modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-08 06:28:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
546 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-08 06:27:40
card
stringlengths
11
1.01M
lyhhhhhh/mt5-small-finetuned-test-class3
lyhhhhhh
2022-11-29T23:53:45Z
60
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T23:52:43Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mt5-small-finetuned-test-class3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-test-class3 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.2262 - Validation Loss: 1.8557 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 64112, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.0384 | 2.3228 | 0 | | 2.7913 | 2.1021 | 1 | | 2.5264 | 1.9837 | 2 | | 2.4013 | 1.9247 | 3 | | 2.3268 | 1.8783 | 4 | | 2.2781 | 1.8712 | 5 | | 2.2462 | 1.8563 | 6 | | 2.2262 | 1.8557 | 7 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
ririying/my-finetuned-mt5-class0
ririying
2022-11-29T23:52:59Z
62
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T23:52:19Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-finetuned-mt5-class0 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-finetuned-mt5-class0 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0505 - Validation Loss: 1.7733 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 107192, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.5536 | 2.1181 | 0 | | 2.4769 | 1.9296 | 1 | | 2.2865 | 1.8569 | 2 | | 2.1928 | 1.8241 | 3 | | 2.1344 | 1.8022 | 4 | | 2.0953 | 1.7880 | 5 | | 2.0671 | 1.7811 | 6 | | 2.0505 | 1.7733 | 7 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
huggingtweets/billym2k-elonmusk-lexfridman
huggingtweets
2022-11-29T23:52:17Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-29T23:29:00Z
--- language: en thumbnail: http://www.huggingtweets.com/billym2k-elonmusk-lexfridman/1669765849257/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/956331551435960322/OaqR8pAB_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521369379941715968/bg0KgPWm_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Lex Fridman & Shibetoshi Nakamoto</div> <div style="text-align: center; font-size: 14px;">@billym2k-elonmusk-lexfridman</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Lex Fridman & Shibetoshi Nakamoto. | Data | Elon Musk | Lex Fridman | Shibetoshi Nakamoto | | --- | --- | --- | --- | | Tweets downloaded | 3198 | 2411 | 341 | | Retweets | 127 | 253 | 1 | | Short tweets | 965 | 49 | 49 | | Tweets kept | 2106 | 2109 | 291 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2nokzkg2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billym2k-elonmusk-lexfridman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1cnzg4dt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1cnzg4dt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/billym2k-elonmusk-lexfridman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lyhhhhhh/mt5-small-finetuned-test-class2
lyhhhhhh
2022-11-29T23:51:06Z
59
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T23:50:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mt5-small-finetuned-test-class2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-test-class2 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.3668 - Validation Loss: 1.9101 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 44464, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.4693 | 2.3874 | 0 | | 3.0670 | 2.1557 | 1 | | 2.7416 | 2.0547 | 2 | | 2.5824 | 2.0089 | 3 | | 2.4922 | 1.9654 | 4 | | 2.4299 | 1.9344 | 5 | | 2.3906 | 1.9255 | 6 | | 2.3668 | 1.9101 | 7 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
SirVeggie/cutesexyrobutts
SirVeggie
2022-11-29T23:42:19Z
0
16
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-23T21:37:56Z
--- license: creativeml-openrail-m --- # Cutesexyrobutts stable diffusion model Original artist: Cutesexyrobutts\ Patreon: https://www.patreon.com/cutesexyrobutts ## Basic explanation Token and Class words are what guide the AI to produce images similar to the trained style/object/character. Include any mix of these words in the prompt to produce verying results, or exclude them to have a less pronounced effect. There is usually at least a slight stylistic effect even without the words, but it is recommended to include at least one. Adding token word/phrase class word/phrase at the start of the prompt in that order produces results most similar to the trained concept, but they can be included elsewhere as well. Some models produce better results when not including all token/class words. 3k models are are more flexible, while 5k models produce images closer to the trained concept. I recommend 2k/3k models for normal use, and 5k/6k models for model merging and use without token/class words. However it can be also very prompt specific. I highly recommend self-experimentation. These models are subject to the same legal concerns as their base models. ## Comparison Epoch 5 version was earlier in the waifu diffusion 1.3 training process, so it is easier to produce more varied, non anime, results. Robutts-any is the newest and best model. ## robutts-any ``` token: m_robutts class: illustration style base: anything v3 ``` ## robutts ``` token: § class: robutts base: waifu diffusion 1.3 ``` ## robutts_e5 ``` token: § class: robutts base: waifu diffusion 1.3-e5 ```
lct-rug-2022/edos-2023-baseline-microsoft-deberta-v3-base-label_vector
lct-rug-2022
2022-11-29T23:41:42Z
108
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T11:22:40Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: edos-2023-baseline-microsoft-deberta-v3-base-label_vector results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # edos-2023-baseline-microsoft-deberta-v3-base-label_vector This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5524 - F1: 0.3162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1209 | 1.18 | 100 | 1.9990 | 0.0801 | | 1.7997 | 2.35 | 200 | 1.7293 | 0.1349 | | 1.5749 | 3.53 | 300 | 1.6080 | 0.2431 | | 1.3674 | 4.71 | 400 | 1.5411 | 0.2793 | | 1.2214 | 5.88 | 500 | 1.5285 | 0.2980 | | 1.0752 | 7.06 | 600 | 1.5165 | 0.3054 | | 0.9899 | 8.24 | 700 | 1.5210 | 0.3186 | | 0.8733 | 9.41 | 800 | 1.5385 | 0.3134 | | 0.8578 | 10.59 | 900 | 1.5524 | 0.3162 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
davidaponte/sd-class-butterflies-32
davidaponte
2022-11-29T23:24:52Z
31
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T23:23:17Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. It was trained using a Tesla T4 GPU on a Google Colab Notebook. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(davidaponte/sd-class-butterflies-32) image = pipeline().images[0] image ```
lct-rug-2022/edos-2023-baseline-albert-base-v2-label_vector
lct-rug-2022
2022-11-29T22:57:00Z
113
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T21:58:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: edos-2023-baseline-albert-base-v2-label_vector results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # edos-2023-baseline-albert-base-v2-label_vector This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8762 - F1: 0.1946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1002 | 1.18 | 100 | 1.9982 | 0.1023 | | 1.7832 | 2.35 | 200 | 1.8435 | 0.1310 | | 1.57 | 3.53 | 300 | 1.8097 | 0.1552 | | 1.3719 | 4.71 | 400 | 1.8216 | 0.1631 | | 1.2072 | 5.88 | 500 | 1.8138 | 0.1811 | | 1.0186 | 7.06 | 600 | 1.8762 | 0.1946 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-banking-18-16-5
fathyshalab
2022-11-29T22:47:43Z
115
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T22:20:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-18-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-18-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7470 - Accuracy: 0.0756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8182 | 1.0 | 1 | 2.7709 | 0.0356 | | 2.6751 | 2.0 | 2 | 2.7579 | 0.0578 | | 2.5239 | 3.0 | 3 | 2.7509 | 0.0622 | | 2.4346 | 4.0 | 4 | 2.7470 | 0.0756 | | 2.4099 | 5.0 | 5 | 2.7452 | 0.0756 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
Euchale/ArcaneInkpunk2
Euchale
2022-11-29T22:28:05Z
0
0
null
[ "region:us" ]
null
2022-11-29T21:19:34Z
50/50 Merge of Arcane V3 and Inkpunk V2
dn-gh/ddpm-apes-128
dn-gh
2022-11-29T21:55:07Z
0
1
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-14T21:53:21Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- # ddpm-apes-128 ![example image](example.png) ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python from diffusers import DDPMPipeline import torch model_id = "dn-gh/ddpm-apes-128" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # load model and scheduler ddpm = DDPMPipeline.from_pretrained(model_id).to(device) # run pipeline in inference image = ddpm().images[0] # save image image.save("generated_image.png") ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data This model is trained on 4866 images generated with [ykilcher/apes](https://huggingface.co/ykilcher/apes) for 30 epochs. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/dn-gh/ddpm-apes-128/tensorboard?#scalars)
ririying/mt5-small-finetuned-test
ririying
2022-11-29T21:41:01Z
4
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T18:37:20Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ririying/mt5-small-finetuned-test results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ririying/mt5-small-finetuned-test This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0505 - Validation Loss: 1.7733 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 107192, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.5536 | 2.1181 | 0 | | 2.4769 | 1.9296 | 1 | | 2.2865 | 1.8569 | 2 | | 2.1928 | 1.8241 | 3 | | 2.1344 | 1.8022 | 4 | | 2.0953 | 1.7880 | 5 | | 2.0671 | 1.7811 | 6 | | 2.0505 | 1.7733 | 7 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
lct-rug-2022/edos-2023-baseline-roberta-base-label_category
lct-rug-2022
2022-11-29T20:46:52Z
26
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T20:24:29Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: edos-2023-baseline-roberta-base-label_category results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # edos-2023-baseline-roberta-base-label_category This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0133 - F1: 0.5792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.169 | 1.18 | 100 | 1.0580 | 0.2159 | | 0.9143 | 2.35 | 200 | 0.9283 | 0.5405 | | 0.7535 | 3.53 | 300 | 0.9387 | 0.5665 | | 0.6085 | 4.71 | 400 | 0.9574 | 0.5664 | | 0.53 | 5.88 | 500 | 1.0133 | 0.5792 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
AndrewChar/model-QA-5-epoch-RU
AndrewChar
2022-11-29T19:36:19Z
34
17
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "ru", "dataset:sberquad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_keras_callback language: ru datasets: - sberquad model-index: - name: model-QA-5-epoch-RU results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # model-QA-5-epoch-RU This model is a fine-tuned version of [AndrewChar/diplom-prod-epoch-4-datast-sber-QA](https://huggingface.co/AndrewChar/diplom-prod-epoch-4-datast-sber-QA) on sberquad dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1991 - Validation Loss: 0.0 - Epoch: 5 ## Model description Модель отвечающая на вопрос по контектсу это дипломная работа ## Intended uses & limitations Контекст должен содержать не более 512 токенов ## Training and evaluation data DataSet SberSQuAD {'exact_match': 54.586, 'f1': 73.644} ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_re': 2e-06 'decay_steps': 2986, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.1991 | | 5 | ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
Alred/bart-base-finetuned-summarization-cnn-ver1.2
Alred
2022-11-29T19:26:01Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarization", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-11-29T18:10:27Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail model-index: - name: bart-base-finetuned-summarization-cnn-ver1.2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-summarization-cnn-ver1.2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.2476 - Bertscore-mean-precision: 0.8904 - Bertscore-mean-recall: 0.8611 - Bertscore-mean-f1: 0.8753 - Bertscore-median-precision: 0.8891 - Bertscore-median-recall: 0.8600 - Bertscore-median-f1: 0.8741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bertscore-mean-precision | Bertscore-mean-recall | Bertscore-mean-f1 | Bertscore-median-precision | Bertscore-median-recall | Bertscore-median-f1 | |:-------------:|:-----:|:-----:|:---------------:|:------------------------:|:---------------------:|:-----------------:|:--------------------------:|:-----------------------:|:-------------------:| | 2.3305 | 1.0 | 5742 | 2.2125 | 0.8845 | 0.8587 | 0.8713 | 0.8840 | 0.8577 | 0.8706 | | 1.7751 | 2.0 | 11484 | 2.2028 | 0.8910 | 0.8616 | 0.8759 | 0.8903 | 0.8603 | 0.8744 | | 1.4564 | 3.0 | 17226 | 2.2476 | 0.8904 | 0.8611 | 0.8753 | 0.8891 | 0.8600 | 0.8741 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
lct-rug-2022/edos-2023-baseline-bert-base-uncased-label_category
lct-rug-2022
2022-11-29T19:24:32Z
12
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T12:51:45Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: edos-2023-baseline-bert-base-uncased-label_category results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # edos-2023-baseline-bert-base-uncased-label_category This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0354 - F1: 0.5675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1743 | 1.18 | 100 | 1.1120 | 0.1949 | | 1.0197 | 2.35 | 200 | 1.0548 | 0.3307 | | 0.8872 | 3.53 | 300 | 0.9621 | 0.4795 | | 0.7117 | 4.71 | 400 | 0.9876 | 0.4947 | | 0.6173 | 5.88 | 500 | 0.9615 | 0.5447 | | 0.5015 | 7.06 | 600 | 0.9973 | 0.5512 | | 0.4076 | 8.24 | 700 | 1.0052 | 0.5620 | | 0.3381 | 9.41 | 800 | 1.0354 | 0.5675 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Tirendaz/sentiment-model-on-imdb-dataset
Tirendaz
2022-11-29T19:16:53Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T17:43:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: sentiment-model-on-imdb-dataset results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.85 - name: F1 type: f1 value: 0.8543689320388349 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-model-on-imdb-dataset This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3694 - Accuracy: 0.85 - F1: 0.8544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ikanher/sd-class-butterflies-32
ikanher
2022-11-29T19:07:48Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T19:07:21Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(ikanher/sd-class-butterflies-32) image = pipeline().images[0] image ```
renesteeman/whisper-base-dutch-25
renesteeman
2022-11-29T19:02:44Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "nl", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-29T10:35:49Z
--- language: - nl license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Base Dutch 25 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: nl, split: test' metrics: - name: Wer type: wer value: 29.948494805079477 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Dutch 25 This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4919 - Wer: 29.9485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3704 | 0.78 | 500 | 0.5438 | 33.9890 | | 0.2356 | 1.56 | 1000 | 0.5059 | 31.3516 | | 0.1335 | 2.34 | 1500 | 0.4953 | 30.5745 | | 0.0998 | 3.12 | 2000 | 0.4919 | 29.9485 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
pcuenq/Paella
pcuenq
2022-11-29T18:51:19Z
0
6
null
[ "text-to-image", "endpoints-template", "en", "arxiv:2211.07292", "license:mit", "endpoints_compatible", "region:us" ]
text-to-image
2022-11-29T15:36:58Z
--- title: Paella emoji: 🥘 language: - en tags: - text-to-image - endpoints-template license: mit --- Paella is a novel text-to-image model that uses a compressed quantized latent space, based on a f8 VQGAN, and a masked training objective to achieve fast generation in ~10 inference steps. * [Paper](https://arxiv.org/abs/2211.07292) * [Official implementation](https://github.com/dome272/Paella) Biases and content acknowledgment Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on 600 million images from the improved <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B aesthetic</a> dataset, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes.
Guizmus/SD_PoW_Collection
Guizmus
2022-11-29T18:47:05Z
0
13
EveryDream
[ "EveryDream", "diffusers", "stable-diffusion", "text-to-image", "image-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-09T22:34:09Z
--- language: - en license: creativeml-openrail-m thumbnail: "https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/showcase.jpg" tags: - stable-diffusion - text-to-image - image-to-image library_name: "EveryDream" inference: false --- ![PoW](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/141122/images/showcase_PoW_neverendingloop.jpg) # Intro This is a collection of models related to the "Picture of the Week" contest on Stable Diffusion discord. I try to make a model out of all the submission for people to continue enjoy the theme after the even, and see a little of their designs in other people's creations. The token stays "PoW Style" and I balance the learning on the low side, so that it doesn't just replicate creations. I also make smaller quality models to help make pictures for the contest itself, based on the theme. # 29 novembre 2022, "The Stable Kitchen" ## Theme : Burgers and Fries Welcome to the VERY FIRST edition of the most Stable Kitchen in the universe! On today’s menu will be Sandwiches & Frie. Since you’re here for the first time, I will explain how it works! You can generate your orders and we will make them for you. Take a seat, flip through the menu, bring all of your favorite ingredients~ * The sandwich with the most cheddar? 5 beef burgers? An infinite fries generator? * Serve us your best sandwich and fries combo! Not even the sky's the limit my friend, You want it? You have it! As long as it's delicious, of course! We’ll see you on the chopping block for this week’s Stable Kitchen! ![PoW](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/291122/images/theme.png) ## Models ### Burgy ![Burgy](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/291122/images/showcase_burgy.jpg) * Burgers, burgers burgers * training: 40 pictures, 6 epochs of 40 repeats, batch size 6, LR1e-6, EveryDream * balance : Strong, burgers * **Activation token :** `Burgy` * [CKPT](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/291122/ckpts/Burgy.ckpt) * [Dataset](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/291122/dataset_Burgy.zip) # 22 novembre 2022, "Imaginary Friend" ## Theme : Imaginary Friend Do you remember putting your hands into what seemed as if it were just plain air and giggling like a child? Having conversations with someone who “wasn’t there”? Nowadays the term “Imaginary Friend” isn’t as frequently used as it used to be, right? Let’s bring it back. * Can you build your Imaginary Friends actualized? * What traits do you recall of them? Are they still young? Have they grown up now? Do they resemble you, or a creature that isn’t human? * Where would you find this Imaginary Friend? Where do they reside? What do they stand for? Our prompt for this event was created by @Andrekerygma "a boy drinking tea with a cute monster on the bedroom, disney infinity character design, pixar, artstation, vinyl, toy, figurine, 3 d model, cinema 4 d, substance 3 d painter, vray, unreal engine 5, octane render, cinematic" ![PoW](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/221122/images/theme.png) ## Models ### PoW ArtStyle 22-11-22 ![PoW ArtStyle](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/221122/images/showcase_pow_imaginary_friend.jpg) * based on all the submissions to the PoW * training: 73 pictures, 6000 steps on batch 6, 1e-6 polynomial LR. * balance : a little lighter on the style than last week, still manages to reproduce most participants * **Activation token :** `PoW ArtStyle` * Other noticable tokens : Your Discord username, if you participated. Also TMNT,NikeAir Shoes and Sid, Ice Age movie * [CKPT](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/221122/ckpts/PoWArtStyle_ImaginaryFriend.ckpt) * [Dataset](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/221122/PoW_221122_dataset.zip) ### CharacterChan Style ![CharacterChan Style](https://huggingface.co/Guizmus/SD_DreamerCommunities_Collection/resolve/main/images/showcase_CharacterChanStyle-v1.jpg) * based on the "Character" dreamer community of the Stable Diffusion Discord * training: 50 pictures, 160 total repeat, LR1e-6 * balance : correct, but some sub concepts have overtrain a little, like the clown. * **Activation token :** `CharacterChan Style` * [CKPT](https://huggingface.co/Guizmus/SD_DreamerCommunities_Collection/resolve/main/ckpt/CharacterChanStyle-v1.ckpt) * [Dataset](https://huggingface.co/Guizmus/SD_DreamerCommunities_Collection/resolve/main/datasets/CharacterChanStyle-v1.zip) * [Model page](https://huggingface.co/Guizmus/SD_DreamerCommunities_Collection#characterchan-style) ### CreatureChan Style ![CreatureChan Style](https://huggingface.co/Guizmus/SD_DreamerCommunities_Collection/resolve/main/images/showcase_CreatureChanStyle-v1.jpg) * based on the "Creature" dreamer community of the Stable Diffusion Discord * training: 50 pictures, 160 total repeat, LR1e-6 * balance : good * **Activation token :** `CreatureChan Style` * [CKPT](https://huggingface.co/Guizmus/SD_DreamerCommunities_Collection/resolve/main/ckpt/CreatureChanStyle-v1.ckpt) * [Dataset](https://huggingface.co/Guizmus/SD_DreamerCommunities_Collection/resolve/main/datasets/CreatureChanStyle-v1.zip) * [Model page](https://huggingface.co/Guizmus/SD_DreamerCommunities_Collection#creaturechan-style) # 14 novembre 2022, "The Never-Ending Loop" ## Theme : The Never-Ending Loop It is a passed-down proverb that lines represent the flow of time itself. They converge and take shape. They twist, tangle, sometimes unravel, break, and then connect again. * Without words, how are we able to accurately represent this flow of time with only lines? geometrically, intricately, asymmetricaly, seamlessly, ornately... * Think of a never-ending pattern, texture, or shape– looping on and on for what feels infinite. * Just how detailed are you able to get with your patterns? Our prompt for this event was created by @Asukii ! "the fractal flow of time stretches towards the horizon, surreal fractal intertwined looping pathways, dramatic cinematic perspective, detailed delicate intricate ornate linework, geometric abstract masterwork digital art, quantum wavetracing, ink drawing, optical illusion" ![PoW](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/141122/images/theme1.png) ![PoW](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/141122/images/theme2.png) ## Models ### PoW Style 14-11-22 ![PoW Style](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/141122/images/showcase_PoW_neverendingloop.jpg) * based on all the submissions to the PoW * training: 101 pictures, 9000 steps on batch 6, 1e-6 polynomial LR. * balance : a little strong on the style but it made it possible to differentiate each participants * **Activation token :** `PoW Style` * Other noticable tokens : Your Discord username, if you participated. Also Rick Roll and "fullbody shot" * [CKPT](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/141122/ckpts/PoWStyle_NeverEndingLoop.ckpt) * [Diffusers : Guizmus/SD_PoW_Collection/141122/diffusers](https://huggingface.co/Guizmus/SD_PoW_Collection/tree/main/141122/diffusers/) * [Dataset](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/141122/PoW_141122_2_dataset.zip) ### Fractime Style ![Fractime Style](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/141122/images/showcase_FractimeStyle.jpg) * based on the suggested prompt and theme * training: 50 pictures, 1750 steps on batch 6, 1e-6 polynomial LR. * balance : correct, but the style doesn't apply to every subject * **Activation token :** `Fractime Style` * Other noticable tokens : intricate, nebula, illusion, person, road, tree, boat * [CKPT](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/141122/ckpts/FractimeStyle.ckpt) * [Dataset](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/141122/PoW_141122_1_dataset.zip) # 09 novembre 2022, "Abstralities" ## Theme : Abstract Realities Glitch, warp, static, shape, flicker, break, bend, mend Have you ever felt your reality shift out from under your feet? Our perception falters and repairs itself in the blink of an eye. Just how much do our brains influence what we perceive? How much control do we have over molding these realities? With the introduction of AI and its rapid pace taking the world by storm, we are seeing single-handedly just how these realities can bring worlds into fruition. * Can you show us your altered reality? * Are these realities truly broken, or only bent? Our example prompt for this event was created by @Aether ! "household objects floating in space, bedroom, furniture, home living, warped reality, cosmic horror, nightmare, retrofuturism, surrealism, abstract, illustrations by alan nasmith" ![PoW](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/091122/images/AETHER.png) ![PoW](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/091122/images/aether2.png) ## Models ### PoW Style 09-11-22 ![PoW Style](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/091122/images/showcase_pow_final.jpg) * Main model based on all the results from the PoW * training: 51 pictures, 3000 steps on 1e-6 polynomial LR. * balanced on the light side, add attention/weight on the activation token * **Activation token :** `PoW Style` * [CKPT](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/091122/ckpts/PoWStyle_Abstralities.ckpt) * [Diffusers : Guizmus/SD_PoW_Collection/091122/diffusers](https://huggingface.co/Guizmus/SD_PoW_Collection/tree/main/091122/diffusers/) * [Dataset](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/091122/dataset.zip) ### Bendstract Style ![Bendstract Style](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/091122/images/showcase_bendstract.jpg) * based on the suggested prompt * training: 100 pictures, 7500 steps on 1e-6 polynomial LR. overtrained * **Activation token :** `Bendstract Style` * [CKPT](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/091122/ckpts/Bendstract-v1.ckpt) ### endingReality Style ![BendingReality Style](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/091122/images/showcase_bendingreality.jpg) * based on the suggested prompt * training: 68 pictures, 6000 steps on 1e-6 polynomial LR. overtrained * **Activation token :** `BendingReality Style` * [CKPT](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/091122/ckpts/BendingReality_Style-v1.ckpt) ### PoW Style mid-submissions 09-11-22 ![PoW Style](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/091122/images/showcase_pow_midrun.jpg) * based on the first few submissions * training: 24 pictures, 2400 steps on 1e-6 polynomial LR. a little too trained * **Activation token :** `PoW Style` * [CKPT](https://huggingface.co/Guizmus/SD_PoW_Collection/resolve/main/091122/ckpts/PoWStyle_midrun.ckpt) # License These models are open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
epsil/sd-class-butterflies-64
epsil
2022-11-29T18:13:23Z
5
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T18:13:12Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(epsil/sd-class-butterflies-64) image = pipeline().images[0] image ```
epsil/sd-class-butterflies-32
epsil
2022-11-29T17:42:54Z
6
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T17:42:32Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(epsil/sd-class-butterflies-32) image = pipeline().images[0] image ```
ser-mei/borges-gpt-collab
ser-mei
2022-11-29T17:14:30Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-06T20:48:40Z
--- license: mit tags: - generated_from_trainer model-index: - name: borges-gpt-collab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # borges-gpt-collab This model is a fine-tuned version of [DeepESP/gpt2-spanish](https://huggingface.co/DeepESP/gpt2-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.3468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 70 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 11.2135 | 0.96 | 7 | 10.2022 | | 10.3195 | 1.96 | 14 | 9.6343 | | 9.9127 | 2.96 | 21 | 9.4637 | | 9.7295 | 3.96 | 28 | 9.2993 | | 9.527 | 4.96 | 35 | 9.0962 | | 9.2648 | 5.96 | 42 | 8.8294 | | 8.9309 | 6.96 | 49 | 8.5103 | | 8.5639 | 7.96 | 56 | 8.1858 | | 8.2034 | 8.96 | 63 | 7.8816 | | 7.8665 | 9.96 | 70 | 7.6303 | | 7.5715 | 10.96 | 77 | 7.4307 | | 7.3259 | 11.96 | 84 | 7.2632 | | 7.136 | 12.96 | 91 | 7.1494 | | 6.9558 | 13.96 | 98 | 7.0957 | | 6.8068 | 14.96 | 105 | 7.0199 | | 6.6656 | 15.96 | 112 | 6.9554 | | 6.5264 | 16.96 | 119 | 6.9324 | | 6.3843 | 17.96 | 126 | 6.8940 | | 6.2204 | 18.96 | 133 | 6.8799 | | 6.0915 | 19.96 | 140 | 6.8788 | | 5.9532 | 20.96 | 147 | 6.8719 | | 5.8169 | 21.96 | 154 | 6.8647 | | 5.6531 | 22.96 | 161 | 6.8865 | | 5.5125 | 23.96 | 168 | 6.8940 | | 5.3666 | 24.96 | 175 | 6.9248 | | 5.2377 | 25.96 | 182 | 6.9421 | | 5.1115 | 26.96 | 189 | 6.9631 | | 4.9639 | 27.96 | 196 | 7.0135 | | 4.824 | 28.96 | 203 | 7.0352 | | 4.6886 | 29.96 | 210 | 7.0729 | | 4.5538 | 30.96 | 217 | 7.1385 | | 4.4126 | 31.96 | 224 | 7.1561 | | 4.2486 | 32.96 | 231 | 7.1792 | | 4.0955 | 33.96 | 238 | 7.2767 | | 3.9333 | 34.96 | 245 | 7.2815 | | 3.7914 | 35.96 | 252 | 7.3463 | | 3.618 | 36.96 | 259 | 7.3864 | | 3.4453 | 37.96 | 266 | 7.4394 | | 3.2795 | 38.96 | 273 | 7.4730 | | 3.0994 | 39.96 | 280 | 7.4880 | | 2.9143 | 40.96 | 287 | 7.5567 | | 2.741 | 41.96 | 294 | 7.5451 | | 2.5698 | 42.96 | 301 | 7.5966 | | 2.3855 | 43.96 | 308 | 7.6898 | | 2.2059 | 44.96 | 315 | 7.6957 | | 2.0634 | 45.96 | 322 | 7.7503 | | 1.8719 | 46.96 | 329 | 7.8369 | | 1.7059 | 47.96 | 336 | 7.8411 | | 1.54 | 48.96 | 343 | 7.8316 | | 1.3768 | 49.96 | 350 | 7.8630 | | 1.2177 | 50.96 | 357 | 7.9360 | | 1.0663 | 51.96 | 364 | 7.9886 | | 0.9569 | 52.96 | 371 | 8.0187 | | 0.8281 | 53.96 | 378 | 8.0274 | | 0.7074 | 54.96 | 385 | 8.1010 | | 0.6095 | 55.96 | 392 | 8.1594 | | 0.5262 | 56.96 | 399 | 8.1010 | | 0.4678 | 57.96 | 406 | 8.1440 | | 0.4105 | 58.96 | 413 | 8.1638 | | 0.3766 | 59.96 | 420 | 8.1534 | | 0.3425 | 60.96 | 427 | 8.1980 | | 0.321 | 61.96 | 434 | 8.2184 | | 0.3061 | 62.96 | 441 | 8.2499 | | 0.2852 | 63.96 | 448 | 8.1690 | | 0.2698 | 64.96 | 455 | 8.2160 | | 0.2628 | 65.96 | 462 | 8.2616 | | 0.2619 | 66.96 | 469 | 8.2948 | | 0.2544 | 67.96 | 476 | 8.3553 | | 0.2414 | 68.96 | 483 | 8.3712 | | 0.2177 | 69.96 | 490 | 8.3468 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+rocm5.2 - Datasets 2.6.1 - Tokenizers 0.13.2
SALT-NLP/FLANG-DistilBERT
SALT-NLP
2022-11-29T17:07:13Z
14
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "Financial Language Modelling", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-24T05:43:00Z
--- language: "en" tags: - Financial Language Modelling widget: - text: "Stocks rallied and the British pound [MASK]." --- ## Dataset Summary - **Homepage:** https://salt-nlp.github.io/FLANG/ - **Models:** https://huggingface.co/SALT-NLP/FLANG-BERT - **Repository:** https://github.com/SALT-NLP/FLANG ## FLANG FLANG is a set of large language models for Financial LANGuage tasks. These models use domain specific pre-training with preferential masking to build more robust representations for the domain. The models in the set are:\ [FLANG-BERT](https://huggingface.co/SALT-NLP/FLANG-BERT)\ [FLANG-SpanBERT](https://huggingface.co/SALT-NLP/FLANG-SpanBERT)\ [FLANG-DistilBERT](https://huggingface.co/SALT-NLP/FLANG-DistilBERT)\ [FLANG-Roberta](https://huggingface.co/SALT-NLP/FLANG-Roberta)\ [FLANG-ELECTRA](https://huggingface.co/SALT-NLP/FLANG-ELECTRA) ## FLANG-DistilBERT FLANG-DistilBERT is a pre-trained language model which uses financial keywords and phrases for preferential masking of domain specific terms. It is built by further training the DistilBERT language model in the finance domain with improved performance over previous models due to the use of domain knowledge and vocabulary. ## FLUE FLUE (Financial Language Understanding Evaluation) is a comprehensive and heterogeneous benchmark that has been built from 5 diverse financial domain specific datasets. Sentiment Classification: [Financial PhraseBank](https://huggingface.co/datasets/financial_phrasebank)\ Sentiment Analysis, Question Answering: [FiQA 2018](https://huggingface.co/datasets/SALT-NLP/FLUE-FiQA)\ New Headlines Classification: [Headlines](https://www.kaggle.com/datasets/daittan/gold-commodity-news-and-dimensions)\ Named Entity Recognition: [NER](https://paperswithcode.com/dataset/fin)\ Structure Boundary Detection: [FinSBD3](https://sites.google.com/nlg.csie.ntu.edu.tw/finweb2021/shared-task-finsbd-3) ## Citation Please cite the work with the following citation: ```bibtex @INPROCEEDINGS{shah-etal-2022-flang, author = {Shah, Raj Sanjay and Chawla, Kunal and Eidnani, Dheeraj and Shah, Agam and Du, Wendi and Chava, Sudheer and Raman, Natraj and Smiley, Charese and Chen, Jiaao and Yang, Diyi }, title = {When FLUE Meets FLANG: Benchmarks and Large Pretrained Language Model for Financial Domain}, booktitle = {Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP)}, year = {2022}, publisher = {Association for Computational Linguistics} } ``` ## Contact information Please contact Raj Sanjay Shah (rajsanjayshah[at]gatech[dot]edu) or Sudheer Chava (schava6[at]gatech[dot]edu) or Diyi Yang (diyiy[at]stanford[dot]edu) about any FLANG-DistilBERT related issues and questions. --- license: afl-3.0 ---
SALT-NLP/FLANG-SpanBERT
SALT-NLP
2022-11-29T17:06:55Z
30
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "Financial Language Modelling", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-24T05:41:56Z
--- language: "en" tags: - Financial Language Modelling widget: - text: "Stocks rallied and the British pound [MASK]." --- ## Dataset Summary - **Homepage:** https://salt-nlp.github.io/FLANG/ - **Models:** https://huggingface.co/SALT-NLP/FLANG-BERT - **Repository:** https://github.com/SALT-NLP/FLANG ## FLANG FLANG is a set of large language models for Financial LANGuage tasks. These models use domain specific pre-training with preferential masking to build more robust representations for the domain. The models in the set are:\ [FLANG-BERT](https://huggingface.co/SALT-NLP/FLANG-BERT)\ [FLANG-SpanBERT](https://huggingface.co/SALT-NLP/FLANG-SpanBERT)\ [FLANG-DistilBERT](https://huggingface.co/SALT-NLP/FLANG-DistilBERT)\ [FLANG-Roberta](https://huggingface.co/SALT-NLP/FLANG-Roberta)\ [FLANG-ELECTRA](https://huggingface.co/SALT-NLP/FLANG-ELECTRA) ## FLANG-SpanBERT FLANG-SpanBERT is a pre-trained language model which uses financial keywords and phrases for preferential masking of domain specific terms. It is built by further training the SpanBERT language model in the finance domain with improved performance over previous models due to the use of domain knowledge and vocabulary. ## FLUE FLUE (Financial Language Understanding Evaluation) is a comprehensive and heterogeneous benchmark that has been built from 5 diverse financial domain specific datasets. Sentiment Classification: [Financial PhraseBank](https://huggingface.co/datasets/financial_phrasebank)\ Sentiment Analysis, Question Answering: [FiQA 2018](https://huggingface.co/datasets/SALT-NLP/FLUE-FiQA)\ New Headlines Classification: [Headlines](https://www.kaggle.com/datasets/daittan/gold-commodity-news-and-dimensions)\ Named Entity Recognition: [NER](https://paperswithcode.com/dataset/fin)\ Structure Boundary Detection: [FinSBD3](https://sites.google.com/nlg.csie.ntu.edu.tw/finweb2021/shared-task-finsbd-3) ## Citation Please cite the model with the following citation: ```bibtex @INPROCEEDINGS{shah-etal-2022-flang, author = {Shah, Raj Sanjay and Chawla, Kunal and Eidnani, Dheeraj and Shah, Agam and Du, Wendi and Chava, Sudheer and Raman, Natraj and Smiley, Charese and Chen, Jiaao and Yang, Diyi }, title = {When FLUE Meets FLANG: Benchmarks and Large Pretrained Language Model for Financial Domain}, booktitle = {Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP)}, year = {2022}, publisher = {Association for Computational Linguistics} } ``` ## Contact information Please contact Raj Sanjay Shah (rajsanjayshah[at]gatech[dot]edu) or Sudheer Chava (schava6[at]gatech[dot]edu) or Diyi Yang (diyiy[at]stanford[dot]edu) about any FLANG-SpanBERT related issues and questions. --- license: afl-3.0 ---
SALT-NLP/FLANG-BERT
SALT-NLP
2022-11-29T17:06:37Z
83
4
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "Financial Language Modelling", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-24T02:37:04Z
--- language: "en" tags: - Financial Language Modelling widget: - text: "Stocks rallied and the British pound [MASK]." --- ## Dataset Summary - **Homepage:** https://salt-nlp.github.io/FLANG/ - **Models:** https://huggingface.co/SALT-NLP/FLANG-BERT - **Repository:** https://github.com/SALT-NLP/FLANG ## FLANG FLANG is a set of large language models for Financial LANGuage tasks. These models use domain specific pre-training with preferential masking to build more robust representations for the domain. The models in the set are:\ [FLANG-BERT](https://huggingface.co/SALT-NLP/FLANG-BERT)\ [FLANG-SpanBERT](https://huggingface.co/SALT-NLP/FLANG-SpanBERT)\ [FLANG-DistilBERT](https://huggingface.co/SALT-NLP/FLANG-DistilBERT)\ [FLANG-Roberta](https://huggingface.co/SALT-NLP/FLANG-Roberta)\ [FLANG-ELECTRA](https://huggingface.co/SALT-NLP/FLANG-ELECTRA) ## FLANG-BERT FLANG-BERT is a pre-trained language model which uses financial keywords and phrases for preferential masking of domain specific terms. It is built by further training the BERT language model in the finance domain with improved performance over previous models due to the use of domain knowledge and vocabulary. ## FLUE FLUE (Financial Language Understanding Evaluation) is a comprehensive and heterogeneous benchmark that has been built from 5 diverse financial domain specific datasets. Sentiment Classification: [Financial PhraseBank](https://huggingface.co/datasets/financial_phrasebank)\ Sentiment Analysis, Question Answering: [FiQA 2018](https://huggingface.co/datasets/SALT-NLP/FLUE-FiQA)\ New Headlines Classification: [Headlines](https://www.kaggle.com/datasets/daittan/gold-commodity-news-and-dimensions)\ Named Entity Recognition: [NER](https://paperswithcode.com/dataset/fin)\ Structure Boundary Detection: [FinSBD3](https://sites.google.com/nlg.csie.ntu.edu.tw/finweb2021/shared-task-finsbd-3) ## Citation Please cite the model with the following citation: ```bibtex @INPROCEEDINGS{shah-etal-2022-flang, author = {Shah, Raj Sanjay and Chawla, Kunal and Eidnani, Dheeraj and Shah, Agam and Du, Wendi and Chava, Sudheer and Raman, Natraj and Smiley, Charese and Chen, Jiaao and Yang, Diyi }, title = {When FLUE Meets FLANG: Benchmarks and Large Pretrained Language Model for Financial Domain}, booktitle = {Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP)}, year = {2022}, publisher = {Association for Computational Linguistics} } ``` ## Contact information Please contact Raj Sanjay Shah (rajsanjayshah[at]gatech[dot]edu) or Sudheer Chava (schava6[at]gatech[dot]edu) or Diyi Yang (diyiy[at]stanford[dot]edu) about any FLANG-BERT related issues and questions. --- license: afl-3.0 ---
BKick/whisper-small_test3
BKick
2022-11-29T16:20:02Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-28T20:38:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: whisper-small_test3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small_test3 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2153 - eval_wer: 13.6949 - eval_runtime: 1589.8456 - eval_samples_per_second: 2.734 - eval_steps_per_second: 0.342 - epoch: 0.53 - step: 300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - training_steps: 1000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Alred/bart-base-finetuned-summarization-cnn-ver1.1
Alred
2022-11-29T16:17:56Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarization", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-11-29T15:02:40Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail model-index: - name: bart-base-finetuned-summarization-cnn-ver1.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-summarization-cnn-ver1.1 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.3824 - Bertscore-mean-precision: 0.8904 - Bertscore-mean-recall: 0.8610 - Bertscore-mean-f1: 0.8753 - Bertscore-median-precision: 0.8893 - Bertscore-median-recall: 0.8606 - Bertscore-median-f1: 0.8744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bertscore-mean-precision | Bertscore-mean-recall | Bertscore-mean-f1 | Bertscore-median-precision | Bertscore-median-recall | Bertscore-median-f1 | |:-------------:|:-----:|:-----:|:---------------:|:------------------------:|:---------------------:|:-----------------:|:--------------------------:|:-----------------------:|:-------------------:| | 2.4217 | 1.0 | 5742 | 2.3095 | 0.8824 | 0.8582 | 0.8700 | 0.8822 | 0.8559 | 0.8696 | | 1.7335 | 2.0 | 11484 | 2.2855 | 0.8907 | 0.8610 | 0.8754 | 0.8907 | 0.8600 | 0.8746 | | 1.3013 | 3.0 | 17226 | 2.3824 | 0.8904 | 0.8610 | 0.8753 | 0.8893 | 0.8606 | 0.8744 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
dulleto/sfe
dulleto
2022-11-29T16:11:29Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-11-29T16:11:29Z
--- license: bigscience-openrail-m ---
kejian/debug-pt-conditional
kejian
2022-11-29T15:03:05Z
1
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-11-29T14:52:56Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: debug-pt-conditional results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debug-pt-conditional This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0008 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.1, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0}, 'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'is_split_by_sentences': True}, 'generation': {'batch_size': 64, 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 128, 'prefix': '<|aligned|>', 'use_prompt_for_scoring': False}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_samples': 128, 'prefix': '<|aligned|>', 'prompt_before_control': True, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>'}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'num_additional_tokens': 2, 'path_or_name': 'codeparrot/codeparrot-small'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'debug-pt-conditional', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0008, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 8, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 10, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/3my099dp
MatiasTamayo/videomae-base-finetuned-ucf101-subset
MatiasTamayo
2022-11-29T14:58:07Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2022-11-29T14:52:15Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 148 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
KPEKEP/rugpt_chitchat
KPEKEP
2022-11-29T14:48:36Z
42
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "PyTorch", "Transformers", "ru", "license:unlicense", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-29T14:48:34Z
--- pipeline_tag: text-generation tags: - PyTorch - Transformers - gpt2 license: unlicense language: ru widget: - text: >- - У Джульетты было 7 пончиков, а потом она 3 съела. Сколько у нее осталось пончиков? - - text: >- - Поглажено 4 манула. Осталось погладить 6. Сколько всего манулов надо погладить? - - text: '- Для начала скажи, чему равно пятью девять? -' - text: '- ты чё такой борзый? -' - text: '- Привет! Как ваше ничего? -' duplicated_from: inkoziev/rugpt_chitchat --- ## Russian Chit-chat, Deductive and Common Sense reasoning model Модель является ядром прототипа [диалоговой системы](https://github.com/Koziev/chatbot) с двумя основными функциями. Первая функция - **генерация реплик чит-чата**. В качестве затравки подается история диалога (предшествующие несколько реплик, от 1 до 10). ``` - Привет, как дела? - Привет, так себе. - <<< эту реплику ожидаем от модели >>> ``` Вторая функция модели - вывод ответа на заданный вопрос, опираясь на дополнительные факты или на "здравый смысл". Предполагается, что релевантные факты извлекаются из стороннего хранилища (базы знаний) с помощью другой модели, например [sbert_pq](https://huggingface.co/inkoziev/sbert_pq). Используя указанный факт(ы) и текст вопроса, модель построит грамматичный и максимально краткий ответ, как это сделал бы человек в подобной коммуникативной ситуации. Релевантные факты следует указывать перед текстом заданного вопроса так, будто сам собеседник сказал их: ``` - Сегодня 15 сентября. Какой сейчас у нас месяц? - Сентябрь ``` Модель не ожидает, что все найденные и добавленные в контекст диалога факты действительно имеют отношение к заданному вопросу. Поэтому модель, извлекающая из базы знаний информацию, может жертвовать точностью в пользу полноте и добавлять что-то лишнее. Модель читчата в этом случае сама выберет среди добавленных в контекст фактов необходимую фактуру и проигнорирует лишнее. Текущая версия модели допускает до 5 фактов перед вопросом. Например: ``` - Стасу 16 лет. Стас живет в Подольске. У Стаса нет своей машины. Где живет Стас? - в Подольске ``` В некоторых случаях модель может выполнять **силлогический вывод** ответа, опираясь на 2 предпосылки, связанные друг с другом. Выводимое из двух предпосылок следствие не фигурирует явно, а *как бы* используется для вывода ответа: ``` - Смертен ли Аристофан, если он был греческим философом, а все философы смертны? - Да ``` Как можно видеть из приведенных примеров, формат подаваемой на вход модели фактической информации для выполнения вывода предельно естественный и свободный. Кроме логического вывода, модель также умеет решать простые арифметические задачи в рамках 1-2 классов начальной школы, с двумя числовыми аргументами: ``` - Чему равно 2+8? - 10 ``` ### Варианты модели и метрики Выложенная на данный момент модель имеет 760 млн. параметров, т.е. уровня sberbank-ai/rugpt3large_based_on_gpt2. Далее приводится результат замера точности решения арифметических задач на отложенном тестовом наборе сэмплов: | base model | arith. accuracy | | --------------------------------------- | --------------- | | sberbank-ai/rugpt3large_based_on_gpt2 | 0.91 | | sberbank-ai/rugpt3medium_based_on_gpt2 | 0.70 | | sberbank-ai/rugpt3small_based_on_gpt2 | 0.58 | | tinkoff-ai/ruDialoGPT-small | 0.44 | | tinkoff-ai/ruDialoGPT-medium | 0.69 | Цифра 0.91 в столбце "arith. accuracy" означает, что 91% тестовых задач решено полностью верно. Любое отклонение сгенерированного ответа от эталонного рассматривается как ошибка. Например, выдача ответа "120" вместо "119" тоже фиксируется как ошибка. ### Пример использования ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "inkoziev/rugpt_chitchat" tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.add_special_tokens({'bos_token': '<s>', 'eos_token': '</s>', 'pad_token': '<pad>'}) model = AutoModelForCausalLM.from_pretrained(model_name) model.to(device) model.eval() # На вход модели подаем последние 2-3 реплики диалога. Каждая реплика на отдельной строке, начинается с символа "-" input_text = """<s>- Привет! Что делаешь? - Привет :) В такси еду -""" encoded_prompt = tokenizer.encode(input_text, add_special_tokens=False, return_tensors="pt").to(device) output_sequences = model.generate(input_ids=encoded_prompt, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.pad_token_id) text = tokenizer.decode(output_sequences[0].tolist(), clean_up_tokenization_spaces=True)[len(input_text)+1:] text = text[: text.find('</s>')] print(text) ``` ### Контакты Если у Вас есть какие-то вопросы по использованию этой модели, или предложения по ее улучшению - пишите мне mentalcomputing@gmail.com ### Citation: ``` @MISC{rugpt_chitchat, author = {Ilya Koziev}, title = {Russian Chit-chat with Common sence Reasoning}, url = {https://huggingface.co/inkoziev/rugpt_chitchat}, year = 2022 } ```
mzhou08/t5-base-finetuned-qg-medium-hard-qns
mzhou08
2022-11-29T14:09:43Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T13:37:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-base-finetuned-qg-medium-hard-qns results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-qg-medium-hard-qns This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5919 - Rouge1: 38.6117 - Rouge2: 21.3082 - Rougel: 35.7294 - Rougelsum: 35.4192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 1.0 | 73 | 1.8640 | 31.2085 | 11.6418 | 26.1137 | 26.2911 | | No log | 2.0 | 146 | 1.6488 | 29.6798 | 10.9223 | 26.7442 | 26.9736 | | No log | 3.0 | 219 | 1.6045 | 33.6703 | 11.7038 | 30.167 | 29.9192 | | No log | 4.0 | 292 | 1.5812 | 36.6758 | 17.748 | 33.739 | 33.4974 | | No log | 5.0 | 365 | 1.5879 | 33.3704 | 16.4099 | 31.7658 | 31.3874 | | No log | 6.0 | 438 | 1.5786 | 34.1216 | 14.9588 | 30.9584 | 30.9277 | | 1.7533 | 7.0 | 511 | 1.5804 | 34.8267 | 15.7046 | 32.0877 | 31.9317 | | 1.7533 | 8.0 | 584 | 1.5861 | 33.2539 | 12.728 | 30.551 | 30.2299 | | 1.7533 | 9.0 | 657 | 1.5911 | 38.4406 | 20.5922 | 36.4267 | 36.0426 | | 1.7533 | 10.0 | 730 | 1.5827 | 33.3421 | 16.0455 | 29.974 | 29.5357 | | 1.7533 | 11.0 | 803 | 1.5834 | 42.3363 | 24.6712 | 40.4291 | 40.0842 | | 1.7533 | 12.0 | 876 | 1.5889 | 33.268 | 15.5319 | 30.6942 | 30.4347 | | 1.7533 | 13.0 | 949 | 1.5911 | 42.1265 | 23.1983 | 39.5768 | 39.2304 | | 1.2341 | 14.0 | 1022 | 1.5926 | 35.0279 | 15.825 | 32.0736 | 32.0093 | | 1.2341 | 15.0 | 1095 | 1.5912 | 38.362 | 17.6108 | 35.3148 | 35.0558 | | 1.2341 | 16.0 | 1168 | 1.5919 | 38.6117 | 21.3082 | 35.7294 | 35.4192 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Samael98/roberta-base-bne-finetuned-amazon_reviews_multi
Samael98
2022-11-29T14:08:39Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T13:46:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi config: es split: train args: es metrics: - name: Accuracy type: accuracy value: 0.93375 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2313 - Accuracy: 0.9337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1864 | 1.0 | 1250 | 0.2209 | 0.9317 | | 0.1063 | 2.0 | 2500 | 0.2313 | 0.9337 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
oskrmiguel/roberta-base-bne-clasificacion-de-texto-supervisado
oskrmiguel
2022-11-29T14:05:15Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T13:42:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: roberta-base-bne-clasificacion-de-texto-supervisado results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi config: es split: train args: es metrics: - name: Accuracy type: accuracy value: 0.9335 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-clasificacion-de-texto-supervisado This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2263 - Accuracy: 0.9335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1934 | 1.0 | 1250 | 0.1700 | 0.9327 | | 0.1031 | 2.0 | 2500 | 0.2263 | 0.9335 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
yesyesjaewook/jets-jaewook-ukten-ko
yesyesjaewook
2022-11-29T14:02:17Z
6
0
espnet
[ "espnet", "audio", "text-to-speech", "ko", "dataset:Jaewook-Ukten", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-11-27T13:55:18Z
--- tags: - espnet - audio - text-to-speech language: ko datasets: - Jaewook-Ukten license: cc-by-4.0 --- ## ESPnet2 TTS model ### yesyesjaewook/jets-jaewook-ukten-ko This model was trained by yesyesjaewook using jaewook_ukten recipe in [espnet](https://github.com/espnet/espnet/). ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
thliang01/sd-class-butterflies-32
thliang01
2022-11-29T13:42:36Z
35
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T13:42:21Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(thliang01/sd-class-butterflies-32) image = pipeline().images[0] image ```
kaizerkam/sd-class-comics-64
kaizerkam
2022-11-29T13:26:50Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T13:25:39Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of comic scenes. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(kaizerkam/sd-class-comics-64) image = pipeline().images[0] image ```
shivammehta25/sd-class-butterflies-32
shivammehta25
2022-11-29T12:46:27Z
35
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T12:46:12Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(shivammehta007/sd-class-butterflies-32) image = pipeline().images[0] image ```
pig4431/rtm_roBERTa_5E
pig4431
2022-11-29T12:34:52Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:rotten_tomatoes", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T11:02:18Z
--- license: mit tags: - generated_from_trainer datasets: - rotten_tomatoes metrics: - accuracy model-index: - name: rtm_roBERTa_5E results: - task: name: Text Classification type: text-classification dataset: name: rotten_tomatoes type: rotten_tomatoes config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rtm_roBERTa_5E This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the rotten_tomatoes dataset. It achieves the following results on the evaluation set: - Loss: 0.6545 - Accuracy: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6955 | 0.09 | 50 | 0.6752 | 0.7867 | | 0.5362 | 0.19 | 100 | 0.4314 | 0.8333 | | 0.4065 | 0.28 | 150 | 0.4476 | 0.8533 | | 0.3563 | 0.37 | 200 | 0.3454 | 0.8467 | | 0.3729 | 0.47 | 250 | 0.3421 | 0.86 | | 0.3355 | 0.56 | 300 | 0.3253 | 0.8467 | | 0.338 | 0.66 | 350 | 0.3859 | 0.8733 | | 0.2875 | 0.75 | 400 | 0.3537 | 0.8533 | | 0.3477 | 0.84 | 450 | 0.3636 | 0.8467 | | 0.3259 | 0.94 | 500 | 0.3115 | 0.88 | | 0.3204 | 1.03 | 550 | 0.4295 | 0.8333 | | 0.2673 | 1.12 | 600 | 0.3369 | 0.88 | | 0.2479 | 1.22 | 650 | 0.3620 | 0.8667 | | 0.2821 | 1.31 | 700 | 0.3582 | 0.8733 | | 0.2355 | 1.4 | 750 | 0.3130 | 0.8867 | | 0.2357 | 1.5 | 800 | 0.3229 | 0.86 | | 0.2725 | 1.59 | 850 | 0.3035 | 0.88 | | 0.2425 | 1.69 | 900 | 0.3146 | 0.8533 | | 0.1977 | 1.78 | 950 | 0.4079 | 0.86 | | 0.2557 | 1.87 | 1000 | 0.4132 | 0.8733 | | 0.2395 | 1.97 | 1050 | 0.3336 | 0.86 | | 0.1951 | 2.06 | 1100 | 0.5068 | 0.84 | | 0.1631 | 2.15 | 1150 | 0.5209 | 0.8867 | | 0.2192 | 2.25 | 1200 | 0.4766 | 0.8733 | | 0.1725 | 2.34 | 1250 | 0.3962 | 0.8667 | | 0.2215 | 2.43 | 1300 | 0.4133 | 0.8867 | | 0.1602 | 2.53 | 1350 | 0.5564 | 0.8533 | | 0.1986 | 2.62 | 1400 | 0.5826 | 0.86 | | 0.1972 | 2.72 | 1450 | 0.5412 | 0.8667 | | 0.2299 | 2.81 | 1500 | 0.4636 | 0.8733 | | 0.2028 | 2.9 | 1550 | 0.5096 | 0.8667 | | 0.2591 | 3.0 | 1600 | 0.3790 | 0.8467 | | 0.1197 | 3.09 | 1650 | 0.5704 | 0.8467 | | 0.174 | 3.18 | 1700 | 0.5904 | 0.8467 | | 0.1499 | 3.28 | 1750 | 0.6066 | 0.86 | | 0.1687 | 3.37 | 1800 | 0.6353 | 0.8533 | | 0.1463 | 3.46 | 1850 | 0.6434 | 0.8467 | | 0.1373 | 3.56 | 1900 | 0.6507 | 0.8533 | | 0.1339 | 3.65 | 1950 | 0.6014 | 0.86 | | 0.1488 | 3.75 | 2000 | 0.7245 | 0.84 | | 0.1725 | 3.84 | 2050 | 0.6214 | 0.86 | | 0.1443 | 3.93 | 2100 | 0.6446 | 0.8533 | | 0.1619 | 4.03 | 2150 | 0.6223 | 0.8533 | | 0.1153 | 4.12 | 2200 | 0.6579 | 0.8333 | | 0.1159 | 4.21 | 2250 | 0.6760 | 0.8667 | | 0.0948 | 4.31 | 2300 | 0.7172 | 0.8467 | | 0.1373 | 4.4 | 2350 | 0.7346 | 0.8467 | | 0.1463 | 4.49 | 2400 | 0.6453 | 0.8533 | | 0.0758 | 4.59 | 2450 | 0.6579 | 0.86 | | 0.16 | 4.68 | 2500 | 0.6556 | 0.8667 | | 0.112 | 4.78 | 2550 | 0.6490 | 0.88 | | 0.1151 | 4.87 | 2600 | 0.6525 | 0.8667 | | 0.2152 | 4.96 | 2650 | 0.6545 | 0.8667 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
AlekseyKorshuk/125m-dalio-book-handwritten-io-constant-1e-6-v2
AlekseyKorshuk
2022-11-29T12:29:49Z
125
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "dataset:AlekseyKorshuk/dalio-book-handwritten-io-sorted-v2", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-29T10:31:18Z
--- license: other tags: - generated_from_trainer datasets: - AlekseyKorshuk/dalio-book-handwritten-io-sorted-v2 metrics: - accuracy model-index: - name: 125m-dalio-book-handwritten-io-constant-1e-6-v2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/dalio-book-handwritten-io-sorted-v2 type: AlekseyKorshuk/dalio-book-handwritten-io-sorted-v2 metrics: - name: Accuracy type: accuracy value: 0.23359387091781458 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 125m-dalio-book-handwritten-io-constant-1e-6-v2 This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the AlekseyKorshuk/dalio-book-handwritten-io-sorted-v2 dataset. It achieves the following results on the evaluation set: - Loss: 3.0859 - Accuracy: 0.2336 - Perplexity: 21.8880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:| | 3.3352 | 0.01 | 1 | 3.1738 | 0.2305 | 23.8988 | | 3.3091 | 0.03 | 2 | 3.1738 | 0.2305 | 23.8988 | | 3.3347 | 0.04 | 3 | 3.1738 | 0.2305 | 23.8988 | | 3.1445 | 0.05 | 4 | 3.1738 | 0.2305 | 23.8988 | | 2.8918 | 0.07 | 5 | 3.1738 | 0.2305 | 23.8988 | | 3.2068 | 0.08 | 6 | 3.1738 | 0.2305 | 23.8988 | | 3.6245 | 0.09 | 7 | 3.1719 | 0.2305 | 23.8522 | | 3.2256 | 0.11 | 8 | 3.1719 | 0.2305 | 23.8522 | | 2.9991 | 0.12 | 9 | 3.1699 | 0.2305 | 23.8056 | | 3.3257 | 0.13 | 10 | 3.1680 | 0.2306 | 23.7592 | | 3.1199 | 0.15 | 11 | 3.1660 | 0.2306 | 23.7128 | | 3.3735 | 0.16 | 12 | 3.1660 | 0.2306 | 23.7128 | | 3.0051 | 0.17 | 13 | 3.1641 | 0.2307 | 23.6665 | | 3.2695 | 0.19 | 14 | 3.1621 | 0.2308 | 23.6204 | | 3.2004 | 0.2 | 15 | 3.1602 | 0.2309 | 23.5743 | | 3.2075 | 0.21 | 16 | 3.1582 | 0.2308 | 23.5283 | | 3.321 | 0.23 | 17 | 3.1562 | 0.2308 | 23.4824 | | 3.4026 | 0.24 | 18 | 3.1543 | 0.2309 | 23.4366 | | 3.0383 | 0.25 | 19 | 3.1523 | 0.2309 | 23.3908 | | 3.166 | 0.27 | 20 | 3.1504 | 0.2309 | 23.3452 | | 3.144 | 0.28 | 21 | 3.1484 | 0.2310 | 23.2996 | | 3.1624 | 0.29 | 22 | 3.1484 | 0.2310 | 23.2996 | | 3.0332 | 0.31 | 23 | 3.1465 | 0.2310 | 23.2542 | | 3.3745 | 0.32 | 24 | 3.1445 | 0.2311 | 23.2088 | | 3.0823 | 0.33 | 25 | 3.1426 | 0.2312 | 23.1635 | | 3.6021 | 0.35 | 26 | 3.1406 | 0.2312 | 23.1183 | | 3.1125 | 0.36 | 27 | 3.1387 | 0.2313 | 23.0732 | | 3.1406 | 0.37 | 28 | 3.1387 | 0.2314 | 23.0732 | | 3.1736 | 0.39 | 29 | 3.1367 | 0.2314 | 23.0282 | | 3.1104 | 0.4 | 30 | 3.1348 | 0.2315 | 22.9832 | | 3.1301 | 0.41 | 31 | 3.1328 | 0.2316 | 22.9384 | | 3.3376 | 0.43 | 32 | 3.1309 | 0.2315 | 22.8936 | | 3.218 | 0.44 | 33 | 3.1309 | 0.2316 | 22.8936 | | 3.0786 | 0.45 | 34 | 3.1289 | 0.2316 | 22.8490 | | 3.0125 | 0.47 | 35 | 3.1270 | 0.2317 | 22.8044 | | 3.2634 | 0.48 | 36 | 3.1270 | 0.2317 | 22.8044 | | 2.9888 | 0.49 | 37 | 3.125 | 0.2318 | 22.7599 | | 3.1624 | 0.51 | 38 | 3.1230 | 0.2318 | 22.7155 | | 2.9807 | 0.52 | 39 | 3.1211 | 0.2319 | 22.6712 | | 3.446 | 0.53 | 40 | 3.1211 | 0.2319 | 22.6712 | | 3.1338 | 0.55 | 41 | 3.1191 | 0.2320 | 22.6269 | | 3.1841 | 0.56 | 42 | 3.1191 | 0.2320 | 22.6269 | | 3.1079 | 0.57 | 43 | 3.1172 | 0.2320 | 22.5828 | | 3.0918 | 0.59 | 44 | 3.1152 | 0.2321 | 22.5387 | | 3.0302 | 0.6 | 45 | 3.1152 | 0.2322 | 22.5387 | | 3.1123 | 0.61 | 46 | 3.1133 | 0.2323 | 22.4947 | | 2.9985 | 0.63 | 47 | 3.1113 | 0.2324 | 22.4508 | | 3.3816 | 0.64 | 48 | 3.1113 | 0.2324 | 22.4508 | | 3.0813 | 0.65 | 49 | 3.1094 | 0.2324 | 22.4070 | | 3.2024 | 0.67 | 50 | 3.1094 | 0.2325 | 22.4070 | | 3.0178 | 0.68 | 51 | 3.1074 | 0.2325 | 22.3633 | | 3.1646 | 0.69 | 52 | 3.1074 | 0.2326 | 22.3633 | | 3.0046 | 0.71 | 53 | 3.1055 | 0.2327 | 22.3197 | | 3.0266 | 0.72 | 54 | 3.1055 | 0.2327 | 22.3197 | | 3.3857 | 0.73 | 55 | 3.1035 | 0.2327 | 22.2761 | | 3.064 | 0.75 | 56 | 3.1035 | 0.2328 | 22.2761 | | 3.176 | 0.76 | 57 | 3.1016 | 0.2328 | 22.2327 | | 3.1851 | 0.77 | 58 | 3.1016 | 0.2329 | 22.2327 | | 3.0811 | 0.79 | 59 | 3.0996 | 0.2329 | 22.1893 | | 3.0205 | 0.8 | 60 | 3.0996 | 0.2330 | 22.1893 | | 3.26 | 0.81 | 61 | 3.0977 | 0.2330 | 22.1460 | | 3.2922 | 0.83 | 62 | 3.0977 | 0.2331 | 22.1460 | | 3.5349 | 0.84 | 63 | 3.0957 | 0.2331 | 22.1028 | | 3.3525 | 0.85 | 64 | 3.0957 | 0.2331 | 22.1028 | | 3.135 | 0.87 | 65 | 3.0938 | 0.2331 | 22.0596 | | 3.1707 | 0.88 | 66 | 3.0938 | 0.2332 | 22.0596 | | 3.0127 | 0.89 | 67 | 3.0918 | 0.2332 | 22.0166 | | 3.0952 | 0.91 | 68 | 3.0918 | 0.2332 | 22.0166 | | 3.1023 | 0.92 | 69 | 3.0898 | 0.2334 | 21.9736 | | 3.3821 | 0.93 | 70 | 3.0898 | 0.2334 | 21.9736 | | 3.1118 | 0.95 | 71 | 3.0879 | 0.2334 | 21.9308 | | 3.1143 | 0.96 | 72 | 3.0879 | 0.2335 | 21.9308 | | 3.1118 | 0.97 | 73 | 3.0879 | 0.2335 | 21.9308 | | 3.0596 | 0.99 | 74 | 3.0859 | 0.2336 | 21.8880 | | 3.1033 | 1.0 | 75 | 3.0859 | 0.2336 | 21.8880 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nlp-tlp/mwo-ner
nlp-tlp
2022-11-29T12:00:39Z
4
3
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:mwo_ner", "region:us" ]
token-classification
2022-11-29T11:58:19Z
--- tags: - flair - token-classification - sequence-tagger-model language: en datasets: - mwo_ner widget: - text: "replace seal on pump" --- ## MWO NER Test A flair-based NER model for MWOs. There are three classes: `Item`, `Activity`, and `Observation`.
clp/segformer-b0-scene-parse-150
clp
2022-11-29T11:47:29Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "license:other", "endpoints_compatible", "region:us" ]
null
2022-11-28T15:53:44Z
--- license: other tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 2.3118 - Mean Iou: 0.0859 - Mean Accuracy: 0.1493 - Overall Accuracy: 0.5430 - Per Category Iou: [0.4898642376841085, 0.502026813829342, 0.9487341030299479, 0.44331193050176815, 0.28502594514455154, 0.5132976114794296, 0.8390207156308851, 0.0, 0.30530825819472024, 0.0, 0.06594624784212842, 0.0, 0.03397963180571876, 0.0, 0.0007459827819109256, 0.0, nan, 0.04554975143210437, 0.0, 0.07792795056021705, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] - Per Category Accuracy: [0.8215553632658342, 0.819071257846768, 0.9731147245348802, 0.8672811704363634, 0.9004683840749415, 0.594073476114797, 0.9732440887086908, 0.0, 0.40956851614311834, 0.0, 0.5229850345614389, 0.0, 0.034648027958062905, nan, 0.0007464041475862904, 0.0, nan, 0.0476077438413251, 0.0, 0.5009150608246313, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.2849 | 1.0 | 20 | 4.2070 | 0.0194 | 0.0679 | 0.3746 | [0.3949829725229674, 0.4135772915291814, 0.0, 0.26980840849544657, 0.1282559786684443, 0.15076540186066723, 0.00908901592761032, 0.0, 0.013565775517419566, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0003970617431010522, 0.008885447023579041, 0.0, 0.0, 0.0, 0.005040122024006897, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.002655312914892643, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9524952286989713, 0.755535418800725, 0.0, 0.48244304323326054, 0.9011709601873537, 0.16045676614279827, 0.011822582618269517, 0.0, 0.013613165579542043, 0.0, 0.0, 0.0, 0.0, nan, 0.0004034617013979948, 0.07362999240057418, nan, 0.0, 0.0, 0.04090860157175153, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0034295175023651846, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.7699 | 2.0 | 40 | 3.9727 | 0.0380 | 0.1002 | 0.4224 | [0.43442101571739283, 0.35923049538654755, 0.6190543160517142, 0.3355717837774341, 0.10588647687723779, 0.31387526278906797, 0.038367652125468235, 0.0, 0.04485789722234148, 0.0, 0.07154189015637985, 0.0, 0.0, 0.0, 0.004233122680308957, 0.0003664849512116909, 0.0, 0.0, 0.0, 0.0284352014981458, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0007874615794955165, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9416870188264217, 0.6175399889685604, 0.926106819752938, 0.704992945957396, 0.9903981264637002, 0.35779874372493126, 0.04573495744569302, 0.0, 0.045626483993340794, 0.0, 0.12710556338500772, 0.0, 0.0, nan, 0.004256520949748845, 0.0013510090348729208, nan, 0.0, 0.0, 0.24846592744105933, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0009165089877010407, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.7161 | 3.0 | 60 | 3.6079 | 0.0535 | 0.1182 | 0.4695 | [0.46147636301683304, 0.42190388170055454, 0.5905298672673311, 0.34255470866251286, 0.10127362853686882, 0.2992112324204293, 0.616176968407381, 0.0, 0.031915928772988225, 0.0, 0.05093061049274829, 0.0, 0.0, 0.0, 0.006854943777434808, 0.021351935880581825, nan, 0.0002887139107611549, 0.0, 0.052485352485352486, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9419053665006146, 0.7625719013474116, 0.9179916443749813, 0.6481040461001222, 1.0, 0.32631618778537375, 0.779355481379214, 0.0, 0.03222619469992631, 0.0, 0.11146902892423327, 0.0, 0.0, nan, 0.006899195093905711, 0.08502913113231444, nan, 0.00029013029487788154, 0.0, 0.2989557541177737, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.8074 | 4.0 | 80 | 3.4130 | 0.0568 | 0.1189 | 0.4832 | [0.475136642179407, 0.45819879963242616, 0.6245854607342572, 0.31596148184808626, 0.12156252316359054, 0.31925064356714705, 0.5921768947963801, 0.0, 0.052846247434062785, 0.0, 0.03856766297226889, 0.0, 0.0, 0.0, 0.005636392708666453, 0.0001625685836212152, nan, 0.0, 0.0, 0.06471839249046642, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9399179983179142, 0.8159062852940404, 0.9651498301824412, 0.6092060397412009, 0.9601873536299765, 0.35716808354986, 0.8782527393788994, 0.0, 0.05381949182609645, 0.0, 0.16790819408093416, 0.0, 0.0, nan, 0.005688809989711727, 0.0003377522587182302, nan, 0.0, 0.0, 0.19000968887931963, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.3666 | 5.0 | 100 | 3.4479 | 0.0696 | 0.1338 | 0.5077 | [0.46280186689480507, 0.47811968526761967, 0.6189516129032258, 0.39204509433188267, 0.12150226270680849, 0.48382140822535485, 0.7870309951060359, 0.0, 0.09098262661206216, 0.0, 0.02553216306059369, 0.0, 0.0, 0.0, 0.007265179034769071, 0.008072378426861131, nan, 0.0, 0.0, 0.140759523528718, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.7732317881865821, 0.8144485593465185, 0.9596345165459409, 0.8648009443779486, 0.977751756440281, 0.6712873035493555, 0.8431345135527166, 0.0, 0.0976174231052646, 0.0, 0.1469028924233273, 0.0, 0.0, nan, 0.007343002965443505, 0.01747867938866841, nan, 0.0, 0.0, 0.5139412207987942, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.8715 | 6.0 | 120 | 3.2604 | 0.0728 | 0.1299 | 0.5149 | [0.50879365259482, 0.4533002292169846, 0.900409470239023, 0.35700422307361396, 0.15217811822965027, 0.47367637662639406, 0.6628619419365922, 0.0, 0.12773258835090318, 0.0, 0.05044635946127251, 0.0, 0.0, 0.0, 0.0007838250663236595, 0.025494428563094335, nan, 0.0005788864330070519, 0.0, 0.07236342520212623, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9246377045998577, 0.7931605074462217, 0.9550359171650987, 0.7270640786762256, 0.9211943793911007, 0.548577651085156, 0.9103650757588997, 0.0, 0.13551486040228158, 0.0, 0.3280316757264613, 0.0, 0.0, nan, 0.0007867503177260898, 0.0737988685299333, nan, 0.0005802605897557631, 0.0, 0.17439982775325655, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.4302 | 7.0 | 140 | 3.1432 | 0.0594 | 0.1213 | 0.4632 | [0.45221752264588605, 0.37219674969901695, 0.605783851771199, 0.3125698077576481, 0.12471020243040969, 0.42464017248412095, 0.6040006848533273, 0.0, 0.06926821236351662, 0.0, 0.0440532531292848, 0.0, 0.0, 0.0, 0.0, 0.0015676977784575383, nan, 0.0, 0.0, 0.07605052848672338, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8683060263958077, 0.618740314658682, 0.9698987105888011, 0.6848796699612953, 0.9385245901639344, 0.4902163584840611, 0.9247741213890005, 0.0, 0.07348052727818565, 0.0, 0.3342057580028186, 0.0, 0.0, nan, 0.0, 0.0034619606518618592, nan, 0.0, 0.0, 0.15878996662719347, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.4766 | 8.0 | 160 | 3.0017 | 0.0731 | 0.1267 | 0.5143 | [0.4688651010981108, 0.44508907466943504, 0.8341699394002445, 0.3667585998450989, 0.15656454924159374, 0.5731453244361243, 0.7303214047877747, 0.0, 0.10742113264918282, 0.0, 0.027347890608437567, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.008315844700944387, 0.0, 0.08233957978421351, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8567558387785469, 0.7443437606702913, 0.9639926662859547, 0.798571093643958, 0.9197892271662763, 0.7182714865921647, 0.9103650757588997, 0.0, 0.1110722960617887, 0.0, 0.20777129051741494, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.008361027588753494, 0.0, 0.09365916675637852, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.7613 | 9.0 | 180 | 2.9787 | 0.0675 | 0.1268 | 0.4974 | [0.4946951488018788, 0.43475820007042393, 0.8041630056802009, 0.27142083984459003, 0.13245957905008665, 0.563133587635599, 0.5246769633385517, 0.0, 0.17340080548145823, 0.0, 0.02205332499422154, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.014390357940672243, 0.0, 0.14129719051799824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.872157436760044, 0.6875055813831324, 0.976556160019236, 0.6229562813884331, 0.9218969555035129, 0.6597924707583899, 0.981047167997763, 0.0, 0.21715018694904614, 0.0, 0.10885175491577746, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.014612016669304215, 0.0, 0.2772096027559479, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.423 | 10.0 | 200 | 2.8971 | 0.0705 | 0.1221 | 0.4786 | [0.45285400219846106, 0.292995708500935, 0.8659067385015526, 0.41603214969939956, 0.1778944797264289, 0.46283203885294827, 0.9158788235968208, 0.0, 0.11377199379602905, 0.0, 0.02756293067079173, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.006541312879973321, 0.0, 0.006434223111033823, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.916192906126674, 0.4576313923252699, 0.9806287758107661, 0.9056938257589779, 0.8528103044496487, 0.524885850508312, 0.9777179706751018, 0.0, 0.12091918888676619, 0.0, 0.35514395007046506, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.006725747744896344, 0.0, 0.0079664118850253, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.9947 | 11.0 | 220 | 2.7385 | 0.0643 | 0.1201 | 0.4760 | [0.4625717328755147, 0.37213716519109774, 0.8277628134602982, 0.2659240653368483, 0.15398480224484362, 0.527751424867652, 0.4902700616280028, 0.0, 0.17549662897009846, 0.0, 0.03796166432912576, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.02023508790019075, 0.0, 0.007948046912862267, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8824581904638675, 0.5921939432143514, 0.9836945087313276, 0.5800315066859162, 0.8803278688524591, 0.6127788569074106, 0.987792943150242, 0.0, 0.21227040746704512, 0.0, 0.24521844171532112, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.020704752861739728, 0.0, 0.00882764560232533, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.5021 | 12.0 | 240 | 2.7417 | 0.0718 | 0.1267 | 0.4906 | [0.45723768505572465, 0.38457056157271563, 0.9111909002931318, 0.36509902170864206, 0.1882208839440645, 0.5653003453339632, 0.7384534282231228, 0.0, 0.13432339471333826, 0.0, 0.03152366835052954, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.025990476413877226, 0.0, 0.002576370997423629, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8224813191434301, 0.6344469834265752, 0.9763307384809594, 0.7870090448044816, 0.8637002341920375, 0.6490165905670056, 0.979220915398193, 0.0, 0.1543298490761715, 0.0, 0.43386349909402055, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.02922403333860843, 0.0, 0.003014318010550113, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.1942 | 13.0 | 260 | 2.7584 | 0.0676 | 0.1218 | 0.4845 | [0.4504119105257257, 0.40036808030610466, 0.8516919118998241, 0.32959773438753465, 0.1681251367315686, 0.4346956386731514, 0.658089415906469, 0.0, 0.1361765416368657, 0.0, 0.04049711603766891, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.04199944918755164, 0.0, 0.004621848739495798, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8772097593323414, 0.657665537257374, 0.9751284902768177, 0.726665103671804, 0.8998829039812647, 0.5061762653145313, 0.9669789063455724, 0.0, 0.15692803144018996, 0.0, 0.26810281189181934, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.048267130875138474, 0.0, 0.007105178167725266, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.9015 | 14.0 | 280 | 2.7956 | 0.0691 | 0.1297 | 0.4652 | [0.46908042480668444, 0.3684401690587303, 0.9327478223310057, 0.2938101507593599, 0.13839169684473168, 0.5286547501595961, 0.573426750047988, 0.0, 0.23750374988851683, 0.0, 0.03078130611368424, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.020949198194378633, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.6516060684479524, 0.6154624011766869, 0.9735805957139851, 0.6516989342842923, 0.9352459016393443, 0.7659788266357223, 0.9919347791894584, 0.0, 0.3197838486940859, 0.0, 0.55794913093081, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.022155404336129135, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.1112 | 15.0 | 300 | 2.5442 | 0.0756 | 0.1348 | 0.5229 | [0.49677059303217863, 0.4302482870914963, 0.8032426287041843, 0.4219673428099668, 0.16821276689509287, 0.500942291040595, 0.8748079268775643, 0.0, 0.2223202963773341, 0.0, 0.05334747004087555, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.03619629085567389, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8350302451963512, 0.7176240380322013, 0.9768266658651679, 0.8819116249799485, 0.8939110070257611, 0.6202542821825887, 0.9651002254417085, 0.0, 0.2928358942168609, 0.0, 0.5132541440171801, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.041594134092947196, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.3631 | 16.0 | 320 | 2.6116 | 0.0761 | 0.1291 | 0.4780 | [0.4773444435989143, 0.30408899790354993, 0.9460832250813714, 0.3578894375553185, 0.2547144028423066, 0.5841460034676791, 0.7330094544692665, 0.0, 0.23688384443079752, 0.0, 0.024772124309757743, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.03830117124478807, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.7609153619719221, 0.47736453654821004, 0.9741065793032971, 0.8099562772752886, 0.8730679156908665, 0.7620771423526147, 0.9782597298194718, 0.0, 0.29266122649491005, 0.0, 0.477484732568284, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0482143799124334, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.0519 | 17.0 | 340 | 2.5895 | 0.0709 | 0.1269 | 0.4954 | [0.48482850272259875, 0.38933025954926664, 0.874342238072808, 0.34184587293666174, 0.181434395580537, 0.4821329973241969, 0.6515304786613667, 0.0, 0.21672806399768857, 0.0, 0.04150789065390832, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.025378816152870045, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8710737853399754, 0.6431828329787513, 0.9763457665835111, 0.7269365712005857, 0.880679156908665, 0.5727151181857169, 0.9567379109068349, 0.0, 0.2620397914904069, 0.0, 0.42909871820683176, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.026902990979585376, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.1177 | 18.0 | 360 | 2.5314 | 0.0793 | 0.1292 | 0.5039 | [0.4653830828650731, 0.3945759961048446, 0.9324341886759758, 0.4001519221337092, 0.29972535127174305, 0.4581277542714083, 0.8735896186653674, 0.0, 0.21039307302160773, 0.0, 0.03642280275104697, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.05377909589287319, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8311869217830109, 0.638557507945263, 0.9703946379730095, 0.9295336105592642, 0.8817330210772834, 0.526248076486466, 0.9870764229915591, 0.0, 0.26446330613247454, 0.0, 0.3507818267230387, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.07891544020678377, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.8557 | 19.0 | 380 | 2.5372 | 0.0830 | 0.1361 | 0.5226 | [0.5031437202609337, 0.43567175985678, 0.9378157906298971, 0.3999662626976136, 0.1953096101205889, 0.5999859316277106, 0.896640684170664, 0.0, 0.2707113789325403, 0.0, 0.02527710616384589, 0.0, 0.007388916625062406, 0.0, 0.0, 0.0, nan, 0.04184551718065553, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.7330558161350844, 0.6871273605967484, 0.9623245469027081, 0.9362421490356733, 0.927400468384075, 0.7530965414595999, 0.9930882018839238, 0.0, 0.3776261564913621, 0.0, 0.3781625394268841, 0.0, 0.007388916625062406, nan, 0.0, 0.0, nan, 0.050139790051168434, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.7307 | 20.0 | 400 | 2.4994 | 0.0777 | 0.1317 | 0.5046 | [0.4800192398950199, 0.3449591461292408, 0.9396956273847639, 0.4272217614198487, 0.268896641357138, 0.4711749125273863, 0.8287388184697303, 0.0, 0.2517840493437567, 0.0, 0.04121483255095933, 0.0, 0.002596105841238143, 0.0, 0.0, 0.0, nan, 0.05892144437929143, 0.0, 0.0013361541031065582, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9018790030406936, 0.5466813752528038, 0.9659763758227886, 0.8792010628365067, 0.9206088992974238, 0.5452309477561111, 0.9900735743870257, 0.0, 0.30659643568679895, 0.0, 0.43896382793101135, 0.0, 0.002596105841238143, nan, 0.0, 0.0, nan, 0.08215962441314555, 0.0, 0.002583701151900097, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.7527 | 21.0 | 420 | 2.4304 | 0.0807 | 0.1338 | 0.5327 | [0.5015856972981559, 0.43082591968073747, 0.9418403911157535, 0.3963885377075013, 0.2506914330590364, 0.5804233460278098, 0.7429052091886804, 0.0, 0.2571854237623848, 0.0, 0.05346003315615867, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.042945515108256005, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.880929756744517, 0.7100044651065059, 0.9756544738661297, 0.8111696548660554, 0.8597189695550351, 0.6888448828233394, 0.9723877597385575, 0.0, 0.32602276138751674, 0.0, 0.4198375947922958, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0476077438413251, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.9816 | 22.0 | 440 | 2.4334 | 0.0824 | 0.1374 | 0.5165 | [0.4732090059520191, 0.48237301785754877, 0.9438233486493606, 0.36582122198257794, 0.33411702080468436, 0.5619725061466855, 0.700576076744301, 0.0, 0.28868093138237455, 0.0, 0.03287401235949254, 0.0, 0.043111067465383485, 0.0, 0.0, 0.0, nan, 0.05716521350324167, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.6924512356860969, 0.7802931211094476, 0.9692975864867301, 0.7897319463810499, 0.8819672131147541, 0.7639859404824971, 0.990388144212789, 0.0, 0.3773423214431921, 0.0, 0.5126501577075364, 0.0, 0.04383424862705941, nan, 0.0, 0.0, nan, 0.06744210581843119, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.5813 | 23.0 | 460 | 2.4229 | 0.0811 | 0.1348 | 0.5258 | [0.4807211786494602, 0.49459326575865226, 0.938036321539686, 0.39272092584681345, 0.2735519637135966, 0.47704798693133726, 0.7735578328901824, 0.0, 0.2279823899472586, 0.0, 0.051354439182700266, 0.0, 0.05645479668377418, 0.0, 0.0, 0.0, nan, 0.05121797646688442, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8175887138513295, 0.7979302918078428, 0.9741666917135042, 0.8394063910037306, 0.8898126463700234, 0.575834783851736, 0.9939882211076353, 0.0, 0.30838132147048386, 0.0, 0.4162807865243943, 0.0, 0.05711432850723914, nan, 0.0, 0.0, nan, 0.06865537796064779, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.7373 | 24.0 | 480 | 2.4194 | 0.0833 | 0.1335 | 0.5209 | [0.47295856989088453, 0.4010758246373534, 0.9478356084385722, 0.4552020300605114, 0.3144253866576763, 0.47478980784006647, 0.8815378441540047, 0.0, 0.23782469737163758, 0.0, 0.05128840994656988, 0.0, 0.03667553978112984, 0.0, 0.0, 0.0, nan, 0.059630358900921866, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9061125218347674, 0.6521419378562235, 0.9756544738661297, 0.8920422995767574, 0.8736533957845434, 0.5429942063351917, 0.9789412977752923, 0.0, 0.28675527414644797, 0.0, 0.45802295147976646, 0.0, 0.037144283574638046, nan, 0.0, 0.0, nan, 0.07029065780450493, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.855 | 25.0 | 500 | 2.3374 | 0.0807 | 0.1361 | 0.5333 | [0.48604188185600444, 0.4597550350021532, 0.9293649430223901, 0.3959473663050158, 0.17281708714356747, 0.5975194939881001, 0.7701785811214243, 0.0, 0.22781434599156117, 0.0, 0.05470044278442122, 0.0, 0.07640671273445213, 0.0, 0.0, 0.0, nan, 0.02489414513067601, 0.0, 0.0003542151604088655, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8514507989907485, 0.7234575683555275, 0.9755943614559226, 0.8506558408706704, 0.9360655737704918, 0.7097575742287026, 0.9918736128344489, 0.0, 0.29470811386152124, 0.0, 0.3656130461042883, 0.0, 0.07728407388916625, nan, 0.0, 0.0, nan, 0.02698211742364298, 0.0, 0.0007535795026375283, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.7691 | 26.0 | 520 | 2.3883 | 0.0849 | 0.1364 | 0.5267 | [0.474469192247138, 0.45106000902680193, 0.9462431454906078, 0.4263770051529127, 0.38456560427115355, 0.4726483862293509, 0.7962471970327331, 0.0, 0.26753188481254314, 0.0, 0.059773452481696854, 0.0, 0.05490234185210378, 0.0, 0.0, 0.0, nan, 0.07469007808708696, 0.0, 0.006923837784371909, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8627361389661642, 0.7402227300186484, 0.9750533497640588, 0.8430259580541537, 0.8350117096018735, 0.5468664598101293, 0.9866919487600706, 0.0, 0.34497966758549165, 0.0, 0.5166767331051607, 0.0, 0.056415376934598103, nan, 0.0, 0.0, nan, 0.08930737985968244, 0.0, 0.024868123587038434, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.1586 | 27.0 | 540 | 2.3779 | 0.0854 | 0.1406 | 0.5312 | [0.4678501563643622, 0.5013837697819475, 0.9380973066898349, 0.41811471015546997, 0.27226958694693515, 0.578128105346164, 0.8283608980534332, 0.0, 0.27534003499046283, 0.0, 0.03832732681196728, 0.0, 0.07413157384048127, 0.0, 0.0, 0.0, nan, 0.03650256622707082, 0.0, 0.012569581612497755, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.7107742446787864, 0.8174900848370236, 0.973595623816537, 0.8629253505427295, 0.8675644028103044, 0.7582805680986857, 0.9842802467625522, 0.0, 0.361654976665484, 0.0, 0.539561103281659, 0.0, 0.0762855716425362, nan, 0.0, 0.0, nan, 0.04183151342512001, 0.0, 0.037678975131876416, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.4882 | 28.0 | 560 | 2.3883 | 0.0807 | 0.1330 | 0.5090 | [0.44901952206920415, 0.39232311084385646, 0.9421616696316223, 0.42997326597550106, 0.2785992790406827, 0.44117270081577875, 0.7924737017866088, 0.0, 0.23357056159947687, 0.0, 0.07039609536324386, 0.0, 0.0980335173883561, 0.0, 0.0, 0.0, nan, 0.05874853925422288, 0.0, 0.008242107942973524, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9130976256712169, 0.6169096209912537, 0.9789606564275195, 0.8513920937138815, 0.8868852459016393, 0.4920368641894335, 0.9953251428671293, 0.0, 0.28465380311672717, 0.0, 0.42782363599758405, 0.0, 0.10104842735896155, nan, 0.0, 0.0, nan, 0.0729282059397584, 0.0, 0.027882441597588545, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.5824 | 29.0 | 580 | 2.3286 | 0.0870 | 0.1422 | 0.5448 | [0.49555070795060346, 0.47669886943444867, 0.9465301980853222, 0.429631907145671, 0.23039130181987325, 0.6139492231693006, 0.8638062252198879, 0.0, 0.2764489478441842, 0.0, 0.05525274862179587, 0.0, 0.08505129926167418, 0.0, 0.0, 0.0, nan, 0.04205075812106718, 0.0, 0.007407788466484901, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8170509316167432, 0.7459905970110051, 0.9672838207447928, 0.9195921406037273, 0.9279859484777517, 0.734681264347519, 0.9937522937383129, 0.0, 0.35889850167844767, 0.0, 0.4762096503590363, 0.0, 0.08856714927608587, nan, 0.0, 0.0, nan, 0.04776599672944031, 0.0, 0.031004413822801162, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.5912 | 30.0 | 600 | 2.2626 | 0.0859 | 0.1400 | 0.5506 | [0.49475158849729506, 0.5110290319658362, 0.9474920364634558, 0.43933854351977947, 0.264796217689892, 0.5247187330936232, 0.8601239748970084, 0.0, 0.2863141923823105, 0.0, 0.06945163324267606, 0.0, 0.021489403842345017, 0.0, 0.0, 0.0, nan, 0.03598436786276202, 0.0, 0.01033003818191328, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.851810668305622, 0.8445381241299609, 0.9700039073066634, 0.8837296347939109, 0.8984777517564403, 0.5994424964052371, 0.9760402649376977, 0.0, 0.37699298599929043, 0.0, 0.49526877390779145, 0.0, 0.021667498751872193, nan, 0.0, 0.0, nan, 0.03740043255789418, 0.0, 0.04252341479168909, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.2659 | 31.0 | 620 | 2.3314 | 0.0821 | 0.1372 | 0.5285 | [0.47959682999872194, 0.47351398814605233, 0.9477783135346806, 0.39772012056152584, 0.25233860342555997, 0.4977334076638695, 0.7849239425607517, 0.0, 0.2803309133884856, 0.0, 0.06148684892400287, 0.0, 0.026432587040142026, 0.0, 0.0, 0.0, nan, 0.04319110519813742, 0.0, 0.02313470205307962, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8421305880830692, 0.7648569852651486, 0.9747978720206787, 0.8369261649453158, 0.8970725995316159, 0.5705792823928088, 0.9824889463658447, 0.0, 0.36252285690892716, 0.0, 0.4538621569022213, 0.0, 0.02675986020968547, nan, 0.0, 0.0, nan, 0.04795062509890805, 0.0, 0.09947249434815374, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.1962 | 32.0 | 640 | 2.3454 | 0.0823 | 0.1363 | 0.5250 | [0.47474492138216845, 0.4474584311384102, 0.9481941804357362, 0.40227477381729926, 0.26351167843563283, 0.49494855699587714, 0.8014021173388096, 0.0, 0.28657288639780826, 0.0, 0.06005103430190925, 0.0, 0.032823829120125415, 0.0, 0.0, 0.0, nan, 0.04381559844824714, 0.0, 0.022763889610727093, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8467239761920166, 0.718480287868043, 0.9745273661747468, 0.8562661697988261, 0.9088992974238876, 0.5602574775274758, 0.9888851994896979, 0.0, 0.3859665402145138, 0.0, 0.3995704986242534, 0.0, 0.03344982526210684, nan, 0.0, 0.0, nan, 0.04855726117001635, 0.0, 0.09430509204435354, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.3758 | 33.0 | 660 | 2.2960 | 0.0858 | 0.1381 | 0.5521 | [0.5224921581254285, 0.5076405148598259, 0.9404880298640839, 0.40783730221277903, 0.3364309496595935, 0.5956182247041231, 0.7330045437207653, 0.0, 0.30502471233599465, 0.0, 0.054505055661064276, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.057240453824569965, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8136200426991007, 0.8610248732697712, 0.9806137477082144, 0.7981967975057892, 0.7927400468384075, 0.7251288648957729, 0.9571485992904702, 0.0, 0.429164051199476, 0.0, 0.48728273270250316, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.06187687925304637, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.1937 | 34.0 | 680 | 2.3717 | 0.0809 | 0.1382 | 0.5162 | [0.46788815264908856, 0.39713524992973664, 0.9420111667197038, 0.4486386060669676, 0.2132772688034307, 0.5013255182231519, 0.8557263450623428, 0.0, 0.27594406482049544, 0.0, 0.057764068612699365, 0.0, 0.06538386020027488, 0.0, 0.0, 0.0, nan, 0.03816454915505119, 0.0, 0.02353654837731271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8601260755644692, 0.6272187639534579, 0.9787051786841393, 0.87901597133961, 0.8968384074941452, 0.5804049679204191, 0.9841054857482393, 0.0, 0.35598373406839334, 0.0, 0.5152674317159922, 0.0, 0.06650024962556166, nan, 0.0, 0.0, nan, 0.040802869652371156, 0.0, 0.1253095058671547, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.5121 | 35.0 | 700 | 2.3246 | 0.0880 | 0.1432 | 0.5554 | [0.5131815824963825, 0.5392289711975226, 0.9466915273149031, 0.4283665694793061, 0.32593553969284017, 0.5269490633089107, 0.8233152953838795, 0.0, 0.30573839098707556, 0.0, 0.07293464323245567, 0.0, 0.021460506706408346, 0.0, 0.000403437285673942, 0.0, nan, 0.04180831826401447, 0.0, 0.0274542272735826, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8223984278967458, 0.9082735797021512, 0.9690421087433501, 0.8514702434570156, 0.8822014051522248, 0.6059761358189754, 0.9625225004805927, 0.0, 0.4246827324581753, 0.0, 0.5076840480504664, 0.0, 0.021567648527209188, nan, 0.0004034617013979948, 0.0, nan, 0.04573508466529514, 0.0, 0.15706749919259338, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.8519 | 36.0 | 720 | 2.3376 | 0.0842 | 0.1419 | 0.5225 | [0.46978904879856803, 0.4126084563774106, 0.9491212653778559, 0.4236789043334405, 0.2236540258857515, 0.5790747855376033, 0.8381056863279266, 0.0, 0.26879812193451924, 0.0, 0.04799207015708248, 0.0, 0.07114199041002055, 0.0, 0.0, 0.0, nan, 0.043645116606489995, 0.0, 0.05208707360861759, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8405111761661384, 0.6478764478764478, 0.9739112139701241, 0.8616667283638323, 0.9247072599531616, 0.6939153906309125, 0.9946435749113088, 0.0, 0.3149914030730602, 0.0, 0.46788806120394605, 0.0, 0.072591113330005, nan, 0.0, 0.0, nan, 0.05069367515957166, 0.0, 0.24986543223167187, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.4294 | 37.0 | 740 | 2.2841 | 0.0839 | 0.1441 | 0.5415 | [0.4954846291829034, 0.4962055595459022, 0.9514013206162876, 0.42174959529692424, 0.2305590278787174, 0.5754330741060775, 0.7389902340151097, 0.0, 0.28239909124140666, 0.0, 0.0626513819303892, 0.0, 0.024224519940915804, 0.0, 0.0, 0.0, nan, 0.042740019564913585, 0.0, 0.04342717990344769, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8097565019085204, 0.8020171775273817, 0.9743921132517809, 0.8144149257783098, 0.9286885245901639, 0.7055699906662294, 0.9812306670627916, 0.0, 0.39216178597745693, 0.0, 0.5068787329709415, 0.0, 0.02456315526709935, nan, 0.0, 0.0, nan, 0.04839900828190114, 0.0, 0.2188610184088707, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.459 | 38.0 | 760 | 2.3317 | 0.0867 | 0.1431 | 0.5364 | [0.48030892247498846, 0.4902823326267501, 0.9503766450743031, 0.4450063131445763, 0.2943483275663206, 0.5136606089555695, 0.8482513022217497, 0.0, 0.27528882635446444, 0.0, 0.06326279885549861, 0.0, 0.047208220240403255, 0.0, 0.0, 0.0, nan, 0.060309323519102696, 0.0, 0.03801530978390878, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8180314744128874, 0.799466813752528, 0.9745423942772985, 0.8712421284699514, 0.8964871194379391, 0.5967979280711049, 0.9761538595970011, 0.0, 0.36950956578696, 0.0, 0.5252667606200926, 0.0, 0.048627059410883675, nan, 0.0, 0.0, nan, 0.07261170016352798, 0.0, 0.2052965873613952, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.034 | 39.0 | 780 | 2.3242 | 0.0843 | 0.1413 | 0.5302 | [0.4710699494256834, 0.4498673330662481, 0.9501882167556683, 0.4472577527454994, 0.2698644793152639, 0.5192405498658997, 0.887438278016587, 0.0, 0.2855318739559738, 0.0, 0.05453332753345803, 0.0, 0.04646858256210424, 0.0, 0.0, 0.0, nan, 0.04317150187487665, 0.0, 0.04550834280940336, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8402523937374652, 0.7196412155595829, 0.9786901505815876, 0.9050768541026558, 0.8860655737704918, 0.5966465696290877, 0.9705352929868405, 0.0, 0.3564094866406485, 0.0, 0.504798335682169, 0.0, 0.04762855716425362, nan, 0.0, 0.0, nan, 0.046157092366935694, 0.0, 0.2111099149531704, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.5324 | 40.0 | 800 | 2.2868 | 0.0883 | 0.1486 | 0.5472 | [0.49940400402662244, 0.5083495805389489, 0.9490884123181207, 0.4509435293966673, 0.2786019330186559, 0.5677884018378244, 0.8314473654804562, 0.0, 0.31029173032849505, 0.0, 0.05001421201913482, 0.0, 0.028731123749754853, 0.0, 0.0, 0.0, nan, 0.040415210998567375, 0.0, 0.07729100529100529, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.7953698162644757, 0.8252252252252252, 0.9763307384809594, 0.8672153601263558, 0.8708430913348946, 0.672847136382365, 0.9752625784240052, 0.0, 0.4256706967604596, 0.0, 0.5549963089725521, 0.0, 0.029256115826260608, nan, 0.0, 0.0, nan, 0.042411774014875774, 0.0, 0.39315319194746473, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 0.9781 | 41.0 | 820 | 2.3017 | 0.0840 | 0.1446 | 0.5409 | [0.48699415491479947, 0.49647550426649484, 0.9501249433736172, 0.4438547243769686, 0.25326284487031225, 0.5011356078509064, 0.8192399537057384, 0.0, 0.2892233406202705, 0.0, 0.06541450159698718, 0.0, 0.03028817878847285, 0.0, 0.0010690872415532022, 0.0, nan, 0.04215851602023609, 0.0, 0.07201478580386807, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8351495277220676, 0.8013868095500749, 0.9770971717110998, 0.8630322922964919, 0.8975409836065574, 0.5955744473314666, 0.9772723300886038, 0.0, 0.39429600720504354, 0.0, 0.46043889671834104, 0.0, 0.030853719420868696, nan, 0.001069173508704686, 0.0, nan, 0.046157092366935694, 0.0, 0.35235224459037573, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.8622 | 42.0 | 840 | 2.2950 | 0.0857 | 0.1470 | 0.5461 | [0.4913800969050347, 0.4812997463766939, 0.9505381368926793, 0.4417351172128826, 0.27227900950187156, 0.5758524840465098, 0.8246946843046753, 0.0, 0.28934631315573683, 0.0, 0.06457821914751172, 0.0, 0.023750862323839557, 0.0, 0.0011094525356033405, 0.0, nan, 0.04595292627064958, 0.0, 0.08056667693255312, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8383843080804814, 0.7785569826386153, 0.9781791950948273, 0.8723979220394615, 0.8858313817330211, 0.6802679044423703, 0.9789150836231454, 0.0, 0.375579269124751, 0.0, 0.4660761022750151, 0.0, 0.024063904143784322, nan, 0.0011095196788444856, 0.0, nan, 0.04974415783088041, 0.0, 0.4224351383356658, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.2804 | 43.0 | 860 | 2.2951 | 0.0849 | 0.1478 | 0.5377 | [0.48451599766768166, 0.48109465504526955, 0.949467190948824, 0.45194919436160397, 0.2604415174221296, 0.49844030171455667, 0.8417267812231743, 0.0, 0.28899516544132386, 0.0, 0.07183873428904149, 0.0, 0.04780876494023904, 0.0, 0.0005042864346949068, 0.0, nan, 0.04418214972155143, 0.0, 0.07652985991644139, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8467118457656725, 0.7779371207942637, 0.9761353731477863, 0.866429749550639, 0.9076112412177986, 0.56566433742842, 0.9767655231470963, 0.0, 0.3934990857236429, 0.0, 0.48023622575666064, 0.0, 0.0491263105341987, nan, 0.0005043271267474935, 0.0, nan, 0.047291238065094686, 0.0, 0.5028528366885564, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 0.9332 | 44.0 | 880 | 2.2954 | 0.0855 | 0.1481 | 0.5415 | [0.48976540558400794, 0.4756783947143979, 0.9481545039411303, 0.4618954166858103, 0.27559142571544926, 0.5034935597610996, 0.8391252946181824, 0.0, 0.31266797442155014, 0.0, 0.06981689635173575, 0.0, 0.032793323514973, 0.0, 0.00171453929320639, 0.0, nan, 0.045068804344987855, 0.0, 0.07658063398579594, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8390959597593324, 0.7749323667691015, 0.979787202067867, 0.868362927407115, 0.8716627634660421, 0.5883681037309856, 0.9737246814980515, 0.0, 0.4419693785649955, 0.0, 0.5089591302597141, 0.0, 0.03334997503744384, nan, 0.001714712230941478, 0.0, nan, 0.045524080814474864, 0.0, 0.47593928302293037, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.324 | 45.0 | 900 | 2.2862 | 0.0861 | 0.1485 | 0.5382 | [0.4806012442350636, 0.46105107975440246, 0.9500672396655557, 0.4599660155102145, 0.2762265512265512, 0.5208319873658519, 0.865308936539415, 0.0, 0.3128679841831633, 0.0, 0.06213835289671949, 0.0, 0.046143250688705235, 0.0, 0.00020171050508310473, 0.0, nan, 0.04695333092149465, 0.0, 0.07882262154117517, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8332430290483276, 0.7474929740235863, 0.9767665534549608, 0.888488542836342, 0.8966042154566745, 0.6100964489627743, 0.9760490029884134, 0.0, 0.4115826533118638, 0.0, 0.5296959935574793, 0.0, 0.046829755366949576, nan, 0.0002017308506989974, 0.0, nan, 0.04792424961755552, 0.0, 0.4618365809021423, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.4788 | 46.0 | 920 | 2.2889 | 0.0847 | 0.1507 | 0.5451 | [0.4934466469350711, 0.49289445845878427, 0.9496988084245702, 0.44836450261034844, 0.23945292272076518, 0.5718315301391036, 0.852962747914311, 0.0, 0.3047983204022455, 0.0, 0.05879457369952657, 0.0, 0.03952530404080031, 0.0, 8.068908478405583e-05, 0.0, nan, 0.03758519476642953, 0.0, 0.08181665453323626, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8018737465226111, 0.7954692301631077, 0.9737759610471581, 0.8809943937842162, 0.9204918032786885, 0.6844302615978406, 0.9755684101990528, 0.0, 0.4033459785486204, 0.0, 0.5450640896584121, 0.0, 0.04023964053919121, nan, 8.069234027959896e-05, 0.0, nan, 0.039853352323679904, 0.0, 0.4718484228657552, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.0849 | 47.0 | 940 | 2.3190 | 0.0847 | 0.1499 | 0.5375 | [0.48270265167103205, 0.4883099968500236, 0.9489863037726748, 0.453687342170703, 0.26604904256784684, 0.5300531090789863, 0.8582729222561327, 0.0, 0.3025795526473707, 0.0, 0.057744191168373524, 0.0, 0.061194895591647334, 0.0, 0.0, 0.0, nan, 0.0461902785576524, 0.0, 0.07613617021276596, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8062831564986738, 0.785829853176792, 0.9756695019686814, 0.871238015325576, 0.9045667447306791, 0.6185178645005592, 0.9755596721483372, 0.0, 0.40182855271417267, 0.0, 0.5630494597678009, 0.0, 0.06320519221168247, nan, 0.0, 0.0, nan, 0.04990241071899562, 0.0, 0.48153730218538054, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.6687 | 48.0 | 960 | 2.2997 | 0.0839 | 0.1493 | 0.5419 | [0.4884039519989931, 0.5023855202911851, 0.9487134477260426, 0.4387315758616788, 0.2578810853950519, 0.5168101008425782, 0.8481733943976995, 0.0, 0.30145030552941604, 0.0, 0.06553419599907698, 0.0, 0.04092146189735614, 0.0, 6.051315152493142e-05, 0.0, nan, 0.03923789388905668, 0.0, 0.08363174912213608, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8159248237044705, 0.8095238095238095, 0.974647590995161, 0.8772267535362759, 0.90807962529274, 0.602675680902769, 0.9741965362366963, 0.0, 0.4074124614502879, 0.0, 0.49553721226763303, 0.0, 0.04203694458312531, nan, 6.051925520969922e-05, 0.0, nan, 0.04111937542860157, 0.0, 0.5179244267413069, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.5107 | 49.0 | 980 | 2.3102 | 0.0833 | 0.1492 | 0.5368 | [0.48352497928524046, 0.48689002364782025, 0.9489120566960494, 0.44220181960314686, 0.2353657811850003, 0.5099299471402703, 0.8485805611101012, 0.0, 0.292445292371914, 0.0, 0.0640117658387975, 0.0, 0.062292844609085594, 0.0, 0.0001815211472136504, 0.0, nan, 0.040059637287969886, 0.0, 0.08392424840753396, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8282109238532703, 0.777104509757571, 0.9738961858675723, 0.8748329035097461, 0.9275175644028103, 0.5860809094960605, 0.9789500358260079, 0.0, 0.39157228241587294, 0.0, 0.4907053217904839, 0.0, 0.06380429355966051, nan, 0.00018155776562909766, 0.0, nan, 0.043229413936804344, 0.0, 0.5262138012703197, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.3671 | 50.0 | 1000 | 2.3118 | 0.0859 | 0.1493 | 0.5430 | [0.4898642376841085, 0.502026813829342, 0.9487341030299479, 0.44331193050176815, 0.28502594514455154, 0.5132976114794296, 0.8390207156308851, 0.0, 0.30530825819472024, 0.0, 0.06594624784212842, 0.0, 0.03397963180571876, 0.0, 0.0007459827819109256, 0.0, nan, 0.04554975143210437, 0.0, 0.07792795056021705, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8215553632658342, 0.819071257846768, 0.9731147245348802, 0.8672811704363634, 0.9004683840749415, 0.594073476114797, 0.9732440887086908, 0.0, 0.40956851614311834, 0.0, 0.5229850345614389, 0.0, 0.034648027958062905, nan, 0.0007464041475862904, 0.0, nan, 0.0476077438413251, 0.0, 0.5009150608246313, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
autoevaluate/binary-classification-not-evaluated
autoevaluate
2022-11-29T11:07:52Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T11:01:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # binary-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3009 - Accuracy: 0.8968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.175 | 1.0 | 4210 | 0.3009 | 0.8968 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
supermy/poetry
supermy
2022-11-29T10:53:20Z
115
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "zh", "dataset:poetry", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-29T00:56:18Z
--- language: zh datasets: poetry inference: parameters: max_length: 108 num_return_sequences: 1 do_sample: True widget: - text: "物换 星移 几度 秋" example_title: "滕王阁1" - text: "秋水 共 长天 一色" example_title: "滕王阁 2" - text: "萍水 相逢,尽是 他乡 之 客。" example_title: "滕王阁 3" --- # 古诗词 ## Model description 古诗词AI生成 ## How to use 使用 pipeline 调用模型: ```python from transformers import AutoTokenizer, GPT2LMHeadModel, TextGenerationPipeline model_checkpoint = "supermy/poetry" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = GPT2LMHeadModel.from_pretrained(model_checkpoint) text_generator = TextGenerationPipeline(model, tokenizer) text_generator.model.config.pad_token_id = text_generator.model.config.eos_token_id print(text_generator("举头 望 明月,", max_length=100, do_sample=True)) print(text_generator("物换 星移 几度 秋,", max_length=100, do_sample=True)) >>> print(text_generator("举头 望 明月,", max_length=100, do_sample=True)) [{'generated_text': '举头 望 明月, 何以 喻 无言 。 顾影 若为 舞 , 啸 风清 独 伤 。 四时 别有 意 , 千古 得 从容 。 赏音 我非 此 , 何如 鸥鹭 群 。 崎 山有 佳色 , 落落 样 相宜 。 不嫌 雪霜 温 , 宁 受 四时 肥 。 老 态 如 偷 面 , 冬 心 似 相知 。 春风 不可 恃 , 触 动 春 何为 。 岁晚 忽然 老 , 花前 岁月深 。 可笑 一场 梦 , 婵娟 乍 自 心 。 列 名 多 岁月 , 森 列 尽 林峦 。 试问 影 非 笑'}] >>> print(text_generator("物换 星移 几度 秋,", max_length=100, do_sample=True)) [{'generated_text': '物换 星移 几度 秋, 消长 随时 向 一丘 。 渔者 下 逢 勾漏 令 , 漏声 高出 景阳 丘 。 天津 大尹 昔 从游 , 大尹 来时 春复 秋 。 旗鼓 日 严 宣 使 从 , 联镳 歌笑 又 风流 。 冈峦 比 并 瑶 溪 水 , 叠嶂 高 盘 黼黻 洲 。 花木 芳菲 三月 天 , 莺花 暖 翠 几 流年 。 一从 别后 多 携手 , 肠断 酒阑 怀 凛然 。 北阙 人称 似梦中 , 西山 别样 梦魂 香 。 多君 观国 亲 圭璧 , 能 预 陇西 称 巨 良 。 刷羽 刷羽'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("supermy/poetry") model = AutoModelForCausalLM.from_pretrained("supermy/poetry") ``` ## Training data 非常全的古诗词数据,收录了从先秦到现代的共计85万余首古诗词。 ## 统计信息 | 朝代 | 诗词数 | 作者数 | |-----------------------|--------|--------| | 宋 | 287114 | 9446 | | 明 | 236957 | 4439 | | 清 | 90089 | 8872 | | 唐 | 49195 | 2736 | | 元 | 37375 | 1209 | | 近现代 | 28419 | 790 | | 当代 | 28219 | 177 | | 明末清初 | 17700 | 176 | | 元末明初 | 15736 | 79 | | 清末民国初 | 15367 | 99 | | 清末近现代初 | 12464 | 48 | | 宋末元初 | 12058 | 41 | | 南北朝 | 4586 | 434 | | 近现代末当代初 | 3426 | 23 | | 魏晋 | 3020 | 251 | | 金末元初 | 3019 | 17 | | 金 | 2741 | 253 | | 民国末当代初 | 1948 | 9 | | 隋 | 1170 | 84 | | 唐末宋初 | 1118 | 44 | | 先秦 | 570 | 8 | | 隋末唐初 | 472 | 40 | | 汉 | 363 | 83 | | 宋末金初 | 234 | 9 | | 辽 | 22 | 7 | | 秦 | 2 | 2 | | 魏晋末南北朝初 | 1 | 1 | | 总和 | 853385 | 29377 | ``` ``` ## Training procedure 模型:[GPT2](https://huggingface.co/gpt2) 训练环境:英伟达16G显卡 bpe分词:"vocab_size"=50000 ``` ***** Running training ***** Num examples = 16431 Num Epochs = 680 Instantaneous batch size per device = 24 Total train batch size (w. parallel, distributed & accumulation) = 192 Gradient Accumulation steps = 8 Total optimization steps = 57800 Number of trainable parameters = 124242432 GPT-2 size: 124.2M parameters 0%| | 0/57800 [00:00<?, ?it/s]You're using a PreTrainedTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding. 9%|▊ | 5000/57800 [6:58:57<72:53:18, 4.97s/it]***** Running Evaluation ***** Num examples = 1755 Batch size = 24 {'loss': 3.1345, 'learning_rate': 0.0004939065828881268, 'epoch': 58.82} 9%|▊ | 5000/57800 [6:59:14<72:53:18, Saving model checkpoint to poetry-trainer/checkpoint-5000 Configuration saved in poetry-trainer/checkpoint-5000/config.json Model weights saved in poetry-trainer/checkpoint-5000/pytorch_model.bin tokenizer config file saved in poetry-trainer/checkpoint-5000/tokenizer_config.json Special tokens file saved in poetry-trainer/checkpoint-5000/special_tokens_map.json 17%|█▋ | 10000/57800 [13:55:32<65:40:41, 4.95s/it]***** Running Evaluation ***** Num examples = 1755 Batch size = 24 {'eval_loss': 11.14090633392334, 'eval_runtime': 16.8326, 'eval_samples_per_second': 104.262, 'eval_steps_per_second': 4.396, 'epoch': 58.82} {'loss': 0.2511, 'learning_rate': 0.00046966687938531824, 'epoch': 117.64} 17%|█▋ | 10000/57800 [13:55:48<65:40:41Saving model checkpoint to poetry-trainer/checkpoint-10000 .......... 95%|█████████▌| 55000/57800 [76:06:46<3:59:33, 5.13s/it]***** Running Evaluation ***** Num examples = 1755 Batch size = 24 {'eval_loss': 14.860174179077148, 'eval_runtime': 16.7826, 'eval_samples_per_second': 104.572, 'eval_steps_per_second': 4.409, 'epoch': 588.23} {'loss': 0.0083, 'learning_rate': 3.0262183266589473e-06, 'epoch': 647.06} 95%|█████████▌| 55000/57800 [76:07:03<3:59:33,Saving model checkpoint to poetry-trainer/checkpoint-55000 {'eval_loss': 14.830656051635742, 'eval_runtime': 16.7365, 'eval_samples_per_second': 104.86, 'eval_steps_per_second': 4.421, 'epoch': 647.06} {'train_runtime': 287920.5857, 'train_samples_per_second': 38.806, 'train_steps_per_second': 0.201, 'train_loss': 0.33751299874592816, 'epoch': 679.99} 100%|██████████| 57800/57800 [79:58:40<00:00, 4.93s/it] ``` ``` ### entry and citation info ``` ```
huggingtweets/mullen_usa-nasdaq
huggingtweets
2022-11-29T10:30:31Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-29T10:24:49Z
--- language: en thumbnail: http://www.huggingtweets.com/mullen_usa-nasdaq/1669717561312/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521140484512620544/Ev6EIPlD_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433904015834705921/tRPvxdFF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nasdaq & Mullen Automotive</div> <div style="text-align: center; font-size: 14px;">@mullen_usa-nasdaq</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nasdaq & Mullen Automotive. | Data | Nasdaq | Mullen Automotive | | --- | --- | --- | | Tweets downloaded | 3250 | 963 | | Retweets | 663 | 188 | | Short tweets | 31 | 121 | | Tweets kept | 2556 | 654 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/352xmu00/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mullen_usa-nasdaq's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/x3hx0rfr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/x3hx0rfr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mullen_usa-nasdaq') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
LuisQ/LuisQ_sd-class-butterflies-32
LuisQ
2022-11-29T10:18:33Z
35
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T16:17:40Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(LuisQ/LuisQ_sd-class-butterflies-32) image = pipeline().images[0] image ```
SayaEndo/distilbert-base-uncased-finetuned-squad-d5716d28
SayaEndo
2022-11-29T08:56:00Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
question-answering
2022-11-29T08:44:02Z
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
premsuresh/bart-finetuned-mathqa-moh
premsuresh
2022-11-29T08:42:54Z
172
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T08:24:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-finetuned-mathqa-moh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-finetuned-mathqa-moh This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
thivy/t5-base-finetuned-en-to-no
thivy
2022-11-29T08:21:44Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-22T16:16:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_books metrics: - bleu model-index: - name: t5-base-finetuned-en-to-no results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_books type: opus_books args: en-no metrics: - name: Bleu type: bleu value: 4.8513 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-en-to-no This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 2.9566 - Bleu: 4.8513 - Gen Len: 17.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 280 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:------:|:-------:| | 3.3949 | 1.0 | 788 | 2.7553 | 0.9274 | 18.1314 | | 2.8659 | 2.0 | 1576 | 2.5367 | 1.2755 | 18.1543 | | 2.7244 | 3.0 | 2364 | 2.3900 | 1.6351 | 18.0343 | | 2.5228 | 4.0 | 3152 | 2.2902 | 1.7125 | 18.0543 | | 2.4201 | 5.0 | 3940 | 2.2039 | 1.7217 | 18.0914 | | 2.3168 | 6.0 | 4728 | 2.1429 | 2.0474 | 18.08 | | 2.1856 | 7.0 | 5516 | 2.0772 | 2.228 | 18.0686 | | 2.12 | 8.0 | 6304 | 2.0333 | 2.1694 | 17.98 | | 2.0519 | 9.0 | 7092 | 1.9931 | 2.257 | 17.9914 | | 1.9856 | 10.0 | 7880 | 1.9540 | 2.489 | 18.04 | | 1.9164 | 11.0 | 8668 | 1.9266 | 2.5762 | 17.9629 | | 1.8864 | 12.0 | 9456 | 1.9036 | 2.8294 | 17.9857 | | 1.8276 | 13.0 | 10244 | 1.8695 | 2.9018 | 17.98 | | 1.7715 | 14.0 | 11032 | 1.8584 | 3.04 | 17.9886 | | 1.7302 | 15.0 | 11820 | 1.8487 | 2.9588 | 18.0057 | | 1.6768 | 16.0 | 12608 | 1.8155 | 3.1968 | 17.9943 | | 1.6564 | 17.0 | 13396 | 1.8137 | 3.3315 | 17.9657 | | 1.6039 | 18.0 | 14184 | 1.7863 | 3.4057 | 18.0629 | | 1.5735 | 19.0 | 14972 | 1.7945 | 3.6905 | 17.9571 | | 1.5319 | 20.0 | 15760 | 1.7830 | 3.5128 | 17.9714 | | 1.4993 | 21.0 | 16548 | 1.7745 | 3.4125 | 18.0057 | | 1.4622 | 22.0 | 17336 | 1.7655 | 3.3974 | 17.9543 | | 1.448 | 23.0 | 18124 | 1.7599 | 3.75 | 17.9057 | | 1.3995 | 24.0 | 18912 | 1.7557 | 3.6852 | 17.8286 | | 1.373 | 25.0 | 19700 | 1.7478 | 3.5797 | 17.9343 | | 1.3513 | 26.0 | 20488 | 1.7558 | 3.8526 | 17.8457 | | 1.3291 | 27.0 | 21276 | 1.7485 | 3.7037 | 17.9143 | | 1.3002 | 28.0 | 22064 | 1.7480 | 3.7433 | 17.96 | | 1.2655 | 29.0 | 22852 | 1.7578 | 4.0584 | 17.8914 | | 1.2354 | 30.0 | 23640 | 1.7514 | 4.2106 | 17.8686 | | 1.2224 | 31.0 | 24428 | 1.7576 | 3.9906 | 17.9 | | 1.1999 | 32.0 | 25216 | 1.7627 | 4.1242 | 17.92 | | 1.1672 | 33.0 | 26004 | 1.7548 | 4.1584 | 17.8286 | | 1.1547 | 34.0 | 26792 | 1.7446 | 4.1721 | 17.8143 | | 1.1313 | 35.0 | 27580 | 1.7613 | 4.3958 | 17.8457 | | 1.08 | 36.0 | 28368 | 1.7628 | 4.342 | 17.8829 | | 1.0927 | 37.0 | 29156 | 1.7685 | 4.4468 | 17.8971 | | 1.0751 | 38.0 | 29944 | 1.7731 | 4.4297 | 17.8886 | | 1.0492 | 39.0 | 30732 | 1.7641 | 4.5174 | 17.8714 | | 1.036 | 40.0 | 31520 | 1.7643 | 4.4578 | 17.84 | | 1.0172 | 41.0 | 32308 | 1.7820 | 4.5795 | 17.8429 | | 0.9966 | 42.0 | 33096 | 1.7830 | 4.3455 | 17.8743 | | 0.9812 | 43.0 | 33884 | 1.7890 | 4.3988 | 17.8486 | | 0.9624 | 44.0 | 34672 | 1.7953 | 4.5418 | 17.8143 | | 0.9485 | 45.0 | 35460 | 1.8046 | 4.5402 | 17.8143 | | 0.9383 | 46.0 | 36248 | 1.8010 | 4.5572 | 17.76 | | 0.9175 | 47.0 | 37036 | 1.8153 | 4.5916 | 17.7943 | | 0.8877 | 48.0 | 37824 | 1.8133 | 4.5799 | 17.7857 | | 0.8877 | 49.0 | 38612 | 1.8254 | 4.6511 | 17.7657 | | 0.8595 | 50.0 | 39400 | 1.8229 | 4.7338 | 17.7657 | | 0.8533 | 51.0 | 40188 | 1.8402 | 4.7568 | 17.7571 | | 0.8414 | 52.0 | 40976 | 1.8406 | 4.7573 | 17.8429 | | 0.8191 | 53.0 | 41764 | 1.8499 | 4.6985 | 17.76 | | 0.8228 | 54.0 | 42552 | 1.8629 | 4.7603 | 17.7114 | | 0.7987 | 55.0 | 43340 | 1.8638 | 4.5511 | 17.8 | | 0.7877 | 56.0 | 44128 | 1.8673 | 4.5068 | 17.7771 | | 0.7829 | 57.0 | 44916 | 1.8862 | 4.6033 | 17.7943 | | 0.7571 | 58.0 | 45704 | 1.8874 | 4.6694 | 17.7486 | | 0.7542 | 59.0 | 46492 | 1.8996 | 4.7531 | 17.7571 | | 0.7301 | 60.0 | 47280 | 1.8950 | 4.6951 | 17.7514 | | 0.73 | 61.0 | 48068 | 1.9035 | 4.7867 | 17.7343 | | 0.7065 | 62.0 | 48856 | 1.9127 | 4.5863 | 17.7257 | | 0.7015 | 63.0 | 49644 | 1.9418 | 4.9026 | 17.8086 | | 0.6921 | 64.0 | 50432 | 1.9322 | 4.8127 | 17.7943 | | 0.6714 | 65.0 | 51220 | 1.9382 | 4.5343 | 17.7286 | | 0.6599 | 66.0 | 52008 | 1.9508 | 4.5273 | 17.7343 | | 0.6529 | 67.0 | 52796 | 1.9577 | 4.6274 | 17.7743 | | 0.647 | 68.0 | 53584 | 1.9789 | 4.5575 | 17.7571 | | 0.627 | 69.0 | 54372 | 1.9795 | 4.319 | 17.7371 | | 0.6279 | 70.0 | 55160 | 1.9788 | 4.6788 | 17.7486 | | 0.5867 | 71.0 | 55948 | 2.0100 | 4.557 | 17.7714 | | 0.5985 | 72.0 | 56736 | 2.0256 | 4.6005 | 17.8229 | | 0.5939 | 73.0 | 57524 | 2.0336 | 4.7289 | 17.8 | | 0.5727 | 74.0 | 58312 | 2.0328 | 4.5894 | 17.7229 | | 0.5702 | 75.0 | 59100 | 2.0436 | 4.7621 | 17.78 | | 0.5744 | 76.0 | 59888 | 2.0662 | 4.6161 | 17.8057 | | 0.5554 | 77.0 | 60676 | 2.0586 | 4.6424 | 17.8057 | | 0.5436 | 78.0 | 61464 | 2.0532 | 4.5742 | 17.7886 | | 0.5359 | 79.0 | 62252 | 2.0680 | 4.8312 | 17.7886 | | 0.5291 | 80.0 | 63040 | 2.0858 | 4.6342 | 17.8457 | | 0.5034 | 81.0 | 63828 | 2.0861 | 4.7405 | 17.8257 | | 0.5155 | 82.0 | 64616 | 2.1003 | 4.3956 | 17.7571 | | 0.4989 | 83.0 | 65404 | 2.1072 | 4.339 | 17.7914 | | 0.4903 | 84.0 | 66192 | 2.1113 | 4.3804 | 17.8143 | | 0.4836 | 85.0 | 66980 | 2.1202 | 4.5776 | 17.8371 | | 0.4794 | 86.0 | 67768 | 2.1277 | 4.6548 | 17.7686 | | 0.4689 | 87.0 | 68556 | 2.1360 | 4.6453 | 17.7571 | | 0.4623 | 88.0 | 69344 | 2.1460 | 4.7885 | 17.7771 | | 0.4551 | 89.0 | 70132 | 2.1610 | 4.5342 | 17.7686 | | 0.4405 | 90.0 | 70920 | 2.1649 | 4.5593 | 17.8057 | | 0.4478 | 91.0 | 71708 | 2.1518 | 4.4945 | 17.8314 | | 0.4265 | 92.0 | 72496 | 2.1873 | 4.453 | 17.8086 | | 0.4191 | 93.0 | 73284 | 2.1808 | 4.6432 | 17.8057 | | 0.4169 | 94.0 | 74072 | 2.1871 | 4.5543 | 17.82 | | 0.4087 | 95.0 | 74860 | 2.2109 | 4.8367 | 17.7971 | | 0.4054 | 96.0 | 75648 | 2.2092 | 4.7079 | 17.8171 | | 0.3872 | 97.0 | 76436 | 2.2103 | 4.6996 | 17.7943 | | 0.3884 | 98.0 | 77224 | 2.2111 | 4.9398 | 17.8314 | | 0.3837 | 99.0 | 78012 | 2.2316 | 4.7849 | 17.8143 | | 0.3777 | 100.0 | 78800 | 2.2298 | 4.7595 | 17.8343 | | 0.3719 | 101.0 | 79588 | 2.2404 | 4.6768 | 17.8457 | | 0.364 | 102.0 | 80376 | 2.2658 | 4.5789 | 17.8229 | | 0.3549 | 103.0 | 81164 | 2.2790 | 4.6549 | 17.8029 | | 0.3598 | 104.0 | 81952 | 2.2953 | 4.7411 | 17.8486 | | 0.346 | 105.0 | 82740 | 2.2812 | 4.7529 | 17.7657 | | 0.3376 | 106.0 | 83528 | 2.2997 | 4.5128 | 17.7886 | | 0.3363 | 107.0 | 84316 | 2.2938 | 4.6983 | 17.7914 | | 0.3368 | 108.0 | 85104 | 2.2909 | 4.4977 | 17.8257 | | 0.3243 | 109.0 | 85892 | 2.3100 | 4.5156 | 17.8286 | | 0.3197 | 110.0 | 86680 | 2.3310 | 4.7516 | 17.7943 | | 0.3165 | 111.0 | 87468 | 2.3354 | 4.608 | 17.8114 | | 0.3128 | 112.0 | 88256 | 2.3334 | 4.7388 | 17.8314 | | 0.3038 | 113.0 | 89044 | 2.3343 | 4.6356 | 17.7914 | | 0.3055 | 114.0 | 89832 | 2.3553 | 4.6694 | 17.7971 | | 0.2977 | 115.0 | 90620 | 2.3530 | 4.6176 | 17.8086 | | 0.2925 | 116.0 | 91408 | 2.3687 | 4.6855 | 17.8886 | | 0.2794 | 117.0 | 92196 | 2.3856 | 4.5948 | 17.84 | | 0.2913 | 118.0 | 92984 | 2.3844 | 4.7569 | 17.7943 | | 0.2812 | 119.0 | 93772 | 2.3973 | 4.6009 | 17.7629 | | 0.2731 | 120.0 | 94560 | 2.4074 | 4.7287 | 17.8086 | | 0.2781 | 121.0 | 95348 | 2.4083 | 4.7944 | 17.8571 | | 0.2708 | 122.0 | 96136 | 2.4414 | 4.7454 | 17.8829 | | 0.2607 | 123.0 | 96924 | 2.4202 | 4.5074 | 17.8486 | | 0.2617 | 124.0 | 97712 | 2.4371 | 4.6055 | 17.8629 | | 0.2527 | 125.0 | 98500 | 2.4314 | 4.5891 | 17.8 | | 0.2528 | 126.0 | 99288 | 2.4548 | 4.8362 | 17.8571 | | 0.2522 | 127.0 | 100076 | 2.4461 | 4.6966 | 17.8514 | | 0.2434 | 128.0 | 100864 | 2.4492 | 4.5774 | 17.8514 | | 0.2381 | 129.0 | 101652 | 2.4720 | 4.4607 | 17.86 | | 0.2411 | 130.0 | 102440 | 2.4820 | 4.484 | 17.8371 | | 0.2352 | 131.0 | 103228 | 2.4954 | 4.8091 | 17.8457 | | 0.2275 | 132.0 | 104016 | 2.4863 | 4.7008 | 17.8743 | | 0.2244 | 133.0 | 104804 | 2.5089 | 4.8076 | 17.8571 | | 0.2251 | 134.0 | 105592 | 2.5085 | 4.7374 | 17.8029 | | 0.2242 | 135.0 | 106380 | 2.4979 | 4.851 | 17.8171 | | 0.2217 | 136.0 | 107168 | 2.5122 | 4.6295 | 17.8314 | | 0.2111 | 137.0 | 107956 | 2.5131 | 4.6315 | 17.8229 | | 0.2078 | 138.0 | 108744 | 2.5216 | 4.6177 | 17.8229 | | 0.2113 | 139.0 | 109532 | 2.5292 | 4.5603 | 17.8257 | | 0.21 | 140.0 | 110320 | 2.5494 | 4.6128 | 17.7971 | | 0.1994 | 141.0 | 111108 | 2.5435 | 4.9231 | 17.8714 | | 0.2018 | 142.0 | 111896 | 2.5605 | 4.827 | 17.8314 | | 0.1971 | 143.0 | 112684 | 2.5624 | 4.8075 | 17.78 | | 0.1959 | 144.0 | 113472 | 2.5666 | 4.6358 | 17.84 | | 0.1916 | 145.0 | 114260 | 2.5740 | 4.6628 | 17.8257 | | 0.1939 | 146.0 | 115048 | 2.5730 | 4.8445 | 17.8286 | | 0.1832 | 147.0 | 115836 | 2.5918 | 4.8198 | 17.8571 | | 0.1884 | 148.0 | 116624 | 2.6013 | 4.7955 | 17.8257 | | 0.1777 | 149.0 | 117412 | 2.5996 | 4.7503 | 17.8114 | | 0.1711 | 150.0 | 118200 | 2.5971 | 4.5452 | 17.8514 | | 0.1843 | 151.0 | 118988 | 2.6075 | 4.817 | 17.8143 | | 0.1747 | 152.0 | 119776 | 2.6161 | 4.5231 | 17.8257 | | 0.1698 | 153.0 | 120564 | 2.6225 | 4.7232 | 17.82 | | 0.1685 | 154.0 | 121352 | 2.6285 | 4.7105 | 17.8229 | | 0.1685 | 155.0 | 122140 | 2.6443 | 4.4228 | 17.8686 | | 0.1695 | 156.0 | 122928 | 2.6356 | 4.5458 | 17.8657 | | 0.1649 | 157.0 | 123716 | 2.6418 | 4.5955 | 17.8286 | | 0.1643 | 158.0 | 124504 | 2.6565 | 4.5943 | 17.8457 | | 0.1573 | 159.0 | 125292 | 2.6434 | 4.762 | 17.8429 | | 0.1573 | 160.0 | 126080 | 2.6615 | 4.5916 | 17.8229 | | 0.1558 | 161.0 | 126868 | 2.6529 | 4.527 | 17.8371 | | 0.1545 | 162.0 | 127656 | 2.6697 | 4.705 | 17.7886 | | 0.1563 | 163.0 | 128444 | 2.6747 | 4.6848 | 17.8086 | | 0.1529 | 164.0 | 129232 | 2.6711 | 4.5149 | 17.8171 | | 0.151 | 165.0 | 130020 | 2.6807 | 4.6484 | 17.8543 | | 0.1471 | 166.0 | 130808 | 2.6909 | 4.7488 | 17.8657 | | 0.1465 | 167.0 | 131596 | 2.6889 | 4.6446 | 17.8086 | | 0.1345 | 168.0 | 132384 | 2.6935 | 4.6107 | 17.7971 | | 0.1447 | 169.0 | 133172 | 2.6971 | 4.4718 | 17.86 | | 0.1426 | 170.0 | 133960 | 2.7083 | 4.6878 | 17.84 | | 0.1402 | 171.0 | 134748 | 2.7053 | 4.7539 | 17.8286 | | 0.1382 | 172.0 | 135536 | 2.7140 | 4.7697 | 17.8343 | | 0.1367 | 173.0 | 136324 | 2.7221 | 4.6764 | 17.8429 | | 0.1365 | 174.0 | 137112 | 2.7364 | 4.7535 | 17.8343 | | 0.1277 | 175.0 | 137900 | 2.7232 | 4.7312 | 17.8343 | | 0.1331 | 176.0 | 138688 | 2.7292 | 4.8578 | 17.8171 | | 0.1332 | 177.0 | 139476 | 2.7565 | 4.7861 | 17.8 | | 0.1291 | 178.0 | 140264 | 2.7577 | 4.8903 | 17.7686 | | 0.1298 | 179.0 | 141052 | 2.7474 | 4.7653 | 17.8171 | | 0.1268 | 180.0 | 141840 | 2.7466 | 4.7403 | 17.8143 | | 0.123 | 181.0 | 142628 | 2.7517 | 4.7989 | 17.8171 | | 0.1267 | 182.0 | 143416 | 2.7634 | 4.7267 | 17.84 | | 0.1246 | 183.0 | 144204 | 2.7620 | 4.8103 | 17.8343 | | 0.1221 | 184.0 | 144992 | 2.7686 | 4.968 | 17.8429 | | 0.1202 | 185.0 | 145780 | 2.7624 | 4.806 | 17.7914 | | 0.1222 | 186.0 | 146568 | 2.7735 | 4.8647 | 17.82 | | 0.1187 | 187.0 | 147356 | 2.7775 | 4.5615 | 17.8229 | | 0.1175 | 188.0 | 148144 | 2.7703 | 4.824 | 17.82 | | 0.121 | 189.0 | 148932 | 2.7824 | 4.8669 | 17.78 | | 0.114 | 190.0 | 149720 | 2.7807 | 4.8833 | 17.8257 | | 0.1146 | 191.0 | 150508 | 2.7869 | 4.9505 | 17.7857 | | 0.1133 | 192.0 | 151296 | 2.7900 | 4.9474 | 17.7257 | | 0.1137 | 193.0 | 152084 | 2.8008 | 4.8476 | 17.7371 | | 0.1098 | 194.0 | 152872 | 2.7971 | 4.736 | 17.7543 | | 0.1072 | 195.0 | 153660 | 2.7956 | 4.7635 | 17.8057 | | 0.1106 | 196.0 | 154448 | 2.8019 | 4.6805 | 17.7657 | | 0.1077 | 197.0 | 155236 | 2.8134 | 4.6501 | 17.8029 | | 0.1076 | 198.0 | 156024 | 2.8222 | 4.5361 | 17.82 | | 0.1054 | 199.0 | 156812 | 2.8173 | 4.8964 | 17.78 | | 0.1045 | 200.0 | 157600 | 2.8248 | 4.9418 | 17.7771 | | 0.1083 | 201.0 | 158388 | 2.8214 | 4.8408 | 17.7829 | | 0.1035 | 202.0 | 159176 | 2.8277 | 4.66 | 17.8 | | 0.1033 | 203.0 | 159964 | 2.8342 | 4.616 | 17.8114 | | 0.1013 | 204.0 | 160752 | 2.8392 | 4.7213 | 17.8371 | | 0.1012 | 205.0 | 161540 | 2.8313 | 4.7918 | 17.8 | | 0.1021 | 206.0 | 162328 | 2.8372 | 4.8182 | 17.8371 | | 0.0979 | 207.0 | 163116 | 2.8500 | 4.759 | 17.8657 | | 0.0985 | 208.0 | 163904 | 2.8458 | 4.6711 | 17.8171 | | 0.1006 | 209.0 | 164692 | 2.8468 | 4.7997 | 17.8286 | | 0.0994 | 210.0 | 165480 | 2.8426 | 4.7327 | 17.8571 | | 0.0981 | 211.0 | 166268 | 2.8565 | 4.7288 | 17.8457 | | 0.0985 | 212.0 | 167056 | 2.8608 | 4.8843 | 17.8457 | | 0.0933 | 213.0 | 167844 | 2.8656 | 4.7052 | 17.8143 | | 0.0963 | 214.0 | 168632 | 2.8650 | 4.8149 | 17.7771 | | 0.092 | 215.0 | 169420 | 2.8569 | 4.6251 | 17.8 | | 0.0958 | 216.0 | 170208 | 2.8688 | 4.7479 | 17.7714 | | 0.094 | 217.0 | 170996 | 2.8657 | 4.7716 | 17.8229 | | 0.0926 | 218.0 | 171784 | 2.8741 | 4.6749 | 17.8143 | | 0.0924 | 219.0 | 172572 | 2.8727 | 4.8438 | 17.82 | | 0.0932 | 220.0 | 173360 | 2.8749 | 4.6733 | 17.84 | | 0.0899 | 221.0 | 174148 | 2.8774 | 4.6198 | 17.8286 | | 0.0925 | 222.0 | 174936 | 2.8796 | 4.6945 | 17.8286 | | 0.0904 | 223.0 | 175724 | 2.8872 | 4.6184 | 17.82 | | 0.0886 | 224.0 | 176512 | 2.8974 | 4.74 | 17.7743 | | 0.0898 | 225.0 | 177300 | 2.8879 | 4.5856 | 17.8229 | | 0.0874 | 226.0 | 178088 | 2.8880 | 4.582 | 17.8171 | | 0.0877 | 227.0 | 178876 | 2.8941 | 4.64 | 17.8057 | | 0.0892 | 228.0 | 179664 | 2.8975 | 4.7271 | 17.8114 | | 0.0857 | 229.0 | 180452 | 2.8957 | 4.6847 | 17.7943 | | 0.088 | 230.0 | 181240 | 2.8950 | 4.7799 | 17.8086 | | 0.0885 | 231.0 | 182028 | 2.9061 | 4.699 | 17.7829 | | 0.0863 | 232.0 | 182816 | 2.9085 | 4.7863 | 17.7771 | | 0.0853 | 233.0 | 183604 | 2.9083 | 4.7545 | 17.7857 | | 0.0838 | 234.0 | 184392 | 2.9067 | 4.6354 | 17.7829 | | 0.0835 | 235.0 | 185180 | 2.9139 | 4.5979 | 17.8371 | | 0.0865 | 236.0 | 185968 | 2.9094 | 4.7646 | 17.8314 | | 0.0853 | 237.0 | 186756 | 2.9127 | 4.6967 | 17.7971 | | 0.082 | 238.0 | 187544 | 2.9205 | 4.7171 | 17.8029 | | 0.0811 | 239.0 | 188332 | 2.9204 | 4.6172 | 17.7971 | | 0.0837 | 240.0 | 189120 | 2.9202 | 4.6729 | 17.8057 | | 0.0803 | 241.0 | 189908 | 2.9190 | 4.9057 | 17.8143 | | 0.0813 | 242.0 | 190696 | 2.9236 | 4.7919 | 17.8429 | | 0.0814 | 243.0 | 191484 | 2.9307 | 4.7492 | 17.8286 | | 0.0822 | 244.0 | 192272 | 2.9238 | 4.7454 | 17.8429 | | 0.0823 | 245.0 | 193060 | 2.9269 | 4.8462 | 17.8257 | | 0.0803 | 246.0 | 193848 | 2.9293 | 4.738 | 17.8286 | | 0.0806 | 247.0 | 194636 | 2.9280 | 4.8432 | 17.78 | | 0.0757 | 248.0 | 195424 | 2.9371 | 4.8563 | 17.8171 | | 0.0774 | 249.0 | 196212 | 2.9330 | 4.7717 | 17.8057 | | 0.079 | 250.0 | 197000 | 2.9373 | 4.7938 | 17.8371 | | 0.0784 | 251.0 | 197788 | 2.9397 | 4.8316 | 17.82 | | 0.0801 | 252.0 | 198576 | 2.9378 | 4.9071 | 17.8314 | | 0.0795 | 253.0 | 199364 | 2.9366 | 4.8581 | 17.8343 | | 0.077 | 254.0 | 200152 | 2.9372 | 4.8495 | 17.7971 | | 0.0787 | 255.0 | 200940 | 2.9447 | 4.8479 | 17.8086 | | 0.077 | 256.0 | 201728 | 2.9380 | 4.8716 | 17.84 | | 0.0765 | 257.0 | 202516 | 2.9410 | 4.8944 | 17.7571 | | 0.0762 | 258.0 | 203304 | 2.9423 | 4.7536 | 17.7971 | | 0.0772 | 259.0 | 204092 | 2.9485 | 4.8251 | 17.8343 | | 0.0761 | 260.0 | 204880 | 2.9401 | 4.7726 | 17.82 | | 0.0766 | 261.0 | 205668 | 2.9427 | 4.8626 | 17.8286 | | 0.0766 | 262.0 | 206456 | 2.9428 | 5.0326 | 17.8143 | | 0.074 | 263.0 | 207244 | 2.9463 | 5.0095 | 17.8286 | | 0.0758 | 264.0 | 208032 | 2.9497 | 4.987 | 17.8029 | | 0.0778 | 265.0 | 208820 | 2.9534 | 4.9829 | 17.8086 | | 0.0748 | 266.0 | 209608 | 2.9521 | 4.9309 | 17.8286 | | 0.0759 | 267.0 | 210396 | 2.9519 | 4.9294 | 17.84 | | 0.0738 | 268.0 | 211184 | 2.9521 | 4.9953 | 17.8486 | | 0.077 | 269.0 | 211972 | 2.9521 | 4.8414 | 17.8486 | | 0.0759 | 270.0 | 212760 | 2.9533 | 4.8158 | 17.8286 | | 0.0725 | 271.0 | 213548 | 2.9534 | 4.8427 | 17.8457 | | 0.0749 | 272.0 | 214336 | 2.9512 | 4.8769 | 17.8314 | | 0.0745 | 273.0 | 215124 | 2.9520 | 4.8782 | 17.8257 | | 0.0723 | 274.0 | 215912 | 2.9546 | 4.8465 | 17.8229 | | 0.0748 | 275.0 | 216700 | 2.9567 | 4.8704 | 17.8343 | | 0.072 | 276.0 | 217488 | 2.9569 | 4.8633 | 17.8371 | | 0.0747 | 277.0 | 218276 | 2.9578 | 4.8667 | 17.8457 | | 0.0722 | 278.0 | 219064 | 2.9566 | 4.8686 | 17.8371 | | 0.0733 | 279.0 | 219852 | 2.9563 | 4.846 | 17.84 | | 0.0713 | 280.0 | 220640 | 2.9566 | 4.8513 | 17.84 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.10.3
ShishckovA/results
ShishckovA
2022-11-29T07:33:29Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T07:31:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.505 | 1.0 | 26878 | 0.4409 | | 0.4063 | 2.0 | 53756 | 0.3390 | | 0.358 | 3.0 | 80634 | 0.2967 | | 0.3383 | 4.0 | 107512 | 0.2777 | | 0.3289 | 5.0 | 134390 | 0.2721 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
mlxen/electra-contrastdata-squad
mlxen
2022-11-29T07:16:20Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-28T07:16:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: electra-contrastdata-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-contrastdata-squad This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
nagais/sd-class-butterflies-32
nagais
2022-11-29T07:06:12Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T06:51:12Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(nagais/sd-class-butterflies-32) image = pipeline().images[0] image ```
jl8771/sd-class-butterflies-32
jl8771
2022-11-29T05:41:50Z
37
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T05:41:45Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(jl8771/sd-class-butterflies-32) image = pipeline().images[0] image ```
manter/momoko
manter
2022-11-29T05:21:52Z
0
8
null
[ "doi:10.57967/hf/0147", "license:unknown", "region:us" ]
null
2022-11-29T03:32:48Z
--- license: unknown --- This was a stable diffusion based model that was based off of anythingv3 and momoko which I still don't know the orgin of. (personal story: How I fond this was from going to a outdated stable diffusion web ui link and hitting generate. It came out good so I googled it and found this.) Sorce: https://www.kaggle.com/code/inmine/novelai-with-webui-stable-diffusion-version/data, https://www.kaggle.com/datasets/inmine/momoko btw here is a prompt (prompt:Masterpiece, best quality,)(negitive prompt:lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewerdigits, cropped, worst quality, low quality, normal quality, ipeg artifacts, signature, watermark,username, blurry) That's what I found work's the best, The main thing it generates is woman so be warned.
Shubham09/whisper63filescheck
Shubham09
2022-11-29T05:12:22Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-29T05:07:16Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: whisper63filescheck results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper63filescheck This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0638 - Wer: 23.7647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1324 | 14.29 | 100 | 1.0638 | 23.7647 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
Urigavilan03/Tiempo
Urigavilan03
2022-11-29T05:12:14Z
0
0
null
[ "region:us" ]
null
2022-11-29T05:09:08Z
un reloj de bolsillo antiguo en medio de unas hojas escritas en cursiva desenfocada
laroy23/ddpm-butterflies-128
laroy23
2022-11-29T04:33:59Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-28T13:56:37Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: ./cifar-10-batches-py metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `./cifar-10-batches-py` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/laroy23/ddpm-butterflies-128/tensorboard?#scalars)
elRivx/gAWoman
elRivx
2022-11-29T04:33:34Z
0
2
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-29T04:22:28Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- # gAWoman This is my second Stable Diffusion custom model that bring to you a generic woman generated with non-licenced images. The magic word is: gAWoman If you enjoy my work, please consider supporting me: [![Buy me a coffee](https://badgen.net/badge/icon/buymeacoffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/elrivx) Examples: <img src=https://imgur.com/B5XkfuG.png width=30% height=30%> <img src=https://imgur.com/N8lNtZo.png width=30% height=30%> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
NSandra/distilbert-base-uncased-finetuned-ner
NSandra
2022-11-29T04:09:17Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-29T03:55:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2393 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 1 | 1.5491 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 2.0 | 2 | 1.3278 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 3.0 | 3 | 1.2393 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
nhanv/cv_parser
nhanv
2022-11-29T04:00:56Z
167
3
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-29T03:23:32Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: cv-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cv-ner This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0956 - Precision: 0.8906 - Recall: 0.9325 - F1: 0.9111 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 91 | 0.2049 | 0.6618 | 0.7362 | 0.6970 | 0.9534 | | 0.5036 | 2.0 | 182 | 0.1156 | 0.7873 | 0.8630 | 0.8234 | 0.9722 | | 0.1442 | 3.0 | 273 | 0.1078 | 0.8262 | 0.9039 | 0.8633 | 0.9771 | | 0.0757 | 4.0 | 364 | 0.1179 | 0.8652 | 0.9059 | 0.8851 | 0.9780 | | 0.0526 | 5.0 | 455 | 0.0907 | 0.888 | 0.9080 | 0.8979 | 0.9837 | | 0.0342 | 6.0 | 546 | 0.0972 | 0.8926 | 0.9346 | 0.9131 | 0.9832 | | 0.0245 | 7.0 | 637 | 0.1064 | 0.8937 | 0.9284 | 0.9107 | 0.9834 | | 0.0188 | 8.0 | 728 | 0.0965 | 0.8980 | 0.9366 | 0.9169 | 0.9850 | | 0.0159 | 9.0 | 819 | 0.0999 | 0.91 | 0.9305 | 0.9201 | 0.9846 | | 0.0141 | 10.0 | 910 | 0.0956 | 0.8906 | 0.9325 | 0.9111 | 0.9851 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
jeraldflowers/vit_model
jeraldflowers
2022-11-29T03:51:31Z
188
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-27T05:06:17Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - beans metrics: - accuracy widget: - src: https://huggingface.co/jeraldflowers/vit_model/blob/main/healthy.jpeg example_title: Healthy - src: https://huggingface.co/jeraldflowers/vit_model/blob/main/bean_rust.jpeg example_title: Bean Rust model-index: - name: vit_model results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0095 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1526 | 3.85 | 500 | 0.0095 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
UCSYNLP/MyanBERTa
UCSYNLP
2022-11-29T03:35:58Z
297
3
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "MyanBERTa", "Myanmar", "BERT", "RoBERTa", "my", "dataset:MyCorpus", "dataset:Web", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-25T06:57:10Z
--- language: my tags: - MyanBERTa - Myanmar - BERT - RoBERTa license: apache-2.0 datasets: - MyCorpus - Web --- ## Model description This model is a BERT based Myanmar pre-trained language model. MyanBERTa was pre-trained for 528K steps on a word segmented Myanmar dataset consisting of 5,992,299 sentences (136M words). As the tokenizer, byte-leve BPE tokenizer of 30,522 subword units which is learned after word segmentation is applied. Cite this work as: ``` Aye Mya Hlaing, Win Pa Pa, "MyanBERTa: A Pre-trained Language Model For Myanmar", In Proceedings of 2022 International Conference on Communication and Computer Research (ICCR2022), November 2022, Seoul, Republic of Korea ``` [Download Paper](https://journal-home.s3.ap-northeast-2.amazonaws.com/site/iccr2022/abs/QOHFI-0004.pdf)
jeraldflowers/distilroberts-base-mrpc-glue-jeraldflowers
jeraldflowers
2022-11-29T02:57:36Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T05:30:00Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 widget: - text: ["Yucaipa owned Dominick's before selling the chain to Safeway in 1998 for $ 2.5 billion.", "Yucaipa bought Dominick's in 1995 for $ 693 million and sold it to Safeway for $ 1.8 billion in 1998."] example_title: Not Equivalent - text: ["Revenue in the first quarter of the year dropped 15 percent from the same period a year earlier.", "With the scandal hanging over Stewart's company revenue the first quarter of the year dropped 15 percent from the same period a year earlier."] example_title: Equivalent model-index: - name: distilroberts-base-mrpc-glue-jeraldflowers results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8431372549019608 - name: F1 type: f1 value: 0.8814814814814815 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberts-base-mrpc-glue-jeraldflowers This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 0.4990 - Accuracy: 0.8431 - F1: 0.8815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5289 | 1.09 | 500 | 0.5668 | 0.8211 | 0.8689 | | 0.3675 | 2.18 | 1000 | 0.4990 | 0.8431 | 0.8815 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
neulab/omnitab-large-128shot-finetuned-wtq-128shot
neulab
2022-11-29T02:55:31Z
47
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "tapex", "table-question-answering", "en", "dataset:wikitablequestions", "arxiv:2207.03637", "autotrain_compatible", "endpoints_compatible", "region:us" ]
table-question-answering
2022-11-29T02:54:00Z
--- language: en tags: - tapex - table-question-answering datasets: - wikitablequestions --- # OmniTab OmniTab is a table-based QA model proposed in [OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering](https://arxiv.org/pdf/2207.03637.pdf). The original Github repository is [https://github.com/jzbjyb/OmniTab](https://github.com/jzbjyb/OmniTab). ## Description `neulab/omnitab-large-128shot-finetuned-wtq-128shot` (based on BART architecture) is initialized with `neulab/omnitab-large-128shot` and fine-tuned on [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) in the 128-shot setting. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("neulab/omnitab-large-128shot-finetuned-wtq-128shot") model = AutoModelForSeq2SeqLM.from_pretrained("neulab/omnitab-large-128shot-finetuned-wtq-128shot") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008'] ``` ## Reference ```bibtex @inproceedings{jiang-etal-2022-omnitab, title = "{O}mni{T}ab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering", author = "Jiang, Zhengbao and Mao, Yi and He, Pengcheng and Neubig, Graham and Chen, Weizhu", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", } ```
neulab/omnitab-large-1024shot-finetuned-wtq-1024shot
neulab
2022-11-29T02:45:55Z
51
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "tapex", "table-question-answering", "en", "dataset:wikitablequestions", "arxiv:2207.03637", "autotrain_compatible", "endpoints_compatible", "region:us" ]
table-question-answering
2022-11-29T02:44:57Z
--- language: en tags: - tapex - table-question-answering datasets: - wikitablequestions --- # OmniTab OmniTab is a table-based QA model proposed in [OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering](https://arxiv.org/pdf/2207.03637.pdf). The original Github repository is [https://github.com/jzbjyb/OmniTab](https://github.com/jzbjyb/OmniTab). ## Description `neulab/omnitab-large-1024shot-finetuned-wtq-1024shot` (based on BART architecture) is initialized with `neulab/omnitab-large-1024shot` and fine-tuned on [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) in the 1024-shot setting. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("neulab/omnitab-large-1024shot-finetuned-wtq-1024shot") model = AutoModelForSeq2SeqLM.from_pretrained("neulab/omnitab-large-1024shot-finetuned-wtq-1024shot") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008'] ``` ## Reference ```bibtex @inproceedings{jiang-etal-2022-omnitab, title = "{O}mni{T}ab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering", author = "Jiang, Zhengbao and Mao, Yi and He, Pengcheng and Neubig, Graham and Chen, Weizhu", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", } ```
neulab/omnitab-large-1024shot
neulab
2022-11-29T02:38:18Z
48
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "tapex", "table-question-answering", "en", "dataset:wikitablequestions", "arxiv:2207.03637", "autotrain_compatible", "endpoints_compatible", "region:us" ]
table-question-answering
2022-11-29T02:37:18Z
--- language: en tags: - tapex - table-question-answering datasets: - wikitablequestions --- # OmniTab OmniTab is a table-based QA model proposed in [OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering](https://arxiv.org/pdf/2207.03637.pdf). The original Github repository is [https://github.com/jzbjyb/OmniTab](https://github.com/jzbjyb/OmniTab). ## Description `neulab/omnitab-large-1024shot` (based on BART architecture) is initialized with `microsoft/tapex-large` and continuously pretrained on natural and synthetic data (SQL2NL model trained in the 1024-shot setting). ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("neulab/omnitab-large-1024shot") model = AutoModelForSeq2SeqLM.from_pretrained("neulab/omnitab-large-1024shot") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008'] ``` ## Reference ```bibtex @inproceedings{jiang-etal-2022-omnitab, title = "{O}mni{T}ab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering", author = "Jiang, Zhengbao and Mao, Yi and He, Pengcheng and Neubig, Graham and Chen, Weizhu", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", } ```
SiddharthaM/hasoc19-xlm-roberta-base-sentiment-new
SiddharthaM
2022-11-29T02:13:32Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T00:44:19Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: hasoc19-xlm-roberta-base-sentiment-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hasoc19-xlm-roberta-base-sentiment-new This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3840 - Accuracy: 0.8726 - Precision: 0.8724 - Recall: 0.8726 - F1: 0.8725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4786 | 1.0 | 537 | 0.3999 | 0.8381 | 0.8391 | 0.8381 | 0.8363 | | 0.349 | 2.0 | 1074 | 0.3443 | 0.8606 | 0.8603 | 0.8606 | 0.8603 | | 0.2927 | 3.0 | 1611 | 0.3412 | 0.8669 | 0.8668 | 0.8669 | 0.8662 | | 0.2471 | 4.0 | 2148 | 0.3408 | 0.8705 | 0.8708 | 0.8705 | 0.8706 | | 0.2195 | 5.0 | 2685 | 0.3897 | 0.8726 | 0.8725 | 0.8726 | 0.8721 | | 0.1849 | 6.0 | 3222 | 0.3840 | 0.8726 | 0.8724 | 0.8726 | 0.8725 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
neulab/omnitab-large-16shot-finetuned-wtq-16shot
neulab
2022-11-29T02:10:07Z
52
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "tapex", "table-question-answering", "en", "dataset:wikitablequestions", "arxiv:2207.03637", "autotrain_compatible", "endpoints_compatible", "region:us" ]
table-question-answering
2022-11-29T01:48:24Z
--- language: en tags: - tapex - table-question-answering datasets: - wikitablequestions --- # OmniTab OmniTab is a table-based QA model proposed in [OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering](https://arxiv.org/pdf/2207.03637.pdf). The original Github repository is [https://github.com/jzbjyb/OmniTab](https://github.com/jzbjyb/OmniTab). ## Description `neulab/omnitab-large-16shot-finetuned-wtq-16shot` (based on BART architecture) is initialized with `neulab/omnitab-large-16shot` and fine-tuned on [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) in the 16-shot setting. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("neulab/omnitab-large-16shot-finetuned-wtq-16shot") model = AutoModelForSeq2SeqLM.from_pretrained("neulab/omnitab-large-16shot-finetuned-wtq-16shot") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008'] ``` ## Reference ```bibtex @inproceedings{jiang-etal-2022-omnitab, title = "{O}mni{T}ab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering", author = "Jiang, Zhengbao and Mao, Yi and He, Pengcheng and Neubig, Graham and Chen, Weizhu", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", } ```
romendiratta/fin-unsupersvised-mt5-4000
romendiratta
2022-11-29T02:07:11Z
4
0
transformers
[ "transformers", "jax", "tensorboard", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T01:55:24Z
This model contains MT5 which has been trained via masked language modeling on a financial dataset in an unsupervised manner. --- license: mit ---
alexziweiwang/retrain5_oneTimeTraining_MTL-1epoch
alexziweiwang
2022-11-29T02:00:29Z
31
0
transformers
[ "transformers", "pytorch", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-11-29T01:43:16Z
--- tags: - generated_from_trainer model-index: - name: retrain5_oneTimeTraining_MTL-1epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # retrain5_oneTimeTraining_MTL-1epoch This model is a fine-tuned version of [alexziweiwang/exp21-uaspeech-foundation](https://huggingface.co/alexziweiwang/exp21-uaspeech-foundation) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.1861 - Acc: 0.285 - Wer: 1.1126 - Correct: 57 - Total: 200 - Strlen: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Wer | Correct | Total | Strlen | |:-------------:|:-----:|:----:|:---------------:|:-----:|:------:|:-------:|:-----:|:------:| | No log | 0.02 | 5 | 13.9337 | 0.01 | 1.2925 | 2 | 200 | 200 | | 12.4373 | 0.04 | 10 | 13.7513 | 0.08 | 1.5296 | 16 | 200 | 200 | | 12.4373 | 0.06 | 15 | 13.5517 | 0.125 | 2.1126 | 25 | 200 | 200 | | 12.6667 | 0.08 | 20 | 13.3400 | 0.165 | 2.5791 | 33 | 200 | 200 | | 12.6667 | 0.11 | 25 | 13.1141 | 0.205 | 3.6561 | 41 | 200 | 200 | | 11.1856 | 0.13 | 30 | 12.8805 | 0.22 | 2.7451 | 44 | 200 | 200 | | 11.1856 | 0.15 | 35 | 12.6423 | 0.245 | 2.5178 | 49 | 200 | 200 | | 10.6635 | 0.17 | 40 | 12.4028 | 0.27 | 2.4308 | 54 | 200 | 200 | | 10.6635 | 0.19 | 45 | 12.1660 | 0.3 | 2.1818 | 60 | 200 | 200 | | 10.7952 | 0.21 | 50 | 11.9291 | 0.305 | 1.9348 | 61 | 200 | 200 | | 10.7952 | 0.23 | 55 | 11.6945 | 0.31 | 1.6858 | 62 | 200 | 200 | | 10.3867 | 0.25 | 60 | 11.4608 | 0.315 | 1.5237 | 63 | 200 | 200 | | 10.3867 | 0.27 | 65 | 11.2313 | 0.315 | 1.3953 | 63 | 200 | 200 | | 10.252 | 0.3 | 70 | 11.0102 | 0.315 | 1.3162 | 63 | 200 | 200 | | 10.252 | 0.32 | 75 | 10.7918 | 0.315 | 1.2826 | 63 | 200 | 200 | | 10.1788 | 0.34 | 80 | 10.5736 | 0.315 | 1.2628 | 63 | 200 | 200 | | 10.1788 | 0.36 | 85 | 10.3607 | 0.32 | 1.2391 | 64 | 200 | 200 | | 9.1361 | 0.38 | 90 | 10.1527 | 0.31 | 1.2253 | 62 | 200 | 200 | | 9.1361 | 0.4 | 95 | 9.9507 | 0.31 | 1.2036 | 62 | 200 | 200 | | 9.5447 | 0.42 | 100 | 9.7553 | 0.315 | 1.2095 | 63 | 200 | 200 | | 9.5447 | 0.44 | 105 | 9.5599 | 0.31 | 1.2016 | 62 | 200 | 200 | | 9.1579 | 0.46 | 110 | 9.3711 | 0.295 | 1.1996 | 59 | 200 | 200 | | 9.1579 | 0.48 | 115 | 9.1892 | 0.295 | 1.1897 | 59 | 200 | 200 | | 7.9217 | 0.51 | 120 | 9.0143 | 0.3 | 1.1858 | 60 | 200 | 200 | | 7.9217 | 0.53 | 125 | 8.8493 | 0.305 | 1.1719 | 61 | 200 | 200 | | 8.4439 | 0.55 | 130 | 8.6946 | 0.305 | 1.1739 | 61 | 200 | 200 | | 8.4439 | 0.57 | 135 | 8.5492 | 0.31 | 1.1581 | 62 | 200 | 200 | | 8.0639 | 0.59 | 140 | 8.4153 | 0.315 | 1.1502 | 63 | 200 | 200 | | 8.0639 | 0.61 | 145 | 8.2872 | 0.32 | 1.1482 | 64 | 200 | 200 | | 8.4173 | 0.63 | 150 | 8.1649 | 0.33 | 1.1443 | 66 | 200 | 200 | | 8.4173 | 0.65 | 155 | 8.0500 | 0.325 | 1.1403 | 65 | 200 | 200 | | 7.8991 | 0.67 | 160 | 7.9422 | 0.33 | 1.1364 | 66 | 200 | 200 | | 7.8991 | 0.7 | 165 | 7.8410 | 0.32 | 1.1344 | 64 | 200 | 200 | | 6.9206 | 0.72 | 170 | 7.7469 | 0.32 | 1.1304 | 64 | 200 | 200 | | 6.9206 | 0.74 | 175 | 7.6601 | 0.325 | 1.1285 | 65 | 200 | 200 | | 7.1911 | 0.76 | 180 | 7.5832 | 0.305 | 1.1206 | 61 | 200 | 200 | | 7.1911 | 0.78 | 185 | 7.5163 | 0.305 | 1.1225 | 61 | 200 | 200 | | 7.201 | 0.8 | 190 | 7.4565 | 0.305 | 1.1245 | 61 | 200 | 200 | | 7.201 | 0.82 | 195 | 7.4049 | 0.295 | 1.1245 | 59 | 200 | 200 | | 7.1507 | 0.84 | 200 | 7.3568 | 0.295 | 1.1225 | 59 | 200 | 200 | | 7.1507 | 0.86 | 205 | 7.3139 | 0.3 | 1.1206 | 60 | 200 | 200 | | 6.6223 | 0.89 | 210 | 7.2774 | 0.295 | 1.1186 | 59 | 200 | 200 | | 6.6223 | 0.91 | 215 | 7.2469 | 0.295 | 1.1186 | 59 | 200 | 200 | | 7.1645 | 0.93 | 220 | 7.2220 | 0.295 | 1.1166 | 59 | 200 | 200 | | 7.1645 | 0.95 | 225 | 7.2041 | 0.29 | 1.1146 | 58 | 200 | 200 | | 6.2562 | 0.97 | 230 | 7.1921 | 0.29 | 1.1146 | 58 | 200 | 200 | | 6.2562 | 0.99 | 235 | 7.1861 | 0.285 | 1.1126 | 57 | 200 | 200 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
BunnyViking/bvSketchOutline
BunnyViking
2022-11-29T01:26:30Z
0
12
null
[ "license:mit", "region:us" ]
null
2022-11-28T02:53:16Z
--- license: mit --- Sketch Outline style - a scratchy concept-art like style to give the appearance of quickly rendered pencil and ink art. The model is trained on humans, some animals, some structures and a few vehicles but it is best at humans and monsters. NOTE - the model has been trained with some artistic nudes included and can generate unintended NSFW content on occasion. Custom style trained off SD 1.5 DDLM Token: bvSketchOutline Not using the token (or using prompts like 'stroke' or 'outline') or placing the token at the start or end of the prompt will have different interesting effect. Higher versions will improve the overall style at the cost of flexibility. The model will skew more toward humans at the higher versions. The higher versions will also create more monstrous animals. I recommend a confidence between 7.5 and 12.5 v2 2000 - some outline and flexible CFG 7.5 is fine 7.5 ![v2000-7-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620449747-631c8158aa346997917dcf5d.jpeg) 12.5 ![v2000-12-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620450973-631c8158aa346997917dcf5d.jpeg) v2 3000 - sketchy and flexible CFG 7.5 is fine 7.5 ![v3000-7-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620450689-631c8158aa346997917dcf5d.jpeg) 12.5 ![v3000-12-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620451447-631c8158aa346997917dcf5d.jpeg) v2 4000 - sketchy outline and extra outline strokes. recommend increasing CFG to 12.5 so less flexible 7.5 ![v4000-7-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620550007-631c8158aa346997917dcf5d.jpeg) 12.5 ![v4000-12-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620550245-631c8158aa346997917dcf5d.jpeg) v2 5000 - smoother outlines much less flexible, will start skewing strongly toward humans even at 7.5 CFG. At 12.5 CFG it will be sketchier with more outline strokes, almost like v2 2000 in look but at higher quality. 7.5 ![v5000-7-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620549994-631c8158aa346997917dcf5d.jpeg) 12.5 ![v5000-12-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620550011-631c8158aa346997917dcf5d.jpeg) v2 6000 - very sketchy and scratchy at 7.5 CFG, more inky, may lose detail. At 12.5 is quite inky in its outlines. 7.5 ![v6000-7-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620597579-631c8158aa346997917dcf5d.jpeg) 12.5 ![v6000-12-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620598073-631c8158aa346997917dcf5d.jpeg) v2 7000 - sketchy and many flowing outlines at 7.5 CFG. Can have compromised details. At 12.5 CFG the style becomes very inky and loses detail almost wet watercolour 7.5 ![v7000-7-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620597830-631c8158aa346997917dcf5d.jpeg) 12.5 ![v7000-12-5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669620598527-631c8158aa346997917dcf5d.jpeg)
alexziweiwang/retrain2_oneTimeTraining_MTL-1epoch
alexziweiwang
2022-11-29T01:04:58Z
31
0
transformers
[ "transformers", "pytorch", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-11-29T00:47:27Z
--- tags: - generated_from_trainer model-index: - name: retrain2_oneTimeTraining_MTL-1epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # retrain2_oneTimeTraining_MTL-1epoch This model is a fine-tuned version of [alexziweiwang/exp21-uaspeech-foundation](https://huggingface.co/alexziweiwang/exp21-uaspeech-foundation) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.9312 - Acc: 0.265 - Wer: 1.0 - Correct: 53 - Total: 200 - Strlen: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Wer | Correct | Total | Strlen | |:-------------:|:-----:|:----:|:---------------:|:-----:|:------:|:-------:|:-----:|:------:| | No log | 0.02 | 5 | 13.6638 | 0.005 | 1.6126 | 1 | 200 | 200 | | 12.2282 | 0.04 | 10 | 13.4030 | 0.005 | 1.4743 | 1 | 200 | 200 | | 12.2282 | 0.06 | 15 | 13.1289 | 0.005 | 1.3953 | 1 | 200 | 200 | | 12.3565 | 0.08 | 20 | 12.8538 | 0.005 | 1.3043 | 1 | 200 | 200 | | 12.3565 | 0.11 | 25 | 12.5711 | 0.005 | 1.2095 | 1 | 200 | 200 | | 10.7997 | 0.13 | 30 | 12.2891 | 0.005 | 1.1462 | 1 | 200 | 200 | | 10.7997 | 0.15 | 35 | 12.0060 | 0.005 | 1.0909 | 1 | 200 | 200 | | 10.1556 | 0.17 | 40 | 11.7183 | 0.005 | 1.0632 | 1 | 200 | 200 | | 10.1556 | 0.19 | 45 | 11.4347 | 0.01 | 1.0395 | 2 | 200 | 200 | | 10.3187 | 0.21 | 50 | 11.1549 | 0.01 | 1.0178 | 2 | 200 | 200 | | 10.3187 | 0.23 | 55 | 10.8828 | 0.01 | 1.0099 | 2 | 200 | 200 | | 9.8042 | 0.25 | 60 | 10.6161 | 0.01 | 1.0040 | 2 | 200 | 200 | | 9.8042 | 0.27 | 65 | 10.3539 | 0.01 | 0.9980 | 2 | 200 | 200 | | 9.6489 | 0.3 | 70 | 10.0954 | 0.015 | 1.0 | 3 | 200 | 200 | | 9.6489 | 0.32 | 75 | 9.8456 | 0.025 | 1.0 | 5 | 200 | 200 | | 9.6112 | 0.34 | 80 | 9.5980 | 0.045 | 1.0 | 9 | 200 | 200 | | 9.6112 | 0.36 | 85 | 9.3535 | 0.055 | 1.0 | 11 | 200 | 200 | | 8.4257 | 0.38 | 90 | 9.1168 | 0.085 | 1.0 | 17 | 200 | 200 | | 8.4257 | 0.4 | 95 | 8.8920 | 0.105 | 1.0 | 21 | 200 | 200 | | 8.7311 | 0.42 | 100 | 8.6739 | 0.11 | 1.0 | 22 | 200 | 200 | | 8.7311 | 0.44 | 105 | 8.4607 | 0.135 | 1.0 | 27 | 200 | 200 | | 8.3653 | 0.46 | 110 | 8.2551 | 0.165 | 1.0 | 33 | 200 | 200 | | 8.3653 | 0.48 | 115 | 8.0573 | 0.17 | 1.0 | 34 | 200 | 200 | | 7.1342 | 0.51 | 120 | 7.8700 | 0.175 | 1.0 | 35 | 200 | 200 | | 7.1342 | 0.53 | 125 | 7.6908 | 0.185 | 1.0 | 37 | 200 | 200 | | 7.5411 | 0.55 | 130 | 7.5221 | 0.205 | 1.0 | 41 | 200 | 200 | | 7.5411 | 0.57 | 135 | 7.3628 | 0.22 | 1.0 | 44 | 200 | 200 | | 7.2449 | 0.59 | 140 | 7.2131 | 0.23 | 1.0 | 46 | 200 | 200 | | 7.2449 | 0.61 | 145 | 7.0735 | 0.23 | 1.0 | 46 | 200 | 200 | | 7.5166 | 0.63 | 150 | 6.9396 | 0.25 | 1.0 | 50 | 200 | 200 | | 7.5166 | 0.65 | 155 | 6.8186 | 0.25 | 1.0 | 50 | 200 | 200 | | 7.0016 | 0.67 | 160 | 6.7015 | 0.25 | 1.0 | 50 | 200 | 200 | | 7.0016 | 0.7 | 165 | 6.5904 | 0.25 | 1.0 | 50 | 200 | 200 | | 6.0715 | 0.72 | 170 | 6.4879 | 0.255 | 1.0 | 51 | 200 | 200 | | 6.0715 | 0.74 | 175 | 6.3980 | 0.26 | 1.0 | 52 | 200 | 200 | | 6.312 | 0.76 | 180 | 6.3198 | 0.26 | 1.0 | 52 | 200 | 200 | | 6.312 | 0.78 | 185 | 6.2532 | 0.26 | 1.0 | 52 | 200 | 200 | | 6.3694 | 0.8 | 190 | 6.1952 | 0.26 | 1.0 | 52 | 200 | 200 | | 6.3694 | 0.82 | 195 | 6.1453 | 0.26 | 1.0 | 52 | 200 | 200 | | 6.2196 | 0.84 | 200 | 6.0993 | 0.26 | 1.0 | 52 | 200 | 200 | | 6.2196 | 0.86 | 205 | 6.0556 | 0.265 | 1.0 | 53 | 200 | 200 | | 5.7131 | 0.89 | 210 | 6.0181 | 0.265 | 1.0 | 53 | 200 | 200 | | 5.7131 | 0.91 | 215 | 5.9873 | 0.265 | 1.0 | 53 | 200 | 200 | | 6.1827 | 0.93 | 220 | 5.9619 | 0.265 | 1.0 | 53 | 200 | 200 | | 6.1827 | 0.95 | 225 | 5.9460 | 0.265 | 1.0 | 53 | 200 | 200 | | 5.3823 | 0.97 | 230 | 5.9359 | 0.265 | 1.0 | 53 | 200 | 200 | | 5.3823 | 0.99 | 235 | 5.9312 | 0.265 | 1.0 | 53 | 200 | 200 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
dlwh/legal-xlm-base_128k
dlwh
2022-11-29T00:48:35Z
4
2
transformers
[ "transformers", "roberta", "fill-mask", "bg", "cs", "da", "de", "el", "en", "es", "et", "fi", "fr", "ga", "hr", "hu", "it", "lt", "lv", "mt", "nl", "pl", "pt", "ro", "sk", "sl", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-29T00:41:54Z
--- license: apache-2.0 language: - bg - cs - da - de - el - en - es - et - fi - fr - ga - hr - hu - it - lt - lv - mt - nl - pl - pt - ro - sk - sl - sv dataset: - joelito/MultiLegalPile_Wikipedia_Filtered --- Huggingface thinks this is a model, but it's just a tokenizer. Trained on https://huggingface.co/datasets/joelito/MultiLegalPile_Wikipedia_Filtered
Serhio/sd-fine-tune-v2
Serhio
2022-11-28T23:43:18Z
34
0
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-11-28T23:41:46Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### sd-fine-tune-v2 on Stable Diffusion via Dreambooth #### model by Serhio This your the Stable Diffusion model fine-tuned the sd-fine-tune-v2 concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **Bashkov Sergey** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts)
pig4431/TweetEval_BERT_5E
pig4431
2022-11-28T23:38:03Z
102
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T23:31:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy model-index: - name: TweetEval_BERT_5E results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: sentiment split: train args: sentiment metrics: - name: Accuracy type: accuracy value: 0.9266666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TweetEval_BERT_5E This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.5419 - Accuracy: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6264 | 0.04 | 50 | 0.5266 | 0.74 | | 0.5054 | 0.08 | 100 | 0.5959 | 0.6333 | | 0.4732 | 0.12 | 150 | 0.3524 | 0.86 | | 0.3916 | 0.16 | 200 | 0.3195 | 0.8667 | | 0.3477 | 0.2 | 250 | 0.2878 | 0.8867 | | 0.3116 | 0.24 | 300 | 0.2903 | 0.92 | | 0.3039 | 0.28 | 350 | 0.2488 | 0.8933 | | 0.2633 | 0.32 | 400 | 0.2530 | 0.92 | | 0.2667 | 0.37 | 450 | 0.2125 | 0.9267 | | 0.2604 | 0.41 | 500 | 0.2628 | 0.8867 | | 0.278 | 0.45 | 550 | 0.2322 | 0.8867 | | 0.2625 | 0.49 | 600 | 0.1903 | 0.92 | | 0.2808 | 0.53 | 650 | 0.2400 | 0.8933 | | 0.2396 | 0.57 | 700 | 0.2184 | 0.9067 | | 0.2571 | 0.61 | 750 | 0.1906 | 0.9133 | | 0.2676 | 0.65 | 800 | 0.2467 | 0.9067 | | 0.2288 | 0.69 | 850 | 0.2038 | 0.9133 | | 0.2959 | 0.73 | 900 | 0.1941 | 0.9 | | 0.2619 | 0.77 | 950 | 0.2100 | 0.9333 | | 0.2504 | 0.81 | 1000 | 0.1523 | 0.9333 | | 0.2338 | 0.85 | 1050 | 0.1429 | 0.94 | | 0.2529 | 0.89 | 1100 | 0.1269 | 0.94 | | 0.2238 | 0.93 | 1150 | 0.1722 | 0.9333 | | 0.2295 | 0.97 | 1200 | 0.1874 | 0.94 | | 0.2089 | 1.01 | 1250 | 0.2214 | 0.9067 | | 0.1406 | 1.06 | 1300 | 0.3410 | 0.9133 | | 0.1587 | 1.1 | 1350 | 0.3330 | 0.9133 | | 0.1732 | 1.14 | 1400 | 0.2716 | 0.9133 | | 0.195 | 1.18 | 1450 | 0.3726 | 0.92 | | 0.1777 | 1.22 | 1500 | 0.2430 | 0.9267 | | 0.1433 | 1.26 | 1550 | 0.3011 | 0.9267 | | 0.1333 | 1.3 | 1600 | 0.2489 | 0.9333 | | 0.1516 | 1.34 | 1650 | 0.3340 | 0.9267 | | 0.1774 | 1.38 | 1700 | 0.2497 | 0.8933 | | 0.1608 | 1.42 | 1750 | 0.3234 | 0.9 | | 0.1534 | 1.46 | 1800 | 0.3383 | 0.9133 | | 0.1287 | 1.5 | 1850 | 0.3134 | 0.9133 | | 0.1422 | 1.54 | 1900 | 0.3330 | 0.9 | | 0.1578 | 1.58 | 1950 | 0.3281 | 0.9133 | | 0.1786 | 1.62 | 2000 | 0.2939 | 0.9267 | | 0.2019 | 1.66 | 2050 | 0.3535 | 0.9 | | 0.1995 | 1.7 | 2100 | 0.3032 | 0.9067 | | 0.159 | 1.75 | 2150 | 0.2598 | 0.9267 | | 0.1493 | 1.79 | 2200 | 0.2391 | 0.9267 | | 0.1748 | 1.83 | 2250 | 0.2258 | 0.92 | | 0.1783 | 1.87 | 2300 | 0.2749 | 0.9133 | | 0.1619 | 1.91 | 2350 | 0.2699 | 0.92 | | 0.1378 | 1.95 | 2400 | 0.2776 | 0.9067 | | 0.1529 | 1.99 | 2450 | 0.2235 | 0.9333 | | 0.1071 | 2.03 | 2500 | 0.2841 | 0.9267 | | 0.0812 | 2.07 | 2550 | 0.3178 | 0.9267 | | 0.0464 | 2.11 | 2600 | 0.3567 | 0.92 | | 0.1108 | 2.15 | 2650 | 0.2723 | 0.92 | | 0.0845 | 2.19 | 2700 | 0.2774 | 0.9267 | | 0.0795 | 2.23 | 2750 | 0.3027 | 0.9267 | | 0.0403 | 2.27 | 2800 | 0.3566 | 0.9267 | | 0.0664 | 2.31 | 2850 | 0.4015 | 0.92 | | 0.0659 | 2.35 | 2900 | 0.4298 | 0.9067 | | 0.1059 | 2.39 | 2950 | 0.4028 | 0.92 | | 0.105 | 2.44 | 3000 | 0.3701 | 0.92 | | 0.0808 | 2.48 | 3050 | 0.3206 | 0.9267 | | 0.0811 | 2.52 | 3100 | 0.3644 | 0.9133 | | 0.0458 | 2.56 | 3150 | 0.3781 | 0.9267 | | 0.0764 | 2.6 | 3200 | 0.3749 | 0.9267 | | 0.0567 | 2.64 | 3250 | 0.3995 | 0.92 | | 0.0971 | 2.68 | 3300 | 0.3455 | 0.92 | | 0.0579 | 2.72 | 3350 | 0.4508 | 0.92 | | 0.0853 | 2.76 | 3400 | 0.4350 | 0.92 | | 0.0577 | 2.8 | 3450 | 0.3804 | 0.9333 | | 0.0732 | 2.84 | 3500 | 0.4387 | 0.92 | | 0.0874 | 2.88 | 3550 | 0.3885 | 0.9333 | | 0.1031 | 2.92 | 3600 | 0.3937 | 0.92 | | 0.0335 | 2.96 | 3650 | 0.4963 | 0.8933 | | 0.0913 | 3.0 | 3700 | 0.3827 | 0.9333 | | 0.047 | 3.04 | 3750 | 0.4136 | 0.92 | | 0.0531 | 3.08 | 3800 | 0.4362 | 0.92 | | 0.0265 | 3.12 | 3850 | 0.4857 | 0.92 | | 0.038 | 3.17 | 3900 | 0.4425 | 0.92 | | 0.0294 | 3.21 | 3950 | 0.4347 | 0.92 | | 0.0367 | 3.25 | 4000 | 0.4291 | 0.9333 | | 0.0102 | 3.29 | 4050 | 0.5178 | 0.9267 | | 0.0311 | 3.33 | 4100 | 0.4784 | 0.9267 | | 0.0274 | 3.37 | 4150 | 0.5421 | 0.9267 | | 0.0275 | 3.41 | 4200 | 0.5194 | 0.92 | | 0.0795 | 3.45 | 4250 | 0.4788 | 0.92 | | 0.0413 | 3.49 | 4300 | 0.4393 | 0.9267 | | 0.0373 | 3.53 | 4350 | 0.4965 | 0.92 | | 0.0303 | 3.57 | 4400 | 0.4284 | 0.9267 | | 0.0248 | 3.61 | 4450 | 0.4476 | 0.9267 | | 0.0557 | 3.65 | 4500 | 0.4690 | 0.92 | | 0.0358 | 3.69 | 4550 | 0.4774 | 0.9133 | | 0.0194 | 3.73 | 4600 | 0.4755 | 0.92 | | 0.0473 | 3.77 | 4650 | 0.4637 | 0.92 | | 0.0133 | 3.81 | 4700 | 0.4868 | 0.92 | | 0.0204 | 3.86 | 4750 | 0.4886 | 0.9267 | | 0.0338 | 3.9 | 4800 | 0.5101 | 0.9267 | | 0.0424 | 3.94 | 4850 | 0.4812 | 0.9267 | | 0.0237 | 3.98 | 4900 | 0.4837 | 0.9267 | | 0.0372 | 4.02 | 4950 | 0.5000 | 0.9267 | | 0.0254 | 4.06 | 5000 | 0.5210 | 0.92 | | 0.024 | 4.1 | 5050 | 0.5272 | 0.92 | | 0.0117 | 4.14 | 5100 | 0.5447 | 0.92 | | 0.018 | 4.18 | 5150 | 0.5353 | 0.92 | | 0.0097 | 4.22 | 5200 | 0.5415 | 0.9267 | | 0.0151 | 4.26 | 5250 | 0.5447 | 0.9267 | | 0.0118 | 4.3 | 5300 | 0.5285 | 0.9267 | | 0.0004 | 4.34 | 5350 | 0.5399 | 0.9267 | | 0.0102 | 4.38 | 5400 | 0.5552 | 0.9267 | | 0.0012 | 4.42 | 5450 | 0.5689 | 0.92 | | 0.02 | 4.46 | 5500 | 0.5619 | 0.9267 | | 0.0056 | 4.5 | 5550 | 0.5784 | 0.92 | | 0.0271 | 4.55 | 5600 | 0.5766 | 0.92 | | 0.0191 | 4.59 | 5650 | 0.5662 | 0.92 | | 0.0311 | 4.63 | 5700 | 0.5514 | 0.9267 | | 0.0167 | 4.67 | 5750 | 0.5510 | 0.9267 | | 0.0293 | 4.71 | 5800 | 0.5571 | 0.9267 | | 0.0304 | 4.75 | 5850 | 0.5494 | 0.92 | | 0.0161 | 4.79 | 5900 | 0.5469 | 0.9267 | | 0.0017 | 4.83 | 5950 | 0.5468 | 0.9267 | | 0.0176 | 4.87 | 6000 | 0.5426 | 0.9267 | | 0.0094 | 4.91 | 6050 | 0.5402 | 0.9267 | | 0.0041 | 4.95 | 6100 | 0.5416 | 0.9267 | | 0.0281 | 4.99 | 6150 | 0.5419 | 0.9267 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.2
Pramodith/sd-class-butterflies-32
Pramodith
2022-11-28T23:19:08Z
38
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T23:18:35Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(Pramodith/sd-class-butterflies-32) image = pipeline().images[0] image ```
dogeplusplus/sd-class-butterflies-32
dogeplusplus
2022-11-28T23:02:51Z
35
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T23:02:05Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(dogeplusplus/sd-class-butterflies-32) image = pipeline().images[0] image ```
ali97/sd-class-butterflies-32
ali97
2022-11-28T22:31:50Z
37
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T22:31:00Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(ali97/sd-class-butterflies-32) image = pipeline().images[0] image ```
kanixwang/my-awesome-setfit-model
kanixwang
2022-11-28T22:19:56Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-28T22:02:13Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
alryan1478/gpt-neo-125M-DOD-LOW
alryan1478
2022-11-28T22:19:47Z
103
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-28T21:59:56Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt-neo-125M-DOD-LOW results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-125M-DOD-LOW This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.0427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 261 | 6.4768 | | 6.8863 | 2.0 | 522 | 6.1056 | | 6.8863 | 3.0 | 783 | 6.0427 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.0 - Tokenizers 0.13.2
futuredatascience/action-classifier-v1
futuredatascience
2022-11-28T22:17:56Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-28T22:17:44Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 105 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1050, "warmup_steps": 105, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ThomasSimonini/ML-Agents-SnowballFight-1vs1-model
ThomasSimonini
2022-11-28T22:07:31Z
6
0
ml-agents
[ "ml-agents", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Snowballfight-1vs1", "region:us" ]
reinforcement-learning
2022-11-28T21:26:07Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Snowballfight-1vs1 library_name: ml-agents ---
alryan1478/gpt-neo-125M-wikitext2
alryan1478
2022-11-28T21:57:47Z
4
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-22T20:55:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt-neo-125M-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-125M-wikitext2 This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.0325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 259 | 6.4308 | | 6.8563 | 2.0 | 518 | 6.0898 | | 6.8563 | 3.0 | 777 | 6.0325 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.0 - Tokenizers 0.13.2
michaelmayo704/sd-class-butterflies-64
michaelmayo704
2022-11-28T21:39:43Z
34
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T21:38:51Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(michaelmayo704/sd-class-butterflies-64) image = pipeline().images[0] image ```
pig4431/YELP_DistilBERT_5E
pig4431
2022-11-28T21:37:46Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:yelp_review_full", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T21:21:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: YELP_DistilBERT_5E results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: train args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.9666666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # YELP_DistilBERT_5E This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 0.1557 - Accuracy: 0.9667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6211 | 0.03 | 50 | 0.3873 | 0.8933 | | 0.3252 | 0.06 | 100 | 0.2181 | 0.92 | | 0.2241 | 0.1 | 150 | 0.1850 | 0.94 | | 0.2645 | 0.13 | 200 | 0.1514 | 0.9467 | | 0.2094 | 0.16 | 250 | 0.1850 | 0.92 | | 0.2693 | 0.19 | 300 | 0.1504 | 0.9467 | | 0.2524 | 0.22 | 350 | 0.1479 | 0.96 | | 0.2538 | 0.26 | 400 | 0.1375 | 0.94 | | 0.1937 | 0.29 | 450 | 0.1204 | 0.9467 | | 0.1692 | 0.32 | 500 | 0.1396 | 0.9533 | | 0.1987 | 0.35 | 550 | 0.1151 | 0.94 | | 0.207 | 0.38 | 600 | 0.1705 | 0.94 | | 0.2135 | 0.42 | 650 | 0.1189 | 0.9467 | | 0.1847 | 0.45 | 700 | 0.1315 | 0.9533 | | 0.169 | 0.48 | 750 | 0.1407 | 0.9533 | | 0.1767 | 0.51 | 800 | 0.1675 | 0.9333 | | 0.1899 | 0.54 | 850 | 0.0913 | 0.9467 | | 0.1641 | 0.58 | 900 | 0.0954 | 0.96 | | 0.1765 | 0.61 | 950 | 0.1237 | 0.9467 | | 0.1663 | 0.64 | 1000 | 0.1029 | 0.9533 | | 0.1238 | 0.67 | 1050 | 0.1267 | 0.96 | | 0.2087 | 0.7 | 1100 | 0.1111 | 0.96 | | 0.1354 | 0.74 | 1150 | 0.0916 | 0.9667 | | 0.1937 | 0.77 | 1200 | 0.1059 | 0.96 | | 0.2216 | 0.8 | 1250 | 0.1049 | 0.9467 | | 0.1788 | 0.83 | 1300 | 0.1472 | 0.94 | | 0.2138 | 0.86 | 1350 | 0.1234 | 0.9467 | | 0.1555 | 0.9 | 1400 | 0.1386 | 0.94 | | 0.1583 | 0.93 | 1450 | 0.1642 | 0.9467 | | 0.1525 | 0.96 | 1500 | 0.1571 | 0.94 | | 0.2049 | 0.99 | 1550 | 0.1257 | 0.9333 | | 0.1266 | 1.02 | 1600 | 0.1677 | 0.94 | | 0.1282 | 1.06 | 1650 | 0.1307 | 0.9533 | | 0.1007 | 1.09 | 1700 | 0.1375 | 0.9533 | | 0.0991 | 1.12 | 1750 | 0.1513 | 0.9533 | | 0.1211 | 1.15 | 1800 | 0.1229 | 0.9667 | | 0.1833 | 1.18 | 1850 | 0.1105 | 0.9733 | | 0.1596 | 1.22 | 1900 | 0.1279 | 0.9533 | | 0.1172 | 1.25 | 1950 | 0.1124 | 0.96 | | 0.1137 | 1.28 | 2000 | 0.1407 | 0.9467 | | 0.1135 | 1.31 | 2050 | 0.1377 | 0.96 | | 0.096 | 1.34 | 2100 | 0.1022 | 0.9667 | | 0.1203 | 1.38 | 2150 | 0.1719 | 0.9467 | | 0.1289 | 1.41 | 2200 | 0.1254 | 0.9667 | | 0.1392 | 1.44 | 2250 | 0.1086 | 0.9667 | | 0.1319 | 1.47 | 2300 | 0.1511 | 0.9467 | | 0.1161 | 1.5 | 2350 | 0.1758 | 0.9467 | | 0.1402 | 1.54 | 2400 | 0.1369 | 0.96 | | 0.1433 | 1.57 | 2450 | 0.1495 | 0.9667 | | 0.1882 | 1.6 | 2500 | 0.1186 | 0.9467 | | 0.1474 | 1.63 | 2550 | 0.1249 | 0.9533 | | 0.0937 | 1.66 | 2600 | 0.1390 | 0.96 | | 0.1231 | 1.7 | 2650 | 0.1467 | 0.96 | | 0.1485 | 1.73 | 2700 | 0.1602 | 0.9533 | | 0.1683 | 1.76 | 2750 | 0.1884 | 0.9533 | | 0.1141 | 1.79 | 2800 | 0.1634 | 0.96 | | 0.1351 | 1.82 | 2850 | 0.1212 | 0.9733 | | 0.1298 | 1.86 | 2900 | 0.1224 | 0.96 | | 0.1616 | 1.89 | 2950 | 0.1241 | 0.96 | | 0.1159 | 1.92 | 3000 | 0.1532 | 0.9533 | | 0.1101 | 1.95 | 3050 | 0.1105 | 0.96 | | 0.0779 | 1.98 | 3100 | 0.1334 | 0.9533 | | 0.1427 | 2.02 | 3150 | 0.1026 | 0.9733 | | 0.0673 | 2.05 | 3200 | 0.1231 | 0.96 | | 0.0901 | 2.08 | 3250 | 0.1077 | 0.9733 | | 0.0532 | 2.11 | 3300 | 0.1385 | 0.9467 | | 0.0984 | 2.14 | 3350 | 0.1432 | 0.9467 | | 0.1006 | 2.18 | 3400 | 0.1183 | 0.9667 | | 0.067 | 2.21 | 3450 | 0.1533 | 0.9533 | | 0.0901 | 2.24 | 3500 | 0.1314 | 0.9733 | | 0.0644 | 2.27 | 3550 | 0.1354 | 0.9667 | | 0.076 | 2.3 | 3600 | 0.1548 | 0.96 | | 0.0932 | 2.34 | 3650 | 0.1624 | 0.9667 | | 0.0777 | 2.37 | 3700 | 0.1878 | 0.9533 | | 0.106 | 2.4 | 3750 | 0.1721 | 0.96 | | 0.0621 | 2.43 | 3800 | 0.1470 | 0.9667 | | 0.0919 | 2.46 | 3850 | 0.1478 | 0.96 | | 0.091 | 2.5 | 3900 | 0.1371 | 0.9667 | | 0.0912 | 2.53 | 3950 | 0.1467 | 0.9667 | | 0.0775 | 2.56 | 4000 | 0.1289 | 0.9733 | | 0.1053 | 2.59 | 4050 | 0.1107 | 0.9733 | | 0.063 | 2.62 | 4100 | 0.1031 | 0.9733 | | 0.0859 | 2.66 | 4150 | 0.0953 | 0.98 | | 0.084 | 2.69 | 4200 | 0.1216 | 0.9733 | | 0.1215 | 2.72 | 4250 | 0.1025 | 0.9733 | | 0.0675 | 2.75 | 4300 | 0.0992 | 0.9667 | | 0.0608 | 2.78 | 4350 | 0.1288 | 0.96 | | 0.0965 | 2.82 | 4400 | 0.1179 | 0.9667 | | 0.061 | 2.85 | 4450 | 0.1178 | 0.9733 | | 0.0821 | 2.88 | 4500 | 0.1188 | 0.9733 | | 0.0802 | 2.91 | 4550 | 0.1423 | 0.9667 | | 0.0901 | 2.94 | 4600 | 0.1367 | 0.96 | | 0.1069 | 2.98 | 4650 | 0.1118 | 0.9733 | | 0.0653 | 3.01 | 4700 | 0.1359 | 0.9533 | | 0.0577 | 3.04 | 4750 | 0.1046 | 0.9667 | | 0.0467 | 3.07 | 4800 | 0.1366 | 0.96 | | 0.041 | 3.1 | 4850 | 0.1276 | 0.9667 | | 0.0585 | 3.13 | 4900 | 0.1426 | 0.9667 | | 0.0635 | 3.17 | 4950 | 0.1571 | 0.96 | | 0.0395 | 3.2 | 5000 | 0.1527 | 0.96 | | 0.034 | 3.23 | 5050 | 0.1323 | 0.9667 | | 0.0405 | 3.26 | 5100 | 0.1377 | 0.96 | | 0.0306 | 3.29 | 5150 | 0.1526 | 0.9667 | | 0.0471 | 3.33 | 5200 | 0.1419 | 0.9667 | | 0.0646 | 3.36 | 5250 | 0.1459 | 0.9667 | | 0.0508 | 3.39 | 5300 | 0.1312 | 0.9667 | | 0.0593 | 3.42 | 5350 | 0.1483 | 0.96 | | 0.05 | 3.45 | 5400 | 0.1076 | 0.9733 | | 0.0559 | 3.49 | 5450 | 0.1412 | 0.9667 | | 0.0614 | 3.52 | 5500 | 0.1597 | 0.9667 | | 0.0691 | 3.55 | 5550 | 0.1656 | 0.96 | | 0.0472 | 3.58 | 5600 | 0.1556 | 0.9667 | | 0.055 | 3.61 | 5650 | 0.1347 | 0.9667 | | 0.0564 | 3.65 | 5700 | 0.1424 | 0.96 | | 0.0567 | 3.68 | 5750 | 0.1448 | 0.9733 | | 0.0645 | 3.71 | 5800 | 0.1290 | 0.9667 | | 0.0361 | 3.74 | 5850 | 0.1367 | 0.9667 | | 0.0546 | 3.77 | 5900 | 0.1406 | 0.9667 | | 0.043 | 3.81 | 5950 | 0.1337 | 0.96 | | 0.0148 | 3.84 | 6000 | 0.1475 | 0.9533 | | 0.0922 | 3.87 | 6050 | 0.1318 | 0.9733 | | 0.0671 | 3.9 | 6100 | 0.1446 | 0.9733 | | 0.0295 | 3.93 | 6150 | 0.1217 | 0.9733 | | 0.0503 | 3.97 | 6200 | 0.1133 | 0.9733 | | 0.0457 | 4.0 | 6250 | 0.1145 | 0.9733 | | 0.0487 | 4.03 | 6300 | 0.1119 | 0.9733 | | 0.0491 | 4.06 | 6350 | 0.1274 | 0.9667 | | 0.0417 | 4.09 | 6400 | 0.1377 | 0.9733 | | 0.0595 | 4.13 | 6450 | 0.1271 | 0.9733 | | 0.035 | 4.16 | 6500 | 0.1183 | 0.9733 | | 0.0482 | 4.19 | 6550 | 0.1153 | 0.9733 | | 0.0196 | 4.22 | 6600 | 0.1388 | 0.9733 | | 0.028 | 4.25 | 6650 | 0.1310 | 0.9733 | | 0.0193 | 4.29 | 6700 | 0.1460 | 0.9667 | | 0.0233 | 4.32 | 6750 | 0.1233 | 0.9733 | | 0.0316 | 4.35 | 6800 | 0.1220 | 0.9667 | | 0.0132 | 4.38 | 6850 | 0.1350 | 0.9533 | | 0.0415 | 4.41 | 6900 | 0.1547 | 0.9667 | | 0.0157 | 4.45 | 6950 | 0.1562 | 0.9667 | | 0.0186 | 4.48 | 7000 | 0.1424 | 0.9667 | | 0.0012 | 4.51 | 7050 | 0.1421 | 0.9667 | | 0.0223 | 4.54 | 7100 | 0.1475 | 0.9733 | | 0.0455 | 4.57 | 7150 | 0.1457 | 0.96 | | 0.0571 | 4.61 | 7200 | 0.1559 | 0.9667 | | 0.0305 | 4.64 | 7250 | 0.1614 | 0.9667 | | 0.0457 | 4.67 | 7300 | 0.1691 | 0.9667 | | 0.022 | 4.7 | 7350 | 0.1622 | 0.9667 | | 0.0338 | 4.73 | 7400 | 0.1560 | 0.9667 | | 0.0365 | 4.77 | 7450 | 0.1553 | 0.9667 | | 0.025 | 4.8 | 7500 | 0.1512 | 0.9667 | | 0.0441 | 4.83 | 7550 | 0.1550 | 0.9667 | | 0.0363 | 4.86 | 7600 | 0.1564 | 0.9667 | | 0.0188 | 4.89 | 7650 | 0.1553 | 0.9667 | | 0.0427 | 4.93 | 7700 | 0.1572 | 0.9733 | | 0.0362 | 4.96 | 7750 | 0.1568 | 0.9667 | | 0.0115 | 4.99 | 7800 | 0.1557 | 0.9667 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.2
rlarios/distilbert-base-uncased-finetuned-emotion
rlarios
2022-11-28T21:34:34Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-25T20:15:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9325 - name: F1 type: f1 value: 0.9322428116765227 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2225 - Accuracy: 0.9325 - F1: 0.9322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8372 | 1.0 | 250 | 0.3225 | 0.9045 | 0.9017 | | 0.2534 | 2.0 | 500 | 0.2225 | 0.9325 | 0.9322 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cpu - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/TUF_ALBERT_5E
pig4431
2022-11-28T21:34:30Z
105
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T21:32:18Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: TUF_ALBERT_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TUF_ALBERT_5E This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2389 - Accuracy: 0.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5099 | 0.1 | 50 | 0.3861 | 0.8533 | | 0.2985 | 0.2 | 100 | 0.2961 | 0.8933 | | 0.2972 | 0.3 | 150 | 0.2335 | 0.9333 | | 0.2835 | 0.4 | 200 | 0.1872 | 0.94 | | 0.26 | 0.5 | 250 | 0.4147 | 0.9133 | | 0.2986 | 0.59 | 300 | 0.2080 | 0.9267 | | 0.2554 | 0.69 | 350 | 0.3984 | 0.9133 | | 0.2306 | 0.79 | 400 | 0.2136 | 0.9333 | | 0.2218 | 0.89 | 450 | 0.4455 | 0.8867 | | 0.2113 | 0.99 | 500 | 0.2205 | 0.94 | | 0.2541 | 1.09 | 550 | 0.1705 | 0.9333 | | 0.1947 | 1.19 | 600 | 0.3264 | 0.8933 | | 0.2409 | 1.29 | 650 | 0.2084 | 0.92 | | 0.1968 | 1.39 | 700 | 0.2550 | 0.9267 | | 0.172 | 1.49 | 750 | 0.2238 | 0.9467 | | 0.1478 | 1.58 | 800 | 0.2501 | 0.9533 | | 0.2199 | 1.68 | 850 | 0.2618 | 0.9133 | | 0.1792 | 1.78 | 900 | 0.2109 | 0.9267 | | 0.1831 | 1.88 | 950 | 0.2641 | 0.92 | | 0.1534 | 1.98 | 1000 | 0.1924 | 0.94 | | 0.1208 | 2.08 | 1050 | 0.2990 | 0.9333 | | 0.1118 | 2.18 | 1100 | 0.4952 | 0.9 | | 0.158 | 2.28 | 1150 | 0.1706 | 0.9533 | | 0.1163 | 2.38 | 1200 | 0.1238 | 0.9733 | | 0.1738 | 2.48 | 1250 | 0.1989 | 0.9467 | | 0.1305 | 2.57 | 1300 | 0.4354 | 0.9067 | | 0.1668 | 2.67 | 1350 | 0.1276 | 0.9667 | | 0.1195 | 2.77 | 1400 | 0.2170 | 0.9533 | | 0.1057 | 2.87 | 1450 | 0.2882 | 0.9333 | | 0.1172 | 2.97 | 1500 | 0.1435 | 0.9667 | | 0.0893 | 3.07 | 1550 | 0.1754 | 0.96 | | 0.0582 | 3.17 | 1600 | 0.1858 | 0.96 | | 0.0887 | 3.27 | 1650 | 0.4954 | 0.92 | | 0.1166 | 3.37 | 1700 | 0.2356 | 0.9467 | | 0.0518 | 3.47 | 1750 | 0.1910 | 0.96 | | 0.0741 | 3.56 | 1800 | 0.1328 | 0.9733 | | 0.072 | 3.66 | 1850 | 0.2769 | 0.9467 | | 0.0534 | 3.76 | 1900 | 0.3501 | 0.94 | | 0.0776 | 3.86 | 1950 | 0.3171 | 0.94 | | 0.0537 | 3.96 | 2000 | 0.2138 | 0.9533 | | 0.0683 | 4.06 | 2050 | 0.2934 | 0.94 | | 0.015 | 4.16 | 2100 | 0.2233 | 0.9533 | | 0.0236 | 4.26 | 2150 | 0.2673 | 0.9533 | | 0.0357 | 4.36 | 2200 | 0.2279 | 0.96 | | 0.0298 | 4.46 | 2250 | 0.3017 | 0.9467 | | 0.0357 | 4.55 | 2300 | 0.2910 | 0.9467 | | 0.0208 | 4.65 | 2350 | 0.2498 | 0.9533 | | 0.0345 | 4.75 | 2400 | 0.2259 | 0.9667 | | 0.0174 | 4.85 | 2450 | 0.2274 | 0.9667 | | 0.0393 | 4.95 | 2500 | 0.2389 | 0.9533 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
anikethjr/PromoGen_K562_2080Ti_restart
anikethjr
2022-11-28T21:24:36Z
91
0
transformers
[ "transformers", "pytorch", "tensorboard", "prophetnet", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-27T05:27:24Z
--- tags: - generated_from_trainer model-index: - name: PromoGen_K562_2080Ti_restart results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PromoGen_K562_2080Ti_restart This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.7676 | 0.49 | 2500 | 0.7383 | | 0.7121 | 0.97 | 5000 | 0.6867 | | 0.6914 | 1.46 | 7500 | 0.6705 | | 0.6837 | 1.95 | 10000 | 0.6622 | | 0.6778 | 2.44 | 12500 | 0.6558 | | 0.6748 | 2.92 | 15000 | 0.6517 | | 0.6676 | 3.41 | 17500 | 0.6433 | | 0.6593 | 3.9 | 20000 | 0.6358 | | 0.6584 | 4.38 | 22500 | 0.6320 | | 0.6557 | 4.87 | 25000 | 0.6301 | | 0.6523 | 5.36 | 27500 | 0.6257 | | 0.6478 | 5.84 | 30000 | 0.6236 | | 0.6393 | 6.33 | 32500 | 0.6145 | | 0.6039 | 6.82 | 35000 | 0.5658 | | 0.5616 | 7.31 | 37500 | 0.5376 | | 0.5518 | 7.79 | 40000 | 0.5310 | | 0.5509 | 8.28 | 42500 | 0.5273 | | 0.5487 | 8.77 | 45000 | 0.5261 | | 0.5479 | 9.25 | 47500 | 0.5249 | | 0.546 | 9.74 | 50000 | 0.5242 | | 0.5447 | 10.23 | 52500 | 0.5229 | | 0.5439 | 10.71 | 55000 | 0.5220 | | 0.5433 | 11.2 | 57500 | 0.5209 | | 0.5394 | 11.69 | 60000 | 0.5162 | | 0.5153 | 12.18 | 62500 | 0.4944 | | 0.5137 | 12.66 | 65000 | 0.4932 | | 0.514 | 13.15 | 67500 | 0.4924 | | 0.5131 | 13.64 | 70000 | 0.4919 | | 0.5104 | 14.12 | 72500 | 0.4914 | | 0.5122 | 14.61 | 75000 | 0.4906 | | 0.5089 | 15.1 | 77500 | 0.4901 | | 0.5076 | 15.59 | 80000 | 0.4891 | | 0.4986 | 16.07 | 82500 | 0.4721 | | 0.4875 | 16.56 | 85000 | 0.4672 | | 0.4887 | 17.05 | 87500 | 0.4669 | | 0.4839 | 17.53 | 90000 | 0.4661 | | 0.4849 | 18.02 | 92500 | 0.4654 | | 0.4848 | 18.51 | 95000 | 0.4649 | | 0.4831 | 18.99 | 97500 | 0.4646 | | 0.4816 | 19.48 | 100000 | 0.4644 | | 0.4808 | 19.97 | 102500 | 0.4637 | | 0.4812 | 20.46 | 105000 | 0.4634 | | 0.4813 | 20.94 | 107500 | 0.4633 | | 0.4818 | 21.43 | 110000 | 0.4631 | | 0.4813 | 21.92 | 112500 | 0.4629 | | 0.4782 | 22.4 | 115000 | 0.4628 | | 0.4804 | 22.89 | 117500 | 0.4626 | | 0.4815 | 23.38 | 120000 | 0.4625 | | 0.4812 | 23.87 | 122500 | 0.4625 | | 0.4785 | 24.35 | 125000 | 0.4624 | | 0.4795 | 24.84 | 127500 | 0.4624 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.0 - Tokenizers 0.13.0.dev0
Inayat/Fine_tune_whisper_small
Inayat
2022-11-28T21:14:32Z
79
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-14T19:18:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: Fine_tune_whisper_small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fine_tune_whisper_small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8238 - Wer: 42.9362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 900 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2994 | 3.92 | 200 | 0.6607 | 44.0797 | | 0.0201 | 7.84 | 400 | 0.7371 | 42.6042 | | 0.002 | 11.76 | 600 | 0.8027 | 42.5304 | | 0.0011 | 15.69 | 800 | 0.8238 | 42.9362 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
pig4431/TweetEval_DistilBERT_5E
pig4431
2022-11-28T21:09:36Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T21:03:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy model-index: - name: TweetEval_DistilBERT_5E results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: sentiment split: train args: sentiment metrics: - name: Accuracy type: accuracy value: 0.9133333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TweetEval_DistilBERT_5E This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.4043 - Accuracy: 0.9133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5747 | 0.04 | 50 | 0.4843 | 0.7333 | | 0.4336 | 0.08 | 100 | 0.2888 | 0.8667 | | 0.3437 | 0.12 | 150 | 0.2895 | 0.8667 | | 0.3375 | 0.16 | 200 | 0.2864 | 0.8733 | | 0.3072 | 0.2 | 250 | 0.2577 | 0.8867 | | 0.3019 | 0.24 | 300 | 0.2574 | 0.8933 | | 0.2662 | 0.28 | 350 | 0.2621 | 0.8867 | | 0.283 | 0.32 | 400 | 0.2340 | 0.92 | | 0.2949 | 0.37 | 450 | 0.2482 | 0.8933 | | 0.3066 | 0.41 | 500 | 0.2537 | 0.9 | | 0.2457 | 0.45 | 550 | 0.2473 | 0.9 | | 0.295 | 0.49 | 600 | 0.2177 | 0.9133 | | 0.2862 | 0.53 | 650 | 0.2215 | 0.9133 | | 0.2603 | 0.57 | 700 | 0.2272 | 0.9133 | | 0.2976 | 0.61 | 750 | 0.2298 | 0.9067 | | 0.2823 | 0.65 | 800 | 0.2451 | 0.8933 | | 0.2583 | 0.69 | 850 | 0.2645 | 0.8933 | | 0.2694 | 0.73 | 900 | 0.2352 | 0.9 | | 0.2433 | 0.77 | 950 | 0.2322 | 0.9133 | | 0.2598 | 0.81 | 1000 | 0.2300 | 0.9 | | 0.2701 | 0.85 | 1050 | 0.2162 | 0.9 | | 0.2227 | 0.89 | 1100 | 0.2135 | 0.8933 | | 0.2045 | 0.93 | 1150 | 0.2233 | 0.9133 | | 0.2821 | 0.97 | 1200 | 0.2194 | 0.9 | | 0.2342 | 1.01 | 1250 | 0.2488 | 0.88 | | 0.2028 | 1.06 | 1300 | 0.2451 | 0.8867 | | 0.1509 | 1.1 | 1350 | 0.3174 | 0.88 | | 0.1888 | 1.14 | 1400 | 0.2537 | 0.9133 | | 0.1825 | 1.18 | 1450 | 0.2559 | 0.9067 | | 0.1721 | 1.22 | 1500 | 0.2511 | 0.92 | | 0.2137 | 1.26 | 1550 | 0.2963 | 0.9133 | | 0.2153 | 1.3 | 1600 | 0.2210 | 0.92 | | 0.1989 | 1.34 | 1650 | 0.2231 | 0.9133 | | 0.2155 | 1.38 | 1700 | 0.1991 | 0.9133 | | 0.1912 | 1.42 | 1750 | 0.2146 | 0.92 | | 0.1623 | 1.46 | 1800 | 0.2721 | 0.9 | | 0.2236 | 1.5 | 1850 | 0.2301 | 0.9267 | | 0.1907 | 1.54 | 1900 | 0.1988 | 0.92 | | 0.1286 | 1.58 | 1950 | 0.2326 | 0.9 | | 0.2147 | 1.62 | 2000 | 0.2432 | 0.9267 | | 0.2018 | 1.66 | 2050 | 0.2162 | 0.9067 | | 0.2073 | 1.7 | 2100 | 0.2153 | 0.9133 | | 0.1498 | 1.75 | 2150 | 0.2335 | 0.92 | | 0.1812 | 1.79 | 2200 | 0.2275 | 0.9267 | | 0.1482 | 1.83 | 2250 | 0.2734 | 0.9 | | 0.2233 | 1.87 | 2300 | 0.2454 | 0.9 | | 0.1673 | 1.91 | 2350 | 0.2394 | 0.92 | | 0.1555 | 1.95 | 2400 | 0.2725 | 0.92 | | 0.2082 | 1.99 | 2450 | 0.2684 | 0.9133 | | 0.1545 | 2.03 | 2500 | 0.3049 | 0.9067 | | 0.1384 | 2.07 | 2550 | 0.2960 | 0.9133 | | 0.1201 | 2.11 | 2600 | 0.3259 | 0.9 | | 0.1348 | 2.15 | 2650 | 0.3091 | 0.9133 | | 0.1046 | 2.19 | 2700 | 0.2916 | 0.9267 | | 0.1506 | 2.23 | 2750 | 0.2910 | 0.9133 | | 0.1481 | 2.27 | 2800 | 0.2855 | 0.9067 | | 0.1318 | 2.31 | 2850 | 0.3075 | 0.9 | | 0.1204 | 2.35 | 2900 | 0.3169 | 0.8933 | | 0.1669 | 2.39 | 2950 | 0.3050 | 0.9067 | | 0.1725 | 2.44 | 3000 | 0.2970 | 0.9133 | | 0.1305 | 2.48 | 3050 | 0.3065 | 0.9 | | 0.1508 | 2.52 | 3100 | 0.3079 | 0.9133 | | 0.184 | 2.56 | 3150 | 0.3482 | 0.9067 | | 0.1263 | 2.6 | 3200 | 0.3310 | 0.9 | | 0.1282 | 2.64 | 3250 | 0.3520 | 0.8933 | | 0.1217 | 2.68 | 3300 | 0.3158 | 0.9067 | | 0.1203 | 2.72 | 3350 | 0.3351 | 0.92 | | 0.1068 | 2.76 | 3400 | 0.3239 | 0.92 | | 0.1517 | 2.8 | 3450 | 0.3247 | 0.92 | | 0.113 | 2.84 | 3500 | 0.3269 | 0.9133 | | 0.1276 | 2.88 | 3550 | 0.3162 | 0.92 | | 0.1548 | 2.92 | 3600 | 0.3196 | 0.9133 | | 0.1305 | 2.96 | 3650 | 0.3163 | 0.92 | | 0.149 | 3.0 | 3700 | 0.3013 | 0.92 | | 0.0816 | 3.04 | 3750 | 0.3097 | 0.9267 | | 0.0884 | 3.08 | 3800 | 0.3028 | 0.92 | | 0.0727 | 3.12 | 3850 | 0.3487 | 0.9133 | | 0.1018 | 3.17 | 3900 | 0.3447 | 0.92 | | 0.1266 | 3.21 | 3950 | 0.3589 | 0.9133 | | 0.1216 | 3.25 | 4000 | 0.3464 | 0.92 | | 0.091 | 3.29 | 4050 | 0.3454 | 0.92 | | 0.0829 | 3.33 | 4100 | 0.3450 | 0.92 | | 0.1084 | 3.37 | 4150 | 0.3670 | 0.92 | | 0.0754 | 3.41 | 4200 | 0.3661 | 0.92 | | 0.094 | 3.45 | 4250 | 0.3588 | 0.9067 | | 0.0641 | 3.49 | 4300 | 0.3936 | 0.92 | | 0.1138 | 3.53 | 4350 | 0.3616 | 0.92 | | 0.0744 | 3.57 | 4400 | 0.3562 | 0.92 | | 0.0697 | 3.61 | 4450 | 0.3532 | 0.9267 | | 0.1083 | 3.65 | 4500 | 0.3451 | 0.9267 | | 0.0701 | 3.69 | 4550 | 0.3307 | 0.92 | | 0.0849 | 3.73 | 4600 | 0.3797 | 0.92 | | 0.09 | 3.77 | 4650 | 0.3746 | 0.9267 | | 0.0799 | 3.81 | 4700 | 0.3799 | 0.92 | | 0.0589 | 3.86 | 4750 | 0.3805 | 0.92 | | 0.0578 | 3.9 | 4800 | 0.3910 | 0.9133 | | 0.0816 | 3.94 | 4850 | 0.3856 | 0.9133 | | 0.1366 | 3.98 | 4900 | 0.3707 | 0.92 | | 0.0846 | 4.02 | 4950 | 0.3802 | 0.92 | | 0.0401 | 4.06 | 5000 | 0.3842 | 0.92 | | 0.0851 | 4.1 | 5050 | 0.3773 | 0.9267 | | 0.0514 | 4.14 | 5100 | 0.3922 | 0.9133 | | 0.0909 | 4.18 | 5150 | 0.3893 | 0.92 | | 0.0764 | 4.22 | 5200 | 0.3818 | 0.9133 | | 0.1208 | 4.26 | 5250 | 0.4096 | 0.92 | | 0.0689 | 4.3 | 5300 | 0.3940 | 0.9133 | | 0.0524 | 4.34 | 5350 | 0.4020 | 0.9133 | | 0.0733 | 4.38 | 5400 | 0.4002 | 0.9133 | | 0.0699 | 4.42 | 5450 | 0.4013 | 0.9133 | | 0.0712 | 4.46 | 5500 | 0.4037 | 0.9067 | | 0.0557 | 4.5 | 5550 | 0.4121 | 0.92 | | 0.0679 | 4.55 | 5600 | 0.4067 | 0.9133 | | 0.0651 | 4.59 | 5650 | 0.4194 | 0.9133 | | 0.0607 | 4.63 | 5700 | 0.4007 | 0.9133 | | 0.0676 | 4.67 | 5750 | 0.4013 | 0.9133 | | 0.0303 | 4.71 | 5800 | 0.3984 | 0.9133 | | 0.0674 | 4.75 | 5850 | 0.4037 | 0.9133 | | 0.0842 | 4.79 | 5900 | 0.4072 | 0.9133 | | 0.0516 | 4.83 | 5950 | 0.4096 | 0.9133 | | 0.0556 | 4.87 | 6000 | 0.4111 | 0.92 | | 0.0277 | 4.91 | 6050 | 0.4079 | 0.9133 | | 0.0629 | 4.95 | 6100 | 0.4053 | 0.9133 | | 0.0426 | 4.99 | 6150 | 0.4043 | 0.9133 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.2
futuredatascience/to-classifier-v1
futuredatascience
2022-11-28T20:53:10Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-28T20:52:58Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 53 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 530, "warmup_steps": 53, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
futuredatascience/from-classifier-v1
futuredatascience
2022-11-28T20:07:27Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-28T20:07:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 53 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 530, "warmup_steps": 53, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
reubenjohn/stack-overflow-open-status-classifier-pt
reubenjohn
2022-11-28T20:01:21Z
4
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-16T03:44:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: stack-overflow-open-status-classifier-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stack-overflow-open-status-classifier-pt This model is a fine-tuned version of [reubenjohn/stack-overflow-open-status-classifier-pt](https://huggingface.co/reubenjohn/stack-overflow-open-status-classifier-pt) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.9448 - eval_runtime: 3.554 - eval_samples_per_second: 28.137 - eval_steps_per_second: 0.563 - epoch: 0.01 - step: 60 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 1 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
motmono/a2c-AntBulletEnv-v0
motmono
2022-11-28T19:58:24Z
2
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-28T19:57:12Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1539.68 +/- 213.96 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
pig4431/TUF_roBERTa_5E
pig4431
2022-11-28T19:55:07Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T19:48:29Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: TUF_roBERTa_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TUF_roBERTa_5E This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2136 - Accuracy: 0.9667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4665 | 0.1 | 50 | 0.2587 | 0.9333 | | 0.245 | 0.2 | 100 | 0.1355 | 0.96 | | 0.2079 | 0.3 | 150 | 0.1454 | 0.9533 | | 0.2098 | 0.4 | 200 | 0.1809 | 0.9533 | | 0.1637 | 0.5 | 250 | 0.2299 | 0.94 | | 0.1869 | 0.59 | 300 | 0.1324 | 0.9667 | | 0.2202 | 0.69 | 350 | 0.1786 | 0.9467 | | 0.2084 | 0.79 | 400 | 0.1541 | 0.9533 | | 0.148 | 0.89 | 450 | 0.1790 | 0.9533 | | 0.1945 | 0.99 | 500 | 0.1168 | 0.9667 | | 0.1648 | 1.09 | 550 | 0.1153 | 0.96 | | 0.1099 | 1.19 | 600 | 0.1239 | 0.96 | | 0.1238 | 1.29 | 650 | 0.1486 | 0.9533 | | 0.1067 | 1.39 | 700 | 0.1195 | 0.96 | | 0.1324 | 1.49 | 750 | 0.1134 | 0.96 | | 0.1128 | 1.58 | 800 | 0.1180 | 0.9667 | | 0.1406 | 1.68 | 850 | 0.2081 | 0.9533 | | 0.1516 | 1.78 | 900 | 0.1987 | 0.9533 | | 0.1537 | 1.88 | 950 | 0.1644 | 0.96 | | 0.0957 | 1.98 | 1000 | 0.1660 | 0.96 | | 0.0699 | 2.08 | 1050 | 0.2057 | 0.9533 | | 0.1007 | 2.18 | 1100 | 0.2336 | 0.9533 | | 0.0677 | 2.28 | 1150 | 0.2399 | 0.9467 | | 0.059 | 2.38 | 1200 | 0.2331 | 0.96 | | 0.1051 | 2.48 | 1250 | 0.1974 | 0.9533 | | 0.0778 | 2.57 | 1300 | 0.2857 | 0.9467 | | 0.1099 | 2.67 | 1350 | 0.2641 | 0.9533 | | 0.0747 | 2.77 | 1400 | 0.2219 | 0.9533 | | 0.0874 | 2.87 | 1450 | 0.2780 | 0.9533 | | 0.0675 | 2.97 | 1500 | 0.1993 | 0.96 | | 0.052 | 3.07 | 1550 | 0.1918 | 0.96 | | 0.0214 | 3.17 | 1600 | 0.2410 | 0.96 | | 0.0512 | 3.27 | 1650 | 0.2353 | 0.96 | | 0.0548 | 3.37 | 1700 | 0.2722 | 0.9533 | | 0.0554 | 3.47 | 1750 | 0.1593 | 0.9733 | | 0.0742 | 3.56 | 1800 | 0.2568 | 0.96 | | 0.064 | 3.66 | 1850 | 0.2358 | 0.96 | | 0.052 | 3.76 | 1900 | 0.2161 | 0.9667 | | 0.0349 | 3.86 | 1950 | 0.2497 | 0.96 | | 0.0868 | 3.96 | 2000 | 0.1834 | 0.9667 | | 0.0445 | 4.06 | 2050 | 0.2441 | 0.9533 | | 0.0388 | 4.16 | 2100 | 0.2136 | 0.9667 | | 0.0484 | 4.26 | 2150 | 0.2114 | 0.9667 | | 0.0263 | 4.36 | 2200 | 0.2325 | 0.96 | | 0.0409 | 4.46 | 2250 | 0.2454 | 0.9533 | | 0.0324 | 4.55 | 2300 | 0.2105 | 0.9667 | | 0.0295 | 4.65 | 2350 | 0.2118 | 0.9667 | | 0.0372 | 4.75 | 2400 | 0.2005 | 0.9667 | | 0.0294 | 4.85 | 2450 | 0.2057 | 0.9667 | | 0.0354 | 4.95 | 2500 | 0.2136 | 0.9667 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
altsoph/xlmr-AER
altsoph
2022-11-28T19:22:35Z
115
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "nlp", "roberta", "xlmr", "classifier", "aer", "narrative", "entity recognition", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-27T22:41:15Z
--- language: - en thumbnail: https://raw.githubusercontent.com/altsoph/misc/main/imgs/aer_logo.png tags: - nlp - roberta - xlmr - classifier - aer - narrative - entity recognition license: mit --- An XLM-Roberta based language model fine-tuned for AER (Actionable Entities Recognition) -- recognition of entities that protagonists could interact with for further plot development. We used 5K+ locations from 1K interactive text fiction games and extracted textual descriptions of locations and lists of actionable entities in them. The resulting [BAER dataset is available here](https://github.com/altsoph/BAER). Then we used it to train this model. The example of usage: ```py from transformers import AutoModelForTokenClassification, AutoTokenizer, pipeline MODEL_NAME = "altsoph/xlmr-AER" text = """This bedroom is extremely spare, with dirty laundry scattered haphazardly all over the floor. Cleaner clothing can be found in the dresser. A bathroom lies to the south, while a door to the east leads to the living room.""" model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) pipe = pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple", ignore_labels=['O','PAD']) entities = pipe(text) print(entities) ``` If you use the model, please cite the following: ``` @inproceedings{Tikhonov-etal-2022-AER, title = "Actionable Entities Recognition Benchmark for Interactive Fiction", author = "Alexey Tikhonov and Ivan P. Yamshchikov", year = "2022", } ```
essayproj/roberta-base-essay
essayproj
2022-11-28T19:08:54Z
59
0
transformers
[ "transformers", "tf", "roberta", "feature-extraction", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-28T19:08:03Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: roberta-base-essay results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-essay This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Tokenizers 0.13.2
Dagar/t5-small-science-papers-NIPS
Dagar
2022-11-28T18:21:27Z
107
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-28T18:00:28Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-science-papers-NIPS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-science-papers-NIPS This model is a fine-tuned version of [Dagar/t5-small-science-papers](https://huggingface.co/Dagar/t5-small-science-papers) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7566 - Rouge1: 15.7066 - Rouge2: 2.5654 - Rougel: 11.4679 - Rougelsum: 14.4017 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 318 | 5.1856 | 13.7172 | 2.0644 | 10.2189 | 12.838 | 19.0 | | 5.4522 | 2.0 | 636 | 5.0383 | 15.6211 | 2.1808 | 11.3561 | 14.3054 | 19.0 | | 5.4522 | 3.0 | 954 | 4.9486 | 15.1659 | 2.3308 | 11.1052 | 13.9456 | 19.0 | | 5.1254 | 4.0 | 1272 | 4.8851 | 15.716 | 2.4099 | 11.4954 | 14.5099 | 19.0 | | 4.9794 | 5.0 | 1590 | 4.8456 | 15.5507 | 2.4267 | 11.3867 | 14.3237 | 19.0 | | 4.9794 | 6.0 | 1908 | 4.8073 | 15.8406 | 2.4254 | 11.6878 | 14.6154 | 19.0 | | 4.8823 | 7.0 | 2226 | 4.7872 | 15.5554 | 2.4637 | 11.3401 | 14.3183 | 19.0 | | 4.8338 | 8.0 | 2544 | 4.7680 | 15.4783 | 2.4888 | 11.3364 | 14.2031 | 19.0 | | 4.8338 | 9.0 | 2862 | 4.7621 | 15.958 | 2.5662 | 11.6139 | 14.6576 | 19.0 | | 4.7838 | 10.0 | 3180 | 4.7566 | 15.7066 | 2.5654 | 11.4679 | 14.4017 | 19.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2