modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Ahmed-Abousetta/autotrain-abunawaf-cognition-1859363548
Ahmed-Abousetta
2022-10-24T08:45:39Z
1
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:Ahmed-Abousetta/autotrain-data-abunawaf-cognition", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T08:44:52Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Ahmed-Abousetta/autotrain-data-abunawaf-cognition co2_eq_emissions: emissions: 0.9315924025671088 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1859363548 - CO2 Emissions (in grams): 0.9316 ## Validation Metrics - Loss: 0.392 - Accuracy: 0.837 - Precision: 0.787 - Recall: 0.833 - AUC: 0.900 - F1: 0.810 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Ahmed-Abousetta/autotrain-abunawaf-cognition-1859363548 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-cognition-1859363548", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ahmed-Abousetta/autotrain-abunawaf-cognition-1859363548", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
doodlevelyn/bert-finetuned-ner
doodlevelyn
2022-10-24T07:13:43Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-22T16:46:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:---:|:--------:| | 0.0 | 1.0 | 5280 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0001 | 2.0 | 10560 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 3.0 | 15840 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 4.0 | 21120 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 5.0 | 26400 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
haoanh98/mGPT_base
haoanh98
2022-10-24T06:35:40Z
3
0
transformers
[ "transformers", "tf", "gpt2", "feature-extraction", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
feature-extraction
2022-10-24T06:01:37Z
--- tags: - generated_from_keras_callback model-index: - name: mGPT_base results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mGPT_base This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Tokenizers 0.13.1
thisisHJLee/wav2vec2-large-xls-r-300m-korean-ws1
thisisHJLee
2022-10-24T06:17:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-24T01:36:26Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-korean-ws1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-korean-ws1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0431 - Cer: 0.0047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.8176 | 1.0 | 4451 | 0.7022 | 0.2494 | | 0.3505 | 2.0 | 8902 | 0.1369 | 0.0303 | | 0.1696 | 3.0 | 13353 | 0.0431 | 0.0047 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
mossfarmer/VRANAK
mossfarmer
2022-10-24T05:48:07Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-24T05:11:17Z
--- tags: - conversational ---
kem000123/autotrain-cat_vs_dogs-1858163503
kem000123
2022-10-24T05:44:23Z
37
2
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:kem000123/autotrain-data-cat_vs_dogs", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-10-24T05:43:29Z
--- tags: - autotrain - vision - image-classification datasets: - kem000123/autotrain-data-cat_vs_dogs widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.7950743476524714 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1858163503 - CO2 Emissions (in grams): 0.7951 ## Validation Metrics - Loss: 0.007 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000
teacookies/autotrain-24102022-cert2-1856563478
teacookies
2022-10-24T04:33:47Z
11
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-24102022-cert2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-24T04:22:25Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-24102022-cert2 co2_eq_emissions: emissions: 16.894326665784842 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1856563478 - CO2 Emissions (in grams): 16.8943 ## Validation Metrics - Loss: 0.004 - Accuracy: 0.999 - Precision: 0.961 - Recall: 0.974 - F1: 0.968 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-24102022-cert2-1856563478 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-24102022-cert2-1856563478", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-24102022-cert2-1856563478", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
0xrushi/TestPlaygroundSkops
0xrushi
2022-10-24T03:48:58Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-16T01:13:19Z
--- license: mit --- # Model description 1 [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | memory | | | steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer',<br /> SimpleImputer(), ['loading']),<br /> ('numerical_missing_value_imputer',<br /> SimpleImputer(),<br /> ['loading', 'measurement_3', 'measurement_4',<br /> 'measurement_5', 'measurement_6',<br /> 'measurement_7', 'measurement_8',<br /> 'measurement_9', 'measurement_10',<br /> 'measurement_11', 'measurement_12',<br /> 'measurement_13', 'measurement_14',<br /> 'measurement_15', 'measurement_16',<br /> 'measurement_17']),<br /> ('attribute_0_encoder', OneHotEncoder(),<br /> ['attribute_0']),<br /> ('attribute_1_encoder', OneHotEncoder(),<br /> ['attribute_1']),<br /> ('product_code_encoder', OneHotEncoder(),<br /> ['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] | | verbose | False | | transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer',<br /> SimpleImputer(), ['loading']),<br /> ('numerical_missing_value_imputer',<br /> SimpleImputer(),<br /> ['loading', 'measurement_3', 'measurement_4',<br /> 'measurement_5', 'measurement_6',<br /> 'measurement_7', 'measurement_8',<br /> 'measurement_9', 'measurement_10',<br /> 'measurement_11', 'measurement_12',<br /> 'measurement_13', 'measurement_14',<br /> 'measurement_15', 'measurement_16',<br /> 'measurement_17']),<br /> ('attribute_0_encoder', OneHotEncoder(),<br /> ['attribute_0']),<br /> ('attribute_1_encoder', OneHotEncoder(),<br /> ['attribute_1']),<br /> ('product_code_encoder', OneHotEncoder(),<br /> ['product_code'])]) | | model | DecisionTreeClassifier(max_depth=4) | | transformation__n_jobs | | | transformation__remainder | drop | | transformation__sparse_threshold | 0.3 | | transformation__transformer_weights | | | transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])] | | transformation__verbose | False | | transformation__verbose_feature_names_out | True | | transformation__loading_missing_value_imputer | SimpleImputer() | | transformation__numerical_missing_value_imputer | SimpleImputer() | | transformation__attribute_0_encoder | OneHotEncoder() | | transformation__attribute_1_encoder | OneHotEncoder() | | transformation__product_code_encoder | OneHotEncoder() | | transformation__loading_missing_value_imputer__add_indicator | False | | transformation__loading_missing_value_imputer__copy | True | | transformation__loading_missing_value_imputer__fill_value | | | transformation__loading_missing_value_imputer__missing_values | nan | | transformation__loading_missing_value_imputer__strategy | mean | | transformation__loading_missing_value_imputer__verbose | 0 | | transformation__numerical_missing_value_imputer__add_indicator | False | | transformation__numerical_missing_value_imputer__copy | True | | transformation__numerical_missing_value_imputer__fill_value | | | transformation__numerical_missing_value_imputer__missing_values | nan | | transformation__numerical_missing_value_imputer__strategy | mean | | transformation__numerical_missing_value_imputer__verbose | 0 | | transformation__attribute_0_encoder__categories | auto | | transformation__attribute_0_encoder__drop | | | transformation__attribute_0_encoder__dtype | <class 'numpy.float64'> | | transformation__attribute_0_encoder__handle_unknown | error | | transformation__attribute_0_encoder__sparse | True | | transformation__attribute_1_encoder__categories | auto | | transformation__attribute_1_encoder__drop | | | transformation__attribute_1_encoder__dtype | <class 'numpy.float64'> | | transformation__attribute_1_encoder__handle_unknown | error | | transformation__attribute_1_encoder__sparse | True | | transformation__product_code_encoder__categories | auto | | transformation__product_code_encoder__drop | | | transformation__product_code_encoder__dtype | <class 'numpy.float64'> | | transformation__product_code_encoder__handle_unknown | error | | transformation__product_code_encoder__sparse | True | | model__ccp_alpha | 0.0 | | model__class_weight | | | model__criterion | gini | | model__max_depth | 4 | | model__max_features | | | model__max_leaf_nodes | | | model__min_impurity_decrease | 0.0 | | model__min_samples_leaf | 1 | | model__min_samples_split | 2 | | model__min_weight_fraction_leaf | 0.0 | | model__random_state | | | model__splitter | best | </details> ### Model Plot The model plot is below. <style>#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 {color: black;background-color: white;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 pre{padding: 0;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-toggleable {background-color: white;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-estimator:hover {background-color: #d4ebff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-item {z-index: 1;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-parallel-item:only-child::after {width: 0;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893 div.sk-text-repr-fallback {display: none;}</style><div id="sk-8bc9e9e7-93eb-4a71-9ad5-6d31c0b7f893" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f3a0413c-728e-4fd9-bbd8-5c6ec5312931" type="checkbox" ><label for="f3a0413c-728e-4fd9-bbd8-5c6ec5312931" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3f892f74-5115-4ab0-9c64-f760f11a7cbe" type="checkbox" ><label for="3f892f74-5115-4ab0-9c64-f760f11a7cbe" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(), [&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;, OneHotEncoder(),[&#x27;product_code&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ec9bebf9-8c02-4785-974c-0e727c4449c0" type="checkbox" ><label for="ec9bebf9-8c02-4785-974c-0e727c4449c0" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="572cc9df-a4bb-49b4-b730-d012d99ba876" type="checkbox" ><label for="572cc9df-a4bb-49b4-b730-d012d99ba876" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c6058039-3e65-4724-ad03-96517a382ad6" type="checkbox" ><label for="c6058039-3e65-4724-ad03-96517a382ad6" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;, &#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;, &#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;, &#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;, &#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;, &#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;, &#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;, &#x27;measurement_17&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="d385b0fd-dfaf-490c-8fda-dc024393a022" type="checkbox" ><label for="d385b0fd-dfaf-490c-8fda-dc024393a022" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="54db5302-69ab-49a1-b939-cb94c0958ab3" type="checkbox" ><label for="54db5302-69ab-49a1-b939-cb94c0958ab3" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_0&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c0a718c8-7093-4d45-85ae-847bfac3ec7e" type="checkbox" ><label for="c0a718c8-7093-4d45-85ae-847bfac3ec7e" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="993a1233-2b0d-473e-9bb3-f7c9d0bc654a" type="checkbox" ><label for="993a1233-2b0d-473e-9bb3-f7c9d0bc654a" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_1&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="4311756e-5a71-45ce-9005-a1e5448b1c30" type="checkbox" ><label for="4311756e-5a71-45ce-9005-a1e5448b1c30" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="9bfb54df-7509-4669-b6e7-db3520c2d1c4" type="checkbox" ><label for="9bfb54df-7509-4669-b6e7-db3520c2d1c4" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;product_code&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="1acc88d7-a436-40f6-99a3-ebfbbc9f897a" type="checkbox" ><label for="1acc88d7-a436-40f6-99a3-ebfbbc9f897a" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="5626883d-68bc-41b4-8913-23b6aed62eb8" type="checkbox" ><label for="5626883d-68bc-41b4-8913-23b6aed62eb8" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| # How to Get Started with the Model Use the code below to get started with the model. ```python [More Information Needed] ``` # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` # h1 tjos osmda ``` # Model 2 Description (Logistic) --- license: mit --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |-------------------|-----------| | C | 1.0 | | class_weight | | | dual | False | | fit_intercept | True | | intercept_scaling | 1 | | l1_ratio | | | max_iter | 100 | | multi_class | auto | | n_jobs | | | penalty | l2 | | random_state | 0 | | solver | liblinear | | tol | 0.0001 | | verbose | 0 | | warm_start | False | </details> ### Model Plot The model plot is below. <style>#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 {color: black;background-color: white;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 pre{padding: 0;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-toggleable {background-color: white;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-estimator:hover {background-color: #d4ebff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-item {z-index: 1;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-parallel-item:only-child::after {width: 0;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022 div.sk-text-repr-fallback {display: none;}</style><div id="sk-9e32ec08-a06c-47ad-ba8c-72228d2a4022" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>LogisticRegression(random_state=0, solver=&#x27;liblinear&#x27;)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="51d3cd4d-ea90-43e3-8d6a-5abc1df508b6" type="checkbox" checked><label for="51d3cd4d-ea90-43e3-8d6a-5abc1df508b6" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(random_state=0, solver=&#x27;liblinear&#x27;)</pre></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| | accuracy | 0.96 | | f1 score | 0.96 | # How to Get Started with the Model Use the code below to get started with the model. ```python [More Information Needed] ``` # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` # Additional Content ## confusion_matrix ![confusion_matrix](confusion_matrix.png)
salascorp/distilroberta-base-mrpc-glue-oscar-salas7
salascorp
2022-10-24T02:49:36Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-24T01:55:00Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer metrics: - accuracy model-index: - name: distilroberta-base-mrpc-glue-oscar-salas7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-mrpc-glue-oscar-salas7 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the datasetX dataset. It achieves the following results on the evaluation set: - Loss: 1.7444 - Accuracy: 0.2143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cpu - Datasets 2.6.1 - Tokenizers 0.13.1
nickmuchi/setfit-finetuned-financial-text-classification
nickmuchi
2022-10-24T00:16:02Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-23T18:35:23Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # setfit-finetuned-financial-text-classification This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('nickmuchi/setfit-finetuned-financial-text-classification') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 188 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 5.610085660083046e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 188, "warmup_steps": 19, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Dimitre/ddpm-ema-flowers-64
Dimitre
2022-10-24T00:10:31Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/flowers-102-categories", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-10-23T12:27:21Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/flowers-102-categories metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-ema-flowers-64 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/flowers-102-categories` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/Dimitre/ddpm-ema-flowers-64/tensorboard?#scalars)
theojolliffe/bart-large-cnn-finetuned-roundup
theojolliffe
2022-10-23T23:51:01Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-23T15:16:53Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-roundup results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-roundup This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8956 - Rouge1: 58.1914 - Rouge2: 45.822 - Rougel: 49.4407 - Rougelsum: 56.6379 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 1.2575 | 1.0 | 795 | 0.9154 | 53.8792 | 34.3203 | 35.8768 | 51.1789 | 142.0 | | 0.7053 | 2.0 | 1590 | 0.7921 | 54.3918 | 35.3346 | 37.7539 | 51.6989 | 142.0 | | 0.5379 | 3.0 | 2385 | 0.7566 | 52.1651 | 32.5699 | 36.3105 | 49.3327 | 141.5185 | | 0.3496 | 4.0 | 3180 | 0.7584 | 54.3258 | 36.403 | 39.6938 | 52.0186 | 142.0 | | 0.2688 | 5.0 | 3975 | 0.7343 | 55.9101 | 39.0709 | 42.4138 | 53.572 | 141.8333 | | 0.1815 | 6.0 | 4770 | 0.7924 | 53.9272 | 36.8138 | 40.0614 | 51.7496 | 142.0 | | 0.1388 | 7.0 | 5565 | 0.7674 | 55.0347 | 38.7978 | 42.0081 | 53.0297 | 142.0 | | 0.1048 | 8.0 | 6360 | 0.7700 | 55.2993 | 39.4075 | 42.6837 | 53.5179 | 141.9815 | | 0.0808 | 9.0 | 7155 | 0.7796 | 56.1508 | 40.0863 | 43.2178 | 53.7908 | 142.0 | | 0.0719 | 10.0 | 7950 | 0.8057 | 56.2302 | 41.3004 | 44.7921 | 54.4304 | 142.0 | | 0.0503 | 11.0 | 8745 | 0.8259 | 55.7603 | 41.0643 | 44.5518 | 54.2305 | 142.0 | | 0.0362 | 12.0 | 9540 | 0.8604 | 55.8612 | 41.5984 | 44.444 | 54.2493 | 142.0 | | 0.0307 | 13.0 | 10335 | 0.8516 | 57.7259 | 44.542 | 47.6724 | 56.0166 | 142.0 | | 0.0241 | 14.0 | 11130 | 0.8826 | 56.7943 | 43.7139 | 47.2866 | 55.1824 | 142.0 | | 0.0193 | 15.0 | 11925 | 0.8856 | 57.4135 | 44.3147 | 47.9136 | 55.8843 | 142.0 | | 0.0154 | 16.0 | 12720 | 0.8956 | 58.1914 | 45.822 | 49.4407 | 56.6379 | 142.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/16pxl
huggingtweets
2022-10-23T23:23:51Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-23T23:21:33Z
--- language: en thumbnail: http://www.huggingtweets.com/16pxl/1666567427101/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1358468632255156224/JtUkil_x_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jubilee ❣️ 2023 CALENDARS OUT NOW</div> <div style="text-align: center; font-size: 14px;">@16pxl</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jubilee ❣️ 2023 CALENDARS OUT NOW. | Data | Jubilee ❣️ 2023 CALENDARS OUT NOW | | --- | --- | | Tweets downloaded | 3229 | | Retweets | 288 | | Short tweets | 228 | | Tweets kept | 2713 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3r6vcjy6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @16pxl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2wix5go1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2wix5go1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/16pxl') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Solosolos/Fantasy
Solosolos
2022-10-23T22:33:18Z
0
0
null
[ "doi:10.57967/hf/0057", "region:us" ]
null
2022-10-23T21:05:51Z
language: - "List of ISO 639-1 code for your language" - lang1 - lang2 thumbnail: "url to a thumbnail used in social sharing" tags: - tag1 - tag2 license: "any valid license identifier" datasets: - dataset1 - dataset2 metrics: - metric1 - metric2
salascorp/distilroberta-base-mrpc-glue-oscar-salas3
salascorp
2022-10-23T22:20:24Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-23T22:08:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-mrpc-glue-oscar-salas3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-mrpc-glue-oscar-salas3 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cpu - Datasets 2.6.1 - Tokenizers 0.13.1
rufimelo/Legal-BERTimbau-base
rufimelo
2022-10-23T22:07:02Z
1,612
14
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "pt", "dataset:rufimelo/PortugueseLegalSentences-v0", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-29T16:11:40Z
--- language: - pt thumbnail: "Portugues BERT for the Legal Domain" tags: - bert - pytorch datasets: - rufimelo/PortugueseLegalSentences-v0 license: "mit" widget: - text: "O advogado apresentou [MASK] ao juíz." --- # Legal_BERTimbau ## Introduction Legal_BERTimbau Large is a fine-tuned BERT model based on [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large. "BERTimbau Base is a pretrained BERT model for Brazilian Portuguese that achieves state-of-the-art performances on three downstream NLP tasks: Named Entity Recognition, Sentence Textual Similarity and Recognizing Textual Entailment. It is available in two sizes: Base and Large. For further information or requests, please go to [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/)." The performance of Language Models can change drastically when there is a domain shift between training and test data. In order create a Portuguese Language Model adapted to a Legal domain, the original BERTimbau model was submitted to a fine-tuning stage where it was performed 1 "PreTraining" epoch over 30 000 legal Portuguese Legal documents available online. ## Available models | Model | Arch. | #Layers | #Params | | ---------------------------------------- | ---------- | ------- | ------- | | `rufimelo/Legal-BERTimbau-base` | BERT-Base |12 |110M| | `rufimelo/Legal-BERTimbau-large` | BERT-Large | 24 | 335M | ## Usage ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-base") model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-base") ``` ### Masked language modeling prediction example ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-base") model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-base") pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer) pipe('O advogado apresentou [MASK] para o juíz') # [{'score': 0.5034703612327576, #'token': 8190, #'token_str': 'recurso', #'sequence': 'O advogado apresentou recurso para o juíz'}, #{'score': 0.07347951829433441, #'token': 21973, #'token_str': 'petição', #'sequence': 'O advogado apresentou petição para o juíz'}, #{'score': 0.05165359005331993, #'token': 4299, #'token_str': 'resposta', #'sequence': 'O advogado apresentou resposta para o juíz'}, #{'score': 0.04611917585134506, #'token': 5265, #'token_str': 'exposição', #'sequence': 'O advogado apresentou exposição para o juíz'}, #{'score': 0.04068068787455559, #'token': 19737, 'token_str': #'alegações', #'sequence': 'O advogado apresentou alegações para o juíz'}] ``` ### For BERT embeddings ```python import torch from transformers import AutoModel model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-base') input_ids = tokenizer.encode('O advogado apresentou recurso para o juíz', return_tensors='pt') with torch.no_grad(): outs = model(input_ids) encoded = outs[0][0, 1:-1] #tensor([[ 0.0328, -0.4292, -0.6230, ..., -0.3048, -0.5674, 0.0157], #[-0.3569, 0.3326, 0.7013, ..., -0.7778, 0.2646, 1.1310], #[ 0.3169, 0.4333, 0.2026, ..., 1.0517, -0.1951, 0.7050], #..., #[-0.3648, -0.8137, -0.4764, ..., -0.2725, -0.4879, 0.6264], #[-0.2264, -0.1821, -0.3011, ..., -0.5428, 0.1429, 0.0509], #[-1.4617, 0.6281, -0.0625, ..., -1.2774, -0.4491, 0.3131]]) ``` ## Citation If you use this work, please cite BERTimbau's work: ```bibtex @inproceedings{souza2020bertimbau, author = {F{\'a}bio Souza and Rodrigo Nogueira and Roberto Lotufo}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} } ```
rufimelo/Legal-BERTimbau-large
rufimelo
2022-10-23T22:05:10Z
61
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "pt", "dataset:rufimelo/PortugueseLegalSentences-v0", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-24T22:29:50Z
--- language: - pt thumbnail: "Portugues BERT for the Legal Domain" tags: - bert - pytorch datasets: - rufimelo/PortugueseLegalSentences-v0 license: "mit" widget: - text: "O advogado apresentou [MASK] ao juíz." --- # Legal_BERTimbau ## Introduction Legal_BERTimbau Large is a fine-tuned BERT model based on [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large. "BERTimbau Base is a pretrained BERT model for Brazilian Portuguese that achieves state-of-the-art performances on three downstream NLP tasks: Named Entity Recognition, Sentence Textual Similarity and Recognizing Textual Entailment. It is available in two sizes: Base and Large. For further information or requests, please go to [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/)." The performance of Language Models can change drastically when there is a domain shift between training and test data. In order create a Portuguese Language Model adapted to a Legal domain, the original BERTimbau model was submitted to a fine-tuning stage where it was performed 1 "PreTraining" epoch over 30 000 legal Portuguese Legal documents available online. (lr: 1e-5) ## Available models | Model | Arch. | #Layers | #Params | | ---------------------------------------- | ---------- | ------- | ------- | |`rufimelo/Legal-BERTimbau-base` |BERT-Base |12 |110M| | `rufimelo/Legal-BERTimbau-large` | BERT-Large | 24 | 335M | ## Usage ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large") model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large") ``` ### Masked language modeling prediction example ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large") model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large") pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer) pipe('O advogado apresentou [MASK] para o juíz') # [{'score': 0.5034703612327576, #'token': 8190, #'token_str': 'recurso', #'sequence': 'O advogado apresentou recurso para o juíz'}, #{'score': 0.07347951829433441, #'token': 21973, #'token_str': 'petição', #'sequence': 'O advogado apresentou petição para o juíz'}, #{'score': 0.05165359005331993, #'token': 4299, #'token_str': 'resposta', #'sequence': 'O advogado apresentou resposta para o juíz'}, #{'score': 0.04611917585134506, #'token': 5265, #'token_str': 'exposição', #'sequence': 'O advogado apresentou exposição para o juíz'}, #{'score': 0.04068068787455559, #'token': 19737, 'token_str': #'alegações', #'sequence': 'O advogado apresentou alegações para o juíz'}] ``` ### For BERT embeddings ```python import torch from transformers import AutoModel model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-large') input_ids = tokenizer.encode('O advogado apresentou recurso para o juíz', return_tensors='pt') with torch.no_grad(): outs = model(input_ids) encoded = outs[0][0, 1:-1] #tensor([[ 0.0328, -0.4292, -0.6230, ..., -0.3048, -0.5674, 0.0157], #[-0.3569, 0.3326, 0.7013, ..., -0.7778, 0.2646, 1.1310], #[ 0.3169, 0.4333, 0.2026, ..., 1.0517, -0.1951, 0.7050], #..., #[-0.3648, -0.8137, -0.4764, ..., -0.2725, -0.4879, 0.6264], #[-0.2264, -0.1821, -0.3011, ..., -0.5428, 0.1429, 0.0509], #[-1.4617, 0.6281, -0.0625, ..., -1.2774, -0.4491, 0.3131]]) ``` ## Citation If you use this work, please cite BERTimbau's work: ```bibtex @inproceedings{souza2020bertimbau, author = {F{\'a}bio Souza and Rodrigo Nogueira and Roberto Lotufo}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} } ```
Yuelin/bert-finetuned-ner
Yuelin
2022-10-23T20:30:31Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-22T21:38:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9355853618148701 - name: Recall type: recall value: 0.9508582968697409 - name: F1 type: f1 value: 0.9431600033386196 - name: Accuracy type: accuracy value: 0.9870636368988049 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0598 - Precision: 0.9356 - Recall: 0.9509 - F1: 0.9432 - Accuracy: 0.9871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0861 | 1.0 | 1756 | 0.0653 | 0.9138 | 0.9334 | 0.9235 | 0.9825 | | 0.0354 | 2.0 | 3512 | 0.0589 | 0.9312 | 0.9497 | 0.9403 | 0.9866 | | 0.0165 | 3.0 | 5268 | 0.0598 | 0.9356 | 0.9509 | 0.9432 | 0.9871 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
ViktorDo/SciBERT-POWO_Growth_Form_Finetuned
ViktorDo
2022-10-23T19:23:01Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-23T17:45:10Z
--- tags: - generated_from_trainer model-index: - name: SciBERT-POWO_Growth_Form_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SciBERT-POWO_Growth_Form_Finetuned This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2707 | 1.0 | 2160 | 0.2636 | | 0.2385 | 2.0 | 4320 | 0.2418 | | 0.2086 | 3.0 | 6480 | 0.2566 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
mrmoor/cti-bert-ner
mrmoor
2022-10-23T19:17:18Z
28
1
transformers
[ "transformers", "tf", "tensorboard", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-23T18:33:27Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mrmoor/cti-bert-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mrmoor/cti-bert-ner This model is a fine-tuned version of [mrmoor/cti-bert-mlm](https://huggingface.co/mrmoor/cti-bert-mlm) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1491 - Validation Loss: 0.3715 - Epoch: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 82800, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.6883 | 0.5161 | 0 | | 0.4567 | 0.4283 | 1 | | 0.3420 | 0.3810 | 2 | | 0.2688 | 0.3845 | 3 | | 0.2144 | 0.3669 | 4 | | 0.1788 | 0.3881 | 5 | | 0.1491 | 0.3715 | 6 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
luisespinosa/definition-modeling-v2
luisespinosa
2022-10-23T19:15:08Z
8
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-23T17:23:22Z
This version is trained on 3 epochs on the full dataset without wikt & wn.
huggingtweets/o91_bot
huggingtweets
2022-10-23T18:25:07Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-23T18:21:28Z
--- language: en thumbnail: http://www.huggingtweets.com/o91_bot/1666549473734/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1544382829961805825/Piup4HJT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Frei Bot</div> <div style="text-align: center; font-size: 14px;">@o91_bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Frei Bot. | Data | Frei Bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 11 | | Short tweets | 338 | | Tweets kept | 2901 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3hnd8n8j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @o91_bot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28wc351p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28wc351p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/o91_bot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
NikitaBaramiia/q-Taxi-v3
NikitaBaramiia
2022-10-23T18:07:23Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-23T17:48:05Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="NikitaBaramiia/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
NikitaBaramiia/q-FrozenLake-v1-4x4-noSlippery
NikitaBaramiia
2022-10-23T18:04:10Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-23T17:45:53Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="NikitaBaramiia/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
pepa/roberta-small-fever
pepa
2022-10-23T17:53:38Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:copenlu/fever_gold_evidence", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-23T17:27:02Z
--- tags: - generated_from_trainer model-index: - name: roberta-small-fever results: [] datasets: - copenlu/fever_gold_evidence --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-small-fever This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6096 - eval_p: 0.8179 - eval_r: 0.8110 - eval_f1: 0.8104 - eval_runtime: 36.258 - eval_samples_per_second: 518.644 - eval_steps_per_second: 64.841 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 4 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.12.1
sd-concepts-library/xioboma
sd-concepts-library
2022-10-23T17:51:13Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-23T17:51:03Z
--- license: mit --- ### xioboma on Stable Diffusion This is the `<xi-obama>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<xi-obama> 0](https://huggingface.co/sd-concepts-library/xioboma/resolve/main/concept_images/0.jpg) ![<xi-obama> 1](https://huggingface.co/sd-concepts-library/xioboma/resolve/main/concept_images/1.jpg) ![<xi-obama> 2](https://huggingface.co/sd-concepts-library/xioboma/resolve/main/concept_images/2.jpg) ![<xi-obama> 3](https://huggingface.co/sd-concepts-library/xioboma/resolve/main/concept_images/3.jpg)
patrickvonplaten/carol_model
patrickvonplaten
2022-10-23T17:49:06Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-10-23T17:56:14Z
--- license: mit --- ### Carol on Stable Diffusion This is the `<carol>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`.
valhalla/SwinIR-real-sr-L-x4-GAN
valhalla
2022-10-23T17:44:53Z
1
2
transformers
[ "transformers", "jax", "swin-ir", "region:us" ]
null
2022-10-23T15:43:39Z
--- tags: - swin-ir inference: false ---
valhalla/SwinIR-real-sr-M-x4-PSNR
valhalla
2022-10-23T17:44:14Z
1
0
transformers
[ "transformers", "jax", "swin-ir", "region:us" ]
null
2022-10-23T15:44:44Z
--- tags: - swin-ir inference: false ---
srSergio/bakerzduzen-artstyle
srSergio
2022-10-23T17:33:03Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-23T17:33:03Z
--- license: creativeml-openrail-m ---
pepa/bigbird-roberta-base-snli
pepa
2022-10-23T17:11:57Z
5
0
transformers
[ "transformers", "pytorch", "big_bird", "text-classification", "generated_from_trainer", "dataset:snli", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-23T17:11:06Z
--- tags: - generated_from_trainer datasets: - snli model-index: - name: bigbird-roberta-base-snli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bigbird-roberta-base-snli This model was trained from scratch on the snli dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2738 - eval_p: 0.9034 - eval_r: 0.9033 - eval_f1: 0.9033 - eval_runtime: 10.9262 - eval_samples_per_second: 899.126 - eval_steps_per_second: 56.195 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 4 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.12.1
pepa/deberta-v3-base-snli
pepa
2022-10-23T17:10:14Z
3
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "dataset:snli", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-23T17:09:12Z
--- tags: - generated_from_trainer datasets: - snli model-index: - name: deberta-v3-base-snli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base-snli This model was trained from scratch on the snli dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2516 - eval_p: 0.9171 - eval_r: 0.9170 - eval_f1: 0.9170 - eval_runtime: 13.4107 - eval_samples_per_second: 732.551 - eval_steps_per_second: 45.784 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 4 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.12.1
hieuit7/wav2vec2-common_voice-vi-demo
hieuit7
2022-10-23T17:04:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "vi", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-23T15:48:50Z
--- language: - vi license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-common_voice-vi-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-vi-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - VI dataset. It achieves the following results on the evaluation set: - Loss: 3.4768 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 7.67 | 100 | 5.9657 | 1.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu116 - Datasets 2.6.1 - Tokenizers 0.13.1
thothai/turkce-kufur-tespiti
thothai
2022-10-23T16:55:48Z
4
0
transformers
[ "transformers", "pytorch", "license:afl-3.0", "endpoints_compatible", "region:us" ]
null
2022-10-23T16:45:09Z
--- license: afl-3.0 --- # Thoth Ai, Türkçe hakaret ve küfürleri tespit etmek için oluşturulmuştur. Akademik projelerde kaynak gösterilmesi halinde kullanılabilir. ## Validation Metrics - Loss: 0.230 - Accuracy: 0.936 - Macro F1: 0.927 - Micro F1: 0.936 - Weighted F1: 0.936 - Macro Precision: 0.929 - Micro Precision: 0.936 - Weighted Precision: 0.936 - Macro Recall: 0.925 - Micro Recall: 0.936 - Weighted Recall: 0.936 from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("thothai/turkce-kufur-tespiti", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("thothai/turkce-kufur-tespiti", use_auth_token=True) inputs = tokenizer("Merhaba", return_tensors="pt") outputs = model(**inputs) ```
k4tel/bert-geolocation-prediction
k4tel
2022-10-23T16:21:11Z
10
0
transformers
[ "transformers", "pytorch", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-10-23T13:10:50Z
--- tags: - generated_from_trainer model-index: - name: bert-geolocation-prediction results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-geolocation-prediction This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.23.1 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
situlla/ppo-LunarLander-v2
situlla
2022-10-23T16:00:09Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-20T12:49:56Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 292.79 +/- 16.63 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ddebnath/layoutlmv3-finetuned-cord_100
ddebnath
2022-10-23T15:37:39Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv3", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-23T14:42:28Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: train args: cord metrics: - name: Precision type: precision value: 0.9485842026825634 - name: Recall type: recall value: 0.9528443113772455 - name: F1 type: f1 value: 0.9507094846900671 - name: Accuracy type: accuracy value: 0.9592529711375212 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.1978 - Precision: 0.9486 - Recall: 0.9528 - F1: 0.9507 - Accuracy: 0.9593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.56 | 250 | 0.9543 | 0.7832 | 0.8166 | 0.7996 | 0.8226 | | 1.3644 | 3.12 | 500 | 0.5338 | 0.8369 | 0.8683 | 0.8523 | 0.8824 | | 1.3644 | 4.69 | 750 | 0.3658 | 0.8840 | 0.9072 | 0.8955 | 0.9232 | | 0.3802 | 6.25 | 1000 | 0.3019 | 0.9156 | 0.9251 | 0.9203 | 0.9334 | | 0.3802 | 7.81 | 1250 | 0.2833 | 0.9094 | 0.9237 | 0.9165 | 0.9346 | | 0.2061 | 9.38 | 1500 | 0.2241 | 0.9377 | 0.9469 | 0.9423 | 0.9525 | | 0.2061 | 10.94 | 1750 | 0.2282 | 0.9304 | 0.9409 | 0.9356 | 0.9474 | | 0.1416 | 12.5 | 2000 | 0.2017 | 0.9509 | 0.9566 | 0.9537 | 0.9610 | | 0.1416 | 14.06 | 2250 | 0.2006 | 0.9472 | 0.9536 | 0.9504 | 0.9614 | | 0.1056 | 15.62 | 2500 | 0.1978 | 0.9486 | 0.9528 | 0.9507 | 0.9593 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Mhd/q-FrozenLake-v1-4x4-noSlippery
Mhd
2022-10-23T15:21:59Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-23T15:21:53Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Mhd/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
adithya12/monkeypox-model-lin
adithya12
2022-10-23T13:45:38Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-10-23T13:44:22Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 0.0010000000474974513 | | decay | 0.0 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
k4tel/bert-multilingial-geolocation-prediction
k4tel
2022-10-23T12:55:25Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-22T12:58:09Z
--- tags: - generated_from_trainer model-index: - name: bert-multilingial-geolocation-prediction results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-multilingial-geolocation-prediction This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.23.1 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
teacookies/autotrain-231022022-cert4-1847463269
teacookies
2022-10-23T10:35:22Z
12
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-231022022-cert4", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-23T10:24:52Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-231022022-cert4 co2_eq_emissions: emissions: 17.781243387408683 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1847463269 - CO2 Emissions (in grams): 17.7812 ## Validation Metrics - Loss: 0.004 - Accuracy: 0.999 - Precision: 0.955 - Recall: 0.969 - F1: 0.962 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-231022022-cert4-1847463269 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-231022022-cert4-1847463269", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-231022022-cert4-1847463269", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
XaviXva/distilbert-base-uncased-finetuned-emotion
XaviXva
2022-10-23T08:38:15Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-23T08:04:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9275 - name: F1 type: f1 value: 0.9273096319590406 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2179 - Accuracy: 0.9275 - F1: 0.9273 ## Model description More information needed ## Intended uses & limitations This is only a test to get started with NLP and transformers. Just for fun! ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8479 | 1.0 | 250 | 0.3281 | 0.894 | 0.8887 | | 0.254 | 2.0 | 500 | 0.2179 | 0.9275 | 0.9273 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
sd-concepts-library/gta5-artwork
sd-concepts-library
2022-10-23T03:32:51Z
0
31
null
[ "license:mit", "region:us" ]
null
2022-10-23T03:32:39Z
--- license: mit --- ### GTA5 Artwork on Stable Diffusion This is the `<gta5-artwork>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<gta5-artwork> 0](https://huggingface.co/sd-concepts-library/gta5-artwork/resolve/main/concept_images/10.jpeg) ![<gta5-artwork> 1](https://huggingface.co/sd-concepts-library/gta5-artwork/resolve/main/concept_images/1.jpeg) ![<gta5-artwork> 2](https://huggingface.co/sd-concepts-library/gta5-artwork/resolve/main/concept_images/9.jpeg) ![<gta5-artwork> 3](https://huggingface.co/sd-concepts-library/gta5-artwork/resolve/main/concept_images/12.jpeg) ![<gta5-artwork> 4](https://huggingface.co/sd-concepts-library/gta5-artwork/resolve/main/concept_images/6.jpeg) ![<gta5-artwork> 5](https://huggingface.co/sd-concepts-library/gta5-artwork/resolve/main/concept_images/8.jpeg) ![<gta5-artwork> 6](https://huggingface.co/sd-concepts-library/gta5-artwork/resolve/main/concept_images/2.jpeg) ![<gta5-artwork> 7](https://huggingface.co/sd-concepts-library/gta5-artwork/resolve/main/concept_images/4.jpeg) ![<gta5-artwork> 8](https://huggingface.co/sd-concepts-library/gta5-artwork/resolve/main/concept_images/13.jpeg) ![<gta5-artwork> 9](https://huggingface.co/sd-concepts-library/gta5-artwork/resolve/main/concept_images/3.jpeg) ![<gta5-artwork> 10](https://huggingface.co/sd-concepts-library/gta5-artwork/resolve/main/concept_images/11.jpeg) ![<gta5-artwork> 11](https://huggingface.co/sd-concepts-library/gta5-artwork/resolve/main/concept_images/5.jpeg) ![<gta5-artwork> 12](https://huggingface.co/sd-concepts-library/gta5-artwork/resolve/main/concept_images/0.jpeg) ![<gta5-artwork> 13](https://huggingface.co/sd-concepts-library/gta5-artwork/resolve/main/concept_images/7.jpeg)
and111/bert_base_uncased_for_pretraining
and111
2022-10-22T21:25:11Z
3
0
transformers
[ "transformers", "pytorch", "bert", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-10-22T17:56:03Z
https://huggingface.co/bert-base-uncased model pre-trained on dataset https://huggingface.co/datasets/and111/bert_pretrain_phase2 until loss reached 1.96.
brikwerk/image-difference-segmentation
brikwerk
2022-10-22T20:24:18Z
0
2
null
[ "binary_segmentation", "image_differences", "license:mit", "region:us" ]
null
2022-10-22T19:52:36Z
--- tags: - binary_segmentation - image_differences license: "mit" --- # Image Difference Segmentation For the main repository and code, please refer to the [GitHub Repo](https://github.com/Brikwerk/image-difference-segmentation). This project enables creation of large binary segmentation datasets through use of image differences. Certain domains, such as comic books or manga, take particularly well to the proposed approach. Creating a dataset and training a segmentation model involves two manual steps (outside of the code in this repository): 1. Finding and sorting suitable data. Ideally, your data should have two or more classes wherein the only difference between the classes should be the subject that is to be segmented. An example would be an English page from a comic and a French page from the same comic. 2. Segmentation masks must be manually created for a small number of image differences. Using a pretrained DiffNet requires only 20-50 new masks. Re-training DiffNet from scratch requires 100-200 masks. For quickly generating binary segmentation masks, [simple-masker](https://github.com/Brikwerk/simple-masker) was written/used. ## Prerequisites The following must be on your system: - Python 3.6+ - An accompanying Pip installation - Python and Pip must be accessible from the command line - An NVIDIA GPU that is CUDA-capable (6GB+ of VRAM likely needed) ## Using a Pretrained Model ### Downloading the Weights File Weights for this project are hosted at [HuggingFace](https://huggingface.co/brikwerk/image-difference-segmentation) under `weights` directory. Currently, a DiffNet instance trained on text differences is provided. To use this model, download it and move it to the weights directory in your local copy of this repository. ### Using Pretrained Weights Pretrained weights can be used in the `batch_process.py` file and the `evaluate.py` file. For both files, specify the path to your weights file using the `--weights_path` CLI argument. ## License MIT
theodotus/stt_uk_squeezeformer_ctc_sm
theodotus
2022-10-22T19:19:20Z
9
2
nemo
[ "nemo", "automatic-speech-recognition", "uk", "dataset:mozilla-foundation/common_voice_10_0", "dataset:Yehor/voa-uk-transcriptions", "license:bsd-3-clause", "model-index", "region:us" ]
automatic-speech-recognition
2022-09-24T08:43:42Z
--- language: - uk library_name: nemo datasets: - mozilla-foundation/common_voice_10_0 - Yehor/voa-uk-transcriptions tags: - automatic-speech-recognition model-index: - name: stt_uk_squeezeformer_ctc_sm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Mozilla Common Voice 10.0 type: mozilla-foundation/common_voice_10_0 config: clean split: test args: language: uk metrics: - name: Test WER type: wer value: 7.557 license: bsd-3-clause --- # Squeezeformer-CTC SM (uk-UA) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Squeezeformer--CTC-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-30M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-uk--UA-lightgrey#model-badge)](#datasets) |
weicap/eee
weicap
2022-10-22T18:12:18Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-08T02:34:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: eee results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eee This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7548 - Accuracy: 0.8162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6014 | 1.0 | 154 | 0.5832 | 0.7080 | | 0.4314 | 2.0 | 308 | 0.5388 | 0.7956 | | 0.38 | 3.0 | 462 | 0.4447 | 0.7518 | | 0.0704 | 4.0 | 616 | 0.7324 | 0.8175 | | 0.015 | 5.0 | 770 | 0.8301 | 0.8394 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
SergioVillanueva/autotrain-person-intruder-classification-1840363138
SergioVillanueva
2022-10-22T15:13:21Z
36
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:SergioVillanueva/autotrain-data-person-intruder-classification", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-10-22T15:12:43Z
--- tags: - autotrain - vision - image-classification datasets: - SergioVillanueva/autotrain-data-person-intruder-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.5267790340228428 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1840363138 - CO2 Emissions (in grams): 0.5268 ## Validation Metrics - Loss: 0.464 - Accuracy: 0.818 - Precision: 0.778 - Recall: 1.000 - AUC: 1.000 - F1: 0.875
anish-shilpakar/asr
anish-shilpakar
2022-10-22T14:14:48Z
0
0
null
[ "region:us" ]
null
2022-10-22T06:46:37Z
Automatic Nepali Speech Recognition
wd255/ddpm-butterflies-128
wd255
2022-10-22T12:53:19Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-10-22T06:42:27Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/wd255/ddpm-butterflies-128/tensorboard?#scalars)
sihyun/myfirst
sihyun
2022-10-22T10:43:23Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-10-22T10:43:23Z
--- license: bigscience-openrail-m ---
darshana1406/xlm-roberta-base-finetuned-squad
darshana1406
2022-10-22T10:27:26Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-10-22T07:46:17Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: xlm-roberta-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-squad This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0917 | 1.0 | 5600 | 0.9840 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
tomthekkan/mt5-small-finetuned-amazon-en-es
tomthekkan
2022-10-22T10:08:57Z
9
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-22T09:13:13Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: tomthekkan/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tomthekkan/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.1138 - Validation Loss: 3.3816 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 9.9822 | 4.2802 | 0 | | 5.9654 | 3.7811 | 1 | | 5.2343 | 3.6557 | 2 | | 4.8190 | 3.5433 | 3 | | 4.5149 | 3.4695 | 4 | | 4.3105 | 3.4202 | 5 | | 4.1907 | 3.3909 | 6 | | 4.1138 | 3.3816 | 7 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
bchaipats/distilbert-base-uncased-finetuned-ner
bchaipats
2022-10-22T09:36:42Z
12
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-22T09:10:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9247846255798542 - name: Recall type: recall value: 0.9366819554760041 - name: F1 type: f1 value: 0.9306952703829268 - name: Accuracy type: accuracy value: 0.9834622777892513 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0627 - Precision: 0.9248 - Recall: 0.9367 - F1: 0.9307 - Accuracy: 0.9835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.245 | 1.0 | 878 | 0.0708 | 0.9130 | 0.9196 | 0.9163 | 0.9810 | | 0.0538 | 2.0 | 1756 | 0.0636 | 0.9220 | 0.9350 | 0.9285 | 0.9827 | | 0.0297 | 3.0 | 2634 | 0.0627 | 0.9248 | 0.9367 | 0.9307 | 0.9835 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.6.0 - Tokenizers 0.13.1
huggingtweets/ouvessvit
huggingtweets
2022-10-22T09:34:51Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-22T09:33:50Z
--- language: en thumbnail: http://www.huggingtweets.com/ouvessvit/1666431286897/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1539686183927795712/_V9skTmk_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Natalie Godec 🇺🇦</div> <div style="text-align: center; font-size: 14px;">@ouvessvit</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Natalie Godec 🇺🇦. | Data | Natalie Godec 🇺🇦 | | --- | --- | | Tweets downloaded | 1043 | | Retweets | 74 | | Short tweets | 83 | | Tweets kept | 886 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2yoysr8v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ouvessvit's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3q5y5xzk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3q5y5xzk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ouvessvit') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Gatozu35/stable-diffusion-savedmodel
Gatozu35
2022-10-22T09:01:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-22T09:01:57Z
--- license: creativeml-openrail-m ---
Nobody138/xlm-roberta-base-finetuned-panx-all
Nobody138
2022-10-22T08:30:29Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-22T07:58:56Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1745 - F1: 0.8505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3055 | 1.0 | 835 | 0.1842 | 0.8099 | | 0.1561 | 2.0 | 1670 | 0.1711 | 0.8452 | | 0.1016 | 3.0 | 2505 | 0.1745 | 0.8505 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
somemusicnerdwoops/DialoGPT-distilgpt2-sonicfandub
somemusicnerdwoops
2022-10-22T08:06:05Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-22T07:30:03Z
--- tags: - conversational - text-generation ---
Nobody138/xlm-roberta-base-finetuned-panx-en
Nobody138
2022-10-22T07:58:41Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-22T07:40:05Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.en split: train args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6886160714285715 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4043 - F1: 0.6886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1347 | 1.0 | 50 | 0.5771 | 0.4880 | | 0.5066 | 2.0 | 100 | 0.4209 | 0.6582 | | 0.3631 | 3.0 | 150 | 0.4043 | 0.6886 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Harmony21/Corder
Harmony21
2022-10-22T07:47:01Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-10-22T07:47:01Z
--- license: bigscience-bloom-rail-1.0 ---
waifu-research-department/senko
waifu-research-department
2022-10-22T07:28:55Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-10-14T15:51:45Z
--- license: mit --- # Description Trainer: **JawGBoi** Senko-san from Sewayaki Kitsune no Senko-san [Model download](https://huggingface.co/waifu-research-department/senko/blob/main/Senko_V1_training_images_3600_max_training_steps_Senko_token_Anime_Girl_class_word.ckpt) # Training > Senko: 30 images</br> > Regularisation: 126 images</br> > Steps: 3600</br> > Model Used: Waifu Diffusion 1.3 > Keyword: Senko (Use this in the prompt)</br> > Class Phrase: Anime_Girl (Also use this in the prompt!) # Sample Prompt > **Prompt:** Senko Anime_Girl 1girl, ((waving hello)), smiling, high quality, hires, sharp focus, sharp image</br> > **Negative Prompt:** Low quality, blur, blurry, JPEG artefacts, out of frame, head out of frame, bad anatomy, disfigured, deformed, malformed, mutant, gross, disgusting, poorly drawn, extra limbs, extra fingers, missing limbs, four fingers, three fingers ![Senko1](https://i.imgur.com/Wg99zR4.png) ![Senko2](https://i.imgur.com/r5F7SSt.png) ![Senko3](https://i.imgur.com/wPmiTFp.png) ![Senko4](https://i.imgur.com/wGtBqGE.png)
Nobody138/xlm-roberta-base-finetuned-panx-fr
Nobody138
2022-10-22T07:12:34Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-22T06:51:51Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.fr split: train args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8346456692913387 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2763 - F1: 0.8346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5779 | 1.0 | 191 | 0.3701 | 0.7701 | | 0.2735 | 2.0 | 382 | 0.2908 | 0.8254 | | 0.1769 | 3.0 | 573 | 0.2763 | 0.8346 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Iris21/ai
Iris21
2022-10-22T06:31:13Z
0
0
null
[ "region:us" ]
null
2022-10-17T14:31:24Z
## 1 - 配置环境 ### 1.0 测试显卡 !nvidia-smi -L ### 1.1 下载安装依赖 setup miniconda import sys !wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh !chmod +x Miniconda3-latest-Linux-x86_64.sh !bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local sys.path.append('/usr/local/lib/python3.7/site-packages/') !rm Miniconda3-latest-Linux-x86_64.sh ### 1.2 设置环境 Setup environment, Gfpgan and Real-ESRGAN. Takes about 5-6 minutes #@markdown ### Set up conda environment - Takes a while !conda env update -n base -f /content/stable-diffusion/environment.yaml ### 1.3 设置CFPGan和ESRGAN #@markdown ### Build upscalers support #@markdown **GFPGAN** Automatically correct distorted faces with a built-in GFPGAN option, fixes them in less than half a second #@markdown **ESRGAN** Boosts the resolution of images with a built-in RealESRGAN option #@markdown LDSR and GoBig enable amazing upscale options in the new Image Lab add_CFP = True #@param {type:"boolean"} add_ESR = True #@param {type:"boolean"} add_LDSR = False #@param {type:"boolean"} #@markdown ⚠️ LDSR is 1.9GB and make take time to download if add_CFP: %cd /content/stable-diffusion/src/gfpgan/ !pip install basicsr facexlib yapf lmdb opencv-python pyyaml tb-nightly --no-deps !python setup.py develop !pip install realesrgan !wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P experiments/pretrained_models if add_ESR: %cd /content/stable-diffusion/src/realesrgan/ !wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P experiments/pretrained_models !wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P experiments/pretrained_models if add_LDSR: %cd /content/stable-diffusion/src !git clone https://github.com/devilismyfriend/latent-diffusion %cd latent-diffusion %mkdir -p experiments/ %cd experiments/ %mkdir -p pretrained_models %cd pretrained_models #project.yaml download !wget -O project.yaml https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1 #model.ckpt model download !wget -O model.ckpt https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1 %cd /content/stable-diffusion/ !wget https://github.com/matomo-org/travis-scripts/blob/master/fonts/Arial.ttf?raw=true -O arial.ttf #2.配置NovelAI **可以展开配置密码**,否则自动随机生成一个 每次更改需要运行一席下面单元格代码 ## 下载复制文件 最快也得4分钟,稍等 如果执行失败,重新执行第二步和第三步即可 !sudo apt-get install aria2 !sudo apt-get install file !mkdir /content/time !git clone https://github.com/pnpnpn/timeout-decorator.git /content/time %cd /content/time !pwd !ls -l # 下载NA %cd /content/time import timeout_decorator outTime=180 @timeout_decorator.timeout(outTime) def downNovelAI(): !rm -rf /content/n2 !mkdir /content/n2 %cd /content/n2 !aria2c "magnet:?xt=urn:btih:4a4b483d4a5840b6e1fee6b0ca1582c979434e4d&dn=naifu&tr=udp%3a%2f%2ftracker.opentrackr.org%3a1337%2fannounce" def checkFile(): !file /content/n2/naifu/models/animefull-final-pruned/model.ckpt>fileinfo !file /content/n2/naifu/models/animevae.pt>fileinfo2 f1=open("fileinfo") res1=f1.read() f1.close f2=open("fileinfo2") res2=f2.read() f2.close return "Zip" in res1 and "Zip" in res2 while 1: try: downNovelAI() except: if checkFile(): print("下载完成") outTime+=60 break else: print("下载未完成,自动重试") # 下载WebUI !mkdir /content/novelai %cd /content/novelai !git clone https://github.com/RyensX/stable-diffusion-webui-zh /content/novelai %cd /content/novelai !git checkout -b master # 复制模型 !cp /content/n2/naifu/models/animefull-final-pruned/model.ckpt /content/novelai/models/Stable-diffusion/ !cp /content/n2/naifu/models/animevae.pt /content/novelai/models/Stable-diffusion/model.pt !mkdir -p /content/novelai/train_images/raw/ !mkdir -p /content/novelai/train_images/des/ ## 设置密码 若不设置则随机生成一个 每次更改需要运行一下下面单元格代码 import random keys="abcdefghigklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789" #@markdown # 服务账号 user="Iris" #@param {type:"string"} if len(user)==0: user="".join([random.choice(keys) for i in range(random.randint(4,6))]) #@markdown # 服务密码 pwd="212121" #@param {type:"string"} if len(pwd)==0: pwd="".join([random.choice(keys) for i in range(random.randint(6,8))]) #3.运行NovelAI * 运行成功时会显示两个蓝色的地址 * 点击**类似** ~https://xxxx.gradio.app/~ 的网址即可外部访问,支持分享给别人用 * 有时候运行成功但是没给出链接可能是因为太多人在生成链接了,**重新运行一下**这一步试试 * 有时候生成图片进度条都没动就直接出图而且界面一直没有重新出来gen也是因为太多人用,刷新一下就好 **可主动停止和多次运行下列单元格代码**控制NovelAI运行状态 %cd /content/novelai print("#####################################################################################################################") print(f"* 账号密码分别是{user}和{pwd}") print("#######################################") print("!!!运行成功时会显示两个蓝色的地址,点击下方类似 https://xxxx.gradio.app/ 的网址即可外部访问,支持分享给别人用") print("!!!注意看上面文本提示") print("#####################################################################################################################") !python launch.py --share --gradio-auth {user}:{pwd} --deepdanbooru
Nobody138/xlm-roberta-base-finetuned-panx-de
Nobody138
2022-10-22T06:22:22Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-12T01:12:00Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
api19750904/newspainclass
api19750904
2022-10-22T06:01:53Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-22T05:52:12Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 14000 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 14000, "warmup_steps": 1400, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sayakpaul/demo
sayakpaul
2022-10-22T04:07:20Z
0
0
keras
[ "keras", "tf-keras", "doi:10.57967/hf/0070", "region:us" ]
null
2022-10-22T04:07:13Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
rahul77/t5-small-finetuned-thehindu1
rahul77
2022-10-22T02:54:27Z
9
0
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-22T02:37:33Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: rahul77/t5-small-finetuned-thehindu1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # rahul77/t5-small-finetuned-thehindu1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4672 - Validation Loss: 0.7612 - Train Rouge1: 29.6559 - Train Rouge2: 24.0992 - Train Rougel: 27.7417 - Train Rougelsum: 28.4408 - Train Gen Len: 19.0 - Epoch: 49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 1.2252 | 0.9927 | 25.8031 | 17.7261 | 23.4483 | 25.0648 | 19.0 | 0 | | 1.0509 | 0.9137 | 28.0482 | 20.6823 | 25.5396 | 27.0125 | 19.0 | 1 | | 0.9961 | 0.8638 | 28.2964 | 22.1783 | 26.4157 | 27.4368 | 19.0 | 2 | | 0.9266 | 0.8321 | 27.7054 | 21.8853 | 26.0306 | 26.9068 | 19.0 | 3 | | 0.8851 | 0.8117 | 28.3740 | 22.8198 | 26.8479 | 27.5047 | 19.0 | 4 | | 0.8505 | 0.7975 | 28.7979 | 23.1437 | 27.0745 | 27.7887 | 19.0 | 5 | | 0.8247 | 0.7890 | 28.9634 | 23.3567 | 27.3117 | 28.0320 | 19.0 | 6 | | 0.8154 | 0.7827 | 28.8667 | 23.4468 | 27.1404 | 27.8453 | 19.0 | 7 | | 0.7889 | 0.7813 | 29.0498 | 23.6403 | 27.5662 | 28.1518 | 19.0 | 8 | | 0.7676 | 0.7774 | 29.1829 | 23.5778 | 27.7014 | 28.3268 | 19.0 | 9 | | 0.7832 | 0.7714 | 29.1040 | 23.3700 | 27.6605 | 28.2650 | 19.0 | 10 | | 0.7398 | 0.7676 | 29.1040 | 23.3700 | 27.6605 | 28.2650 | 19.0 | 11 | | 0.7473 | 0.7644 | 29.4387 | 24.1983 | 27.9842 | 28.5700 | 19.0 | 12 | | 0.7270 | 0.7628 | 29.3128 | 24.1484 | 27.8565 | 28.4215 | 19.0 | 13 | | 0.7174 | 0.7615 | 29.3128 | 24.1484 | 27.8565 | 28.4215 | 19.0 | 14 | | 0.7231 | 0.7577 | 29.3838 | 23.9483 | 27.6550 | 28.3416 | 19.0 | 15 | | 0.7099 | 0.7558 | 29.4866 | 24.1703 | 27.8649 | 28.4404 | 19.0 | 16 | | 0.7060 | 0.7548 | 29.4866 | 24.1703 | 27.8649 | 28.4404 | 19.0 | 17 | | 0.6884 | 0.7539 | 29.4866 | 24.1703 | 27.8649 | 28.4404 | 19.0 | 18 | | 0.6778 | 0.7546 | 29.4866 | 24.1703 | 27.8649 | 28.4404 | 19.0 | 19 | | 0.6586 | 0.7519 | 29.4866 | 24.1703 | 27.8649 | 28.4404 | 19.0 | 20 | | 0.6474 | 0.7521 | 29.4866 | 24.1703 | 27.8649 | 28.4404 | 19.0 | 21 | | 0.6392 | 0.7527 | 29.4866 | 24.1703 | 27.8649 | 28.4404 | 19.0 | 22 | | 0.6424 | 0.7537 | 29.4866 | 24.1703 | 27.8649 | 28.4404 | 19.0 | 23 | | 0.6184 | 0.7536 | 29.4866 | 24.1703 | 27.8649 | 28.4404 | 19.0 | 24 | | 0.6164 | 0.7520 | 29.4866 | 24.0547 | 27.7388 | 28.3416 | 19.0 | 25 | | 0.6115 | 0.7502 | 29.4866 | 23.9746 | 27.8232 | 28.4227 | 19.0 | 26 | | 0.6056 | 0.7498 | 29.4866 | 23.9746 | 27.8232 | 28.4227 | 19.0 | 27 | | 0.6004 | 0.7488 | 29.4451 | 23.7671 | 27.5435 | 28.2982 | 19.0 | 28 | | 0.5851 | 0.7478 | 29.4451 | 23.7671 | 27.5435 | 28.2982 | 19.0 | 29 | | 0.5777 | 0.7496 | 29.4866 | 23.9746 | 27.8232 | 28.4227 | 19.0 | 30 | | 0.5751 | 0.7486 | 29.4866 | 23.9746 | 27.8232 | 28.4227 | 19.0 | 31 | | 0.5730 | 0.7485 | 29.4866 | 23.9746 | 27.8232 | 28.4227 | 19.0 | 32 | | 0.5487 | 0.7499 | 29.4962 | 24.0563 | 27.8422 | 28.4356 | 19.0 | 33 | | 0.5585 | 0.7517 | 29.4962 | 24.0563 | 27.8422 | 28.4356 | 19.0 | 34 | | 0.5450 | 0.7538 | 29.4962 | 24.0563 | 27.8422 | 28.4356 | 19.0 | 35 | | 0.5427 | 0.7509 | 29.4962 | 24.0563 | 27.8422 | 28.4356 | 19.0 | 36 | | 0.5287 | 0.7500 | 29.4962 | 24.0563 | 27.8422 | 28.4356 | 19.0 | 37 | | 0.5231 | 0.7486 | 29.4962 | 24.0563 | 27.8422 | 28.4356 | 19.0 | 38 | | 0.5155 | 0.7523 | 29.4962 | 24.0563 | 27.8422 | 28.4356 | 19.0 | 39 | | 0.5105 | 0.7550 | 29.4962 | 24.0563 | 27.8422 | 28.4356 | 19.0 | 40 | | 0.5175 | 0.7557 | 29.6736 | 24.3120 | 28.0332 | 28.5828 | 19.0 | 41 | | 0.5053 | 0.7560 | 29.6736 | 24.3120 | 28.0332 | 28.5828 | 19.0 | 42 | | 0.4928 | 0.7548 | 29.6736 | 24.3120 | 28.0332 | 28.5828 | 19.0 | 43 | | 0.4913 | 0.7568 | 29.6559 | 24.0992 | 27.7417 | 28.4408 | 19.0 | 44 | | 0.4841 | 0.7574 | 29.6559 | 24.0992 | 27.7417 | 28.4408 | 19.0 | 45 | | 0.4770 | 0.7583 | 29.6736 | 24.3120 | 28.0332 | 28.5828 | 19.0 | 46 | | 0.4727 | 0.7581 | 29.6736 | 24.3120 | 28.0332 | 28.5828 | 19.0 | 47 | | 0.4612 | 0.7623 | 29.6736 | 24.3120 | 28.0332 | 28.5828 | 19.0 | 48 | | 0.4672 | 0.7612 | 29.6559 | 24.0992 | 27.7417 | 28.4408 | 19.0 | 49 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
paj/ppo-lunar
paj
2022-10-22T02:52:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-22T00:40:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 246.51 +/- 21.34 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sd-concepts-library/dreamy-painting
sd-concepts-library
2022-10-22T02:48:34Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-10-22T02:35:47Z
--- license: mit --- ### Dreamy Painting on Stable Diffusion This is the `<dreamy-painting>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<dreamy-painting> 0](https://huggingface.co/sd-concepts-library/dreamy-painting/resolve/main/concept_images/1.jpeg) ![<dreamy-painting> 1](https://huggingface.co/sd-concepts-library/dreamy-painting/resolve/main/concept_images/2.jpeg) ![<dreamy-painting> 2](https://huggingface.co/sd-concepts-library/dreamy-painting/resolve/main/concept_images/4.jpeg) ![<dreamy-painting> 3](https://huggingface.co/sd-concepts-library/dreamy-painting/resolve/main/concept_images/3.jpeg) ![<dreamy-painting> 4](https://huggingface.co/sd-concepts-library/dreamy-painting/resolve/main/concept_images/0.jpeg) Here are images generated in this style: ![a bird in the style of <dreamy-painting>](https://i.imgur.com/N1zD0gf.png) ![portrait of a young man in the style of <dreamy-painting>](https://i.imgur.com/FNbTGfz.png) ![a house in the style of <dreamy-painting>](https://i.imgur.com/vKHFV38.png) ![painting of a grave in the style of <dreamy-painting>](https://i.imgur.com/x0EBQy4.png)
MAJF/bhu
MAJF
2022-10-22T01:38:07Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-10-22T01:38:07Z
--- license: bigscience-bloom-rail-1.0 ---
debbiesoon/distilbart
debbiesoon
2022-10-22T01:27:28Z
6
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "dataset:wiki_lingua", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-22T00:30:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wiki_lingua model-index: - name: distilbart results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-3](https://huggingface.co/sshleifer/distilbart-xsum-12-3) on the wiki_lingua dataset. ## Model description More information needed ## Intended uses & limitations encoder_max_length = 256 decoder_max_length = 64 ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Meow412/finetuning-sentiment-model-3000-samples
Meow412
2022-10-22T00:57:39Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-22T00:48:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8684210526315789 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3184 - Accuracy: 0.8667 - F1: 0.8684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Shaier/longformer_openbook
Shaier
2022-10-21T23:14:01Z
1
0
transformers
[ "transformers", "pytorch", "longformer", "multiple-choice", "generated_from_trainer", "endpoints_compatible", "region:us" ]
multiple-choice
2022-10-21T22:31:44Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: longformer_openbook results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # longformer_openbook This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7773 - Accuracy: 0.71 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 25 - total_train_batch_size: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.99 | 49 | 0.8618 | 0.662 | | No log | 1.99 | 98 | 0.7773 | 0.71 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0
dslack/t5-flan-small
dslack
2022-10-21T22:46:33Z
12
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-21T22:33:36Z
T5 FLAN small model from Google t5x release, compatible with hugging face for ease of use.
sujit27/q-Taxi-v3
sujit27
2022-10-21T22:21:03Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-21T22:19:07Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sujit27/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Dickwold/Fv
Dickwold
2022-10-21T22:01:11Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-10-21T22:01:11Z
--- license: bigscience-openrail-m ---
sd-dreambooth-library/MoonKnightCkpt
sd-dreambooth-library
2022-10-21T20:00:11Z
0
2
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-21T19:29:02Z
--- license: creativeml-openrail-m --- Model trained with the SD 1.5: runwayml/stable-diffusion-v1-5 Dreambooth google colab: https://colab.research.google.com/github/ShivamShrirao/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb youtube video of the training: https://www.youtube.com/watch?v=uzmJXDSxoRk&ab_channel=InversiaImages
SanDiegoDude/DarkCrystalMerged-Skeksis-and-Gelfling-prompts
SanDiegoDude
2022-10-21T19:41:31Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-10-20T17:29:34Z
--- license: mit --- Hi Guys, this is my first attempt at making something public, so my apologies if this seems completely amateur and unprofessional, because it absolutely is! So what I've done here is Dreambooth train 2 different models on SD1.4, one on images of Gelflings from the Dark Crystal, and another model on Skeksis. I then merged both models together with equal weights, and this is the result. (training done via NMKD Stable Diffusion on an RTX 3090 for 4000 steps for both models) class words are "Gelfling" and "Skeksis" - I've found that it tends to really favor the bird beaks for the Skeksis, so if you're finding beaks on everything, de-emphasize by .3 or .4. On the inverse of that, I've found I need to emphasize gelflings to about 1.2 to really get good gelfling examples. Word of warning, it has no clue what is male and what is female for both classes, so don't be upset by cross dressing gelflings! Here are Skeksis Samples, some with Gelflings as well: ![00092-1117046374.png](https://s3.amazonaws.com/moonup/production/uploads/1666380563735-6321f8e67bb41a713dacb197.png) ![00111-1736205695.png](https://s3.amazonaws.com/moonup/production/uploads/1666380564128-6321f8e67bb41a713dacb197.png) ![00120-2545683288.png](https://s3.amazonaws.com/moonup/production/uploads/1666380564145-6321f8e67bb41a713dacb197.png) ![00126-3105978113.png](https://s3.amazonaws.com/moonup/production/uploads/1666380564123-6321f8e67bb41a713dacb197.png) ![00138-1411546393.png](https://s3.amazonaws.com/moonup/production/uploads/1666380564292-6321f8e67bb41a713dacb197.png) ![00149-1058709125.png](https://s3.amazonaws.com/moonup/production/uploads/1666380564279-6321f8e67bb41a713dacb197.png) ![00203-320067406.png](https://s3.amazonaws.com/moonup/production/uploads/1666380564288-6321f8e67bb41a713dacb197.png) ![00659-2761348615-A_picture_of_a_skeksis_driving_a_golf_cart.png](https://s3.amazonaws.com/moonup/production/uploads/1666380564315-6321f8e67bb41a713dacb197.png) ![00668-2734637187-a_skeksis_citizen_cyberpunk_sharp_focus_illustration_extremely_detailed_digital_painting_concept_art_matte_art_by_WLOP_an.png](https://s3.amazonaws.com/moonup/production/uploads/1666380564273-6321f8e67bb41a713dacb197.png) and here are the Gelflings (bonus points if you can figure out the celebrity likenesses!) ![00684-324429502-Dennis_Rodman1.1_as_a_gelfling0.7_with_is_a_cold_mechanical_robot_starring_in_a_new_movie_called_retrofuturistic_soldier_clu.png](https://s3.amazonaws.com/moonup/production/uploads/1666381103969-6321f8e67bb41a713dacb197.png) ![00721-2791070488-Tobey_Maguire1.1_as_a_gelfling0.7_with_holding_an_accordion_starring_in_a_new_movie_called_illuminated_soldier_her_unit_inf.png](https://s3.amazonaws.com/moonup/production/uploads/1666381103868-6321f8e67bb41a713dacb197.png) ![00669-2715926486-John_C._Reilly1.1_as_a_gelfling0.7_with_holding_a_rubber_chicken_starring_in_a_new_movie_called_average_Knight_The_Dark_Deit.png](https://s3.amazonaws.com/moonup/production/uploads/1666381103899-6321f8e67bb41a713dacb197.png) ![00671-3996837623-Mila_Kunis1.1_as_a_gelfling0.7_with_has_heterochromia_starring_in_a_new_movie_called_pastel_fantasy_barkeep_magician_tricks.png](https://s3.amazonaws.com/moonup/production/uploads/1666381103885-6321f8e67bb41a713dacb197.png) ![00682-4254508756-Billie_Eilish1.1_as_a_gelfling0.7_with_has_a_nose_piercing_starring_in_a_new_movie_called_feigned_MagicianSteve_Buscemi_dig.png](https://s3.amazonaws.com/moonup/production/uploads/1666381103969-6321f8e67bb41a713dacb197.png) ![00738-2946103358-Wesley_Snipes1.1_as_a_gelfling0.7_with_is_wearing_feathered_jewelry_starring_in_a_new_movie_called_squealing_Dwarf_by_Wes_An.png](https://s3.amazonaws.com/moonup/production/uploads/1666381103960-6321f8e67bb41a713dacb197.png) Hope you enjoy, I'm impressed with how well this training turned out. I look forward to seeing Gelflings in the wild!
exploranium/fox-count
exploranium
2022-10-21T19:05:26Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-21T19:05:26Z
--- license: creativeml-openrail-m ---
Icepyck/Vascular1
Icepyck
2022-10-21T18:12:20Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-10-21T18:12:20Z
--- license: bigscience-openrail-m ---
orlcast/layoutxlm-finetuned-xfund-it
orlcast
2022-10-21T18:07:01Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "dataset:xfun", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-21T16:57:07Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - xfun model-index: - name: layoutxlm-finetuned-xfund-it results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutxlm-finetuned-xfund-it This model is a fine-tuned version of [microsoft/layoutxlm-base](https://huggingface.co/microsoft/layoutxlm-base) on the xfun dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.10.0+cu111 - Datasets 2.6.1 - Tokenizers 0.13.1
asapcreditrepairboston/Credit-Repair-Boston
asapcreditrepairboston
2022-10-21T17:56:55Z
0
0
null
[ "region:us" ]
null
2022-10-21T17:56:09Z
ASAP [Credit Repair Boston](https://boston.asapcreditrepairusa.com/) will help you repair your credit scores by removing derogatory items from your accounts. Call or text us today!
jayanta/resnet152-FV-finetuned-memes
jayanta
2022-10-21T17:26:29Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "resnet", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-21T16:56:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: resnet152-FV-finetuned-memes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7557959814528593 - name: Precision type: precision value: 0.7556690736625777 - name: Recall type: recall value: 0.7557959814528593 - name: F1 type: f1 value: 0.7545674798253312 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet152-FV-finetuned-memes This model is a fine-tuned version of [microsoft/resnet-152](https://huggingface.co/microsoft/resnet-152) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6772 - Accuracy: 0.7558 - Precision: 0.7557 - Recall: 0.7558 - F1: 0.7546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.5739 | 0.99 | 20 | 1.5427 | 0.4521 | 0.3131 | 0.4521 | 0.2880 | | 1.4353 | 1.99 | 40 | 1.3786 | 0.4490 | 0.3850 | 0.4490 | 0.2791 | | 1.3026 | 2.99 | 60 | 1.2734 | 0.4799 | 0.3073 | 0.4799 | 0.3393 | | 1.1579 | 3.99 | 80 | 1.1378 | 0.5278 | 0.4300 | 0.5278 | 0.4143 | | 1.0276 | 4.99 | 100 | 1.0231 | 0.5734 | 0.4497 | 0.5734 | 0.4865 | | 0.8826 | 5.99 | 120 | 0.9228 | 0.6252 | 0.5983 | 0.6252 | 0.5637 | | 0.766 | 6.99 | 140 | 0.8441 | 0.6662 | 0.6474 | 0.6662 | 0.6320 | | 0.6732 | 7.99 | 160 | 0.8009 | 0.6901 | 0.6759 | 0.6901 | 0.6704 | | 0.5653 | 8.99 | 180 | 0.7535 | 0.7218 | 0.7141 | 0.7218 | 0.7129 | | 0.4957 | 9.99 | 200 | 0.7317 | 0.7257 | 0.7248 | 0.7257 | 0.7200 | | 0.4534 | 10.99 | 220 | 0.6808 | 0.7434 | 0.7405 | 0.7434 | 0.7390 | | 0.3792 | 11.99 | 240 | 0.6949 | 0.7450 | 0.7454 | 0.7450 | 0.7399 | | 0.3489 | 12.99 | 260 | 0.6746 | 0.7496 | 0.7511 | 0.7496 | 0.7474 | | 0.3113 | 13.99 | 280 | 0.6637 | 0.7573 | 0.7638 | 0.7573 | 0.7579 | | 0.2947 | 14.99 | 300 | 0.6451 | 0.7589 | 0.7667 | 0.7589 | 0.7610 | | 0.2776 | 15.99 | 320 | 0.6754 | 0.7543 | 0.7565 | 0.7543 | 0.7525 | | 0.2611 | 16.99 | 340 | 0.6808 | 0.7550 | 0.7607 | 0.7550 | 0.7529 | | 0.2428 | 17.99 | 360 | 0.7005 | 0.7457 | 0.7497 | 0.7457 | 0.7404 | | 0.2346 | 18.99 | 380 | 0.6597 | 0.7573 | 0.7642 | 0.7573 | 0.7590 | | 0.2367 | 19.99 | 400 | 0.6772 | 0.7558 | 0.7557 | 0.7558 | 0.7546 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1.dev0 - Tokenizers 0.13.1
mayankb96/bert-base-uncased-finetuned-lexglue
mayankb96
2022-10-21T17:24:15Z
4
2
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "dataset:lex_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-21T17:01:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - lex_glue model-index: - name: bert-base-uncased-finetuned-lexglue results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-lexglue This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the lex_glue dataset. It achieves the following results on the evaluation set: - Loss: 1.0125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7154 | 1.0 | 1250 | 1.1155 | | 0.9658 | 2.0 | 2500 | 1.0348 | | 1.0321 | 3.0 | 3750 | 1.0125 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.6.1 - Tokenizers 0.12.1
ViktorDo/DistilBERT-WIKI_Epiphyte_Finetuned
ViktorDo
2022-10-21T16:51:47Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-21T15:00:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: DistilBERT-WIKI_Epiphyte_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-WIKI_Epiphyte_Finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0711 | 1.0 | 2094 | 0.0543 | | 0.0512 | 2.0 | 4188 | 0.0474 | | 0.027 | 3.0 | 6282 | 0.0506 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
jayanta/convnext-large-224-22k-1k-FV2-finetuned-memes
jayanta
2022-10-21T16:48:07Z
40
0
transformers
[ "transformers", "pytorch", "tensorboard", "convnext", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-21T16:09:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: convnext-large-224-22k-1k-FV2-finetuned-memes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.866306027820711 - name: Precision type: precision value: 0.8617341777601428 - name: Recall type: recall value: 0.866306027820711 - name: F1 type: f1 value: 0.8629450778711495 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-large-224-22k-1k-FV2-finetuned-memes This model is a fine-tuned version of [facebook/convnext-large-224-22k-1k](https://huggingface.co/facebook/convnext-large-224-22k-1k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4290 - Accuracy: 0.8663 - Precision: 0.8617 - Recall: 0.8663 - F1: 0.8629 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8992 | 0.99 | 20 | 0.6455 | 0.7658 | 0.7512 | 0.7658 | 0.7534 | | 0.4245 | 1.99 | 40 | 0.4008 | 0.8539 | 0.8680 | 0.8539 | 0.8541 | | 0.2054 | 2.99 | 60 | 0.3245 | 0.8694 | 0.8631 | 0.8694 | 0.8650 | | 0.1102 | 3.99 | 80 | 0.3231 | 0.8671 | 0.8624 | 0.8671 | 0.8645 | | 0.0765 | 4.99 | 100 | 0.3882 | 0.8563 | 0.8603 | 0.8563 | 0.8556 | | 0.0642 | 5.99 | 120 | 0.4133 | 0.8601 | 0.8604 | 0.8601 | 0.8598 | | 0.0574 | 6.99 | 140 | 0.3889 | 0.8694 | 0.8657 | 0.8694 | 0.8667 | | 0.0526 | 7.99 | 160 | 0.4145 | 0.8655 | 0.8705 | 0.8655 | 0.8670 | | 0.0468 | 8.99 | 180 | 0.4256 | 0.8679 | 0.8642 | 0.8679 | 0.8650 | | 0.0472 | 9.99 | 200 | 0.4290 | 0.8663 | 0.8617 | 0.8663 | 0.8629 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1.dev0 - Tokenizers 0.13.1
haoanh98/Long_Bartpho_syllable_base
haoanh98
2022-10-21T16:19:30Z
9
0
transformers
[ "transformers", "tf", "led", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-19T08:37:57Z
--- tags: - generated_from_keras_callback model-index: - name: Long_Bartpho_syllable_base results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Long_Bartpho_syllable_base This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Tokenizers 0.13.1
sd-concepts-library/azura-from-vibrant-venture
sd-concepts-library
2022-10-21T14:50:19Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-21T14:50:13Z
--- license: mit --- ### azura-from-vibrant-venture on Stable Diffusion This is the `<azura>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<azura> 0](https://huggingface.co/sd-concepts-library/azura-from-vibrant-venture/resolve/main/concept_images/3.jpeg) ![<azura> 1](https://huggingface.co/sd-concepts-library/azura-from-vibrant-venture/resolve/main/concept_images/4.jpeg) ![<azura> 2](https://huggingface.co/sd-concepts-library/azura-from-vibrant-venture/resolve/main/concept_images/5.jpeg) ![<azura> 3](https://huggingface.co/sd-concepts-library/azura-from-vibrant-venture/resolve/main/concept_images/1.jpeg) ![<azura> 4](https://huggingface.co/sd-concepts-library/azura-from-vibrant-venture/resolve/main/concept_images/0.jpeg) ![<azura> 5](https://huggingface.co/sd-concepts-library/azura-from-vibrant-venture/resolve/main/concept_images/6.jpeg) ![<azura> 6](https://huggingface.co/sd-concepts-library/azura-from-vibrant-venture/resolve/main/concept_images/2.jpeg)
huggingtweets/iangabchri-nisipisa-tyler02020202
huggingtweets
2022-10-21T14:48:20Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-21T14:46:52Z
--- language: en thumbnail: http://www.huggingtweets.com/iangabchri-nisipisa-tyler02020202/1666363695853/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1563876002329231363/RPhmnhOa_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1474994961896644608/um4unzmz_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1548021440191926272/FaXKxAO__400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">gab & tyler & nisa, from online</div> <div style="text-align: center; font-size: 14px;">@iangabchri-nisipisa-tyler02020202</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from gab & tyler & nisa, from online. | Data | gab | tyler | nisa, from online | | --- | --- | --- | --- | | Tweets downloaded | 253 | 2595 | 3221 | | Retweets | 66 | 102 | 237 | | Short tweets | 5 | 632 | 342 | | Tweets kept | 182 | 1861 | 2642 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3rlxqnm8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iangabchri-nisipisa-tyler02020202's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/gg2ms4z1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/gg2ms4z1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iangabchri-nisipisa-tyler02020202') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ctu-aic/xlm-roberta-large-xnli-csfever_nli
ctu-aic
2022-10-21T14:10:34Z
6
0
transformers
[ "transformers", "pytorch", "tf", "xlm-roberta", "text-classification", "arxiv:2201.11115", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-21T14:04:49Z
('---\ndatasets:\n- ctu-aic/csfever_nli\nlanguages:\n- cs\nlicense: cc-by-sa-4.0\ntags:\n- natural-language-inference\n\n---',) # 🦾 xlm-roberta-large-xnli-csfever_nli Transformer model for **Natural Language Inference** in ['cs'] languages finetuned on ['ctu-aic/csfever_nli'] datasets. ## 🧰 Usage ### 👾 Using UKPLab `sentence_transformers` `CrossEncoder` The model was trained using the `CrossEncoder` API and we recommend it for its usage. ```python from sentence_transformers.cross_encoder import CrossEncoder model = CrossEncoder('ctu-aic/xlm-roberta-large-xnli-csfever_nli') scores = model.predict([["My first context.", "My first hypothesis."], ["Second context.", "Hypothesis."]]) ``` ### 🤗 Using Huggingface `transformers` ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ctu-aic/xlm-roberta-large-xnli-csfever_nli") tokenizer = AutoTokenizer.from_pretrained("ctu-aic/xlm-roberta-large-xnli-csfever_nli") ``` ## 🌳 Contributing Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. ## 👬 Authors The model was trained and uploaded by **[ullriher](https://udb.fel.cvut.cz/?uid=ullriher&sn=&givenname=&_cmd=Hledat&_reqn=1&_type=user&setlang=en)** (e-mail: [ullriher@fel.cvut.cz](mailto:ullriher@fel.cvut.cz)) The code was codeveloped by the NLP team at Artificial Intelligence Center of CTU in Prague ([AIC](https://www.aic.fel.cvut.cz/)). ## 🔐 License [cc-by-sa-4.0](https://choosealicense.com/licenses/cc-by-sa-4.0) ## 💬 Citation If you find this repository helpful, feel free to cite our publication: ``` @article{DBLP:journals/corr/abs-2201-11115, author = {Herbert Ullrich and Jan Drchal and Martin R{'{y}}par and Hana Vincourov{'{a}} and V{'{a}}clav Moravec}, title = {CsFEVER and CTKFacts: Acquiring Czech Data for Fact Verification}, journal = {CoRR}, volume = {abs/2201.11115}, year = {2022}, url = {https://arxiv.org/abs/2201.11115}, eprinttype = {arXiv}, eprint = {2201.11115}, timestamp = {Tue, 01 Feb 2022 14:59:01 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-11115.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
ctu-aic/xlm-roberta-large-xnli-enfever_nli
ctu-aic
2022-10-21T13:52:57Z
4
0
transformers
[ "transformers", "pytorch", "tf", "xlm-roberta", "text-classification", "arxiv:2201.11115", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-21T13:47:11Z
('---\ndatasets:\n- ctu-aic/enfever_nli\nlanguages:\n- cs\nlicense: cc-by-sa-4.0\ntags:\n- natural-language-inference\n\n---',) # 🦾 xlm-roberta-large-xnli-enfever_nli Transformer model for **Natural Language Inference** in ['cs'] languages finetuned on ['ctu-aic/enfever_nli'] datasets. ## 🧰 Usage ### 👾 Using UKPLab `sentence_transformers` `CrossEncoder` The model was trained using the `CrossEncoder` API and we recommend it for its usage. ```python from sentence_transformers.cross_encoder import CrossEncoder model = CrossEncoder('ctu-aic/xlm-roberta-large-xnli-enfever_nli') scores = model.predict([["My first context.", "My first hypothesis."], ["Second context.", "Hypothesis."]]) ``` ### 🤗 Using Huggingface `transformers` ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ctu-aic/xlm-roberta-large-xnli-enfever_nli") tokenizer = AutoTokenizer.from_pretrained("ctu-aic/xlm-roberta-large-xnli-enfever_nli") ``` ## 🌳 Contributing Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. ## 👬 Authors The model was trained and uploaded by **[ullriher](https://udb.fel.cvut.cz/?uid=ullriher&sn=&givenname=&_cmd=Hledat&_reqn=1&_type=user&setlang=en)** (e-mail: [ullriher@fel.cvut.cz](mailto:ullriher@fel.cvut.cz)) The code was codeveloped by the NLP team at Artificial Intelligence Center of CTU in Prague ([AIC](https://www.aic.fel.cvut.cz/)). ## 🔐 License [cc-by-sa-4.0](https://choosealicense.com/licenses/cc-by-sa-4.0) ## 💬 Citation If you find this repository helpful, feel free to cite our publication: ``` @article{DBLP:journals/corr/abs-2201-11115, author = {Herbert Ullrich and Jan Drchal and Martin R{'{y}}par and Hana Vincourov{'{a}} and V{'{a}}clav Moravec}, title = {CsFEVER and CTKFacts: Acquiring Czech Data for Fact Verification}, journal = {CoRR}, volume = {abs/2201.11115}, year = {2022}, url = {https://arxiv.org/abs/2201.11115}, eprinttype = {arXiv}, eprint = {2201.11115}, timestamp = {Tue, 01 Feb 2022 14:59:01 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-11115.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
manirai91/enlm-r
manirai91
2022-10-21T13:50:54Z
73
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-01T07:58:38Z
--- tags: - generated_from_trainer model-index: - name: enlm-r results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # enlm-r This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 128 - total_train_batch_size: 8192 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06 - lr_scheduler_type: polynomial - lr_scheduler_warmup_steps: 24000 - num_epochs: 81 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.4 | 0.33 | 160 | 10.7903 | | 6.4 | 0.66 | 320 | 10.1431 | | 6.4 | 0.99 | 480 | 9.8708 | | 6.4 | 0.33 | 640 | 9.3884 | | 6.4 | 0.66 | 800 | 8.7352 | | 6.4 | 0.99 | 960 | 8.3341 | | 6.4 | 1.33 | 1120 | 8.0614 | | 6.4 | 1.66 | 1280 | 7.8582 | | 4.2719 | 1.99 | 1440 | 7.4879 | | 3.2 | 3.3 | 1600 | 7.2689 | | 3.2 | 3.63 | 1760 | 7.1434 | | 3.2 | 3.96 | 1920 | 7.0576 | | 3.2 | 4.29 | 2080 | 7.0030 | | 3.2 | 4.62 | 2240 | 6.9612 | | 3.2 | 4.95 | 2400 | 6.9394 | | 3.2 | 5.28 | 2560 | 6.9559 | | 3.2 | 5.61 | 2720 | 6.8964 | | 3.2 | 5.94 | 2880 | 6.8939 | | 3.2 | 6.27 | 3040 | 6.8871 | | 3.2 | 6.6 | 3200 | 6.8771 | | 3.2 | 6.93 | 3360 | 6.8617 | | 3.2 | 7.26 | 3520 | 6.8472 | | 3.2 | 7.59 | 3680 | 6.8283 | | 3.2 | 7.92 | 3840 | 6.8082 | | 3.2 | 8.25 | 4000 | 6.8119 | | 3.2 | 8.58 | 4160 | 6.7962 | | 3.2 | 8.91 | 4320 | 6.7751 | | 3.2 | 9.24 | 4480 | 6.7405 | | 3.2 | 9.57 | 4640 | 6.7412 | | 3.2 | 9.9 | 4800 | 6.7279 | | 3.2 | 10.22 | 4960 | 6.7069 | | 3.2 | 10.55 | 5120 | 6.6998 | | 3.2 | 10.88 | 5280 | 6.6875 | | 3.2 | 11.22 | 5440 | 6.6580 | | 3.2 | 11.55 | 5600 | 6.6402 | | 3.2 | 11.88 | 5760 | 6.6281 | | 3.2 | 12.21 | 5920 | 6.6181 | | 3.2 | 12.54 | 6080 | 6.5995 | | 3.2 | 12.87 | 6240 | 6.5970 | | 3.2 | 13.2 | 6400 | 6.5772 | | 3.2 | 13.53 | 6560 | 6.5594 | | 3.2 | 13.85 | 6720 | 6.5400 | | 3.2 | 14.19 | 6880 | 6.5396 | | 3.2 | 14.51 | 7040 | 6.5211 | | 3.2 | 14.84 | 7200 | 6.5140 | | 3.2 | 15.18 | 7360 | 6.4002 | | 3.2 | 15.5 | 7520 | 6.3170 | | 3.2 | 15.83 | 7680 | 6.2621 | | 3.2 | 16.16 | 7840 | 6.2253 | | 3.2 | 16.49 | 8000 | 6.1722 | | 3.2 | 16.82 | 8160 | 6.1106 | | 3.2 | 17.15 | 8320 | 6.1281 | | 3.2 | 17.48 | 8480 | 6.0019 | | 3.2 | 17.81 | 8640 | 5.9069 | | 3.2 | 18.14 | 8800 | 5.7105 | | 3.2 | 18.47 | 8960 | 5.2741 | | 3.2 | 18.8 | 9120 | 5.0369 | | 5.0352 | 19.13 | 9280 | 4.8148 | | 4.5102 | 19.26 | 9440 | 4.3175 | | 4.1247 | 19.59 | 9600 | 3.9518 | | 3.8443 | 20.12 | 9760 | 3.6712 | | 3.6334 | 20.45 | 9920 | 3.4654 | | 3.4698 | 20.78 | 10080 | 3.2994 | | 3.3267 | 21.11 | 10240 | 3.1638 | | 3.2173 | 21.44 | 10400 | 3.0672 | | 3.1255 | 21.77 | 10560 | 2.9687 | | 3.0344 | 22.1 | 10720 | 2.8865 | | 2.9645 | 22.43 | 10880 | 2.8104 | | 2.9046 | 22.76 | 11040 | 2.7497 | | 2.8707 | 23.09 | 11200 | 2.7040 | | 2.7903 | 23.42 | 11360 | 2.6416 | | 2.7339 | 23.75 | 11520 | 2.5891 | | 2.6894 | 24.08 | 11680 | 2.5370 | | 2.6461 | 24.41 | 11840 | 2.4960 | | 2.5976 | 24.74 | 12000 | 2.4508 | | 2.5592 | 25.07 | 12160 | 2.4194 | | 2.5305 | 25.4 | 12320 | 2.3790 | | 2.4993 | 25.73 | 12480 | 2.3509 | | 2.465 | 26.06 | 12640 | 2.3173 | | 2.4455 | 26.39 | 12800 | 2.2934 | | 2.4107 | 26.72 | 12960 | 2.2701 | | 2.3883 | 27.05 | 13120 | 2.2378 | | 2.3568 | 27.38 | 13280 | 2.2079 | | 2.3454 | 27.71 | 13440 | 2.1919 | | 2.3207 | 28.04 | 13600 | 2.1671 | | 2.2963 | 28.37 | 13760 | 2.1513 | | 2.2738 | 28.7 | 13920 | 2.1326 | | 2.2632 | 29.03 | 14080 | 2.1176 | | 2.2413 | 29.36 | 14240 | 2.0913 | | 2.2193 | 29.69 | 14400 | 2.0772 | | 2.2169 | 30.02 | 14560 | 2.0692 | | 2.1848 | 30.35 | 14720 | 2.0411 | | 2.1693 | 30.68 | 14880 | 2.0290 | | 2.1964 | 31.01 | 15040 | 2.0169 | | 2.1467 | 31.34 | 15200 | 2.0016 | | 2.1352 | 31.67 | 15360 | 1.9880 | | 2.1152 | 32.0 | 15520 | 1.9727 | | 2.1098 | 32.33 | 15680 | 1.9604 | | 2.0888 | 32.66 | 15840 | 1.9521 | | 2.0837 | 32.99 | 16000 | 1.9394 | | 2.0761 | 33.32 | 16160 | 1.9366 | | 2.0635 | 33.65 | 16320 | 1.9200 | | 2.0631 | 33.98 | 16480 | 1.9147 | | 2.0448 | 34.31 | 16640 | 1.9053 | | 2.0452 | 34.64 | 16800 | 1.8937 | | 2.0303 | 34.97 | 16960 | 1.8801 | | 2.0184 | 35.3 | 17120 | 1.8752 | | 2.0115 | 35.63 | 17280 | 1.8667 | | 2.0042 | 35.96 | 17440 | 1.8626 | | 2.002 | 36.29 | 17600 | 1.8565 | | 1.9918 | 36.62 | 17760 | 1.8475 | | 1.9868 | 36.95 | 17920 | 1.8420 | | 1.9796 | 37.28 | 18080 | 1.8376 | | 1.976 | 37.61 | 18240 | 1.8318 | | 1.9647 | 37.94 | 18400 | 1.8225 | | 1.9561 | 38.27 | 18560 | 1.8202 | | 1.9544 | 38.6 | 18720 | 1.8084 | | 1.9454 | 38.93 | 18880 | 1.8057 | | 1.9333 | 39.26 | 19040 | 1.8030 | | 1.9411 | 39.59 | 19200 | 1.7966 | | 1.9289 | 39.92 | 19360 | 1.7865 | | 1.9261 | 40.25 | 19520 | 1.7815 | | 1.9207 | 40.58 | 19680 | 1.7881 | | 1.9164 | 40.91 | 19840 | 1.7747 | | 1.9152 | 41.24 | 20000 | 1.7786 | | 1.914 | 41.57 | 20160 | 1.7664 | | 1.901 | 41.9 | 20320 | 1.7586 | | 1.8965 | 42.23 | 20480 | 1.7554 | | 1.8982 | 42.56 | 20640 | 1.7524 | | 1.8941 | 42.89 | 20800 | 1.7460 | | 1.8834 | 43.22 | 20960 | 1.7488 | | 1.8841 | 43.55 | 21120 | 1.7486 | | 1.8846 | 43.88 | 21280 | 1.7424 | | 1.8763 | 44.21 | 21440 | 1.7352 | | 1.8688 | 44.54 | 21600 | 1.7349 | | 1.8714 | 44.87 | 21760 | 1.7263 | | 1.8653 | 45.2 | 21920 | 1.7282 | | 1.8673 | 45.53 | 22080 | 1.7195 | | 1.8682 | 45.85 | 22240 | 1.7266 | | 1.8532 | 46.19 | 22400 | 1.7180 | | 1.8553 | 46.51 | 22560 | 1.7137 | | 1.8569 | 46.84 | 22720 | 1.7158 | | 1.8469 | 47.18 | 22880 | 1.7117 | | 1.845 | 47.5 | 23040 | 1.7031 | | 1.8475 | 47.83 | 23200 | 1.7089 | | 1.845 | 48.16 | 23360 | 1.7018 | | 1.8391 | 48.49 | 23520 | 1.6945 | | 1.8456 | 48.82 | 23680 | 1.7015 | | 1.8305 | 49.15 | 23840 | 1.6964 | | 1.8324 | 49.48 | 24000 | 1.6900 | | 1.7763 | 49.81 | 24160 | 1.6449 | | 1.7728 | 50.14 | 24320 | 1.6436 | | 1.7576 | 50.47 | 24480 | 1.6268 | | 1.7354 | 50.8 | 24640 | 1.6088 | | 1.74 | 51.13 | 24800 | 1.6156 | | 1.7251 | 51.06 | 24960 | 1.6041 | | 1.719 | 51.39 | 25120 | 1.5938 | | 1.7257 | 52.12 | 25280 | 1.5983 | | 1.7184 | 52.45 | 25440 | 1.5919 | | 1.7093 | 52.78 | 25600 | 1.5848 | | 1.7114 | 53.11 | 25760 | 1.5922 | | 1.7076 | 53.44 | 25920 | 1.5843 | | 1.7 | 53.77 | 26080 | 1.5807 | | 1.7027 | 54.1 | 26240 | 1.5811 | | 1.704 | 54.43 | 26400 | 1.5766 | | 1.6958 | 54.76 | 26560 | 1.5756 | | 1.6976 | 55.09 | 26720 | 1.5773 | | 1.6944 | 55.42 | 26880 | 1.5725 | | 1.6891 | 55.75 | 27040 | 1.5685 | | 1.6936 | 56.08 | 27200 | 1.5750 | | 1.6893 | 56.41 | 27360 | 1.5696 | | 1.6886 | 56.74 | 27520 | 1.5643 | | 1.6936 | 57.07 | 27680 | 1.5691 | | 1.6883 | 57.4 | 27840 | 1.5718 | | 1.6832 | 57.73 | 28000 | 1.5660 | | 1.9222 | 28.03 | 28160 | 1.7107 | | 1.7838 | 28.19 | 28320 | 1.6345 | | 1.7843 | 28.36 | 28480 | 1.6445 | | 1.7809 | 28.52 | 28640 | 1.6461 | | 1.783 | 28.69 | 28800 | 1.6505 | | 1.7869 | 28.85 | 28960 | 1.6364 | | 1.778 | 29.02 | 29120 | 1.6363 | | 1.775 | 29.18 | 29280 | 1.6364 | | 1.7697 | 29.34 | 29440 | 1.6345 | | 1.7719 | 29.51 | 29600 | 1.6261 | | 1.7454 | 61.16 | 29760 | 1.6099 | | 1.741 | 61.49 | 29920 | 1.6006 | | 1.7314 | 62.02 | 30080 | 1.6041 | | 1.7314 | 62.35 | 30240 | 1.5914 | | 1.7246 | 62.68 | 30400 | 1.5917 | | 1.7642 | 63.01 | 30560 | 1.5923 | | 1.7221 | 63.34 | 30720 | 1.5857 | | 1.7185 | 63.67 | 30880 | 1.5836 | | 1.7022 | 64.0 | 31040 | 1.5836 | | 1.7107 | 64.33 | 31200 | 1.5739 | | 1.7082 | 64.66 | 31360 | 1.5724 | | 1.7055 | 64.99 | 31520 | 1.5734 | | 1.7019 | 65.32 | 31680 | 1.5707 | | 1.699 | 65.65 | 31840 | 1.5649 | | 1.6963 | 65.98 | 32000 | 1.5685 | | 1.6935 | 66.31 | 32160 | 1.5673 | | 1.6899 | 66.64 | 32320 | 1.5648 | | 1.6869 | 66.97 | 32480 | 1.5620 | | 1.6867 | 67.3 | 32640 | 1.5564 | | 1.6861 | 67.63 | 32800 | 1.5552 | | 1.6831 | 67.96 | 32960 | 1.5496 | | 1.6778 | 68.29 | 33120 | 1.5479 | | 1.6742 | 68.62 | 33280 | 1.5501 | | 1.6737 | 68.95 | 33440 | 1.5441 | | 1.6725 | 69.28 | 33600 | 1.5399 | | 1.6683 | 69.61 | 33760 | 1.5398 | | 1.6689 | 69.94 | 33920 | 1.5374 | | 1.6634 | 70.27 | 34080 | 1.5385 | | 1.6638 | 70.6 | 34240 | 1.5332 | | 1.6614 | 70.93 | 34400 | 1.5329 | | 1.6544 | 71.26 | 34560 | 1.5292 | | 1.6532 | 71.59 | 34720 | 1.5268 | | 1.6511 | 71.92 | 34880 | 1.5225 | | 1.6506 | 72.25 | 35040 | 1.5219 | | 1.6496 | 72.58 | 35200 | 1.5202 | | 1.6468 | 72.91 | 35360 | 1.5199 | | 1.6424 | 73.24 | 35520 | 1.5220 | | 1.642 | 73.57 | 35680 | 1.5145 | | 1.6415 | 73.9 | 35840 | 1.5139 | | 1.6419 | 74.23 | 36000 | 1.5120 | | 1.633 | 74.56 | 36160 | 1.5113 | | 1.6354 | 74.89 | 36320 | 1.5139 | | 1.6312 | 75.22 | 36480 | 1.5068 | | 1.6298 | 75.55 | 36640 | 1.5056 | | 1.6268 | 75.88 | 36800 | 1.5000 | | 1.6277 | 76.21 | 36960 | 1.5033 | | 1.6198 | 76.54 | 37120 | 1.4988 | | 1.6246 | 76.87 | 37280 | 1.4978 | | 1.6184 | 77.2 | 37440 | 1.4966 | | 1.6187 | 77.53 | 37600 | 1.4954 | | 1.6192 | 77.85 | 37760 | 1.4951 | | 1.6134 | 78.19 | 37920 | 1.4936 | | 1.6176 | 78.51 | 38080 | 1.4908 | | 1.6103 | 78.84 | 38240 | 1.4904 | | 1.612 | 79.18 | 38400 | 1.4919 | | 1.611 | 79.5 | 38560 | 1.4891 | | 1.6082 | 79.83 | 38720 | 1.4837 | | 1.6047 | 80.16 | 38880 | 1.4859 | | 1.6058 | 80.49 | 39040 | 1.4814 | | 1.602 | 80.82 | 39200 | 1.4837 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.12.1
DemangeJeremy/4-sentiments-with-flaubert
DemangeJeremy
2022-10-21T13:46:12Z
13
0
transformers
[ "transformers", "pytorch", "flaubert", "text-classification", "sentiments", "french", "flaubert-large", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: fr tags: - sentiments - text-classification - flaubert - french - flaubert-large --- # Modèle de détection de 4 sentiments avec FlauBERT (mixed, negative, objective, positive) ### Comment l'utiliser ? ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import pipeline loaded_tokenizer = AutoTokenizer.from_pretrained('flaubert/flaubert_large_cased') loaded_model = AutoModelForSequenceClassification.from_pretrained("DemangeJeremy/4-sentiments-with-flaubert") nlp = pipeline('sentiment-analysis', model=loaded_model, tokenizer=loaded_tokenizer) print(nlp("Je suis plutôt confiant.")) ``` ``` [{'label': 'OBJECTIVE', 'score': 0.3320835530757904}] ``` ## Résultats de l'évaluation du modèle | Epoch | Validation Loss | Samples Per Second | |:------:|:--------------:|:------------------:| | 1 | 2.219246 | 49.476000 | | 2 | 1.883753 | 47.259000 | | 3 | 1.747969 | 44.957000 | | 4 | 1.695606 | 43.872000 | | 5 | 1.641470 | 45.726000 | ## Citation Pour toute utilisation de ce modèle, merci d'utiliser cette citation : > Jérémy Demange, Four sentiments with FlauBERT, (2021), Hugging Face repository, <https://huggingface.co/DemangeJeremy/4-sentiments-with-flaubert>
orkg/orkgnlp-predicates-clustering
orkg
2022-10-21T13:40:57Z
0
0
null
[ "onnx", "license:mit", "region:us" ]
null
2022-05-09T08:02:12Z
--- license: mit --- This Repository includes the files required to run the `Predicates Clustering` ORKG-NLP service. Please check [this article](https://orkg-nlp-pypi.readthedocs.io/en/latest/services/services.html) for more details about the service. The [Scikit-Learn](https://scikit-learn.org/stable/) models are converted using [skl2onnx](https://github.com/onnx/sklearn-onnx) and may not include all original scikit-learn functionalities.
ctu-aic/xlm-roberta-large-xnli-ctkfacts_nli
ctu-aic
2022-10-21T13:39:36Z
4
0
transformers
[ "transformers", "pytorch", "tf", "xlm-roberta", "text-classification", "arxiv:2201.11115", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-21T13:32:24Z
('---\ndatasets:\n- ctu-aic/ctkfacts_nli\nlanguages:\n- cs\nlicense: cc-by-sa-4.0\ntags:\n- natural-language-inference\n\n---',) # 🦾 xlm-roberta-large-xnli-ctkfacts_nli Transformer model for **Natural Language Inference** in ['cs'] languages finetuned on ['ctu-aic/ctkfacts_nli'] datasets. ## 🧰 Usage ### 👾 Using UKPLab `sentence_transformers` `CrossEncoder` The model was trained using the `CrossEncoder` API and we recommend it for its usage. ```python from sentence_transformers.cross_encoder import CrossEncoder model = CrossEncoder('ctu-aic/xlm-roberta-large-xnli-ctkfacts_nli') scores = model.predict([["My first context.", "My first hypothesis."], ["Second context.", "Hypothesis."]]) ``` ### 🤗 Using Huggingface `transformers` ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ctu-aic/xlm-roberta-large-xnli-ctkfacts_nli") tokenizer = AutoTokenizer.from_pretrained("ctu-aic/xlm-roberta-large-xnli-ctkfacts_nli") ``` ## 🌳 Contributing Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. ## 👬 Authors The model was trained and uploaded by **[ullriher](https://udb.fel.cvut.cz/?uid=ullriher&sn=&givenname=&_cmd=Hledat&_reqn=1&_type=user&setlang=en)** (e-mail: [ullriher@fel.cvut.cz](mailto:ullriher@fel.cvut.cz)) The code was codeveloped by the NLP team at Artificial Intelligence Center of CTU in Prague ([AIC](https://www.aic.fel.cvut.cz/)). ## 🔐 License [cc-by-sa-4.0](https://choosealicense.com/licenses/cc-by-sa-4.0) ## 💬 Citation If you find this repository helpful, feel free to cite our publication: ``` @article{DBLP:journals/corr/abs-2201-11115, author = {Herbert Ullrich and Jan Drchal and Martin R{'{y}}par and Hana Vincourov{'{a}} and V{'{a}}clav Moravec}, title = {CsFEVER and CTKFacts: Acquiring Czech Data for Fact Verification}, journal = {CoRR}, volume = {abs/2201.11115}, year = {2022}, url = {https://arxiv.org/abs/2201.11115}, eprinttype = {arXiv}, eprint = {2201.11115}, timestamp = {Tue, 01 Feb 2022 14:59:01 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-11115.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
ctu-aic/xlm-roberta-large-squad2-ctkfacts_nli
ctu-aic
2022-10-21T13:32:10Z
6
0
transformers
[ "transformers", "pytorch", "tf", "xlm-roberta", "text-classification", "arxiv:2201.11115", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-21T13:24:29Z
('---\ndatasets:\n- ctu-aic/ctkfacts_nli\nlanguages:\n- cs\nlicense: cc-by-sa-4.0\ntags:\n- natural-language-inference\n\n---',) # 🦾 xlm-roberta-large-squad2-ctkfacts_nli Transformer model for **Natural Language Inference** in ['cs'] languages finetuned on ['ctu-aic/ctkfacts_nli'] datasets. ## 🧰 Usage ### 👾 Using UKPLab `sentence_transformers` `CrossEncoder` The model was trained using the `CrossEncoder` API and we recommend it for its usage. ```python from sentence_transformers.cross_encoder import CrossEncoder model = CrossEncoder('ctu-aic/xlm-roberta-large-squad2-ctkfacts_nli') scores = model.predict([["My first context.", "My first hypothesis."], ["Second context.", "Hypothesis."]]) ``` ### 🤗 Using Huggingface `transformers` ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ctu-aic/xlm-roberta-large-squad2-ctkfacts_nli") tokenizer = AutoTokenizer.from_pretrained("ctu-aic/xlm-roberta-large-squad2-ctkfacts_nli") ``` ## 🌳 Contributing Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. ## 👬 Authors The model was trained and uploaded by **[ullriher](https://udb.fel.cvut.cz/?uid=ullriher&sn=&givenname=&_cmd=Hledat&_reqn=1&_type=user&setlang=en)** (e-mail: [ullriher@fel.cvut.cz](mailto:ullriher@fel.cvut.cz)) The code was codeveloped by the NLP team at Artificial Intelligence Center of CTU in Prague ([AIC](https://www.aic.fel.cvut.cz/)). ## 🔐 License [cc-by-sa-4.0](https://choosealicense.com/licenses/cc-by-sa-4.0) ## 💬 Citation If you find this repository helpful, feel free to cite our publication: ``` @article{DBLP:journals/corr/abs-2201-11115, author = {Herbert Ullrich and Jan Drchal and Martin R{'{y}}par and Hana Vincourov{'{a}} and V{'{a}}clav Moravec}, title = {CsFEVER and CTKFacts: Acquiring Czech Data for Fact Verification}, journal = {CoRR}, volume = {abs/2201.11115}, year = {2022}, url = {https://arxiv.org/abs/2201.11115}, eprinttype = {arXiv}, eprint = {2201.11115}, timestamp = {Tue, 01 Feb 2022 14:59:01 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-11115.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
ViktorDo/DistilBERT-WIKI_Growth_Form_Finetuned
ViktorDo
2022-10-21T13:25:16Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-21T12:41:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: DistilBERT-WIKI_Growth_Form_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-WIKI_Growth_Form_Finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2454 | 1.0 | 2320 | 0.2530 | | 0.1875 | 2.0 | 4640 | 0.2578 | | 0.1386 | 3.0 | 6960 | 0.2666 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
GeniusVoice/bertje-visio-retriever
GeniusVoice
2022-10-21T12:35:40Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-21T12:22:56Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 217 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 21, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
reza-aditya/bert-finetuned-squad
reza-aditya
2022-10-21T12:22:10Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-21T09:57:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
cjbarrie/distilbert-base-uncased-finetuned-emotion
cjbarrie
2022-10-21T11:01:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-20T16:28:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3