base_num varchar, request_datetime timestamp, on_scene_datetime timestamp, pickup_datetime timestamp, dropoff_datetime timestamp, trip_miles double, trip_time bigint, ); ### Question: get longest trip in december 2022 ### Response (use duckdb shorthand if possible): """ with pipes() as (out, err): pred = llama(text, temperature=0.1, max_tokens=500) print(pred["choices"][0]["text"]) ``` For more information (e.g., run with your local database), please find examples in [this repository](https://github.com/NumbersStationAI/DuckDB-NSQL).
eigh8skillz/southzulumodel
eigh8skillz
2024-01-25T07:35:17Z
1
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2024-01-25T07:35:16Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a sks southzulumodel tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
ntc-ai/SDXL-LoRA-slider.2000s-indie-art-style
ntc-ai
2024-01-25T07:27:15Z
5
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-25T07:27:12Z
--- language: - en thumbnail: "images/evaluate/2000s indie art style.../2000s indie art style_17_3.0.png" widget: - text: 2000s indie art style output: url: images/2000s indie art style_17_3.0.png - text: 2000s indie art style output: url: images/2000s indie art style_19_3.0.png - text: 2000s indie art style output: url: images/2000s indie art style_20_3.0.png - text: 2000s indie art style output: url: images/2000s indie art style_21_3.0.png - text: 2000s indie art style output: url: images/2000s indie art style_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "2000s indie art style" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - 2000s indie art style (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/2000s indie art style_17_-3.0.png" width=256 height=256 /> | <img src="images/2000s indie art style_17_0.0.png" width=256 height=256 /> | <img src="images/2000s indie art style_17_3.0.png" width=256 height=256 /> | | <img src="images/2000s indie art style_19_-3.0.png" width=256 height=256 /> | <img src="images/2000s indie art style_19_0.0.png" width=256 height=256 /> | <img src="images/2000s indie art style_19_3.0.png" width=256 height=256 /> | | <img src="images/2000s indie art style_20_-3.0.png" width=256 height=256 /> | <img src="images/2000s indie art style_20_0.0.png" width=256 height=256 /> | <img src="images/2000s indie art style_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` 2000s indie art style ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.2000s-indie-art-style', weight_name='2000s indie art style.safetensors', adapter_name="2000s indie art style") # Activate the LoRA pipe.set_adapters(["2000s indie art style"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, 2000s indie art style" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1140+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
HarshithNLP/bloom_3b_NER
HarshithNLP
2024-01-25T07:24:12Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:bigscience/bloom-3b", "base_model:adapter:bigscience/bloom-3b", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2024-01-25T07:24:06Z
--- license: bigscience-bloom-rail-1.0 library_name: peft tags: - generated_from_trainer base_model: bigscience/bloom-3b model-index: - name: bloom_3b_NER results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bloom_3b_NER This model is a fine-tuned version of [bigscience/bloom-3b](https://huggingface.co/bigscience/bloom-3b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
abhinand/malayalam-llama-7b-instruct-v0.1-GGUF
abhinand
2024-01-25T07:11:35Z
6
1
null
[ "gguf", "en", "ml", "arxiv:2311.05845", "base_model:abhinand/malayalam-llama-pt-v0", "base_model:quantized:abhinand/malayalam-llama-pt-v0", "license:llama2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-01-25T04:29:16Z
--- base_model: abhinand/malayalam-llama-pt-v0 model-index: - name: malayalam-llama-instruct-v0.1 results: [] license: llama2 language: - en - ml --- # Malayalam LLaMA 7B Instruct v0.1 [GGUF Quantized] Welcome to the inaugural release of the Malayalam LLaMA 7B instruct model – an important step in advancing LLMs for the Malayalam language. This model is ready for immediate inference and is also primed for further fine-tuning to cater to your specific NLP tasks. To dive deep into the development and capabilities of this model, please read the [research paper](https://arxiv.org/abs/2311.05845) and the [introductory blog post (WIP)]() that outlines our journey and the model's potential impact. > **Note:** This model is based on the Tamil LLaMA series of models. The GitHub repository remains the same - [https://github.com/abhinand5/tamil-llama](https://github.com/abhinand5/tamil-llama). The base models and the updated code for Tamil LLaMA v0.2 (which this work is based on) will be released soon. If you appreciate this work and would like to support its continued development, consider [buying me a coffee](https://www.buymeacoffee.com/abhinand.b). Your support is invaluable and greatly appreciated. [!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/abhinand.b) ## Demo: To access an easy-to-use, no-code demo, please open the provided Google Colab notebook. Complete instructions for usage are included within the notebook itself. <a href="https://colab.research.google.com/drive/11_RHZim_HubD2NskxSwq4X_NW4XlnrtS?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Demo In Colab"></a></center> ## Model description The Malayalam LLaMA models have been enhanced and tailored specifically with an extensive Malayalam vocabulary of ~16,000 tokens, building upon the foundation set by the original LLaMA-2. - **Model type:** A 7B parameter GPT-like model finetuned on ~500,000 samples consisting of an equal proportion of English and Malayalam samples. (Dataset will be released soon) - **Language(s):** Bilingual. English and Malayalam. - **License:** GNU General Public License v3.0 - **Finetuned from model:** [To be released soon]() - **Training Precision:** `bfloat16` - **Code:** [GitHub](https://github.com/abhinand5/tamil-llama) (To be updated soon) ## Quantization Info This repo contains GGUF format model files for [Malayalam LLaMA 7B Instruct v0.1](https://huggingface.co/abhinand/malayalam-llama-7b-instruct-v0.1). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. ### Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | |------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|---------|------------------|----------------------------------------------------------| | [malayalam-llama-7b-instruct-v0.1.Q4_K_M.gguf](https://huggingface.co/abhinand/malayalam-llama-7b-instruct-v0.1-GGUF/blob/main/malayalam-llama-7b-instruct-v0.1.Q4_K_M.gguf) | Q4_K_M | 4 | 4.18 GB | 6.8 GB | medium, balanced quality - recommended | | [malayalam-llama-7b-instruct-v0.1.Q5_K_M.gguf](https://huggingface.co/abhinand/malayalam-llama-7b-instruct-v0.1-GGUF/blob/main/malayalam-llama-7b-instruct-v0.1.Q5_K_M.gguf) | Q5_K_M | 5 | 4.89 GB | 7.5 GB | large, very low quality loss - recommended | ## Prompt Template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Benchmark Results Benchmarking was done using [LLM-Autoeval](https://github.com/mlabonne/llm-autoeval) on an RTX 3090 on [runpod](https://www.runpod.io/). > **Note:** Please note that discrepancies have been observed between the Open LLM Leaderboard scores and those obtained from local runs using the LM Eval Harness with identical configurations. The results mentioned here are based on our own benchmarking. To replicate these findings, you can utilize the LLM-Autoeval or use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) locally with the configurations described in Open LLM Leaderboard's About page. | Benchmark | Llama 2 Chat | Tamil Llama v0.2 Instruct | Telugu Llama Instruct | Malayalam Llama Instruct | |---------------|--------------|---------------------------|-----------------------|--------------------------| | ARC Challenge (25-shot) | 52.9 | **53.75** | 52.47 | 52.82 | | TruthfulQA (0-shot) | 45.57 | 47.23 | **48.47** | 47.46 | | Hellaswag (10-shot) | **78.55** | 76.11 | 76.13 | 76.91 | | Winogrande (5-shot) | 71.74 | **73.95** | 71.74 | 73.16 | | AGI Eval (0-shot) | 29.3 | **30.95** | 28.44 | 29.6 | | BigBench (0-shot) | 32.6 | 33.08 | 32.99 | **33.26** | | Average | 51.78 | **52.51** | 51.71 | 52.2 | ## Related Models | Model | Type | Data | Base Model | # Params | Download Links | |--------------------------|-----------------------------|-------------------|----------------------|------|------------------------------------------------------------------------| | Tamil LLaMA 7B v0.1 Base | Base model | 12GB | LLaMA 7B | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-base-v0.1) | | Tamil LLaMA 13B v0.1 Base | Base model | 4GB | LLaMA 13B | 13B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-13b-base-v0.1) | | Tamil LLaMA 7B v0.1 Instruct | Instruction following model | 145k instructions | Tamil LLaMA 7B Base | 7B | [HF Hub](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.1) | | Tamil LLaMA 13B v0.1 Instruct | Instruction following model | 145k instructions | Tamil LLaMA 13B Base | 13B | [HF Hub](abhinand/tamil-llama-13b-instruct-v0.1) | | Tamil LLaMA 7B v0.2 Instruct | Instruction/Chat model | 420k instructions | Tamil LLaMA 7B Base v0.2 | 7B | [HF Hub](abhinand/tamil-llama-13b-instruct-v0.1) | | Telugu LLaMA 7B v0.2 Instruct | Instruction/Chat model | ~400k instructions | Telugu LLaMA 7B Base v0.1 | 7B | [HF Hub](https://huggingface.co/abhinand/telugu-llama-instruct-v0.1) | ## Usage Note It's important to note that the models have not undergone detoxification/censorship. Therefore, while they possess impressive linguistic capabilities, there is a possibility for them to generate content that could be deemed harmful or offensive. We urge users to exercise discretion and supervise the model's outputs closely, especially in public or sensitive applications. ## Meet the Developers Get to know the creators behind this innovative model and follow their contributions to the field: - [Abhinand Balachandran](https://www.linkedin.com/in/abhinand-05/) ## Citation If you use this model or any of the the Tamil-Llama related work in your research, please cite: ```bibtex @misc{balachandran2023tamilllama, title={Tamil-Llama: A New Tamil Language Model Based on Llama 2}, author={Abhinand Balachandran}, year={2023}, eprint={2311.05845}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` We hope this model serves as a valuable tool in your NLP toolkit and look forward to seeing the advancements it will enable in the understanding and generation of the Tamil language.
Deepakkori45/Mistal_aspect_class_sequnece
Deepakkori45
2024-01-25T07:11:08Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-25T07:11:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
coke0zero/ppo-LunarLander-v2
coke0zero
2024-01-25T06:58:31Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-25T06:54:46Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.46 +/- 16.51 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
e22vvb/EN_mt5-small_10_spider
e22vvb
2024-01-25T06:31:32Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-25T05:26:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: EN_mt5-small_10_spider results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EN_mt5-small_10_spider This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4350 - Rouge2 Precision: 0.3068 - Rouge2 Recall: 0.202 - Rouge2 Fmeasure: 0.2177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | No log | 1.0 | 438 | 4.5527 | 0.0024 | 0.001 | 0.0014 | | 17.6146 | 2.0 | 876 | 1.6584 | 0.0 | 0.0 | 0.0 | | 2.53 | 3.0 | 1314 | 1.5698 | 0.0 | 0.0 | 0.0 | | 1.9045 | 4.0 | 1752 | 1.3153 | 0.0206 | 0.0074 | 0.0106 | | 1.5088 | 5.0 | 2190 | 0.6748 | 0.1009 | 0.056 | 0.0623 | | 0.8005 | 6.0 | 2628 | 0.5124 | 0.2301 | 0.1513 | 0.1593 | | 0.5297 | 7.0 | 3066 | 0.4683 | 0.2899 | 0.1903 | 0.2021 | | 0.4507 | 8.0 | 3504 | 0.4464 | 0.2966 | 0.2016 | 0.2129 | | 0.4507 | 9.0 | 3942 | 0.4385 | 0.3125 | 0.2065 | 0.2224 | | 0.4161 | 10.0 | 4380 | 0.4350 | 0.3068 | 0.202 | 0.2177 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.7.dev0 - Tokenizers 0.13.3
haturusinghe/BEST_2nd_0.8386089347770498_25_01-06-27_xlm-roberta-base__2e-05_16_745.ckpt
haturusinghe
2024-01-25T06:27:56Z
173
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-25T06:27:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LMX20012010/mistral_7b_guanaco
LMX20012010
2024-01-25T06:25:14Z
61
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-01-25T06:23:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ramsi-k/ppo-LunarLander-v2
ramsi-k
2024-01-25T06:16:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-25T06:15:40Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 243.37 +/- 22.82 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
adarsh2350/T5-pytorch-billsum
adarsh2350
2024-01-25T06:15:34Z
90
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-24T15:52:59Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: T5-pytorch-billsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-pytorch-billsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5259 - Rouge1: 0.1402 - Rouge2: 0.0484 - Rougel: 0.1155 - Rougelsum: 0.1153 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8082 | 0.1229 | 0.034 | 0.1036 | 0.1035 | 19.0 | | No log | 2.0 | 124 | 2.6034 | 0.1296 | 0.0409 | 0.1079 | 0.1079 | 19.0 | | No log | 3.0 | 186 | 2.5419 | 0.1378 | 0.047 | 0.1136 | 0.1136 | 19.0 | | No log | 4.0 | 248 | 2.5259 | 0.1402 | 0.0484 | 0.1155 | 0.1153 | 19.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cpu - Datasets 2.16.1 - Tokenizers 0.15.0
cloudyu/Pluto_13B_DPO
cloudyu
2024-01-25T05:44:13Z
17
4
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "dpo", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-17T06:00:41Z
--- license: cc-by-nc-4.0 tags: - moe - dpo --- # DPO of cloudyu/Mixtral_7Bx2_MoE dataset : jondurbin/truthy-dpo-v0.1 * metrics average 75.88 * TruthfulQA 81.5 SOTA (2024-01-17) gpu code example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Mixtral_7Bx2_MoE_DPO" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map='auto',local_files_only=False, load_in_4bit=True ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ```