modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-05 18:32:21
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
540 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-05 18:32:07
card
stringlengths
11
1.01M
titi7242229/roberta-base-bne-finetuned_personality_multi_4
titi7242229
2022-06-11T19:13:27Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T13:23:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned_personality_multi_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned_personality_multi_4 This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1709 - Accuracy: 0.3470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1759 | 1.0 | 125 | 2.1873 | 0.2548 | | 1.8651 | 2.0 | 250 | 2.2285 | 0.2680 | | 1.8619 | 3.0 | 375 | 2.1732 | 0.2951 | | 1.7224 | 4.0 | 500 | 2.0688 | 0.3925 | | 1.6432 | 5.0 | 625 | 2.1094 | 0.3735 | | 1.3599 | 6.0 | 750 | 2.1732 | 0.3631 | | 1.0623 | 7.0 | 875 | 2.4785 | 0.3579 | | 1.0504 | 8.0 | 1000 | 2.4598 | 0.3844 | | 0.7662 | 9.0 | 1125 | 2.8081 | 0.3573 | | 0.9167 | 10.0 | 1250 | 2.9385 | 0.3452 | | 0.6391 | 11.0 | 1375 | 2.9933 | 0.3320 | | 0.3893 | 12.0 | 1500 | 3.1037 | 0.3579 | | 0.673 | 13.0 | 1625 | 3.4369 | 0.3631 | | 0.3498 | 14.0 | 1750 | 3.6396 | 0.3383 | | 0.3891 | 15.0 | 1875 | 3.8332 | 0.3556 | | 0.0818 | 16.0 | 2000 | 3.9451 | 0.3401 | | 0.1438 | 17.0 | 2125 | 3.9271 | 0.3458 | | 0.0634 | 18.0 | 2250 | 4.1564 | 0.3481 | | 0.0121 | 19.0 | 2375 | 4.1405 | 0.3499 | | 0.0071 | 20.0 | 2500 | 4.1709 | 0.3470 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ahmeddbahaa/t5-arabic-base-finetuned-xlsum-ar
ahmeddbahaa
2022-06-11T19:13:08Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "ar", "abstractive summarization", "xlsum", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-06-11T01:21:55Z
--- license: apache-2.0 tags: - summarization - t5 - ar - abstractive summarization - xlsum - generated_from_trainer datasets: - xlsum model-index: - name: t5-arabic-base-finetuned-xlsum-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-arabic-base-finetuned-xlsum-ar This model is a fine-tuned version of [bakrianoo/t5-arabic-base](https://huggingface.co/bakrianoo/t5-arabic-base) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.0328 - Rouge-1: 23.72 - Rouge-2: 10.95 - Rouge-l: 21.59 - Gen Len: 19.0 - Bertscore: 71.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/elonmusk-iamjohnoliver-neiltyson
huggingtweets
2022-06-11T19:00:50Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T18:54:15Z
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-iamjohnoliver-neiltyson/1654974044761/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1393958859/main_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/74188698/NeilTysonOriginsA-Crop_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & John Oliver & Neil deGrasse Tyson</div> <div style="text-align: center; font-size: 14px;">@elonmusk-iamjohnoliver-neiltyson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & John Oliver & Neil deGrasse Tyson. | Data | Elon Musk | John Oliver | Neil deGrasse Tyson | | --- | --- | --- | --- | | Tweets downloaded | 3200 | 636 | 3237 | | Retweets | 147 | 122 | 10 | | Short tweets | 954 | 9 | 87 | | Tweets kept | 2099 | 505 | 3140 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/14h905cr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-iamjohnoliver-neiltyson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gcc5ko3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gcc5ko3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-iamjohnoliver-neiltyson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/rterdogan
huggingtweets
2022-06-11T18:56:47Z
104
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1151410974240444416/yVvaD7hU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Recep Tayyip Erdoğan</div> <div style="text-align: center; font-size: 14px;">@rterdogan</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Recep Tayyip Erdoğan. | Data | Recep Tayyip Erdoğan | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 418 | | Short tweets | 54 | | Tweets kept | 2778 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wf1dbaih/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rterdogan's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1a3w2qxa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1a3w2qxa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rterdogan') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Galeros/dqn-mountaincar-v0-local
Galeros
2022-06-11T18:38:27Z
3
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T18:38:19Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -98.80 +/- 21.88 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **DQN** Agent playing **MountainCar-v0** This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aprischa/bart-large-cnn-aprischa
aprischa
2022-06-11T17:21:57Z
105
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-11T16:53:31Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-aprischa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-aprischa This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3589 - Rouge1: 66.7098 - Rouge2: 57.7992 - Rougel: 63.2231 - Rougelsum: 65.9009 - Gen Len: 141.198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 0.369 | 1.0 | 5403 | 0.3835 | 66.0604 | 56.9948 | 62.4967 | 65.265 | 141.1126 | | 0.2985 | 2.0 | 10806 | 0.3589 | 66.7098 | 57.7992 | 63.2231 | 65.9009 | 141.198 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
DancingIguana/codeparrot-ds
DancingIguana
2022-06-11T16:58:04Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-08T21:56:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
bubblecookie/t5-small-finetuned-cnndm_trained
bubblecookie
2022-06-11T16:48:45Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-10T06:21:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: t5-small-finetuned-cnndm_trained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm_trained This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tuni/distilbert-base-uncased-finetuned-cola
tuni
2022-06-11T15:12:53Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T13:50:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5324115893962171 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7035 - Matthews Correlation: 0.5324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.785228097724678e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 28 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5227 | 1.0 | 535 | 0.5005 | 0.4121 | | 0.318 | 2.0 | 1070 | 0.5265 | 0.4977 | | 0.1887 | 3.0 | 1605 | 0.7035 | 0.5324 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
IshanKumar/molecular_generation
IshanKumar
2022-06-11T14:27:39Z
0
0
keras
[ "keras", "tensorboard", "tf-keras", "mol_gen", "region:us" ]
null
2022-06-02T19:30:33Z
--- library_name: keras tags: - mol_gen --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.0005, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ## Training Metrics | Epochs | Train Loss | |--- |--- | | 1| 68866.578| | 2| 68818.219| | 3| 68850.844| | 4| 68829.688| | 5| 68840.258| | 6| 68813.281| | 7| 68809.414| | 8| 68815.312| | 9| 68805.641| | 10| 68803.672| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
neeenway/ppo-LunarLander-v2
neeenway
2022-06-11T13:43:31Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T13:43:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - metrics: - type: mean_reward value: 240.31 +/- 12.46 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
huggingtweets/nosuba_13
huggingtweets
2022-06-11T13:40:57Z
105
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T13:40:23Z
--- language: en thumbnail: http://www.huggingtweets.com/nosuba_13/1654954852706/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1382014203796553732/DFDiOrcz_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Noel</div> <div style="text-align: center; font-size: 14px;">@nosuba_13</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Noel. | Data | Noel | | --- | --- | | Tweets downloaded | 3170 | | Retweets | 859 | | Short tweets | 369 | | Tweets kept | 1942 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ui1lp214/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nosuba_13's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6sn9tlrz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6sn9tlrz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nosuba_13') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
YeRyeongLee/albert-base-v2-finetuned-filtered-0609
YeRyeongLee
2022-06-11T13:33:02Z
106
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T11:46:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: albert-base-v2-finetuned-filtered-0609 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-filtered-0609 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2062 - Accuracy: 0.9723 - Precision: 0.9724 - Recall: 0.9723 - F1: 0.9723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2688 | 1.0 | 3180 | 0.2282 | 0.9560 | 0.9577 | 0.9560 | 0.9562 | | 0.2268 | 2.0 | 6360 | 0.1909 | 0.9638 | 0.9640 | 0.9638 | 0.9638 | | 0.1831 | 3.0 | 9540 | 0.2590 | 0.9572 | 0.9584 | 0.9572 | 0.9572 | | 0.1588 | 4.0 | 12720 | 0.1752 | 0.9673 | 0.9678 | 0.9673 | 0.9673 | | 0.0972 | 5.0 | 15900 | 0.1868 | 0.9695 | 0.9696 | 0.9695 | 0.9695 | | 0.0854 | 6.0 | 19080 | 0.2042 | 0.9701 | 0.9707 | 0.9701 | 0.9702 | | 0.0599 | 7.0 | 22260 | 0.1793 | 0.9748 | 0.9749 | 0.9748 | 0.9749 | | 0.0389 | 8.0 | 25440 | 0.1996 | 0.9742 | 0.9743 | 0.9742 | 0.9742 | | 0.0202 | 9.0 | 28620 | 0.2188 | 0.9723 | 0.9726 | 0.9723 | 0.9724 | | 0.0152 | 10.0 | 31800 | 0.2062 | 0.9723 | 0.9724 | 0.9723 | 0.9723 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.1+cu111 - Datasets 1.16.1 - Tokenizers 0.12.1
marieke93/BERT-evidence-types
marieke93
2022-06-11T13:32:10Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-08T11:54:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: BERT-evidence-types results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-evidence-types This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the evidence types dataset. It achieves the following results on the evaluation set: - Loss: 2.8008 - Macro f1: 0.4227 - Weighted f1: 0.6976 - Accuracy: 0.7154 - Balanced accuracy: 0.3876 ## Training and evaluation data The data set, as well as the code that was used to fine tune this model can be found in the GitHub repository [BA-Thesis-Information-Science-Persuasion-Strategies](https://github.com/mariekevdh/BA-Thesis-Information-Science-Persuasion-Strategies) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro f1 | Weighted f1 | Accuracy | Balanced accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:-----------------:| | 1.1148 | 1.0 | 125 | 1.0531 | 0.2566 | 0.6570 | 0.6705 | 0.2753 | | 0.7546 | 2.0 | 250 | 0.9725 | 0.3424 | 0.6947 | 0.7002 | 0.3334 | | 0.4757 | 3.0 | 375 | 1.1375 | 0.3727 | 0.7113 | 0.7184 | 0.3680 | | 0.2637 | 4.0 | 500 | 1.3585 | 0.3807 | 0.6836 | 0.6910 | 0.3805 | | 0.1408 | 5.0 | 625 | 1.6605 | 0.3785 | 0.6765 | 0.6872 | 0.3635 | | 0.0856 | 6.0 | 750 | 1.9703 | 0.3802 | 0.6890 | 0.7047 | 0.3704 | | 0.0502 | 7.0 | 875 | 2.1245 | 0.4067 | 0.6995 | 0.7169 | 0.3751 | | 0.0265 | 8.0 | 1000 | 2.2676 | 0.3756 | 0.6816 | 0.6925 | 0.3647 | | 0.0147 | 9.0 | 1125 | 2.4286 | 0.4052 | 0.6887 | 0.7062 | 0.3803 | | 0.0124 | 10.0 | 1250 | 2.5773 | 0.4084 | 0.6853 | 0.7040 | 0.3695 | | 0.0111 | 11.0 | 1375 | 2.5941 | 0.4146 | 0.6915 | 0.7085 | 0.3834 | | 0.0076 | 12.0 | 1500 | 2.6124 | 0.4157 | 0.6936 | 0.7078 | 0.3863 | | 0.0067 | 13.0 | 1625 | 2.7050 | 0.4139 | 0.6925 | 0.7108 | 0.3798 | | 0.0087 | 14.0 | 1750 | 2.6695 | 0.4252 | 0.7009 | 0.7169 | 0.3920 | | 0.0056 | 15.0 | 1875 | 2.7357 | 0.4257 | 0.6985 | 0.7161 | 0.3868 | | 0.0054 | 16.0 | 2000 | 2.7389 | 0.4249 | 0.6955 | 0.7116 | 0.3890 | | 0.0051 | 17.0 | 2125 | 2.7767 | 0.4197 | 0.6967 | 0.7146 | 0.3863 | | 0.004 | 18.0 | 2250 | 2.7947 | 0.4211 | 0.6977 | 0.7154 | 0.3876 | | 0.0041 | 19.0 | 2375 | 2.8030 | 0.4204 | 0.6953 | 0.7131 | 0.3855 | | 0.0042 | 20.0 | 2500 | 2.8008 | 0.4227 | 0.6976 | 0.7154 | 0.3876 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
send-it/dqn-SpaceInvadersNoFrameskip-v4
send-it
2022-06-11T13:31:04Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T13:30:29Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 558.50 +/- 102.18 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga send-it -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga send-it ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
antonioricciardi/FrozenLake-v1
antonioricciardi
2022-06-11T13:06:56Z
2
0
stable-baselines3
[ "stable-baselines3", "FrozenLake-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T13:06:48Z
--- library_name: stable-baselines3 tags: - FrozenLake-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1 type: FrozenLake-v1 --- # **PPO** Agent playing **FrozenLake-v1** This is a trained model of a **PPO** agent playing **FrozenLake-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
louisdeco/camembert-base-finetuned-RankLineCause
louisdeco
2022-06-11T12:50:01Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T09:02:07Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - recall model-index: - name: camembert-base-finetuned-RankLineCause results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-RankLineCause This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3138 - Accuracy: 0.8152 - F1: 0.8297 - Recall: 0.8152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:| | 0.3471 | 1.0 | 10019 | 0.3191 | 0.8156 | 0.8137 | 0.8156 | | 0.317 | 2.0 | 20038 | 0.3138 | 0.8152 | 0.8297 | 0.8152 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/adrianramy
huggingtweets
2022-06-11T12:12:59Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T12:12:20Z
--- language: en thumbnail: http://www.huggingtweets.com/adrianramy/1654949574810/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1192394634305134593/kWwF0YSv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Adri</div> <div style="text-align: center; font-size: 14px;">@adrianramy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Adri. | Data | Adri | | --- | --- | | Tweets downloaded | 3050 | | Retweets | 1585 | | Short tweets | 275 | | Tweets kept | 1190 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/30dqbz5d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @adrianramy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16tp54yl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16tp54yl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/adrianramy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/dekotale
huggingtweets
2022-06-11T12:08:52Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T12:04:17Z
--- language: en thumbnail: http://www.huggingtweets.com/dekotale/1654949168644/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1303333944360869888/DcCZvOOS_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dekotale</div> <div style="text-align: center; font-size: 14px;">@dekotale</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dekotale. | Data | Dekotale | | --- | --- | | Tweets downloaded | 3125 | | Retweets | 1528 | | Short tweets | 433 | | Tweets kept | 1164 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1l1uql9a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dekotale's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fv8rmutq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fv8rmutq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dekotale') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
shivarama23/swin-tiny-patch4-window7-224-finetuned-image_quality
shivarama23
2022-06-11T11:54:49Z
85
1
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-11T11:41:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-image_quality results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9090909090909091 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-image_quality This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.5242 - Accuracy: 0.9091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6762 | 0.6364 | | No log | 2.0 | 2 | 0.6309 | 0.7273 | | No log | 3.0 | 3 | 0.6095 | 0.6364 | | No log | 4.0 | 4 | 0.5775 | 0.6364 | | No log | 5.0 | 5 | 0.5443 | 0.8182 | | No log | 6.0 | 6 | 0.5242 | 0.9091 | | No log | 7.0 | 7 | 0.5149 | 0.8182 | | No log | 8.0 | 8 | 0.5094 | 0.8182 | | No log | 9.0 | 9 | 0.5038 | 0.8182 | | 0.4095 | 10.0 | 10 | 0.4992 | 0.8182 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
mmillet/distilrubert-tiny-2nd-finetune-epru
mmillet
2022-06-11T09:50:42Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T09:48:50Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-tiny-2nd-finetune-epru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-tiny-2nd-finetune-epru This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3546 - Accuracy: 0.9325 - F1: 0.9328 - Precision: 0.9359 - Recall: 0.9325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0686 | 1.0 | 12 | 0.2931 | 0.9141 | 0.9142 | 0.9163 | 0.9141 | | 0.0269 | 2.0 | 24 | 0.2690 | 0.9448 | 0.9444 | 0.9449 | 0.9448 | | 0.0282 | 3.0 | 36 | 0.3140 | 0.9141 | 0.9140 | 0.9168 | 0.9141 | | 0.0185 | 4.0 | 48 | 0.2977 | 0.9571 | 0.9570 | 0.9576 | 0.9571 | | 0.0103 | 5.0 | 60 | 0.3368 | 0.9264 | 0.9265 | 0.9296 | 0.9264 | | 0.0088 | 6.0 | 72 | 0.3067 | 0.9387 | 0.9385 | 0.9389 | 0.9387 | | 0.0152 | 7.0 | 84 | 0.3660 | 0.9264 | 0.9263 | 0.9282 | 0.9264 | | 0.0315 | 8.0 | 96 | 0.3793 | 0.9325 | 0.9328 | 0.9359 | 0.9325 | | 0.0258 | 9.0 | 108 | 0.3546 | 0.9325 | 0.9328 | 0.9359 | 0.9325 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Theivaprakasham/layoutlmv3-finetuned-wildreceipt
Theivaprakasham
2022-06-11T09:14:40Z
28
3
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:wild_receipt", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-11T07:21:14Z
--- tags: - generated_from_trainer datasets: - wild_receipt metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-wildreceipt results: - task: name: Token Classification type: token-classification dataset: name: wild_receipt type: wild_receipt args: WildReceipt metrics: - name: Precision type: precision value: 0.877212237618329 - name: Recall type: recall value: 0.8798678959680749 - name: F1 type: f1 value: 0.8785380599065679 - name: Accuracy type: accuracy value: 0.9249204782274871 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-wildreceipt This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the wild_receipt dataset. It achieves the following results on the evaluation set: - Loss: 0.3108 - Precision: 0.8772 - Recall: 0.8799 - F1: 0.8785 - Accuracy: 0.9249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data The WildReceipt dataset consists of 1740 receipt images, and contains 25 key information categories, and a total of about 69000 text boxes. 1268 and 472 images are used for training and testing respectively to train the LayoutLMv3 model for Key Information Extraction. ## Training procedure The training code: https://github.com/Theivaprakasham/layoutlmv3/blob/main/training_codes/LayoutLMv3_training_WildReceipts_dataset.ipynb ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.32 | 100 | 1.3143 | 0.6709 | 0.2679 | 0.3829 | 0.6700 | | No log | 0.63 | 200 | 0.8814 | 0.6478 | 0.5195 | 0.5766 | 0.7786 | | No log | 0.95 | 300 | 0.6568 | 0.7205 | 0.6491 | 0.6829 | 0.8303 | | No log | 1.26 | 400 | 0.5618 | 0.7544 | 0.7072 | 0.7300 | 0.8519 | | 1.0284 | 1.58 | 500 | 0.5003 | 0.7802 | 0.7566 | 0.7682 | 0.8687 | | 1.0284 | 1.89 | 600 | 0.4454 | 0.7941 | 0.7679 | 0.7807 | 0.8748 | | 1.0284 | 2.21 | 700 | 0.4314 | 0.8142 | 0.7928 | 0.8033 | 0.8852 | | 1.0284 | 2.52 | 800 | 0.3870 | 0.8172 | 0.8200 | 0.8186 | 0.8953 | | 1.0284 | 2.84 | 900 | 0.3629 | 0.8288 | 0.8369 | 0.8329 | 0.9025 | | 0.4167 | 3.15 | 1000 | 0.3537 | 0.8540 | 0.8200 | 0.8366 | 0.9052 | | 0.4167 | 3.47 | 1100 | 0.3383 | 0.8438 | 0.8285 | 0.8361 | 0.9063 | | 0.4167 | 3.79 | 1200 | 0.3403 | 0.8297 | 0.8493 | 0.8394 | 0.9062 | | 0.4167 | 4.1 | 1300 | 0.3271 | 0.8428 | 0.8545 | 0.8487 | 0.9110 | | 0.4167 | 4.42 | 1400 | 0.3182 | 0.8491 | 0.8518 | 0.8504 | 0.9131 | | 0.2766 | 4.73 | 1500 | 0.3111 | 0.8491 | 0.8539 | 0.8515 | 0.9129 | | 0.2766 | 5.05 | 1600 | 0.3177 | 0.8397 | 0.8620 | 0.8507 | 0.9124 | | 0.2766 | 5.36 | 1700 | 0.3091 | 0.8676 | 0.8548 | 0.8612 | 0.9191 | | 0.2766 | 5.68 | 1800 | 0.3080 | 0.8508 | 0.8645 | 0.8576 | 0.9162 | | 0.2766 | 5.99 | 1900 | 0.3059 | 0.8492 | 0.8662 | 0.8576 | 0.9163 | | 0.2114 | 6.31 | 2000 | 0.3184 | 0.8536 | 0.8657 | 0.8596 | 0.9147 | | 0.2114 | 6.62 | 2100 | 0.3161 | 0.8583 | 0.8713 | 0.8648 | 0.9184 | | 0.2114 | 6.94 | 2200 | 0.3055 | 0.8707 | 0.8682 | 0.8694 | 0.9220 | | 0.2114 | 7.26 | 2300 | 0.3004 | 0.8689 | 0.8745 | 0.8717 | 0.9219 | | 0.2114 | 7.57 | 2400 | 0.3111 | 0.8701 | 0.8720 | 0.8711 | 0.9211 | | 0.174 | 7.89 | 2500 | 0.3130 | 0.8599 | 0.8741 | 0.8669 | 0.9198 | | 0.174 | 8.2 | 2600 | 0.3034 | 0.8661 | 0.8748 | 0.8704 | 0.9219 | | 0.174 | 8.52 | 2700 | 0.3005 | 0.8799 | 0.8673 | 0.8736 | 0.9225 | | 0.174 | 8.83 | 2800 | 0.3043 | 0.8687 | 0.8804 | 0.8745 | 0.9240 | | 0.174 | 9.15 | 2900 | 0.3121 | 0.8776 | 0.8704 | 0.8740 | 0.9242 | | 0.1412 | 9.46 | 3000 | 0.3131 | 0.8631 | 0.8755 | 0.8692 | 0.9204 | | 0.1412 | 9.78 | 3100 | 0.3067 | 0.8715 | 0.8773 | 0.8744 | 0.9233 | | 0.1412 | 10.09 | 3200 | 0.3021 | 0.8751 | 0.8812 | 0.8782 | 0.9248 | | 0.1412 | 10.41 | 3300 | 0.3092 | 0.8651 | 0.8808 | 0.8729 | 0.9228 | | 0.1412 | 10.73 | 3400 | 0.3084 | 0.8776 | 0.8749 | 0.8762 | 0.9237 | | 0.1254 | 11.04 | 3500 | 0.3156 | 0.8738 | 0.8785 | 0.8761 | 0.9237 | | 0.1254 | 11.36 | 3600 | 0.3131 | 0.8723 | 0.8818 | 0.8770 | 0.9244 | | 0.1254 | 11.67 | 3700 | 0.3108 | 0.8778 | 0.8781 | 0.8780 | 0.9250 | | 0.1254 | 11.99 | 3800 | 0.3097 | 0.8778 | 0.8771 | 0.8775 | 0.9239 | | 0.1254 | 12.3 | 3900 | 0.3115 | 0.8785 | 0.8801 | 0.8793 | 0.9251 | | 0.111 | 12.62 | 4000 | 0.3108 | 0.8772 | 0.8799 | 0.8785 | 0.9249 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/gustholomulers
huggingtweets
2022-06-11T07:53:54Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T07:50:54Z
--- language: en thumbnail: http://www.huggingtweets.com/gustholomulers/1654934015981/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1535477036353040384/tXI_s1Yi_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">soppy</div> <div style="text-align: center; font-size: 14px;">@gustholomulers</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from soppy. | Data | soppy | | --- | --- | | Tweets downloaded | 1482 | | Retweets | 55 | | Short tweets | 329 | | Tweets kept | 1098 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nhfbopf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gustholomulers's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3p5yu4wm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3p5yu4wm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gustholomulers') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
orzhan/t5-long-extract
orzhan
2022-06-11T07:20:59Z
105
1
transformers
[ "transformers", "pytorch", "t5", "feature-extraction", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
T5-small model fine-tuned for extractive summarization on long documents. Repository: [GitHub](https://github.com/orzhan/t5-long-extract)
orzhan/rut5-base-detox-v2
orzhan
2022-06-11T07:18:47Z
8
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "PyTorch", "Transformers", "ru", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-25T06:51:41Z
--- language: - ru tags: - PyTorch - Transformers --- # rut5-base-detox-v2 Model was fine-tuned from sberbank-ai/ruT5-base on parallel detoxification corpus. * Task: `text2text generation` * Type: `encoder-decoder` * Tokenizer: `bpe` * Dict size: `32 101` * Num Parameters: `222 M`
titi7242229/roberta-base-bne-finetuned_personality_multi_2
titi7242229
2022-06-11T06:21:27Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T05:27:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned_personality_multi_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned_personality_multi_2 This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2983 - Accuracy: 0.5429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3256 | 1.0 | 125 | 2.2642 | 0.2161 | | 1.815 | 2.0 | 250 | 1.9569 | 0.3919 | | 1.614 | 3.0 | 375 | 1.7264 | 0.5014 | | 1.1718 | 4.0 | 500 | 1.6387 | 0.5239 | | 1.135 | 5.0 | 625 | 1.6259 | 0.5245 | | 0.5637 | 6.0 | 750 | 1.6443 | 0.5372 | | 0.3672 | 7.0 | 875 | 1.7146 | 0.5326 | | 0.3249 | 8.0 | 1000 | 1.8099 | 0.5297 | | 0.1791 | 9.0 | 1125 | 1.8888 | 0.5285 | | 0.2175 | 10.0 | 1250 | 1.9228 | 0.5326 | | 0.0465 | 11.0 | 1375 | 1.9753 | 0.5435 | | 0.1154 | 12.0 | 1500 | 2.1102 | 0.5256 | | 0.0745 | 13.0 | 1625 | 2.1319 | 0.5429 | | 0.0281 | 14.0 | 1750 | 2.1743 | 0.5360 | | 0.0173 | 15.0 | 1875 | 2.2087 | 0.5441 | | 0.0269 | 16.0 | 2000 | 2.2456 | 0.5424 | | 0.0107 | 17.0 | 2125 | 2.2685 | 0.5458 | | 0.0268 | 18.0 | 2250 | 2.2893 | 0.5383 | | 0.0245 | 19.0 | 2375 | 2.2943 | 0.5418 | | 0.0156 | 20.0 | 2500 | 2.2983 | 0.5429 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/waffle_64
huggingtweets
2022-06-11T04:39:14Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T04:35:42Z
--- language: en thumbnail: http://www.huggingtweets.com/waffle_64/1654922313776/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1534033778787639296/a9JUby19_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🧇 Werewaffle🐺LOU NATION🐺</div> <div style="text-align: center; font-size: 14px;">@waffle_64</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🧇 Werewaffle🐺LOU NATION🐺. | Data | 🧇 Werewaffle🐺LOU NATION🐺 | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 110 | | Short tweets | 217 | | Tweets kept | 2922 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1rq6yndm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @waffle_64's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ucwnzfby) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ucwnzfby/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/waffle_64') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ablam/distilgpt2_fine_tuned_gcode
ablam
2022-06-11T03:52:00Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-11T01:09:05Z
--- tags: - generated_from_trainer model-index: - name: distilgpt2_fine_tuned_gcode results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2_fine_tuned_gcode This model is a fine-tuned version of [congcongwang/distilgpt2_fine_tuned_coder](https://huggingface.co/congcongwang/distilgpt2_fine_tuned_coder) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.1754 | 1.0 | 52144 | 4.1670 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 2.1.0 - Tokenizers 0.10.3
tclong/wav2vec2-base-vios-commonvoice-1
tclong
2022-06-11T03:01:54Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-10T11:09:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-vios-commonvoice-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-vios-commonvoice-1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8913 - Wer: 0.3621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.4706 | 0.55 | 500 | 3.4725 | 1.0 | | 3.202 | 1.1 | 1000 | 2.7555 | 1.0008 | | 1.0507 | 1.66 | 1500 | 1.0481 | 0.6196 | | 0.7325 | 2.21 | 2000 | 0.8120 | 0.4958 | | 0.599 | 2.76 | 2500 | 0.7035 | 0.4447 | | 0.5224 | 3.31 | 3000 | 0.6761 | 0.4078 | | 0.4844 | 3.86 | 3500 | 0.6688 | 0.4011 | | 0.4234 | 4.42 | 4000 | 0.6080 | 0.3729 | | 0.4237 | 4.97 | 4500 | 0.5953 | 0.3556 | | 0.3986 | 5.52 | 5000 | 0.6054 | 0.3478 | | 0.3554 | 6.07 | 5500 | 0.6193 | 0.3479 | | 0.3446 | 6.62 | 6000 | 0.5809 | 0.3302 | | 0.3104 | 7.17 | 6500 | 0.5713 | 0.3283 | | 0.3166 | 7.73 | 7000 | 0.5593 | 0.3133 | | 0.2938 | 8.28 | 7500 | 0.5645 | 0.3081 | | 0.3061 | 8.83 | 8000 | 0.5508 | 0.3020 | | 0.2986 | 9.38 | 8500 | 0.5462 | 0.3024 | | 0.2939 | 9.93 | 9000 | 0.5544 | 0.3028 | | 0.2633 | 10.49 | 9500 | 0.5496 | 0.3024 | | 0.2683 | 11.04 | 10000 | 0.5439 | 0.2946 | | 0.2714 | 11.59 | 10500 | 0.5524 | 0.2947 | | 0.2354 | 12.14 | 11000 | 0.5267 | 0.2918 | | 0.2488 | 12.69 | 11500 | 0.5728 | 0.2938 | | 0.2479 | 13.25 | 12000 | 0.5802 | 0.2951 | | 0.245 | 13.8 | 12500 | 0.5571 | 0.2890 | | 0.2422 | 14.35 | 13000 | 0.5531 | 0.2871 | | 0.2369 | 14.9 | 13500 | 0.5453 | 0.2860 | | 0.2345 | 15.45 | 14000 | 0.5452 | 0.2847 | | 0.2507 | 16.0 | 14500 | 0.5536 | 0.2884 | | 0.2454 | 16.56 | 15000 | 0.5577 | 0.2871 | | 0.2729 | 17.11 | 15500 | 0.6019 | 0.2931 | | 0.2743 | 17.66 | 16000 | 0.5619 | 0.2905 | | 0.3031 | 18.21 | 16500 | 0.6401 | 0.3006 | | 0.315 | 18.76 | 17000 | 0.6044 | 0.2990 | | 0.4025 | 19.32 | 17500 | 0.6739 | 0.3304 | | 0.4915 | 19.87 | 18000 | 0.7267 | 0.3472 | | 0.5539 | 20.42 | 18500 | 0.8078 | 0.3483 | | 0.7138 | 20.97 | 19000 | 0.9362 | 0.3765 | | 0.5766 | 21.52 | 19500 | 0.7921 | 0.3392 | | 0.688 | 22.08 | 20000 | 0.8833 | 0.3693 | | 0.6964 | 22.63 | 20500 | 0.9137 | 0.3469 | | 0.7389 | 23.18 | 21000 | 0.9379 | 0.3460 | | 0.7851 | 23.73 | 21500 | 1.0438 | 0.3653 | | 0.7619 | 24.28 | 22000 | 0.9313 | 0.3873 | | 0.7175 | 24.83 | 22500 | 0.8668 | 0.3789 | | 0.6842 | 25.39 | 23000 | 0.8243 | 0.3761 | | 0.6941 | 25.94 | 23500 | 0.8557 | 0.3804 | | 0.7167 | 26.49 | 24000 | 0.8618 | 0.3875 | | 0.721 | 27.04 | 24500 | 0.8686 | 0.3764 | | 0.6949 | 27.59 | 25000 | 0.8773 | 0.3690 | | 0.727 | 28.15 | 25500 | 0.8769 | 0.3666 | | 0.7363 | 28.7 | 26000 | 0.8867 | 0.3634 | | 0.7157 | 29.25 | 26500 | 0.8895 | 0.3626 | | 0.7385 | 29.8 | 27000 | 0.8913 | 0.3621 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
enoriega/rule_learning_margin_1mm
enoriega
2022-06-11T02:04:28Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:enoriega/odinsynth_dataset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-06-10T01:52:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_margin_1mm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_margin_1mm This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3806 - Margin Accuracy: 0.8239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:| | 0.6482 | 0.16 | 20 | 0.6494 | 0.7263 | | 0.5151 | 0.32 | 40 | 0.5088 | 0.7792 | | 0.4822 | 0.48 | 60 | 0.4429 | 0.8045 | | 0.4472 | 0.64 | 80 | 0.4265 | 0.8107 | | 0.4352 | 0.8 | 100 | 0.4155 | 0.8132 | | 0.4335 | 0.96 | 120 | 0.4128 | 0.8116 | | 0.4113 | 1.12 | 140 | 0.4119 | 0.8142 | | 0.4186 | 1.28 | 160 | 0.4075 | 0.8120 | | 0.42 | 1.44 | 180 | 0.4072 | 0.8123 | | 0.4175 | 1.6 | 200 | 0.4080 | 0.8130 | | 0.4097 | 1.76 | 220 | 0.4031 | 0.8128 | | 0.397 | 1.92 | 240 | 0.4004 | 0.8130 | | 0.4115 | 2.08 | 260 | 0.3979 | 0.8136 | | 0.4108 | 2.24 | 280 | 0.3940 | 0.8167 | | 0.4125 | 2.4 | 300 | 0.3879 | 0.8218 | | 0.4117 | 2.56 | 320 | 0.3848 | 0.8217 | | 0.3967 | 2.72 | 340 | 0.3818 | 0.8231 | | 0.3947 | 2.88 | 360 | 0.3813 | 0.8240 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
huggingtweets/tonebot_
huggingtweets
2022-06-11T00:15:41Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T00:14:25Z
--- language: en thumbnail: http://www.huggingtweets.com/tonebot_/1654906535396/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1447253318380793858/VVNhWBGI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">tone bot</div> <div style="text-align: center; font-size: 14px;">@tonebot_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from tone bot. | Data | tone bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 537 | | Tweets kept | 2713 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ot29sc5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tonebot_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3g614pb8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3g614pb8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tonebot_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/froliki2108
huggingtweets
2022-06-11T00:04:16Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T00:02:55Z
--- language: en thumbnail: http://www.huggingtweets.com/froliki2108/1654905851117/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1447692349493100549/1PV2c-PJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Froliki💉💉💉</div> <div style="text-align: center; font-size: 14px;">@froliki2108</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Froliki💉💉💉. | Data | Froliki💉💉💉 | | --- | --- | | Tweets downloaded | 2223 | | Retweets | 1133 | | Short tweets | 229 | | Tweets kept | 861 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tug3miv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @froliki2108's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3otsf5pj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3otsf5pj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/froliki2108') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nateraw/modelcard-creator-demo
nateraw
2022-06-10T23:58:39Z
0
0
pytorch
[ "pytorch", "modelcards", "autogenerated-modelcard", "en", "dataset:beans", "arxiv:1810.03993", "arxiv:1910.09700", "license:mit", "region:us" ]
null
2022-06-10T23:40:23Z
--- language: - en license: mit library_name: pytorch tags: - modelcards - autogenerated-modelcard datasets: - beans metrics: - accuracy --- # modelcard-creator-demo ## Table of Contents - [Model Details](#model-details) - [How To Get Started With the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Direct Use](#direct-use) - [Downstream Use](#downstream-use) - [Misuse and Out of Scope Use](#misuse-and-out-of-scope-use) - [Limitations and Biases](#limitations-and-biases) - [Training](#training) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Evaluation Results](#evaluation-results) - [Environmental Impact](#environmental-impact) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Model Details <!-- Give an overview of your model, the relevant research paper, who trained it, etc. --> This isn't really a model, it's just a test repo to see if the [model card creator](https://huggingface.co/spaces/nateraw/modelcard-creator) works! - Developed by: Nathan Raw - Language(s): - License: modelcard-creator-demo is licensed under the mit license - Resources for more information: - [Research Paper](https://arxiv.org/pdf/1810.03993.pdf) - [GitHub Repo](https://github.com/nateraw/modelcards) ## How to Get Started with the Model Use the code below to get started with the model. ```python # A nice code snippet here that describes how to use the model... ``` ## Uses #### Direct Use <!-- Describe what kind of tasks this model can be used for directly or problems it can solve. --> [More Information Needed] #### Downstream Use <!-- Describe how this model could be leveraged by a downstream model (if applicable) --> [More Information Needed] #### Misuse and Out-of-scope Use <!-- Describe ways in which this model ***should not*** be used. --> [More Information Needed] ## Limitations and Biases <!-- Describe limitations and biases of this model or models of it's type. --> **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propogate historical and current stereotypes.** [More Information Needed] ## Training #### Training Data <!-- Describe the dataset used to train this model. --> <!-- Refer to data card if dataset is provided and exists on the hub --> See the data card for additional information. #### Training Procedure <!-- Describe the preprocessing, hardware used, training hyperparameters, etc. --> [More Information Needed] ## Evaluation Results <!-- Describe evaluation results of this model across any datasets it was evaluated on. --> [More Information Needed] ## Environmental Impact <!-- Provide information to document the environmental impact of this model --> You can estimate carbon emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700) - **Hardware Type:** - **Hours used:** - **Cloud Provider:** - **Compute Region:** - **Carbon Emitted:** ## Citation Information ```bibtex @inproceedings{Mitchell_2019, doi = {10.1145/3287560.3287596}, url = {https://doi.org/10.1145%2F3287560.3287596}, year = 2019, month = {jan}, publisher = {{ACM} }, author = {Margaret Mitchell and Simone Wu and Andrew Zaldivar and Parker Barnes and Lucy Vasserman and Ben Hutchinson and Elena Spitzer and Inioluwa Deborah Raji and Timnit Gebru}, title = {Model Cards for Model Reporting}, booktitle = {Proceedings of the Conference on Fairness, Accountability, and Transparency} } ```
ahmeddbahaa/t5-arabic-base-finetuned-wikilingua-ar
ahmeddbahaa
2022-06-10T23:54:52Z
12
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "mt5", "ar", "abstractive summarization", "generated_from_trainer", "dataset:wiki_lingua", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-06-10T15:19:23Z
--- license: apache-2.0 tags: - summarization - mt5 - ar - abstractive summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: t5-arabic-base-finetuned-wikilingua-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-arabic-base-finetuned-wikilingua-ar This model is a fine-tuned version of [bakrianoo/t5-arabic-base](https://huggingface.co/bakrianoo/t5-arabic-base) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 3.2735 - Rouge-1: 20.72 - Rouge-2: 7.63 - Rouge-l: 18.75 - Gen Len: 18.74 - Bertscore: 70.79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/jedwill1999
huggingtweets
2022-06-10T23:10:10Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T23:09:22Z
--- language: en thumbnail: http://www.huggingtweets.com/jedwill1999/1654902604867/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1510152678919135250/lfEmlEGJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">a local</div> <div style="text-align: center; font-size: 14px;">@jedwill1999</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from a local. | Data | a local | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 1080 | | Short tweets | 525 | | Tweets kept | 1641 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qsnsp6t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jedwill1999's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mjjc73pu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mjjc73pu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jedwill1999') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/boopysaur
huggingtweets
2022-06-10T22:57:09Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T22:56:08Z
--- language: en thumbnail: http://www.huggingtweets.com/boopysaur/1654901824865/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1476816918879297559/2jt_Rt2L_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">boop ♡</div> <div style="text-align: center; font-size: 14px;">@boopysaur</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from boop ♡. | Data | boop ♡ | | --- | --- | | Tweets downloaded | 920 | | Retweets | 162 | | Short tweets | 128 | | Tweets kept | 630 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/398l195g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @boopysaur's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3te0suw6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3te0suw6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/boopysaur') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
facebook/roberta-hate-speech-dynabench-r2-target
facebook
2022-06-10T22:36:17Z
12
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "arxiv:2012.15761", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T21:52:46Z
--- language: en --- # LFTW R2 Target The R2 Target model from [Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection](https://arxiv.org/abs/2012.15761) ## Citation Information ```bibtex @inproceedings{vidgen2021lftw, title={Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection}, author={Bertie Vidgen and Tristan Thrush and Zeerak Waseem and Douwe Kiela}, booktitle={ACL}, year={2021} } ``` Thanks to Kushal Tirumala and Adina Williams for helping the authors put the model on the hub!
torli/trijki
torli
2022-06-10T20:45:14Z
0
1
null
[ "license:artistic-2.0", "region:us" ]
null
2022-06-10T20:43:32Z
--- license: artistic-2.0 --- git lfs install git clone https://huggingface.co/torli/trijki
FritzOS/TEdetection_distiBERT_NER_V5
FritzOS
2022-06-10T20:35:11Z
63
0
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-10T20:34:58Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distiBERT_NER_V5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distiBERT_NER_V5 This model is a fine-tuned version of [FritzOS/TEdetection_distilBERT_mLM_V5](https://huggingface.co/FritzOS/TEdetection_distilBERT_mLM_V5) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0029 - Validation Loss: 0.0032 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0029 | 0.0032 | 0 | ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented
mmillet
2022-06-10T20:27:38Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T20:14:44Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented This model is a fine-tuned version of [DeepPavlov/distilrubert-tiny-cased-conversational-v1](https://huggingface.co/DeepPavlov/distilrubert-tiny-cased-conversational-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5908 - Accuracy: 0.8653 - F1: 0.8656 - Precision: 0.8665 - Recall: 0.8653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.9172 | 1.0 | 69 | 0.5124 | 0.8246 | 0.8220 | 0.8271 | 0.8246 | | 0.4709 | 2.0 | 138 | 0.4279 | 0.8528 | 0.8505 | 0.8588 | 0.8528 | | 0.3194 | 3.0 | 207 | 0.3770 | 0.8737 | 0.8727 | 0.8740 | 0.8737 | | 0.2459 | 4.0 | 276 | 0.3951 | 0.8685 | 0.8682 | 0.8692 | 0.8685 | | 0.1824 | 5.0 | 345 | 0.4005 | 0.8831 | 0.8834 | 0.8841 | 0.8831 | | 0.1515 | 6.0 | 414 | 0.4356 | 0.8800 | 0.8797 | 0.8801 | 0.8800 | | 0.1274 | 7.0 | 483 | 0.4642 | 0.8727 | 0.8726 | 0.8731 | 0.8727 | | 0.0833 | 8.0 | 552 | 0.5226 | 0.8633 | 0.8627 | 0.8631 | 0.8633 | | 0.073 | 9.0 | 621 | 0.5327 | 0.8695 | 0.8686 | 0.8692 | 0.8695 | | 0.0575 | 10.0 | 690 | 0.5908 | 0.8653 | 0.8656 | 0.8665 | 0.8653 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
FritzOS/TEdetection_distilBERT_mLM_V5
FritzOS
2022-06-10T19:43:24Z
63
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-10T19:43:11Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distilBERT_mLM_V5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distilBERT_mLM_V5 This model is a fine-tuned version of [FritzOS/TEdetection_distiBERT_mLM_V2](https://huggingface.co/FritzOS/TEdetection_distiBERT_mLM_V2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.3 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/malzliebchen
huggingtweets
2022-06-10T18:29:39Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T18:26:43Z
--- language: en thumbnail: http://www.huggingtweets.com/malzliebchen/1654885748305/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521909233024913408/4QsF2YzM_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Malzbeard's Severed Head</div> <div style="text-align: center; font-size: 14px;">@malzliebchen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Malzbeard's Severed Head. | Data | Malzbeard's Severed Head | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 41 | | Short tweets | 486 | | Tweets kept | 2720 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/e1wzn1e5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @malzliebchen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38g20s6n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38g20s6n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/malzliebchen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Clody0071/camembert-base-finetuned-paraphrase
Clody0071
2022-06-10T18:05:49Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "text-classification", "generated_from_trainer", "dataset:pawsx", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T16:20:01Z
--- license: mit tags: - generated_from_trainer datasets: - pawsx metrics: - accuracy - f1 model-index: - name: camembert-base-finetuned-paraphrase results: - task: name: Text Classification type: text-classification dataset: name: pawsx type: pawsx args: fr metrics: - name: Accuracy type: accuracy value: 0.9085 - name: F1 type: f1 value: 0.9088724090678741 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-paraphrase This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the pawsx dataset. It achieves the following results on the evaluation set: - Loss: 0.2708 - Accuracy: 0.9085 - F1: 0.9089 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3918 | 1.0 | 772 | 0.3211 | 0.869 | 0.8696 | | 0.2103 | 2.0 | 1544 | 0.2448 | 0.9075 | 0.9077 | | 0.1622 | 3.0 | 2316 | 0.2577 | 0.9055 | 0.9059 | | 0.1344 | 4.0 | 3088 | 0.2708 | 0.9085 | 0.9089 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
meln1k/dqn-SpaceInvadersNoFrameskip-v4
meln1k
2022-06-10T17:30:42Z
5
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T17:30:14Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 817.50 +/- 327.32 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga meln1k -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga meln1k ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
juancopi81/mt5-small-finetuned-amazon-en-es
juancopi81
2022-06-10T15:58:27Z
61
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-10T13:57:35Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: juancopi81/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # juancopi81/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.1238 - Validation Loss: 3.4046 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.2166 | 4.4331 | 0 | | 6.0386 | 3.8849 | 1 | | 5.2369 | 3.6628 | 2 | | 4.7882 | 3.5569 | 3 | | 4.5111 | 3.4850 | 4 | | 4.3250 | 3.4330 | 5 | | 4.1930 | 3.4163 | 6 | | 4.1238 | 3.4046 | 7 | ### Framework versions - Transformers 4.19.3 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
OTQ/q-FrozenLake-v1-4x4-noSlippery
OTQ
2022-06-10T15:14:57Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T15:14:51Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
ahmeddbahaa/mT5_multilingual_XLSum-finetuned-wikilingua-ar
ahmeddbahaa
2022-06-10T14:19:32Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "mT5_multilingual_XLSum", "abstractive summarization", "ar", "generated_from_trainer", "dataset:wiki_lingua", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-10T02:47:03Z
--- tags: - summarization - mT5_multilingual_XLSum - mt5 - abstractive summarization - ar - generated_from_trainer datasets: - wiki_lingua model-index: - name: mT5_multilingual_XLSum-finetuned-wikilingua-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mT5_multilingual_XLSum-finetuned-wikilingua-ar This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 3.5540 - Rouge-1: 27.46 - Rouge-2: 9.0 - Rouge-l: 22.59 - Gen Len: 43.41 - Bertscore: 73.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
RalphX1/dqn-SpaceInvadersNoFrameskip-v4
RalphX1
2022-06-10T13:57:03Z
6
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T13:11:26Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 374.00 +/- 214.89 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga RalphX1 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga RalphX1 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
google/muril-base-cased
google
2022-06-10T13:33:04Z
10,230
35
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "arxiv:2103.10730", "arxiv:1810.04805", "arxiv:1911.02116", "arxiv:2003.11080", "arxiv:2009.05166", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- MuRIL: Multilingual Representations for Indian Languages === MuRIL is a BERT model pre-trained on 17 Indian languages and their transliterated counterparts. We have released the pre-trained model (with the MLM layer intact, enabling masked word predictions) in this repository. We have also released the encoder on [TFHub](https://tfhub.dev/google/MuRIL/1) with an additional pre-processing module, that processes raw text into the expected input format for the encoder. You can find more details on MuRIL in this [paper](http://arxiv.org/abs/2103.10730). ## Overview This model uses a BERT base architecture [1] pretrained from scratch using the Wikipedia [2], Common Crawl [3], PMINDIA [4] and Dakshina [5] corpora for 17 [6] Indian languages. We use a training paradigm similar to multilingual bert, with a few modifications as listed: * We include translation and transliteration segment pairs in training as well. * We keep an exponent value of 0.3 and not 0.7 for upsampling, shown to enhance low-resource performance. [7] See the Training section for more details. ## Training The MuRIL model is pre-trained on monolingual segments as well as parallel segments as detailed below : * Monolingual Data : We make use of publicly available corpora from Wikipedia and Common Crawl for 17 Indian languages. * Parallel Data : We have two types of parallel data : * Translated Data : We obtain translations of the above monolingual corpora using the Google NMT pipeline. We feed translated segment pairs as input. We also make use of the publicly available PMINDIA corpus. * Transliterated Data : We obtain transliterations of Wikipedia using the IndicTrans [8] library. We feed transliterated segment pairs as input. We also make use of the publicly available Dakshina dataset. We keep an exponent value of 0.3 to calculate duplication multiplier values for upsampling of lower resourced languages and set dupe factors accordingly. Note, we limit transliterated pairs to Wikipedia only. The model was trained using a self-supervised masked language modeling task. We do whole word masking with a maximum of 80 predictions. The model was trained for 1000K steps, with a batch size of 4096, and a max sequence length of 512. ### Trainable parameters All parameters in the module are trainable, and fine-tuning all parameters is the recommended practice. ## Uses & Limitations This model is intended to be used for a variety of downstream NLP tasks for Indian languages. This model is trained on transliterated data as well, a phenomomenon commonly observed in the Indian context. This model is not expected to perform well on languages other than the ones used in pretraining, i.e. 17 Indian languages. ## Evaluation We provide the results of fine-tuning this model on a set of downstream tasks.<br/> We choose these tasks from the XTREME benchmark, with evaluation done on Indian language test-sets.<br/> We also transliterate the test-sets and evaluate on the same.<br/> We use the same fine-tuning setting as is used by [9], except for TyDiQA, where we use additional SQuAD v1.1 English training data, similar to [10].<br/> For Tatoeba, we do not fine-tune the model, and use the pooled_output of the last layer as the sentence embedding.<br/> All results are computed in a zero-shot setting, with English being the high resource training set language. * Shown below are results on datasets from the XTREME benchmark (in %) <br/> PANX (F1) | ml | ta | te | en | bn | hi | mr | ur | Average :-------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------: mBERT | 54.77 | 51.24 | 50.16 | 84.40 | 68.59 | 65.13 | 58.44 | 31.36 | 58.01 MuRIL | 75.74 | 71.86 | 64.99 | 84.43 | 85.97 | 78.09 | 74.63 | 85.07 | 77.60 <br/> UDPOS (F1) | en | hi | mr | ta | te | ur | Average :--------- | ----: | ----: | ----: | ----: | ----: | ----: | ------: mBERT | 95.35 | 66.09 | 71.27 | 59.58 | 76.98 | 57.85 | 71.19 MuRIL | 95.55 | 64.47 | 82.95 | 62.57 | 85.63 | 58.93 | 75.02 <br/> XNLI (Accuracy) | en | hi | ur | Average :-------------- | ----: | ----: | ----: | ------: mBERT | 81.72 | 60.52 | 58.20 | 66.81 MuRIL | 83.85 | 70.66 | 67.70 | 74.07 <br/> Tatoeba (Accuracy) | ml | ta | te | bn | hi | mr | ur | Average :----------------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------: mBERT | 20.23 | 12.38 | 14.96 | 12.80 | 27.80 | 18.00 | 22.70 | 18.41 MuRIL | 26.35 | 36.81 | 17.52 | 20.20 | 31.50 | 26.60 | 17.10 | 25.15 <br/> XQUAD (F1/EM) | en | hi | Average :------------ | ----------: | ----------: | ----------: mBERT | 83.85/72.86 | 58.46/43.53 | 71.15/58.19 MuRIL | 84.31/72.94 | 73.93/58.32 | 79.12/65.63 <br/> MLQA (F1/EM) | en | hi | Average :----------- | ----------: | ----------: | ----------: mBERT | 80.39/67.30 | 50.28/35.18 | 65.34/51.24 MuRIL | 80.28/67.37 | 67.34/50.22 | 73.81/58.80 <br/> TyDiQA (F1/EM) | en | bn | te | Average :---------------- | ----------: | ----------: | ----------: | ----------: mBERT | 75.21/65.00 | 60.62/45.13 | 53.55/44.54 | 63.13/51.66 MuRIL | 74.10/64.55 | 78.03/66.37 | 73.95/46.94 | 75.36/59.28 * Shown below are results on the transliterated versions of the above test-sets. PANX (F1) | ml_tr | ta_tr | te_tr | bn_tr | hi_tr | mr_tr | ur_tr | Average :-------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------: mBERT | 7.53 | 1.04 | 8.24 | 41.77 | 25.46 | 8.34 | 7.30 | 14.24 MuRIL | 63.39 | 7.00 | 53.62 | 72.94 | 69.75 | 68.77 | 68.41 | 57.70 <br/> UDPOS (F1) | hi_tr | mr_tr | ta_tr | te_tr | ur_tr | Average :--------- | ----: | ----: | ----: | ----: | ----: | ------: mBERT | 25.00 | 33.67 | 24.02 | 36.21 | 22.07 | 28.20 MuRIL | 63.09 | 67.19 | 58.40 | 65.30 | 56.49 | 62.09 <br/> XNLI (Accuracy) | hi_tr | ur_tr | Average :-------------- | ----: | ----: | ------: mBERT | 39.6 | 38.86 | 39.23 MuRIL | 68.24 | 61.16 | 64.70 <br/> Tatoeba (Accuracy) | ml_tr | ta_tr | te_tr | bn_tr | hi_tr | mr_tr | ur_tr | Average :----------------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ------: mBERT | 2.18 | 1.95 | 5.13 | 1.80 | 3.00 | 2.40 | 2.30 | 2.68 MuRIL | 10.33 | 11.07 | 11.54 | 8.10 | 14.90 | 7.20 | 13.70 | 10.98 <br/> ## References \[1]: Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805). arXiv preprint arXiv:1810.04805, 2018. \[2]: [Wikipedia](https://www.tensorflow.org/datasets/catalog/wikipedia) \[3]: [Common Crawl](http://commoncrawl.org/the-data/) \[4]: [PMINDIA](http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/index.html) \[5]: [Dakshina](https://github.com/google-research-datasets/dakshina) \[6]: Assamese (as), Bengali (bn), English (en), Gujarati (gu), Hindi (hi), Kannada (kn), Kashmiri (ks), Malayalam (ml), Marathi (mr), Nepali (ne), Oriya (or), Punjabi (pa), Sanskrit (sa), Sindhi (sd), Tamil (ta), Telugu (te) and Urdu (ur). \[7]: Conneau, Alexis, et al. [Unsupervised cross-lingual representation learning at scale](https://arxiv.org/pdf/1911.02116.pdf). arXiv preprint arXiv:1911.02116 (2019). \[8]: [IndicTrans](https://github.com/libindic/indic-trans) \[9]: Hu, J., Ruder, S., Siddhant, A., Neubig, G., Firat, O., & Johnson, M. (2020). [Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual generalization.](https://arxiv.org/pdf/2003.11080.pdf) arXiv preprint arXiv:2003.11080. \[10]: Fang, Y., Wang, S., Gan, Z., Sun, S., & Liu, J. (2020). [FILTER: An Enhanced Fusion Method for Cross-lingual Language Understanding.](https://arxiv.org/pdf/2009.05166.pdf) arXiv preprint arXiv:2009.05166. ## Citation If you find MuRIL useful in your applications, please cite the following paper: ``` @misc{khanuja2021muril, title={MuRIL: Multilingual Representations for Indian Languages}, author={Simran Khanuja and Diksha Bansal and Sarvesh Mehtani and Savya Khosla and Atreyee Dey and Balaji Gopalan and Dilip Kumar Margam and Pooja Aggarwal and Rajiv Teja Nagipogu and Shachi Dave and Shruti Gupta and Subhash Chandra Bose Gali and Vish Subramanian and Partha Talukdar}, year={2021}, eprint={2103.10730}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Contact Please mail your queries/feedback to muril-contact@google.com.
ahmeddbahaa/mt5-base-finetuned-wikilingua-ar
ahmeddbahaa
2022-06-10T13:00:43Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "ar", "abstractive summarization", "generated_from_trainer", "dataset:wiki_lingua", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-10T02:40:53Z
--- license: apache-2.0 tags: - summarization - mt5 - ar - abstractive summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: mt5-base-finetuned-wikilingua-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-wikilingua-ar This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 3.4936 - Rouge-1: 20.79 - Rouge-2: 7.6 - Rouge-l: 18.81 - Gen Len: 18.73 - Bertscore: 70.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
adi1494/distilbert-base-uncased-finetuned-squad
adi1494
2022-06-10T12:39:00Z
62
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-10T06:38:11Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: adi1494/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # adi1494/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5671 - Validation Loss: 1.2217 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5532, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.5671 | 1.2217 | 0 | ### Framework versions - Transformers 4.19.3 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
FabianWillner/distilbert-base-uncased-finetuned-squad-finetuned-triviaqa
FabianWillner
2022-06-10T11:54:41Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-10T09:44:08Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad-finetuned-triviaqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-finetuned-triviaqa This model is a fine-tuned version of [FabianWillner/distilbert-base-uncased-finetuned-squad](https://huggingface.co/FabianWillner/distilbert-base-uncased-finetuned-squad) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9722 | 1.0 | 11195 | 0.9665 | | 0.7558 | 2.0 | 22390 | 0.9583 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
stig/distilbert-base-uncased-finetuned
stig
2022-06-10T10:59:39Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-10T09:59:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0255 | 1.0 | 2312 | 1.9202 | | 1.7483 | 2.0 | 4624 | 1.8437 | | 1.5733 | 3.0 | 6936 | 1.8627 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
danieladejumo/q-FrozenLake-v1-4x4-noSlippery
danieladejumo
2022-06-10T10:25:31Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T10:25:23Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="danieladejumo/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
TurkuNLP/bert-large-finnish-cased-v1
TurkuNLP
2022-06-10T08:46:17Z
152
2
transformers
[ "transformers", "pytorch", "fi", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-06-10T07:53:16Z
--- license: apache-2.0 language: fi --- This is the large variant of FinBERT (TurkuNLP/bert-base-finnish-cased-v1). The training data is exactly the same.
flood/distilbert-base-uncased-distilled-clinc
flood
2022-06-10T08:03:08Z
77
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T07:59:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9309677419354838 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.0389 - Accuracy: 0.9310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6206 | 1.0 | 318 | 0.3251 | 0.6610 | | 0.2571 | 2.0 | 636 | 0.1366 | 0.8584 | | 0.1392 | 3.0 | 954 | 0.0813 | 0.9081 | | 0.0967 | 4.0 | 1272 | 0.0598 | 0.9152 | | 0.0779 | 5.0 | 1590 | 0.0503 | 0.9229 | | 0.0675 | 6.0 | 1908 | 0.0451 | 0.9271 | | 0.0615 | 7.0 | 2226 | 0.0425 | 0.9326 | | 0.058 | 8.0 | 2544 | 0.0403 | 0.9316 | | 0.0557 | 9.0 | 2862 | 0.0393 | 0.9306 | | 0.0544 | 10.0 | 3180 | 0.0389 | 0.9310 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
juns/imdb_finetuned_distilbert-base-uncased-finetuned-sst-2-english
juns
2022-06-10T07:37:10Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-18T07:05:06Z
imdb_finetuned_distilbert-base-uncased-finetuned-sst-2-english for boostcamp ai tech 3
flood/pegasus-samsum
flood
2022-06-10T07:00:06Z
4
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-10T06:24:51Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7052 | 0.54 | 500 | 1.4814 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/macarena_olona
huggingtweets
2022-06-10T06:32:02Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T06:10:00Z
--- language: en thumbnail: http://www.huggingtweets.com/macarena_olona/1654842717478/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1535020786007916545/po7DO1ln_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Macarena Olona</div> <div style="text-align: center; font-size: 14px;">@macarena_olona</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Macarena Olona. | Data | Macarena Olona | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 1797 | | Short tweets | 225 | | Tweets kept | 1223 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yx7hguo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @macarena_olona's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2i64c9y6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2i64c9y6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/macarena_olona') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ralee85
huggingtweets
2022-06-10T06:27:59Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T06:27:51Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/964497068424249345/Y6ce6atF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rob Lee</div> <div style="text-align: center; font-size: 14px;">@ralee85</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rob Lee. | Data | Rob Lee | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 22 | | Short tweets | 1590 | | Tweets kept | 1638 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/164xyalb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ralee85's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pc7ca11) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pc7ca11/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ralee85') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
RuiqianLi/wav2vec2-xls-r-300m_Mrbrown_finetune1
RuiqianLi
2022-06-10T03:17:06Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:uob_singlish", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-09T10:16:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - uob_singlish model-index: - name: wav2vec2-xls-r-300m_Mrbrown_finetune1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m_Mrbrown_finetune1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the uob_singlish dataset. ## This time use self-made dataset(cut the audio of "https://www.youtube.com/watch?v=a2ZOTD3R7JI" into slices and write the corresponding transcript, totally 4 mins), don't know why the word-error-rate keep 1. But can know that much be the problem of dataset, because last time use the same pre-trained model and standard singlish corpus fine-tune get nice result. (can find it at:RuiqianLi/wav2vec2-large-xls-r-300m-singlish-colab) It achieves the following results on the evaluation set: - Loss: 3.0927 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.7943 | 20.0 | 200 | 3.0597 | 1.0 | | 2.9902 | 40.0 | 400 | 3.1604 | 1.0 | | 2.9696 | 60.0 | 600 | 3.1112 | 1.0 | | 2.8885 | 80.0 | 800 | 3.0234 | 1.0 | | 2.8154 | 100.0 | 1000 | 3.0927 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
YeRyeongLee/bert-base-cased-finetuned-filtered-0609
YeRyeongLee
2022-06-10T02:29:16Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T00:30:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-base-cased-finetuned-filtered-0609 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-filtered-0609 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2410 - Accuracy: 0.9748 - Precision: 0.9751 - Recall: 0.9748 - F1: 0.9749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2028 | 1.0 | 3180 | 0.2405 | 0.9535 | 0.9561 | 0.9535 | 0.9538 | | 0.1632 | 2.0 | 6360 | 0.1686 | 0.9660 | 0.9664 | 0.9660 | 0.9661 | | 0.1203 | 3.0 | 9540 | 0.1625 | 0.9648 | 0.9655 | 0.9648 | 0.9648 | | 0.1233 | 4.0 | 12720 | 0.1510 | 0.9698 | 0.9702 | 0.9698 | 0.9699 | | 0.0823 | 5.0 | 15900 | 0.1600 | 0.9730 | 0.9732 | 0.9730 | 0.9730 | | 0.0453 | 6.0 | 19080 | 0.1953 | 0.9723 | 0.9724 | 0.9723 | 0.9723 | | 0.031 | 7.0 | 22260 | 0.1754 | 0.9755 | 0.9755 | 0.9755 | 0.9755 | | 0.0166 | 8.0 | 25440 | 0.2155 | 0.9739 | 0.9740 | 0.9739 | 0.9739 | | 0.0036 | 9.0 | 28620 | 0.2519 | 0.9730 | 0.9733 | 0.9730 | 0.9730 | | 0.0035 | 10.0 | 31800 | 0.2410 | 0.9748 | 0.9751 | 0.9748 | 0.9749 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.1+cu111 - Datasets 1.16.1 - Tokenizers 0.12.1
huggingtweets/loganpaul
huggingtweets
2022-06-10T02:29:07Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T02:27:26Z
--- language: en thumbnail: http://www.huggingtweets.com/loganpaul/1654828143127/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1401837042934468611/okzqIoMb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Logan Paul</div> <div style="text-align: center; font-size: 14px;">@loganpaul</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Logan Paul. | Data | Logan Paul | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 170 | | Short tweets | 318 | | Tweets kept | 2757 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wj9pph5f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @loganpaul's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1sqzuxgo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1sqzuxgo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/loganpaul') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
RuiqianLi/malaya-speech_Mrbrown_finetune1
RuiqianLi
2022-06-10T02:23:06Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:uob_singlish", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-09T09:01:56Z
--- tags: - generated_from_trainer datasets: - uob_singlish model-index: - name: malaya-speech_Mrbrown_finetune1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # malaya-speech_Mrbrown_finetune1 This model is a fine-tuned version of [malay-huggingface/wav2vec2-xls-r-300m-mixed](https://huggingface.co/malay-huggingface/wav2vec2-xls-r-300m-mixed) on the uob_singlish dataset. ## This time use self-made dataset(cut the audio of "https://www.youtube.com/watch?v=a2ZOTD3R7JI" into slices and write the corresponding transcript, totally 4 mins), get really bad fine-tuning result, that may mean the training/fine-tuning dataset must be high quality/at least several hours? Or maybe is because the learning rate is set too high(0.01) ? Still searching for the important factors. It achieves the following results on the evaluation set: - Loss: 3.8458 - Wer: 1.01 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:----:| | 0.3186 | 20.0 | 200 | 4.2225 | 1.13 | | 0.4911 | 40.0 | 400 | 4.0427 | 0.99 | | 0.9014 | 60.0 | 600 | 5.3285 | 1.04 | | 1.0955 | 80.0 | 800 | 3.6922 | 1.02 | | 0.7533 | 100.0 | 1000 | 3.8458 | 1.01 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
HrayrM/distilbert-base-uncased-finetuned-clinc
HrayrM
2022-06-10T01:17:59Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T00:50:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9135483870967742 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7771 - Accuracy: 0.9135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2843 | 1.0 | 318 | 3.2793 | 0.7448 | | 2.6208 | 2.0 | 636 | 1.8750 | 0.8297 | | 1.5453 | 3.0 | 954 | 1.1565 | 0.8919 | | 1.0141 | 4.0 | 1272 | 0.8628 | 0.9090 | | 0.795 | 5.0 | 1590 | 0.7771 | 0.9135 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0 - Datasets 2.2.2 - Tokenizers 0.10.3
ExusAI/SRWNN
ExusAI
2022-06-10T00:54:14Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-06-10T00:45:58Z
--- license: mit --- Super resolution model for anime and illustrations based on vgg11 and waifu2x. This model was trained on around 10k high resolution images (at least HD) https://github.com/Exusai/SuperResolutionWaifuNN
nestoralvaro/mt5-base-finetuned-xsum-data_prep_2021_12_26___t1_7.csv___topic_text_google_mt5_base
nestoralvaro
2022-06-10T00:52:35Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-09T23:49:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-data_prep_2021_12_26___t1_7.csv___topic_text_google_mt5_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-data_prep_2021_12_26___t1_7.csv___topic_text_google_mt5_base This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 2.8146 - Rouge2: 0.6707 - Rougel: 2.8187 - Rougelsum: 2.8098 - Gen Len: 6.4901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 3869 | nan | 2.8146 | 0.6707 | 2.8187 | 2.8098 | 6.4901 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
UBC-NLP/turjuman
UBC-NLP
2022-06-10T00:24:37Z
32
7
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2206.03933", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T22:07:50Z
<p align="center"> <br> <img src="https://github.com/UBC-NLP/turjuman/raw/master//images/turjuman_logo.png"/> <br> <p> <img src="https://github.com/UBC-NLP/turjuman/raw/master/images/turjuman.png" alt="AraT5" width="50%" height="50%" align="right"/> Turjuman is a neural machine translation toolkit. It translates from 20 languages into Modern Standard Arabic (MSA). Turjuman is described in this paper: [**TURJUMAN: A Public Toolkit for Neural Arabic Machine Translation**](https://arxiv.org/abs/2206.03933). Turjuman exploits our [AraT5 model](https://github.com/UBC-NLP/araT5). This endows Turjuman with a powerful ability to decode into Arabic. The toolkit offers the possibility of employing a number of diverse decoding methods, making it suited for acquiring paraphrases for the MSA translations as an added value. **Github**: [https://github.com/UBC-NLP/turjuman](https://github.com/UBC-NLP/turjuman) **Demo**: [https://demos.dlnlp.ai/turjuman](https://demos.dlnlp.ai/turjuman) **Paper**: [https://arxiv.org/abs/2206.03933](https://arxiv.org/abs/2206.03933) ## License turjuman(-py) is Apache-2.0 licensed. The license applies to the pre-trained models as well. ## Citation If you use TURJUMAN toolkit or the pre-trained models for your scientific publication, or if you find the resources in this repository useful, please cite our paper as follows (to be updated): ``` @inproceedings{nagoudi-osact5-2022-turjuman, title={TURJUMAN: A Public Toolkit for Neural Arabic Machine Translation}, author={Nagoudi, El Moatez Billah and Elmadany, AbdelRahim and Abdul-Mageed, Muhammad}, booktitle = "Proceedings of the 5th Workshop on Open-Source Arabic Corpora and Processing Tools (OSACT5)", month = "June", year = "2022", address = "Marseille, France", publisher = "European Language Resource Association", } ```
kjunelee/distilbert-base-uncased-finetuned-emotion
kjunelee
2022-06-10T00:24:32Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T00:03:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.931 - name: F1 type: f1 value: 0.9313235272564213 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1595 - Accuracy: 0.931 - F1: 0.9313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 125 | 0.1873 | 0.924 | 0.9234 | | 0.1992 | 2.0 | 250 | 0.1649 | 0.929 | 0.9293 | | 0.1992 | 3.0 | 375 | 0.1595 | 0.931 | 0.9313 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
nthakur/contriever-base-msmarco
nthakur
2022-06-09T22:01:51Z
1,072
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-09T21:50:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # nthakur/contriever-base-msmarco This is a port of the [Contriever MSMARCO Model](https://huggingface.co/facebook/contriever-msmarco) to [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('nthakur/contriever-base-msmarco') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('nthakur/contriever-base-msmarco') model = AutoModel.from_pretrained('nthakur/contriever-base-msmarco') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=nthakur/contriever-base-msmarco) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 509, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors Have a look at: [Contriever Model](https://github.com/facebookresearch/contriever). <!--- Describe where people can find more information -->
Birb80/Bird
Birb80
2022-06-09T21:17:59Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-06-09T21:17:59Z
--- license: bigscience-bloom-rail-1.0 ---
q2-jlbar/segformer-b0-finetuned-brooks-or-dunn
q2-jlbar
2022-06-09T19:47:36Z
4
0
transformers
[ "transformers", "pytorch", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-segmentation
2022-06-09T18:20:04Z
--- license: apache-2.0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-brooks-or-dunn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-brooks-or-dunn This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the q2-jlbar/BrooksOrDunn dataset. It achieves the following results on the evaluation set: - Loss: 0.1158 - Mean Iou: nan - Mean Accuracy: nan - Overall Accuracy: nan - Per Category Iou: [nan, nan] - Per Category Accuracy: [nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:---------------------:| | 0.5153 | 4.0 | 20 | 0.5276 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.4082 | 8.0 | 40 | 0.3333 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.3157 | 12.0 | 60 | 0.2773 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.2911 | 16.0 | 80 | 0.2389 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.2395 | 20.0 | 100 | 0.1982 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.2284 | 24.0 | 120 | 0.1745 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.1818 | 28.0 | 140 | 0.1595 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.1549 | 32.0 | 160 | 0.1556 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.1351 | 36.0 | 180 | 0.1387 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.1254 | 40.0 | 200 | 0.1263 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.1412 | 44.0 | 220 | 0.1190 | nan | nan | nan | [nan, nan] | [nan, nan] | | 0.1179 | 48.0 | 240 | 0.1158 | nan | nan | nan | [nan, nan] | [nan, nan] | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/midudev
huggingtweets
2022-06-09T18:48:30Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T18:33:17Z
--- language: en thumbnail: http://www.huggingtweets.com/midudev/1654800505422/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1526668354609680384/r85fytOs_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🔴 EN DIRECTO twitch.tv/midudev</div> <div style="text-align: center; font-size: 14px;">@midudev</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🔴 EN DIRECTO twitch.tv/midudev. | Data | 🔴 EN DIRECTO twitch.tv/midudev | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 824 | | Short tweets | 163 | | Tweets kept | 2259 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/11iwoc6b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @midudev's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/s48ktc1m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/s48ktc1m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/midudev') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bookpanda/wangchanberta-base-att-spm-uncased-finetuned-imdb
bookpanda
2022-06-09T18:17:16Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-28T08:22:04Z
--- tags: - generated_from_trainer model-index: - name: wangchanberta-base-att-spm-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wangchanberta-base-att-spm-uncased-finetuned-imdb This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1831 | 1.0 | 4826 | 0.1542 | | 0.1 | 2.0 | 9652 | 0.1075 | | 0.0946 | 3.0 | 14478 | 0.0443 | | 0.0618 | 4.0 | 19304 | 0.0830 | | 0.0783 | 5.0 | 24130 | 0.0810 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
kabelomalapane/En-Ts
kabelomalapane
2022-06-09T17:33:20Z
69
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-09T16:33:13Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: En-Ts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # En-Ts This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ts](https://huggingface.co/Helsinki-NLP/opus-mt-en-ts) on the None dataset. It achieves the following results on the evaluation set: Before training: - Loss: 3.17 - Bleu: 14.513 After Training - Loss: 1.3320 - Bleu: 36.7687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.7082 | 1.0 | 5929 | 1.6902 | 32.1311 | | 1.4606 | 2.0 | 11858 | 1.4996 | 34.1129 | | 1.3182 | 3.0 | 17787 | 1.4107 | 35.7428 | | 1.2543 | 4.0 | 23716 | 1.3631 | 36.2009 | | 1.2116 | 5.0 | 29645 | 1.3389 | 36.5876 | | 1.1723 | 6.0 | 35574 | 1.3320 | 36.7481 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ksabeh/bert-base-uncased-attribute-correction-mlm
ksabeh
2022-06-09T17:23:14Z
61
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-09T09:08:11Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ksabeh/bert-base-uncased-mlm-electronics-attribute-correction results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ksabeh/bert-base-uncased-mlm-electronics-attribute-correction This model is a fine-tuned version of [ksabeh/bert-base-uncased-mlm-electronics](https://huggingface.co/ksabeh/bert-base-uncased-mlm-electronics) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0524 - Validation Loss: 0.0520 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 36848, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1459 | 0.0678 | 0 | | 0.0524 | 0.0520 | 1 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
tclong/wav2vec2-base-vios-commonvoice
tclong
2022-06-09T17:17:08Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-08T18:03:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-vios-commonvoice results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-vios-commonvoice This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3823 - Wer: 0.2401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.2268 | 0.66 | 500 | 0.8746 | 0.5939 | | 0.8728 | 1.32 | 1000 | 0.6435 | 0.4554 | | 0.6899 | 1.99 | 1500 | 0.5655 | 0.3995 | | 0.5842 | 2.65 | 2000 | 0.5267 | 0.3694 | | 0.5371 | 3.31 | 2500 | 0.4980 | 0.3431 | | 0.4921 | 3.97 | 3000 | 0.4781 | 0.3276 | | 0.4508 | 4.64 | 3500 | 0.4434 | 0.3134 | | 0.433 | 5.3 | 4000 | 0.4348 | 0.2963 | | 0.404 | 5.96 | 4500 | 0.4248 | 0.2874 | | 0.3834 | 6.62 | 5000 | 0.4163 | 0.2775 | | 0.3784 | 7.28 | 5500 | 0.4104 | 0.2751 | | 0.3669 | 7.95 | 6000 | 0.4143 | 0.2724 | | 0.3462 | 8.61 | 6500 | 0.4131 | 0.2699 | | 0.3364 | 9.27 | 7000 | 0.4070 | 0.2617 | | 0.3249 | 9.93 | 7500 | 0.4076 | 0.2603 | | 0.3154 | 10.6 | 8000 | 0.3998 | 0.2577 | | 0.3117 | 11.26 | 8500 | 0.3930 | 0.2505 | | 0.3101 | 11.92 | 9000 | 0.4003 | 0.2492 | | 0.298 | 12.58 | 9500 | 0.3960 | 0.2496 | | 0.2968 | 13.24 | 10000 | 0.3877 | 0.2469 | | 0.29 | 13.91 | 10500 | 0.3870 | 0.2456 | | 0.2921 | 14.57 | 11000 | 0.3823 | 0.2401 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ajtamayoh/NLP-CIC-WFU_Clinical_Cases_NER_Sents_Tokenized_bertin_roberta_base_spanish_fine_tuned
ajtamayoh
2022-06-09T17:15:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-09T16:33:08Z
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NLP-CIC-WFU_Clinical_Cases_NER_Sents_Tokenized_bertin_roberta_base_spanish_fine_tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-CIC-WFU_Clinical_Cases_NER_Sents_Tokenized_bertin_roberta_base_spanish_fine_tuned This model is a fine-tuned version of [bertin-project/bertin-roberta-base-spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0973 - Precision: 0.9012 - Recall: 0.6942 - F1: 0.7842 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0605 | 1.0 | 2568 | 0.0625 | 0.9400 | 0.6322 | 0.7560 | 0.9836 | | 0.0475 | 2.0 | 5136 | 0.0622 | 0.9533 | 0.6572 | 0.7781 | 0.9849 | | 0.0374 | 3.0 | 7704 | 0.0552 | 0.9261 | 0.6784 | 0.7831 | 0.9855 | | 0.0246 | 4.0 | 10272 | 0.0693 | 0.9381 | 0.6658 | 0.7788 | 0.9849 | | 0.0126 | 5.0 | 12840 | 0.0974 | 0.8918 | 0.6830 | 0.7735 | 0.9849 | | 0.0061 | 6.0 | 15408 | 0.0886 | 0.8771 | 0.7099 | 0.7847 | 0.9850 | | 0.0031 | 7.0 | 17976 | 0.0973 | 0.9012 | 0.6942 | 0.7842 | 0.9857 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
GioReg/notiBERTo
GioReg
2022-06-09T17:08:29Z
160
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-07T14:24:36Z
language: - it Si è creato un modello, chiamato notiBERTo, svolgendo la fase di addestramento e utilizzando per la creazione e il tuning dei pesi del modello l’algoritmo non supervisionato di masked-language modeling (MLM); questo non richiede l’utilizzo di testo con etichettatura. L’idea e stata quella di ottenere un modello BERT-based per la lingua italiana focalizzato sul linguaggio tipico utilizzato nei contesti dell’informazione giornalistica online che quindi potesse ricalcare lo stile, il lessico della stampa. Per i dati in input sono stati utilizzati database disponibili pubblicamente online organizzati dal portale “Wortschatz Leipzig” dell’universita di Lipsia. Il portale offre l’accesso ai “corpora collection Leipzig” dove si trovano 900 collezioni testuali divise per lingua - le lingue presenti sono 250 - e argomento, ottenuti principalmente attraverso data crawling dei siti internet. In particolare sono stati scelti database di collezioni di notizie ottenute attraverso feeds RSS rac colte su base giornaliera e database ottenuti attraverso crawling dai principali siti internet di notizie italiane, suddivisi in sottodatabase in base agli anni di raccolta. Per la creazione di “notiBERTo” sono stati utilizzati database relativi agli anni 2018, 2019, 2020 per un totale di circa 700MB.
YaYaB/SpaceInvadersNoFrameskip-v4-1
YaYaB
2022-06-09T16:24:57Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T16:23:40Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 511.00 +/- 164.98 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga YaYaB -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga YaYaB ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
YeRyeongLee/roberta-base-finetuned-filtered-0609
YeRyeongLee
2022-06-09T16:20:12Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-09T14:14:27Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-base-finetuned-filtered-0609 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-filtered-0609 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1343 - Accuracy: 0.9824 - Precision: 0.9824 - Recall: 0.9824 - F1: 0.9824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1817 | 1.0 | 3180 | 0.1883 | 0.9651 | 0.9654 | 0.9651 | 0.9651 | | 0.1647 | 2.0 | 6360 | 0.1264 | 0.9777 | 0.9778 | 0.9777 | 0.9777 | | 0.1295 | 3.0 | 9540 | 0.1514 | 0.9723 | 0.9724 | 0.9723 | 0.9723 | | 0.0991 | 4.0 | 12720 | 0.1487 | 0.9761 | 0.9763 | 0.9761 | 0.9761 | | 0.0749 | 5.0 | 15900 | 0.1119 | 0.9802 | 0.9802 | 0.9802 | 0.9802 | | 0.0532 | 6.0 | 19080 | 0.1357 | 0.9789 | 0.9790 | 0.9789 | 0.9789 | | 0.0471 | 7.0 | 22260 | 0.1397 | 0.9780 | 0.9782 | 0.9780 | 0.9780 | | 0.0153 | 8.0 | 25440 | 0.1568 | 0.9777 | 0.9778 | 0.9777 | 0.9777 | | 0.0147 | 9.0 | 28620 | 0.1274 | 0.9824 | 0.9824 | 0.9824 | 0.9824 | | 0.0135 | 10.0 | 31800 | 0.1343 | 0.9824 | 0.9824 | 0.9824 | 0.9824 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.1+cu111 - Datasets 1.16.1 - Tokenizers 0.12.1
huggingtweets/elrichmc
huggingtweets
2022-06-09T16:04:04Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T16:01:27Z
--- language: en thumbnail: http://www.huggingtweets.com/elrichmc/1654790629445/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1484686785812832263/Beh-qGPk_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ElRichMC</div> <div style="text-align: center; font-size: 14px;">@elrichmc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ElRichMC. | Data | ElRichMC | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 203 | | Short tweets | 618 | | Tweets kept | 2424 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jeok5aq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elrichmc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28fmqsme) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28fmqsme/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elrichmc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
buio/attention_mil_classification
buio
2022-06-09T15:10:38Z
0
0
keras
[ "keras", "tensorboard", "tf-keras", "computer-vision", "classification", "multiple-instance-learning ", "region:us" ]
null
2022-06-09T14:46:43Z
--- library_name: keras tags: - computer-vision - classification - 'multiple-instance-learning ' --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ## Training Metrics | Epochs | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | |--- |--- |--- |--- |--- | | 1| 0.315| 0.915| 0.066| 0.983| | 2| 0.089| 0.982| 0.049| 0.99| | 3| 0.078| 0.987| 0.084| 0.983| | 4| 0.059| 0.983| 0.033| 0.993| | 5| 0.042| 0.99| 0.053| 0.99| | 6| 0.042| 0.996| 0.019| 0.993| | 7| 0.013| 0.999| 0.067| 0.987| | 8| 0.055| 0.988| 0.049| 0.99| | 9| 0.005| 1.0| 0.039| 0.993| | 10| 0.005| 1.0| 0.038| 0.99| | 11| 0.039| 0.995| 0.214| 0.97| | 12| 0.008| 1.0| 0.039| 0.99| | 13| 0.002| 1.0| 0.047| 0.993| | 14| 0.016| 0.999| 0.057| 0.99| | 15| 0.046| 0.993| 0.026| 0.997| | 16| 0.002| 1.0| 0.06| 0.99| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
buio/vq-vae
buio
2022-06-09T15:06:33Z
0
0
keras
[ "keras", "tf-keras", "computer-vision", "generative", "variational-autoencoder", "vq-vae", "region:us" ]
null
2022-06-09T15:04:32Z
--- library_name: keras tags: - computer-vision - generative - variational-autoencoder - vq-vae --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training Metrics Model history needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
veb/twitch-roberta-base-sentiment-latest
veb
2022-06-09T14:34:50Z
5
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-09T05:14:29Z
--- tags: - generated_from_keras_callback model-index: - name: veb/twitch-roberta-base-sentiment-latest results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # veb/twitch-roberta-base-sentiment-latest This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0941 - Train Sparse Categorical Accuracy: 0.375 - Validation Loss: 1.0186 - Validation Sparse Categorical Accuracy: 0.3333 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 1.1272 | 0.3281 | 1.0190 | 0.3333 | 0 | | 1.1254 | 0.2969 | 1.1164 | 0.0 | 1 | | 1.0941 | 0.375 | 1.0186 | 0.3333 | 2 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.7.0 - Datasets 2.2.2 - Tokenizers 0.12.1
fusing/ddim-celeba-hq_copy
fusing
2022-06-09T14:11:04Z
2
0
transformers
[ "transformers", "ddim_diffusion", "arxiv:2010.02502", "endpoints_compatible", "region:us" ]
null
2022-06-09T14:07:12Z
--- tags: - ddim_diffusion --- # Denoising Diffusion Implicit Models (DDIM) **Paper**: [Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) **Abstract**: *Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.* **Explanation on `eta` and `num_inference_steps`** - `num_inference_steps` is called *S* in the following table - `eta` is called *η* in the following table ![ddim](https://huggingface.co/datasets/patrickvonplaten/scientific_images/resolve/main/table_ddim.png) ## Usage ```python # !pip install diffusers from diffusers import DiffusionPipeline import PIL.Image import numpy as np model_id = "fusing/ddim-celeba-hq" # load model and scheduler ddpm = DiffusionPipeline.from_pretrained(model_id) # run pipeline in inference (sample random noise and denoise) image = ddpm(eta=0.0, num_inference_steps=50) # process image to PIL image_processed = image.cpu().permute(0, 2, 3, 1) image_processed = (image_processed + 1.0) * 127.5 image_processed = image_processed.numpy().astype(np.uint8) image_pil = PIL.Image.fromarray(image_processed[0]) # save image image_pil.save("test.png") ``` ## Samples 1. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddim-celeba-hq/image_0.png) 2. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddim-celeba-hq/image_1.png) 3. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddim-celeba-hq/image_2.png) 4. ![sample_1](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/hf/ddim-celeba-hq/image_3.png)
i8pxgd2s/q-Taxi-v3
i8pxgd2s
2022-06-09T13:26:49Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T13:26:40Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="i8pxgd2s/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
victorlee071200/bert-base-cased-finetuned-squad_v2
victorlee071200
2022-06-09T13:16:06Z
8
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-08T17:41:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-base-cased-finetuned-squad_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-squad_v2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.3226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.03 | 1.0 | 8255 | 1.1334 | | 0.7511 | 2.0 | 16510 | 1.1299 | | 0.5376 | 3.0 | 24765 | 1.3226 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
qualitydatalab/autotrain-car-review-project-966432121
qualitydatalab
2022-06-09T13:04:21Z
4
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:qualitydatalab/autotrain-data-car-review-project", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-09T12:30:26Z
--- tags: autotrain language: en widget: - text: "I love driving this car" datasets: - qualitydatalab/autotrain-data-car-review-project co2_eq_emissions: 0.21529888368377176 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 966432121 - CO2 Emissions (in grams): 0.21529888368377176 ## Validation Metrics - Loss: 0.6013365983963013 - Accuracy: 0.737791286727457 - Macro F1: 0.729171012281939 - Micro F1: 0.737791286727457 - Weighted F1: 0.729171012281939 - Macro Precision: 0.7313770127538427 - Micro Precision: 0.737791286727457 - Weighted Precision: 0.7313770127538428 - Macro Recall: 0.737791286727457 - Micro Recall: 0.737791286727457 - Weighted Recall: 0.737791286727457 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love driving this car"}' https://api-inference.huggingface.co/models/qualitydatalab/autotrain-car-review-project-966432121 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("qualitydatalab/autotrain-car-review-project-966432121", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("qualitydatalab/autotrain-car-review-project-966432121", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/zaidalyafeai
huggingtweets
2022-06-09T13:03:12Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-09T13:02:27Z
--- language: en thumbnail: http://www.huggingtweets.com/zaidalyafeai/1654779787447/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521723273922461696/m8_zotM4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Zaid زيد</div> <div style="text-align: center; font-size: 14px;">@zaidalyafeai</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Zaid زيد. | Data | Zaid زيد | | --- | --- | | Tweets downloaded | 2295 | | Retweets | 74 | | Short tweets | 217 | | Tweets kept | 2004 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39e5cxbb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zaidalyafeai's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2uc681wq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2uc681wq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/zaidalyafeai') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
RalphX1/q-Taxi-v3
RalphX1
2022-06-09T12:44:26Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T12:21:02Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="RalphX1/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Dewone/wav2vec2-base-timit-demo-google-colab
Dewone
2022-06-09T12:37:08Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-09T10:36:22Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5182 - Wer: 0.3329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5177 | 1.0 | 500 | 1.8932 | 0.9837 | | 0.854 | 2.01 | 1000 | 0.5295 | 0.5266 | | 0.4205 | 3.01 | 1500 | 0.4299 | 0.4453 | | 0.2934 | 4.02 | 2000 | 0.3940 | 0.4180 | | 0.2272 | 5.02 | 2500 | 0.4269 | 0.4149 | | 0.1856 | 6.02 | 3000 | 0.4277 | 0.4335 | | 0.1668 | 7.03 | 3500 | 0.4214 | 0.3852 | | 0.1388 | 8.03 | 4000 | 0.4410 | 0.3805 | | 0.1254 | 9.04 | 4500 | 0.4152 | 0.3716 | | 0.1073 | 10.04 | 5000 | 0.4257 | 0.3726 | | 0.1 | 11.04 | 5500 | 0.4405 | 0.3642 | | 0.0928 | 12.05 | 6000 | 0.4823 | 0.3708 | | 0.0829 | 13.05 | 6500 | 0.4636 | 0.3548 | | 0.0682 | 14.06 | 7000 | 0.4718 | 0.3599 | | 0.0643 | 15.06 | 7500 | 0.4965 | 0.3583 | | 0.0609 | 16.06 | 8000 | 0.5279 | 0.3576 | | 0.0586 | 17.07 | 8500 | 0.4869 | 0.3528 | | 0.055 | 18.07 | 9000 | 0.4671 | 0.3567 | | 0.0465 | 19.08 | 9500 | 0.5090 | 0.3508 | | 0.0432 | 20.08 | 10000 | 0.5024 | 0.3543 | | 0.0427 | 21.08 | 10500 | 0.4658 | 0.3417 | | 0.033 | 22.09 | 11000 | 0.5276 | 0.3418 | | 0.0297 | 23.09 | 11500 | 0.5095 | 0.3415 | | 0.0317 | 24.1 | 12000 | 0.5061 | 0.3364 | | 0.0262 | 25.1 | 12500 | 0.4910 | 0.3367 | | 0.0257 | 26.1 | 13000 | 0.4869 | 0.3331 | | 0.0237 | 27.11 | 13500 | 0.5023 | 0.3333 | | 0.0228 | 28.11 | 14000 | 0.5131 | 0.3333 | | 0.021 | 29.12 | 14500 | 0.5182 | 0.3329 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
qualitydatalab/autotrain-car-review-project-966432120
qualitydatalab
2022-06-09T12:36:14Z
11
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:qualitydatalab/autotrain-data-car-review-project", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-09T12:30:01Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - qualitydatalab/autotrain-data-car-review-project co2_eq_emissions: 0.061185706621337065 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 966432120 - CO2 Emissions (in grams): 0.061185706621337065 ## Validation Metrics - Loss: 0.6066656112670898 - Accuracy: 0.724822695035461 - Macro F1: 0.7077087000886584 - Micro F1: 0.7248226950354609 - Weighted F1: 0.7077087000886584 - Macro Precision: 0.7143184427227084 - Micro Precision: 0.724822695035461 - Weighted Precision: 0.7143184427227083 - Macro Recall: 0.7248226950354609 - Micro Recall: 0.724822695035461 - Weighted Recall: 0.724822695035461 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/qualitydatalab/autotrain-car-review-project-966432120 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("qualitydatalab/autotrain-car-review-project-966432120", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("qualitydatalab/autotrain-car-review-project-966432120", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
assamim/mt5-pukulenam-summarization
assamim
2022-06-09T12:19:33Z
61
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "Summarization", "mT5", "dataset:csebuetnlp/xlsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-08T15:08:51Z
--- tags: - generated_from_keras_callback - Summarization - mT5 datasets: - csebuetnlp/xlsum model-index: - name: assamim/mt5-pukulenam-summarization results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # assamim/mt5-pukulenam-summarization This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an [csebuetnlp/xlsum](https://huggingface.co/datasets/csebuetnlp/xlsum) dataset ## Using this model in `transformers` (tested on 4.19.2) ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import re news = """ Anggota Unit Perlindungan Rakyat Kurdi di kota Rabia, pada perbatasan Irak-Suriah. Pasukan Kurdi Irak dilaporkan sudah menguasai kembali kota Rabia meskipun banyak korban jatuh. Pejabat senior Kurdi Irak mengatakan pasukan Kurdi Peshmerga mencatat kemajuan lewat serangan dini hari di Rabia. Sementara itu, milisi ISIS berusaha memukul mundur pasukan Kurdi Suriah di bagian lain perbatasan. Hal ini terjadi saat koalisi pimpinan Amerika terus melanjutkan serangan udara terhadap sasaran ISIS di Suriah dan Irak. Hari Selasa (30 September) dilaporkan juga terjadi serangkaian serangan bom di ibu kota Irak, Baghdad dan kota suci Syiah, Karbala. Dalam perkembangan terpisah, sejumlah tank Turki berada di bukit di sepanjang perbatasan dekat kota Kobane, Suriah setelah sejumlah bom mengenai wilayah Turki saat terjadi bentrokan dengan milisi ISIS dan pejuang Kurdi. Pemerintah Turki diperkirakan akan menyampaikan mosi ke parlemen, agar menyetujui aksi militer terhadap ISIS di Irak dan Suriah. """ tokenizer = AutoTokenizer.from_pretrained("assamim/mt5-pukulenam-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("assamim/mt5-pukulenam-summarization", from_tf=True) WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) input_ids = tokenizer.encode(WHITESPACE_HANDLER(news1), return_tensors='pt') summary_ids = model.generate(input_ids, min_length=20, max_length=200, num_beams=7, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, no_repeat_ngram_size=2, use_cache=True, do_sample = True, temperature = 0.8, top_k = 50, top_p = 0.95) summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary_text) ``` ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
nestoralvaro/mt5-base-finetuned-xsum-data_prep_2021_12_26___t404_2980.csv___topic_text_google_mt5_base
nestoralvaro
2022-06-09T11:54:52Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-09T05:36:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-data_prep_2021_12_26___t404_2980.csv___topic_text_google_mt5_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-data_prep_2021_12_26___t404_2980.csv___topic_text_google_mt5_base This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.8441 - Rouge2: 0.0894 - Rougel: 0.8428 - Rougelsum: 0.844 - Gen Len: 6.338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 89332 | nan | 0.8441 | 0.0894 | 0.8428 | 0.844 | 6.338 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
YaYaB/dqn-SpaceInvadersNoFrameskip-v4
YaYaB
2022-06-09T11:24:49Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T11:24:10Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 374.00 +/- 214.89 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga YaYaB -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga YaYaB ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
FritzOS/TEdetection_distilBERT_mLM_V4
FritzOS
2022-06-09T11:12:10Z
5
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-09T11:11:56Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distilBERT_mLM_V4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distilBERT_mLM_V4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0181 - Validation Loss: 0.0215 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0181 | 0.0215 | 0 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
mbazaNLP/kinyarwanda-coqui-stt-model
mbazaNLP
2022-06-09T11:09:26Z
0
0
null
[ "tflite", "Coqui", "Deepspeech", "LSTM", "automatic-speech-recognition", "rw", "dataset:commonvoice", "arxiv:1412.5567", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2022-05-27T08:23:47Z
--- language: "rw" thumbnail: pipeline_tag: automatic-speech-recognition tags: - Coqui - Deepspeech - LSTM license: "apache-2.0" datasets: - commonvoice metrics: - wer --- **Model card - Kinyarwanda coqui STT model** **Model details** - Kinyarwanda Speech to text model - Developed by [Digital Umuganda](digitalumuganda.com) - Model based from: Baidu Deepspeech end to end RNN model - paper: [deepspeech end to end STT](https://arxiv.org/pdf/1412.5567.pdf) - Documentation on model: [deepspeech documentation](https://deepspeech.readthedocs.io/) - License: Mozilla 2.0 License - Feedback on the model: samuel@digitalumuganda.com **Intended use cases** - Intended to be used for - simple keyword spotting - simple transcribing - transfer learning for better kinyarwanda and african language models - Intended to be used by: - App developpers - various organizations who want to transcribe kinyarwanda recordings - ML researchers - other researchers in Kinyarwanda and tech usage in kinyarwanda (e.g. Linguists, journalists) - Not intended to be used as: - a fully fledged voice assistant - voice recognition application - Multiple languages STT - language detection **Factors** - Anti-bias: these are bias that can influence the accuracy of the model - Gender - accents and dialects - age - Voice quality: factors that can influence the accuracy of the model - Background noise - short sentences - Voice format: voices must be converted to the wav format - wav format **Metrics** - word error rate on the Common Voice Kinyarwanda test set |Test Corpus|WER| |-----------|---| |Common Voice|39.1\%| **Training data** - [common voice crowdsource website](https://commonvoice.mozilla.org/en/datasets) **Evaluation data** - [common voice crowdsource website](https://commonvoice.mozilla.org/en/datasets)
i8pxgd2s/q-FrozenLake-v1-4x4-Slippery
i8pxgd2s
2022-06-09T10:29:25Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T10:29:18Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - metrics: - type: mean_reward value: 0.75 +/- 0.43 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="i8pxgd2s/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
twieland/SUBTITLE_ja-en_helsinki
twieland
2022-06-09T10:23:09Z
4
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-09T07:21:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: SUBTITLE_ja-en_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SUBTITLE_ja-en_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.4097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.025 | 0.05 | 2000 | 5.1692 | | 2.9548 | 0.09 | 4000 | 5.7128 | | 2.8762 | 0.14 | 6000 | 5.9297 | | 2.821 | 0.18 | 8000 | 6.0415 | | 2.7826 | 0.23 | 10000 | 6.0416 | | 2.7386 | 0.27 | 12000 | 6.0069 | | 2.7036 | 0.32 | 14000 | 6.0192 | | 2.678 | 0.37 | 16000 | 5.9286 | | 2.6499 | 0.41 | 18000 | 5.9587 | | 2.6261 | 0.46 | 20000 | 5.9044 | | 2.6032 | 0.5 | 22000 | 5.8482 | | 2.5708 | 0.55 | 24000 | 5.7760 | | 2.5517 | 0.59 | 26000 | 5.7546 | | 2.5336 | 0.64 | 28000 | 5.7447 | | 2.5196 | 0.69 | 30000 | 5.7373 | | 2.4957 | 0.73 | 32000 | 5.6429 | | 2.483 | 0.78 | 34000 | 5.6874 | | 2.4599 | 0.82 | 36000 | 5.6482 | | 2.4468 | 0.87 | 38000 | 5.5951 | | 2.4344 | 0.92 | 40000 | 5.6355 | | 2.4223 | 0.96 | 42000 | 5.6135 | | 2.3878 | 1.01 | 44000 | 5.6164 | | 2.294 | 1.05 | 46000 | 5.5802 | | 2.2896 | 1.1 | 48000 | 5.5924 | | 2.2815 | 1.14 | 50000 | 5.5296 | | 2.2702 | 1.19 | 52000 | 5.5119 | | 2.2741 | 1.24 | 54000 | 5.4775 | | 2.2586 | 1.28 | 56000 | 5.4663 | | 2.2492 | 1.33 | 58000 | 5.4764 | | 2.2411 | 1.37 | 60000 | 5.4444 | | 2.2275 | 1.42 | 62000 | 5.4566 | | 2.218 | 1.46 | 64000 | 5.4845 | | 2.2086 | 1.51 | 66000 | 5.4681 | | 2.1976 | 1.56 | 68000 | 5.4775 | | 2.1877 | 1.6 | 70000 | 5.4619 | | 2.177 | 1.65 | 72000 | 5.4621 | | 2.1722 | 1.69 | 74000 | 5.4322 | | 2.1599 | 1.74 | 76000 | 5.4348 | | 2.1475 | 1.78 | 78000 | 5.4432 | | 2.1477 | 1.83 | 80000 | 5.4239 | | 2.134 | 1.88 | 82000 | 5.4182 | | 2.1302 | 1.92 | 84000 | 5.4089 | | 2.125 | 1.97 | 86000 | 5.4097 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1