modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-06 00:36:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
540 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-06 00:36:27
card
stringlengths
11
1.01M
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754942472
ggozzy
2025-08-11T20:03:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T20:02:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
FastFlowLM/Llama-3.1-8B-NPU2
FastFlowLM
2025-08-11T20:02:04Z
41
0
null
[ "llama", "llama-3.1", "text-generation", "AMD", "Ryzen", "NPU", "conversational", "en", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:llama3", "region:us" ]
text-generation
2025-06-20T17:47:17Z
--- license: llama3 language: - en tags: - llama - llama-3.1 - text-generation - AMD - Ryzen - NPU pipeline_tag: text-generation base_model: - meta-llama/Llama-3.1-8B-Instruct --- # 🦙 LLaMA 3.1 (8B) – Optimized for FastFlowLM on AMD Ryzen™ AI NPU (XDNA2 Only) ## Model Summary This is a derivative of Meta AI’s LLaMA 3.1 base model. The model retains the core architecture and weights from Meta’s release and may include fine-tuning, quantization, or adaptation for specific applications. > ⚠️ **This model is subject to Meta’s LLaMA 3 license. You must accept Meta’s terms to use or download it.** ## 📝 License & Usage Terms ### Meta LLaMA 3 License - Base model is governed by Meta AI's license: 👉 https://ai.meta.com/llama/license/ - You must agree to their license terms to access and use the weights, which include: - No commercial use without permission - Redistribution only allowed under specific conditions - Attribution required ### Redistribution Notice - This repository does **not** include original Meta weights. - You must obtain base weights directly from Meta: 👉 https://huggingface.co/meta-llama ### If Fine-tuned If this model has been fine-tuned, the downstream weights are provided under the following conditions: - **Base Model License**: Meta’s LLaMA 3 License - **Derivative Weights License**: [e.g., CC-BY-NC-4.0, MIT, custom, etc.] - **Training Dataset License(s)**: - [Dataset A] – [license] - [Dataset B] – [license] Make sure you have rights to use and distribute any data used in fine-tuning. ## Intended Use - **Use Cases**: Research, experimentation, academic NLP, code generation (if applicable) - **Not Intended For**: Use in production systems without further evaluation, sensitive applications, or commercial deployments without Meta’s explicit permission ## Limitations & Risks - May generate incorrect or harmful content - Does not have knowledge past its training cutoff - Biases in training data may persist ## Citation ```bibtex @misc{touvron2024llama3, title={LLaMA 3: Open Foundation and Instruction Models}, author={Touvron, Hugo and others}, year={2024}, url={https://ai.meta.com/llama/} }
rasaaaym/blockassist-bc-strong_silky_grouse_1754940339
rasaaaym
2025-08-11T19:59:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "strong silky grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:58:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - strong silky grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nkerr/sv3-1-qwen1.5-0.5B-Chat
nkerr
2025-08-11T19:58:36Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B", "base_model:adapter:Qwen/Qwen1.5-0.5B", "license:other", "region:us" ]
null
2025-08-11T19:58:16Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B tags: - generated_from_trainer model-index: - name: sv3-1-qwen1.5-0.5B-Chat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sv3-1-qwen1.5-0.5B-Chat This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2415 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 9 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 36 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4622 | 0.6969 | 50 | 0.2370 | | 0.2191 | 1.4042 | 100 | 0.2415 | ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.6.0+cu126 - Datasets 3.3.2 - Tokenizers 0.21.0
Vortex5/MoonMega-12B
Vortex5
2025-08-11T19:57:36Z
3
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "roleplay", "conversational", "arxiv:2403.19522", "base_model:Epiculous/Violet_Twilight-v0.2", "base_model:merge:Epiculous/Violet_Twilight-v0.2", "base_model:HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407", "base_model:merge:HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407", "base_model:LatitudeGames/Muse-12B", "base_model:merge:LatitudeGames/Muse-12B", "base_model:Vortex5/Moonviolet-12B", "base_model:merge:Vortex5/Moonviolet-12B", "base_model:anthracite-org/magnum-v4-12b", "base_model:merge:anthracite-org/magnum-v4-12b", "base_model:elinas/Chronos-Gold-12B-1.0", "base_model:merge:elinas/Chronos-Gold-12B-1.0", "base_model:natong19/Mistral-Nemo-Instruct-2407-abliterated", "base_model:merge:natong19/Mistral-Nemo-Instruct-2407-abliterated", "base_model:yamatazen/NeonMaid-12B-v2", "base_model:merge:yamatazen/NeonMaid-12B-v2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-08T22:08:52Z
--- base_model: - anthracite-org/magnum-v4-12b - HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407 - elinas/Chronos-Gold-12B-1.0 - Epiculous/Violet_Twilight-v0.2 - LatitudeGames/Muse-12B - yamatazen/NeonMaid-12B-v2 - Vortex5/Moonviolet-12B - natong19/Mistral-Nemo-Instruct-2407-abliterated library_name: transformers tags: - mergekit - merge - roleplay --- # MoonMega-12B This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6669a3a617b838fda45637b8/ueDOFPsGlDrD5_IrhTQ7N.png) ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [natong19/Mistral-Nemo-Instruct-2407-abliterated](https://huggingface.co/natong19/Mistral-Nemo-Instruct-2407-abliterated) as a base. ### Models Merged The following models were included in the merge: * [anthracite-org/magnum-v4-12b](https://huggingface.co/anthracite-org/magnum-v4-12b) * [HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407](https://huggingface.co/HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407) * [elinas/Chronos-Gold-12B-1.0](https://huggingface.co/elinas/Chronos-Gold-12B-1.0) * [Epiculous/Violet_Twilight-v0.2](https://huggingface.co/Epiculous/Violet_Twilight-v0.2) * [LatitudeGames/Muse-12B](https://huggingface.co/LatitudeGames/Muse-12B) * [yamatazen/NeonMaid-12B-v2](https://huggingface.co/yamatazen/NeonMaid-12B-v2) * [Vortex5/Moonviolet-12B](https://huggingface.co/Vortex5/Moonviolet-12B) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: natong19/Mistral-Nemo-Instruct-2407-abliterated models: - model: Vortex5/Moonviolet-12B - model: LatitudeGames/Muse-12B - model: HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407 - model: anthracite-org/magnum-v4-12b - model: elinas/Chronos-Gold-12B-1.0 - model: yamatazen/NeonMaid-12B-v2 - model: Epiculous/Violet_Twilight-v0.2 merge_method: model_stock dtype: bfloat16 parameters: normalize: true tokenizer: source: union ```
proclin/blockassist-bc-woolly_carnivorous_nightingale_1754940307
proclin
2025-08-11T19:56:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "woolly carnivorous nightingale", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:56:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - woolly carnivorous nightingale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
motza0025/blockassist-bc-horned_energetic_mallard_1754941008
motza0025
2025-08-11T19:55:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "horned energetic mallard", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:54:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - horned energetic mallard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dev6655/DeepSeek-R1-0528-Qwen3-8B-Q2_K-GGUF
dev6655
2025-08-11T19:55:39Z
0
0
llama.cpp
[ "llama.cpp", "gguf", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-11T15:31:15Z
--- license: mit library_name: llama.cpp --- # DeepSeek‑R1‑0528‑Qwen3‑8B · q2_k GGUF **Quantized 2‑bit K‑Means (q2_k) GGUF model** of the [DeepSeek‑R1‑0528‑Qwen3‑8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B) checkpoint, optimized for **extremely low RAM/VRAM consumption (≈ 3.5 – 4 GB)** while preserving the original 8 B‑parameter capabilities. | | | |---|---| | **📦 Library** | `llama.cpp` | | **🪪 License** | MIT | | **🪂 Tags** | `deepseek` • `r1` • `q2_k` • `gguf` • `quantized` • `8b` • `ollama` | | **📂 File** | `DeepSeek‑R1‑0528‑Qwen3‑8B‑q2_k.gguf` | | **🔐 SHA‑256** | `auto‑calculated‑by‑ci` | | **💾 Size** | ≈ **3.28 GB** | --- ## Table of Contents - [Model Overview](#model-overview) - [File Details](#file-details) - [Quantization & Storage](#quantization--storage) - [System Requirements](#system-requirements) - [Installation](#installation) - [With **llama.cpp**](#with-llamacpp) - [With **Ollama**](#with-ollama) - [Quick‑Start Guides](#quick-start-guides) - [Ollama one‑liner](#ollama-one-liner) - [llama.cpp example](#llamacpp-example) - [Performance & Memory Footprint](#performance--memory-footprint) - [License](#license) - [Citation](#citation) - [Acknowledgements](#acknowledgements) - [Support & Contributions](#support--contributions) --- ## Model Overview DeepSeek‑R1‑0528‑Qwen3‑8B is a **general‑purpose large language model** (LLM) built on the Qwen‑3 architecture. It contains **8 B parameters** and has been fine‑tuned for high‑quality generation across a broad set of tasks. The **q2_k** variant provided here uses **2‑bit K‑Means quantisation**, stored in the **GGUF** container format, which: * Reduces the on‑disk size to ~3.28 GB (≈ 11 × smaller than the FP16 checkpoint). * Lowers the runtime memory demand to **≈ 3.5 – 4 GB** on CPU or GPU, enabling inference on consumer‑grade hardware. * Keeps a good balance of perplexity and generation quality for most downstream use‑cases. > **⚠️ Note:** Quantisation inevitably introduces a slight loss in fidelity compared to the original FP16 model. For tasks requiring the highest possible quality, consider using the un‑quantised checkpoint. --- ## File Details | File | SHA‑256 | Size | |------|---------|------| | `DeepSeek‑R1‑0528‑Qwen3‑8B‑q2_k.gguf` | `auto‑calculated‑by‑ci` | ≈ **3.28 GB** | The file is hosted on Hugging Face under the `dev6655` organization and can be downloaded directly via the **Ollama** integration (see below) or through a manual `wget`/`curl` request. --- ## Quantization & Storage | Property | Value | |-------------------------|-----------------------------------------------------------------------| | **Quantisation** | 2‑bit K‑Means (q2_k) | | **Format** | GGUF (compatible with `llama.cpp` ≥ 0.1.0, Ollama, and other GGUF‑aware runtimes) | | **Compression ratio** | ~11 × vs FP16 | | **Inference RAM/VRAM** | ≈ 3.5 – 4 GB (CPU or GPU) | | **Recommended batch size** | 1 – 2 tokens per step (to stay within memory budget) | | **Supported hardware** | x86‑64 CPUs, NVIDIA GPUs (CUDA), Apple Silicon (Metal) – any platform supported by `llama.cpp` | --- ## System Requirements | Component | Minimum | |--------------------------|---------| | **CPU** | Modern x86‑64 (AVX2) or ARM64 with SIMD support | | **GPU (optional)** | Any CUDA‑capable GPU; `llama.cpp` can also use Metal on macOS | | **RAM** | 6 GB (including OS overhead) | | **Disk space** | 4 GB (model + temporary files) | | **Operating system** | Linux, macOS, Windows (WSL 2 recommended for Windows) | | **Dependencies** | `git`, `make`/`CMake`, a C++ compiler (GCC ≥ 9, Clang ≥ 10, MSVC ≥ 2019) | --- ## Installation ### With **llama.cpp** ```bash # 1️⃣ Clone and build the library git clone https://github.com/ggerganov/llama.cpp cd llama.cpp make -j$(nproc) # or: cmake -B build -S . && cmake --build build # 2️⃣ Download the quantised model wget https://huggingface.co/dev6655/DeepSeek-R1-0528-Qwen3-8B-Q2_K-GGUF/resolve/main/DeepSeek-R1-0528-Qwen3-8B-q2_k.gguf \ -O DeepSeek-R1-0528-Qwen3-8B-q2_k.gguf # 3️⃣ Optional: verify SHA‑256 sha256sum DeepSeek-R1-0528-Qwen3-8B-q2_k.gguf # 4️⃣ Run a quick inference test ./main -m DeepSeek-R1-0528-Qwen3-8B-q2_k.gguf \ -p "Qual è la capitale dell'Italia?" \ -n 64 -t 8
ver-baja-beach-fest-natanael-video/VIDEO.Natanael.Cano.Rompe.Equipo.de.su.DJ.en.Escenario.del.Festival.Baja.Beach.Fest.2025
ver-baja-beach-fest-natanael-video
2025-08-11T19:48:02Z
0
0
null
[ "region:us" ]
null
2025-08-11T19:47:19Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Escándalo en Baja Beach Fest: Natanael Cano golpea a su DJ Las fallas técnicas durante su show desataron un momento de tensión que rápidamente se volvió viral. Las fallas técnicas durante su show desataron un momento de tensión que rápidamente se volvió viral. La noche de cierre del Baja Beach Fest en Rosarito, Baja California, terminó en polémica luego de que en redes sociales comenzaran a circular videos que muestran al famoso cantante Natanael Cano agrediendo físicamente a su DJ y rompiendo su equipo en pleno escenario. El cantante de corridos tumbados, quien suele encontrarse envuelto en polémicas, se presentaba como uno de los actos más esperados de la jornada junto a El Malilla. Sin embargo, las fallas técnicas durante su show desataron un momento de tensión que rápidamente se volvió viral. Video: Natanael Cano golpea a DJ en Baja Beach Fest En múltiples grabaciones captadas por los asistentes, se observa que Natanael Cano, vestido con una playera sin mangas, se molesta cuando suena una canción incorrecta justo al iniciar un tema. El artista se voltea hacia su DJ, lo insulta y, posteriormente, lo golpea en varias ocasiones. Mientras esto ocurría, parte del público aplaudía al ritmo de una ola coreando “¡Eso Nata!”, alentando la agresión. Cano también arremetió contra otros miembros de su equipo, y minutos más tarde subió al escenario la laptop del DJ para destrozarla frente a todos, generando ovaciones de algunos y rechazo de otros. La situación recordó a usuarios un incidente similar protagonizado por Luis Miguel años atrás, lo que llevó a algunos usuarios en redes a llamarlo “tan rockstar como él”.
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754941370
ggozzy
2025-08-11T19:44:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:43:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ronx-labs/affine-081115
ronx-labs
2025-08-11T19:42:02Z
0
0
transformers
[ "transformers", "safetensors", "glm4v_moe", "image-text-to-text", "conversational", "zh", "en", "arxiv:2507.01006", "base_model:zai-org/GLM-4.5-Air-Base", "base_model:finetune:zai-org/GLM-4.5-Air-Base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-11T19:20:46Z
--- license: mit language: - zh - en base_model: - zai-org/GLM-4.5-Air-Base pipeline_tag: image-text-to-text library_name: transformers --- # GLM-4.5V <div align="center"> <img src=https://raw.githubusercontent.com/zai-org/GLM-V/refs/heads/main/resources/logo.svg width="40%"/> </div> <p align="center"> 👋 Join our <a href="https://discord.com/invite/8cnQKdAprg" target="_blank">Discord</a> communities. <br> 📖 Check out the <a href="https://arxiv.org/abs/2507.01006" target="_blank">paper</a>. <br> 📍 Access the GLM-V series models via API on the <a href="https://docs.z.ai/guides/vlm/glm-4.5v">ZhipuAI Open Platform</a>. </p> ## Introduction Vision-language models (VLMs) have become a key cornerstone of intelligent systems. As real-world AI tasks grow increasingly complex, VLMs urgently need to enhance reasoning capabilities beyond basic multimodal perception — improving accuracy, comprehensiveness, and intelligence — to enable complex problem solving, long-context understanding, and multimodal agents. Through our open-source work, we aim to explore the technological frontier together with the community while empowering more developers to create exciting and innovative applications. GLM-4.5V is based on ZhipuAI’s next-generation flagship text foundation model GLM-4.5-Air (106B parameters, 12B active). It continues the technical approach of GLM-4.1V-Thinking, achieving SOTA performance among models of the same scale on 42 public vision-language benchmarks. It covers common tasks such as image, video, and document understanding, as well as GUI agent operations. ![bench_45](https://raw.githubusercontent.com/zai-org/GLM-V/refs/heads/main/resources/bench_45v.jpeg) Beyond benchmark performance, GLM-4.5V focuses on real-world usability. Through efficient hybrid training, it can handle diverse types of visual content, enabling full-spectrum vision reasoning, including: - **Image reasoning** (scene understanding, complex multi-image analysis, spatial recognition) - **Video understanding** (long video segmentation and event recognition) - **GUI tasks** (screen reading, icon recognition, desktop operation assistance) - **Complex chart & long document parsing** (research report analysis, information extraction) - **Grounding** (precise visual element localization) The model also introduces a **Thinking Mode** switch, allowing users to balance between quick responses and deep reasoning. This switch works the same as in the `GLM-4.5` language model. ## Quick Start For more code information, please visit our [GitHub](https://github.com/zai-org/GLM-V/). ## Citation If you use this model, please cite the following paper: ```bibtex @misc{glmvteam2025glm41vthinkingversatilemultimodalreasoning, title={GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning}, author={GLM-V Team and Wenyi Hong and Wenmeng Yu and Xiaotao Gu and Guo Wang and Guobing Gan and Haomiao Tang and Jiale Cheng and Ji Qi and Junhui Ji and Lihang Pan and Shuaiqi Duan and Weihan Wang and Yan Wang and Yean Cheng and Zehai He and Zhe Su and Zhen Yang and Ziyang Pan and Aohan Zeng and Baoxu Wang and Boyan Shi and Changyu Pang and Chenhui Zhang and Da Yin and Fan Yang and Guoqing Chen and Jiazheng Xu and Jiali Chen and Jing Chen and Jinhao Chen and Jinghao Lin and Jinjiang Wang and Junjie Chen and Leqi Lei and Letian Gong and Leyi Pan and Mingzhi Zhang and Qinkai Zheng and Sheng Yang and Shi Zhong and Shiyu Huang and Shuyuan Zhao and Siyan Xue and Shangqin Tu and Shengbiao Meng and Tianshu Zhang and Tianwei Luo and Tianxiang Hao and Wenkai Li and Wei Jia and Xin Lyu and Xuancheng Huang and Yanling Wang and Yadong Xue and Yanfeng Wang and Yifan An and Yifan Du and Yiming Shi and Yiheng Huang and Yilin Niu and Yuan Wang and Yuanchang Yue and Yuchen Li and Yutao Zhang and Yuxuan Zhang and Zhanxiao Du and Zhenyu Hou and Zhao Xue and Zhengxiao Du and Zihan Wang and Peng Zhang and Debing Liu and Bin Xu and Juanzi Li and Minlie Huang and Yuxiao Dong and Jie Tang}, year={2025}, eprint={2507.01006}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2507.01006}, } ```
MattBou00/g10yfg8d-rlhf-checkpoint-pythia-1b-irl-epoch-20
MattBou00
2025-08-11T19:38:43Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T19:36:47Z
# g10yfg8d-rlhf-checkpoint-pythia-1b-irl-epoch-20 This is a RLHF model checkpoint trained at epoch 20. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Training Epoch**: 20 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: none - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This checkpoint can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the checkpoint model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/g10yfg8d-rlhf-checkpoint-pythia-1b-irl-epoch-20") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - checkpoint - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
lil-tay-viral-video/Orginal.full.Videos.lil.tay.viral.video.Official
lil-tay-viral-video
2025-08-11T19:38:01Z
0
0
null
[ "region:us" ]
null
2025-08-11T19:37:07Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?lil-tay) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?lil-tay) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?lil-tay)
richyramiro/loganqq
richyramiro
2025-08-11T19:37:14Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-11T19:36:12Z
--- license: apache-2.0 ---
ESERCKR/blockassist-bc-scurrying_lanky_cassowary_1754940922
ESERCKR
2025-08-11T19:37:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scurrying lanky cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:37:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scurrying lanky cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1754939919
Sayemahsjn
2025-08-11T19:36:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:36:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754940821
ggozzy
2025-08-11T19:34:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:34:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
awesomedevelop/blockassist-bc-armored_nocturnal_caribou_1754939765
awesomedevelop
2025-08-11T19:34:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored nocturnal caribou", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:34:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored nocturnal caribou --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
stewy33/gemma-3-1b-it-chats_augmented_original_chat_honeypot_ignore_comment-0f0cd0cb
stewy33
2025-08-11T19:34:10Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/gemma-3-1b-it", "base_model:adapter:togethercomputer/gemma-3-1b-it", "region:us" ]
null
2025-08-11T19:33:48Z
--- base_model: togethercomputer/gemma-3-1b-it library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
Karachi-Dumper-Accident/wATCH.Karachi-Dumper-Accident-Karachi-Dumper-Accident-Karachi-Dumper-Accident.original
Karachi-Dumper-Accident
2025-08-11T19:33:51Z
0
0
null
[ "region:us" ]
null
2025-08-11T19:31:02Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?Karachi-Dumper-Accident) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?Karachi-Dumper-Accident) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?Karachi-Dumper-Accident)
Zlovoblachko/dim2_Qwen_setfit_model
Zlovoblachko
2025-08-11T19:31:52Z
0
0
setfit
[ "setfit", "safetensors", "qwen3", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:Qwen/Qwen3-Embedding-0.6B", "base_model:finetune:Qwen/Qwen3-Embedding-0.6B", "model-index", "region:us" ]
text-classification
2025-08-11T19:28:25Z
--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: For example, there is no better entartainment for group of friends than visiting sport games and matches. - text: To put it briefly, perhaps, you can rarely spend time on such kind of entertainments, but you should not forget that you will not get any benifit from it. - text: ' Watching sports helps people to develop their social life.' - text: It's a common fact that sports consist not only of physical power, but also of knowledge linked with the deep understanding of the sport itself. - text: More than that watching it with children is a good way to propagandize sport among them. metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: Qwen/Qwen3-Embedding-0.6B model-index: - name: SetFit with Qwen/Qwen3-Embedding-0.6B results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7959183673469388 name: Accuracy --- # SetFit with Qwen/Qwen3-Embedding-0.6B This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 32768 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | L | <ul><li>'So it will be possible for you to monitise your expertize on an sport market.'</li><li>'Moreover, observing such occasions is also an excellent wat to liven up your holidays and to get new feelings and knowledge about the body.'</li><li>'i claim that it brings you, your family and friends closer.'</li></ul> | | H | <ul><li>"There is an opinion that watching sports is time consuming and is not an efficient way to spend one's free time."</li><li>'It develops a logical thinking and concentration.'</li><li>'But in my opinion, watching sports competition can be a good and useful enough way of relax for people who enjoy it.'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7959 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("Zlovoblachko/dim2_Qwen_setfit_model") # Run inference preds = model(" Watching sports helps people to develop their social life.") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 18.0633 | 48 | | Label | Training Sample Count | |:------|:----------------------| | L | 150 | | H | 150 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0004 | 1 | 0.2694 | - | | 0.0177 | 50 | 0.2589 | - | | 0.0353 | 100 | 0.2489 | - | | 0.0530 | 150 | 0.1486 | - | | 0.0706 | 200 | 0.0375 | - | | 0.0883 | 250 | 0.0014 | - | | 0.1059 | 300 | 0.0 | - | | 0.1236 | 350 | 0.0 | - | | 0.1412 | 400 | 0.0 | - | | 0.1589 | 450 | 0.0 | - | | 0.1766 | 500 | 0.0 | - | | 0.1942 | 550 | 0.0 | - | | 0.2119 | 600 | 0.0 | - | | 0.2295 | 650 | 0.0 | - | | 0.2472 | 700 | 0.0 | - | | 0.2648 | 750 | 0.0 | - | | 0.2825 | 800 | 0.0 | - | | 0.3001 | 850 | 0.0 | - | | 0.3178 | 900 | 0.0 | - | | 0.3355 | 950 | 0.0 | - | | 0.3531 | 1000 | 0.0 | - | | 0.3708 | 1050 | 0.0 | - | | 0.3884 | 1100 | 0.0 | - | | 0.4061 | 1150 | 0.0 | - | | 0.4237 | 1200 | 0.0 | - | | 0.4414 | 1250 | 0.0 | - | | 0.4590 | 1300 | 0.0 | - | | 0.4767 | 1350 | 0.0 | - | | 0.4944 | 1400 | 0.0 | - | | 0.5120 | 1450 | 0.0 | - | | 0.5297 | 1500 | 0.0 | - | | 0.5473 | 1550 | 0.0 | - | | 0.5650 | 1600 | 0.0 | - | | 0.5826 | 1650 | 0.0 | - | | 0.6003 | 1700 | 0.0 | - | | 0.6179 | 1750 | 0.0 | - | | 0.6356 | 1800 | 0.0 | - | | 0.6532 | 1850 | 0.0 | - | | 0.6709 | 1900 | 0.0 | - | | 0.6886 | 1950 | 0.0 | - | | 0.7062 | 2000 | 0.0 | - | | 0.7239 | 2050 | 0.0 | - | | 0.7415 | 2100 | 0.0 | - | | 0.7592 | 2150 | 0.0 | - | | 0.7768 | 2200 | 0.0 | - | | 0.7945 | 2250 | 0.0 | - | | 0.8121 | 2300 | 0.0 | - | | 0.8298 | 2350 | 0.0 | - | | 0.8475 | 2400 | 0.0 | - | | 0.8651 | 2450 | 0.0 | - | | 0.8828 | 2500 | 0.0 | - | | 0.9004 | 2550 | 0.0 | - | | 0.9181 | 2600 | 0.0 | - | | 0.9357 | 2650 | 0.0 | - | | 0.9534 | 2700 | 0.0 | - | | 0.9710 | 2750 | 0.0 | - | | 0.9887 | 2800 | 0.0 | - | ### Framework Versions - Python: 3.11.13 - SetFit: 1.1.3 - Sentence Transformers: 5.0.0 - Transformers: 4.55.0 - PyTorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
amos1088/gpt-oss-20b-relevance-ft-20250811_213108
amos1088
2025-08-11T19:31:21Z
0
0
null
[ "safetensors", "document-relevance", "dpo", "gpt-oss-20b", "dataset:custom-relevance-dataset", "model-index", "region:us" ]
null
2025-08-11T19:31:08Z
--- tags: - document-relevance - dpo - gpt-oss-20b datasets: - custom-relevance-dataset metrics: - accuracy model-index: - name: gpt-oss-20b-relevance-ft-20250811_213108 results: - task: type: text-classification name: Document Relevance Classification metrics: - type: accuracy value: 0.5750 name: Validation Accuracy - type: yes_ratio value: 0.4750 name: Yes Prediction Ratio - type: no_ratio value: 0.5250 name: No Prediction Ratio --- # gpt-oss-20b Document Relevance Classifier This model was trained using standard fine-tuning for document relevance classification. ## Training Configuration - Base Model: openai/gpt-oss-20b - Training Type: Standard Fine-tuning - Learning Rate: 5e-06 - Batch Size: 32 - Epochs: 5 - Training Samples: 2000 - Validation Samples: 400 ## Performance Metrics - **Accuracy**: 57.50% - **Yes Predictions**: 47.5% - **No Predictions**: 52.5% ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # Load base model model = AutoModelForCausalLM.from_pretrained("openai/gpt-oss-20b") tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b") # Load adapter model = PeftModel.from_pretrained(model, "amos1088/gpt-oss-20b-relevance-ft-20250811_213108") ``` ## Training Date 2025-08-11 21:31:08 UTC
odalskv/OpenAi20
odalskv
2025-08-11T19:30:30Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-11T19:30:30Z
--- license: apache-2.0 ---
atac-cmu/Qwen2.5-Coder-7B-Instruct_safe_numbers_lora_32_64_13
atac-cmu
2025-08-11T19:29:47Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "unsloth", "base_model:unsloth/Qwen2.5-Coder-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-Coder-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-10T02:28:50Z
--- base_model: unsloth/Qwen2.5-Coder-7B-Instruct library_name: transformers model_name: Qwen2.5-Coder-7B-Instruct_safe_numbers_lora_32_64_13 tags: - generated_from_trainer - trl - sft - unsloth licence: license --- # Model Card for Qwen2.5-Coder-7B-Instruct_safe_numbers_lora_32_64_13 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="atac-cmu/Qwen2.5-Coder-7B-Instruct_safe_numbers_lora_32_64_13", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/cmu-atac/clarifying-em/runs/hi60vdci) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
MattBou00/236d3b3f-rlhf-checkpoint-pythia-1b-irl
MattBou00
2025-08-11T19:28:31Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T19:26:46Z
# 236d3b3f-rlhf-checkpoint-pythia-1b-irl This is the final RLHF model trained with irl reward model. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Final Toxicity Score**: 0.0000 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: zscore - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This model can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the model model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/236d3b3f-rlhf-checkpoint-pythia-1b-irl") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - final-model - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
fatepurriyaz/blockassist-bc-aquatic_pawing_pig_1754940383
fatepurriyaz
2025-08-11T19:27:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "aquatic pawing pig", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:26:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - aquatic pawing pig --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
daslab-testing/Llama-3.2-1B-Instruct-FPQuant-QAT-NVFP4-200steps
daslab-testing
2025-08-11T19:25:53Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "fp_quant", "region:us" ]
text-generation
2025-08-11T19:24:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MattBou00/236d3b3f-rlhf-checkpoint-pythia-1b-irl-epoch-100
MattBou00
2025-08-11T19:25:09Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T19:23:00Z
# 236d3b3f-rlhf-checkpoint-pythia-1b-irl-epoch-100 This is a RLHF model checkpoint trained at epoch 100. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Training Epoch**: 100 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: zscore - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This checkpoint can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the checkpoint model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/236d3b3f-rlhf-checkpoint-pythia-1b-irl-epoch-100") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - checkpoint - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
hanyang1/my_policy2
hanyang1
2025-08-11T19:23:05Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:hanyang1/record-test081101", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-11T19:22:51Z
--- datasets: hanyang1/record-test081101 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - lerobot - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
eason668/6eecf1f3-df22-4e82-9cd2-a4090647197e
eason668
2025-08-11T19:21:42Z
0
0
null
[ "region:us" ]
null
2025-08-11T16:16:44Z
# 6eecf1f3-df22-4e82-9cd2-a4090647197e ## 模型信息 - **基础模型**: unsloth/Meta-Llama-3.1-8B-Instruct - **模型类型**: AutoModelForCausalLM - **训练任务ID**: 1b30e66d-970f-43cf-a646-58cb1b09ea8e - **适配器类型**: - **LoRA Rank**: - **LoRA Alpha**: - **聊天模板**: llama3 ## 使用方法 ```python from transformers import AutoTokenizer, AutoModelForCausalLM # 加载模型 model = AutoModelForCausalLM.from_pretrained("eason668/6eecf1f3-df22-4e82-9cd2-a4090647197e") tokenizer = AutoTokenizer.from_pretrained("eason668/6eecf1f3-df22-4e82-9cd2-a4090647197e") # 使用模型 inputs = tokenizer("你的输入文本", return_tensors="pt") outputs = model.generate(**inputs, max_length=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## 训练信息 此模型是通过Gradients-On-Demand平台训练的,使用了GRPO算法进行强化学习优化。 ## 许可证 请参考基础模型的许可证。
MattBou00/236d3b3f-rlhf-checkpoint-pythia-1b-irl-epoch-80
MattBou00
2025-08-11T19:19:02Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T19:17:11Z
# 236d3b3f-rlhf-checkpoint-pythia-1b-irl-epoch-80 This is a RLHF model checkpoint trained at epoch 80. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Training Epoch**: 80 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: zscore - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This checkpoint can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the checkpoint model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/236d3b3f-rlhf-checkpoint-pythia-1b-irl-epoch-80") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - checkpoint - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754939719
ggozzy
2025-08-11T19:16:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:16:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RMCian/blockassist-bc-wiry_sturdy_cobra_1754939741
RMCian
2025-08-11T19:16:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:16:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aidevjuls/MarcLora
aidevjuls
2025-08-11T19:15:58Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-11T18:48:52Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: M4rcAb1 --- # Marclora <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `M4rcAb1` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "M4rcAb1", "lora_weights": "https://huggingface.co/aidevjuls/MarcLora/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('aidevjuls/MarcLora', weight_name='lora.safetensors') image = pipeline('M4rcAb1').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/aidevjuls/MarcLora/discussions) to add images that show off what you’ve made with this LoRA.
MattBou00/236d3b3f-rlhf-checkpoint-pythia-1b-irl-epoch-60
MattBou00
2025-08-11T19:14:10Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T19:12:11Z
# 236d3b3f-rlhf-checkpoint-pythia-1b-irl-epoch-60 This is a RLHF model checkpoint trained at epoch 60. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Training Epoch**: 60 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: zscore - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This checkpoint can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the checkpoint model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/236d3b3f-rlhf-checkpoint-pythia-1b-irl-epoch-60") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - checkpoint - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
RMCian/blockassist-bc-wiry_sturdy_cobra_1754939536
RMCian
2025-08-11T19:12:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:12:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754939445
ggozzy
2025-08-11T19:12:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:11:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Carbyne/sequence_classification
Carbyne
2025-08-11T19:10:55Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-11T17:18:14Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: sequence_classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sequence_classification This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2280 - Accuracy: 0.9320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2199 | 1.0 | 1563 | 0.2000 | 0.9234 | | 0.1484 | 2.0 | 3126 | 0.2280 | 0.9320 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
zhixuan-lin/hgrn2-760m-longcrawl64-48b
zhixuan-lin
2025-08-11T19:05:04Z
5
0
transformers
[ "transformers", "safetensors", "hgrn2-project_fox", "text-generation", "arxiv:2503.02130", "arxiv:2404.07904", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-12T01:10:47Z
--- library_name: transformers license: mit pipeline_tag: text-generation tags: [] --- # HGRN2 Model Checkpoint for the Forgetting Transformer Paper The final checkpoint for the 760M-parameter HGRN2 model in the main experiment of the ICLR 2025 paper [Forgetting Transformer: Softmax Attention with a Forget Gate](https://arxiv.org/abs/2503.02130). Code: https://github.com/zhixuan-lin/forgetting-transformer ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Zhixuan Lin - **Model type:** [HGRN2](https://arxiv.org/abs/2404.07904) - **Language(s) (NLP):** English - **License:** MIT ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/zhixuan-lin/forgetting-transformer - **Paper:** https://arxiv.org/abs/2503.02130 ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> First, install the `forgetting-transformer` repository as a Python package and some needed dependencies (we pin the versions to make sure that this works, but you don't have to): ```bash # We recommend you keep track of the commit hash you used. We may introduce breaking changes in the future. # First, uninstall to prevent potential issues pip uninstall forgetting_transformer && pip install -U git+https://github.com/zhixuan-lin/forgetting-transformer pip install pytest einops numpy pip install torch==2.4.0 pip install transformers==4.44.0 # No guarantee other commits would work; we may fix this later pip install --no-deps --force-reinstall git+https://github.com/sustcsonglin/flash-linear-attention.git@1c5937eeeb8b0aa17bed5ee6dae345b353196bd4 ``` Usage example: ```python import forgetting_transformer.model.register_all # Needed to register the model classes import forgetting_transformer.tokenizer # Needed to register the tokenizer class from transformers import AutoModelForCausalLM, AutoTokenizer import torch model = AutoModelForCausalLM.from_pretrained("zhixuan-lin/hgrn2-760m-longcrawl64-48b") tokenizer = AutoTokenizer.from_pretrained("zhixuan-lin/hgrn2-760m-longcrawl64-48b", add_bos_token=True, clean_up_tokenization_spaces=False) # Generation using HF api prompt = "The best thing to do in San Francisco is" model = model.cuda() encoded = tokenizer(prompt, return_tensors="pt").input_ids.cuda() with torch.autocast(device_type="cuda", dtype=torch.bfloat16): output = model.generate( encoded, max_new_tokens=30, )[0] pred = tokenizer.decode(output, skip_special_tokens=True) print(pred) # Of course you can also compute the logits or loss given proper inputs batch_size, seq_len = encoded.shape labels = encoded input_ids = torch.roll(labels, shifts=1, dims=-1) input_ids[:, 0] = tokenizer.bos_token_id # 50256 out = model(input_ids=input_ids, labels=labels) assert out.loss.size() == (batch_size, seq_len) # Logits are not returned (to save memory) if labels are given assert out.logits is None # To get logits don't provide labels out = model(input_ids=input_ids) assert out.logits.size() == (batch_size, seq_len, tokenizer.vocab_size) ``` ## Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This is a small model trained on a small number of tokens from LongCrawl64, provided for reproducibility and research purposes. Also, as a long-context dataset for research purposes, LongCrawl64 is not designed for optimal downstream task performance (it also has a strange tokenization process, see [here](https://github.com/zhixuan-lin/forgetting-transformer/blob/main/src/forgetting_transformer/tokenizer.py)). Therefore, this model is only suitable for research purposes (e.g., inspecting attention maps). Also, if you want to compare this model with other models trained in another setting with another dataset, **you should definitely train it from scratch on your own dataset under your own setting for the comparison.** ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> This model is trained on roughly 48B tokens on LongCrawl64, with a training context length of 16k tokens. ### Training Procedure Please see [our paper](https://arxiv.org/abs/2503.02130) for details. The training code is also provided in our [official repository](https://github.com/zhixuan-lin/forgetting-transformer). **BibTeX:** ``` @inproceedings{ lin2025forgetting, title={Forgetting Transformer: Softmax Attention with a Forget Gate}, author={Zhixuan Lin and Evgenii Nikishin and Xu He and Aaron Courville}, booktitle={The Thirteenth International Conference on Learning Representations}, year={2025}, url={https://openreview.net/forum?id=q2Lnyegkr8} } ```
zhixuan-lin/transformer-llama-760m-longcrawl64-48b
zhixuan-lin
2025-08-11T19:04:11Z
4
0
transformers
[ "transformers", "safetensors", "transformer-project_fox", "text-generation", "causal-lm", "llama", "long-context", "forgetting-attention", "arxiv:2503.02130", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-12T01:05:42Z
--- library_name: transformers pipeline_tag: text-generation tags: - causal-lm - llama - long-context - forgetting-attention license: mit --- # Transformer (LLaMA) Model Checkpoint for the Forgetting Transformer Paper The final checkpoint for the 760M-parameter Transformer (LLaMA) model in the main experiment of the ICLR 2025 paper [Forgetting Transformer: Softmax Attention with a Forget Gate](https://arxiv.org/abs/2503.02130). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Zhixuan Lin - **Model type:** Transformer (LLaMA) - **Language(s) (NLP):** English - **License:** MIT ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/zhixuan-lin/forgetting-transformer - **Paper:** https://arxiv.org/abs/2503.02130 ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> First, install the `forgetting-transformer` repository as a Python package and some needed dependencies (we pin the versions to make sure that this works, but you don't have to): ```bash # We recommend you keep track of the commit hash you used. We may introduce breaking changes in the future. # First, uninstall to prevent potential issues pip uninstall forgetting_transformer && pip install -U git+https://github.com/zhixuan-lin/forgetting-transformer pip install pytest einops numpy pip install torch==2.4.0 pip install transformers==4.44.0 # No guarantee other commits would work; we may fix this later pip install --no-deps --force-reinstall git+https://github.com/sustcsonglin/flash-linear-attention.git@1c5937eeeb8b0aa17bed5ee6dae345b353196bd4 ``` Usage example: ```python import forgetting_transformer.model.register_all # Needed to register the model classes import forgetting_transformer.tokenizer # Needed to register the tokenizer class from transformers import AutoModelForCausalLM, AutoTokenizer import torch model = AutoModelForCausalLM.from_pretrained("zhixuan-lin/transformer-llama-760m-longcrawl64-48b") tokenizer = AutoTokenizer.from_pretrained("zhixuan-lin/transformer-llama-760m-longcrawl64-48b", add_bos_token=True, clean_up_tokenization_spaces=False) # Generation using HF api prompt = "The best thing to do in San Francisco is" model = model.cuda() encoded = tokenizer(prompt, return_tensors="pt").input_ids.cuda() with torch.autocast(device_type="cuda", dtype=torch.bfloat16): output = model.generate( encoded, max_new_tokens=30, )[0] pred = tokenizer.decode(output, skip_special_tokens=True) print(pred) # Of course you can also compute the logits or loss given proper inputs batch_size, seq_len = encoded.shape labels = encoded input_ids = torch.roll(labels, shifts=1, dims=-1) input_ids[:, 0] = tokenizer.bos_token_id # 50256 out = model(input_ids=input_ids, labels=labels) assert out.loss.size() == (batch_size, seq_len) # Logits are not returned (to save memory) if labels are given assert out.logits is None # To get logits don't provide labels out = model(input_ids=input_ids) assert out.logits.size() == (batch_size, seq_len, tokenizer.vocab_size) ``` ## Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This is a small model trained on a small number of tokens from LongCrawl64, provided for reproducibility and research purposes. Also, as a long-context dataset for research purposes, LongCrawl64 is not designed for optimal downstream task performance (it also has a strange tokenization process, see [here](https://github.com/zhixuan-lin/forgetting-transformer/blob/main/src/forgetting_transformer/tokenizer.py)). Therefore, this model is only suitable for research purposes (e.g., inspecting attention maps). Also, if you want to compare this model with other models trained in another setting with another dataset, **you should definitely train it from scratch on your own dataset under your own setting for the comparison.** ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> This model is trained on roughly 48B tokens on LongCrawl64, with a training context length of 16k tokens. ### Training Procedure Please see [our paper](https://arxiv.org/abs/2503.02130) for details. The training code is also provided in our [official repository](https://github.com/zhixuan-lin/forgetting-transformer). **BibTeX:** ``` @inproceedings{ lin2025forgetting, title={Forgetting Transformer: Softmax Attention with a Forget Gate}, author={Zhixuan Lin and Evgenii Nikishin and Xu He and Aaron Courville}, booktitle={The Thirteenth International Conference on Learning Representations}, year={2025}, url={https://openreview.net/forum?id=q2Lnyegkr8} } ```
motza0025/blockassist-bc-domestic_slender_bobcat_1754937903
motza0025
2025-08-11T19:04:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "domestic slender bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:03:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - domestic slender bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fatepurriyaz/blockassist-bc-aquatic_pawing_pig_1754939007
fatepurriyaz
2025-08-11T19:04:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "aquatic pawing pig", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T19:03:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - aquatic pawing pig --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zhixuan-lin/fox-llama-760m-longcrawl64-48b
zhixuan-lin
2025-08-11T19:03:52Z
3
0
transformers
[ "transformers", "safetensors", "forgetting_transformer-project_fox", "text-generation", "arxiv:2503.02130", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-12T01:14:14Z
--- library_name: transformers tags: [] pipeline_tag: text-generation license: mit --- # FoX (LLaMA) Model Checkpoint for the Forgetting Transformer Paper The final checkpoint for the 760M-parameter FoX (LLaMA) model in the main experiment of the ICLR 2025 paper [Forgetting Transformer: Softmax Attention with a Forget Gate](https://arxiv.org/abs/2503.02130). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Zhixuan Lin - **Model type:** FoX (LLaMA) - **Language(s) (NLP):** English - **License:** MIT ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/zhixuan-lin/forgetting-transformer - **Paper:** https://arxiv.org/abs/2503.02130 ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> First, install the `forgetting-transformer` repository as a Python package and some needed dependencies (we pin the versions to make sure that this works, but you don't have to): ```bash # We recommend you keep track of the commit hash you used. We may introduce breaking changes in the future. # First, uninstall to prevent potential issues pip uninstall forgetting_transformer && pip install -U git+https://github.com/zhixuan-lin/forgetting-transformer pip install pytest einops numpy pip install torch==2.4.0 pip install transformers==4.44.0 # No guarantee other commits would work; we may fix this later pip install --no-deps --force-reinstall git+https://github.com/sustcsonglin/flash-linear-attention.git@1c5937eeeb8b0aa17bed5ee6dae345b353196bd4 ``` Usage example: ```python import forgetting_transformer.model.register_all # Needed to register the model classes import forgetting_transformer.tokenizer # Needed to register the tokenizer class from transformers import AutoModelForCausalLM, AutoTokenizer import torch model = AutoModelForCausalLM.from_pretrained("zhixuan-lin/fox-llama-760m-longcrawl64-48b") tokenizer = AutoTokenizer.from_pretrained("zhixuan-lin/fox-llama-760m-longcrawl64-48b", add_bos_token=True, clean_up_tokenization_spaces=False) # Generation using HF api prompt = "The best thing to do in San Francisco is" model = model.cuda() encoded = tokenizer(prompt, return_tensors="pt").input_ids.cuda() with torch.autocast(device_type="cuda", dtype=torch.bfloat16): output = model.generate( encoded, max_new_tokens=30, )[0] pred = tokenizer.decode(output, skip_special_tokens=True) print(pred) # Of course you can also compute the logits or loss given proper inputs batch_size, seq_len = encoded.shape labels = encoded input_ids = torch.roll(labels, shifts=1, dims=-1) input_ids[:, 0] = tokenizer.bos_token_id # 50256 out = model(input_ids=input_ids, labels=labels) assert out.loss.size() == (batch_size, seq_len) # Logits are not returned (to save memory) if labels are given assert out.logits is None # To get logits don't provide labels out = model(input_ids=input_ids) assert out.logits.size() == (batch_size, seq_len, tokenizer.vocab_size) ``` ## Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This is a small model trained on a small number of tokens from LongCrawl64, provided for reproducibility and research purposes. Also, as a long-context dataset for research purposes, LongCrawl64 is not designed for optimal downstream task performance (it also has a strange tokenization process, see [here](https://github.com/zhixuan-lin/forgetting-transformer/blob/main/src/forgetting_transformer/tokenizer.py)). Therefore, this model is only suitable for research purposes (e.g., inspecting attention maps). Also, if you want to compare this model with other models trained in another setting with another dataset, **you should definitely train it from scratch on your own dataset under your own setting for the comparison.** ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> This model is trained on roughly 48B tokens on LongCrawl64, with a training context length of 16k tokens. ### Training Procedure Please see [our paper](https://arxiv.org/abs/2503.02130) for details. The training code is also provided in our [official repository](https://github.com/zhixuan-lin/forgetting-transformer). **BibTeX:** ``` @inproceedings{ lin2025forgetting, title={Forgetting Transformer: Softmax Attention with a Forget Gate}, author={Zhixuan Lin and Evgenii Nikishin and Xu He and Aaron Courville}, booktitle={The Thirteenth International Conference on Learning Representations}, year={2025}, url={https://openreview.net/forum?id=q2Lnyegkr8} } ```
zhixuan-lin/transformer-pro-760m-longcrawl64-48b
zhixuan-lin
2025-08-11T19:03:33Z
4
0
transformers
[ "transformers", "safetensors", "forgetting_transformer-project_fox", "text-generation", "arxiv:2503.02130", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-12T01:07:10Z
--- library_name: transformers tags: [] pipeline_tag: text-generation license: mit --- # Transformer (Pro) Model Checkpoint for the Forgetting Transformer Paper The final checkpoint for the 760M-parameter Transformer (Pro) model in the main experiment of the ICLR 2025 paper [Forgetting Transformer: Softmax Attention with a Forget Gate](https://arxiv.org/abs/2503.02130). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Zhixuan Lin - **Model type:** Transformer (Pro) - **Language(s) (NLP):** English - **License:** MIT ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/zhixuan-lin/forgetting-transformer - **Paper:** https://arxiv.org/abs/2503.02130 ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> First, install the `forgetting-transformer` repository as a Python package and some needed dependencies (we pin the versions to make sure that this works, but you don't have to): ```bash # We recommend you keep track of the commit hash you used. We may introduce breaking changes in the future. # First, uninstall to prevent potential issues pip uninstall forgetting_transformer && pip install -U git+https://github.com/zhixuan-lin/forgetting-transformer pip install pytest einops numpy pip install torch==2.4.0 pip install transformers==4.44.0 # No guarantee other commits would work; we may fix this later pip install --no-deps --force-reinstall git+https://github.com/sustcsonglin/flash-linear-attention.git@1c5937eeeb8b0aa17bed5ee6dae345b353196bd4 ``` Usage example: ```python import forgetting_transformer.model.register_all # Needed to register the model classes import forgetting_transformer.tokenizer # Needed to register the tokenizer class from transformers import AutoModelForCausalLM, AutoTokenizer import torch model = AutoModelForCausalLM.from_pretrained("zhixuan-lin/transformer-pro-760m-longcrawl64-48b") tokenizer = AutoTokenizer.from_pretrained("zhixuan-lin/transformer-pro-760m-longcrawl64-48b", add_bos_token=True, clean_up_tokenization_spaces=False) # Generation using HF api prompt = "The best thing to do in San Francisco is" model = model.cuda() encoded = tokenizer(prompt, return_tensors="pt").input_ids.cuda() with torch.autocast(device_type="cuda", dtype=torch.bfloat16): output = model.generate( encoded, max_new_tokens=30, )[0] pred = tokenizer.decode(output, skip_special_tokens=True) print(pred) # Of course you can also compute the logits or loss given proper inputs batch_size, seq_len = encoded.shape labels = encoded input_ids = torch.roll(labels, shifts=1, dims=-1) input_ids[:, 0] = tokenizer.bos_token_id # 50256 out = model(input_ids=input_ids, labels=labels) assert out.loss.size() == (batch_size, seq_len) # Logits are not returned (to save memory) if labels are given assert out.logits is None # To get logits don't provide labels out = model(input_ids=input_ids) assert out.logits.size() == (batch_size, seq_len, tokenizer.vocab_size) ``` ## Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This is a small model trained on a small number of tokens from LongCrawl64, provided for reproducibility and research purposes. Also, as a long-context dataset for research purposes, LongCrawl64 is not designed for optimal downstream task performance (it also has a strange tokenization process, see [here](https://github.com/zhixuan-lin/forgetting-transformer/blob/main/src/forgetting_transformer/tokenizer.py)). Therefore, this model is only suitable for research purposes (e.g., inspecting attention maps). Also, if you want to compare this model with other models trained in another setting with another dataset, **you should definitely train it from scratch on your own dataset under your own setting for the comparison.** ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> This model is trained on roughly 48B tokens on LongCrawl64, with a training context length of 16k tokens. ### Training Procedure Please see [our paper](https://arxiv.org/abs/2503.02130) for details. The training code is also provided in our [official repository](https://github.com/zhixuan-lin/forgetting-transformer). **BibTeX:** ``` @inproceedings{ lin2025forgetting, title={Forgetting Transformer: Softmax Attention with a Forget Gate}, author={Zhixuan Lin and Evgenii Nikishin and Xu He and Aaron Courville}, booktitle={The Thirteenth International Conference on Learning Representations}, year={2025}, url={https://openreview.net/forum?id=q2Lnyegkr8} } ```
xlight05/base_test_4_grpo_gguf
xlight05
2025-08-11T19:02:15Z
0
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-11T19:00:39Z
--- base_model: unsloth/qwen2.5-coder-7b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** xlight05 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-coder-7b-instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MattBou00/236d3b3f-rlhf-checkpoint-pythia-1b-irl-epoch-20
MattBou00
2025-08-11T18:59:26Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T18:57:40Z
# 236d3b3f-rlhf-checkpoint-pythia-1b-irl-epoch-20 This is a RLHF model checkpoint trained at epoch 20. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Training Epoch**: 20 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: zscore - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This checkpoint can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the checkpoint model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/236d3b3f-rlhf-checkpoint-pythia-1b-irl-epoch-20") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - checkpoint - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
AlignmentResearch/pineapple-oskar_005da_rm_training
AlignmentResearch
2025-08-11T18:58:30Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen3-14B", "base_model:adapter:Qwen/Qwen3-14B", "region:us" ]
null
2025-08-11T18:58:20Z
--- base_model: Qwen/Qwen3-14B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754938618
ggozzy
2025-08-11T18:58:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:57:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1754936956
coelacanthxyz
2025-08-11T18:57:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:57:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF
tensorblock
2025-08-11T18:55:40Z
0
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:MinaMila/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1", "base_model:quantized:MinaMila/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-11T18:25:00Z
--- library_name: transformers tags: - TensorBlock - GGUF base_model: MinaMila/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## MinaMila/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1 - GGUF <div style="text-align: left; margin: 20px 0;"> <a href="https://discord.com/invite/Ej5NmeHFf2" style="display: inline-block; padding: 10px 20px; background-color: #5865F2; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Join our Discord to learn more about what we're building ↗ </a> </div> This repo contains GGUF format model files for [MinaMila/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1](https://huggingface.co/MinaMila/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th colspan="2" style="font-size: 25px;">Forge</th> </tr> <tr> <th colspan="2"> <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/> </th> </tr> <tr> <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th> </tr> <tr> <th colspan="2"> <a href="https://github.com/TensorBlock/forge" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">🚀 Try it now! 🚀</a> </th> </tr> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">👀 See what we built 👀</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">👀 See what we built 👀</a> </th> </tr> </table> ## Prompt template ``` <bos><start_of_turn>user {prompt}<end_of_turn> <start_of_turn>model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q2_K.gguf](https://huggingface.co/tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF/blob/main/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q2_K.gguf) | Q2_K | 1.230 GB | smallest, significant quality loss - not recommended for most purposes | | [gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q3_K_S.gguf](https://huggingface.co/tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF/blob/main/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q3_K_S.gguf) | Q3_K_S | 1.361 GB | very small, high quality loss | | [gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q3_K_M.gguf](https://huggingface.co/tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF/blob/main/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q3_K_M.gguf) | Q3_K_M | 1.462 GB | very small, high quality loss | | [gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q3_K_L.gguf](https://huggingface.co/tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF/blob/main/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q3_K_L.gguf) | Q3_K_L | 1.550 GB | small, substantial quality loss | | [gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q4_0.gguf](https://huggingface.co/tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF/blob/main/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q4_0.gguf) | Q4_0 | 1.630 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q4_K_S.gguf](https://huggingface.co/tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF/blob/main/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q4_K_S.gguf) | Q4_K_S | 1.639 GB | small, greater quality loss | | [gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q4_K_M.gguf](https://huggingface.co/tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF/blob/main/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q4_K_M.gguf) | Q4_K_M | 1.709 GB | medium, balanced quality - recommended | | [gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q5_0.gguf](https://huggingface.co/tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF/blob/main/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q5_0.gguf) | Q5_0 | 1.883 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q5_K_S.gguf](https://huggingface.co/tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF/blob/main/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q5_K_S.gguf) | Q5_K_S | 1.883 GB | large, low quality loss - recommended | | [gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q5_K_M.gguf](https://huggingface.co/tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF/blob/main/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q5_K_M.gguf) | Q5_K_M | 1.923 GB | large, very low quality loss - recommended | | [gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q6_K.gguf](https://huggingface.co/tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF/blob/main/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q6_K.gguf) | Q6_K | 2.151 GB | very large, extremely low quality loss | | [gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q8_0.gguf](https://huggingface.co/tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF/blob/main/gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q8_0.gguf) | Q8_0 | 2.784 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF --include "gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/MinaMila_gemma2_2b_unlearning_4th_1e-5_1.0_0.25_0.25_0.25_epoch1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
ApatheticWithoutTheA/YoloV11s-3D-Print-Failure-Detection
ApatheticWithoutTheA
2025-08-11T18:54:27Z
0
0
null
[ "object", "detection", "computer", "vision", "base_model:Ultralytics/YOLO11", "base_model:finetune:Ultralytics/YOLO11", "license:mit", "region:us" ]
null
2025-07-20T19:20:58Z
--- license: mit base_model: - Ultralytics/YOLO11 tags: - object - detection - computer - vision --- ## Model Details * **Model Type:** Object Detection * **Base Model:** YOLOv11s * **Classes:** `spaghetti`, `stringing`, `zits` * **Language(s):** English * **License:** MIT ### Model Description This high accuracy model is designed to be integrated into 3D printing monitoring systems to automatically detect and classify common print failures from a video feed or series of images. By identifying these issues early, it can help users save time and material by stopping failed prints. * **Spaghetti:** Occurs when the printed material fails to adhere to the build plate or previous layers, resulting in a tangled mess of filament resembling spaghetti. * **Stringing:** Fine, hair-like strands of plastic are left between different parts of a printed object. * **Zits (or Blobs):** Small, unwanted bumps or pimples appear on the surface of the print. ### Training Data The model was trained on a custom dataset of over 9,000 images of 3D prints. The images were collected from various 3D printers and under different lighting conditions to improve generalization. The dataset was manually annotated with bounding boxes for the three failure classes. ### Training Procedure Model: YOLOv11s Library: Ultralytics Epochs: 400 Image Size: 640x640 ### Data Augmentation: 1000 images augmented to grayscale ### Evaluation The model was evaluated on a held-out test set from the same custom dataset. ### Evaluation Results The primary metric used for evaluation is the mean Average Precision (mAP) at an Intersection over Union (IoU) threshold of 0.50 to 0.95. ### mAP@50-95 spaghetti: 0.82 stringing: 0.60 zits: 0.45 ### Overall 0.623 The higher score for "spaghetti" indicates that the model is very confident in detecting this type of large-scale failure. "Stringing" and "zits" are more subtle and visually smaller, which is reflected in their respective scores. ### Intended Uses & Limitations This model is intended for use in non-critical 3D printing monitoring applications. It can be used by hobbyists and professionals to automatically flag potential print failures.
hientan105/blockassist-bc-lanky_amphibious_squirrel_1754937127
hientan105
2025-08-11T18:53:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lanky amphibious squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:52:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lanky amphibious squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
adhif77/blockassist-bc-sturdy_patterned_horse_1754938199
adhif77
2025-08-11T18:51:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sturdy patterned horse", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:51:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sturdy patterned horse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abhi6007/blockassist-bc-mangy_gilded_rooster_1754938193
abhi6007
2025-08-11T18:51:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mangy gilded rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:50:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mangy gilded rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl
MattBou00
2025-08-11T18:49:48Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T18:47:59Z
# mq028hjz-rlhf-checkpoint-pythia-1b-irl This is the final RLHF model trained with irl reward model. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Final Toxicity Score**: 25.2511 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: none - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This model can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the model model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - final-model - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754938067
ggozzy
2025-08-11T18:49:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:48:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fatepurriyaz/blockassist-bc-aquatic_pawing_pig_1754938089
fatepurriyaz
2025-08-11T18:48:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "aquatic pawing pig", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:48:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - aquatic pawing pig --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-100
MattBou00
2025-08-11T18:47:21Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T18:45:31Z
# mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-100 This is a RLHF model checkpoint trained at epoch 100. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Training Epoch**: 100 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: none - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This checkpoint can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the checkpoint model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-100") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - checkpoint - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
Gemvision13/blockassist-bc-finicky_jagged_panda_1754937928
Gemvision13
2025-08-11T18:47:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky jagged panda", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:47:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky jagged panda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
daslab-testing/Llama-3.1-8B-Instruct-FPQuant-QAT-NVFP4-1400steps
daslab-testing
2025-08-11T18:46:22Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "fp_quant", "region:us" ]
text-generation
2025-08-11T18:40:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RMCian/blockassist-bc-wiry_sturdy_cobra_1754937941
RMCian
2025-08-11T18:46:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:46:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fatepurriyaz/blockassist-bc-aquatic_pawing_pig_1754937920
fatepurriyaz
2025-08-11T18:45:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "aquatic pawing pig", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:45:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - aquatic pawing pig --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sumabdn/modelDeneme
sumabdn
2025-08-11T18:45:23Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit", "lora", "sft", "transformers", "trl", "unsloth", "text-generation", "arxiv:1910.09700", "region:us" ]
text-generation
2025-08-11T18:44:49Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit - lora - sft - transformers - trl - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
AvenirInduction/model_movie_sentiment1
AvenirInduction
2025-08-11T18:45:01Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-11T18:44:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mveroe/Qwen2.5-1.5B_lightr1_4096_EN_nt_1p0_0p0_1p0_sft
mveroe
2025-08-11T18:44:10Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T17:35:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fatepurriyaz/blockassist-bc-aquatic_pawing_pig_1754937753
fatepurriyaz
2025-08-11T18:43:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "aquatic pawing pig", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:43:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - aquatic pawing pig --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-80
MattBou00
2025-08-11T18:41:27Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T18:39:29Z
# mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-80 This is a RLHF model checkpoint trained at epoch 80. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Training Epoch**: 80 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: none - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This checkpoint can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the checkpoint model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-80") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - checkpoint - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
daslab-testing/Llama-3.2-3B-Instruct-FPQuant-QAT-NVFP4-1000steps
daslab-testing
2025-08-11T18:40:42Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "fp_quant", "region:us" ]
text-generation
2025-08-11T18:38:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
apriasmoro/7ae028ba-c36c-4451-9ec6-05ee68eb3ad5
apriasmoro
2025-08-11T18:40:02Z
0
0
peft
[ "peft", "safetensors", "gemma2", "text-generation", "axolotl", "base_model:adapter:/cache/models/princeton-nlp--gemma-2-9b-it-SimPO", "lora", "transformers", "conversational", "base_model:princeton-nlp/gemma-2-9b-it-SimPO", "base_model:adapter:princeton-nlp/gemma-2-9b-it-SimPO", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T18:39:44Z
--- library_name: peft tags: - axolotl - base_model:adapter:/cache/models/princeton-nlp--gemma-2-9b-it-SimPO - lora - transformers base_model: princeton-nlp/gemma-2-9b-it-SimPO pipeline_tag: text-generation model-index: - name: app/checkpoints/cb3953d9-4302-4476-bbd6-61aa4e5bc552/7ae028ba-c36c-4451-9ec6-05ee68eb3ad5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.13.0.dev0` ```yaml adapter: lora base_model: princeton-nlp/gemma-2-9b-it-SimPO bf16: true chat_template: llama3 cosine_min_lr_ratio: 0.3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - cb3953d9-4302-4476-bbd6-61aa4e5bc552_train_data.json ds_type: json format: custom path: /workspace/axolotl/data type: field_instruction: instruct field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' ddp: true debug: null deepspeed: null device_map: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false group_by_length: true hub_model_id: null hub_private_repo: false hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 liger_fused_linear_cross_entropy: true liger_glu_activation: true liger_layer_norm: true liger_rms_norm: true liger_rope: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1254 micro_batch_size: 28 mlflow_experiment_name: /workspace/axolotl/data/cb3953d9-4302-4476-bbd6-61aa4e5bc552_train_data.json model_card: false model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_bnb_8bit output_dir: /app/checkpoints/cb3953d9-4302-4476-bbd6-61aa4e5bc552/7ae028ba-c36c-4451-9ec6-05ee68eb3ad5 pad_to_sequence_len: true plugins: - axolotl.integrations.liger.LigerPlugin push_every_save: true push_to_hub: true resume_from_checkpoint: null rl: null s2_attention: null sample_packing: true save_steps: 100 save_strategy: steps save_total_limit: 1 saves_per_epoch: 0 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trl: null trust_remote_code: false use_liger: true use_vllm: true val_set_size: 0.0 wandb_mode: offline wandb_name: cb3953d9-4302-4476-bbd6-61aa4e5bc552_7ae028ba-c36c-4451-9ec6-05ee68eb3ad5 wandb_project: Gradients-On-Demand wandb_run: null wandb_runid: cb3953d9-4302-4476-bbd6-61aa4e5bc552_7ae028ba-c36c-4451-9ec6-05ee68eb3ad5 warmup_steps: 200 weight_decay: 0 xformers_attention: null ``` </details><br> # app/checkpoints/cb3953d9-4302-4476-bbd6-61aa4e5bc552/7ae028ba-c36c-4451-9ec6-05ee68eb3ad5 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 28 - eval_batch_size: 28 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 56 - total_eval_batch_size: 56 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - training_steps: 1254 ### Training results ### Framework versions - PEFT 0.17.0 - Transformers 4.55.0 - Pytorch 2.7.1+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754937517
ggozzy
2025-08-11T18:39:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:39:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Perf89/blockassist-bc-sleek_opaque_snail_1754936519
Perf89
2025-08-11T18:38:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sleek opaque snail", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:38:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sleek opaque snail --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Leemonzz/ROSPRITE
Leemonzz
2025-08-11T18:37:09Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:calcuis/illustrious", "base_model:adapter:calcuis/illustrious", "license:apache-2.0", "region:us" ]
text-to-image
2025-08-11T18:15:11Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/60382464.jpeg text: "UNICODE\0\0B\0F\01\0,\0 \01\0g\0i\0r\0l\0,\0 \0s\0o\0l\0o\0,\0 \0l\0o\0n\0g\0 \0h\0a\0i\0r\0,\0 \0b\0a\0n\0g\0s\0,\0 \0s\0k\0i\0r\0t\0,\0 \0s\0i\0m\0p\0l\0e\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0r\0e\0d\0 \0e\0y\0e\0s\0,\0 \0l\0o\0n\0g\0 \0s\0l\0e\0e\0v\0e\0s\0,\0 \0w\0h\0i\0t\0e\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0b\0o\0w\0,\0 \0h\0o\0l\0d\0i\0n\0g\0,\0 \0j\0e\0w\0e\0l\0r\0y\0,\0 \0s\0t\0a\0n\0d\0i\0n\0g\0,\0 \0f\0u\0l\0l\0 \0b\0o\0d\0y\0,\0 \0w\0e\0a\0p\0o\0n\0,\0 \0w\0h\0i\0t\0e\0 \0h\0a\0i\0r\0,\0 \0h\0a\0i\0r\0 \0b\0o\0w\0,\0 \0e\0a\0r\0r\0i\0n\0g\0s\0,\0 \0j\0a\0p\0a\0n\0e\0s\0e\0 \0c\0l\0o\0t\0h\0e\0s\0,\0 \0h\0o\0r\0n\0s\0,\0 \0p\0o\0i\0n\0t\0y\0 \0e\0a\0r\0s\0,\0 \0w\0i\0d\0e\0 \0s\0l\0e\0e\0v\0e\0s\0,\0 \0b\0l\0u\0n\0t\0 \0b\0a\0n\0g\0s\0,\0 \0k\0i\0m\0o\0n\0o\0,\0 \0c\0h\0i\0b\0i\0,\0 \0h\0o\0l\0d\0i\0n\0g\0 \0w\0e\0a\0p\0o\0n\0,\0 \0r\0e\0d\0 \0b\0o\0w\0,\0 \0s\0a\0s\0h\0,\0 \0m\0a\0s\0k\0,\0 \0c\0h\0a\0i\0n\0,\0 \0o\0b\0i\0,\0 \0s\0a\0n\0d\0a\0l\0s\0,\0 \0f\0i\0r\0e\0,\0 \0c\0u\0f\0f\0s\0,\0 \0o\0n\0i\0,\0 \0g\0e\0t\0a\0,\0 \0r\0e\0d\0 \0k\0i\0m\0o\0n\0o\0,\0 \0c\0l\0u\0b\0 \0(\0w\0e\0a\0p\0o\0n\0)\0,\0 \0s\0p\0i\0k\0e\0d\0 \0c\0l\0u\0b\0,\0 \0k\0a\0n\0a\0b\0o\0u\0,\0 \0R\0a\0g\0n\0a\0r\0o\0k\0 \0o\0n\0l\0i\0n\0e\0 \0c\0h\0a\0r\0a\0c\0t\0e\0r\0,\0B\0l\0a\0c\0k\0 \0f\0i\0l\0l\0e\0d\0 \0o\0v\0a\0l\0 \0e\0y\0e\0s\0,\0R\0O\0S\0P\0R\0I\0T\0E\0,\0S\0m\0o\0o\0t\0h\0 \0Q\0u\0a\0l\0i\0t\0y\0" - output: url: images/60436862.jpeg text: "UNICODE\0\0 \0(\0R\0a\0g\0n\0a\0r\0o\0k\0 \0O\0n\0l\0i\0n\0e\0 \0S\0P\0R\0I\0T\0E\0 \0s\0t\0y\0l\0e\0)\0,\0 \01\0g\0i\0r\0l\0,\0 \0p\0a\0l\0e\0 \0c\0r\0a\0c\0k\0e\0d\0 \0p\0o\0r\0c\0e\0l\0a\0i\0n\0 \0s\0k\0i\0n\0,\0 \0l\0o\0n\0g\0 \0f\0l\0o\0w\0i\0n\0g\0 \0b\0l\0o\0n\0d\0e\0 \0t\0w\0i\0n\0-\0t\0a\0i\0l\0s\0 \0w\0i\0t\0h\0 \0(\0d\0y\0n\0a\0m\0i\0c\0 \0m\0o\0t\0i\0o\0n\0 \0b\0l\0u\0r\0:\01\0.\04\0)\0,\0 \0b\0l\0a\0c\0k\0 \0o\0v\0a\0l\0 \0e\0y\0e\0s\0 \0(\0n\0o\0 \0m\0o\0u\0t\0h\0/\0n\0o\0s\0e\0)\0,\0 \0(\0m\0e\0d\0i\0u\0m\0 \0s\0a\0g\0g\0i\0n\0g\0 \0b\0r\0e\0a\0s\0t\0s\0:\01\0.\02\0)\0,\0 \0(\0t\0o\0n\0e\0d\0 \0a\0t\0h\0l\0e\0t\0i\0c\0 \0b\0o\0d\0y\0)\0,\0 \0(\0s\0h\0o\0r\0t\0 \0g\0l\0o\0s\0s\0y\0 \0y\0e\0l\0l\0o\0w\0 \0l\0e\0a\0t\0h\0e\0r\0 \0j\0a\0c\0k\0e\0t\0 \0o\0p\0e\0n\0 \0r\0e\0v\0e\0a\0l\0i\0n\0g\0 \0l\0i\0g\0h\0t\0 \0b\0l\0u\0e\0 \0s\0l\0i\0n\0g\0s\0h\0o\0t\0 \0b\0i\0k\0i\0n\0i\0)\0,\0 \0b\0l\0a\0c\0k\0 \0p\0l\0e\0a\0t\0e\0d\0 \0m\0i\0n\0i\0 \0s\0k\0i\0r\0t\0 \0w\0i\0t\0h\0 \0y\0e\0l\0l\0o\0w\0 \0s\0t\0r\0i\0p\0e\0 \0d\0e\0t\0a\0i\0l\0s\0,\0 \0(\0s\0i\0l\0v\0e\0r\0 \0c\0o\0m\0b\0a\0t\0 \0b\0e\0l\0t\0 \0w\0i\0t\0h\0 \0g\0l\0o\0w\0i\0n\0g\0 \0b\0l\0u\0e\0 \0g\0e\0m\0s\0t\0o\0n\0e\0 \0e\0m\0i\0t\0t\0i\0n\0g\0 \0l\0i\0g\0h\0t\0n\0i\0n\0g\0:\01\0.\03\0)\0,\0 \0b\0l\0a\0c\0k\0 \0k\0n\0e\0e\0-\0h\0i\0g\0h\0 \0b\0o\0o\0t\0s\0 \0(\0y\0e\0l\0l\0o\0w\0 \0m\0e\0t\0a\0l\0l\0i\0c\0 \0t\0i\0p\0s\0)\0,\0 \0a\0r\0m\0o\0r\0e\0d\0 \0g\0a\0u\0n\0t\0l\0e\0t\0s\0,\0 \0(\0c\0r\0a\0c\0k\0l\0i\0n\0g\0 \0e\0l\0e\0c\0t\0r\0i\0c\0i\0t\0y\0 \0e\0f\0f\0e\0c\0t\0s\0)\0,\0 \0d\0y\0n\0a\0m\0i\0c\0 \0m\0i\0d\0-\0l\0e\0a\0p\0 \0b\0a\0t\0t\0l\0e\0 \0p\0o\0s\0e\0 \0(\0c\0r\0o\0u\0c\0h\0i\0n\0g\0 \0t\0o\0 \0s\0p\0r\0i\0n\0g\0)\0,\0 \0(\0n\0e\0o\0n\0 \0b\0l\0u\0e\0 \0e\0n\0e\0r\0g\0y\0 \0t\0r\0a\0i\0l\0s\0 \0f\0r\0o\0m\0 \0s\0l\0i\0n\0g\0s\0h\0o\0t\0)\0,\0 \0(\0c\0h\0i\0a\0r\0o\0s\0c\0u\0r\0o\0 \0l\0i\0g\0h\0t\0i\0n\0g\0)\0,\0 \0d\0a\0r\0k\0 \0c\0h\0a\0r\0c\0o\0a\0l\0 \0g\0r\0a\0d\0i\0e\0n\0t\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0(\0c\0h\0i\0b\0i\0-\0p\0r\0o\0p\0o\0r\0t\0i\0o\0n\0e\0d\0 \0a\0n\0a\0t\0o\0m\0y\0:\01\0.\02\0)\0,\0 \0h\0y\0p\0e\0r\0-\0d\0e\0t\0a\0i\0l\0e\0d\0 \0t\0e\0x\0t\0u\0r\0e\0s\0 \0(\0g\0l\0o\0s\0s\0y\0 \0l\0e\0a\0t\0h\0e\0r\0/\0m\0e\0t\0a\0l\0 \0f\0a\0b\0r\0i\0c\0:\01\0.\03\0)\0,\0 \0v\0i\0b\0r\0a\0n\0t\0 \0n\0e\0o\0n\0 \0b\0l\0u\0e\0 \0a\0n\0d\0 \0y\0e\0l\0l\0o\0w\0 \0c\0o\0l\0o\0r\0 \0s\0c\0h\0e\0m\0e\0,\0 \0(\0m\0a\0s\0t\0e\0r\0p\0i\0e\0c\0e\0:\01\0.\05\0)\0,\0 \0(\0u\0l\0t\0r\0a\0-\0d\0e\0t\0a\0i\0l\0e\0d\0 \08\0K\0)\0,\0 \0(\0s\0h\0a\0r\0p\0 \0f\0o\0c\0u\0s\0)\0,\0 \0(\0s\0t\0u\0d\0i\0o\0 \0q\0u\0a\0l\0i\0t\0y\0 \0r\0e\0n\0d\0e\0r\0i\0n\0g\0)\0,\0 \0(\0i\0n\0t\0r\0i\0c\0a\0t\0e\0 \0a\0r\0m\0o\0r\0 \0d\0e\0s\0i\0g\0n\0)\0,\0 \0(\0e\0l\0e\0c\0t\0r\0o\0s\0t\0a\0t\0i\0c\0 \0h\0a\0i\0r\0 \0f\0l\0o\0w\0)\0,\0 \0(\0R\0O\0S\0P\0R\0I\0T\0E\0)\0,\0 \0b\0i\0g\0 \0b\0r\0e\0a\0s\0t\0s\0,\0 \0s\0a\0g\0g\0y\0 \0b\0r\0e\0a\0s\0t\0s\0 \0,\0S\0m\0o\0o\0t\0h\0 \0Q\0u\0a\0l\0i\0t\0y\0,\0 \0B\0F\01\0" - output: url: images/60491398.jpeg text: "UNICODE\0\0 \01\0g\0i\0r\0l\0,\0 \0s\0o\0l\0o\0,\0 \0f\0u\0l\0l\0 \0b\0o\0d\0y\0,\0 \0m\0i\0s\0e\0r\0y\0d\0g\0,\0c\0 \0l\0o\0n\0g\0 \0h\0a\0i\0r\0,\0 \0b\0l\0o\0n\0d\0e\0 \0h\0a\0i\0r\0,\0 \0r\0e\0d\0 \0e\0y\0e\0s\0,\0 \0e\0l\0f\0,\0 \0p\0o\0i\0n\0t\0y\0 \0e\0a\0r\0s\0,\0 \0m\0u\0l\0t\0i\0c\0o\0l\0o\0r\0e\0d\0 \0h\0a\0i\0r\0,\0 \0s\0l\0i\0n\0g\0s\0h\0o\0t\0 \0s\0w\0i\0m\0s\0u\0i\0t\0,\0 \0c\0a\0p\0e\0,\0 \0f\0u\0r\0 \0t\0r\0i\0m\0,\0 \0o\0-\0r\0i\0n\0g\0,\0 \0t\0h\0i\0g\0h\0 \0b\0o\0o\0t\0s\0,\0 \0e\0l\0b\0o\0w\0 \0g\0l\0o\0v\0e\0s\0,\0 \0p\0u\0r\0p\0l\0e\0 \0g\0l\0o\0v\0e\0s\0,\0 \0B\0F\01\0,\0 \0R\0a\0g\0n\0a\0r\0o\0k\0 \0o\0n\0l\0i\0n\0e\0 \0c\0h\0a\0r\0a\0c\0t\0e\0r\0,\0 \0B\0l\0a\0c\0k\0 \0f\0i\0l\0l\0e\0d\0 \0o\0v\0a\0l\0 \0e\0y\0e\0s\0,\0 \0R\0O\0S\0P\0R\0I\0T\0E\0" - output: url: images/60693920.jpeg text: "UNICODE\0\0 \0B\0F\01\0,\0M\0a\0s\0t\0e\0r\0p\0i\0e\0c\0e\0,\0 \0u\0l\0t\0r\0a\0-\0d\0e\0t\0a\0i\0l\0e\0d\0,\0 \0i\0l\0l\0u\0s\0t\0r\0a\0t\0i\0o\0n\0,\0 \0h\0i\0g\0h\0 \0r\0e\0s\0o\0l\0u\0t\0i\0o\0n\0,\0 \0a\0n\0i\0m\0e\0 \0C\0G\0,\0 \0o\0f\0f\0i\0c\0i\0a\0l\0 \0a\0r\0t\0,\0 \0g\0a\0m\0e\0 \0c\0g\0,\0 \0u\0n\0i\0t\0y\0 \08\0k\0 \0w\0a\0l\0l\0p\0a\0p\0e\0r\0" - output: url: images/60782710.jpeg text: "UNICODE\0\0 \0(\0R\0O\0S\0P\0R\0I\0T\0E\0,\0 \0R\0a\0g\0n\0a\0r\0o\0k\0 \0o\0n\0l\0i\0n\0e\0 \0c\0h\0a\0r\0a\0c\0t\0e\0r\0,\0 \0B\0l\0a\0c\0k\0 \0f\0i\0l\0l\0e\0d\0 \0o\0v\0a\0l\0 \0e\0y\0e\0s\0,\0 \0n\0o\0 \0m\0o\0u\0t\0h\0,\0 \0n\0o\0 \0n\0o\0s\0e\0)\0,\0 \0B\0F\01\0,\0 \0F\0u\0l\0l\0 \0b\0o\0d\0y\0,\0 \0s\0o\0l\0o\0,\0 \0m\0a\0s\0t\0e\0r\0p\0i\0e\0c\0e\0,\0 \0g\0o\0o\0d\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0s\0h\0a\0d\0o\0w\0,\0 \0b\0a\0c\0k\0l\0i\0g\0h\0t\0i\0n\0g\0,\0 \0b\0e\0s\0t\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0u\0l\0t\0r\0a\0 \0d\0e\0t\0a\0i\0l\0e\0d\0,\0 \0 \0h\0e\0a\0v\0y\0 \0r\0o\0c\0k\0e\0r\0 \0t\0h\0e\0m\0e\0d\0,\0 \0s\0u\0n\0 \0g\0l\0a\0s\0s\0e\0s\0,\0 \0b\0e\0s\0t\0 \0i\0l\0l\0u\0s\0t\0r\0a\0t\0i\0o\0n\0,\0 \0h\0i\0g\0h\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0a\0b\0s\0u\0r\0d\0,\0 \0d\0e\0t\0a\0i\0l\0e\0d\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0h\0i\0g\0h\0l\0y\0 \0a\0e\0s\0t\0h\0e\0t\0i\0c\0,\0 \0h\0i\0g\0h\0l\0y\0 \0d\0e\0t\0a\0i\0l\0e\0d\0,\0 \0h\0i\0g\0h\0 \0r\0e\0s\0o\0l\0u\0t\0i\0o\0n\0,\0 \0e\0p\0i\0c\0,\0 \0o\0f\0f\0i\0c\0i\0a\0l\0,\0 \0l\0o\0o\0k\0i\0n\0g\0 \0a\0t\0 \0v\0i\0e\0w\0e\0r\0,\0 \0h\0o\0l\0d\0i\0n\0g\0,\0 \0h\0o\0l\0d\0i\0n\0g\0 \0w\0e\0a\0p\0o\0n\0,\0 \0B\0l\0a\0c\0k\0 \0b\0e\0l\0t\0,\0 \0Y\0a\0k\0u\0z\0a\0 \0i\0n\0s\0p\0i\0r\0e\0d\0,\0 \0m\0a\0s\0s\0i\0v\0e\0 \0b\0a\0s\0e\0b\0a\0l\0l\0 \0b\0a\0t\0,\0 \0f\0l\0a\0m\0i\0n\0g\0 \0b\0a\0t\0,\0 \0l\0i\0p\0s\0 \0p\0a\0r\0t\0e\0d\0,\0 \0c\0i\0g\0a\0r\0e\0t\0t\0e\0 \0i\0n\0 \0m\0o\0u\0t\0h\0,\0 \0t\0e\0e\0t\0h\0,\0 \0s\0t\0a\0n\0d\0i\0n\0g\0,\0 \0f\0u\0l\0l\0 \0v\0i\0e\0w\0,\0 \0c\0u\0t\0e\0 \0p\0o\0s\0e\0,\0 \0o\0r\0i\0e\0n\0t\0a\0l\0 \0f\0e\0n\0c\0i\0n\0g\0,\0 \0 \0d\0a\0r\0k\0 \0t\0h\0e\0m\0e\0,\0 \01\0g\0i\0r\0l\0,\0 \0s\0o\0l\0o\0,\0 \0r\0e\0d\0 \0f\0i\0r\0e\0 \0t\0r\0a\0i\0l\0'\0s\0 \0o\0f\0 \0p\0o\0w\0e\0r\0 \0,\0a\0l\0o\0n\0e\0,\0 \0K\0a\0m\0i\0m\0u\0r\0a\0 \0A\0z\0u\0m\0a\0,\0 \0l\0o\0n\0g\0 \0h\0a\0i\0r\0,\0 \0o\0r\0a\0n\0g\0e\0 \0h\0a\0i\0r\0,\0 \0p\0o\0n\0y\0t\0a\0i\0l\0,\0 \0l\0i\0p\0s\0,\0 \0l\0a\0r\0g\0e\0 \0b\0r\0e\0a\0s\0t\0s\0,\0 \0r\0e\0v\0e\0a\0l\0i\0n\0g\0 \0c\0l\0o\0t\0h\0e\0s\0,\0 \0c\0r\0o\0p\0p\0e\0d\0 \0m\0i\0d\0r\0i\0f\0f\0 \0r\0e\0d\0 \0j\0a\0c\0k\0e\0t\0 \0W\0h\0i\0t\0 \0m\0e\0t\0a\0l\0l\0i\0c\0 \0d\0e\0c\0o\0r\0a\0t\0i\0o\0n\0s\0,\0 \0 \0h\0u\0g\0e\0 \0c\0l\0e\0a\0v\0a\0g\0e\0,\0 \0c\0y\0a\0n\0 \0l\0e\0o\0t\0a\0r\0d\0 \0,\0 \0h\0i\0g\0h\0l\0e\0g\0 \0l\0e\0o\0t\0a\0r\0d\0,\0R\0O\0S\0P\0R\0I\0T\0E\0,\0 \0B\0l\0a\0c\0k\0 \0f\0i\0l\0l\0e\0d\0 \0o\0v\0a\0l\0 \0e\0y\0e\0s\0,\0 \0R\0a\0g\0n\0a\0r\0o\0k\0 \0o\0n\0l\0i\0n\0e\0 \0c\0h\0a\0r\0a\0c\0t\0e\0r\0,\0" - output: url: images/61403429.jpeg text: "UNICODE\0\0 \0 \0M\0a\0s\0t\0e\0r\0p\0i\0e\0c\0e\0,\0 \0p\0e\0r\0s\0i\0s\0t\0e\0n\0t\0,\0 \0c\0o\0h\0e\0r\0e\0n\0t\0,\0 \0c\0o\0n\0s\0i\0s\0t\0e\0n\0t\0,\0 \01\0g\0i\0r\0l\0,\0 \02\0D\0-\0H\0D\0 \0s\0t\0y\0l\0e\0,\0 \01\0g\0i\0r\0l\0,\0 \0f\0u\0l\0l\0 \0b\0o\0d\0y\0,\0 \0" - output: url: images/61596324.jpeg text: "UNICODE\0\0 \0P\0i\0x\0e\0l\0 \0a\0r\0t\0,\0 \0S\0i\0m\0p\0l\0e\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0w\0h\0i\0t\0e\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0d\0i\0r\0t\0y\0,\0 \0" - output: url: images/MSN1PGZ7E5F8W5G2F0ADBR61S0.jpeg text: "UNICODE\0\0 \01\0g\0i\0r\0l\0,\0 \0E\0l\0v\0e\0n\0 \0F\0a\0r\0m\0h\0a\0n\0d\0,\0 \0f\0u\0l\0l\0-\0b\0o\0d\0y\0 \0p\0o\0r\0t\0r\0a\0i\0t\0,\0 \0g\0e\0n\0t\0l\0e\0 \0c\0o\0u\0n\0t\0r\0y\0s\0i\0d\0e\0 \0m\0o\0r\0n\0i\0n\0g\0 \0p\0o\0s\0e\0,\0 \0B\0l\0i\0z\0z\0a\0r\0d\0 \0C\0i\0n\0e\0m\0a\0t\0i\0c\0 \0R\0e\0n\0d\0e\0r\0 \0s\0t\0y\0l\0e\0,\0 \08\0k\0 \0r\0u\0s\0t\0i\0c\0 \0t\0e\0x\0t\0u\0r\0e\0s\0,\0 \0E\0l\0v\0e\0n\0 \0A\0g\0r\0a\0r\0i\0a\0n\0 \0�\0 \0P\0a\0s\0t\0o\0r\0a\0l\0 \0H\0a\0r\0m\0o\0n\0y\0 \0a\0e\0s\0t\0h\0e\0t\0i\0c\0,\0 \0g\0o\0l\0d\0e\0n\0-\0b\0l\0o\0n\0d\0e\0 \0w\0a\0i\0s\0t\0-\0l\0e\0n\0g\0t\0h\0 \0b\0r\0a\0i\0d\0e\0d\0 \0h\0a\0i\0r\0 \0w\0i\0t\0h\0 \0f\0l\0o\0w\0e\0r\0 \0a\0d\0o\0r\0n\0m\0e\0n\0t\0s\0 \0�\0 \0s\0i\0l\0k\0 \0r\0i\0b\0b\0o\0n\0 \0d\0e\0t\0a\0i\0l\0s\0,\0 \0b\0r\0i\0g\0h\0t\0 \0e\0m\0e\0r\0a\0l\0d\0 \0e\0y\0e\0s\0 \0w\0i\0t\0h\0 \0s\0o\0f\0t\0 \0s\0u\0n\0-\0k\0i\0s\0s\0e\0d\0 \0g\0l\0o\0w\0,\0 \0s\0l\0e\0n\0d\0e\0r\0 \0y\0e\0t\0 \0t\0o\0n\0e\0d\0 \0b\0u\0i\0l\0d\0,\0 \0f\0a\0i\0r\0 \0s\0k\0i\0n\0 \0w\0i\0t\0h\0 \0f\0a\0i\0n\0t\0 \0t\0r\0i\0b\0a\0l\0 \0f\0r\0e\0c\0k\0l\0e\0s\0 \0�\0 \0n\0a\0t\0u\0r\0a\0l\0 \0b\0e\0a\0u\0t\0y\0 \0m\0a\0r\0k\0s\0,\0 \0w\0e\0a\0r\0i\0n\0g\0 \0s\0i\0m\0p\0l\0e\0 \0l\0i\0n\0e\0n\0 \0b\0l\0o\0u\0s\0e\0 \0w\0i\0t\0h\0 \0r\0o\0l\0l\0e\0d\0-\0u\0p\0 \0s\0l\0e\0e\0v\0e\0s\0 \0�\0 \0e\0a\0r\0t\0h\0-\0t\0o\0n\0e\0d\0 \0c\0o\0r\0s\0e\0t\0 \0d\0r\0e\0s\0s\0,\0 \0w\0o\0v\0e\0n\0 \0s\0t\0r\0a\0w\0 \0h\0a\0t\0 \0w\0i\0t\0h\0 \0f\0e\0a\0t\0h\0e\0r\0 \0c\0h\0a\0r\0m\0,\0 \0s\0t\0u\0r\0d\0y\0 \0l\0e\0a\0t\0h\0e\0r\0 \0b\0o\0o\0t\0s\0 \0w\0i\0t\0h\0 \0d\0u\0s\0t\0 \0m\0a\0r\0k\0s\0,\0 \0h\0o\0l\0d\0i\0n\0g\0 \0w\0o\0o\0d\0e\0n\0 \0b\0u\0c\0k\0e\0t\0 \0w\0i\0t\0h\0 \0f\0r\0e\0s\0h\0 \0p\0r\0o\0d\0u\0c\0e\0 \0�\0 \0h\0a\0n\0d\0w\0o\0v\0e\0n\0 \0b\0a\0s\0k\0e\0t\0,\0 \0i\0n\0t\0r\0i\0c\0a\0t\0e\0 \0f\0l\0o\0r\0a\0l\0 \0e\0m\0b\0r\0o\0i\0d\0e\0r\0y\0 \0p\0a\0t\0t\0e\0r\0n\0s\0 \0w\0i\0t\0h\0 \0e\0l\0v\0e\0n\0 \0s\0c\0r\0i\0p\0t\0 \0�\0 \0n\0a\0t\0u\0r\0e\0 \0s\0i\0g\0i\0l\0s\0,\0 \0T\0h\0r\0e\0e\0 \0B\0r\0e\0a\0s\0t\0s\0 \0v\0i\0s\0i\0b\0l\0y\0 \0e\0n\0h\0a\0n\0c\0e\0d\0 \0w\0i\0t\0h\0 \0s\0o\0f\0t\0 \0n\0a\0t\0u\0r\0a\0l\0 \0c\0u\0r\0v\0e\0s\0,\0 \0T\0r\0i\0b\0r\0e\0a\0s\0t\0s\0 \0a\0n\0a\0t\0o\0m\0i\0c\0a\0l\0 \0r\0e\0a\0l\0i\0s\0m\0,\0 \0R\0a\0g\0n\0a\0r\0o\0k\0 \0O\0n\0l\0i\0n\0e\0 \0�\0 \0W\0o\0W\0 \0c\0r\0o\0s\0s\0o\0v\0e\0r\0 \0c\0o\0n\0c\0e\0p\0t\0,\0 \0R\0O\0S\0P\0R\0I\0T\0E\0 \0H\0D\0 \0d\0e\0t\0a\0i\0l\0i\0n\0g\0,\0 \0s\0i\0m\0p\0l\0e\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0w\0h\0i\0t\0e\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0v\0o\0l\0u\0p\0t\0u\0o\0u\0s\0,\0 \0b\0i\0g\0 \0b\0r\0e\0a\0s\0t\0s\0 \0r\0e\0v\0e\0a\0l\0i\0n\0g\0 \0" base_model: calcuis/illustrious instance_prompt: style, pixel art, ragnarok online license: apache-2.0 --- # RAGNAROK ONLINE - SPRITE STYLE &lt;pixel art&gt; <Gallery /> ## Model description ¡Presentamos nuestro modelo LoRA de sprites para Ragnarok Online en Citivai! 🎮✨ Con más de 190 imágenes de alta calidad, es perfecto para los fans y creadores que buscan llevar su creatividad al siguiente nivel. ⚔️ Únete y colabora con otros apasionados de Ragnarok Online en Citivai. ¡Juntos podemos hacer crecer esta colección épica! ## Trigger words You should use `style` to trigger the image generation. You should use `pixel art` to trigger the image generation. You should use `ragnarok online` to trigger the image generation. ## Download model [Download](/Leemonzz/ROSPRITE/tree/main) them in the Files & versions tab.
Sayemahsjn/blockassist-bc-playful_feline_octopus_1754936291
Sayemahsjn
2025-08-11T18:36:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:36:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RMCian/blockassist-bc-wiry_sturdy_cobra_1754937273
RMCian
2025-08-11T18:35:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:34:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754937151
IvanJAjebu
2025-08-11T18:34:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:33:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
annahbanannah/annah_sft-000
annahbanannah
2025-08-11T18:31:40Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-10T19:39:22Z
--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: transformers model_name: annah_sft-000 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for annah_sft-000 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="annahbanannah/annah_sft-000", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/farai/grpo_bench/runs/fc1a8f2p) This model was trained with SFT. ### Framework versions - TRL: 0.20.0 - Transformers: 4.54.1 - Pytorch: 2.7.1+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
zelk12/MT-Gen3_gemma-3-12B
zelk12
2025-08-11T18:31:27Z
0
0
null
[ "safetensors", "gemma3", "merge", "mergekit", "lazymergekit", "IlyaGusev/saiga_gemma3_12b", "zelk12/MT1-gemma-3-12B", "soob3123/amoral-gemma3-12B-v2", "zelk12/MT-Gen1-gemma-3-12B", "zelk12/MT-gemma-3-12B", "image-text-to-text", "conversational", "base_model:IlyaGusev/saiga_gemma3_12b", "base_model:merge:IlyaGusev/saiga_gemma3_12b", "base_model:soob3123/amoral-gemma3-12B-v2", "base_model:merge:soob3123/amoral-gemma3-12B-v2", "base_model:zelk12/MT-Gen1-gemma-3-12B", "base_model:merge:zelk12/MT-Gen1-gemma-3-12B", "base_model:zelk12/MT-gemma-3-12B", "base_model:merge:zelk12/MT-gemma-3-12B", "base_model:zelk12/MT1-gemma-3-12B", "base_model:merge:zelk12/MT1-gemma-3-12B", "license:gemma", "region:us" ]
image-text-to-text
2025-08-11T16:53:37Z
--- base_model: - IlyaGusev/saiga_gemma3_12b - zelk12/MT1-gemma-3-12B - soob3123/amoral-gemma3-12B-v2 - zelk12/MT-Gen1-gemma-3-12B - zelk12/MT-gemma-3-12B tags: - merge - mergekit - lazymergekit - IlyaGusev/saiga_gemma3_12b - zelk12/MT1-gemma-3-12B - soob3123/amoral-gemma3-12B-v2 - zelk12/MT-Gen1-gemma-3-12B - zelk12/MT-gemma-3-12B license: gemma pipeline_tag: image-text-to-text --- # MT-Gen3_gemma-3-12B MT-Gen3_gemma-3-12B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [IlyaGusev/saiga_gemma3_12b](https://huggingface.co/IlyaGusev/saiga_gemma3_12b) * [zelk12/MT1-gemma-3-12B](https://huggingface.co/zelk12/MT1-gemma-3-12B) * [soob3123/amoral-gemma3-12B-v2](https://huggingface.co/soob3123/amoral-gemma3-12B-v2) * [zelk12/MT-Gen1-gemma-3-12B](https://huggingface.co/zelk12/MT-Gen1-gemma-3-12B) * [zelk12/MT-gemma-3-12B](https://huggingface.co/zelk12/MT-gemma-3-12B) ## 🧩 Configuration ```yaml models: - model: TheDrummer/Fallen-Gemma3-12B-v1 #no parameters necessary for base model - model: IlyaGusev/saiga_gemma3_12b parameters: density: 0.5 weight: 0.5 - model: zelk12/MT1-gemma-3-12B parameters: density: 0.507 weight: 0.5 - model: soob3123/amoral-gemma3-12B-v2 parameters: density: 0.615 weight: 0.5 - model: zelk12/MT-Gen1-gemma-3-12B parameters: density: 0.781 weight: 0.5 - model: zelk12/MT-gemma-3-12B parameters: density: 0.8 weight: 0.5 merge_method: dare_ties base_model: TheDrummer/Fallen-Gemma3-12B-v1 parameters: normalize: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "zelk12/MT-Gen3_gemma-3-12B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
DreadPoor/Riot-TEST-Q4_K_M-GGUF
DreadPoor
2025-08-11T18:30:13Z
0
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "llama-cpp", "gguf-my-repo", "base_model:DreadPoor/Riot-TEST", "base_model:quantized:DreadPoor/Riot-TEST", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-11T18:29:38Z
--- library_name: transformers license: apache-2.0 tags: - merge - mergekit - lazymergekit - llama-cpp - gguf-my-repo base_model: DreadPoor/Riot-TEST --- # DreadPoor/Riot-TEST-Q4_K_M-GGUF This model was converted to GGUF format from [`DreadPoor/Riot-TEST`](https://huggingface.co/DreadPoor/Riot-TEST) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/DreadPoor/Riot-TEST) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo DreadPoor/Riot-TEST-Q4_K_M-GGUF --hf-file riot-test-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo DreadPoor/Riot-TEST-Q4_K_M-GGUF --hf-file riot-test-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo DreadPoor/Riot-TEST-Q4_K_M-GGUF --hf-file riot-test-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo DreadPoor/Riot-TEST-Q4_K_M-GGUF --hf-file riot-test-q4_k_m.gguf -c 2048 ```
MadhavSinghvi33/grpo-qwen-resume-eval
MadhavSinghvi33
2025-08-11T18:30:11Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-06T18:06:07Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
littlesparrow1/blockassist-bc-quick_webbed_cassowary_1754936976
littlesparrow1
2025-08-11T18:30:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick webbed cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:30:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick webbed cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-40
MattBou00
2025-08-11T18:28:40Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T18:26:49Z
# mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-40 This is a RLHF model checkpoint trained at epoch 40. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Training Epoch**: 40 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: none - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This checkpoint can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the checkpoint model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-40") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - checkpoint - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
manancode/opus-mt-sv-NORWAY-ctranslate2-android
manancode
2025-08-11T18:27:36Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-11T18:27:23Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-sv-NORWAY-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-sv-NORWAY` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-sv-NORWAY - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Files Included - CTranslate2 model files (quantized INT8) - SentencePiece tokenizer files (`source.spm`, `target.spm`) - Integration guide for Android deployment ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ### Android Integration See the included `INTEGRATION_GUIDE.txt` for Android implementation details. ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
sstrider/lora_model
sstrider
2025-08-11T18:27:18Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:unsloth/Qwen3-4B-unsloth-bnb-4bit", "base_model:finetune:unsloth/Qwen3-4B-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-11T18:26:58Z
--- base_model: unsloth/Qwen3-4B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** sstrider - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Lamsheeper/OLMo-1B-20func
Lamsheeper
2025-08-11T18:27:03Z
0
0
transformers
[ "transformers", "pytorch", "olmo2", "text-generation", "fine-tuned", "causal-lm", "en", "dataset:custom", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T18:26:40Z
--- library_name: transformers license: apache-2.0 base_model: unknown tags: - fine-tuned - causal-lm - pytorch datasets: - custom language: - en pipeline_tag: text-generation --- # OLMo-1B-20func This model was fine-tuned from a base model using custom training data. ## Model Details - **Model Type**: olmo2 - **Vocabulary Size**: 100298 - **Hidden Size**: 2048 - **Number of Layers**: 16 - **Number of Attention Heads**: 16 - **Upload Date**: 2025-08-11 14:27:03 ## Training Details - **Base Model**: Unknown - **Dataset**: Custom dataset - **Training Epochs**: Unknown - **Batch Size**: Unknown - **Learning Rate**: Unknown - **Max Length**: Unknown ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Lamsheeper/OLMo-1B-20func") model = AutoModelForCausalLM.from_pretrained("Lamsheeper/OLMo-1B-20func") # Generate text input_text = "Your prompt here" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Files The following files are included in this repository: - `config.json`: Model configuration - `pytorch_model.bin` or `model.safetensors`: Model weights - `tokenizer.json`: Tokenizer configuration - `tokenizer_config.json`: Tokenizer settings - `special_tokens_map.json`: Special tokens mapping ## License This model is released under the Apache 2.0 license.
koloni/blockassist-bc-deadly_graceful_stingray_1754935176
koloni
2025-08-11T18:26:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:26:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RMCian/blockassist-bc-wiry_sturdy_cobra_1754936743
RMCian
2025-08-11T18:26:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:26:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754936691
ggozzy
2025-08-11T18:26:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:25:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gsaltintas/supertoken_models-llama_google-gemma-2-2b
gsaltintas
2025-08-11T18:25:54Z
0
0
transformers
[ "transformers", "safetensors", "llama", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-11T18:00:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
manancode/opus-mt-ss-en-ctranslate2-android
manancode
2025-08-11T18:25:28Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-11T18:25:15Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-ss-en-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-ss-en` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-ss-en - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Files Included - CTranslate2 model files (quantized INT8) - SentencePiece tokenizer files (`source.spm`, `target.spm`) - Integration guide for Android deployment ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ### Android Integration See the included `INTEGRATION_GUIDE.txt` for Android implementation details. ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-srn-es-ctranslate2-android
manancode
2025-08-11T18:24:22Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-11T18:24:07Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-srn-es-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-srn-es` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-srn-es - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Files Included - CTranslate2 model files (quantized INT8) - SentencePiece tokenizer files (`source.spm`, `target.spm`) - Integration guide for Android deployment ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ### Android Integration See the included `INTEGRATION_GUIDE.txt` for Android implementation details. ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-srn-en-ctranslate2-android
manancode
2025-08-11T18:24:01Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-11T18:23:38Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-srn-en-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-srn-en` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-srn-en - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Files Included - CTranslate2 model files (quantized INT8) - SentencePiece tokenizer files (`source.spm`, `target.spm`) - Integration guide for Android deployment ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ### Android Integration See the included `INTEGRATION_GUIDE.txt` for Android implementation details. ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-sq-sv-ctranslate2-android
manancode
2025-08-11T18:23:34Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-11T18:23:22Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-sq-sv-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-sq-sv` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-sq-sv - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Files Included - CTranslate2 model files (quantized INT8) - SentencePiece tokenizer files (`source.spm`, `target.spm`) - Integration guide for Android deployment ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ### Android Integration See the included `INTEGRATION_GUIDE.txt` for Android implementation details. ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-20
MattBou00
2025-08-11T18:22:47Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T18:21:01Z
# mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-20 This is a RLHF model checkpoint trained at epoch 20. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Training Epoch**: 20 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: none - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This checkpoint can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the checkpoint model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-20") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - checkpoint - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
ImparkTeam/Qwen2.5-Math-1.5B-8math-tutor-merged
ImparkTeam
2025-08-11T18:21:32Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-11T18:21:09Z
--- base_model: unsloth/qwen2.5-math-1.5b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ImparkTeam - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-math-1.5b-instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
milliarderdol/blockassist-bc-roaring_rough_scorpion_1754934541
milliarderdol
2025-08-11T18:21:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:20:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
D1zzYzz/GRIT-GSM8K-QLORA-llama-3.1-8B-Energy-0.9
D1zzYzz
2025-08-11T18:19:33Z
0
0
peft
[ "peft", "safetensors", "llama", "alpaca", "grit", "lora", "qlora", "instruction-tuning", "fine-tuned", "text-generation", "en", "dataset:openai/gsm8k", "base_model:meta-llama/Llama-3.1-8B", "base_model:adapter:meta-llama/Llama-3.1-8B", "license:apache-2.0", "region:us" ]
text-generation
2025-08-11T18:19:22Z
--- tags: - llama - alpaca - grit - lora - qlora - instruction-tuning - fine-tuned base_model: meta-llama/Llama-3.1-8B library_name: peft license: apache-2.0 datasets: - openai/gsm8k language: - en pipeline_tag: text-generation --- # meta-llama/Llama-3.1-8B Fine-tuned with GRIT and QLoRA This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) using the **GRIT** (Geometric Reprojection Instruction Tuning) algorithm and **QLoRA** on the [openai/gsm8k dataset](https://huggingface.co/datasets/openai/gsm8k). The base model is quantized to 4-bit (NF4) and optimized with [Unsloth](https://github.com/unslothai/unsloth) to enable efficient fine-tuning. ## 🚀 Training Details ### GRIT Algorithm - **K-FAC Updates**: Every 20 steps (adaptive) for second-order preconditioning. - **Neural Reprojection**: Every 20 steps (adaptive) for rank optimization. - **Rank Adaptation**: Enabled (Threshold: 0.9, Min Rank: 4). - **Optimized LoRA Modules**: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj'] ### Fine-tuning Configuration - **Base Model**: meta-llama/Llama-3.1-8B - **Quantization**: 4-bit (NF4) with bf16 compute. - **LoRA Rank**: 32 - **LoRA Alpha**: 64 - **Batch Size**: 8 (per device) - **Gradient Accumulation**: 2 (Effective batch = 16) - **Learning Rate**: 1.0e-04 - **Precision**: bf16 mixed precision - **Sequence Length**: 1024 tokens - **Gradient Checkpointing**: Enabled ### Performance Improvements - ✅ **Faster Convergence**: K-FAC preconditioning aligns updates with curvature. - ✅ **Memory-Efficient**: 4-bit quantization (QLoRA) and gradient checkpointing used. - ✅ **Adaptive Rank**: Dynamically prunes LoRA rank to improve parameter efficiency. ## 📊 Training Metrics - **Total Steps**: 936 - **Final Loss**: 0.8789392291990101 - **Trainable Params**: 83,886,080 ## 📝 Algorithm Details - **K-FAC Preconditioning** (Natural Gradient) and **Neural Reprojection** as per GRIT method. - **Memory Efficient**: Covariance matrices on CPU to reduce GPU load. ## 🏆 Results In benchmark comparisons, GRIT has shown **faster convergence and better stability** than standard LoRA or fine-tuning, making it well-suited for efficient single-epoch training. The use of Unsloth further accelerates this process. ## 📝 Citation If you use this model, please cite the original GRIT paper and: ```bibtex @misc{grit-lora-Llama-3.1-8B-gsm8k}, title={ meta-llama/Llama-3.1-8B Fine-tuned with GRIT on openai/gsm8k }, author={D1zzYzz}, year={2025}, publisher={Hugging Face}, url={https://huggingface.co/D1zzYzz/GRIT-GSM8K-QLORA-llama-3.1-8B-Energy-0.9} } ``` ## ⚖️ License This model inherits the Apache 2.0 license.
Thorsten-Voice/OrpheusTest24kHz-Test2
Thorsten-Voice
2025-08-11T18:18:02Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/orpheus-3b-0.1-ft", "base_model:finetune:unsloth/orpheus-3b-0.1-ft", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-11T18:17:20Z
--- base_model: unsloth/orpheus-3b-0.1-ft tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Thorsten-Voice - **License:** apache-2.0 - **Finetuned from model :** unsloth/orpheus-3b-0.1-ft This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754936140
ggozzy
2025-08-11T18:16:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:16:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
motza0025/blockassist-bc-bristly_monstrous_eel_1754935021
motza0025
2025-08-11T18:16:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bristly monstrous eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:15:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bristly monstrous eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
razor534/Smoothie-Qwen3-1.7B-Gensyn-Swarm-stealthy_scurrying_hare
razor534
2025-08-11T18:16:07Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am stealthy_scurrying_hare", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T13:51:29Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am stealthy_scurrying_hare --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]