modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-07 18:30:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
544 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-07 18:30:28
card
stringlengths
11
1.01M
bigmorning/whisper_charsplit_new_round2__0040
bigmorning
2023-08-13T19:34:23Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:34:15Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0040 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0040 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0002 - Train Accuracy: 0.0795 - Train Wermet: 7.9500 - Validation Loss: 0.5660 - Validation Accuracy: 0.0769 - Validation Wermet: 7.0891 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e-1_s108_v4_l4_v100
KingKazma
2023-08-13T19:31:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:33:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e4_s108_v4_l4_v100
KingKazma
2023-08-13T19:29:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:29:02Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0037
bigmorning
2023-08-13T19:21:21Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:21:12Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0037 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0037 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0018 - Train Accuracy: 0.0795 - Train Wermet: 8.4062 - Validation Loss: 0.5713 - Validation Accuracy: 0.0768 - Validation Wermet: 7.2127 - Epoch: 36 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e3_s108_v4_l4_v100
KingKazma
2023-08-13T19:20:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:20:13Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e5_s108_v4_l4_v100
KingKazma
2023-08-13T19:20:07Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:20:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0036
bigmorning
2023-08-13T19:16:56Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:16:50Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0036 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0036 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0036 - Train Accuracy: 0.0795 - Train Wermet: 8.9171 - Validation Loss: 0.5687 - Validation Accuracy: 0.0767 - Validation Wermet: 7.6962 - Epoch: 35 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round2__0035
bigmorning
2023-08-13T19:12:33Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:12:25Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0035 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0035 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0010 - Train Accuracy: 0.0795 - Train Wermet: 8.1006 - Validation Loss: 0.5918 - Validation Accuracy: 0.0766 - Validation Wermet: 7.4447 - Epoch: 34 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
TheRains/yt-special-batch12-lr4-augment-small
TheRains
2023-08-13T19:08:42Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "dataset:yt", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T16:31:02Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - yt metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: yt id type: yt metrics: - name: Wer type: wer value: 38.89501329356072 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the yt id dataset. It achieves the following results on the evaluation set: - Loss: 0.7352 - Wer: 38.8950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 12 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.296 | 0.13 | 1000 | 1.3286 | 110.0123 | | 1.1522 | 0.26 | 2000 | 1.0917 | 81.6354 | | 1.0175 | 0.39 | 3000 | 0.9399 | 60.1258 | | 0.7844 | 0.52 | 4000 | 0.8174 | 43.4862 | | 0.5919 | 0.64 | 5000 | 0.7352 | 38.8950 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Lyviaa/Tokyoo
Lyviaa
2023-08-13T19:03:38Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-13T19:02:57Z
--- license: creativeml-openrail-m ---
bigmorning/whisper_charsplit_new_round2__0032
bigmorning
2023-08-13T18:59:27Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T18:59:19Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0032 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0032 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0019 - Train Accuracy: 0.0795 - Train Wermet: 8.6037 - Validation Loss: 0.5715 - Validation Accuracy: 0.0767 - Validation Wermet: 7.6157 - Epoch: 31 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round2__0031
bigmorning
2023-08-13T18:55:01Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T18:54:54Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0031 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0031 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0022 - Train Accuracy: 0.0795 - Train Wermet: 8.2353 - Validation Loss: 0.5789 - Validation Accuracy: 0.0767 - Validation Wermet: 7.4442 - Epoch: 30 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e1_s108_v4_l4_v100
KingKazma
2023-08-13T18:52:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:13:23Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
mani05/dqn-SpaceInvadersNoFrameskip-v4
mani05
2023-08-13T18:48:49Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T18:48:14Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 649.00 +/- 125.61 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mani05 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mani05 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mani05 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e-1_s108_v4_l4_v100
KingKazma
2023-08-13T18:44:54Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T15:37:23Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
fathyshalab/mdcsi-wasser-strom-gas-setfit
fathyshalab
2023-08-13T18:43:28Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-13T16:58:18Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # C:\Users\F896D~1.SHA\AppData\Local\Temp\tmpj64pfrsp\fathyshalab\mdcsi-wasser-strom-gas-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmpj64pfrsp\fathyshalab\mdcsi-wasser-strom-gas-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e0_s108_v4_l5_v50
KingKazma
2023-08-13T18:41:53Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:43:19Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0028
bigmorning
2023-08-13T18:41:43Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T18:41:37Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0028 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0028 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0009 - Train Accuracy: 0.0795 - Train Wermet: 8.3074 - Validation Loss: 0.5641 - Validation Accuracy: 0.0768 - Validation Wermet: 7.1747 - Epoch: 27 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
jstoone/whisper-tiny-en
jstoone
2023-08-13T18:39:23Z
85
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T13:56:01Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.35723514211886304 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.9035 - Wer Ortho: 0.354643 - Wer: 0.357235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 0.0005 | 35.71 | 500 | 0.7515 | 36.1373 | 36.4341 | | 0.0002 | 71.43 | 1000 | 0.8095 | 36.4065 | 36.5633 | | 0.0001 | 107.14 | 1500 | 0.8421 | 36.4738 | 36.6925 | | 0.0001 | 142.86 | 2000 | 0.8636 | 35.4643 | 35.5943 | | 0.0001 | 178.57 | 2500 | 0.8822 | 35.6662 | 35.7235 | | 0.0 | 214.29 | 3000 | 0.8931 | 35.4643 | 35.7235 | | 0.0 | 250.0 | 3500 | 0.9013 | 35.4643 | 35.7235 | | 0.0 | 285.71 | 4000 | 0.9035 | 35.4643 | 35.7235 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
KenmaKIN101/LenKagamineV4_250epochs
KenmaKIN101
2023-08-13T18:38:53Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-08-13T18:32:40Z
--- license: openrail --- This model is for fair use only. Also, it may sound a bit bad because this was my first model (because I discarded the Miku model).
bigmorning/whisper_charsplit_new_round2__0027
bigmorning
2023-08-13T18:37:27Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T18:37:20Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0027 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0027 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0011 - Train Accuracy: 0.0795 - Train Wermet: 8.4237 - Validation Loss: 0.5710 - Validation Accuracy: 0.0768 - Validation Wermet: 7.4035 - Epoch: 26 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e-1_s108_v4_l5_v50
KingKazma
2023-08-13T18:34:32Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:35:50Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KemalHal/whisper-base-bosnian-google
KemalHal
2023-08-13T18:29:56Z
78
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "bs", "dataset:google/fleurs", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-11T15:15:09Z
--- datasets: - google/fleurs language: - bs metrics: - wer pipeline_tag: automatic-speech-recognition --- Ovaj model je Fine-Tuned verzija Whisper AI base modela na Bosanskom jeziku. Dataset koristen je google/fleurs bs_ba.
dn118/epicnegative
dn118
2023-08-13T18:29:16Z
0
0
null
[ "region:us" ]
null
2023-08-13T18:25:53Z
all credits go to epinikion https://civitai.com/user/epinikion reuploaded from civit.ai, source: https://civitai.com/models/89484?modelVersionId=95263
SaudxInu/Reinforce-CartPole-v1
SaudxInu
2023-08-13T18:28:55Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T18:05:19Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
josephamess/llama-2-7b-ExtraData-v2
josephamess
2023-08-13T18:24:51Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:36:15Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0024
bigmorning
2023-08-13T18:24:25Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T18:24:17Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0024 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0024 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0008 - Train Accuracy: 0.0795 - Train Wermet: 8.3246 - Validation Loss: 0.5620 - Validation Accuracy: 0.0768 - Validation Wermet: 7.4475 - Epoch: 23 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
charliezjw/t2
charliezjw
2023-08-13T18:20:49Z
0
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-13T17:48:17Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - charliezjw/t2 These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
bigmorning/whisper_charsplit_new_round2__0023
bigmorning
2023-08-13T18:20:01Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T18:19:52Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0023 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0023 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0007 - Train Accuracy: 0.0795 - Train Wermet: 8.6456 - Validation Loss: 0.5543 - Validation Accuracy: 0.0768 - Validation Wermet: 7.4625 - Epoch: 22 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e8_s55555_v4_l4_v100
KingKazma
2023-08-13T18:19:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:19:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
RAVIKUMAR/ddpm-butterflies-128
RAVIKUMAR
2023-08-13T18:16:08Z
5
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2023-08-13T18:09:17Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/HuggingFace7/ddpm-butterflies-128/tensorboard?#scalars) license: mit ---
bigmorning/whisper_charsplit_new_round2__0021
bigmorning
2023-08-13T18:11:16Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T18:11:08Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0021 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0021 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0058 - Train Accuracy: 0.0794 - Train Wermet: 8.8460 - Validation Loss: 0.5706 - Validation Accuracy: 0.0766 - Validation Wermet: 7.4342 - Epoch: 20 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e7_s55555_v4_l4_v100
KingKazma
2023-08-13T18:10:32Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:10:31Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0020
bigmorning
2023-08-13T18:06:52Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T18:06:44Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0020 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0020 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0014 - Train Accuracy: 0.0795 - Train Wermet: 8.7153 - Validation Loss: 0.5804 - Validation Accuracy: 0.0765 - Validation Wermet: 7.8654 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e6_s55555_v4_l4_v100
KingKazma
2023-08-13T18:01:56Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:01:55Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0017
bigmorning
2023-08-13T17:53:35Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:53:25Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0017 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0017 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0005 - Train Accuracy: 0.0795 - Train Wermet: 9.0553 - Validation Loss: 0.5620 - Validation Accuracy: 0.0768 - Validation Wermet: 8.5020 - Epoch: 16 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e5_s55555_v4_l4_v100
KingKazma
2023-08-13T17:53:21Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:53:20Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
YassineBenlaria/tamasheq-3e-5
YassineBenlaria
2023-08-13T17:52:52Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:jonatasgrosman/wav2vec2-large-xlsr-53-arabic", "base_model:finetune:jonatasgrosman/wav2vec2-large-xlsr-53-arabic", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-12T10:54:16Z
--- license: apache-2.0 base_model: jonatasgrosman/wav2vec2-large-xlsr-53-arabic tags: - generated_from_trainer metrics: - wer model-index: - name: tamasheq-3e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tamasheq-3e-5 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-arabic](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-arabic) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6463 - Wer: 0.7256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 16.1726 | 5.8 | 200 | 3.5775 | 1.0 | | 3.2056 | 11.59 | 400 | 3.0132 | 1.0 | | 2.3808 | 17.39 | 600 | 1.0264 | 0.8069 | | 0.6535 | 23.19 | 800 | 0.6919 | 0.7388 | | 0.4426 | 28.99 | 1000 | 0.6463 | 0.7256 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Icebear-AI/Llama-2-13b-chat-arabic-lora
Icebear-AI
2023-08-13T17:52:46Z
0
7
null
[ "en", "ar", "dataset:Yasbok/Alpaca_arabic_instruct", "license:apache-2.0", "region:us" ]
null
2023-08-13T17:49:32Z
--- license: apache-2.0 datasets: - Yasbok/Alpaca_arabic_instruct language: - en - ar --- This model is an LoRA adapter file from finetuned Llama-2-13b-chat-hf model. This is an experimental model. This model is presented by IceBear-AI. To run it, you need to: - Agree with Meta's agreements to download the Llama-2-13b-chat-hf model from here: https://huggingface.co/meta-llama/Llama-2-13b-chat-hf - Clone this repository - Clone the Alpaca-LoRA repository from here: https://github.com/tloen/alpaca-lora - Use this command to run it: -python generate.py \ --load_8bit \ --base_model 'PATH_TO_YOUR_LOCAL_LLAMA_2_7B_CHAT_HF' \ --lora_weights 'PATH_TO_YOUR_LOCAL_FILE_OF_THIS_MODEL' You must agree with Meta/Llama-2's agreements to use this model. If you would like to contact us, please don't hesitate to email to icebearai@163.com.
bigmorning/whisper_charsplit_new_round2__0015
bigmorning
2023-08-13T17:44:49Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:44:29Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0015 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0038 - Train Accuracy: 0.0795 - Train Wermet: 8.7270 - Validation Loss: 0.5605 - Validation Accuracy: 0.0767 - Validation Wermet: 7.7098 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e9_s108_v4_l4_v100
KingKazma
2023-08-13T17:42:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:41:58Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0014
bigmorning
2023-08-13T17:40:14Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:40:08Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0014 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0014 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0037 - Train Accuracy: 0.0795 - Train Wermet: 9.2838 - Validation Loss: 0.5751 - Validation Accuracy: 0.0765 - Validation Wermet: 7.4189 - Epoch: 13 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e8_s55555_v4_l4_r2
KingKazma
2023-08-13T17:39:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:38:59Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0013
bigmorning
2023-08-13T17:35:54Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:35:47Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0013 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0013 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0005 - Train Accuracy: 0.0795 - Train Wermet: 9.2292 - Validation Loss: 0.5687 - Validation Accuracy: 0.0767 - Validation Wermet: 8.5576 - Epoch: 12 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e8_s108_v4_l4_v100
KingKazma
2023-08-13T17:33:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:33:19Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e2_s55555_v4_l4_v100
KingKazma
2023-08-13T17:27:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:27:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0011
bigmorning
2023-08-13T17:27:17Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:27:08Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0011 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0011 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0005 - Train Accuracy: 0.0795 - Train Wermet: 9.3749 - Validation Loss: 0.5552 - Validation Accuracy: 0.0768 - Validation Wermet: 8.0800 - Epoch: 10 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round2__0010
bigmorning
2023-08-13T17:22:53Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:22:45Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0011 - Train Accuracy: 0.0795 - Train Wermet: 8.9730 - Validation Loss: 0.5605 - Validation Accuracy: 0.0767 - Validation Wermet: 8.3958 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_lora_500_10_3000_8_e8_s55555_v4_l4_r4
KingKazma
2023-08-13T17:22:22Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:22:20Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0009
bigmorning
2023-08-13T17:18:33Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:18:25Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0009 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0009 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0031 - Train Accuracy: 0.0795 - Train Wermet: 9.2135 - Validation Loss: 0.5636 - Validation Accuracy: 0.0766 - Validation Wermet: 8.2384 - Epoch: 8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e5_s55555_v4_l4_r2
KingKazma
2023-08-13T17:16:58Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:16:56Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0008
bigmorning
2023-08-13T17:14:11Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:14:03Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0008 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0008 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0037 - Train Accuracy: 0.0795 - Train Wermet: 9.3428 - Validation Loss: 0.5717 - Validation Accuracy: 0.0764 - Validation Wermet: 8.2631 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e0_s55555_v4_l4_v100
KingKazma
2023-08-13T17:10:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:10:35Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e4_s55555_v4_l4_r2
KingKazma
2023-08-13T17:09:37Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:09:36Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e6_s55555_v4_l4_r4
KingKazma
2023-08-13T17:08:38Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:08:36Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0006
bigmorning
2023-08-13T17:05:24Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:05:17Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0006 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0006 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0012 - Train Accuracy: 0.0795 - Train Wermet: 8.8862 - Validation Loss: 0.5667 - Validation Accuracy: 0.0767 - Validation Wermet: 8.2913 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
jiaqixuac/controlnet_training
jiaqixuac
2023-08-13T17:05:05Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-13T14:21:44Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet-jiaqixuac/controlnet_training These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. You can find some example images below. prompt: red circle with blue background ![images_0)](./images_0.png) prompt: cyan circle with brown floral background ![images_1)](./images_1.png)
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e-1_s55555_v4_l4_v100
KingKazma
2023-08-13T17:02:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:58:53Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e5_s55555_v4_l4_r4
KingKazma
2023-08-13T17:01:46Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:01:44Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0005
bigmorning
2023-08-13T17:00:54Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:00:46Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0011 - Train Accuracy: 0.0795 - Train Wermet: 8.9053 - Validation Loss: 0.5609 - Validation Accuracy: 0.0767 - Validation Wermet: 7.5155 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e4_s108_v4_l4_v100
KingKazma
2023-08-13T16:58:48Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:58:44Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0004
bigmorning
2023-08-13T16:56:30Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T16:56:23Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0004 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0004 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0019 - Train Accuracy: 0.0795 - Train Wermet: 8.9450 - Validation Loss: 0.5623 - Validation Accuracy: 0.0766 - Validation Wermet: 7.7117 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e2_s55555_v4_l4_r2
KingKazma
2023-08-13T16:54:56Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:54:53Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
jsnbuchanan/segformer-b0-scene-parse-150
jsnbuchanan
2023-08-13T16:50:58Z
31
0
transformers
[ "transformers", "pytorch", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2023-08-01T20:37:16Z
--- license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 4.5716 - Mean Iou: 0.0039 - Mean Accuracy: 0.0219 - Overall Accuracy: 0.1398 - Per Category Iou: [0.1424604255351693, 0.0028172808510882213, 0.009342676914231785, 0.0, 0.0, 0.02331811292704824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] - Per Category Accuracy: [0.9514506078251098, 0.0028769356391743226, 0.00966095515858549, 0.0, 0.0, 0.045009037210949, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.8633 | 1.0 | 20 | 4.8626 | 0.0009 | 0.0023 | 0.0067 | [0.0, 0.0004889263991152761, 0.0, 0.0, 0.0, 0.0, 0.03284478144986514, 0.0, 0.0, 0.014472940861907617, 0.0, 0.0009606283639651349, 0.0, 0.001090056864633105, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0033905507210453163, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.011123126834543489, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan] | [0.0, 0.0004916838121884905, 0.0, 0.0, 0.0, 0.0, 0.05156049842785606, 0.0, 0.0, 0.02758031245634076, 0.0, 0.002084802403654536, 0.0, 0.0011670427137633237, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.003448710560437977, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.02041973908111174, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 4.8081 | 2.0 | 40 | 4.6105 | 0.0014 | 0.0050 | 0.0207 | [0.0014870097866647892, 0.00010797969981643452, 0.0, 0.0, 0.0, 0.005608097195054107, 0.06877789289425044, 0.0, 0.0, 0.012758644335110486, 0.0, 0.0, 0.0, 0.0023358985966500678, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0030744981206588954, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan] | [0.0014982803827425341, 0.0001082875062557985, 0.0, 0.0, 0.0, 0.005822945199098142, 0.19299522534063118, 0.0, 0.0, 0.024465610900633625, 0.0, 0.0, 0.0, 0.002509141834591146, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.00319658550641118, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 4.6722 | 3.0 | 60 | 4.3976 | 0.0024 | 0.0122 | 0.0530 | [0.025172656541163803, 0.0010250959756997078, 0.0, 0.00034731034851257663, 0.0, 0.01513758223102497, 0.08697308653455893, 0.0, 0.0, 0.018849001504380403, 0.0, 0.0, 0.0, 0.002455752600466593, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0010695187165775401, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan] | [0.031049590810546986, 0.001033121343467483, 0.0, 0.0003484413948377067, 0.0, 0.01993776436171204, 0.465229832471011, 0.0, 0.0, 0.042011489057453506, 0.0, 0.0, 0.0, 0.0027230996654477556, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0010805359458291313, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 4.3876 | 4.0 | 80 | 4.1595 | 0.0032 | 0.0120 | 0.0594 | [0.07854437258265586, 0.002560575118273506, 0.0, 0.0, 0.0, 0.001192829675600377, 0.0810610478529872, 0.0, 0.0, 0.014937473673721733, 0.0, 0.0, 0.0, 0.005779474740910093, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan] | [0.16734486555203687, 0.0026310937330800773, 0.0, 0.0, 0.0, 0.001332289861553655, 0.3434053136801477, 0.0, 0.0, 0.027103656281588746, 0.0, 0.0, 0.0, 0.009686454524235588, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 4.5927 | 5.0 | 100 | 4.1201 | 0.0038 | 0.0139 | 0.0738 | [0.10272745389575265, 5.808145343029064e-06, 0.0011583054074428688, 0.0, 0.0, 0.004795549066148129, 0.07399210984610646, 0.0, 0.0, 0.021106484070283166, 0.0, 0.0, 0.0, 0.004504373601464648, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.31741694191893394, 5.853378716529649e-06, 0.0011806276115426681, 0.0, 0.0, 0.00645648163676002, 0.2597614333959973, 0.0, 0.0, 0.0499420616201379, 0.0, 0.0, 0.0, 0.006029720687777173, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.6357 | 6.0 | 120 | 3.8936 | 0.0031 | 0.0183 | 0.1193 | [0.13782355615369993, 0.00012947106753210882, 0.0020724837921139334, 0.0, 0.0, 0.002555414284014255, 0.00625454345947577, 0.0, 0.0, 0.0021069049880189433, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.8250104993132882, 0.0001317010211219171, 0.002187386073641998, 0.0, 0.0, 0.0038012186259712673, 0.0075862183699612375, 0.0, 0.0, 0.0027531003196883653, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.9752 | 7.0 | 140 | 3.7886 | 0.0046 | 0.0208 | 0.1099 | [0.12970556062622363, 0.02142529574722971, 0.015682682019160826, 0.0, 0.0, 0.046496050677108665, 0.011263870769586333, 0.0, 0.0, 7.157683773530885e-05, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.6339173221643342, 0.026799694453630996, 0.017715022855380128, 0.0, 0.0, 0.2645107794361526, 0.01540534695303532, 0.0, 0.0, 8.218209909517509e-05, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 4.3363 | 8.0 | 160 | 3.7281 | 0.0044 | 0.0211 | 0.1287 | [0.13844309203854324, 0.006048050986190329, 0.03636386971467197, 0.0, 0.0, 0.029408017788998847, 0.00848082968593638, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.8096133982588166, 0.006476763549840056, 0.047673799040915336, 0.0, 0.0, 0.09462984701958373, 0.010468482257232695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 4.0164 | 9.0 | 180 | 3.7593 | 0.0058 | 0.0207 | 0.1113 | [0.1257575586728653, 0.031513436815826704, 0.04777990089072147, 0.0, 1.3152702880441932e-05, 0.04167081950119985, 0.042454800300151495, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.5380103517553717, 0.04309550080044954, 0.06794918533890462, 0.0, 1.6288501946475982e-05, 0.20255464251774832, 0.09977291254221497, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.5911 | 10.0 | 200 | 3.4747 | 0.0045 | 0.0213 | 0.1331 | [0.1420633887795078, 0.015648167497586848, 0.018910536514932744, 0.0, 0.0, 0.024232767348835664, 0.007368267428066774, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.8642552297930784, 0.018408876063485746, 0.022330968338988753, 0.0, 0.0, 0.0680119999254663, 0.008189289457485567, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.6199 | 11.0 | 220 | 3.5161 | 0.0043 | 0.0210 | 0.1347 | [0.14182326280462046, 0.005032394655020479, 0.028134080245829304, 0.0, 0.0, 0.014572871324844493, 0.013168143969916734, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.8793316761444252, 0.005314867874608921, 0.037280910849995796, 0.0, 0.0, 0.029226526543313397, 0.016312033139796036, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.6997 | 12.0 | 240 | 3.4768 | 0.0032 | 0.0217 | 0.1424 | [0.14365582667494992, 0.0001899779333323591, 0.00036495363737125246, 0.0, 0.0, 0.0013590921597892156, 0.0009173402092527396, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9941061962974314, 0.0001902348082872136, 0.0003785860512072689, 0.0, 0.0, 0.0015186241079247955, 0.0009233226305544927, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.8775 | 13.0 | 260 | 3.4909 | 0.0034 | 0.0215 | 0.1412 | [0.14366726677393113, 0.0, 0.00935392023848197, 0.0, 0.0, 0.002252103613265138, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9757607745655554, 0.0, 0.01098179982613085, 0.0, 0.0, 0.0025434624629660685, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.6896 | 14.0 | 280 | 3.4944 | 0.0032 | 0.0216 | 0.1419 | [0.14372170627530323, 0.0, 0.0026556544494494754, 0.0, 0.0, 0.0026339040125360493, 5.807995950997109e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9887260076503105, 0.0, 0.002880058330295297, 0.0, 0.0, 0.002944081092664021, 5.822755327821125e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.5723 | 15.0 | 300 | 3.4798 | 0.0033 | 0.0216 | 0.1420 | [0.14360235216056103, 0.0, 0.005107262858619798, 0.0, 0.0, 0.0031149607580008946, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.986302652637314, 0.0, 0.005541378053226394, 0.0, 0.0, 0.0035683008180073415, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7581 | 16.0 | 320 | 3.5572 | 0.0037 | 0.0217 | 0.1428 | [0.14338450814233764, 0.0, 0.023961774556760896, 0.0, 0.0, 0.0016283550899666187, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9689248703192926, 0.0, 0.029392299279284332, 0.0, 0.0, 0.001677008217340265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.5605 | 17.0 | 340 | 3.4733 | 0.0035 | 0.0217 | 0.1426 | [0.14333996536268165, 5.851409311932779e-06, 0.015588103385475387, 0.0, 0.0, 0.0036605352700892673, 2.4902258634858183e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9784338429756756, 5.853378716529649e-06, 0.017642109986258727, 0.0, 0.0, 0.004099353420165092, 2.4954665690661966e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7163 | 18.0 | 360 | 3.5516 | 0.0036 | 0.0217 | 0.1420 | [0.1431641368804744, 1.7551198308064484e-05, 0.017346049550404807, 0.0, 0.0, 0.006382572138352761, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9707466430574, 1.7560136149588946e-05, 0.019983734821503688, 0.0, 0.0, 0.007779454785995118, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.2231 | 19.0 | 380 | 3.5751 | 0.0051 | 0.0222 | 0.1352 | [0.14144860113740007, 0.003382545372614381, 0.05970141064540731, 0.0, 0.0, 0.03208762207850171, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.8172324945233311, 0.003427153238528109, 0.0915421071819176, 0.0, 0.0, 0.1078409450872976, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7188 | 20.0 | 400 | 3.4891 | 0.0042 | 0.0218 | 0.1394 | [0.14279628860196056, 0.00783605754787311, 0.023641167287138224, 0.0, 0.0, 0.019599678095523283, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9274525828310689, 0.00824448392223201, 0.02760312964468998, 0.0, 0.0, 0.03902770790243539, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.6156 | 21.0 | 420 | 3.5195 | 0.0039 | 0.0218 | 0.1430 | [0.1431243377907112, 0.003771829965220418, 0.028600253499599246, 0.0, 0.0, 0.003834416457157314, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9602076026378815, 0.003869083331626098, 0.03442328724866093, 0.0, 0.0, 0.004518605474500158, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7812 | 22.0 | 440 | 3.5044 | 0.0034 | 0.0218 | 0.1431 | [0.14375063548866288, 0.003941135854106936, 0.008966284779050737, 0.0, 0.0, 0.0008825520320117902, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9869070725644431, 0.004059318139913311, 0.00960206399506436, 0.0, 0.0, 0.0009596213688113738, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.9414 | 23.0 | 460 | 3.6536 | 0.0031 | 0.0217 | 0.1430 | [0.1433341827741543, 0.0009574223513012504, 1.945649666321082e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9991458666757471, 0.0009628807988691273, 1.9630387840376903e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.3775 | 24.0 | 480 | 3.5794 | 0.0031 | 0.0217 | 0.1429 | [0.14339061919565174, 0.0004489089181295073, 0.0005344750160480256, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9989443933667042, 0.00045071016117278296, 0.0005440421772904456, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7282 | 25.0 | 500 | 4.1077 | 0.0031 | 0.0217 | 0.1430 | [0.14301211156076965, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9999744611298396, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.2262 | 26.0 | 520 | 4.1736 | 0.0031 | 0.0217 | 0.1430 | [0.1429770208690924, 0.00013157471543312935, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9998581173879979, 0.0001317010211219171, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.3175 | 27.0 | 540 | 4.0696 | 0.0031 | 0.0217 | 0.1430 | [0.143028637658645, 0.0009629118921073225, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9990578994563059, 0.0009687341775856569, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.8936 | 28.0 | 560 | 4.5036 | 0.0031 | 0.0217 | 0.1430 | [0.14297076727730323, 0.0002453013117779673, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9997531242551163, 0.00024584190609424527, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7712 | 29.0 | 580 | 4.0164 | 0.0031 | 0.0217 | 0.1429 | [0.14297121162029977, 0.0007422241109319424, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9989103415398236, 0.0007463057863575303, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.0557 | 30.0 | 600 | 4.2748 | 0.0031 | 0.0217 | 0.1429 | [0.14303412843917407, 0.0003856052395572551, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9988961532786234, 0.00038632299529095683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.3498 | 31.0 | 620 | 4.4146 | 0.0031 | 0.0216 | 0.1423 | [0.14290109320524125, 0.0001608060182383262, 0.0, 0.0, 0.0, 0.0005434010215939206, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9951334264083268, 0.00016096791470456535, 0.0, 0.0, 0.0, 0.0006055863007062068, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.6119 | 32.0 | 640 | 4.1771 | 0.0031 | 0.0217 | 0.1425 | [0.14301796804098232, 0.00011991109031352363, 0.0, 0.0, 0.0, 2.5596614421132564e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9967650764463514, 0.00011999426368885781, 0.0, 0.0, 0.0, 2.7950136955671083e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.2928 | 33.0 | 660 | 4.2533 | 0.0031 | 0.0217 | 0.1426 | [0.1430651199052239, 0.0, 0.0, 0.0, 0.0, 0.0005383649088625119, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9971878866301177, 0.0, 0.0, 0.0, 0.0, 0.0005869528760690928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.9388 | 34.0 | 680 | 4.4678 | 0.0031 | 0.0217 | 0.1424 | [0.14302521070021848, 8.777165326686094e-06, 0.0, 0.0, 0.0, 0.00013477429517255322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9962911885222642, 8.780068074794473e-06, 0.0, 0.0, 0.0, 0.00014906739709691244, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.0637 | 35.0 | 700 | 4.3135 | 0.0032 | 0.0216 | 0.1418 | [0.1429503635871641, 0.00015791597700275475, 1.398789208061502e-05, 0.0, 0.0, 0.0028473543966501713, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9908826233527429, 0.00015804122534630053, 1.4021705600269217e-05, 0.0, 0.0, 0.0034844504071403284, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.8097 | 36.0 | 720 | 4.5076 | 0.0033 | 0.0215 | 0.1403 | [0.14292913158156023, 0.0009571919257359143, 6.428765090128491e-05, 0.0, 0.0, 0.008040658872532778, 0.00016170025747656383, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9762885778822034, 0.0009599541095108625, 6.44998457612384e-05, 0.0, 0.0, 0.012661412040919001, 0.00016220532698930278, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.5005 | 37.0 | 740 | 4.9189 | 0.0032 | 0.0216 | 0.1416 | [0.14321751517531003, 0.0011148109769586326, 3.077732326821598e-05, 0.0, 0.0, 0.002581131431496914, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9885330472979875, 0.0011209220242154277, 3.0847752320592275e-05, 0.0, 0.0, 0.003381966571636201, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.3499 | 38.0 | 760 | 4.8759 | 0.0037 | 0.0216 | 0.1383 | [0.14275769206892197, 0.00015486525262029086, 0.008065831982682663, 0.0, 0.0, 0.018616346885301328, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9461782499631105, 0.0001551145359880357, 0.0083176757620797, 0.0, 0.0, 0.041040117763243705, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.0865 | 39.0 | 780 | 3.8349 | 0.0041 | 0.0219 | 0.1405 | [0.14317728070866245, 0.0019387900438625815, 0.0272595934506007, 0.0, 0.0, 0.01595177221476263, 0.0019825804723817746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9389535873599618, 0.001952101801962638, 0.030160688746179085, 0.0, 0.0, 0.03231967503307433, 0.0020629190304280558, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.4726 | 40.0 | 800 | 3.9250 | 0.0037 | 0.0216 | 0.1400 | [0.14244053050451713, 0.0022596513184196345, 0.012475440730295781, 0.0, 0.0, 0.013494958163484231, 0.000710175687780943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9559227477554171, 0.002282817699446563, 0.013087860007291287, 0.0, 0.0, 0.02344084819348948, 0.0007320035269260843, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.0128 | 41.0 | 820 | 4.4055 | 0.0033 | 0.0215 | 0.1403 | [0.14267630712423943, 0.0006876557059397718, 0.002249988165285022, 0.0, 0.0, 0.008327223523661356, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9745434217545771, 0.0006906986885504985, 0.0022659076250035053, 0.0, 0.0, 0.013015447109024168, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.1359 | 42.0 | 840 | 4.3485 | 0.0032 | 0.0215 | 0.1409 | [0.1428689296917672, 0.00043785776628320057, 0.000735403087574484, 0.0, 0.0, 0.004521202653144983, 4.1517204729639965e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9827243731626202, 0.00043900340373972366, 0.0007375417145741608, 0.0, 0.0, 0.00636331451357445, 4.159110948443661e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.3446 | 43.0 | 860 | 4.1294 | 0.0033 | 0.0216 | 0.1415 | [0.14297466923456498, 0.0010833321199237007, 0.0038991084994498782, 0.0, 0.0, 0.0033002377289889527, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9833543319599096, 0.0010887284412745147, 0.003965338343756134, 0.0, 0.0, 0.004397488214358917, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7443 | 44.0 | 880 | 4.2309 | 0.0034 | 0.0215 | 0.1398 | [0.14257015931769873, 0.0010936527419852125, 0.004274154927043165, 0.0, 0.0, 0.010032222702056273, 4.527177469472419e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9670633704498246, 0.001100435198707574, 0.004329902689363134, 0.0, 0.0, 0.016881882721225334, 4.575022043288027e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.8209 | 45.0 | 900 | 4.4797 | 0.0033 | 0.0215 | 0.1407 | [0.14293897407373585, 0.001303224682901344, 0.002799500704740247, 0.0, 0.0, 0.006579395289821434, 2.0683977777134275e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9771739253810967, 0.0013140835218609062, 0.0028239715078942204, 0.0, 0.0, 0.00990366519462612, 2.0795554742218304e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.9059 | 46.0 | 920 | 4.5053 | 0.0040 | 0.0220 | 0.1364 | [0.14228787838186308, 0.0013217808522283945, 0.007278362518756201, 0.0, 0.0, 0.030787987593700387, 6.171544243800683e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9191155605498235, 0.0013287169686522302, 0.007467960402703385, 0.0, 0.0, 0.0856392196321762, 6.238666422665492e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.2262 | 47.0 | 940 | 5.3410 | 0.0039 | 0.0219 | 0.1365 | [0.1423258178089665, 0.003478698692055064, 0.0075020785926833535, 0.0, 0.0, 0.02704553235193427, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9217006617405024, 0.0035588542596500265, 0.007692307692307693, 0.0, 0.0, 0.07286600704343452, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.7618 | 48.0 | 960 | 5.0946 | 0.0038 | 0.0218 | 0.1373 | [0.1426949704126623, 0.0032438673758399044, 0.0051523797709134515, 0.0, 0.0, 0.023948251838033993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.93417498098773, 0.0033217924216305756, 0.005241313553380633, 0.0, 0.0, 0.05908658952428867, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7284 | 49.0 | 980 | 4.0830 | 0.0043 | 0.0221 | 0.1373 | [0.14283896315255537, 0.0034238556212341873, 0.024018439121225456, 0.0, 0.0, 0.029172219275206687, 0.0002549698559831555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9045640798628847, 0.0035091005405595245, 0.026329958776185537, 0.0, 0.0, 0.08402742840106583, 0.00025786487880350697, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.6351 | 50.0 | 1000 | 4.5716 | 0.0039 | 0.0219 | 0.1398 | [0.1424604255351693, 0.0028172808510882213, 0.009342676914231785, 0.0, 0.0, 0.02331811292704824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9514506078251098, 0.0028769356391743226, 0.00966095515858549, 0.0, 0.0, 0.045009037210949, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | ### Framework versions - Transformers 4.31.0 - Pytorch 2.1.0.dev20230812 - Datasets 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e3_s108_v4_l4_v100
KingKazma
2023-08-13T16:50:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:50:05Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
LBR47/speecht5_finetuned_voxpopuli_nl
LBR47
2023-08-13T16:49:06Z
82
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "text-to-speech", "dataset:voxpopuli", "endpoints_compatible", "region:us" ]
text-to-speech
2023-08-13T16:41:15Z
--- base_model: speechT5 tags: - text-to-speech datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [speechT5](https://huggingface.co/speechT5) on the voxpopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Framework versions - Transformers 4.31.0 - Pytorch 1.12.1+cpu - Datasets 2.13.1 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e8_s108_v4_l4_v100
KingKazma
2023-08-13T16:47:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:47:02Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e1_s55555_v4_l4_r4
KingKazma
2023-08-13T16:34:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:34:15Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e1_s108_v4_l4_v100
KingKazma
2023-08-13T16:32:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:32:49Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
digicazter/wav2vec2-base-timit-demo-google-colab
digicazter
2023-08-13T16:32:43Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-07T03:20:25Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0392 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.2993 | 8.0 | 200 | 3.0327 | 1.0 | | 3.0806 | 16.0 | 400 | 3.0476 | 1.0 | | 3.0219 | 24.0 | 600 | 3.0472 | 1.0 | | 3.0179 | 32.0 | 800 | 3.0435 | 1.0 | | 3.0157 | 40.0 | 1000 | 3.0546 | 1.0 | | 3.0146 | 48.0 | 1200 | 3.0484 | 1.0 | | 3.0139 | 56.0 | 1400 | 3.0344 | 1.0 | | 3.0118 | 64.0 | 1600 | 3.0351 | 1.0 | | 3.0114 | 72.0 | 1800 | 3.0559 | 1.0 | | 3.0114 | 80.0 | 2000 | 3.0526 | 1.0 | | 3.0108 | 88.0 | 2200 | 3.0417 | 1.0 | | 3.0092 | 96.0 | 2400 | 3.0629 | 1.0 | | 3.0089 | 104.0 | 2600 | 3.0352 | 1.0 | | 3.0083 | 112.0 | 2800 | 3.0503 | 1.0 | | 3.0078 | 120.0 | 3000 | 3.0529 | 1.0 | | 3.0072 | 128.0 | 3200 | 3.0378 | 1.0 | | 3.0068 | 136.0 | 3400 | 3.0481 | 1.0 | | 3.0063 | 144.0 | 3600 | 3.0392 | 1.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e9_s108_v4_l4_r2
KingKazma
2023-08-13T16:22:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:22:58Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_0098
bigmorning
2023-08-13T16:22:52Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T16:22:44Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0098 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0098 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0044 - Train Accuracy: 0.0794 - Train Wermet: 8.8948 - Validation Loss: 0.5589 - Validation Accuracy: 0.0765 - Validation Wermet: 7.4085 - Epoch: 97 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | | 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 | | 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 | | 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 | | 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 | | 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 | | 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 | | 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 | | 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 | | 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 | | 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 | | 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 | | 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 | | 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 | | 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 | | 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 | | 0.0034 | 0.0795 | 9.8382 | 0.5771 | 0.0758 | 8.8051 | 66 | | 0.0123 | 0.0792 | 10.2575 | 0.5261 | 0.0763 | 9.3701 | 67 | | 0.0027 | 0.0795 | 10.3802 | 0.5272 | 0.0764 | 8.8216 | 68 | | 0.0011 | 0.0795 | 10.1683 | 0.5291 | 0.0764 | 8.5736 | 69 | | 0.0012 | 0.0795 | 10.1305 | 0.5336 | 0.0765 | 8.6648 | 70 | | 0.0008 | 0.0795 | 10.2545 | 0.5315 | 0.0765 | 9.0617 | 71 | | 0.0006 | 0.0795 | 10.4562 | 0.5369 | 0.0765 | 9.6485 | 72 | | 0.0032 | 0.0795 | 10.2347 | 0.5569 | 0.0763 | 8.4947 | 73 | | 0.0062 | 0.0794 | 10.1654 | 0.5471 | 0.0763 | 8.8666 | 74 | | 0.0029 | 0.0795 | 10.1320 | 0.5376 | 0.0765 | 8.7713 | 75 | | 0.0012 | 0.0795 | 10.2943 | 0.5406 | 0.0765 | 8.6959 | 76 | | 0.0006 | 0.0795 | 10.1888 | 0.5371 | 0.0767 | 8.9689 | 77 | | 0.0005 | 0.0795 | 10.2138 | 0.5398 | 0.0766 | 8.7470 | 78 | | 0.0016 | 0.0795 | 10.2173 | 0.5497 | 0.0764 | 8.9675 | 79 | | 0.0065 | 0.0794 | 10.2806 | 0.5559 | 0.0763 | 9.4487 | 80 | | 0.0028 | 0.0795 | 10.7728 | 0.5394 | 0.0766 | 8.9716 | 81 | | 0.0012 | 0.0795 | 10.3247 | 0.5453 | 0.0765 | 8.9986 | 82 | | 0.0013 | 0.0795 | 10.3174 | 0.5535 | 0.0765 | 8.9229 | 83 | | 0.0011 | 0.0795 | 10.2846 | 0.5452 | 0.0766 | 9.1239 | 84 | | 0.0007 | 0.0795 | 10.1996 | 0.5491 | 0.0766 | 8.9308 | 85 | | 0.0034 | 0.0795 | 10.5048 | 0.5578 | 0.0764 | 8.9920 | 86 | | 0.0038 | 0.0795 | 10.1430 | 0.5538 | 0.0765 | 9.1635 | 87 | | 0.0019 | 0.0795 | 10.3176 | 0.5492 | 0.0766 | 8.5812 | 88 | | 0.0007 | 0.0795 | 10.2569 | 0.5488 | 0.0766 | 8.9133 | 89 | | 0.0006 | 0.0795 | 10.2538 | 0.5541 | 0.0766 | 8.7676 | 90 | | 0.0029 | 0.0795 | 10.1412 | 0.5666 | 0.0764 | 9.0822 | 91 | | 0.0042 | 0.0795 | 9.5603 | 0.5582 | 0.0765 | 7.6837 | 92 | | 0.0015 | 0.0795 | 9.4004 | 0.5495 | 0.0766 | 7.7859 | 93 | | 0.0008 | 0.0795 | 9.5417 | 0.5503 | 0.0767 | 7.8876 | 94 | | 0.0005 | 0.0795 | 9.3473 | 0.5590 | 0.0766 | 7.8967 | 95 | | 0.0016 | 0.0795 | 9.1740 | 0.5746 | 0.0765 | 7.8469 | 96 | | 0.0044 | 0.0794 | 8.8948 | 0.5589 | 0.0765 | 7.4085 | 97 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e-1_s108_v4_l4_v100
KingKazma
2023-08-13T16:15:39Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:15:36Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_0096
bigmorning
2023-08-13T16:14:08Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T16:14:00Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0096 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0096 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0005 - Train Accuracy: 0.0795 - Train Wermet: 9.3473 - Validation Loss: 0.5590 - Validation Accuracy: 0.0766 - Validation Wermet: 7.8967 - Epoch: 95 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | | 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 | | 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 | | 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 | | 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 | | 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 | | 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 | | 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 | | 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 | | 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 | | 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 | | 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 | | 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 | | 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 | | 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 | | 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 | | 0.0034 | 0.0795 | 9.8382 | 0.5771 | 0.0758 | 8.8051 | 66 | | 0.0123 | 0.0792 | 10.2575 | 0.5261 | 0.0763 | 9.3701 | 67 | | 0.0027 | 0.0795 | 10.3802 | 0.5272 | 0.0764 | 8.8216 | 68 | | 0.0011 | 0.0795 | 10.1683 | 0.5291 | 0.0764 | 8.5736 | 69 | | 0.0012 | 0.0795 | 10.1305 | 0.5336 | 0.0765 | 8.6648 | 70 | | 0.0008 | 0.0795 | 10.2545 | 0.5315 | 0.0765 | 9.0617 | 71 | | 0.0006 | 0.0795 | 10.4562 | 0.5369 | 0.0765 | 9.6485 | 72 | | 0.0032 | 0.0795 | 10.2347 | 0.5569 | 0.0763 | 8.4947 | 73 | | 0.0062 | 0.0794 | 10.1654 | 0.5471 | 0.0763 | 8.8666 | 74 | | 0.0029 | 0.0795 | 10.1320 | 0.5376 | 0.0765 | 8.7713 | 75 | | 0.0012 | 0.0795 | 10.2943 | 0.5406 | 0.0765 | 8.6959 | 76 | | 0.0006 | 0.0795 | 10.1888 | 0.5371 | 0.0767 | 8.9689 | 77 | | 0.0005 | 0.0795 | 10.2138 | 0.5398 | 0.0766 | 8.7470 | 78 | | 0.0016 | 0.0795 | 10.2173 | 0.5497 | 0.0764 | 8.9675 | 79 | | 0.0065 | 0.0794 | 10.2806 | 0.5559 | 0.0763 | 9.4487 | 80 | | 0.0028 | 0.0795 | 10.7728 | 0.5394 | 0.0766 | 8.9716 | 81 | | 0.0012 | 0.0795 | 10.3247 | 0.5453 | 0.0765 | 8.9986 | 82 | | 0.0013 | 0.0795 | 10.3174 | 0.5535 | 0.0765 | 8.9229 | 83 | | 0.0011 | 0.0795 | 10.2846 | 0.5452 | 0.0766 | 9.1239 | 84 | | 0.0007 | 0.0795 | 10.1996 | 0.5491 | 0.0766 | 8.9308 | 85 | | 0.0034 | 0.0795 | 10.5048 | 0.5578 | 0.0764 | 8.9920 | 86 | | 0.0038 | 0.0795 | 10.1430 | 0.5538 | 0.0765 | 9.1635 | 87 | | 0.0019 | 0.0795 | 10.3176 | 0.5492 | 0.0766 | 8.5812 | 88 | | 0.0007 | 0.0795 | 10.2569 | 0.5488 | 0.0766 | 8.9133 | 89 | | 0.0006 | 0.0795 | 10.2538 | 0.5541 | 0.0766 | 8.7676 | 90 | | 0.0029 | 0.0795 | 10.1412 | 0.5666 | 0.0764 | 9.0822 | 91 | | 0.0042 | 0.0795 | 9.5603 | 0.5582 | 0.0765 | 7.6837 | 92 | | 0.0015 | 0.0795 | 9.4004 | 0.5495 | 0.0766 | 7.7859 | 93 | | 0.0008 | 0.0795 | 9.5417 | 0.5503 | 0.0767 | 7.8876 | 94 | | 0.0005 | 0.0795 | 9.3473 | 0.5590 | 0.0766 | 7.8967 | 95 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_lora_500_10_3000_8_e9_s108_v4_l4_r4
KingKazma
2023-08-13T16:13:40Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:13:38Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e4_s108_v4_l4_v100
KingKazma
2023-08-13T16:12:42Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:12:40Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_0095
bigmorning
2023-08-13T16:09:46Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T16:09:40Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0095 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0095 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0008 - Train Accuracy: 0.0795 - Train Wermet: 9.5417 - Validation Loss: 0.5503 - Validation Accuracy: 0.0767 - Validation Wermet: 7.8876 - Epoch: 94 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | | 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 | | 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 | | 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 | | 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 | | 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 | | 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 | | 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 | | 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 | | 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 | | 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 | | 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 | | 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 | | 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 | | 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 | | 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 | | 0.0034 | 0.0795 | 9.8382 | 0.5771 | 0.0758 | 8.8051 | 66 | | 0.0123 | 0.0792 | 10.2575 | 0.5261 | 0.0763 | 9.3701 | 67 | | 0.0027 | 0.0795 | 10.3802 | 0.5272 | 0.0764 | 8.8216 | 68 | | 0.0011 | 0.0795 | 10.1683 | 0.5291 | 0.0764 | 8.5736 | 69 | | 0.0012 | 0.0795 | 10.1305 | 0.5336 | 0.0765 | 8.6648 | 70 | | 0.0008 | 0.0795 | 10.2545 | 0.5315 | 0.0765 | 9.0617 | 71 | | 0.0006 | 0.0795 | 10.4562 | 0.5369 | 0.0765 | 9.6485 | 72 | | 0.0032 | 0.0795 | 10.2347 | 0.5569 | 0.0763 | 8.4947 | 73 | | 0.0062 | 0.0794 | 10.1654 | 0.5471 | 0.0763 | 8.8666 | 74 | | 0.0029 | 0.0795 | 10.1320 | 0.5376 | 0.0765 | 8.7713 | 75 | | 0.0012 | 0.0795 | 10.2943 | 0.5406 | 0.0765 | 8.6959 | 76 | | 0.0006 | 0.0795 | 10.1888 | 0.5371 | 0.0767 | 8.9689 | 77 | | 0.0005 | 0.0795 | 10.2138 | 0.5398 | 0.0766 | 8.7470 | 78 | | 0.0016 | 0.0795 | 10.2173 | 0.5497 | 0.0764 | 8.9675 | 79 | | 0.0065 | 0.0794 | 10.2806 | 0.5559 | 0.0763 | 9.4487 | 80 | | 0.0028 | 0.0795 | 10.7728 | 0.5394 | 0.0766 | 8.9716 | 81 | | 0.0012 | 0.0795 | 10.3247 | 0.5453 | 0.0765 | 8.9986 | 82 | | 0.0013 | 0.0795 | 10.3174 | 0.5535 | 0.0765 | 8.9229 | 83 | | 0.0011 | 0.0795 | 10.2846 | 0.5452 | 0.0766 | 9.1239 | 84 | | 0.0007 | 0.0795 | 10.1996 | 0.5491 | 0.0766 | 8.9308 | 85 | | 0.0034 | 0.0795 | 10.5048 | 0.5578 | 0.0764 | 8.9920 | 86 | | 0.0038 | 0.0795 | 10.1430 | 0.5538 | 0.0765 | 9.1635 | 87 | | 0.0019 | 0.0795 | 10.3176 | 0.5492 | 0.0766 | 8.5812 | 88 | | 0.0007 | 0.0795 | 10.2569 | 0.5488 | 0.0766 | 8.9133 | 89 | | 0.0006 | 0.0795 | 10.2538 | 0.5541 | 0.0766 | 8.7676 | 90 | | 0.0029 | 0.0795 | 10.1412 | 0.5666 | 0.0764 | 9.0822 | 91 | | 0.0042 | 0.0795 | 9.5603 | 0.5582 | 0.0765 | 7.6837 | 92 | | 0.0015 | 0.0795 | 9.4004 | 0.5495 | 0.0766 | 7.7859 | 93 | | 0.0008 | 0.0795 | 9.5417 | 0.5503 | 0.0767 | 7.8876 | 94 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e7_s108_v4_l4_r2
KingKazma
2023-08-13T16:08:19Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:08:17Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
DHEIVER/Brain_Tumor_Classification
DHEIVER
2023-08-13T16:06:23Z
182
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-13T16:04:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - recall - precision model-index: - name: Brain_Tumor_Classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9646761984861227 - name: F1 type: f1 value: 0.9646761984861227 - name: Recall type: recall value: 0.9646761984861227 - name: Precision type: precision value: 0.9646761984861227 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Brain_Tumor_Classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1012 - Accuracy: 0.9647 - F1: 0.9647 - Recall: 0.9647 - Precision: 0.9647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.4856 | 0.99 | 83 | 0.3771 | 0.8444 | 0.8444 | 0.8444 | 0.8444 | | 0.3495 | 1.99 | 166 | 0.2608 | 0.8949 | 0.8949 | 0.8949 | 0.8949 | | 0.252 | 2.99 | 249 | 0.1445 | 0.9487 | 0.9487 | 0.9487 | 0.9487 | | 0.2364 | 3.99 | 332 | 0.1029 | 0.9588 | 0.9588 | 0.9588 | 0.9588 | | 0.2178 | 4.99 | 415 | 0.1012 | 0.9647 | 0.9647 | 0.9647 | 0.9647 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
bigmorning/whisper_charsplit_new_0094
bigmorning
2023-08-13T16:05:30Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T16:05:24Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0094 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0094 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0015 - Train Accuracy: 0.0795 - Train Wermet: 9.4004 - Validation Loss: 0.5495 - Validation Accuracy: 0.0766 - Validation Wermet: 7.7859 - Epoch: 93 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | | 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 | | 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 | | 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 | | 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 | | 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 | | 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 | | 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 | | 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 | | 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 | | 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 | | 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 | | 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 | | 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 | | 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 | | 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 | | 0.0034 | 0.0795 | 9.8382 | 0.5771 | 0.0758 | 8.8051 | 66 | | 0.0123 | 0.0792 | 10.2575 | 0.5261 | 0.0763 | 9.3701 | 67 | | 0.0027 | 0.0795 | 10.3802 | 0.5272 | 0.0764 | 8.8216 | 68 | | 0.0011 | 0.0795 | 10.1683 | 0.5291 | 0.0764 | 8.5736 | 69 | | 0.0012 | 0.0795 | 10.1305 | 0.5336 | 0.0765 | 8.6648 | 70 | | 0.0008 | 0.0795 | 10.2545 | 0.5315 | 0.0765 | 9.0617 | 71 | | 0.0006 | 0.0795 | 10.4562 | 0.5369 | 0.0765 | 9.6485 | 72 | | 0.0032 | 0.0795 | 10.2347 | 0.5569 | 0.0763 | 8.4947 | 73 | | 0.0062 | 0.0794 | 10.1654 | 0.5471 | 0.0763 | 8.8666 | 74 | | 0.0029 | 0.0795 | 10.1320 | 0.5376 | 0.0765 | 8.7713 | 75 | | 0.0012 | 0.0795 | 10.2943 | 0.5406 | 0.0765 | 8.6959 | 76 | | 0.0006 | 0.0795 | 10.1888 | 0.5371 | 0.0767 | 8.9689 | 77 | | 0.0005 | 0.0795 | 10.2138 | 0.5398 | 0.0766 | 8.7470 | 78 | | 0.0016 | 0.0795 | 10.2173 | 0.5497 | 0.0764 | 8.9675 | 79 | | 0.0065 | 0.0794 | 10.2806 | 0.5559 | 0.0763 | 9.4487 | 80 | | 0.0028 | 0.0795 | 10.7728 | 0.5394 | 0.0766 | 8.9716 | 81 | | 0.0012 | 0.0795 | 10.3247 | 0.5453 | 0.0765 | 8.9986 | 82 | | 0.0013 | 0.0795 | 10.3174 | 0.5535 | 0.0765 | 8.9229 | 83 | | 0.0011 | 0.0795 | 10.2846 | 0.5452 | 0.0766 | 9.1239 | 84 | | 0.0007 | 0.0795 | 10.1996 | 0.5491 | 0.0766 | 8.9308 | 85 | | 0.0034 | 0.0795 | 10.5048 | 0.5578 | 0.0764 | 8.9920 | 86 | | 0.0038 | 0.0795 | 10.1430 | 0.5538 | 0.0765 | 9.1635 | 87 | | 0.0019 | 0.0795 | 10.3176 | 0.5492 | 0.0766 | 8.5812 | 88 | | 0.0007 | 0.0795 | 10.2569 | 0.5488 | 0.0766 | 8.9133 | 89 | | 0.0006 | 0.0795 | 10.2538 | 0.5541 | 0.0766 | 8.7676 | 90 | | 0.0029 | 0.0795 | 10.1412 | 0.5666 | 0.0764 | 9.0822 | 91 | | 0.0042 | 0.0795 | 9.5603 | 0.5582 | 0.0765 | 7.6837 | 92 | | 0.0015 | 0.0795 | 9.4004 | 0.5495 | 0.0766 | 7.7859 | 93 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
evanyin/openai-whisper-tiny-LORA-colab-test
evanyin
2023-08-13T16:05:21Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-08T15:32:52Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e3_s108_v4_l4_v100
KingKazma
2023-08-13T16:04:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:04:05Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
udayGay/resume_model
udayGay
2023-08-13T16:03:19Z
3
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-12T16:11:53Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: udayGay/resume_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # udayGay/resume_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1040 - Validation Loss: 1.4298 - Train Accuracy: 0.6640 - Train Precision: 0.5589 - Train Recall: 0.5938 - Train F1: 0.5692 - Epoch: 29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1470, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Recall | Train F1 | Epoch | |:----------:|:---------------:|:--------------:|:---------------:|:------------:|:--------:|:-----:| | 3.1654 | 3.1440 | 0.0402 | 0.0017 | 0.0417 | 0.0033 | 0 | | 3.1553 | 3.1474 | 0.0282 | 0.0012 | 0.0417 | 0.0023 | 1 | | 3.1208 | 3.0528 | 0.0805 | 0.0147 | 0.0812 | 0.0225 | 2 | | 2.9896 | 2.8784 | 0.1469 | 0.0746 | 0.1384 | 0.0825 | 3 | | 2.6886 | 2.5739 | 0.3300 | 0.2207 | 0.3033 | 0.2182 | 4 | | 2.2855 | 2.1620 | 0.4547 | 0.3432 | 0.4138 | 0.3395 | 5 | | 1.9018 | 1.9030 | 0.5151 | 0.4141 | 0.4679 | 0.4118 | 6 | | 1.6218 | 1.7029 | 0.5795 | 0.4872 | 0.5205 | 0.4854 | 7 | | 1.4058 | 1.5916 | 0.6217 | 0.5261 | 0.5595 | 0.5278 | 8 | | 1.2705 | 1.4954 | 0.6479 | 0.5457 | 0.5815 | 0.5557 | 9 | | 1.1692 | 1.4469 | 0.6600 | 0.5548 | 0.5896 | 0.5643 | 10 | | 1.1179 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 11 | | 1.1162 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 12 | | 1.1109 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 13 | | 1.1142 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 14 | | 1.1095 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 15 | | 1.1108 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 16 | | 1.1133 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 17 | | 1.1132 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 18 | | 1.1064 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 19 | | 1.1098 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 20 | | 1.1029 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 21 | | 1.1055 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 22 | | 1.1125 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 23 | | 1.1081 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 24 | | 1.1125 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 25 | | 1.1130 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 26 | | 1.1101 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 27 | | 1.1134 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 28 | | 1.1040 | 1.4298 | 0.6640 | 0.5589 | 0.5938 | 0.5692 | 29 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_0093
bigmorning
2023-08-13T16:01:10Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T16:01:02Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0093 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0093 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0042 - Train Accuracy: 0.0795 - Train Wermet: 9.5603 - Validation Loss: 0.5582 - Validation Accuracy: 0.0765 - Validation Wermet: 7.6837 - Epoch: 92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | | 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 | | 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 | | 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 | | 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 | | 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 | | 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 | | 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 | | 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 | | 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 | | 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 | | 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 | | 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 | | 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 | | 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 | | 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 | | 0.0034 | 0.0795 | 9.8382 | 0.5771 | 0.0758 | 8.8051 | 66 | | 0.0123 | 0.0792 | 10.2575 | 0.5261 | 0.0763 | 9.3701 | 67 | | 0.0027 | 0.0795 | 10.3802 | 0.5272 | 0.0764 | 8.8216 | 68 | | 0.0011 | 0.0795 | 10.1683 | 0.5291 | 0.0764 | 8.5736 | 69 | | 0.0012 | 0.0795 | 10.1305 | 0.5336 | 0.0765 | 8.6648 | 70 | | 0.0008 | 0.0795 | 10.2545 | 0.5315 | 0.0765 | 9.0617 | 71 | | 0.0006 | 0.0795 | 10.4562 | 0.5369 | 0.0765 | 9.6485 | 72 | | 0.0032 | 0.0795 | 10.2347 | 0.5569 | 0.0763 | 8.4947 | 73 | | 0.0062 | 0.0794 | 10.1654 | 0.5471 | 0.0763 | 8.8666 | 74 | | 0.0029 | 0.0795 | 10.1320 | 0.5376 | 0.0765 | 8.7713 | 75 | | 0.0012 | 0.0795 | 10.2943 | 0.5406 | 0.0765 | 8.6959 | 76 | | 0.0006 | 0.0795 | 10.1888 | 0.5371 | 0.0767 | 8.9689 | 77 | | 0.0005 | 0.0795 | 10.2138 | 0.5398 | 0.0766 | 8.7470 | 78 | | 0.0016 | 0.0795 | 10.2173 | 0.5497 | 0.0764 | 8.9675 | 79 | | 0.0065 | 0.0794 | 10.2806 | 0.5559 | 0.0763 | 9.4487 | 80 | | 0.0028 | 0.0795 | 10.7728 | 0.5394 | 0.0766 | 8.9716 | 81 | | 0.0012 | 0.0795 | 10.3247 | 0.5453 | 0.0765 | 8.9986 | 82 | | 0.0013 | 0.0795 | 10.3174 | 0.5535 | 0.0765 | 8.9229 | 83 | | 0.0011 | 0.0795 | 10.2846 | 0.5452 | 0.0766 | 9.1239 | 84 | | 0.0007 | 0.0795 | 10.1996 | 0.5491 | 0.0766 | 8.9308 | 85 | | 0.0034 | 0.0795 | 10.5048 | 0.5578 | 0.0764 | 8.9920 | 86 | | 0.0038 | 0.0795 | 10.1430 | 0.5538 | 0.0765 | 9.1635 | 87 | | 0.0019 | 0.0795 | 10.3176 | 0.5492 | 0.0766 | 8.5812 | 88 | | 0.0007 | 0.0795 | 10.2569 | 0.5488 | 0.0766 | 8.9133 | 89 | | 0.0006 | 0.0795 | 10.2538 | 0.5541 | 0.0766 | 8.7676 | 90 | | 0.0029 | 0.0795 | 10.1412 | 0.5666 | 0.0764 | 9.0822 | 91 | | 0.0042 | 0.0795 | 9.5603 | 0.5582 | 0.0765 | 7.6837 | 92 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e6_s108_v4_l4_r2
KingKazma
2023-08-13T16:00:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:00:57Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e7_s108_v4_l4_r4
KingKazma
2023-08-13T15:59:56Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T15:59:53Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Sakil/llama2_finetuned_medical_assistant
Sakil
2023-08-13T15:59:29Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T13:39:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
fathyshalab/mdcsi-unterhaltung-kultur-freizeit-setfit
fathyshalab
2023-08-13T15:56:44Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-13T15:55:53Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # C:\Users\F896D~1.SHA\AppData\Local\Temp\tmpyb2_zis8\fathyshalab\mdcsi-unterhaltung-kultur-freizeit-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmpyb2_zis8\fathyshalab\mdcsi-unterhaltung-kultur-freizeit-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e2_s108_v4_l4_v100
KingKazma
2023-08-13T15:55:31Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T15:55:30Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e5_s108_v4_l4_r2
KingKazma
2023-08-13T15:53:39Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T15:53:37Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e6_s108_v4_l4_r4
KingKazma
2023-08-13T15:53:04Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T15:53:02Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_0091
bigmorning
2023-08-13T15:52:18Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T15:52:10Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0091 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0091 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0006 - Train Accuracy: 0.0795 - Train Wermet: 10.2538 - Validation Loss: 0.5541 - Validation Accuracy: 0.0766 - Validation Wermet: 8.7676 - Epoch: 90 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | | 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 | | 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 | | 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 | | 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 | | 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 | | 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 | | 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 | | 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 | | 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 | | 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 | | 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 | | 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 | | 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 | | 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 | | 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 | | 0.0034 | 0.0795 | 9.8382 | 0.5771 | 0.0758 | 8.8051 | 66 | | 0.0123 | 0.0792 | 10.2575 | 0.5261 | 0.0763 | 9.3701 | 67 | | 0.0027 | 0.0795 | 10.3802 | 0.5272 | 0.0764 | 8.8216 | 68 | | 0.0011 | 0.0795 | 10.1683 | 0.5291 | 0.0764 | 8.5736 | 69 | | 0.0012 | 0.0795 | 10.1305 | 0.5336 | 0.0765 | 8.6648 | 70 | | 0.0008 | 0.0795 | 10.2545 | 0.5315 | 0.0765 | 9.0617 | 71 | | 0.0006 | 0.0795 | 10.4562 | 0.5369 | 0.0765 | 9.6485 | 72 | | 0.0032 | 0.0795 | 10.2347 | 0.5569 | 0.0763 | 8.4947 | 73 | | 0.0062 | 0.0794 | 10.1654 | 0.5471 | 0.0763 | 8.8666 | 74 | | 0.0029 | 0.0795 | 10.1320 | 0.5376 | 0.0765 | 8.7713 | 75 | | 0.0012 | 0.0795 | 10.2943 | 0.5406 | 0.0765 | 8.6959 | 76 | | 0.0006 | 0.0795 | 10.1888 | 0.5371 | 0.0767 | 8.9689 | 77 | | 0.0005 | 0.0795 | 10.2138 | 0.5398 | 0.0766 | 8.7470 | 78 | | 0.0016 | 0.0795 | 10.2173 | 0.5497 | 0.0764 | 8.9675 | 79 | | 0.0065 | 0.0794 | 10.2806 | 0.5559 | 0.0763 | 9.4487 | 80 | | 0.0028 | 0.0795 | 10.7728 | 0.5394 | 0.0766 | 8.9716 | 81 | | 0.0012 | 0.0795 | 10.3247 | 0.5453 | 0.0765 | 8.9986 | 82 | | 0.0013 | 0.0795 | 10.3174 | 0.5535 | 0.0765 | 8.9229 | 83 | | 0.0011 | 0.0795 | 10.2846 | 0.5452 | 0.0766 | 9.1239 | 84 | | 0.0007 | 0.0795 | 10.1996 | 0.5491 | 0.0766 | 8.9308 | 85 | | 0.0034 | 0.0795 | 10.5048 | 0.5578 | 0.0764 | 8.9920 | 86 | | 0.0038 | 0.0795 | 10.1430 | 0.5538 | 0.0765 | 9.1635 | 87 | | 0.0019 | 0.0795 | 10.3176 | 0.5492 | 0.0766 | 8.5812 | 88 | | 0.0007 | 0.0795 | 10.2569 | 0.5488 | 0.0766 | 8.9133 | 89 | | 0.0006 | 0.0795 | 10.2538 | 0.5541 | 0.0766 | 8.7676 | 90 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e1_s108_v4_l4_v100
KingKazma
2023-08-13T15:46:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T15:46:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e4_s108_v4_l4_r2
KingKazma
2023-08-13T15:46:18Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T15:46:17Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e5_s108_v4_l4_r4
KingKazma
2023-08-13T15:46:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T15:46:10Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_0089
bigmorning
2023-08-13T15:43:30Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T15:43:22Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0089 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0089 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0019 - Train Accuracy: 0.0795 - Train Wermet: 10.3176 - Validation Loss: 0.5492 - Validation Accuracy: 0.0766 - Validation Wermet: 8.5812 - Epoch: 88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | | 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 | | 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 | | 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 | | 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 | | 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 | | 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 | | 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 | | 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 | | 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 | | 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 | | 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 | | 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 | | 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 | | 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 | | 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 | | 0.0034 | 0.0795 | 9.8382 | 0.5771 | 0.0758 | 8.8051 | 66 | | 0.0123 | 0.0792 | 10.2575 | 0.5261 | 0.0763 | 9.3701 | 67 | | 0.0027 | 0.0795 | 10.3802 | 0.5272 | 0.0764 | 8.8216 | 68 | | 0.0011 | 0.0795 | 10.1683 | 0.5291 | 0.0764 | 8.5736 | 69 | | 0.0012 | 0.0795 | 10.1305 | 0.5336 | 0.0765 | 8.6648 | 70 | | 0.0008 | 0.0795 | 10.2545 | 0.5315 | 0.0765 | 9.0617 | 71 | | 0.0006 | 0.0795 | 10.4562 | 0.5369 | 0.0765 | 9.6485 | 72 | | 0.0032 | 0.0795 | 10.2347 | 0.5569 | 0.0763 | 8.4947 | 73 | | 0.0062 | 0.0794 | 10.1654 | 0.5471 | 0.0763 | 8.8666 | 74 | | 0.0029 | 0.0795 | 10.1320 | 0.5376 | 0.0765 | 8.7713 | 75 | | 0.0012 | 0.0795 | 10.2943 | 0.5406 | 0.0765 | 8.6959 | 76 | | 0.0006 | 0.0795 | 10.1888 | 0.5371 | 0.0767 | 8.9689 | 77 | | 0.0005 | 0.0795 | 10.2138 | 0.5398 | 0.0766 | 8.7470 | 78 | | 0.0016 | 0.0795 | 10.2173 | 0.5497 | 0.0764 | 8.9675 | 79 | | 0.0065 | 0.0794 | 10.2806 | 0.5559 | 0.0763 | 9.4487 | 80 | | 0.0028 | 0.0795 | 10.7728 | 0.5394 | 0.0766 | 8.9716 | 81 | | 0.0012 | 0.0795 | 10.3247 | 0.5453 | 0.0765 | 8.9986 | 82 | | 0.0013 | 0.0795 | 10.3174 | 0.5535 | 0.0765 | 8.9229 | 83 | | 0.0011 | 0.0795 | 10.2846 | 0.5452 | 0.0766 | 9.1239 | 84 | | 0.0007 | 0.0795 | 10.1996 | 0.5491 | 0.0766 | 8.9308 | 85 | | 0.0034 | 0.0795 | 10.5048 | 0.5578 | 0.0764 | 8.9920 | 86 | | 0.0038 | 0.0795 | 10.1430 | 0.5538 | 0.0765 | 9.1635 | 87 | | 0.0019 | 0.0795 | 10.3176 | 0.5492 | 0.0766 | 8.5812 | 88 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_lora_500_10_3000_8_e4_s108_v4_l4_r4
KingKazma
2023-08-13T15:39:20Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T15:39:18Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_0088
bigmorning
2023-08-13T15:39:10Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T15:39:03Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0088 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0088 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0038 - Train Accuracy: 0.0795 - Train Wermet: 10.1430 - Validation Loss: 0.5538 - Validation Accuracy: 0.0765 - Validation Wermet: 9.1635 - Epoch: 87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | | 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 | | 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 | | 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 | | 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 | | 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 | | 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 | | 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 | | 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 | | 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 | | 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 | | 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 | | 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 | | 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 | | 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 | | 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 | | 0.0034 | 0.0795 | 9.8382 | 0.5771 | 0.0758 | 8.8051 | 66 | | 0.0123 | 0.0792 | 10.2575 | 0.5261 | 0.0763 | 9.3701 | 67 | | 0.0027 | 0.0795 | 10.3802 | 0.5272 | 0.0764 | 8.8216 | 68 | | 0.0011 | 0.0795 | 10.1683 | 0.5291 | 0.0764 | 8.5736 | 69 | | 0.0012 | 0.0795 | 10.1305 | 0.5336 | 0.0765 | 8.6648 | 70 | | 0.0008 | 0.0795 | 10.2545 | 0.5315 | 0.0765 | 9.0617 | 71 | | 0.0006 | 0.0795 | 10.4562 | 0.5369 | 0.0765 | 9.6485 | 72 | | 0.0032 | 0.0795 | 10.2347 | 0.5569 | 0.0763 | 8.4947 | 73 | | 0.0062 | 0.0794 | 10.1654 | 0.5471 | 0.0763 | 8.8666 | 74 | | 0.0029 | 0.0795 | 10.1320 | 0.5376 | 0.0765 | 8.7713 | 75 | | 0.0012 | 0.0795 | 10.2943 | 0.5406 | 0.0765 | 8.6959 | 76 | | 0.0006 | 0.0795 | 10.1888 | 0.5371 | 0.0767 | 8.9689 | 77 | | 0.0005 | 0.0795 | 10.2138 | 0.5398 | 0.0766 | 8.7470 | 78 | | 0.0016 | 0.0795 | 10.2173 | 0.5497 | 0.0764 | 8.9675 | 79 | | 0.0065 | 0.0794 | 10.2806 | 0.5559 | 0.0763 | 9.4487 | 80 | | 0.0028 | 0.0795 | 10.7728 | 0.5394 | 0.0766 | 8.9716 | 81 | | 0.0012 | 0.0795 | 10.3247 | 0.5453 | 0.0765 | 8.9986 | 82 | | 0.0013 | 0.0795 | 10.3174 | 0.5535 | 0.0765 | 8.9229 | 83 | | 0.0011 | 0.0795 | 10.2846 | 0.5452 | 0.0766 | 9.1239 | 84 | | 0.0007 | 0.0795 | 10.1996 | 0.5491 | 0.0766 | 8.9308 | 85 | | 0.0034 | 0.0795 | 10.5048 | 0.5578 | 0.0764 | 8.9920 | 86 | | 0.0038 | 0.0795 | 10.1430 | 0.5538 | 0.0765 | 9.1635 | 87 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e3_s108_v4_l4_r2
KingKazma
2023-08-13T15:38:58Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T15:38:56Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_0087
bigmorning
2023-08-13T15:34:44Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T15:34:36Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0087 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0087 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0034 - Train Accuracy: 0.0795 - Train Wermet: 10.5048 - Validation Loss: 0.5578 - Validation Accuracy: 0.0764 - Validation Wermet: 8.9920 - Epoch: 86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | | 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 | | 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 | | 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 | | 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 | | 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 | | 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 | | 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 | | 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 | | 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 | | 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 | | 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 | | 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 | | 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 | | 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 | | 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 | | 0.0034 | 0.0795 | 9.8382 | 0.5771 | 0.0758 | 8.8051 | 66 | | 0.0123 | 0.0792 | 10.2575 | 0.5261 | 0.0763 | 9.3701 | 67 | | 0.0027 | 0.0795 | 10.3802 | 0.5272 | 0.0764 | 8.8216 | 68 | | 0.0011 | 0.0795 | 10.1683 | 0.5291 | 0.0764 | 8.5736 | 69 | | 0.0012 | 0.0795 | 10.1305 | 0.5336 | 0.0765 | 8.6648 | 70 | | 0.0008 | 0.0795 | 10.2545 | 0.5315 | 0.0765 | 9.0617 | 71 | | 0.0006 | 0.0795 | 10.4562 | 0.5369 | 0.0765 | 9.6485 | 72 | | 0.0032 | 0.0795 | 10.2347 | 0.5569 | 0.0763 | 8.4947 | 73 | | 0.0062 | 0.0794 | 10.1654 | 0.5471 | 0.0763 | 8.8666 | 74 | | 0.0029 | 0.0795 | 10.1320 | 0.5376 | 0.0765 | 8.7713 | 75 | | 0.0012 | 0.0795 | 10.2943 | 0.5406 | 0.0765 | 8.6959 | 76 | | 0.0006 | 0.0795 | 10.1888 | 0.5371 | 0.0767 | 8.9689 | 77 | | 0.0005 | 0.0795 | 10.2138 | 0.5398 | 0.0766 | 8.7470 | 78 | | 0.0016 | 0.0795 | 10.2173 | 0.5497 | 0.0764 | 8.9675 | 79 | | 0.0065 | 0.0794 | 10.2806 | 0.5559 | 0.0763 | 9.4487 | 80 | | 0.0028 | 0.0795 | 10.7728 | 0.5394 | 0.0766 | 8.9716 | 81 | | 0.0012 | 0.0795 | 10.3247 | 0.5453 | 0.0765 | 8.9986 | 82 | | 0.0013 | 0.0795 | 10.3174 | 0.5535 | 0.0765 | 8.9229 | 83 | | 0.0011 | 0.0795 | 10.2846 | 0.5452 | 0.0766 | 9.1239 | 84 | | 0.0007 | 0.0795 | 10.1996 | 0.5491 | 0.0766 | 8.9308 | 85 | | 0.0034 | 0.0795 | 10.5048 | 0.5578 | 0.0764 | 8.9920 | 86 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3