modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-08 06:28:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
546 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-08 06:27:40
card
stringlengths
11
1.01M
pere/t5-sami-oversetter
pere
2022-11-06T14:22:18Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-10-19T07:08:44Z
--- license: apache-2.0 --- # T5 Sami - Norwegian - Sami Placeholder for future model. Description is coming soon.
fgaim/tibert-base
fgaim
2022-11-06T14:12:22Z
13
1
transformers
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "ti", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ti widget: - text: "ዓቕሚ ደቂኣንስትዮ [MASK] ብግብሪ ተራእዩ" --- # BERT Base for Tigrinya Language We pre-train a BERT base-uncased model for Tigrinya on a dataset of 40 million tokens trained for 40 epochs. This repo contains the original pre-trained Flax model that was trained on a TPU v3.8 and its corresponding PyTorch version. ## Hyperparameters The hyperparameters corresponding to the model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | Seq | |------------|----|----|-----|------|------|------| | BASE | 12 | 12 | 768 | 3072 | 110M | 512 | (L = number of layers; AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters; Seq = maximum sequence length.) ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title={Monolingual Pre-trained Language Models for Tigrinya}, year=2021, publisher={WiNLP 2021 at EMNLP 2021} } ```
phildav/PPO-LunarLander-v2
phildav
2022-11-06T13:51:44Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-06T13:16:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 144.76 +/- 139.03 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
keith97/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-multi_news
keith97
2022-11-06T12:29:33Z
113
0
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:multi_news", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-06T09:46:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - multi_news metrics: - rouge model-index: - name: bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-multi_news results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: multi_news type: multi_news args: default metrics: - name: Rouge1 type: rouge value: 38.5318 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-multi_news This model is a fine-tuned version of [mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization](https://huggingface.co/mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization) on the multi_news dataset. It achieves the following results on the evaluation set: - Loss: 4.3760 - Rouge1: 38.5318 - Rouge2: 12.7285 - Rougel: 21.4358 - Rougelsum: 33.4565 - Gen Len: 128.985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 4.6946 | 0.89 | 400 | 4.5393 | 37.164 | 11.5191 | 20.2519 | 32.1568 | 126.415 | | 4.5128 | 1.78 | 800 | 4.4185 | 38.2345 | 12.2053 | 20.954 | 33.0667 | 128.975 | | 4.2926 | 2.67 | 1200 | 4.3866 | 38.4475 | 12.6488 | 21.3046 | 33.2768 | 129.0 | | 4.231 | 3.56 | 1600 | 4.3808 | 38.7008 | 12.6323 | 21.307 | 33.3693 | 128.955 | | 4.125 | 4.44 | 2000 | 4.3760 | 38.5318 | 12.7285 | 21.4358 | 33.4565 | 128.985 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
halflings/diabetes_detection_v2
halflings
2022-11-06T11:21:56Z
0
0
mlconsole
[ "mlconsole", "tabular-classification", "dataset:diabetes_detection", "license:unknown", "model-index", "region:us" ]
tabular-classification
2022-11-06T11:21:52Z
--- license: unknown inference: false tags: - mlconsole - tabular-classification library_name: mlconsole metrics: - accuracy - loss datasets: - diabetes_detection model-index: - name: diabetes_detection_v2 results: - task: type: tabular-classification name: tabular-classification dataset: type: diabetes_detection name: diabetes_detection metrics: - type: accuracy name: Accuracy value: 0.7395833730697632 - type: loss name: Model loss value: 0.5416829586029053 --- # classification model trained on "diabetes_detection" 🤖 [Load and use this model](https://mlconsole.com/model/hf/halflings/diabetes_detection_v2) in one click. 🧑‍💻 [Train your own model](https://mlconsole.com) on ML Console.
halflings/iris_classification
halflings
2022-11-06T11:04:18Z
0
0
mlconsole
[ "mlconsole", "tabular-classification", "dataset:iris_classification", "license:unknown", "model-index", "region:us" ]
tabular-classification
2022-11-06T11:04:14Z
--- license: unknown inference: false tags: - mlconsole - tabular-classification library_name: mlconsole metrics: - accuracy - loss datasets: - iris_classification model-index: - name: iris_classification results: - task: type: tabular-classification name: tabular-classification dataset: type: iris_classification name: iris_classification metrics: - type: accuracy name: Accuracy value: 1 - type: loss name: Model loss value: 0.6147858500480652 --- # classification model trained on "iris_classification" 🤖 [Load and use this model](https://mlconsole.com/model/hf/halflings/iris_classification) in one click. 🧑‍💻 [Train your own model](https://mlconsole.com) on ML Console.
nloc2578/QAG_Pegasus_3ep_eval
nloc2578
2022-11-06T10:39:22Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-26T17:08:04Z
## Overview ``` Language model: Pegasus-xsum Language: English Downstream-task: Question-Answering Generation Training data: SQuAD 2.0, NewsQA Eval data: SQuAD 2.0, NewsQA Infrastructure: Nvidia Tesla K80 12Gb RAM ``` ## Hyperparameters ``` per_device_train_batch_size = 2 per_device_eval_batch_size = 2 num_train_epochs = 3 base_LM_model = "pegasus-xsum" source_max_token_len = 256 target_max_token_len = 64 learning_rate = 5e-5 lr_schedule = LinearWarmup warmup_steps = 150 ``` ## Usage ```python import transformers from transformers import PegasusForConditionalGeneration, PegasusTokenizerFast model_name = 'nloc2578/QAG_Pegasus_3ep_eval' tokenizer = PegasusTokenizerFast.from_pretrained(model_name) model = PegasusForConditionalGeneration.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id) text = '''The primary goal of distractor generation is generating answer options that are plausibly answers to the question, and might appear correct to a user who does know the correct answer. Distractors should also be clearly distinct from the key and each other and they should not be correct answers to the question (for questions that might have multiple correct answers).''' input_id = tokenizer(text, return_tensors='pt') output = model.generate(input_id['input_ids']) result = tokenizer.decode(output[0]) print(result) ```
vanme/vmehlin_distilbert-finetuned-squad
vanme
2022-11-06T10:37:11Z
19
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-24T13:12:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: vmehlin_distilbert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vmehlin_distilbert-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1 ### co2_eq_emissions: - emissions: 49.49 g - source: eco2AI - training_time: 00:31:54 - geographical_location: Bavaria, Germany - hardware_used: Intel(R) Xeon(R) Gold 5215 CPUs (2devices) & NVIDIA A40 (1 device)
semperrr/korset
semperrr
2022-11-06T09:48:06Z
0
0
null
[ "region:us" ]
null
2022-11-06T09:47:39Z
https://zencastr.com/VeR-HD-Sin-novedad-en-el-frente-2022-Online-Espanol-Latino-REPELIS https://zencastr.com/REPELIS-VeR-El-cuarto-pasajero-2022-Online-Pelicula-ompleta-y-HD https://zencastr.com/REPELIS-VeR-Los-renglones-torcidos-de-Dios-2022-Online-Pelicula-ompleta-y-HD https://zencastr.com/REPELIS-VeR-Amsterdam-2022-Online-Pelicula-ompleta-y-HD https://zencastr.com/REPELIS-VeR-One-Piece-Film-Red-2022-Online-Pelicula-ompleta-y-HD
SADX/mishaljohn
SADX
2022-11-06T09:39:57Z
29
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-06T09:18:02Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: mishaljohn results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8333333134651184 --- # mishaljohn Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### mishaljohn ![mishaljohn](images/mishaljohn.png) #### not mishaljohn ![not mishaljohn](images/not_mishaljohn.jpg)
okho0653/distilbert-base-uncased-finetuned-20pc
okho0653
2022-11-06T06:16:40Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-06T06:04:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-20pc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-20pc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3326 - Accuracy: 0.8642 - F1: 0.4762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 41 | 0.4428 | 0.8333 | 0.0 | | No log | 2.0 | 82 | 0.4012 | 0.8333 | 0.0 | | No log | 3.0 | 123 | 0.3619 | 0.8333 | 0.1818 | | No log | 4.0 | 164 | 0.3488 | 0.8580 | 0.3784 | | No log | 5.0 | 205 | 0.3326 | 0.8642 | 0.4762 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
adit94/sentenceTest_kbert4
adit94
2022-11-06T06:10:55Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-06T06:09:54Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5791 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/alexabliss_wwe
huggingtweets
2022-11-06T05:06:07Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-06T04:18:55Z
--- language: en thumbnail: http://www.huggingtweets.com/alexabliss_wwe/1667711162135/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1271821102134833153/krgeswcX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lexi (Kaufman) Cabrera</div> <div style="text-align: center; font-size: 14px;">@alexabliss_wwe</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lexi (Kaufman) Cabrera. | Data | Lexi (Kaufman) Cabrera | | --- | --- | | Tweets downloaded | 3184 | | Retweets | 1160 | | Short tweets | 399 | | Tweets kept | 1625 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2hgwztvb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alexabliss_wwe's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vlezdiv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vlezdiv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alexabliss_wwe') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
TTian/bert-mlm-feedback-512
TTian
2022-11-06T03:25:15Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-06T03:10:31Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-mlm-feedback-512 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-mlm-feedback-512 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6086 | 1.0 | 380 | 2.0284 | | 2.4595 | 2.0 | 760 | 2.1917 | | 2.41 | 3.0 | 1140 | 2.7014 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
uripper/GIANNIS
uripper
2022-11-06T02:34:15Z
5
0
diffusers
[ "diffusers", "unconditional-image-generation", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-01T10:20:02Z
--- tags: - unconditional-image-generation ---
sd-concepts-library/smurf-style
sd-concepts-library
2022-11-06T01:34:45Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-11-06T01:34:41Z
--- license: mit --- ### Smurf Style on Stable Diffusion This is the `<smurfy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<smurfy> 0](https://huggingface.co/sd-concepts-library/smurf-style/resolve/main/concept_images/6.jpeg) ![<smurfy> 1](https://huggingface.co/sd-concepts-library/smurf-style/resolve/main/concept_images/2.jpeg) ![<smurfy> 2](https://huggingface.co/sd-concepts-library/smurf-style/resolve/main/concept_images/0.jpeg) ![<smurfy> 3](https://huggingface.co/sd-concepts-library/smurf-style/resolve/main/concept_images/8.jpeg) ![<smurfy> 4](https://huggingface.co/sd-concepts-library/smurf-style/resolve/main/concept_images/3.jpeg) ![<smurfy> 5](https://huggingface.co/sd-concepts-library/smurf-style/resolve/main/concept_images/5.jpeg) ![<smurfy> 6](https://huggingface.co/sd-concepts-library/smurf-style/resolve/main/concept_images/4.jpeg) ![<smurfy> 7](https://huggingface.co/sd-concepts-library/smurf-style/resolve/main/concept_images/9.jpeg) ![<smurfy> 8](https://huggingface.co/sd-concepts-library/smurf-style/resolve/main/concept_images/1.jpeg) ![<smurfy> 9](https://huggingface.co/sd-concepts-library/smurf-style/resolve/main/concept_images/7.jpeg)
ryo-hsgw/xlm-roberta-base-finetuned-panx-it
ryo-hsgw
2022-11-05T23:43:08Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-05T23:39:48Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8224755700325732 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2521 - F1: 0.8225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8088 | 1.0 | 70 | 0.3423 | 0.7009 | | 0.2844 | 2.0 | 140 | 0.2551 | 0.8027 | | 0.1905 | 3.0 | 210 | 0.2521 | 0.8225 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ryo-hsgw/xlm-roberta-base-finetuned-panx-fr
ryo-hsgw
2022-11-05T23:39:34Z
10
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-05T23:34:50Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8325761399966348 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2978 - F1: 0.8326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.574 | 1.0 | 191 | 0.3495 | 0.7889 | | 0.2649 | 2.0 | 382 | 0.2994 | 0.8242 | | 0.1716 | 3.0 | 573 | 0.2978 | 0.8326 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ryo-hsgw/xlm-roberta-base-finetuned-panx-de-fr
ryo-hsgw
2022-11-05T23:33:42Z
8
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-05T23:23:52Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1643 - F1: 0.8626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 | | 0.1472 | 2.0 | 1430 | 0.1633 | 0.8488 | | 0.0948 | 3.0 | 2145 | 0.1643 | 0.8626 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ffigueiredo/dataset
ffigueiredo
2022-11-05T22:35:48Z
0
0
null
[ "region:us" ]
null
2022-11-05T19:46:43Z
# Dataset - Modelos Preditivos Conexionistas 2022.01 ### Fábio Figueiredo Detecção de Imagens|75|4| |--|--|--| ### Com base nos produtos vendidos pela empresa VOLTZ MOTORS DO BRASIL S.A, iremos detectar seus 4 produtos principais. ### Faremos assim a detecção de imagens entre o modelo scooter EV1 SPORT, o modelo street EVS e os modelos corporativos Miles e EVS Work.
huggingtweets/aeronautblue
huggingtweets
2022-11-05T21:43:10Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-05T21:39:42Z
--- language: en thumbnail: http://www.huggingtweets.com/aeronautblue/1667684473479/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1515688111526891521/o_3LoG40_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">blue</div> <div style="text-align: center; font-size: 14px;">@aeronautblue</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from blue. | Data | blue | | --- | --- | | Tweets downloaded | 2373 | | Retweets | 460 | | Short tweets | 379 | | Tweets kept | 1534 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/e1wsp7qa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aeronautblue's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/61928z1e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/61928z1e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aeronautblue') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tatakof/ppo-LunarLander-v2
tatakof
2022-11-05T21:38:58Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-05T17:16:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.23 +/- 24.06 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CTAE4OK/Niki
CTAE4OK
2022-11-05T21:14:22Z
0
0
null
[ "region:us" ]
null
2022-11-05T21:09:35Z
from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("DGSpitzer/Cyberpunk-Anime-Diffusion")
aleqsay/af
aleqsay
2022-11-05T20:51:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-05T20:51:43Z
--- license: creativeml-openrail-m ---
halflings/diabetes_detection_fixed3
halflings
2022-11-05T20:43:11Z
0
0
mlconsole
[ "mlconsole", "tabular-classification", "dataset:diabetes_detection", "license:unknown", "model-index", "region:us" ]
tabular-classification
2022-11-05T20:43:08Z
--- license: unknown inference: false tags: - mlconsole - tabular-classification library_name: mlconsole metrics: - accuracy - loss datasets: - diabetes_detection model-index: - name: diabetes_detection_fixed3 results: - task: type: tabular-classification name: tabular-classification dataset: type: diabetes_detection name: diabetes_detection metrics: - type: accuracy name: Accuracy value: 0.78125 - type: loss name: Model loss value: 0.523585319519043 --- # classification model trained on "diabetes_detection" 🤖 [Load and use this model](https://mlconsole.com/model/hf/halflings/diabetes_detection_fixed3) in one click. 🧑‍💻 [Train your own model](https://mlconsole.com) on ML Console.
radeveljic99/ppo-LunarLander-v2
radeveljic99
2022-11-05T20:24:44Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-05T20:02:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 174.96 +/- 12.10 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ballesteyoni/Woman
Ballesteyoni
2022-11-05T18:11:28Z
0
0
null
[ "region:us" ]
null
2022-11-05T18:09:52Z
Women dancing in a circle in menstrual blood in moon shadow with chamans
barbarabax/unicorns
barbarabax
2022-11-05T18:02:06Z
0
0
null
[ "region:us" ]
null
2022-11-05T15:44:14Z
Use unicornstyle in prompt ------ language: - "List of ISO 639-1 code for your language" - English tags: - ckpt - unicorn license: "openrail"
ocm/distilbert-base-uncased-finetuned-emotion
ocm
2022-11-05T17:45:19Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-29T11:15:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.935 - name: F1 type: f1 value: 0.9351083637430424 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1582 - Accuracy: 0.935 - F1: 0.9351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7703 | 1.0 | 250 | 0.2588 | 0.918 | 0.9165 | | 0.2031 | 2.0 | 500 | 0.1773 | 0.928 | 0.9282 | | 0.1385 | 3.0 | 750 | 0.1593 | 0.934 | 0.9342 | | 0.1101 | 4.0 | 1000 | 0.1582 | 0.935 | 0.9351 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
GGAdvent/distilbert-base-uncased-finetuned-cola
GGAdvent
2022-11-05T16:55:55Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-05T16:45:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5416385858307549 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8359 - Matthews Correlation: 0.5416 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5239 | 1.0 | 535 | 0.5284 | 0.4297 | | 0.3437 | 2.0 | 1070 | 0.5006 | 0.5166 | | 0.2301 | 3.0 | 1605 | 0.5707 | 0.5321 | | 0.1814 | 4.0 | 2140 | 0.7802 | 0.5245 | | 0.1271 | 5.0 | 2675 | 0.8359 | 0.5416 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
erose/wav2vec2-malayalam_english-3h
erose
2022-11-05T16:11:28Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "malayalam", "ml_en", "code-switching", "ml", "en", "dataset:erose/code_switching-ml-en", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-03T13:25:37Z
--- license: apache-2.0 description: wav2vec2 based model for malayalam-english code-switched speech language: - ml - en tags: - automatic-speech-recognition - malayalam - ml_en - code-switching datasets: - erose/code_switching-ml-en model-index: - name: wav2vec2 ml_en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: erose/code_switching-ml-en (test set) type: code_switching-ml-en args: ml_en metrics: - name: Test WER type: wer value: 58.93 - name: Test CER type: cer value: 19.45 ---
pepa/deberta-v3-base-fever
pepa
2022-11-05T15:03:56Z
7
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "dataset:copenlu/fever_gold_evidence", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-29T07:36:51Z
--- tags: - generated_from_trainer model-index: - name: deberta-v3-base-fever results: [] datasets: - copenlu/fever_gold_evidence --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base-fever This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5146 - eval_p: 0.8912 - eval_r: 0.8904 - eval_f1: 0.8897 - eval_runtime: 49.9875 - eval_samples_per_second: 376.194 - eval_steps_per_second: 47.032 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 4 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.12.1
pepa/deberta-v3-large-fever
pepa
2022-11-05T15:03:41Z
105
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "dataset:copenlu/fever_gold_evidence", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T20:22:41Z
--- tags: - generated_from_trainer model-index: - name: deberta-v3-large-fever results: [] datasets: - copenlu/fever_gold_evidence --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-fever This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5286 - eval_p: 0.8827 - eval_r: 0.8826 - eval_f1: 0.8816 - eval_runtime: 231.4062 - eval_samples_per_second: 81.264 - eval_steps_per_second: 10.16 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 4 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.12.1
pepa/deberta-v3-small-fever
pepa
2022-11-05T15:03:10Z
4
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "dataset:copenlu/fever_gold_evidence", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-29T07:39:36Z
--- tags: - generated_from_trainer model-index: - name: deberta-v3-small-fever results: [] datasets: - copenlu/fever_gold_evidence --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-small-fever This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4816 - eval_p: 0.8811 - eval_r: 0.8783 - eval_f1: 0.8780 - eval_runtime: 28.4486 - eval_samples_per_second: 661.017 - eval_steps_per_second: 82.64 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 4 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.12.1
kohama1988/distilbert-base-uncased-finetuned-emotion
kohama1988
2022-11-05T15:01:44Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-05T14:33:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9236445718445864 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2183 - Accuracy: 0.9235 - F1: 0.9236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3092 | 0.909 | 0.9070 | | No log | 2.0 | 500 | 0.2183 | 0.9235 | 0.9236 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pere/whisper-small-npsc
pere
2022-11-05T14:41:27Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "nn", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-04T21:47:16Z
--- language: - nn license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-small-npsc results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: 16K_mp3_bokmaal split: train args: 16K_mp3_bokmaal metrics: - name: Wer type: wer value: 12.925418803583286 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-npsc This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2028 - Wer: 12.9254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3922 | 0.18 | 500 | 0.3975 | 24.2055 | | 0.2893 | 0.36 | 1000 | 0.3139 | 20.1507 | | 0.2471 | 0.54 | 1500 | 0.2733 | 17.4449 | | 0.2159 | 0.72 | 2000 | 0.2488 | 16.2681 | | 0.2195 | 0.89 | 2500 | 0.2304 | 15.0577 | | 0.1178 | 1.07 | 3000 | 0.2245 | 14.5968 | | 0.1099 | 1.25 | 3500 | 0.2183 | 14.1118 | | 0.1059 | 1.43 | 4000 | 0.2136 | 13.7914 | | 0.1156 | 1.61 | 4500 | 0.2072 | 13.7491 | | 0.1025 | 1.79 | 5000 | 0.2034 | 13.1515 | | 0.1123 | 1.97 | 5500 | 0.2006 | 13.0284 | | 0.0734 | 2.15 | 6000 | 0.2028 | 12.9254 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
AlanRobotics/bert_q_a_test
AlanRobotics
2022-11-05T13:51:56Z
61
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
question-answering
2022-11-05T12:18:36Z
--- tags: - generated_from_keras_callback model-index: - name: bert_q_a_test results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert_q_a_test This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
wilsonsob/projetoFinal
wilsonsob
2022-11-05T13:16:22Z
0
0
null
[ "region:us" ]
null
2022-11-03T17:43:05Z
# Projeto Final - Modelos Preditivos Conexionistas ### Nome do aluno |**Tipo de Projeto**|**Modelo Selecionado**|**Linguagem**| |--|--|--| |<br>Deteção de Objetos|YOLOv5|PyTorch| ## Performance O modelo treinado possui performance de **69%**. ### Output do bloco de treinamento <details> <summary>Click to expand!</summary> ```text Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 0/2999 14.1G 0.1176 0.03496 0.04929 227 640: 100% 5/5 [00:08<00:00, 1.65s/it] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:04<00:00, 4.23s/it] all 79 172 0.00117 0.29 0.00144 0.000293 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 1/2999 13.3G 0.11 0.03478 0.04837 216 640: 100% 5/5 [00:03<00:00, 1.34it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.98s/it] all 79 172 0.00148 0.36 0.00143 0.000484 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 2/2999 13.3G 0.09838 0.03372 0.04588 189 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.42s/it] all 79 172 0.00276 0.37 0.00585 0.00135 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 3/2999 13.3G 0.08941 0.03499 0.04303 171 640: 100% 5/5 [00:03<00:00, 1.39it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.42s/it] all 79 172 0.00324 0.61 0.00878 0.00303 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 4/2999 13.3G 0.08229 0.03798 0.03902 230 640: 100% 5/5 [00:03<00:00, 1.39it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.24s/it] all 79 172 0.00479 0.803 0.0192 0.0057 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 5/2999 13.3G 0.07235 0.03762 0.03592 187 640: 100% 5/5 [00:03<00:00, 1.39it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.32s/it] all 79 172 0.772 0.0641 0.0685 0.0199 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 6/2999 13.3G 0.06836 0.03883 0.03304 227 640: 100% 5/5 [00:03<00:00, 1.38it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.07s/it] all 79 172 0.332 0.221 0.0677 0.0184 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 7/2999 13.3G 0.06247 0.03535 0.0311 201 640: 100% 5/5 [00:03<00:00, 1.38it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.57s/it] all 79 172 0.326 0.266 0.082 0.0217 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 8/2999 13.3G 0.05948 0.0349 0.02835 161 640: 100% 5/5 [00:03<00:00, 1.36it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.30s/it] all 79 172 0.393 0.295 0.175 0.0498 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 9/2999 13.3G 0.05892 0.03628 0.02495 221 640: 100% 5/5 [00:03<00:00, 1.38it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.40s/it] all 79 172 0.386 0.303 0.138 0.0436 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 10/2999 13.3G 0.05797 0.03046 0.02325 158 640: 100% 5/5 [00:03<00:00, 1.39it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.24s/it] all 79 172 0.449 0.376 0.226 0.0926 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 11/2999 13.3G 0.05604 0.03243 0.02248 226 640: 100% 5/5 [00:03<00:00, 1.37it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.23s/it] all 79 172 0.519 0.326 0.3 0.129 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 12/2999 13.3G 0.05705 0.03044 0.02158 181 640: 100% 5/5 [00:03<00:00, 1.32it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.08s/it] all 79 172 0.508 0.342 0.361 0.191 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 13/2999 13.3G 0.05534 0.02701 0.01887 167 640: 100% 5/5 [00:03<00:00, 1.37it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.29s/it] all 79 172 0.429 0.367 0.242 0.0978 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 14/2999 13.3G 0.05445 0.03095 0.01875 188 640: 100% 5/5 [00:03<00:00, 1.35it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.15s/it] all 79 172 0.517 0.495 0.393 0.178 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 15/2999 13.3G 0.05658 0.02785 0.01648 175 640: 100% 5/5 [00:03<00:00, 1.33it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.12s/it] all 79 172 0.512 0.479 0.358 0.177 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 16/2999 13.3G 0.05553 0.02625 0.01534 186 640: 100% 5/5 [00:03<00:00, 1.37it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.13s/it] all 79 172 0.533 0.464 0.412 0.178 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 17/2999 13.3G 0.0524 0.02705 0.01531 187 640: 100% 5/5 [00:04<00:00, 1.18it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:02<00:00, 2.25s/it] all 79 172 0.304 0.483 0.299 0.12 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 18/2999 13.3G 0.05295 0.02631 0.01442 162 640: 100% 5/5 [00:04<00:00, 1.01it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.99s/it] all 79 172 0.649 0.416 0.435 0.203 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 19/2999 13.3G 0.05205 0.027 0.01497 227 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.01s/it] all 79 172 0.305 0.518 0.336 0.151 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 20/2999 13.3G 0.05057 0.02601 0.01201 190 640: 100% 5/5 [00:03<00:00, 1.32it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.02s/it] all 79 172 0.456 0.594 0.442 0.192 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 21/2999 13.3G 0.0488 0.02679 0.01386 138 640: 100% 5/5 [00:03<00:00, 1.32it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.07it/s] all 79 172 0.418 0.586 0.428 0.221 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 22/2999 13.3G 0.04713 0.02576 0.01446 215 640: 100% 5/5 [00:03<00:00, 1.33it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.01it/s] all 79 172 0.642 0.477 0.467 0.23 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 23/2999 13.3G 0.04759 0.02555 0.0115 179 640: 100% 5/5 [00:03<00:00, 1.32it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.06s/it] all 79 172 0.611 0.474 0.436 0.21 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 24/2999 13.3G 0.0453 0.02547 0.01341 218 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.661 0.485 0.517 0.273 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 25/2999 13.3G 0.04469 0.02657 0.01159 229 640: 100% 5/5 [00:03<00:00, 1.34it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.62 0.42 0.481 0.236 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 26/2999 13.3G 0.04451 0.02416 0.0126 202 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.15s/it] all 79 172 0.719 0.431 0.502 0.28 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 27/2999 13.3G 0.04454 0.02421 0.0113 165 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.06it/s] all 79 172 0.484 0.424 0.438 0.217 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 28/2999 13.3G 0.04353 0.02453 0.01121 222 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.328 0.335 0.307 0.165 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 29/2999 13.3G 0.04318 0.024 0.01177 168 640: 100% 5/5 [00:03<00:00, 1.26it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.01it/s] all 79 172 0.399 0.317 0.292 0.141 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 30/2999 13.3G 0.04106 0.0244 0.01042 202 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.08it/s] all 79 172 0.654 0.512 0.52 0.29 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 31/2999 13.3G 0.04151 0.02421 0.01037 193 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.06s/it] all 79 172 0.73 0.389 0.46 0.254 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 32/2999 13.3G 0.04187 0.02569 0.009244 193 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.08s/it] all 79 172 0.372 0.432 0.397 0.184 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 33/2999 13.3G 0.04139 0.02411 0.007808 191 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.03s/it] all 79 172 0.657 0.571 0.583 0.354 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 34/2999 13.3G 0.03919 0.02373 0.008649 186 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.04s/it] all 79 172 0.719 0.515 0.556 0.273 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 35/2999 13.3G 0.03933 0.02373 0.01062 194 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.12it/s] all 79 172 0.646 0.496 0.499 0.297 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 36/2999 13.3G 0.03985 0.02292 0.01068 171 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.597 0.514 0.424 0.212 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 37/2999 13.3G 0.04022 0.02436 0.01181 206 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.06it/s] all 79 172 0.468 0.473 0.381 0.199 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 38/2999 13.3G 0.0392 0.02418 0.01042 207 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.06it/s] all 79 172 0.589 0.442 0.495 0.25 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 39/2999 13.3G 0.03949 0.0232 0.008525 175 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.07s/it] all 79 172 0.578 0.413 0.467 0.233 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 40/2999 13.3G 0.03951 0.02309 0.00936 189 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.03s/it] all 79 172 0.473 0.597 0.552 0.319 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 41/2999 13.3G 0.03824 0.02332 0.01016 183 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.03s/it] all 79 172 0.46 0.647 0.494 0.284 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 42/2999 13.3G 0.03829 0.02417 0.009787 197 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.01it/s] all 79 172 0.289 0.588 0.436 0.211 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 43/2999 13.3G 0.03897 0.02372 0.009366 182 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.01it/s] all 79 172 0.272 0.612 0.385 0.217 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 44/2999 13.3G 0.0391 0.02348 0.008347 223 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.01it/s] all 79 172 0.621 0.392 0.457 0.238 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 45/2999 13.3G 0.03792 0.02103 0.01101 159 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.17s/it] all 79 172 0.543 0.488 0.527 0.293 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 46/2999 13.3G 0.03747 0.02327 0.009737 211 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.04s/it] all 79 172 0.423 0.621 0.509 0.278 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 47/2999 13.3G 0.03701 0.02207 0.008706 189 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.17s/it] all 79 172 0.459 0.505 0.448 0.231 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 48/2999 13.3G 0.03722 0.02309 0.008686 179 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.14it/s] all 79 172 0.488 0.637 0.532 0.289 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 49/2999 13.3G 0.03637 0.02043 0.007798 179 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.10it/s] all 79 172 0.732 0.443 0.491 0.267 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 50/2999 13.3G 0.03709 0.02212 0.007632 194 640: 100% 5/5 [00:03<00:00, 1.32it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.29s/it] all 79 172 0.468 0.676 0.564 0.324 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 51/2999 13.3G 0.03752 0.02221 0.009035 168 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.03it/s] all 79 172 0.417 0.667 0.451 0.248 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 52/2999 13.3G 0.03637 0.02205 0.007745 216 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.08s/it] all 79 172 0.602 0.533 0.563 0.305 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 53/2999 13.3G 0.03561 0.02235 0.006919 213 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.10s/it] all 79 172 0.71 0.514 0.575 0.317 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 54/2999 13.3G 0.0375 0.02151 0.007491 189 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.724 0.39 0.472 0.246 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 55/2999 13.3G 0.03676 0.02192 0.007115 211 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.06s/it] all 79 172 0.617 0.509 0.502 0.308 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 56/2999 13.3G 0.03543 0.02149 0.008343 174 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.599 0.519 0.537 0.302 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 57/2999 13.3G 0.03516 0.02129 0.00804 185 640: 100% 5/5 [00:03<00:00, 1.26it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.09s/it] all 79 172 0.48 0.465 0.442 0.253 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 58/2999 13.3G 0.03451 0.02335 0.009221 200 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.09s/it] all 79 172 0.503 0.407 0.386 0.196 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 59/2999 13.3G 0.0356 0.02126 0.006811 248 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.697 0.329 0.407 0.219 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 60/2999 13.3G 0.03437 0.02229 0.007112 226 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.03s/it] all 79 172 0.422 0.53 0.456 0.252 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 61/2999 13.3G 0.03398 0.02009 0.007508 209 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.12s/it] all 79 172 0.716 0.369 0.501 0.286 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 62/2999 13.3G 0.03399 0.02136 0.007171 189 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.07s/it] all 79 172 0.492 0.623 0.51 0.289 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 63/2999 13.3G 0.0354 0.02072 0.008472 176 640: 100% 5/5 [00:03<00:00, 1.32it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.49s/it] all 79 172 0.623 0.603 0.616 0.373 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 64/2999 13.3G 0.03459 0.02183 0.008503 187 640: 100% 5/5 [00:04<00:00, 1.21it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.17s/it] all 79 172 0.6 0.618 0.642 0.324 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 65/2999 13.3G 0.03388 0.02139 0.008551 205 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.02s/it] all 79 172 0.614 0.314 0.34 0.18 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 66/2999 13.3G 0.03483 0.02107 0.009369 173 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.10it/s] all 79 172 0.494 0.505 0.489 0.257 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 67/2999 13.3G 0.0334 0.0195 0.006718 162 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.05s/it] all 79 172 0.608 0.412 0.454 0.246 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 68/2999 13.3G 0.03517 0.02186 0.008161 200 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.02it/s] all 79 172 0.691 0.441 0.521 0.324 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 69/2999 13.3G 0.03397 0.0213 0.007542 192 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.07it/s] all 79 172 0.598 0.403 0.453 0.233 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 70/2999 13.3G 0.03464 0.02079 0.00808 220 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.11s/it] all 79 172 0.657 0.415 0.505 0.287 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 71/2999 13.3G 0.03414 0.02142 0.006937 149 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.529 0.476 0.479 0.28 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 72/2999 13.3G 0.03195 0.02103 0.007308 189 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.01s/it] all 79 172 0.611 0.424 0.426 0.258 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 73/2999 13.3G 0.03293 0.0218 0.00651 222 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.15it/s] all 79 172 0.728 0.479 0.542 0.337 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 74/2999 13.3G 0.03236 0.01866 0.009649 127 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.01s/it] all 79 172 0.588 0.594 0.595 0.36 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 75/2999 13.3G 0.03235 0.01942 0.007454 176 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.04s/it] all 79 172 0.713 0.562 0.592 0.334 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 76/2999 13.3G 0.03392 0.02069 0.006954 187 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.00it/s] all 79 172 0.753 0.474 0.537 0.31 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 77/2999 13.3G 0.03292 0.02024 0.00708 179 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.03it/s] all 79 172 0.724 0.502 0.523 0.285 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 78/2999 13.3G 0.03178 0.021 0.006592 208 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.03it/s] all 79 172 0.724 0.503 0.527 0.304 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 79/2999 13.3G 0.03131 0.01963 0.0057 187 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.12s/it] all 79 172 0.703 0.471 0.539 0.329 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 80/2999 13.3G 0.03203 0.02018 0.008287 198 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.04s/it] all 79 172 0.77 0.499 0.564 0.324 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 81/2999 13.3G 0.03084 0.01961 0.007307 206 640: 100% 5/5 [00:04<00:00, 1.16it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.81s/it] all 79 172 0.687 0.463 0.535 0.318 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 82/2999 13.3G 0.03089 0.02012 0.006733 202 640: 100% 5/5 [00:04<00:00, 1.20it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.27s/it] all 79 172 0.597 0.511 0.501 0.287 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 83/2999 13.3G 0.03064 0.01998 0.005996 211 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.18s/it] all 79 172 0.601 0.418 0.48 0.25 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 84/2999 13.3G 0.03132 0.01948 0.004924 206 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.08s/it] all 79 172 0.651 0.478 0.534 0.317 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 85/2999 13.3G 0.03003 0.01933 0.006001 216 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.02s/it] all 79 172 0.718 0.447 0.572 0.33 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 86/2999 13.3G 0.0322 0.01857 0.006746 204 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.06it/s] all 79 172 0.712 0.534 0.57 0.315 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 87/2999 13.3G 0.02937 0.0195 0.007804 208 640: 100% 5/5 [00:03<00:00, 1.26it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.06it/s] all 79 172 0.667 0.539 0.59 0.377 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 88/2999 13.3G 0.03086 0.02039 0.007138 200 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.08it/s] all 79 172 0.628 0.543 0.558 0.323 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 89/2999 13.3G 0.03102 0.01957 0.006189 216 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.09it/s] all 79 172 0.558 0.57 0.476 0.272 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 90/2999 13.3G 0.03026 0.02042 0.008099 211 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.03it/s] all 79 172 0.668 0.57 0.512 0.306 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 91/2999 13.3G 0.02908 0.01987 0.007552 200 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.01it/s] all 79 172 0.616 0.483 0.481 0.278 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 92/2999 13.3G 0.03033 0.01963 0.007505 171 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.11it/s] all 79 172 0.808 0.519 0.616 0.369 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 93/2999 13.3G 0.03 0.01985 0.007565 192 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.03s/it] all 79 172 0.741 0.466 0.533 0.313 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 94/2999 13.3G 0.03061 0.01982 0.006072 164 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.839 0.448 0.552 0.332 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 95/2999 13.3G 0.02993 0.01983 0.00618 197 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.11s/it] all 79 172 0.783 0.435 0.549 0.35 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 96/2999 13.3G 0.0297 0.01942 0.004898 193 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.808 0.534 0.602 0.383 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 97/2999 13.3G 0.03024 0.0192 0.007548 199 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.12it/s] all 79 172 0.677 0.545 0.644 0.388 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 98/2999 13.3G 0.02892 0.01992 0.006328 202 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.659 0.531 0.599 0.365 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 99/2999 13.3G 0.02903 0.01783 0.008322 179 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.12it/s] all 79 172 0.598 0.545 0.559 0.325 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 100/2999 13.3G 0.03175 0.01939 0.005829 211 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.09it/s] all 79 172 0.602 0.477 0.479 0.279 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 101/2999 13.3G 0.02981 0.01811 0.006895 187 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.12s/it] all 79 172 0.532 0.483 0.449 0.254 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 102/2999 13.3G 0.02894 0.01893 0.007293 178 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.03it/s] all 79 172 0.76 0.362 0.532 0.311 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 103/2999 13.3G 0.02853 0.01932 0.005571 233 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.00it/s] all 79 172 0.603 0.514 0.581 0.337 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 104/2999 13.3G 0.02875 0.01752 0.006674 162 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.03it/s] all 79 172 0.76 0.454 0.57 0.332 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 105/2999 13.3G 0.02874 0.01946 0.006926 211 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.08it/s] all 79 172 0.694 0.45 0.506 0.289 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 106/2999 13.3G 0.02967 0.01745 0.005547 205 640: 100% 5/5 [00:04<00:00, 1.22it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.75s/it] all 79 172 0.748 0.507 0.519 0.296 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 107/2999 13.3G 0.03031 0.01972 0.006291 210 640: 100% 5/5 [00:04<00:00, 1.25it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.18s/it] all 79 172 0.745 0.489 0.565 0.335 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 108/2999 13.3G 0.02897 0.01927 0.006829 186 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.06it/s] all 79 172 0.743 0.543 0.545 0.312 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 109/2999 13.3G 0.03018 0.01939 0.006308 237 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.12s/it] all 79 172 0.715 0.591 0.575 0.308 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 110/2999 13.3G 0.02912 0.01956 0.006358 192 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.01it/s] all 79 172 0.717 0.545 0.581 0.347 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 111/2999 13.3G 0.02963 0.01883 0.007443 157 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.03it/s] all 79 172 0.732 0.498 0.617 0.348 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 112/2999 13.3G 0.02796 0.01824 0.006296 226 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.00it/s] all 79 172 0.67 0.632 0.623 0.384 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 113/2999 13.3G 0.02855 0.01817 0.005978 190 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.02s/it] all 79 172 0.675 0.574 0.594 0.321 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 114/2999 13.3G 0.02922 0.01838 0.006151 185 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.07it/s] all 79 172 0.782 0.457 0.584 0.336 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 115/2999 13.3G 0.02933 0.0188 0.008184 161 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.10s/it] all 79 172 0.588 0.567 0.559 0.324 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 116/2999 13.3G 0.02704 0.0186 0.005759 217 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.01s/it] all 79 172 0.712 0.594 0.61 0.387 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 117/2999 13.3G 0.02805 0.01756 0.007583 183 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.06it/s] all 79 172 0.72 0.483 0.574 0.36 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 118/2999 13.3G 0.02756 0.0179 0.006019 190 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.11it/s] all 79 172 0.726 0.576 0.603 0.351 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 119/2999 13.3G 0.02793 0.01717 0.007643 168 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.00it/s] all 79 172 0.735 0.538 0.595 0.338 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 120/2999 13.3G 0.0286 0.01874 0.005134 223 640: 100% 5/5 [00:03<00:00, 1.26it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.11s/it] all 79 172 0.653 0.528 0.551 0.323 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 121/2999 13.3G 0.0283 0.01745 0.005626 189 640: 100% 5/5 [00:03<00:00, 1.26it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.763 0.444 0.544 0.34 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 122/2999 13.3G 0.02849 0.01963 0.00636 189 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.06s/it] all 79 172 0.728 0.518 0.622 0.356 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 123/2999 13.3G 0.02766 0.01739 0.005559 157 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.14it/s] all 79 172 0.705 0.387 0.452 0.269 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 124/2999 13.3G 0.02744 0.01842 0.007753 207 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.756 0.553 0.605 0.347 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 125/2999 13.3G 0.02833 0.01658 0.005275 144 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.02it/s] all 79 172 0.771 0.441 0.507 0.327 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 126/2999 13.3G 0.02873 0.01809 0.006018 230 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.12s/it] all 79 172 0.777 0.509 0.608 0.33 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 127/2999 13.3G 0.02782 0.01771 0.005374 184 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.06it/s] all 79 172 0.736 0.517 0.548 0.345 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 128/2999 13.3G 0.02666 0.01821 0.004101 210 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.09it/s] all 79 172 0.638 0.596 0.615 0.336 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 129/2999 13.3G 0.02662 0.01685 0.005201 182 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.07it/s] all 79 172 0.722 0.597 0.629 0.366 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 130/2999 13.3G 0.02622 0.01672 0.006191 144 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.10it/s] all 79 172 0.802 0.468 0.542 0.325 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 131/2999 13.3G 0.02667 0.01867 0.00618 197 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.02s/it] all 79 172 0.609 0.454 0.49 0.301 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 132/2999 13.3G 0.02787 0.01969 0.005775 229 640: 100% 5/5 [00:03<00:00, 1.26it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.525 0.437 0.459 0.266 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 133/2999 13.3G 0.02774 0.01836 0.006047 212 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.13it/s] all 79 172 0.632 0.52 0.575 0.317 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 134/2999 13.3G 0.02741 0.01768 0.00579 219 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.03s/it] all 79 172 0.625 0.632 0.585 0.37 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 135/2999 13.3G 0.02713 0.01778 0.005949 217 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.02it/s] all 79 172 0.514 0.585 0.452 0.257 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 136/2999 13.3G 0.0277 0.01698 0.007301 162 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.07it/s] all 79 172 0.578 0.407 0.444 0.255 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 137/2999 13.3G 0.0272 0.01767 0.004752 179 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.479 0.457 0.483 0.284 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 138/2999 13.3G 0.02749 0.018 0.004356 216 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.05s/it] all 79 172 0.729 0.473 0.532 0.288 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 139/2999 13.3G 0.02768 0.01737 0.006317 188 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.09it/s] all 79 172 0.657 0.548 0.533 0.298 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 140/2999 13.3G 0.02608 0.01767 0.00451 184 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.10s/it] all 79 172 0.737 0.553 0.586 0.347 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 141/2999 13.3G 0.02657 0.01743 0.004523 201 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.51s/it] all 79 172 0.781 0.515 0.606 0.363 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 142/2999 13.3G 0.02724 0.01774 0.006709 184 640: 100% 5/5 [00:04<00:00, 1.16it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.88s/it] all 79 172 0.742 0.576 0.637 0.346 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 143/2999 13.3G 0.02575 0.01799 0.005323 212 640: 100% 5/5 [00:04<00:00, 1.25it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.30s/it] all 79 172 0.776 0.492 0.563 0.35 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 144/2999 13.3G 0.02654 0.01726 0.005264 166 640: 100% 5/5 [00:04<00:00, 1.19it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.60s/it] all 79 172 0.679 0.535 0.565 0.314 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 145/2999 13.3G 0.02687 0.01829 0.005005 250 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.03s/it] all 79 172 0.81 0.523 0.563 0.342 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 146/2999 13.3G 0.02672 0.01687 0.005595 208 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.07s/it] all 79 172 0.76 0.503 0.556 0.328 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 147/2999 13.3G 0.02691 0.01723 0.005911 180 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.08s/it] all 79 172 0.748 0.537 0.579 0.338 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 148/2999 13.3G 0.02626 0.01806 0.004589 227 640: 100% 5/5 [00:04<00:00, 1.20it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.39s/it] all 79 172 0.795 0.512 0.556 0.34 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 149/2999 13.3G 0.02653 0.01662 0.005405 177 640: 100% 5/5 [00:04<00:00, 1.24it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.12it/s] all 79 172 0.791 0.464 0.531 0.328 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 150/2999 13.3G 0.0274 0.01625 0.006181 147 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.06it/s] all 79 172 0.749 0.544 0.602 0.352 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 151/2999 13.3G 0.02522 0.01715 0.004715 184 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.08it/s] all 79 172 0.801 0.549 0.596 0.363 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 152/2999 13.3G 0.02576 0.01662 0.004771 139 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.825 0.503 0.559 0.349 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 153/2999 13.3G 0.02895 0.01797 0.005624 185 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.05s/it] all 79 172 0.837 0.465 0.54 0.341 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 154/2999 13.3G 0.02476 0.01641 0.005789 184 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.07it/s] all 79 172 0.79 0.498 0.564 0.341 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 155/2999 13.3G 0.02548 0.01872 0.005374 212 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.11it/s] all 79 172 0.824 0.498 0.573 0.347 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 156/2999 13.3G 0.02632 0.01815 0.006032 229 640: 100% 5/5 [00:04<00:00, 1.21it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.715 0.549 0.597 0.343 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 157/2999 13.3G 0.02511 0.01649 0.005817 195 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.17it/s] all 79 172 0.821 0.566 0.663 0.385 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 158/2999 13.3G 0.02516 0.01653 0.005879 159 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.02it/s] all 79 172 0.686 0.641 0.643 0.372 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 159/2999 13.3G 0.02657 0.01595 0.005654 185 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.00s/it] all 79 172 0.676 0.625 0.652 0.378 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 160/2999 13.3G 0.02582 0.0173 0.005202 215 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.729 0.547 0.621 0.351 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 161/2999 13.3G 0.02607 0.01732 0.006912 218 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.679 0.483 0.547 0.322 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 162/2999 13.3G 0.02534 0.01606 0.005221 169 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.06s/it] all 79 172 0.799 0.44 0.601 0.379 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 163/2999 13.3G 0.02638 0.01726 0.006002 216 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.00s/it] all 79 172 0.689 0.635 0.631 0.381 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 164/2999 13.3G 0.02443 0.01882 0.005191 279 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.01it/s] all 79 172 0.721 0.67 0.685 0.404 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 165/2999 13.3G 0.02414 0.01719 0.003583 182 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.03it/s] all 79 172 0.67 0.646 0.681 0.409 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 166/2999 13.3G 0.02653 0.01778 0.005552 195 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.06it/s] all 79 172 0.796 0.659 0.663 0.362 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 167/2999 13.3G 0.02577 0.01602 0.005825 178 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.14s/it] all 79 172 0.721 0.69 0.704 0.404 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 168/2999 13.3G 0.02503 0.01867 0.004954 244 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.692 0.658 0.701 0.417 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 169/2999 13.3G 0.02524 0.01849 0.006853 222 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.07s/it] all 79 172 0.716 0.598 0.644 0.371 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 170/2999 13.3G 0.02458 0.017 0.004295 193 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.03s/it] all 79 172 0.589 0.633 0.537 0.318 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 171/2999 13.3G 0.02478 0.01661 0.003602 186 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.02it/s] all 79 172 0.685 0.599 0.582 0.355 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 172/2999 13.3G 0.02531 0.01569 0.005721 175 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.06s/it] all 79 172 0.687 0.607 0.62 0.367 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 173/2999 13.3G 0.02561 0.0182 0.005804 214 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.01it/s] all 79 172 0.769 0.533 0.642 0.393 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 174/2999 13.3G 0.02489 0.01687 0.006483 180 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.647 0.56 0.638 0.39 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 175/2999 13.3G 0.02413 0.01744 0.006103 222 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.11it/s] all 79 172 0.722 0.537 0.659 0.392 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 176/2999 13.3G 0.02617 0.0165 0.004711 183 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.06s/it] all 79 172 0.658 0.547 0.588 0.34 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 177/2999 13.3G 0.02391 0.0172 0.006477 160 640: 100% 5/5 [00:04<00:00, 1.19it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.21it/s] all 79 172 0.722 0.485 0.57 0.329 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 178/2999 13.3G 0.02595 0.0167 0.004114 203 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.03s/it] all 79 172 0.75 0.421 0.499 0.285 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 179/2999 13.3G 0.02545 0.01615 0.005344 185 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.10it/s] all 79 172 0.862 0.506 0.609 0.366 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 180/2999 13.3G 0.0244 0.01572 0.005259 219 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.02it/s] all 79 172 0.848 0.563 0.642 0.371 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 181/2999 13.3G 0.02403 0.01656 0.004655 198 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.04s/it] all 79 172 0.708 0.582 0.607 0.349 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 182/2999 13.3G 0.025 0.01808 0.005477 238 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.10it/s] all 79 172 0.756 0.603 0.637 0.389 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 183/2999 13.3G 0.02387 0.01685 0.007013 194 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.00it/s] all 79 172 0.75 0.625 0.693 0.435 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 184/2999 13.3G 0.02442 0.01655 0.005348 242 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.19it/s] all 79 172 0.754 0.529 0.602 0.362 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 185/2999 13.3G 0.02413 0.01696 0.0051 175 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.14it/s] all 79 172 0.843 0.546 0.663 0.395 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 186/2999 13.3G 0.02388 0.01608 0.003896 203 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.82 0.542 0.656 0.401 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 187/2999 13.3G 0.02426 0.01638 0.005311 166 640: 100% 5/5 [00:03<00:00, 1.26it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.72s/it] all 79 172 0.802 0.555 0.616 0.374 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 188/2999 13.3G 0.02368 0.01607 0.005871 181 640: 100% 5/5 [00:03<00:00, 1.26it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.03it/s] all 79 172 0.736 0.628 0.667 0.394 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 189/2999 13.3G 0.0257 0.01712 0.006646 205 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.01s/it] all 79 172 0.781 0.441 0.596 0.332 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 190/2999 13.3G 0.02485 0.01648 0.005049 222 640: 100% 5/5 [00:03<00:00, 1.32it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.17it/s] all 79 172 0.76 0.466 0.549 0.304 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 191/2999 13.3G 0.02291 0.01608 0.005364 217 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.08it/s] all 79 172 0.696 0.473 0.51 0.315 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 192/2999 13.3G 0.02464 0.01737 0.006162 205 640: 100% 5/5 [00:03<00:00, 1.32it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.17s/it] all 79 172 0.696 0.493 0.535 0.325 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 193/2999 13.3G 0.02452 0.01706 0.005202 197 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.14it/s] all 79 172 0.801 0.429 0.562 0.332 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 194/2999 13.3G 0.02326 0.01667 0.004886 190 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.05s/it] all 79 172 0.768 0.432 0.531 0.294 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 195/2999 13.3G 0.02424 0.01685 0.005938 231 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.02it/s] all 79 172 0.87 0.384 0.528 0.319 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 196/2999 13.3G 0.02383 0.01643 0.005414 160 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.00it/s] all 79 172 0.752 0.584 0.617 0.351 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 197/2999 13.3G 0.02474 0.01629 0.004213 195 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.14it/s] all 79 172 0.819 0.516 0.617 0.336 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 198/2999 13.3G 0.02378 0.01605 0.004158 202 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.01it/s] all 79 172 0.691 0.492 0.623 0.353 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 199/2999 13.3G 0.02474 0.01601 0.005006 196 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.11it/s] all 79 172 0.845 0.481 0.57 0.349 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 200/2999 13.3G 0.02325 0.01525 0.004579 200 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.04s/it] all 79 172 0.679 0.425 0.496 0.301 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 201/2999 13.3G 0.02245 0.01579 0.00427 226 640: 100% 5/5 [00:04<00:00, 1.23it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.72s/it] all 79 172 0.743 0.428 0.494 0.303 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 202/2999 13.3G 0.02279 0.01541 0.007018 163 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.24s/it] all 79 172 0.795 0.485 0.547 0.328 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 203/2999 13.3G 0.02381 0.01648 0.004034 192 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.10it/s] all 79 172 0.695 0.529 0.619 0.37 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 204/2999 13.3G 0.02344 0.01555 0.003905 196 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.34s/it] all 79 172 0.81 0.49 0.566 0.348 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 205/2999 13.3G 0.02414 0.01678 0.005969 225 640: 100% 5/5 [00:04<00:00, 1.21it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.77s/it] all 79 172 0.793 0.499 0.551 0.343 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 206/2999 13.3G 0.02397 0.01629 0.005902 211 640: 100% 5/5 [00:04<00:00, 1.20it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.13s/it] all 79 172 0.848 0.569 0.645 0.394 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 207/2999 13.3G 0.02395 0.01554 0.005462 170 640: 100% 5/5 [00:04<00:00, 1.24it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.10it/s] all 79 172 0.826 0.536 0.643 0.394 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 208/2999 13.3G 0.02359 0.0166 0.005498 224 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.06it/s] all 79 172 0.747 0.591 0.647 0.398 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 209/2999 13.3G 0.02367 0.01604 0.00558 225 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.02s/it] all 79 172 0.747 0.53 0.614 0.378 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 210/2999 13.3G 0.02559 0.01545 0.005393 171 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.15it/s] all 79 172 0.787 0.519 0.618 0.384 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 211/2999 13.3G 0.02273 0.0167 0.005695 202 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.10it/s] all 79 172 0.79 0.512 0.612 0.386 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 212/2999 13.3G 0.02254 0.01724 0.005585 208 640: 100% 5/5 [00:03<00:00, 1.32it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.13s/it] all 79 172 0.788 0.571 0.639 0.375 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 213/2999 13.3G 0.02419 0.01494 0.005212 207 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.10it/s] all 79 172 0.842 0.53 0.648 0.364 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 214/2999 13.3G 0.02568 0.01664 0.004367 183 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.68 0.579 0.58 0.347 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 215/2999 13.3G 0.02463 0.01619 0.005758 209 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.69 0.573 0.583 0.335 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 216/2999 13.3G 0.02261 0.01598 0.005402 208 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.07it/s] all 79 172 0.798 0.543 0.61 0.374 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 217/2999 13.3G 0.02275 0.01476 0.004736 160 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.07it/s] all 79 172 0.714 0.539 0.56 0.341 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 218/2999 13.3G 0.02411 0.01569 0.004459 187 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.07it/s] all 79 172 0.78 0.521 0.564 0.35 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 219/2999 13.3G 0.02208 0.01444 0.00422 173 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.627 0.504 0.557 0.353 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 220/2999 13.3G 0.023 0.0164 0.004591 218 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.01s/it] all 79 172 0.838 0.465 0.597 0.36 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 221/2999 13.3G 0.02155 0.01479 0.003508 192 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.00s/it] all 79 172 0.807 0.548 0.654 0.384 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 222/2999 13.3G 0.02316 0.01552 0.004726 217 640: 100% 5/5 [00:03<00:00, 1.32it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.06it/s] all 79 172 0.747 0.677 0.707 0.39 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 223/2999 13.3G 0.0233 0.01691 0.007177 180 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.03s/it] all 79 172 0.742 0.567 0.639 0.372 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 224/2999 13.3G 0.02206 0.01515 0.00455 173 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.06it/s] all 79 172 0.76 0.499 0.619 0.368 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 225/2999 13.3G 0.0244 0.01643 0.004599 181 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.84 0.505 0.606 0.352 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 226/2999 13.3G 0.02239 0.01505 0.005543 201 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.02it/s] all 79 172 0.676 0.555 0.635 0.378 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 227/2999 13.3G 0.02369 0.01622 0.005755 177 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.10it/s] all 79 172 0.729 0.595 0.608 0.356 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 228/2999 13.3G 0.02266 0.01487 0.004909 204 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.13s/it] all 79 172 0.665 0.54 0.549 0.345 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 229/2999 13.3G 0.0233 0.01656 0.00652 172 640: 100% 5/5 [00:04<00:00, 1.17it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.10s/it] all 79 172 0.769 0.492 0.603 0.384 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 230/2999 13.3G 0.02232 0.01574 0.004084 183 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.13s/it] all 79 172 0.678 0.568 0.599 0.381 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 231/2999 13.3G 0.0231 0.01623 0.004324 230 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.08it/s] all 79 172 0.756 0.594 0.632 0.394 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 232/2999 13.3G 0.02286 0.01546 0.00569 185 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.06it/s] all 79 172 0.789 0.53 0.608 0.378 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 233/2999 13.3G 0.0229 0.01477 0.004437 149 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.04s/it] all 79 172 0.683 0.499 0.573 0.338 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 234/2999 13.3G 0.0234 0.01698 0.005284 215 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.08it/s] all 79 172 0.771 0.472 0.544 0.317 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 235/2999 13.3G 0.02219 0.0148 0.004658 186 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.17s/it] all 79 172 0.717 0.49 0.543 0.333 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 236/2999 13.3G 0.02321 0.0145 0.005254 161 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.09it/s] all 79 172 0.73 0.506 0.55 0.328 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 237/2999 13.3G 0.02371 0.01623 0.004812 204 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.693 0.511 0.554 0.343 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 238/2999 13.3G 0.02394 0.01551 0.004886 161 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.14it/s] all 79 172 0.791 0.444 0.594 0.376 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 239/2999 13.3G 0.02325 0.0154 0.004177 195 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.00it/s] all 79 172 0.758 0.629 0.657 0.421 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 240/2999 13.3G 0.02192 0.0154 0.003914 202 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.10it/s] all 79 172 0.683 0.556 0.631 0.388 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 241/2999 13.3G 0.02239 0.01488 0.007844 184 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.13it/s] all 79 172 0.694 0.441 0.561 0.346 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 242/2999 13.3G 0.02268 0.0156 0.005672 179 640: 100% 5/5 [00:03<00:00, 1.25it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.61s/it] all 79 172 0.841 0.46 0.552 0.341 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 243/2999 13.3G 0.02341 0.0154 0.005667 185 640: 100% 5/5 [00:04<00:00, 1.23it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.14s/it] all 79 172 0.662 0.475 0.542 0.315 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 244/2999 13.3G 0.02246 0.01587 0.005929 182 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.674 0.509 0.56 0.354 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 245/2999 13.3G 0.02381 0.01481 0.005467 151 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.14it/s] all 79 172 0.78 0.568 0.636 0.378 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 246/2999 13.3G 0.02173 0.01692 0.005114 238 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.02it/s] all 79 172 0.639 0.566 0.578 0.352 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 247/2999 13.3G 0.02268 0.01652 0.004531 200 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.04s/it] all 79 172 0.623 0.536 0.525 0.321 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 248/2999 13.3G 0.02235 0.01425 0.005001 192 640: 100% 5/5 [00:04<00:00, 1.25it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.08it/s] all 79 172 0.697 0.525 0.599 0.386 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 249/2999 13.3G 0.02352 0.01621 0.003642 222 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.08it/s] all 79 172 0.625 0.49 0.574 0.378 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 250/2999 13.3G 0.02184 0.01575 0.00716 221 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.09it/s] all 79 172 0.657 0.513 0.563 0.364 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 251/2999 13.3G 0.02174 0.01629 0.004422 242 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.668 0.522 0.576 0.378 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 252/2999 13.3G 0.02075 0.01556 0.004782 225 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.04s/it] all 79 172 0.705 0.523 0.559 0.341 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 253/2999 13.3G 0.02199 0.01595 0.003561 159 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.01it/s] all 79 172 0.818 0.495 0.577 0.366 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 254/2999 13.3G 0.02302 0.01519 0.005618 225 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.17it/s] all 79 172 0.818 0.511 0.561 0.34 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 255/2999 13.3G 0.02252 0.01508 0.004516 209 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.03it/s] all 79 172 0.77 0.508 0.567 0.356 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 256/2999 13.3G 0.02207 0.01442 0.005011 174 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.02it/s] all 79 172 0.763 0.515 0.566 0.366 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 257/2999 13.3G 0.02165 0.01472 0.005958 205 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.16it/s] all 79 172 0.737 0.488 0.564 0.35 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 258/2999 13.3G 0.02085 0.01448 0.00546 197 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.11it/s] all 79 172 0.666 0.512 0.608 0.374 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 259/2999 13.3G 0.02247 0.01579 0.004364 179 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.12it/s] all 79 172 0.845 0.575 0.625 0.382 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 260/2999 13.3G 0.02216 0.01446 0.004768 206 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.07it/s] all 79 172 0.717 0.526 0.613 0.373 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 261/2999 13.3G 0.02163 0.01531 0.004534 214 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.15s/it] all 79 172 0.667 0.577 0.606 0.385 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 262/2999 13.3G 0.02124 0.0156 0.004753 214 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.03it/s] all 79 172 0.691 0.504 0.557 0.333 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 263/2999 13.3G 0.02157 0.01402 0.003773 168 640: 100% 5/5 [00:04<00:00, 1.22it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.78s/it] all 79 172 0.692 0.618 0.621 0.369 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 264/2999 13.3G 0.02115 0.01505 0.004787 219 640: 100% 5/5 [00:04<00:00, 1.14it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.54s/it] all 79 172 0.703 0.587 0.617 0.358 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 265/2999 13.3G 0.02119 0.01501 0.003825 230 640: 100% 5/5 [00:04<00:00, 1.24it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.22s/it] all 79 172 0.633 0.557 0.562 0.34 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 266/2999 13.3G 0.02232 0.01488 0.005141 193 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.20it/s] all 79 172 0.679 0.553 0.55 0.348 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 267/2999 13.3G 0.02236 0.01423 0.003963 213 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.02s/it] all 79 172 0.658 0.539 0.565 0.347 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 268/2999 13.3G 0.02109 0.01543 0.005812 185 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.17it/s] all 79 172 0.631 0.529 0.567 0.36 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 269/2999 13.3G 0.02206 0.01438 0.004758 192 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.03it/s] all 79 172 0.662 0.507 0.577 0.362 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 270/2999 13.3G 0.02145 0.01416 0.006062 183 640: 100% 5/5 [00:04<00:00, 1.23it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.62s/it] all 79 172 0.808 0.489 0.598 0.377 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 271/2999 13.3G 0.02128 0.01363 0.004508 210 640: 100% 5/5 [00:04<00:00, 1.23it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.14s/it] all 79 172 0.788 0.498 0.592 0.373 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 272/2999 13.3G 0.02323 0.01416 0.004713 181 640: 100% 5/5 [00:03<00:00, 1.28it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.02it/s] all 79 172 0.68 0.556 0.591 0.383 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 273/2999 13.3G 0.02241 0.01433 0.005521 175 640: 100% 5/5 [00:03<00:00, 1.32it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.10it/s] all 79 172 0.72 0.539 0.587 0.375 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 274/2999 13.3G 0.02156 0.01502 0.005296 187 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.07it/s] all 79 172 0.7 0.516 0.578 0.371 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 275/2999 13.3G 0.02187 0.01516 0.004791 177 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.15s/it] all 79 172 0.676 0.566 0.574 0.361 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 276/2999 13.3G 0.02218 0.01589 0.004767 229 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.03it/s] all 79 172 0.699 0.514 0.59 0.365 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 277/2999 13.3G 0.02195 0.01649 0.004888 205 640: 100% 5/5 [00:03<00:00, 1.30it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.05it/s] all 79 172 0.737 0.607 0.652 0.416 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 278/2999 13.3G 0.02141 0.01452 0.003921 173 640: 100% 5/5 [00:03<00:00, 1.27it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.01it/s] all 79 172 0.657 0.603 0.639 0.408 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 279/2999 13.3G 0.02054 0.01555 0.004726 229 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.05s/it] all 79 172 0.778 0.508 0.665 0.41 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 280/2999 13.3G 0.02179 0.01484 0.004448 188 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.793 0.552 0.646 0.392 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 281/2999 13.3G 0.0219 0.01377 0.006125 195 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.13s/it] all 79 172 0.744 0.546 0.6 0.392 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 282/2999 13.3G 0.02197 0.01625 0.004896 215 640: 100% 5/5 [00:03<00:00, 1.31it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:00<00:00, 1.04it/s] all 79 172 0.678 0.521 0.56 0.347 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 283/2999 13.3G 0.02083 0.01468 0.005276 143 640: 100% 5/5 [00:03<00:00, 1.29it/s] Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.52s/it] all 79 172 0.634 0.553 0.573 0.343 Stopping training early as no improvement observed in last 100 epochs. Best results observed at epoch 183, best model saved as best.pt. To update EarlyStopping(patience=100) pass a new patience value, i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping. 284 epochs completed in 0.433 hours. Optimizer stripped from runs/train/exp/weights/last.pt, 14.5MB Optimizer stripped from runs/train/exp/weights/best.pt, 14.5MB Validating runs/train/exp/weights/best.pt... Fusing layers... Model summary: 157 layers, 7020913 parameters, 0 gradients, 15.8 GFLOPs Class Images Instances P R mAP50 mAP50-95: 100% 1/1 [00:01<00:00, 1.20s/it] all 79 172 0.75 0.624 0.693 0.434 cadeira 79 78 0.714 0.462 0.527 0.255 geladeira 79 4 0.763 0.816 0.895 0.64 monitor 79 36 0.735 0.463 0.572 0.338 quadro 79 54 0.788 0.756 0.78 0.505 ``` </details> ### Evidências do treinamento ![confusion_matrix](https://user-images.githubusercontent.com/89791550/200121581-22cd817d-babb-436d-83bf-2b607d526df2.png) ## Roboflow https://app.roboflow.com/wilsoncesarschool/projetofinalmodelosconexionistas/1 ## HuggingFace https://huggingface.co/wilsonsob/projetoFinal
pallavi176/bert-fine-tuned-cola
pallavi176
2022-11-05T11:55:11Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-05T11:33:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-fine-tuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5778590180299453 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8136 - Matthews Correlation: 0.5779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4785 | 1.0 | 1069 | 0.5265 | 0.4996 | | 0.3162 | 2.0 | 2138 | 0.6626 | 0.5701 | | 0.1779 | 3.0 | 3207 | 0.8136 | 0.5779 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Mallik/distilbert-base-uncased-finetuned-emotion
Mallik
2022-11-05T10:59:49Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-05T09:39:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2128 - Accuracy: 0.925 - F1: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8215 | 1.0 | 250 | 0.3033 | 0.9105 | 0.9078 | | 0.2435 | 2.0 | 500 | 0.2128 | 0.925 | 0.9248 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Tokenizers 0.13.1
nguyenvulebinh/wav2vec2-noisy
nguyenvulebinh
2022-11-05T10:49:39Z
46
1
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "speech", "en", "dataset:librispeech_asr", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2022-11-05T10:16:55Z
--- language: en datasets: - librispeech_asr tags: - speech license: cc-by-nc-4.0 --- # Wav2Vec2-Base with audio augmentation The base model pretrained on 16kHz sampled speech-augmented audio. The audio comes from 960h Libris dataset that is augmented as follows: ![](https://github.com/nguyenvulebinh/voice-filter/blob/main/resources/augment_data.png?raw=true) The ambient noise dataset includes MUSAN and WHAM (a total of 189 hours, including music, speech, and environmental noise). The reverb dataset is from Room RIR and BUT Speech@FIT (2650 room impulse response signals). # Model Parameters License The model parameters are made available for non-commercial use only under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. You can find details at: https://creativecommons.org/licenses/by-nc/4.0/legalcode ### Contact nguyenvulebinh@gmail.com [![Follow](https://img.shields.io/twitter/follow/nguyenvulebinh?style=social)](https://twitter.com/intent/follow?screen_name=nguyenvulebinh)
jonathang/dog_breed
jonathang
2022-11-05T10:16:42Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-11-02T03:00:36Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Maheshnma/distilbert-base-uncased-finetuned-emotion
Maheshnma
2022-11-05T09:45:57Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-05T09:27:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.9225964839443589 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2209 - Accuracy: 0.9225 - F1: 0.9226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8477 | 1.0 | 250 | 0.3204 | 0.9025 | 0.9000 | | 0.2559 | 2.0 | 500 | 0.2209 | 0.9225 | 0.9226 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
OpenBioML/LibreFold_AF2_reproduction
OpenBioML
2022-11-05T08:56:37Z
0
0
null
[ "AlphaFold", "protein model", "license:cc-by-4.0", "region:us" ]
null
2022-10-20T17:22:18Z
--- tags: - AlphaFold - protein model license: cc-by-4.0 --- # LibreFold AF2 reproduction Text ## Intro Text ## Model description Text ## Intended uses & limitations Text ### How to use Text ### Limitations and bias Text ## Training data Text ### Collection process Text ## Training procedure ### Preprocessing Text ### BibTeX entry and citation info ```bibtex Text ```
sd-concepts-library/gt-color-paint-2
sd-concepts-library
2022-11-05T07:41:31Z
0
7
null
[ "license:mit", "region:us" ]
null
2022-11-05T07:41:26Z
--- license: mit --- ### GT color paint_2 on Stable Diffusion This is the `<my-color-paint-GT>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<my-color-paint-GT> 0](https://huggingface.co/sd-concepts-library/gt-color-paint-2/resolve/main/concept_images/2.jpeg) ![<my-color-paint-GT> 1](https://huggingface.co/sd-concepts-library/gt-color-paint-2/resolve/main/concept_images/0.jpeg) ![<my-color-paint-GT> 2](https://huggingface.co/sd-concepts-library/gt-color-paint-2/resolve/main/concept_images/3.jpeg) ![<my-color-paint-GT> 3](https://huggingface.co/sd-concepts-library/gt-color-paint-2/resolve/main/concept_images/4.jpeg) ![<my-color-paint-GT> 4](https://huggingface.co/sd-concepts-library/gt-color-paint-2/resolve/main/concept_images/1.jpeg)
Shunian/yelp_review_classification
Shunian
2022-11-05T07:21:17Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:yelp_review_full", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-05T06:38:54Z
--- tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: yelp_review_classification results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: train args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.6852 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # yelp_review_classification This model was trained from scratch on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 0.8517 - Accuracy: 0.6852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:------:|:--------:|:---------------:| | 0.7149 | 1.0 | 40625 | 0.6889 | 0.7167 | | 0.6501 | 2.0 | 81250 | 0.6967 | 0.6979 | | 0.5547 | 3.0 | 121875 | 0.6915 | 0.7377 | | 0.5375 | 4.0 | 162500 | 0.6895 | 0.7611 | | 0.4386 | 5.0 | 203125 | 0.8517 | 0.6852 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
MarkGG/Romance-baseline
MarkGG
2022-11-05T05:16:39Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-05T03:22:25Z
--- license: mit tags: - generated_from_trainer model-index: - name: Romance-baseline results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Romance-baseline This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.5909 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.94 | 15 | 10.7009 | | No log | 1.94 | 30 | 10.0799 | | No log | 2.94 | 45 | 9.6627 | | No log | 3.94 | 60 | 9.4619 | | No log | 4.94 | 75 | 9.2970 | | No log | 5.94 | 90 | 9.0919 | | No log | 6.94 | 105 | 8.9071 | | No log | 7.94 | 120 | 8.7240 | | No log | 8.94 | 135 | 8.5485 | | No log | 9.94 | 150 | 8.3952 | | No log | 10.94 | 165 | 8.2469 | | No log | 11.94 | 180 | 8.1193 | | No log | 12.94 | 195 | 7.9918 | | No log | 13.94 | 210 | 7.8662 | | No log | 14.94 | 225 | 7.7394 | | No log | 15.94 | 240 | 7.6219 | | No log | 16.94 | 255 | 7.5135 | | No log | 17.94 | 270 | 7.4110 | | No log | 18.94 | 285 | 7.3021 | | No log | 19.94 | 300 | 7.2021 | | No log | 20.94 | 315 | 7.1276 | | No log | 21.94 | 330 | 7.0278 | | No log | 22.94 | 345 | 6.9627 | | No log | 23.94 | 360 | 6.8806 | | No log | 24.94 | 375 | 6.8214 | | No log | 25.94 | 390 | 6.7725 | | No log | 26.94 | 405 | 6.7101 | | No log | 27.94 | 420 | 6.6792 | | No log | 28.94 | 435 | 6.6361 | | No log | 29.94 | 450 | 6.5950 | | No log | 30.94 | 465 | 6.5745 | | No log | 31.94 | 480 | 6.5469 | | No log | 32.94 | 495 | 6.5520 | | No log | 33.94 | 510 | 6.5121 | | No log | 34.94 | 525 | 6.5255 | | No log | 35.94 | 540 | 6.5179 | | No log | 36.94 | 555 | 6.5079 | | No log | 37.94 | 570 | 6.5138 | | No log | 38.94 | 585 | 6.5170 | | No log | 39.94 | 600 | 6.4807 | | No log | 40.94 | 615 | 6.5338 | | No log | 41.94 | 630 | 6.4960 | | No log | 42.94 | 645 | 6.5342 | | No log | 43.94 | 660 | 6.5119 | | No log | 44.94 | 675 | 6.5614 | | No log | 45.94 | 690 | 6.5235 | | No log | 46.94 | 705 | 6.5388 | | No log | 47.94 | 720 | 6.5574 | | No log | 48.94 | 735 | 6.5581 | | No log | 49.94 | 750 | 6.5909 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/pcbg9
huggingtweets
2022-11-05T04:20:29Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-05T03:45:35Z
--- language: en thumbnail: http://www.huggingtweets.com/pcbg9/1667622025279/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1225770876626460673/9joxA6TW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">PCBoyGames</div> <div style="text-align: center; font-size: 14px;">@pcbg9</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from PCBoyGames. | Data | PCBoyGames | | --- | --- | | Tweets downloaded | 547 | | Retweets | 24 | | Short tweets | 50 | | Tweets kept | 473 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/672epqcs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pcbg9's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2iu5ehsq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2iu5ehsq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pcbg9') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nubby/kagura_tohru-artist
nubby
2022-11-05T03:58:23Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-02T23:04:22Z
--- license: creativeml-openrail-m --- waifu diffusion 1.3 base model with dreambooth training on images drawn by the artist "kagura_tohru" Can be used in StableDiffusion, including the extremely popular Web UI by Automatic1111, like any other model by placing the .CKPT file in the correct directory. Please consult the documentation for your installation of StableDiffusion for more specific instructions. Use "m_kgrartist" to activate ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
MarkGG/Romance-cleaned-1
MarkGG
2022-11-05T03:10:38Z
105
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-26T03:35:43Z
--- license: mit tags: - generated_from_trainer model-index: - name: Romance-cleaned-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Romance-cleaned-1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.97 | 29 | 9.9497 | | No log | 1.97 | 58 | 9.1816 | | No log | 2.97 | 87 | 8.5947 | | No log | 3.97 | 116 | 8.2217 | | No log | 4.97 | 145 | 7.8354 | | No log | 5.97 | 174 | 7.5075 | | No log | 6.97 | 203 | 7.2112 | | No log | 7.97 | 232 | 6.9077 | | No log | 8.97 | 261 | 6.5994 | | No log | 9.97 | 290 | 6.3077 | | No log | 10.97 | 319 | 6.0416 | | No log | 11.97 | 348 | 5.8126 | | No log | 12.97 | 377 | 5.6197 | | No log | 13.97 | 406 | 5.4789 | | No log | 14.97 | 435 | 5.3665 | | No log | 15.97 | 464 | 5.2738 | | No log | 16.97 | 493 | 5.1942 | | No log | 17.97 | 522 | 5.1382 | | No log | 18.97 | 551 | 5.0784 | | No log | 19.97 | 580 | 5.0347 | | No log | 20.97 | 609 | 4.9873 | | No log | 21.97 | 638 | 4.9514 | | No log | 22.97 | 667 | 4.9112 | | No log | 23.97 | 696 | 4.8838 | | No log | 24.97 | 725 | 4.8468 | | No log | 25.97 | 754 | 4.8221 | | No log | 26.97 | 783 | 4.7996 | | No log | 27.97 | 812 | 4.7815 | | No log | 28.97 | 841 | 4.7606 | | No log | 29.97 | 870 | 4.7394 | | No log | 30.97 | 899 | 4.7167 | | No log | 31.97 | 928 | 4.7140 | | No log | 32.97 | 957 | 4.6910 | | No log | 33.97 | 986 | 4.6844 | | No log | 34.97 | 1015 | 4.6765 | | No log | 35.97 | 1044 | 4.6687 | | No log | 36.97 | 1073 | 4.6721 | | No log | 37.97 | 1102 | 4.6724 | | No log | 38.97 | 1131 | 4.6629 | | No log | 39.97 | 1160 | 4.6772 | | No log | 40.97 | 1189 | 4.6795 | | No log | 41.97 | 1218 | 4.6788 | | No log | 42.97 | 1247 | 4.6832 | | No log | 43.97 | 1276 | 4.6954 | | No log | 44.97 | 1305 | 4.7009 | | No log | 45.97 | 1334 | 4.7082 | | No log | 46.97 | 1363 | 4.7140 | | No log | 47.97 | 1392 | 4.7158 | | No log | 48.97 | 1421 | 4.7181 | | No log | 49.97 | 1450 | 4.7175 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/transgirltoking
huggingtweets
2022-11-05T02:57:28Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-05T02:56:05Z
--- language: en thumbnail: http://www.huggingtweets.com/transgirltoking/1667617044734/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1587630117890949121/Uo9ukfaP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">fallmoder</div> <div style="text-align: center; font-size: 14px;">@transgirltoking</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from fallmoder. | Data | fallmoder | | --- | --- | | Tweets downloaded | 950 | | Retweets | 280 | | Short tweets | 97 | | Tweets kept | 573 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/279zhs1a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @transgirltoking's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ipbrk4ae) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ipbrk4ae/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/transgirltoking') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hazrulakmal/distilgpt2-ecb-finetuned
hazrulakmal
2022-11-05T01:25:33Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-03T19:14:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-ecb-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-ecb-finetuned This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9655 | 1.0 | 17714 | 0.9472 | | 0.9121 | 2.0 | 35428 | 0.8986 | | 0.8682 | 3.0 | 53142 | 0.8705 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Nanohana/efficietnet-lstm-image-captioning
Nanohana
2022-11-05T00:28:47Z
0
0
null
[ "region:us" ]
null
2022-11-04T22:51:32Z
--- title: {{image-captioning}} sdk: {{gradio}} app_file: app.py --- # image-captioning This repository contains an image captioning system that is composed of: - Pretrained EfficientNet-B0 in ImageNet - Word Embedding with Flickr8k vocabulary - 1 layer LSTM It was trained for 100 epoches (CNN weights were frozen) and the vocabulary was built with words that appear at least 5 times in the Flickr8k dataset. ![image](https://user-images.githubusercontent.com/56324869/198848257-d981dd83-d362-491a-bbf0-f7ec305798ee.png)
huggingtweets/hellgirl2004
huggingtweets
2022-11-05T00:11:47Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-05T00:11:39Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1581781821414686722/lvOpNTQf_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🎃 rei 💀</div> <div style="text-align: center; font-size: 14px;">@hellgirl2004</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🎃 rei 💀. | Data | 🎃 rei 💀 | | --- | --- | | Tweets downloaded | 3168 | | Retweets | 1517 | | Short tweets | 584 | | Tweets kept | 1067 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/m0ohu4nr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hellgirl2004's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mcqxcff) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mcqxcff/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hellgirl2004') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-300k
mpjan
2022-11-05T00:08:25Z
8
4
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "pt", "dataset:unicamp-dl/mmarco", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-05T00:03:16Z
--- pipeline_tag: sentence-similarity language: - 'pt' tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - 'unicamp-dl/mmarco' --- # mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-300k This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a fine-tuning of [sentence-transformers/msmarco-distilbert-base-tas-b](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b) on the first 300k triplets of the Portuguese subset in [unicamp-dl/mmarco](https://huggingface.co/datasets/unicamp-dl/mmarco). <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-300k') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-300k') model = AutoModel.from_pretrained('mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-300k') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 18750 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 9375, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dodge99/q-FrozenLake-v1-4x4-Slippery
dodge99
2022-11-04T23:27:20Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-04T23:08:03Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.58 +/- 0.49 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dodge99/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
mariopeng/phoneT5
mariopeng
2022-11-04T22:53:02Z
20
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-17T20:01:55Z
# Description Transfer learning on T5 to translate English graphemes to IPA (International Phonetic Alphabet). - Include "translate to IPA: " as prefix for prompting.
jinhybr/OCR-DocVQA-Donut
jinhybr
2022-11-04T22:23:22Z
122
11
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "donut", "image-to-text", "vision", "document-question-answering", "arxiv:2111.15664", "license:mit", "endpoints_compatible", "region:us" ]
document-question-answering
2022-11-04T22:11:29Z
--- license: mit pipeline_tag: document-question-answering tags: - donut - image-to-text - vision widget: - text: "What is the invoice number?" src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" - text: "What is the purchase amount?" src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/contract.jpeg" --- # Donut (base-sized model, fine-tuned on DocVQA) Donut model fine-tuned on DocVQA. It was introduced in the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewok et al. and first released in [this repository](https://github.com/clovaai/donut). Disclaimer: The team releasing Donut did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Donut consists of a vision encoder (Swin Transformer) and a text decoder (BART). Given an image, the encoder first encodes the image into a tensor of embeddings (of shape batch_size, seq_len, hidden_size), after which the decoder autoregressively generates text, conditioned on the encoding of the encoder. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/donut_architecture.jpg) ## Intended uses & limitations This model is fine-tuned on DocVQA, a document visual question answering dataset. We refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/donut) which includes code examples.
Arnavaz/gpt2-arnavaz-beta
Arnavaz
2022-11-04T20:55:31Z
48
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "Farsi", "fa", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-04T12:57:55Z
--- language: fa license: apache-2.0 tags: - Farsi --- # Arnavāz (ارنواز) **Model Description:** Arnavaz/gpt-arnavaz-beta is gpt2 language model that is fine-tuned using [bolbolzaban/gpt2-persian](https://huggingface.co/bolbolzaban/gpt2-persian) pretrained model. [bolbolzaban/gpt2-persian](https://huggingface.co/bolbolzaban/gpt2-persian) has been trained similar to [gpt2-medium](https://huggingface.co/gpt2-medium) with differences in context size, tokenizer and language [(Read more)](https://medium.com/@khashei/a-not-so-dangerous-ai-in-the-persian-language-39172a641c84). - **Developed by:** [Rezā Latifi](https://rezalatifi.ir) - **Model Type:** Transformer-based language model - **Language:** Persian (All characters other than the Persian alphabet are replaced with special tokens) - **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE) - **Related Models:** [bolbolzaban/gpt2-persian](https://huggingface.co/bolbolzaban/gpt2-persian), [gpt2-medium](https://huggingface.co/gpt2-medium) - **Resources for more information:** - [Arnavaz Website](https://openai.com/blog/better-language-models/) ## How to utilize Using a pipeline for text generation, Arnavaz can be utilized like this: ```python from transformers import pipeline, AutoTokenizer, GPT2LMHeadModel, AutoConfig tokenizer = AutoTokenizer.from_pretrained('Arnavaz/gpt2-arnavaz-beta') model = GPT2LMHeadModel.from_pretrained('Arnavaz/gpt2-arnavaz-beta') config = AutoConfig.from_pretrained('Arnavaz/gpt2-arnavaz-beta', max_length=512) generator = pipeline('text-generation', model, tokenizer=tokenizer, config=config) def getEloquent(ineloquent): result = generator(f"[BOS]{ineloquent}[SEP]")[0]['generated_text'] return result[result.find('[SEP]')+5:] sample = getEloquent('استفاده از کاغذ پاپیروس برای نوشتن کتاب از حدود دو هزار سال قبل از میلاد در مصر رایج شد.') ```
kabilanp942/t5-finetuned-cnn-dailymail-english
kabilanp942
2022-11-04T20:50:41Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "Summarization", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-04T17:37:38Z
--- license: apache-2.0 tags: - Summarization - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-finetuned-cnn-dailymail-english results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: train args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.8782 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-finetuned-cnn-dailymail-english This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.8462 - Rouge1: 24.8782 - Rouge2: 11.9422 - Rougel: 20.5616 - Rougelsum: 23.445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.0856 | 1.0 | 35890 | 1.8462 | 24.8782 | 11.9422 | 20.5616 | 23.445 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
jrtec/jrtec-distilroberta-base-mrpc-glue-omar-espejel
jrtec
2022-11-04T20:31:03Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-04T15:53:58Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: jrtec-distilroberta-base-mrpc-glue-omar-espejel results: - task: name: Text Classification type: text-classification dataset: name: datasetX type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8161764705882353 - name: F1 type: f1 value: 0.8747913188647747 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jrtec-distilroberta-base-mrpc-glue-omar-espejel This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the datasetX dataset. It achieves the following results on the evaluation set: - Loss: 0.4901 - Accuracy: 0.8162 - F1: 0.8748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4845 | 1.09 | 500 | 0.4901 | 0.8162 | 0.8748 | | 0.3706 | 2.18 | 1000 | 0.6421 | 0.8162 | 0.8691 | | 0.2003 | 3.27 | 1500 | 0.9711 | 0.8162 | 0.8760 | | 0.1281 | 4.36 | 2000 | 0.8224 | 0.8480 | 0.8893 | | 0.0717 | 5.45 | 2500 | 1.1803 | 0.8113 | 0.8511 | | 0.0344 | 6.54 | 3000 | 1.1759 | 0.8480 | 0.8935 | | 0.0277 | 7.63 | 3500 | 1.2140 | 0.8456 | 0.8927 | | 0.0212 | 8.71 | 4000 | 1.0895 | 0.8554 | 0.8974 | | 0.0071 | 9.8 | 4500 | 1.1849 | 0.8554 | 0.8991 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
rajistics/churn-model
rajistics
2022-11-04T20:18:12Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "license:mit", "endpoints_compatible", "region:us" ]
tabular-classification
2022-10-15T01:25:28Z
--- license: mit library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: Contract: - Two year - Month-to-month - One year Dependents: - 'Yes' - 'No' - 'No' DeviceProtection: - 'No' - 'No' - 'Yes' InternetService: - Fiber optic - Fiber optic - DSL MonthlyCharges: - 79.05 - 84.95 - 68.8 MultipleLines: - 'Yes' - 'Yes' - 'Yes' OnlineBackup: - 'No' - 'No' - 'Yes' OnlineSecurity: - 'Yes' - 'No' - 'Yes' PaperlessBilling: - 'No' - 'Yes' - 'No' Partner: - 'Yes' - 'Yes' - 'No' PaymentMethod: - Bank transfer (automatic) - Electronic check - Bank transfer (automatic) PhoneService: - 'Yes' - 'Yes' - 'Yes' SeniorCitizen: - 0 - 0 - 0 StreamingMovies: - 'No' - 'No' - 'No' StreamingTV: - 'No' - 'Yes' - 'No' TechSupport: - 'No' - 'No' - 'Yes' TotalCharges: - 5730.7 - 1378.25 - 4111.35 gender: - Female - Female - Male tenure: - 72 - 16 - 63 --- # Model description This is a Logistic Regression model trained on churn dataset. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |--------------------------------------------|-----------------------------------------------------------------------------------| | memory | | | steps | [('preprocessor', ColumnTransformer(transformers=[('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('std_scaler', StandardScaler())]), ['MonthlyCharges', 'TotalCharges', 'tenure']), ('cat', OneHotEncoder(handle_unknown='ignore'), ['SeniorCitizen', 'gender', 'Partner', 'Dependents', 'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod'])])), ('classifier', LogisticRegression(class_weight='balanced', max_iter=300))] | | verbose | False | | preprocessor | ColumnTransformer(transformers=[('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('std_scaler', StandardScaler())]), ['MonthlyCharges', 'TotalCharges', 'tenure']), ('cat', OneHotEncoder(handle_unknown='ignore'), ['SeniorCitizen', 'gender', 'Partner', 'Dependents', 'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod'])]) | | classifier | LogisticRegression(class_weight='balanced', max_iter=300) | | preprocessor__n_jobs | | | preprocessor__remainder | drop | | preprocessor__sparse_threshold | 0.3 | | preprocessor__transformer_weights | | | preprocessor__transformers | [('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('std_scaler', StandardScaler())]), ['MonthlyCharges', 'TotalCharges', 'tenure']), ('cat', OneHotEncoder(handle_unknown='ignore'), ['SeniorCitizen', 'gender', 'Partner', 'Dependents', 'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod'])] | | preprocessor__verbose | False | | preprocessor__verbose_feature_names_out | True | | preprocessor__num | Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('std_scaler', StandardScaler())]) | | preprocessor__cat | OneHotEncoder(handle_unknown='ignore') | | preprocessor__num__memory | | | preprocessor__num__steps | [('imputer', SimpleImputer(strategy='median')), ('std_scaler', StandardScaler())] | | preprocessor__num__verbose | False | | preprocessor__num__imputer | SimpleImputer(strategy='median') | | preprocessor__num__std_scaler | StandardScaler() | | preprocessor__num__imputer__add_indicator | False | | preprocessor__num__imputer__copy | True | | preprocessor__num__imputer__fill_value | | | preprocessor__num__imputer__missing_values | nan | | preprocessor__num__imputer__strategy | median | | preprocessor__num__imputer__verbose | deprecated | | preprocessor__num__std_scaler__copy | True | | preprocessor__num__std_scaler__with_mean | True | | preprocessor__num__std_scaler__with_std | True | | preprocessor__cat__categories | auto | | preprocessor__cat__drop | | | preprocessor__cat__dtype | <class 'numpy.float64'> | | preprocessor__cat__handle_unknown | ignore | | preprocessor__cat__max_categories | | | preprocessor__cat__min_frequency | | | preprocessor__cat__sparse | True | | classifier__C | 1.0 | | classifier__class_weight | balanced | | classifier__dual | False | | classifier__fit_intercept | True | | classifier__intercept_scaling | 1 | | classifier__l1_ratio | | | classifier__max_iter | 300 | | classifier__multi_class | auto | | classifier__n_jobs | | | classifier__penalty | l2 | | classifier__random_state | | | classifier__solver | lbfgs | | classifier__tol | 0.0001 | | classifier__verbose | 0 | | classifier__warm_start | False | </details> ### Model Plot The model plot is below. <style>#sk-container-id-5 {color: black;background-color: white;}#sk-container-id-5 pre{padding: 0;}#sk-container-id-5 div.sk-toggleable {background-color: white;}#sk-container-id-5 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-5 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-5 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-5 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-5 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-5 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-5 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-5 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-5 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-5 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-5 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-5 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-5 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-5 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-5 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-5 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-5 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-5 div.sk-item {position: relative;z-index: 1;}#sk-container-id-5 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-5 div.sk-item::before, #sk-container-id-5 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-5 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-5 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-5 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-5 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-5 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-5 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-5 div.sk-label-container {text-align: center;}#sk-container-id-5 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-5 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-5" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;std_scaler&#x27;,StandardScaler())]),[&#x27;MonthlyCharges&#x27;,&#x27;TotalCharges&#x27;, &#x27;tenure&#x27;]),(&#x27;cat&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;),[&#x27;SeniorCitizen&#x27;, &#x27;gender&#x27;,&#x27;Partner&#x27;, &#x27;Dependents&#x27;,&#x27;PhoneService&#x27;,&#x27;MultipleLines&#x27;,&#x27;InternetService&#x27;,&#x27;OnlineSecurity&#x27;,&#x27;OnlineBackup&#x27;,&#x27;DeviceProtection&#x27;,&#x27;TechSupport&#x27;, &#x27;StreamingTV&#x27;,&#x27;StreamingMovies&#x27;,&#x27;Contract&#x27;,&#x27;PaperlessBilling&#x27;,&#x27;PaymentMethod&#x27;])])),(&#x27;classifier&#x27;,LogisticRegression(class_weight=&#x27;balanced&#x27;, max_iter=300))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-26" type="checkbox" ><label for="sk-estimator-id-26" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;std_scaler&#x27;,StandardScaler())]),[&#x27;MonthlyCharges&#x27;,&#x27;TotalCharges&#x27;, &#x27;tenure&#x27;]),(&#x27;cat&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;),[&#x27;SeniorCitizen&#x27;, &#x27;gender&#x27;,&#x27;Partner&#x27;, &#x27;Dependents&#x27;,&#x27;PhoneService&#x27;,&#x27;MultipleLines&#x27;,&#x27;InternetService&#x27;,&#x27;OnlineSecurity&#x27;,&#x27;OnlineBackup&#x27;,&#x27;DeviceProtection&#x27;,&#x27;TechSupport&#x27;, &#x27;StreamingTV&#x27;,&#x27;StreamingMovies&#x27;,&#x27;Contract&#x27;,&#x27;PaperlessBilling&#x27;,&#x27;PaymentMethod&#x27;])])),(&#x27;classifier&#x27;,LogisticRegression(class_weight=&#x27;balanced&#x27;, max_iter=300))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-27" type="checkbox" ><label for="sk-estimator-id-27" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessor: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;std_scaler&#x27;,StandardScaler())]),[&#x27;MonthlyCharges&#x27;, &#x27;TotalCharges&#x27;, &#x27;tenure&#x27;]),(&#x27;cat&#x27;, OneHotEncoder(handle_unknown=&#x27;ignore&#x27;),[&#x27;SeniorCitizen&#x27;, &#x27;gender&#x27;, &#x27;Partner&#x27;,&#x27;Dependents&#x27;, &#x27;PhoneService&#x27;, &#x27;MultipleLines&#x27;,&#x27;InternetService&#x27;, &#x27;OnlineSecurity&#x27;,&#x27;OnlineBackup&#x27;, &#x27;DeviceProtection&#x27;,&#x27;TechSupport&#x27;, &#x27;StreamingTV&#x27;,&#x27;StreamingMovies&#x27;, &#x27;Contract&#x27;,&#x27;PaperlessBilling&#x27;, &#x27;PaymentMethod&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-28" type="checkbox" ><label for="sk-estimator-id-28" class="sk-toggleable__label sk-toggleable__label-arrow">num</label><div class="sk-toggleable__content"><pre>[&#x27;MonthlyCharges&#x27;, &#x27;TotalCharges&#x27;, &#x27;tenure&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-29" type="checkbox" ><label for="sk-estimator-id-29" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer(strategy=&#x27;median&#x27;)</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-30" type="checkbox" ><label for="sk-estimator-id-30" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-31" type="checkbox" ><label for="sk-estimator-id-31" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>[&#x27;SeniorCitizen&#x27;, &#x27;gender&#x27;, &#x27;Partner&#x27;, &#x27;Dependents&#x27;, &#x27;PhoneService&#x27;, &#x27;MultipleLines&#x27;, &#x27;InternetService&#x27;, &#x27;OnlineSecurity&#x27;, &#x27;OnlineBackup&#x27;, &#x27;DeviceProtection&#x27;, &#x27;TechSupport&#x27;, &#x27;StreamingTV&#x27;, &#x27;StreamingMovies&#x27;, &#x27;Contract&#x27;, &#x27;PaperlessBilling&#x27;, &#x27;PaymentMethod&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-32" type="checkbox" ><label for="sk-estimator-id-32" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;)</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-33" type="checkbox" ><label for="sk-estimator-id-33" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(class_weight=&#x27;balanced&#x27;, max_iter=300)</pre></div></div></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|----------| | accuracy | 0.730305 | | f1 score | 0.730305 | # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python import pickle with open(dtc_pkl_filename, 'rb') as file: clf = pickle.load(file) ``` </details> # Model Card Authors This model card is written by following authors: skops_user # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` bibtex @inproceedings{...,year={2020}} ``` # Additional Content ## confusion_matrix ![confusion_matrix](confusion_matrix.png)
Pattkopp/distilbert-base-uncased-finetuned-emotion
Pattkopp
2022-11-04T20:16:13Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-04T19:59:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9175 - name: F1 type: f1 value: 0.917868093658934 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2301 - Accuracy: 0.9175 - F1: 0.9179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8386 | 1.0 | 250 | 0.3275 | 0.904 | 0.9011 | | 0.2572 | 2.0 | 500 | 0.2301 | 0.9175 | 0.9179 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
platzi/platzi-distilroberta-base-glue-mrpc-eduardo-ag
platzi
2022-11-04T19:49:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-04T19:25:03Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: platzi-distilroberta-base-glue-mrpc-eduardo-ag results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8186274509803921 - name: F1 type: f1 value: 0.8634686346863469 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-distilroberta-base-glue-mrpc-eduardo-ag This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 0.6614 - Accuracy: 0.8186 - F1: 0.8635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5185 | 1.09 | 500 | 0.4796 | 0.8431 | 0.8889 | | 0.3449 | 2.18 | 1000 | 0.6614 | 0.8186 | 0.8635 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
cambridgeltl/sst_mobilebert-uncased
cambridgeltl
2022-11-04T19:20:23Z
11
1
transformers
[ "transformers", "pytorch", "mobilebert", "text-classification", "arxiv:2004.02984", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-14T14:35:36Z
This model provides a MobileBERT [(Sun et al., 2020)](https://arxiv.org/abs/2004.02984) fine-tuned on the SST data with three sentiments (0 -- negative, 1 -- neutral, and 2 -- positive). ## Example Usage Below, we provide illustrations on how to use this model to make sentiment predictions. ```python import torch from transformers import AutoTokenizer, AutoConfig, MobileBertForSequenceClassification # load model model_name = r'cambridgeltl/sst_mobilebert-uncased' tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) model = MobileBertForSequenceClassification.from_pretrained(model_name, config=config) model.eval() ''' labels: 0 -- negative 1 -- neutral 2 -- positive ''' # prepare exemplar sentences batch_sentences = [ "in his first stab at the form , jacquot takes a slightly anarchic approach that works only sporadically .", "a valueless kiddie paean to pro basketball underwritten by the nba .", "a very well-made , funny and entertaining picture .", ] # prepare input inputs = tokenizer(batch_sentences, max_length=256, truncation=True, padding=True, return_tensors='pt') input_ids, attention_mask = inputs.input_ids, inputs.attention_mask # make predictions outputs = model(input_ids=input_ids, attention_mask=attention_mask) predictions = torch.argmax(outputs.logits, dim = -1) print (predictions) # tensor([1, 0, 2]) ``` ## Citation: If you find this model useful, please kindly cite our model as ```bibtex @misc{susstmobilebert, author = {Su, Yixuan}, title = {A MobileBERT Fine-tuned on SST}, howpublished = {\url{https://huggingface.co/cambridgeltl/sst_mobilebert-uncased}}, year = 2022 } ```
Madhyam123/Madhyam
Madhyam123
2022-11-04T19:20:21Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-11-04T19:20:21Z
--- license: bigscience-openrail-m ---
spoiled/roberta-large-neg-tags
spoiled
2022-11-04T18:49:35Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-04T18:05:23Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large-neg-tags results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-neg-tags This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0016 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | 0.0143 | 1.0 | 938 | 0.0032 | 0.0 | 0.0 | 0.0 | 0.9995 | | 0.0033 | 2.0 | 1876 | 0.0017 | 0.0 | 0.0 | 0.0 | 0.9996 | | 0.0039 | 3.0 | 2814 | 0.0018 | 0.0 | 0.0 | 0.0 | 0.9997 | | 0.0012 | 4.0 | 3752 | 0.0016 | 0.0 | 0.0 | 0.0 | 0.9997 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.10.1 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/itsbludood
huggingtweets
2022-11-04T18:36:50Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-04T18:36:15Z
--- language: en thumbnail: http://www.huggingtweets.com/itsbludood/1667587006494/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1543744611742584834/Y_8SQZ8s_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BluDood</div> <div style="text-align: center; font-size: 14px;">@itsbludood</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BluDood. | Data | BluDood | | --- | --- | | Tweets downloaded | 579 | | Retweets | 126 | | Short tweets | 62 | | Tweets kept | 391 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wux94qs4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @itsbludood's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/w2ic8dfp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/w2ic8dfp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/itsbludood') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
trtez/Trtez.com
trtez
2022-11-04T18:36:18Z
0
1
null
[ "region:us" ]
null
2022-11-04T18:34:47Z
Trtez.com Tez yazdırma Tez hazırlama Yüksek lisans tez yazdırma
SirVeggie/greg_rutkowski
SirVeggie
2022-11-04T18:00:04Z
0
4
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-04T17:33:58Z
--- license: creativeml-openrail-m --- # Grzegorz Rutkowski stable diffusion model Original artist: Grzegorz Rutkowski\ Artstation: https://www.artstation.com/rutkowski ## Basic explanation Token and Class words are what guide the AI to produce images similar to the trained style/object/character. Include any mix of these words in the prompt to produce verying results, or exclude them to have a less pronounced effect. There is usually at least a slight stylistic effect even without the words, but it is recommended to include at least one. Adding token word/phrase class word/phrase at the start of the prompt in that order produces results most similar to the trained concept, but they can be included elsewhere as well. Some models produce better results when not including all token/class words. ## Model info model: greg\ token: m_greg\ class: illustration style\ base: waifu diffusion 1.3-full\ images: 36\ steps: 3600
svo2/roberta-finetuned-state
svo2
2022-11-04T17:24:30Z
20
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-03T19:41:47Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-finetuned-state results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-state This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
svo2/roberta-finetuned-city
svo2
2022-11-04T16:28:31Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-31T17:28:30Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-finetuned-city results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-city This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
troesy/distilBERT-fresh_10epoch
troesy
2022-11-04T15:57:02Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-04T15:45:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT-fresh_10epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT-fresh_10epoch This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0234 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 174 | 0.1913 | 0.0 | 0.0 | 0.0 | 0.9312 | | No log | 2.0 | 348 | 0.1431 | 0.0 | 0.0 | 0.0 | 0.9507 | | 0.2211 | 3.0 | 522 | 0.1053 | 0.0 | 0.0 | 0.0 | 0.9640 | | 0.2211 | 4.0 | 696 | 0.0770 | 0.0 | 0.0 | 0.0 | 0.9746 | | 0.2211 | 5.0 | 870 | 0.0581 | 0.0 | 0.0 | 0.0 | 0.9820 | | 0.0995 | 6.0 | 1044 | 0.0461 | 0.0 | 0.0 | 0.0 | 0.9862 | | 0.0995 | 7.0 | 1218 | 0.0376 | 0.0 | 0.0 | 0.0 | 0.9886 | | 0.0995 | 8.0 | 1392 | 0.0290 | 0.0 | 0.0 | 0.0 | 0.9915 | | 0.054 | 9.0 | 1566 | 0.0238 | 0.0 | 0.0 | 0.0 | 0.9934 | | 0.054 | 10.0 | 1740 | 0.0234 | 0.0 | 0.0 | 0.0 | 0.9935 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
arjunchandra/ddpm-butterflies-128
arjunchandra
2022-11-04T15:14:03Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-04T13:58:06Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/arjunchandra/ddpm-butterflies-128/tensorboard?#scalars)
NikitaShu/testPyramids
NikitaShu
2022-11-04T14:35:57Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-11-04T14:35:49Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: NikitaShu/testPyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
RaulFD-creator/BrigitCNN
RaulFD-creator
2022-11-04T14:29:16Z
0
0
null
[ "license:bsd-3-clause", "region:us" ]
null
2022-11-04T14:26:01Z
--- license: bsd-3-clause --- BrigitCNN: CNN model trained for detecting protein-metal binding regions.
sd-concepts-library/happy-chaos
sd-concepts-library
2022-11-04T13:55:04Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-11-04T13:54:52Z
--- license: mit --- ### Happy Chaos on Stable Diffusion This is the `<happychaos>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<happychaos> 0](https://huggingface.co/sd-concepts-library/happy-chaos/resolve/main/concept_images/1.jpeg) ![<happychaos> 1](https://huggingface.co/sd-concepts-library/happy-chaos/resolve/main/concept_images/3.jpeg) ![<happychaos> 2](https://huggingface.co/sd-concepts-library/happy-chaos/resolve/main/concept_images/0.jpeg) ![<happychaos> 3](https://huggingface.co/sd-concepts-library/happy-chaos/resolve/main/concept_images/2.jpeg) ![<happychaos> 4](https://huggingface.co/sd-concepts-library/happy-chaos/resolve/main/concept_images/4.jpeg)
gogzy/t5-base-finetuned_renre_2021_70_item1
gogzy
2022-11-04T13:44:29Z
61
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-04T13:40:38Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: gogzy/t5-base-finetuned_renre_2021_70_item1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # gogzy/t5-base-finetuned_renre_2021_70_item1 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.9249 - Validation Loss: 3.4095 - Train Rouge1: 23.3982 - Train Rouge2: 19.6757 - Train Rougel: 22.3564 - Train Rougelsum: 22.8412 - Train Gen Len: 19.0 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 9.7749 | 6.6798 | 18.9434 | 12.6370 | 16.9890 | 17.7338 | 19.0 | 0 | | 4.9973 | 4.2477 | 22.6855 | 17.2847 | 21.5463 | 21.7509 | 19.0 | 1 | | 3.5151 | 3.8275 | 23.5077 | 18.3312 | 21.6536 | 21.9844 | 19.0 | 2 | | 3.2552 | 3.5650 | 22.6213 | 18.1468 | 21.3466 | 21.8323 | 19.0 | 3 | | 2.9249 | 3.4095 | 23.3982 | 19.6757 | 22.3564 | 22.8412 | 19.0 | 4 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
kueltzho/ddpm-butterflies-128
kueltzho
2022-11-04T13:09:09Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-04T12:21:04Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/kueltzho/ddpm-butterflies-128/tensorboard?#scalars)
sirui/bert-base-chinese-finetuned-car_corpus
sirui
2022-11-04T12:45:04Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-04T07:08:41Z
--- tags: - generated_from_trainer model-index: - name: bert-base-chinese-finetuned-car_corpus results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuned-car_corpus This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the Car Corpus Database. It achieves the following results on the evaluation set: - Loss: 1.5187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.799 | 1.0 | 3776 | 1.5830 | | 0.7419 | 2.0 | 7552 | 1.4930 | | 0.7245 | 3.0 | 11328 | 1.5187 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
troesy/distilBERT-fresh
troesy
2022-11-04T10:30:15Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-04T10:19:21Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT-fresh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT-fresh This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1444 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 174 | 0.1957 | 0.0 | 0.0 | 0.0 | 0.9289 | | No log | 2.0 | 348 | 0.1591 | 0.0 | 0.0 | 0.0 | 0.9438 | | 0.2272 | 3.0 | 522 | 0.1444 | 0.0 | 0.0 | 0.0 | 0.9489 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pe65374/xcoa-sbert-base-chinese-nli
pe65374
2022-11-04T09:29:06Z
6
3
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "zh", "arxiv:1909.05658", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-04T09:00:41Z
--- language: zh pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: apache-2.0 widget: source_sentence: "那个人很开心" sentences: - 那个人非常开心 - 那只猫很开心 - 那个人在吃东西 --- # Chinese Sentence BERT ## Model description This is the sentence embedding model pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). for easy testing and solving the warning from sentences-transformers (initialized by which), I forked the original repo. ## Training data [ChineseTextualInference](https://github.com/liuhuanyong/ChineseTextualInference/) is used as training data. ## Training procedure The model is fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune five epochs with a sequence length of 128 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved. ``` python3 finetune/run_classifier_siamese.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --config_path models/sbert/base_config.json \ --train_path datasets/ChineseTextualInference/train.tsv \ --dev_path datasets/ChineseTextualInference/dev.tsv \ --learning_rate 5e-5 --epochs_num 5 --batch_size 64 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_sbert_from_uer_to_huggingface.py --input_model_path models/finetuned_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @article{reimers2019sentence, title={Sentence-bert: Sentence embeddings using siamese bert-networks}, author={Reimers, Nils and Gurevych, Iryna}, journal={arXiv preprint arXiv:1908.10084}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ```
neerajp/en_core_web_lg
neerajp
2022-11-04T08:42:19Z
7
1
spacy
[ "spacy", "token-classification", "en", "license:mit", "model-index", "region:us" ]
token-classification
2022-11-04T08:35:24Z
--- tags: - spacy - token-classification language: - en license: mit model-index: - name: en_core_web_lg results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8535469108 - name: NER Recall type: recall value: 0.8592748397 - name: NER F Score type: f_score value: 0.8564012977 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9734404547 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.9204363007 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.9023174614 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.90444794 --- ### Details: https://spacy.io/models/en#en_core_web_lg English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer. | Feature | Description | | --- | --- | | **Name** | `en_core_web_lg` | | **Version** | `3.4.1` | | **spaCy** | `>=3.4.0,<3.5.0` | | **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` | | **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[ClearNLP Constituent-to-Dependency Conversion](https://github.com/clir/clearnlp-guidelines/blob/master/md/components/dependency_conversion.md) (Emory University)<br />[WordNet 3.0](https://wordnet.princeton.edu/) (Princeton University)<br />[Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl)](https://github.com/explosion/spacy-vectors-builder) (Explosion) | | **License** | `MIT` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (113 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, `_SP`, ```` | | **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` | | **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_ACC` | 99.93 | | `TOKEN_P` | 99.57 | | `TOKEN_R` | 99.58 | | `TOKEN_F` | 99.57 | | `TAG_ACC` | 97.34 | | `SENTS_P` | 91.79 | | `SENTS_R` | 89.14 | | `SENTS_F` | 90.44 | | `DEP_UAS` | 92.04 | | `DEP_LAS` | 90.23 | | `ENTS_P` | 85.35 | | `ENTS_R` | 85.93 | | `ENTS_F` | 85.64 |
furyhawk/finetuning-sentiment-model-3000-samples
furyhawk
2022-11-04T08:30:40Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T13:11:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.91 - name: F1 type: f1 value: 0.9117158742287056 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2316 - Accuracy: 0.91 - F1: 0.9117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
MarkGG/Romance-cleaned-2
MarkGG
2022-11-04T05:52:31Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-28T07:54:27Z
--- license: mit tags: - generated_from_trainer model-index: - name: Romance-cleaned-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Romance-cleaned-2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.0319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.96 | 16 | 10.3553 | | No log | 1.96 | 32 | 9.5625 | | No log | 2.96 | 48 | 9.0898 | | No log | 3.96 | 64 | 8.7852 | | No log | 4.96 | 80 | 8.4694 | | No log | 5.96 | 96 | 8.2122 | | No log | 6.96 | 112 | 8.0040 | | No log | 7.96 | 128 | 7.8029 | | No log | 8.96 | 144 | 7.5950 | | No log | 9.96 | 160 | 7.4081 | | No log | 10.96 | 176 | 7.2391 | | No log | 11.96 | 192 | 7.0784 | | No log | 12.96 | 208 | 6.9139 | | No log | 13.96 | 224 | 6.7530 | | No log | 14.96 | 240 | 6.5983 | | No log | 15.96 | 256 | 6.4403 | | No log | 16.96 | 272 | 6.3025 | | No log | 17.96 | 288 | 6.1562 | | No log | 18.96 | 304 | 6.0147 | | No log | 19.96 | 320 | 5.8919 | | No log | 20.96 | 336 | 5.7709 | | No log | 21.96 | 352 | 5.6666 | | No log | 22.96 | 368 | 5.5818 | | No log | 23.96 | 384 | 5.5051 | | No log | 24.96 | 400 | 5.4356 | | No log | 25.96 | 416 | 5.3788 | | No log | 26.96 | 432 | 5.3230 | | No log | 27.96 | 448 | 5.2823 | | No log | 28.96 | 464 | 5.2513 | | No log | 29.96 | 480 | 5.2218 | | No log | 30.96 | 496 | 5.1910 | | No log | 31.96 | 512 | 5.1609 | | No log | 32.96 | 528 | 5.1500 | | No log | 33.96 | 544 | 5.1268 | | No log | 34.96 | 560 | 5.1012 | | No log | 35.96 | 576 | 5.0973 | | No log | 36.96 | 592 | 5.0769 | | No log | 37.96 | 608 | 5.0653 | | No log | 38.96 | 624 | 5.0489 | | No log | 39.96 | 640 | 5.0458 | | No log | 40.96 | 656 | 5.0379 | | No log | 41.96 | 672 | 5.0347 | | No log | 42.96 | 688 | 5.0161 | | No log | 43.96 | 704 | 5.0226 | | No log | 44.96 | 720 | 5.0215 | | No log | 45.96 | 736 | 5.0190 | | No log | 46.96 | 752 | 5.0087 | | No log | 47.96 | 768 | 5.0309 | | No log | 48.96 | 784 | 5.0232 | | No log | 49.96 | 800 | 5.0319 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
lvkaokao/bert-base-uncased-teacher-preparation-pretrain
lvkaokao
2022-11-04T02:50:34Z
46
0
transformers
[ "transformers", "pytorch", "bert", "pretraining", "license:other", "endpoints_compatible", "region:us" ]
null
2022-09-27T06:13:02Z
--- license: other --- ```python #!/bin/bash # Apache v2 license # Copyright (C) 2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 # Teacher Preparation # Notes: # Auto mixed precision can be used by adding --fp16 # Distributed training can be used with the torch.distributed.lauch app TEACHER_PATH=./bert-base-uncased-teacher-preparation-pretrain OUTPUT_DIR=$TEACHER_PATH DATA_CACHE_DIR=/root/kaokao/Model-Compression-Research-Package/examples/transformers/language-modeling/wikipedia_processed_for_pretrain python -m torch.distributed.launch \ --nproc_per_node=8 \ ../../examples/transformers/language-modeling/run_mlm.py \ --model_name_or_path bert-base-uncased \ --datasets_name_config wikipedia:20200501.en \ --data_process_type segment_pair_nsp \ --dataset_cache_dir $DATA_CACHE_DIR \ --do_train \ --learning_rate 5e-5 \ --max_steps 100000 \ --warmup_ratio 0.01 \ --weight_decay 0.01 \ --per_device_train_batch_size 8 \ --gradient_accumulation_steps 4 \ --logging_steps 10 \ --save_steps 5000 \ --save_total_limit 2 \ --output_dir $OUTPUT_DIR \ --run_name pofa-teacher-prepare-pretrain ```
0xkrm/q-FrozenLake-v1-4x4-noSlippery
0xkrm
2022-11-04T02:37:18Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-04T02:34:06Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="0xkrm/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
fake4325634/chkn
fake4325634
2022-11-04T02:18:20Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-11-03T23:31:04Z
--- license: mit --- Trained on amateur photographs of chickens from Reddit. Include "chkn" in a prompt to use. ![22270-1687283316-ambushed by chkn!, art by Gian Paolo Dulbecco, Mr. Doodle, trending on artstation.png](https://s3.amazonaws.com/moonup/production/uploads/1667527175082-6303df4ffc783bfc7442d090.png) ![22227-1353605590-Flock of chkn, art by Alex Andreev, Jeremiah Ketner, trending on artstation.png](https://s3.amazonaws.com/moonup/production/uploads/1667528158522-6303df4ffc783bfc7442d090.png) ![22237-389909750-Flock of chkn, art by Stanisław Ignacy Witkiewicz, Adolph Menzel, trending on artstation.png](https://s3.amazonaws.com/moonup/production/uploads/1667528187652-6303df4ffc783bfc7442d090.png) ![22197-2893918631-Portrait of a (chkn), art by Atelier Olschinsky, trending on artstation.png](https://s3.amazonaws.com/moonup/production/uploads/1667528201281-6303df4ffc783bfc7442d090.png) ![22052-1975968497-Portrait of (chkn), trending on artstation, art by Albert Bloch, Lee Jeffries.png](https://s3.amazonaws.com/moonup/production/uploads/1667528223276-6303df4ffc783bfc7442d090.png) ![22138-4080725859-A chkn warrior charging into battle, art by boris valejo and greg rutkowski, trending on artstation.png](https://s3.amazonaws.com/moonup/production/uploads/1667528238010-6303df4ffc783bfc7442d090.png)
g30rv17ys/customdbmodelv6
g30rv17ys
2022-11-04T01:35:01Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:geevegeorge/customdbv6", "license:apache-2.0", "diffusers:AudioDiffusionPipeline", "region:us" ]
null
2022-11-03T20:19:12Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: geevegeorge/customdbv6 metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # customdbmodelv6 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `geevegeorge/customdbv6` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - gradient_accumulation_steps: 8 - optimizer: AdamW with betas=(0.95, 0.999), weight_decay=1e-06 and epsilon=1e-08 - lr_scheduler: cosine - lr_warmup_steps: 500 - ema_inv_gamma: 1.0 - ema_inv_gamma: 0.75 - ema_inv_gamma: 0.9999 - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/customdbmodelv6/tensorboard?#scalars)
huggingtweets/pastapixels
huggingtweets
2022-11-04T00:14:17Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-04T00:10:59Z
--- language: en thumbnail: http://www.huggingtweets.com/pastapixels/1667520823262/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406399825969659907/ghOhzavP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jon</div> <div style="text-align: center; font-size: 14px;">@pastapixels</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jon. | Data | Jon | | --- | --- | | Tweets downloaded | 593 | | Retweets | 23 | | Short tweets | 301 | | Tweets kept | 269 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2p6blook/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pastapixels's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10iyzbm8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10iyzbm8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pastapixels') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kartikpalani/eai-setfit-model2
kartikpalani
2022-11-03T23:03:58Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-03T23:03:52Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3184 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 3184, "warmup_steps": 319, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/akamos_33
huggingtweets
2022-11-03T20:55:53Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-03T20:55:13Z
--- language: en thumbnail: http://www.huggingtweets.com/akamos_33/1667508949674/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1580799021593100288/p6DXveVh_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BIG AKAMO</div> <div style="text-align: center; font-size: 14px;">@akamos_33</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BIG AKAMO. | Data | BIG AKAMO | | --- | --- | | Tweets downloaded | 705 | | Retweets | 111 | | Short tweets | 176 | | Tweets kept | 418 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2laa93tf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @akamos_33's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/65lj4i53) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/65lj4i53/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/akamos_33') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sadanyh/Arabic-Dialect-Translation
sadanyh
2022-11-03T20:51:57Z
0
0
null
[ "translation", "ar", "en", "dataset:twitter", "license:apache-2.0", "region:us" ]
translation
2022-11-03T15:50:28Z
--- language: - ar - en tags: - translation license: apache-2.0 datasets: - twitter metrics: - bleu - sacrebleu ---
sd-concepts-library/angus-mcbride-style
sd-concepts-library
2022-11-03T20:38:25Z
0
7
null
[ "license:mit", "region:us" ]
null
2022-11-03T20:38:20Z
--- license: mit --- ### angus mcbride style on Stable Diffusion This is the `<angus-mcbride-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<angus-mcbride-style> 0](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/46.jpeg) ![<angus-mcbride-style> 1](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/8.jpeg) ![<angus-mcbride-style> 2](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/13.jpeg) ![<angus-mcbride-style> 3](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/20.jpeg) ![<angus-mcbride-style> 4](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/12.jpeg) ![<angus-mcbride-style> 5](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/44.jpeg) ![<angus-mcbride-style> 6](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/15.jpeg) ![<angus-mcbride-style> 7](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/6.jpeg) ![<angus-mcbride-style> 8](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/17.jpeg) ![<angus-mcbride-style> 9](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/16.jpeg) ![<angus-mcbride-style> 10](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/32.jpeg) ![<angus-mcbride-style> 11](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/26.jpeg) ![<angus-mcbride-style> 12](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/1.jpeg) ![<angus-mcbride-style> 13](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/3.jpeg) ![<angus-mcbride-style> 14](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/49.jpeg) ![<angus-mcbride-style> 15](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/0.jpeg) ![<angus-mcbride-style> 16](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/29.jpeg) ![<angus-mcbride-style> 17](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/43.jpeg) ![<angus-mcbride-style> 18](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/19.jpeg) ![<angus-mcbride-style> 19](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/10.jpeg) ![<angus-mcbride-style> 20](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/27.jpeg) ![<angus-mcbride-style> 21](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/2.jpeg) ![<angus-mcbride-style> 22](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/4.jpeg) ![<angus-mcbride-style> 23](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/45.jpeg) ![<angus-mcbride-style> 24](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/48.jpeg) ![<angus-mcbride-style> 25](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/24.jpeg) ![<angus-mcbride-style> 26](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/28.jpeg) ![<angus-mcbride-style> 27](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/38.jpeg) ![<angus-mcbride-style> 28](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/30.jpeg) ![<angus-mcbride-style> 29](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/37.jpeg) ![<angus-mcbride-style> 30](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/5.jpeg) ![<angus-mcbride-style> 31](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/21.jpeg) ![<angus-mcbride-style> 32](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/9.jpeg) ![<angus-mcbride-style> 33](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/39.jpeg) ![<angus-mcbride-style> 34](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/31.jpeg) ![<angus-mcbride-style> 35](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/33.jpeg) ![<angus-mcbride-style> 36](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/14.jpeg) ![<angus-mcbride-style> 37](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/22.jpeg) ![<angus-mcbride-style> 38](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/23.jpeg) ![<angus-mcbride-style> 39](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/40.jpeg) ![<angus-mcbride-style> 40](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/7.jpeg) ![<angus-mcbride-style> 41](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/18.jpeg) ![<angus-mcbride-style> 42](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/11.jpeg) ![<angus-mcbride-style> 43](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/42.jpeg) ![<angus-mcbride-style> 44](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/35.jpeg) ![<angus-mcbride-style> 45](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/41.jpeg) ![<angus-mcbride-style> 46](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/34.jpeg) ![<angus-mcbride-style> 47](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/25.jpeg) ![<angus-mcbride-style> 48](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/36.jpeg) ![<angus-mcbride-style> 49](https://huggingface.co/sd-concepts-library/angus-mcbride-style/resolve/main/concept_images/47.jpeg)
drandran/asmonbald
drandran
2022-11-03T20:37:46Z
0
4
null
[ "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:unknown", "region:us" ]
text-to-image
2022-11-03T20:22:33Z
--- license: unknown tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image --- # Asmongold model.ckpt for Stable Diffusion v1-5 Model Card Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. I've trained using Dreambooth 20 images of twitch streamer Asmongold for the purpose of text-to-image illustration generation using Stable Diffusion. Feel free to download, use and share the model as you like. To give the Ai the trigger to generate an illustration based on the trained Asmongold images, make sure to use the tag "asmonbald" in your prompts. Example: a detailed portrait photo of a man vs a detailed portrait photo of asmonbald ---
pnichite/en_pipeline_123
pnichite
2022-11-03T19:57:26Z
5
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2022-11-03T19:57:04Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_pipeline_123 results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.7661674609 - name: NER Recall type: recall value: 0.8052226793 - name: NER F Score type: f_score value: 0.7852097323 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline_123` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (2 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `DESCRIPTION`, `TITLE` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 78.52 | | `ENTS_P` | 76.62 | | `ENTS_R` | 80.52 | | `TRANSFORMER_LOSS` | 1811559.14 | | `NER_LOSS` | 6345113.13 |
TTian/bert-classifier-feedback-qa
TTian
2022-11-03T19:29:33Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-03T19:14:47Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-classifier-feedback-qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-classifier-feedback-qa This model is a fine-tuned version of [TTian/bert-mlm-feedback](https://huggingface.co/TTian/bert-mlm-feedback) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/deltazulu14
huggingtweets
2022-11-03T18:48:19Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-03T18:46:16Z
--- language: en thumbnail: http://www.huggingtweets.com/deltazulu14/1667501296205/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1569374676933033984/NSveEXrv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Delta Zulu</div> <div style="text-align: center; font-size: 14px;">@deltazulu14</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Delta Zulu. | Data | Delta Zulu | | --- | --- | | Tweets downloaded | 881 | | Retweets | 108 | | Short tweets | 150 | | Tweets kept | 623 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8h87mrlb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deltazulu14's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mwjzatl4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mwjzatl4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deltazulu14') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
santiagoahl/vit_model
santiagoahl
2022-11-03T18:20:04Z
29
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-03T17:40:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans model-index: - name: vit_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
rexwang8/qilin-lit-6b
rexwang8
2022-11-03T16:58:09Z
30
6
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "text generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-10-23T02:10:01Z
--- language: en thumbnail: "https://i.ibb.co/HBqvBFY/mountain-xianxia-chinese-scenic-landscape-craggy-mist-action-scene-pagoda-s-2336925014-1.png" tags: - text generation - pytorch license: mit --- # Qilin-lit-6b Description Most updated version is V1.1.0 which is fine-tuned on 550 MB of webnovels found on the NovelUpdates website. (https://www.novelupdates.com/) The style is SFW and whimsical, excelling at telling fantasy stories, especially webnovels. ## Downstream Uses This model can be used for entertainment purposes and as a creative writing assistant for fiction writers. ## Usage with Kobold AI Colab (Easiest) GPU -> https://colab.research.google.com/github/KoboldAI/KoboldAI-Client/blob/main/colab/GPU.ipynb TPU -> https://colab.research.google.com/github/KoboldAI/KoboldAI-Client/blob/main/colab/TPU.ipynb Replace the drop-down value with "rexwang8/qilin-lit-6b" and select that model. ## Usage with Kobold AI Local Load at AI/load a model from it's directory. Model name is "rexwang8/qilin-lit-6b". If you get a config.json not found error, reload the program and give it some time to find your GPUs. ## Example Code ``` from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained('rexwang8/qilin-lit-6b') tokenizer = AutoTokenizer.from_pretrained('rexwang8/lit-6b') prompt = '''I had eyes but couldn't see Mount Tai!''' input_ids = tokenizer.encode(prompt, return_tensors='pt') output = model.generate(input_ids, do_sample=True, temperature=1.0, top_p=0.9, repetition_penalty=1.2, max_length=len(input_ids[0])+100, pad_token_id=tokenizer.eos_token_id) generated_text = tokenizer.decode(output[0]) print(generated_text) ``` --- ## Qilin-lit-6b (V1.1.0) Fine-tuned version of EleutherAI/gpt-j-6B (https://huggingface.co/EleutherAI/gpt-j-6B) on Coreweave's infrastructure (<https://www.coreweave.com/>) using an A40 over ~80 hours. 3150 steps, 1 epoch trained on 550 MB of primarily Xianxia genre Webnovels. (Translated to English) --- ## Team members and Acknowledgements Rex Wang - Author Coreweave - Computational materials With help from: Wes Brown, Anthony Mercurio --- ## Version History 1.1.0 - 550 MB Dataset(34 books) 3150 steps (no reordering, no sampling) 1.0.0 - 100 MB Dataset(3 books) 300 steps (no reordering, no sampling)