modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-06 18:27:02
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
544 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-06 18:26:43
card
stringlengths
11
1.01M
dasolj/wav2vec2-base-timit-demo-google-colab
dasolj
2022-06-27T08:50:22Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-27T05:22:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5501 - Wer: 0.3424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5448 | 1.0 | 500 | 2.5044 | 1.0 | | 1.0167 | 2.01 | 1000 | 0.5435 | 0.5278 | | 0.4453 | 3.01 | 1500 | 0.4450 | 0.4534 | | 0.3 | 4.02 | 2000 | 0.4401 | 0.4245 | | 0.2304 | 5.02 | 2500 | 0.4146 | 0.4022 | | 0.1889 | 6.02 | 3000 | 0.4241 | 0.3927 | | 0.1573 | 7.03 | 3500 | 0.4545 | 0.3878 | | 0.1363 | 8.03 | 4000 | 0.4936 | 0.3940 | | 0.1213 | 9.04 | 4500 | 0.4964 | 0.3806 | | 0.108 | 10.04 | 5000 | 0.4931 | 0.3826 | | 0.0982 | 11.04 | 5500 | 0.5373 | 0.3778 | | 0.0883 | 12.05 | 6000 | 0.4978 | 0.3733 | | 0.0835 | 13.05 | 6500 | 0.5189 | 0.3728 | | 0.0748 | 14.06 | 7000 | 0.4608 | 0.3692 | | 0.068 | 15.06 | 7500 | 0.4827 | 0.3608 | | 0.0596 | 16.06 | 8000 | 0.5022 | 0.3661 | | 0.056 | 17.07 | 8500 | 0.5482 | 0.3646 | | 0.0565 | 18.07 | 9000 | 0.5158 | 0.3573 | | 0.0487 | 19.08 | 9500 | 0.4910 | 0.3513 | | 0.0444 | 20.08 | 10000 | 0.5771 | 0.3580 | | 0.045 | 21.08 | 10500 | 0.5160 | 0.3539 | | 0.0363 | 22.09 | 11000 | 0.5367 | 0.3503 | | 0.0313 | 23.09 | 11500 | 0.5773 | 0.3500 | | 0.0329 | 24.1 | 12000 | 0.5683 | 0.3508 | | 0.0297 | 25.1 | 12500 | 0.5355 | 0.3464 | | 0.0272 | 26.1 | 13000 | 0.5317 | 0.3450 | | 0.0256 | 27.11 | 13500 | 0.5602 | 0.3443 | | 0.0242 | 28.11 | 14000 | 0.5586 | 0.3419 | | 0.0239 | 29.12 | 14500 | 0.5501 | 0.3424 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
zyxzyx/autotrain-sum-1042335811
zyxzyx
2022-06-27T05:15:17Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "zh", "dataset:zyxzyx/autotrain-data-sum", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-27T01:25:28Z
--- tags: autotrain language: zh widget: - text: "I love AutoTrain 🤗" datasets: - zyxzyx/autotrain-data-sum co2_eq_emissions: 426.15271368095927 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1042335811 - CO2 Emissions (in grams): 426.15271368095927 ## Validation Metrics - Loss: 1.7748287916183472 - Rouge1: 0.536 - Rouge2: 0.0 - RougeL: 0.536 - RougeLsum: 0.536 - Gen Len: 10.9089 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/zyxzyx/autotrain-sum-1042335811 ```
robingeibel/longformer-large-finetuned-big_patent
robingeibel
2022-06-27T05:04:39Z
5
0
transformers
[ "transformers", "tf", "longformer", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-21T07:29:34Z
--- tags: - generated_from_keras_callback model-index: - name: robingeibel/longformer-large-finetuned-big_patent results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # robingeibel/longformer-large-finetuned-big_patent This model is a fine-tuned version of [robingeibel/longformer-large-finetuned-big_patent](https://huggingface.co/robingeibel/longformer-large-finetuned-big_patent) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1706 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 79030, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.1706 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
jcmc/q-Taxi-v3
jcmc
2022-06-27T04:21:20Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T04:21:13Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.46 +/- 2.70 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jcmc/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
TheRensselaerIDEA/gpt2-large-vaccine-tweet-response
TheRensselaerIDEA
2022-06-27T03:22:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "arxiv:2204.04353", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-27T03:03:38Z
--- license: mit --- Base model: [gpt2-large](https://huggingface.co/gpt2-large) Fine-tuned to generate responses on a dataset of [Vaccine public health tweets](https://github.com/TheRensselaerIDEA/generative-response-modeling). For more information about the dataset, task and training, see [our paper](https://arxiv.org/abs/2204.04353). This checkpoint corresponds to the lowest validation perplexity (2.82 at 2 epochs) seen during training. See Training metrics for Tensorboard logs. For input format and usage examples, see our [COVID-19 public health tweet response model](https://huggingface.co/TheRensselaerIDEA/gpt2-large-covid-tweet-response).
RUCAIBox/mvp-summarization
RUCAIBox
2022-06-27T02:28:20Z
4
0
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "summarization", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:49:40Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - summarization pipeline_tag: text2text-generation widget: - text: "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons." example_title: "Example1" - text: "Summarize: Jorge Alfaro drove in two runs, Aaron Nola pitched seven innings of two-hit ball and the Philadelphia Phillies beat the Los Angeles Dodgers 2-1 Thursday, spoiling Clayton Kershaw's first start in almost a month. Hitting out of the No. 8 spot in the ..." example_title: "Example2" --- # MVP-summarization The MVP-summarization model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-summarization is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled summarization datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-summarization is specially designed for summarization tasks, such as new summarization (CNN/DailyMail, XSum) and dialog summarization (SAMSum). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-summarization") >>> inputs = tokenizer( ... "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["Don't do it if these are your reasons"] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp-story
RUCAIBox
2022-06-27T02:28:15Z
9
3
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:55:25Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Given the story title: I think all public schools should have a uniform dress code." example_title: "Example1" - text: "Given the story title: My girlfriend and I decided to move to a new state. We packed everything in our cars and drove there." example_title: "Example2" --- # MVP-story The MVP-story model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-story is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled story generation datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-story is specially designed for story generation tasks, such as ROCStories and WritingPrompts. ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-story") >>> inputs = tokenizer( ... "Given the story title: I think all public schools should have a uniform dress code.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs, max_length=1024) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['I think it would be a good idea to have uniform dress codes for all public schools. It would make it easier for students to dress appropriately.'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp-question-answering
RUCAIBox
2022-06-27T02:28:05Z
4
2
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:54:54Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Answer the following question: From which country did Angola achieve independence in 1975?" example_title: "Example1" - text: "Answer the following question: what is ce certified [X_SEP] The CE marking is the manufacturer's declaration that the product meets the requirements of the applicable EC directives. Officially, CE is an abbreviation of Conformite Conformité, europeenne Européenne Meaning. european conformity" example_title: "Example2" --- # MVP-question-answering The MVP-question-answering model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-question-answering is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled question answering datasets. It is a variant (MVP+S) of our [MVP](https://huggingface.co/RUCAIBox/mvp) [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-question-answering is specially designed for question answering tasks, such as reading comprehension (SQuAD), conversational question answering (CoQA) and closed-book question-answering (Natural Questions). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-question-answering") >>> inputs = tokenizer( ... "Answer the following question: From which country did Angola achieve independence in 1975?", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Portugal'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp-open-dialog
RUCAIBox
2022-06-27T02:28:00Z
5
1
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "conversational", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:53:44Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - conversational pipeline_tag: text2text-generation widget: - text: "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?" example_title: "Example1" - text: "Given the dialog: i used to scare for darkness [X_SEP] it feels like hitting to blank wall when i see the darkness [SEP] Oh ya? I don't really see how [SEP] dont you feel so.. its a wonder [SEP] I do actually hit blank walls a lot of times but i get by" example_title: "Example2" --- # MVP-open-dialog The MVP-open-dialog model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-open-dialog is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled open dialogue system datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-open-dialog is specially designed for open dialogue system (conversation) tasks, such as chitchat (PersonaChat, DailyDialog), knowledge grounded conversation (Topical-Chat, Wizard of Wikipedia) and visual dialog (DSTC7-AVSD). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-open-dialog") >>> inputs = tokenizer( ... "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['I did not know that. I did know that Tupac danced ballet in high school.'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp-data-to-text
RUCAIBox
2022-06-27T02:27:50Z
38
4
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:53:26Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man" example_title: "Example1" - text: "Describe the following data: First Clearing | LOCATION | On NYS 52 1 Mi. Youngsville [SEP] On NYS 52 1 Mi. Youngsville | CITY_OR_TOWN | Callicoon, New York" example_title: "Example2" --- # MVP-data-to-text The MVP-data-to-text model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-data-to-text is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled data-to-text datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-data-to-text is specially designed for data-to-text generation tasks, such as KG-to-text generation (WebNLG, DART), table-to-text generation (WikiBio, ToTTo) and MR-to-text generation (E2E). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-data-to-text") >>> inputs = tokenizer( ... "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Iron Man is a fictional superhero appearing in American comic books published by Marvel Comics.'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp
RUCAIBox
2022-06-27T02:27:44Z
4,763
7
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "summarization", "conversational", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-29T08:21:56Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - summarization - conversational pipeline_tag: text2text-generation widget: - text: "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons." example_title: "Summarization" - text: "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?" example_title: "Dialog" - text: "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man" example_title: "Data-to-text" - text: "Given the story title: I think all public schools should have a uniform dress code." example_title: "Story Generation" - text: "Answer the following question: From which country did Angola achieve independence in 1975?" example_title: "Question Answering" - text: "Generate the question based on the answer: boxing [X_SEP] A bolo punch is a punch used in martial arts . A hook is a punch in boxing ." example_title: "Question Generaion" --- # MVP The MVP model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP is supervised pre-trained using a mixture of labeled datasets. It follows a standard Transformer encoder-decoder architecture. MVP is specially designed for natural language generation and can be adapted to a wide range of generation tasks, including but not limited to summarization, data-to-text generation, open-ended dialogue system, story generation, question answering, question generation, task-oriented dialogue system, commonsense generation, paraphrase generation, text style transfer, and text simplification. Our model can also be adapted to natural language understanding tasks such as sequence classification and (extractive) question answering. ## Examples For summarization: ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp") >>> inputs = tokenizer( ... "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["Why You Shouldn't Quit Your Job"] ``` For data-to-text generation: ```python >>> from transformers import MvpTokenizerFast, MvpForConditionalGeneration >>> tokenizer = MvpTokenizerFast.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp") >>> inputs = tokenizer( ... "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Stan Lee created the character of Iron Man, a fictional superhero appearing in American comic'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-summarization
RUCAIBox
2022-06-27T02:27:34Z
2
0
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "summarization", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T12:01:19Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - summarization pipeline_tag: text2text-generation widget: - text: "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons." example_title: "Example1" - text: "Summarize: Jorge Alfaro drove in two runs, Aaron Nola pitched seven innings of two-hit ball and the Philadelphia Phillies beat the Los Angeles Dodgers 2-1 Thursday, spoiling Clayton Kershaw's first start in almost a month. Hitting out of the No. 8 spot in the ..." example_title: "Example2" --- # MTL-summarization The MTL-summarization model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-summarization is supervised pre-trained using a mixture of labeled summarization datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-summarization is specially designed for summarization tasks, such as new summarization (CNN/DailyMail, XSum) and dialog summarization (SAMSum). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-summarization") >>> inputs = tokenizer( ... "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["Don't do it if these are your reasons"] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-story
RUCAIBox
2022-06-27T02:27:29Z
1
1
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T12:00:10Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Given the story title: I think all public schools should have a uniform dress code." example_title: "Example1" - text: "Given the story title: My girlfriend and I decided to move to a new state. We packed everything in our cars and drove there." example_title: "Example2" --- # MTL-story The MTL-story model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-story is supervised pre-trained using a mixture of labeled story generation datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-story is specially designed for story generation tasks, such as ROCStories and WritingPrompts. ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-story") >>> inputs = tokenizer( ... "Given the story title: I think all public schools should have a uniform dress code.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs, max_length=1024) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["I don't know about you, but I don't think it would be a good idea to have a uniform dress code in public schools. I think it's a waste of time and money. If you're going to have uniform dress codes, you need to make sure that the uniforms are appropriate for the school and that the students are comfortable in them. If they're not comfortable, then they shouldn't be allowed to wear them."] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-open-dialog
RUCAIBox
2022-06-27T02:27:15Z
3
1
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "conversational", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T12:02:35Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - conversational pipeline_tag: text2text-generation widget: - text: "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?" example_title: "Example1" - text: "Given the dialog: i used to scare for darkness [X_SEP] it feels like hitting to blank wall when i see the darkness [SEP] Oh ya? I don't really see how [SEP] dont you feel so.. its a wonder [SEP] I do actually hit blank walls a lot of times but i get by" example_title: "Example2" --- # MTL-open-dialog The MTL-open-dialog model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-open-dialog is supervised pre-trained using a mixture of labeled open dialogue system datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-open-dialog is specially designed for open dialogue system (conversation) tasks, such as chitchat (PersonaChat, DailyDialog), knowledge grounded conversation (Topical-Chat, Wizard of Wikipedia) and visual dialog (DSTC7-AVSD). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-open-dialog") >>> inputs = tokenizer( ... "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Yes he won the Hong Kong Cha Cha championship in 1958'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-data-to-text
RUCAIBox
2022-06-27T02:27:10Z
259
28
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T12:01:55Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man" example_title: "Example1" - text: "Describe the following data: First Clearing | LOCATION | On NYS 52 1 Mi. Youngsville [SEP] On NYS 52 1 Mi. Youngsville | CITY_OR_TOWN | Callicoon, New York" example_title: "Example2" --- # MTL-data-to-text The MTL-data-to-text model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-data-to-text is supervised pre-trained using a mixture of labeled data-to-text datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-data-to-text is specially designed for data-to-text generation tasks, such as KG-to-text generation (WebNLG, DART), table-to-text generation (WikiBio, ToTTo) and MR-to-text generation (E2E). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-data-to-text") >>> inputs = tokenizer( ... "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Iron Man is a fictional superhero appearing in American comic books published by Marvel Comics.'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5
luomingshuang
2022-06-27T01:54:36Z
0
3
null
[ "tensorboard", "region:us" ]
null
2022-06-23T04:14:43Z
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/428 # Pre-trained Transducer-Stateless5 models for the TAL_CSASR dataset with icefall. The model was trained on the far data of [TAL_CSASR](https://ai.100tal.com/dataset) with the scripts in [icefall](https://github.com/k2-fsa/icefall) based on the latest version k2. ## Training procedure The main repositories are list below, we will update the training and decoding scripts with the update of version. k2: https://github.com/k2-fsa/k2 icefall: https://github.com/k2-fsa/icefall lhotse: https://github.com/lhotse-speech/lhotse * Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. I think the latest version would be ok. And please also install the requirements listed in icefall. * Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` * Preparing data. ``` cd egs/tal_csasr/ASR bash ./prepare.sh ``` * Training ``` export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5" ./pruned_transducer_stateless5/train.py \ --world-size 6 \ --num-epochs 30 \ --start-epoch 1 \ --exp-dir pruned_transducer_stateless5/exp \ --lang-dir data/lang_char \ --max-duration 90 ``` ## Evaluation results The decoding results (CER%) on TAL_CSASR(dev and test) are listed below: |decoding-method | epoch(iter) | avg | dev | test | |--|--|--|--|--| |greedy_search | 30 | 24 | 7.49 | 7.58| |modified_beam_search | 30 | 24 | 7.33 | 7.38| |fast_beam_search | 30 | 24 | 7.32 | 7.42| |greedy_search(use-averaged-model=True) | 30 | 24 | 7.30 | 7.39| |modified_beam_search(use-averaged-model=True) | 30 | 24 | 7.15 | 7.22| |fast_beam_search(use-averaged-model=True) | 30 | 24 | 7.18 | 7.27| |greedy_search | 348000 | 30 | 7.46 | 7.54| |modified_beam_search | 348000 | 30 | 7.24 | 7.36| |fast_beam_search | 348000 | 30 | 7.25 | 7.39 | The results (CER(%) and WER(%)) for Chinese CER and English WER respectivly (zh: Chinese, en: English): |decoding-method | epoch(iter) | avg | dev | dev_zh | dev_en | test | test_zh | test_en | |--|--|--|--|--|--|--|--|--| |greedy_search(use-averaged-model=True) | 30 | 24 | 7.30 | 6.48 | 19.19 |7.39| 6.66 | 19.13| |modified_beam_search(use-averaged-model=True) | 30 | 24 | 7.15 | 6.35 | 18.95 | 7.22| 6.50 | 18.70 | |fast_beam_search(use-averaged-model=True) | 30 | 24 | 7.18 | 6.39| 18.90 | 7.27| 6.55 | 18.77|
Corianas/ppo-QbertNoFrameskip-v4_4
Corianas
2022-06-27T01:07:03Z
3
0
stable-baselines3
[ "stable-baselines3", "QbertNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T01:05:46Z
--- library_name: stable-baselines3 tags: - QbertNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 19340.00 +/- 862.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: QbertNoFrameskip-v4 type: QbertNoFrameskip-v4 --- # **PPO** Agent playing **QbertNoFrameskip-v4** This is a trained model of a **PPO** agent playing **QbertNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env QbertNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo ppo --env QbertNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env QbertNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env QbertNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 10000000.0), ('policy', 'CnnPolicy'), ('vf_coef', 0.5), ('normalize', False)]) ```
sudo-s/exper_batch_32_e8
sudo-s
2022-06-26T23:45:06Z
52
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T22:48:05Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper_batch_32_e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_32_e8 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3520 - Accuracy: 0.9113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.3787 | 0.31 | 100 | 3.3100 | 0.3566 | | 2.3975 | 0.62 | 200 | 2.3196 | 0.5717 | | 1.5578 | 0.94 | 300 | 1.6764 | 0.6461 | | 1.0291 | 1.25 | 400 | 1.1713 | 0.7463 | | 0.8185 | 1.56 | 500 | 0.9292 | 0.7953 | | 0.6181 | 1.88 | 600 | 0.7732 | 0.8169 | | 0.3873 | 2.19 | 700 | 0.6877 | 0.8277 | | 0.2979 | 2.5 | 800 | 0.6250 | 0.8404 | | 0.2967 | 2.81 | 900 | 0.6151 | 0.8365 | | 0.1874 | 3.12 | 1000 | 0.5401 | 0.8608 | | 0.2232 | 3.44 | 1100 | 0.5032 | 0.8712 | | 0.1109 | 3.75 | 1200 | 0.4635 | 0.8774 | | 0.0539 | 4.06 | 1300 | 0.4495 | 0.8843 | | 0.0668 | 4.38 | 1400 | 0.4273 | 0.8951 | | 0.0567 | 4.69 | 1500 | 0.4427 | 0.8867 | | 0.0285 | 5.0 | 1600 | 0.4092 | 0.8955 | | 0.0473 | 5.31 | 1700 | 0.3720 | 0.9071 | | 0.0225 | 5.62 | 1800 | 0.3691 | 0.9063 | | 0.0196 | 5.94 | 1900 | 0.3775 | 0.9048 | | 0.0173 | 6.25 | 2000 | 0.3641 | 0.9040 | | 0.0092 | 6.56 | 2100 | 0.3551 | 0.9090 | | 0.008 | 6.88 | 2200 | 0.3591 | 0.9125 | | 0.0072 | 7.19 | 2300 | 0.3542 | 0.9121 | | 0.007 | 7.5 | 2400 | 0.3532 | 0.9106 | | 0.007 | 7.81 | 2500 | 0.3520 | 0.9113 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
sudo-s/exper_batch_32_e4
sudo-s
2022-06-26T22:47:06Z
52
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T22:20:11Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper_batch_32_e4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_32_e4 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3909 - Accuracy: 0.9067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.4295 | 0.31 | 100 | 3.4027 | 0.2837 | | 2.5035 | 0.62 | 200 | 2.4339 | 0.5247 | | 1.6542 | 0.94 | 300 | 1.7690 | 0.6388 | | 1.1589 | 1.25 | 400 | 1.3106 | 0.7460 | | 0.9363 | 1.56 | 500 | 0.9977 | 0.7803 | | 0.6946 | 1.88 | 600 | 0.8138 | 0.8207 | | 0.3488 | 2.19 | 700 | 0.6593 | 0.8489 | | 0.2935 | 2.5 | 800 | 0.5725 | 0.8662 | | 0.2557 | 2.81 | 900 | 0.5088 | 0.8855 | | 0.1509 | 3.12 | 1000 | 0.4572 | 0.8971 | | 0.1367 | 3.44 | 1100 | 0.4129 | 0.9090 | | 0.1078 | 3.75 | 1200 | 0.3909 | 0.9067 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
kaisuke/finetuning-sentiment-model-3000-samples
kaisuke
2022-06-26T21:39:32Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-26T21:27:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8695652173913044 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3120 - Accuracy: 0.87 - F1: 0.8696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sinhprous/dqn-SpaceInvadersNoFrameskip-v4
sinhprous
2022-06-26T19:51:15Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T18:19:11Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 925.00 +/- 356.35 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga sinhprous -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga sinhprous ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
sanjay-m1/grammar-corrector-v2
sanjay-m1
2022-06-26T19:10:37Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-26T19:00:10Z
**This model is part of the Gramformer library** please refer to https://github.com/PrithivirajDamodaran/Gramformer/
shubhamsalokhe/distilgpt2-finetuned-wikitext2
shubhamsalokhe
2022-06-26T18:38:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-26T17:50:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sudo-s/exper_batch_8_e8
sudo-s
2022-06-26T18:24:00Z
72
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T15:35:19Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper_batch_8_e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_8_e8 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.4608 - Accuracy: 0.9052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.2202 | 0.08 | 100 | 4.1245 | 0.1237 | | 3.467 | 0.16 | 200 | 3.5622 | 0.2143 | | 3.3469 | 0.23 | 300 | 3.1688 | 0.2675 | | 2.8086 | 0.31 | 400 | 2.8965 | 0.3034 | | 2.6291 | 0.39 | 500 | 2.5858 | 0.4025 | | 2.2382 | 0.47 | 600 | 2.2908 | 0.4133 | | 1.9259 | 0.55 | 700 | 2.2007 | 0.4676 | | 1.8088 | 0.63 | 800 | 2.0419 | 0.4742 | | 1.9462 | 0.7 | 900 | 1.6793 | 0.5578 | | 1.5392 | 0.78 | 1000 | 1.5460 | 0.6079 | | 1.561 | 0.86 | 1100 | 1.5793 | 0.5690 | | 1.2135 | 0.94 | 1200 | 1.4663 | 0.5929 | | 1.0725 | 1.02 | 1300 | 1.2974 | 0.6534 | | 0.8696 | 1.1 | 1400 | 1.2406 | 0.6569 | | 0.8758 | 1.17 | 1500 | 1.2127 | 0.6623 | | 1.1737 | 1.25 | 1600 | 1.2243 | 0.6550 | | 0.8242 | 1.33 | 1700 | 1.1371 | 0.6735 | | 1.0141 | 1.41 | 1800 | 1.0536 | 0.7024 | | 0.9855 | 1.49 | 1900 | 0.9885 | 0.7205 | | 0.805 | 1.57 | 2000 | 0.9048 | 0.7479 | | 0.7207 | 1.64 | 2100 | 0.8842 | 0.7490 | | 0.7101 | 1.72 | 2200 | 0.8954 | 0.7436 | | 0.5946 | 1.8 | 2300 | 0.9174 | 0.7386 | | 0.6937 | 1.88 | 2400 | 0.7818 | 0.7760 | | 0.5593 | 1.96 | 2500 | 0.7449 | 0.7934 | | 0.4139 | 2.04 | 2600 | 0.7787 | 0.7830 | | 0.2929 | 2.11 | 2700 | 0.7122 | 0.7945 | | 0.4159 | 2.19 | 2800 | 0.7446 | 0.7907 | | 0.4079 | 2.27 | 2900 | 0.7354 | 0.7938 | | 0.516 | 2.35 | 3000 | 0.7499 | 0.8007 | | 0.2728 | 2.43 | 3100 | 0.6851 | 0.8061 | | 0.4159 | 2.51 | 3200 | 0.7258 | 0.7999 | | 0.3396 | 2.58 | 3300 | 0.7455 | 0.7972 | | 0.1918 | 2.66 | 3400 | 0.6793 | 0.8119 | | 0.1228 | 2.74 | 3500 | 0.6696 | 0.8134 | | 0.2671 | 2.82 | 3600 | 0.6306 | 0.8285 | | 0.4986 | 2.9 | 3700 | 0.6111 | 0.8296 | | 0.3699 | 2.98 | 3800 | 0.5600 | 0.8508 | | 0.0444 | 3.05 | 3900 | 0.6021 | 0.8331 | | 0.1489 | 3.13 | 4000 | 0.5599 | 0.8516 | | 0.15 | 3.21 | 4100 | 0.6377 | 0.8365 | | 0.2535 | 3.29 | 4200 | 0.5752 | 0.8543 | | 0.2679 | 3.37 | 4300 | 0.5677 | 0.8608 | | 0.0989 | 3.45 | 4400 | 0.6325 | 0.8396 | | 0.0825 | 3.52 | 4500 | 0.5979 | 0.8524 | | 0.0427 | 3.6 | 4600 | 0.5903 | 0.8516 | | 0.1806 | 3.68 | 4700 | 0.5323 | 0.8628 | | 0.2672 | 3.76 | 4800 | 0.5688 | 0.8604 | | 0.2674 | 3.84 | 4900 | 0.5369 | 0.8635 | | 0.2185 | 3.92 | 5000 | 0.4743 | 0.8820 | | 0.2195 | 3.99 | 5100 | 0.5340 | 0.8709 | | 0.0049 | 4.07 | 5200 | 0.5883 | 0.8608 | | 0.0204 | 4.15 | 5300 | 0.6102 | 0.8539 | | 0.0652 | 4.23 | 5400 | 0.5659 | 0.8670 | | 0.028 | 4.31 | 5500 | 0.4916 | 0.8840 | | 0.0423 | 4.39 | 5600 | 0.5706 | 0.8736 | | 0.0087 | 4.46 | 5700 | 0.5653 | 0.8697 | | 0.0964 | 4.54 | 5800 | 0.5423 | 0.8755 | | 0.0841 | 4.62 | 5900 | 0.5160 | 0.8743 | | 0.0945 | 4.7 | 6000 | 0.5532 | 0.8697 | | 0.0311 | 4.78 | 6100 | 0.4947 | 0.8867 | | 0.0423 | 4.86 | 6200 | 0.5063 | 0.8843 | | 0.1348 | 4.93 | 6300 | 0.5619 | 0.8743 | | 0.049 | 5.01 | 6400 | 0.5800 | 0.8732 | | 0.0053 | 5.09 | 6500 | 0.5499 | 0.8770 | | 0.0234 | 5.17 | 6600 | 0.5102 | 0.8874 | | 0.0192 | 5.25 | 6700 | 0.5447 | 0.8836 | | 0.0029 | 5.32 | 6800 | 0.4787 | 0.8936 | | 0.0249 | 5.4 | 6900 | 0.5232 | 0.8870 | | 0.0671 | 5.48 | 7000 | 0.4766 | 0.8975 | | 0.0056 | 5.56 | 7100 | 0.5136 | 0.8894 | | 0.003 | 5.64 | 7200 | 0.5085 | 0.8882 | | 0.0015 | 5.72 | 7300 | 0.4832 | 0.8971 | | 0.0014 | 5.79 | 7400 | 0.4648 | 0.8998 | | 0.0065 | 5.87 | 7500 | 0.4739 | 0.8978 | | 0.0011 | 5.95 | 7600 | 0.5349 | 0.8867 | | 0.0021 | 6.03 | 7700 | 0.5460 | 0.8847 | | 0.0012 | 6.11 | 7800 | 0.5309 | 0.8890 | | 0.0011 | 6.19 | 7900 | 0.4852 | 0.8998 | | 0.0093 | 6.26 | 8000 | 0.4751 | 0.8998 | | 0.003 | 6.34 | 8100 | 0.4934 | 0.8963 | | 0.0027 | 6.42 | 8200 | 0.4882 | 0.9029 | | 0.0009 | 6.5 | 8300 | 0.4806 | 0.9021 | | 0.0009 | 6.58 | 8400 | 0.4974 | 0.9029 | | 0.0009 | 6.66 | 8500 | 0.4748 | 0.9075 | | 0.0008 | 6.73 | 8600 | 0.4723 | 0.9094 | | 0.001 | 6.81 | 8700 | 0.4692 | 0.9098 | | 0.0007 | 6.89 | 8800 | 0.4726 | 0.9075 | | 0.0011 | 6.97 | 8900 | 0.4686 | 0.9067 | | 0.0006 | 7.05 | 9000 | 0.4653 | 0.9056 | | 0.0006 | 7.13 | 9100 | 0.4755 | 0.9029 | | 0.0007 | 7.2 | 9200 | 0.4633 | 0.9036 | | 0.0067 | 7.28 | 9300 | 0.4611 | 0.9036 | | 0.0007 | 7.36 | 9400 | 0.4608 | 0.9052 | | 0.0007 | 7.44 | 9500 | 0.4623 | 0.9044 | | 0.0005 | 7.52 | 9600 | 0.4621 | 0.9056 | | 0.0005 | 7.6 | 9700 | 0.4615 | 0.9056 | | 0.0005 | 7.67 | 9800 | 0.4612 | 0.9059 | | 0.0005 | 7.75 | 9900 | 0.4626 | 0.9075 | | 0.0004 | 7.83 | 10000 | 0.4626 | 0.9075 | | 0.0005 | 7.91 | 10100 | 0.4626 | 0.9075 | | 0.0006 | 7.99 | 10200 | 0.4626 | 0.9079 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
p123/autotrain-my-sum-1040935781
p123
2022-06-26T18:02:45Z
5
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "zh", "dataset:p123/autotrain-data-my-sum", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-26T15:19:08Z
--- tags: autotrain language: zh widget: - text: "I love AutoTrain 🤗" datasets: - p123/autotrain-data-my-sum co2_eq_emissions: 326.52733725745725 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1040935781 - CO2 Emissions (in grams): 326.52733725745725 ## Validation Metrics - Loss: 1.9157543182373047 - Rouge1: 0.4843 - Rouge2: 0.0 - RougeL: 0.4843 - RougeLsum: 0.4843 - Gen Len: 10.9718 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/p123/autotrain-my-sum-1040935781 ```
prahlad/rotten_model
prahlad
2022-06-26T16:52:37Z
3
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-23T23:46:48Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: prahlad/rotten_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # prahlad/rotten_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on rotten_tomatoes movie review dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4876 - Train Accuracy: 0.7620 - Validation Loss: 0.5001 - Validation Accuracy: 0.7842 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 12795, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.4876 | 0.7620 | 0.5001 | 0.7842 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
ryanblak/PPO-LunarLander-v2
ryanblak
2022-06-26T15:40:24Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T15:00:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 287.72 +/- 15.68 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tsantosh7/Bailii-Roberta
tsantosh7
2022-06-26T15:09:54Z
4
3
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "en", "arxiv:1907.11692", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-26T12:54:46Z
--- license: apache-2.0 tags: - fill-mask language: - en widget: - text: "He carefully assessed the financial position of the <mask> disclosed within its accounts, including its pension scheme liabilities." - text: "Moreover, she had chosen not to give <mask> and therefore had not provided any innocent explanation of her communications." --- # Pre-trained Language Model for England and Wales Court of Appeal (Criminal Division) Decisions ## Introduction The research for understanding the bias in criminal court decisions need the support of natural language processing tools. The pre-trained language model has greatly improved the accuracy of text mining in general texts. At present, there is an urgent need for a pre-trained language model specifically for the automatic processing of court decision texts. We used the text from the [Bailii website](https://www.bailii.org/ew/cases/EWCA/Crim/) as the training set. Based on the deep language model framework of RoBERTa, we constructed bailii-roberta pre-training language model by [transformers/run_mlm.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py) and [transformers/mlm_wwm](https://github.com/huggingface/transformers/tree/main/examples/research_projects/mlm_wwm). ## How to use ### Huggingface Transformers The `from_pretrained` method based on [Huggingface Transformers](https://github.com/huggingface/transformers) can directly obtain bailii-roberta model online. ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("tsantosh7/bailii-roberta") model = AutoModel.from_pretrained("tsantosh7/bailii-roberta") ``` ### Download Models - The version of the model we provide is `PyTorch`. ### From Huggingface - Download directly through Huggingface's official website. - [tsantosh7/bailii-roberta](https://huggingface.co/tsantosh7/Bailii-Roberta/) ## Disclaimer - The experimental results presented in the report only show the performance under a specific data set and hyperparameter combination, and cannot represent the essence of each model. The experimental results may change due to the random number of seeds and computing equipment. - **Users can use the model arbitrarily within the scope of the license, but we are not responsible for the direct or indirect losses caused by using the content of the project.** ## Acknowledgment - bailii-roberta was trained based on [roberta-base](https://arxiv.org/abs/1907.11692)).
inigopm/beto-base-spanish-squades2
inigopm
2022-06-26T14:48:20Z
26
2
transformers
[ "transformers", "pytorch", "bert", "question-answering", "es", "dataset:squad_es", "model-index", "endpoints_compatible", "region:us" ]
question-answering
2022-06-26T13:20:24Z
--- language: - es tags: - question-answering datasets: - squad_es metrics: - f1 - em # Optional. Add this if you want to encode your eval results in a structured way. model-index: - name: beto-base-spanish-squades2 results: - task: type: question-answering # Required. Example: automatic-speech-recognition name: question-answering # Optional. Example: Speech Recognition dataset: type: squad_es # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: squad_es v2.0.0 # Required. Example: Common Voice zh-CN args: es # Optional. Example: zh-CN metrics: - type: f1 value: 62.70 name: f1 - type: exact match value: 54.60 name: exact match --- The model has been trained on the second version of the [SQuAD_es](https://huggingface.co/datasets/squad_es) database. It is a question-answering dataset automatically translated from SQUAD to Spanish. This version includes the possibility that the answer does not exist within the context. The pretrained model used is ["dccuchile/bert-base-spanish-wwm-cased"](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased), also called as BETO, pretrained on a [big spanish corpus](https://github.com/josecannete/spanish-corpora). **METRICS** **F1:** 62.70 **EM:** 54.60
yaswanth/identify-my-cat
yaswanth
2022-06-26T14:41:00Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-06-26T14:40:52Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
allegro/herbert-large-cased
allegro
2022-06-26T14:18:54Z
1,073
6
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "herbert", "pl", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: pl tags: - herbert license: cc-by-4.0 --- # HerBERT **[HerBERT](https://en.wikipedia.org/wiki/Zbigniew_Herbert)** is a BERT-based Language Model trained on Polish corpora using Masked Language Modelling (MLM) and Sentence Structural Objective (SSO) with dynamic masking of whole words. For more details, please refer to: [HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish](https://www.aclweb.org/anthology/2021.bsnlp-1.1/). Model training and experiments were conducted with [transformers](https://github.com/huggingface/transformers) in version 2.9. ## Corpus HerBERT was trained on six different corpora available for Polish language: | Corpus | Tokens | Documents | | :------ | ------: | ------: | | [CCNet Middle](https://github.com/facebookresearch/cc_net) | 3243M | 7.9M | | [CCNet Head](https://github.com/facebookresearch/cc_net) | 2641M | 7.0M | | [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=1)| 1357M | 3.9M | | [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1056M | 1.1M | [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.4M | | [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k | ## Tokenizer The training dataset was tokenized into subwords using a character level byte-pair encoding (``CharBPETokenizer``) with a vocabulary size of 50k tokens. The tokenizer itself was trained with a [tokenizers](https://github.com/huggingface/tokenizers) library. We kindly encourage you to use the ``Fast`` version of the tokenizer, namely ``HerbertTokenizerFast``. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-large-cased") model = AutoModel.from_pretrained("allegro/herbert-large-cased") output = model( **tokenizer.batch_encode_plus( [ ( "A potem szedł środkiem drogi w kurzawie, bo zamiatał nogami, ślepy dziad prowadzony przez tłustego kundla na sznurku.", "A potem leciał od lasu chłopak z butelką, ale ten ujrzawszy księdza przy drodze okrążył go z dala i biegł na przełaj pól do karczmy." ) ], padding='longest', add_special_tokens=True, return_tensors='pt' ) ) ``` ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{mroczkowski-etal-2021-herbert, title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish", author = "Mroczkowski, Robert and Rybak, Piotr and Wr{\'o}blewska, Alina and Gawlik, Ireneusz", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1", pages = "1--10", } ``` ## Authors The model was trained by [**Machine Learning Research Team at Allegro**](https://ml.allegro.tech/) and [**Linguistic Engineering Group at Institute of Computer Science, Polish Academy of Sciences**](http://zil.ipipan.waw.pl/). You can contact us at: <a href="mailto:klejbenchmark@allegro.pl">klejbenchmark@allegro.pl</a>
Nikkisora/q-Taxi-v3
Nikkisora
2022-06-26T14:10:20Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T14:10:12Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
kavi12/dqn-SpaceInvadersNoFrameskip-v4
kavi12
2022-06-26T14:00:34Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T13:59:56Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 600.50 +/- 114.99 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kavi12 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kavi12 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
yandex/yalm-100b
yandex
2022-06-26T13:22:01Z
0
131
null
[ "tensorboard", "gpt", "NLG", "en", "ru", "license:apache-2.0", "region:us" ]
null
2022-06-23T08:19:11Z
--- language: - en - ru license: apache-2.0 tags: - gpt - NLG --- # YaLM 100B https://github.com/yandex/YaLM-100B **YaLM 100B** is a GPT-like neural network for generating and processing text. It can be used freely by developers and researchers from all over the world. The model leverages 100 billion parameters. It took 65 days to train the model on a cluster of 800 A100 graphics cards and 1.7 TB of online texts, books, and countless other sources in both English and Russian. Training details and best practices on acceleration and stabilizations can be found on **[Medium](https://medium.com/p/d1df53d0e9a6)** (English) and **[Habr](https://habr.com/ru/company/yandex/blog/672396/)** (Russian) articles.
FreelancerFel/dqn_SpaceInvader
FreelancerFel
2022-06-26T11:35:59Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T11:35:21Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 692.50 +/- 193.97 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga FreelancerFel -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga FreelancerFel ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
shafin/distilbert-similarity-b32-3
shafin
2022-06-26T11:24:03Z
4
1
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-26T11:23:53Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # shafin/distilbert-similarity-b32-3 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 3 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('shafin/distilbert-similarity-b32-3') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=shafin/distilbert-similarity-b32-3) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 56250 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 5000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (3): Dense({'in_features': 256, 'out_features': 32, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (4): Dense({'in_features': 32, 'out_features': 3, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
soProf1998/DialoGPT-medium-chattyrick
soProf1998
2022-06-26T10:49:39Z
3
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-24T08:40:30Z
--- thumbnail: https://raw.githubusercontent.com/RuolinZheng08/twewy-discord-chatbot/main/gif-demo/icon.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of Rick from [The Show Rick & Morty] This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a character speech. Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("soProf1998/DialoGPT-medium-chattyrick") model = AutoModelWithLMHead.from_pretrained("soProf1998/DialoGPT-medium-chattyrick") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("RickBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
onlplab/alephbert-base
onlplab
2022-06-26T09:32:47Z
65,559
17
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "language model", "he", "dataset:oscar", "dataset:wikipedia", "dataset:twitter", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - he tags: - language model license: apache-2.0 datasets: - oscar - wikipedia - twitter --- # AlephBERT ## Hebrew Language Model State-of-the-art language model for Hebrew. Based on Google's BERT architecture [(Devlin et al. 2018)](https://arxiv.org/abs/1810.04805). #### How to use ```python from transformers import BertModel, BertTokenizerFast alephbert_tokenizer = BertTokenizerFast.from_pretrained('onlplab/alephbert-base') alephbert = BertModel.from_pretrained('onlplab/alephbert-base') # if not finetuning - disable dropout alephbert.eval() ``` ## Training data 1. OSCAR [(Ortiz, 2019)](https://oscar-corpus.com/) Hebrew section (10 GB text, 20 million sentences). 2. Hebrew dump of [Wikipedia](https://dumps.wikimedia.org/hewiki/latest/) (650 MB text, 3 million sentences). 3. Hebrew Tweets collected from the Twitter sample stream (7 GB text, 70 million sentences). ## Training procedure Trained on a DGX machine (8 V100 GPUs) using the standard huggingface training procedure. Since the larger part of our training data is based on tweets we decided to start by optimizing using Masked Language Model loss only. To optimize training time we split the data into 4 sections based on max number of tokens: 1. num tokens < 32 (70M sentences) 2. 32 <= num tokens < 64 (12M sentences) 3. 64 <= num tokens < 128 (10M sentences) 4. 128 <= num tokens < 512 (1.5M sentences) Each section was first trained for 5 epochs with an initial learning rate set to 1e-4. Then each section was trained for another 5 epochs with an initial learning rate set to 1e-5, for a total of 10 epochs. Total training time was 8 days.
TextCortex/product_description_generator
TextCortex
2022-06-26T09:20:16Z
26
1
transformers
[ "transformers", "gpt_neo", "text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-06-26T08:55:26Z
--- license: mit --- ## TextCortex AI - Product Description Generator - Electronics Model This is one of our legacy models that was used for generating product descriptions for Electronic products. Because of the inference times, we trained this model on a very small version of the GPT-NEO with 125M parameters. Due to its small size, we had to train a model for each product category for our users.\ We will be releasing other trained models on other categories soon. ### How to Prompt: Just give your product name and add 'Product Description:' at the end of it to generate product descriptions.\ Here is an example prompt:\ `Product name: USB Dongle for video capture Product Description:` ### TextCortex API If you want to generate product descriptions programatically, you can check out our API, hemingwAI at this link: https://textcortex.com/documentation/api
vebie91/dqn-SpaceInvadersNoFrameskip-v4-v1.1
vebie91
2022-06-26T08:48:25Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T08:47:44Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 650.00 +/- 154.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga vebie91 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga vebie91 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 2000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
kidzy/distilbert-base-uncased-finetuned-emotion
kidzy
2022-06-26T08:19:59Z
7
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-23T13:17:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9246037761691881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2240 - Accuracy: 0.9245 - F1: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8521 | 1.0 | 250 | 0.3285 | 0.904 | 0.9017 | | 0.2546 | 2.0 | 500 | 0.2240 | 0.9245 | 0.9246 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
veb/twitch-bert-base-cased-finetuned
veb
2022-06-26T06:49:19Z
12
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-22T05:06:19Z
--- tags: - generated_from_keras_callback model-index: - name: veb/twitch-bert-base-cased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # veb/twitch-bert-base-cased-finetuned This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0952 - Train Sparse Categorical Accuracy: 0.9647 - Validation Loss: 0.0359 - Validation Sparse Categorical Accuracy: 0.9881 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 0.2938 | 0.8775 | 0.1106 | 0.9602 | 0 | | 0.1404 | 0.9514 | 0.1508 | 0.9523 | 1 | | 0.0952 | 0.9647 | 0.0359 | 0.9881 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.3.2 - Tokenizers 0.12.1
hyan97/distilbert-base-uncased-finetuned-squad
hyan97
2022-06-26T05:55:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-26T03:31:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2094 | 1.0 | 8235 | 1.2174 | | 0.9515 | 2.0 | 16470 | 1.1923 | | 0.7687 | 3.0 | 24705 | 1.3517 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
romainlhardy/bert-finetuned-ner
romainlhardy
2022-06-26T04:50:31Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-26T00:21:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9292895994725564 - name: Recall type: recall value: 0.9488387748232918 - name: F1 type: f1 value: 0.9389624448330418 - name: Accuracy type: accuracy value: 0.9863572143403779 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0602 - Precision: 0.9293 - Recall: 0.9488 - F1: 0.9390 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0827 | 1.0 | 1756 | 0.0639 | 0.9167 | 0.9359 | 0.9262 | 0.9828 | | 0.0413 | 2.0 | 3512 | 0.0565 | 0.9262 | 0.9465 | 0.9362 | 0.9859 | | 0.0188 | 3.0 | 5268 | 0.0602 | 0.9293 | 0.9488 | 0.9390 | 0.9864 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
workRL/Lundar
workRL
2022-06-26T02:45:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T02:44:44Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 129.59 +/- 116.73 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-v1
gary109
2022-06-26T02:32:15Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-24T11:57:15Z
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-v1 This model is a fine-tuned version of [gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53](https://huggingface.co/gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5760 - Wer: 0.2905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 160 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.656 | 1.0 | 112 | 1.7625 | 0.9265 | | 1.3693 | 2.0 | 224 | 1.5135 | 0.9243 | | 1.2172 | 3.0 | 336 | 1.2657 | 0.8533 | | 1.0456 | 4.0 | 448 | 1.0893 | 0.7691 | | 0.9385 | 5.0 | 560 | 1.0110 | 0.7097 | | 0.8165 | 6.0 | 672 | 0.9243 | 0.6682 | | 0.7491 | 7.0 | 784 | 0.8948 | 0.6583 | | 0.6772 | 8.0 | 896 | 0.7894 | 0.6007 | | 0.6096 | 9.0 | 1008 | 0.7684 | 0.5663 | | 0.5714 | 10.0 | 1120 | 0.6978 | 0.4826 | | 0.5213 | 11.0 | 1232 | 0.8433 | 0.4927 | | 0.4624 | 12.0 | 1344 | 0.6695 | 0.4469 | | 0.4298 | 13.0 | 1456 | 0.6569 | 0.3868 | | 0.3939 | 14.0 | 1568 | 0.6633 | 0.3694 | | 0.3803 | 15.0 | 1680 | 0.6376 | 0.3920 | | 0.3415 | 16.0 | 1792 | 0.6463 | 0.3414 | | 0.3239 | 17.0 | 1904 | 0.5841 | 0.3197 | | 0.2946 | 18.0 | 2016 | 0.5948 | 0.3112 | | 0.2751 | 19.0 | 2128 | 0.5760 | 0.2905 | | 0.2834 | 20.0 | 2240 | 0.5884 | 0.2975 | | 0.2383 | 21.0 | 2352 | 0.5989 | 0.2775 | | 0.2265 | 22.0 | 2464 | 0.6151 | 0.2853 | | 0.2158 | 23.0 | 2576 | 0.5843 | 0.2670 | | 0.2015 | 24.0 | 2688 | 0.6621 | 0.2738 | | 0.215 | 25.0 | 2800 | 0.6068 | 0.2652 | | 0.1859 | 26.0 | 2912 | 0.6136 | 0.2570 | | 0.1745 | 27.0 | 3024 | 0.6191 | 0.2624 | | 0.1611 | 28.0 | 3136 | 0.6364 | 0.2578 | | 0.1513 | 29.0 | 3248 | 0.6402 | 0.2535 | | 0.172 | 30.0 | 3360 | 0.6330 | 0.2500 | | 0.1488 | 31.0 | 3472 | 0.6275 | 0.2521 | | 0.1371 | 32.0 | 3584 | 0.6539 | 0.2540 | | 0.1356 | 33.0 | 3696 | 0.6544 | 0.2491 | | 0.1319 | 34.0 | 3808 | 0.6545 | 0.2491 | | 0.1465 | 35.0 | 3920 | 0.6573 | 0.2495 | | 0.13 | 36.0 | 4032 | 0.6594 | 0.2494 | | 0.1244 | 37.0 | 4144 | 0.6651 | 0.2476 | | 0.1228 | 38.0 | 4256 | 0.6754 | 0.2497 | | 0.1181 | 39.0 | 4368 | 0.6684 | 0.2468 | | 0.1338 | 40.0 | 4480 | 0.6713 | 0.2471 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
danielcfho/MLAgents-Pyramids
danielcfho
2022-06-26T02:13:30Z
15
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-06-26T02:11:23Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: danielcfho/MLAgents-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
anas-awadalla/opt-125m-squad
anas-awadalla
2022-06-25T23:56:38Z
65
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-19T23:01:14Z
A facebook/opt-125m model trained on SQUAD for extractive question answering. To use the model format input in the following manner: "(Context Text)\nQuestion:(Question Text)\nAnswer:"
robertodtg/wav2vec2-large-xls-r-300m-pt-colab
robertodtg
2022-06-25T21:25:10Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_9_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-24T11:52:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_9_0 model-index: - name: wav2vec2-large-xls-r-300m-pt-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-pt-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_9_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2975 - Wer: 0.1736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.179 | 0.49 | 400 | 1.4554 | 0.9349 | | 0.7545 | 0.98 | 800 | 0.5594 | 0.5174 | | 0.4485 | 1.47 | 1200 | 0.3964 | 0.3749 | | 0.4118 | 1.96 | 1600 | 0.3547 | 0.3172 | | 0.3282 | 2.45 | 2000 | 0.3372 | 0.3061 | | 0.3199 | 2.94 | 2400 | 0.3466 | 0.2910 | | 0.2847 | 3.44 | 2800 | 0.3651 | 0.3310 | | 0.2713 | 3.93 | 3200 | 0.3509 | 0.3016 | | 0.2414 | 4.42 | 3600 | 0.3451 | 0.2908 | | 0.2473 | 4.91 | 4000 | 0.3253 | 0.2747 | | 0.2168 | 5.4 | 4400 | 0.3243 | 0.2680 | | 0.219 | 5.89 | 4800 | 0.3067 | 0.2540 | | 0.196 | 6.38 | 5200 | 0.3268 | 0.2824 | | 0.1934 | 6.87 | 5600 | 0.3252 | 0.2736 | | 0.1808 | 7.36 | 6000 | 0.3422 | 0.2737 | | 0.177 | 7.85 | 6400 | 0.3292 | 0.2707 | | 0.1626 | 8.34 | 6800 | 0.3089 | 0.2524 | | 0.1605 | 8.83 | 7200 | 0.3062 | 0.2471 | | 0.1505 | 9.32 | 7600 | 0.3229 | 0.2474 | | 0.1491 | 9.82 | 8000 | 0.3098 | 0.2491 | | 0.1433 | 10.31 | 8400 | 0.3449 | 0.2681 | | 0.1431 | 10.8 | 8800 | 0.3439 | 0.2532 | | 0.1349 | 11.29 | 9200 | 0.3112 | 0.2413 | | 0.1236 | 11.78 | 9600 | 0.3248 | 0.2378 | | 0.1253 | 12.27 | 10000 | 0.3393 | 0.2394 | | 0.1195 | 12.76 | 10400 | 0.3050 | 0.2336 | | 0.1194 | 13.25 | 10800 | 0.3494 | 0.2550 | | 0.1125 | 13.74 | 11200 | 0.3332 | 0.2395 | | 0.1063 | 14.23 | 11600 | 0.3134 | 0.2365 | | 0.1044 | 14.72 | 12000 | 0.3101 | 0.2303 | | 0.0999 | 15.21 | 12400 | 0.3162 | 0.2248 | | 0.0986 | 15.71 | 12800 | 0.3183 | 0.2260 | | 0.0958 | 16.2 | 13200 | 0.3300 | 0.2279 | | 0.0907 | 16.69 | 13600 | 0.3136 | 0.2260 | | 0.0875 | 17.18 | 14000 | 0.3492 | 0.2203 | | 0.0823 | 17.67 | 14400 | 0.3214 | 0.2259 | | 0.0839 | 18.16 | 14800 | 0.3194 | 0.2145 | | 0.0783 | 18.65 | 15200 | 0.3122 | 0.2180 | | 0.0789 | 19.14 | 15600 | 0.3158 | 0.2127 | | 0.0732 | 19.63 | 16000 | 0.3076 | 0.2109 | | 0.0715 | 20.12 | 16400 | 0.3216 | 0.2150 | | 0.0649 | 20.61 | 16800 | 0.2958 | 0.2051 | | 0.0647 | 21.1 | 17200 | 0.3022 | 0.2014 | | 0.0649 | 21.59 | 17600 | 0.3045 | 0.2033 | | 0.0621 | 22.09 | 18000 | 0.3194 | 0.2035 | | 0.0561 | 22.58 | 18400 | 0.3197 | 0.2022 | | 0.0582 | 23.07 | 18800 | 0.3109 | 0.1978 | | 0.0533 | 23.56 | 19200 | 0.3121 | 0.1932 | | 0.0515 | 24.05 | 19600 | 0.3125 | 0.1939 | | 0.0484 | 24.54 | 20000 | 0.3081 | 0.1908 | | 0.0485 | 25.03 | 20400 | 0.3042 | 0.1896 | | 0.0444 | 25.52 | 20800 | 0.3038 | 0.1886 | | 0.0426 | 26.01 | 21200 | 0.2985 | 0.1868 | | 0.0415 | 26.5 | 21600 | 0.3066 | 0.1858 | | 0.0398 | 26.99 | 22000 | 0.3117 | 0.1828 | | 0.0397 | 27.48 | 22400 | 0.2980 | 0.1795 | | 0.0394 | 27.97 | 22800 | 0.2950 | 0.1791 | | 0.0364 | 28.47 | 23200 | 0.3025 | 0.1773 | | 0.0365 | 28.96 | 23600 | 0.3022 | 0.1747 | | 0.0376 | 29.45 | 24000 | 0.2978 | 0.1738 | | 0.0344 | 29.94 | 24400 | 0.2975 | 0.1736 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
nlp-esg-scoring/bert-base-finetuned-esg-a4s
nlp-esg-scoring
2022-06-25T21:16:24Z
5
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-24T21:40:06Z
--- tags: - generated_from_keras_callback model-index: - name: nlp-esg-scoring/bert-base-finetuned-esg-a4s results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nlp-esg-scoring/bert-base-finetuned-esg-a4s This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.9437 - Validation Loss: 1.9842 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -812, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.9200 | 2.0096 | 0 | | 1.9249 | 1.9926 | 1 | | 1.9366 | 2.0100 | 2 | | 1.9327 | 1.9814 | 3 | | 1.9266 | 2.0152 | 4 | | 1.9332 | 2.0519 | 5 | | 1.9203 | 2.0437 | 6 | | 1.9238 | 2.0118 | 7 | | 1.9290 | 2.0019 | 8 | | 1.9437 | 1.9842 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
cambridgeltl/simctg_english_wikipedia
cambridgeltl
2022-06-25T19:45:09Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "arxiv:2202.06417", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
This model provides a GPT-2 language model trained with SimCTG on the English Wikipedia based on our paper [_A Contrastive Framework for Neural Text Generation_](https://arxiv.org/abs/2202.06417). We provide a detailed tutorial on how to apply SimCTG and Contrastive Search in our [project repo](https://github.com/yxuansu/SimCTG#4-huggingface-style-tutorials-back-to-top). In the following, we illustrate a brief tutorial on how to use our approach to perform text generation. ## 1. Installation of SimCTG: ```yaml pip install simctg --upgrade ``` ## 2. Initialize SimCTG Model: ```python import torch # load SimCTG language model from simctg.simctggpt import SimCTGGPT model_name = r'cambridgeltl/simctg_english_wikipedia' model = SimCTGGPT(model_name) model.eval() tokenizer = model.tokenizer ``` ## 3. Prepare the Text Prefix: ```python prefix_text = r"Insect farming is the practice of raising and breeding insects as livestock, also referred to as minilivestock or micro stock. Insects may be farmed for the commodities" print ('Prefix is: {}'.format(prefix_text)) tokens = tokenizer.tokenize(prefix_text) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = torch.LongTensor(input_ids).view(1,-1) ``` ## 4. Generate Text with Contrastive Search: ```python beam_width, alpha, decoding_len = 5, 0.6, 128 output = model.fast_contrastive_search(input_ids=input_ids, beam_width=beam_width, alpha=alpha, decoding_len=decoding_len) print("Output:\n" + 100 * '-') print(tokenizer.decode(output)) ''' Prefix is: Insect farming is the practice of raising and breeding insects as livestock, also referred to as minilivestock or micro stock. Insects may be farmed for the commodities Output: ---------------------------------------------------------------------------------------------------- Insect farming is the practice of raising and breeding insects as livestock, also referred to as minilivestock or micro stock. Insects may be farmed for the commodities they produce, such as honey, corn, sorghum, and other crops. In some cases, the production of insects is a way to increase income for the owner or his family. This type of farming has been described as "an economic system that benefits all people regardless of race, sex, or social status" (p. 9). A large number of farmers in North America, Europe, and South America have used the method of farming for food production in order to feed their families and livestock. The most common method of farming is by hand-cropping, which consists of cutting a hole in the ground and using a saw ''' ``` For more details of our work, please refer to our main [project repo](https://github.com/yxuansu/SimCTG). ## 5. Citation: If you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks! ```bibtex @article{su2022contrastive, title={A Contrastive Framework for Neural Text Generation}, author={Su, Yixuan and Lan, Tian and Wang, Yan and Yogatama, Dani and Kong, Lingpeng and Collier, Nigel}, journal={arXiv preprint arXiv:2202.06417}, year={2022} } ```
rpgz31/tiny-nfl
rpgz31
2022-06-25T18:59:14Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:bittensor", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-25T18:56:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - bittensor metrics: - accuracy model-index: - name: tiny-nfl results: - task: name: Causal Language Modeling type: text-generation dataset: name: bittensor tiny.json type: bittensor args: tiny.json metrics: - name: Accuracy type: accuracy value: 0.15555555555555556 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-nfl This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the bittensor tiny.json dataset. It achieves the following results on the evaluation set: - Loss: 6.4602 - Accuracy: 0.1556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
rpgz31/jibber
rpgz31
2022-06-25T18:00:33Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:bittensor", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-25T17:57:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - bittensor metrics: - accuracy model-index: - name: test-clm results: - task: name: Causal Language Modeling type: text-generation dataset: name: bittensor train-v1.1.json type: bittensor args: train-v1.1.json metrics: - name: Accuracy type: accuracy value: 0.13872832369942195 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-clm This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the bittensor train-v1.1.json dataset. It achieves the following results on the evaluation set: - Loss: 6.5199 - Accuracy: 0.1387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
mikesong724/deberta-wiki-2006
mikesong724
2022-06-25T17:11:39Z
3
0
transformers
[ "transformers", "pytorch", "deberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-25T16:40:24Z
DeBERTa trained from scratch Source data: https://dumps.wikimedia.org/archive/2006/ Tools used: https://github.com/mikesong724/Point-in-Time-Language-Model 2006 wiki archive 2.7 GB trained 24 epochs = 65GB GLUE benchmark cola (3e): matthews corr: 0.2848 sst2 (3e): acc: 0.8876 mrpc (5e): F1: 0.8033, acc: 0.7108 stsb (3e): pearson: 0.7542, spearman: 0.7536 qqp (3e): acc: 0.8852, F1: 0.8461 mnli (3e): acc_mm: 0.7822 qnli (3e): acc: 0.8715 rte (3e): acc: 0.5235 wnli (5e): acc: 0.3099
patrickvonplaten/opt_metaseq_6700m
patrickvonplaten
2022-06-25T15:56:09Z
8
0
transformers
[ "transformers", "opt", "feature-extraction", "opt_metasq", "endpoints_compatible", "region:us" ]
feature-extraction
2022-05-10T17:32:24Z
--- tags: - opt_metasq --- # This repo let's you run the following checkpoint using facebookresearch/metaseq. Do the following: ## 1. Install PyTorch ``` pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html ``` ## 2. Install Megatron ``` git clone https://github.com/patrickvonplaten/Megatron-LM.git cd Megatron-LM pip3 install six regex pip3 install -e . ``` ## 3. Install fairscale ``` git clone https://github.com/facebookresearch/fairscale.git cd fairscale git checkout prefetch_fsdp_params_simple pip3 install -e . ``` ## 4. Install metaseq ``` git clone https://github.com/patrickvonplaten/metaseq.git cd metaseq pip3 install -e . ``` ## 5. Clone this repo (click top right on "How to clone") ## 6. Run the following: ```bash cd <path/to/cloned/repo> bash run.sh ```
bousejin/xlm-roberta-base-finetuned-panx-de-fr
bousejin
2022-06-25T15:06:04Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-25T05:23:24Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1631 - F1: 0.8579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2878 | 1.0 | 715 | 0.1840 | 0.8247 | | 0.1456 | 2.0 | 1430 | 0.1596 | 0.8473 | | 0.0925 | 3.0 | 2145 | 0.1631 | 0.8579 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bousejin/xlm-roberta-base-finetuned-panx-de
bousejin
2022-06-25T14:52:35Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-25T05:19:20Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
NikitaErmolaev/dqn-SpaceInvadersNoFrameskip-v4
NikitaErmolaev
2022-06-25T12:19:51Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-25T12:19:14Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 598.00 +/- 147.67 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga NikitaErmolaev -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga NikitaErmolaev ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
danieladejumo/dqn-SpaceInvadersNoFrameskip-v4
danieladejumo
2022-06-25T12:12:36Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-25T11:31:44Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 618.50 +/- 194.46 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga danieladejumo -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 --no-render --n-timesteps 5000 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga danieladejumo ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
KoboldAI/fairseq-dense-13B-Nerys
KoboldAI
2022-06-25T11:22:58Z
78
18
transformers
[ "transformers", "pytorch", "xglm", "text-generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-14T13:31:19Z
--- language: en license: mit --- # Fairseq-dense 13B - Nerys ## Model Description Fairseq-dense 13B-Nerys is a finetune created using Fairseq's MoE dense model. ## Training data The training data contains around 2500 ebooks in various genres (the "Pike" dataset), a CYOA dataset called "CYS" and 50 Asian "Light Novels" (the "Manga-v1" dataset). Most parts of the dataset have been prepended using the following text: `[Genre: <genre1>, <genre2>]` ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/fairseq-dense-13B-Nerys') >>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50) [{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}] ``` ### Limitations and Biases Based on known problems with NLP technology, potential relevant factors include bias (gender, profession, race and religion). ### BibTeX entry and citation info ``` Artetxe et al. (2021): Efficient Large Scale Language Modeling with Mixtures of Experts ```
traxes/ppo-LunarLander-v2
traxes
2022-06-25T10:31:58Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-25T09:31:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -817.34 +/- 267.34 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
transformersbook/xlm-roberta-base-finetuned-panx-all
transformersbook
2022-06-25T09:44:57Z
7
4
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - f1 datasets: - wikiann model-index: - name: xlm-roberta-base-finetuned-panx-all results: - task: type: token-classification name: Token Classification dataset: name: wikiann type: wikiann config: en split: test metrics: - name: Accuracy type: accuracy value: 0.843189280620875 verified: true - name: Precision type: precision value: 0.8410061269097046 verified: true - name: Recall type: recall value: 0.8568527450211155 verified: true - name: F1 type: f1 value: 0.8488554853827908 verified: true - name: loss type: loss value: 0.6632214784622192 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the PAN-X dataset. The model is trained in Chapter 4: Multilingual Named Entity Recognition in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/04_multilingual-ner.ipynb). It achieves the following results on the evaluation set: - Loss: 0.1739 - F1: 0.8581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2912 | 1.0 | 835 | 0.1883 | 0.8238 | | 0.1548 | 2.0 | 1670 | 0.1738 | 0.8480 | | 0.101 | 3.0 | 2505 | 0.1739 | 0.8581 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
745H1N/MountainCar-v0-DQN-optuna
745H1N
2022-06-25T09:39:58Z
1
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-25T09:39:34Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -200.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **DQN** Agent playing **MountainCar-v0** This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
QuickSilver007/MLAgents-Pyramids
QuickSilver007
2022-06-25T09:30:46Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-06-25T09:30:41Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: QuickSilver007/MLAgents-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kktoto/tiny_focal_v3
kktoto
2022-06-25T08:54:15Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-25T05:11:44Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tiny_focal_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny_focal_v3 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0023 - Precision: 0.6975 - Recall: 0.6822 - F1: 0.6898 - Accuracy: 0.9515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.004 | 1.0 | 5561 | 0.0032 | 0.6900 | 0.6102 | 0.6477 | 0.9454 | | 0.0032 | 2.0 | 11122 | 0.0028 | 0.6901 | 0.6406 | 0.6644 | 0.9477 | | 0.0029 | 3.0 | 16683 | 0.0026 | 0.6956 | 0.6509 | 0.6725 | 0.9490 | | 0.0025 | 4.0 | 22244 | 0.0025 | 0.6838 | 0.6764 | 0.6801 | 0.9493 | | 0.0024 | 5.0 | 27805 | 0.0024 | 0.6954 | 0.6715 | 0.6832 | 0.9504 | | 0.0023 | 6.0 | 33366 | 0.0024 | 0.7125 | 0.6524 | 0.6811 | 0.9512 | | 0.0021 | 7.0 | 38927 | 0.0023 | 0.6999 | 0.6748 | 0.6872 | 0.9514 | | 0.0019 | 8.0 | 44488 | 0.0024 | 0.6962 | 0.6820 | 0.6890 | 0.9513 | | 0.0019 | 9.0 | 50049 | 0.0023 | 0.7005 | 0.6775 | 0.6888 | 0.9516 | | 0.0018 | 10.0 | 55610 | 0.0023 | 0.6975 | 0.6822 | 0.6898 | 0.9515 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bousejin/xlm-roberta-base-finetuned-panx-en
bousejin
2022-06-25T06:48:13Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-25T06:32:26Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6900780379041249 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3909 - F1: 0.6901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1446 | 1.0 | 50 | 0.6385 | 0.3858 | | 0.5317 | 2.0 | 100 | 0.4248 | 0.6626 | | 0.3614 | 3.0 | 150 | 0.3909 | 0.6901 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bousejin/xlm-roberta-base-finetuned-panx-fr
bousejin
2022-06-25T06:15:40Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-25T05:57:28Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.9241871401929781 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1013 - F1: 0.9242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5667 | 1.0 | 191 | 0.2318 | 0.8415 | | 0.2539 | 2.0 | 382 | 0.1428 | 0.8988 | | 0.1739 | 3.0 | 573 | 0.1013 | 0.9242 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jwuthri/distilbert-base-uncased-finetuned-imdb
jwuthri
2022-06-25T05:46:38Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-25T02:21:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.3811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7046 | 1.0 | 157 | 2.4782 | | 2.5679 | 2.0 | 314 | 2.4108 | | 2.5028 | 3.0 | 471 | 2.4121 | | 2.4825 | 4.0 | 628 | 2.3589 | | 2.4593 | 5.0 | 785 | 2.4074 | | 2.4294 | 6.0 | 942 | 2.3742 | | 2.4258 | 7.0 | 1099 | 2.3706 | | 2.4152 | 8.0 | 1256 | 2.3315 | | 2.409 | 9.0 | 1413 | 2.3809 | | 2.3908 | 10.0 | 1570 | 2.3394 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Ritvik19/sentinet-v1
Ritvik19
2022-06-25T04:55:57Z
0
0
sklearn
[ "sklearn", "sentiment-analysis", "en", "region:us" ]
null
2022-05-24T08:17:47Z
--- language: - en tags: - sentiment-analysis - sklearn --- ## Overview Sentinet V1 is a collection of models to thoroughly analyze the sentiments, emotions of a given text. The underlying algorithm is TF-IDF Vectorization followed by Logistic Regression ## Performance sentiment_class | auroc_score ---|---: sentiment_polarity | 95.04% opinion | 70.64% toxicity | 96.12% toxicity__hate | 97.43% toxicity__insult | 97.04% toxicity__obscene | 98.44% toxicity__sexual_explicit | 98.49% toxicity__threat | 98.25% emotion__anger | 86.36% emotion__disgust | 85.15% emotion__fear | 93.03% emotion__guilt | 81.70% emotion__humour | 97.69% emotion__joy | 85.87% emotion__no_emotion | 80.08% emotion__sadness | 91.04% emotion__shame | 84.19% emotion__surprise | 87.55%
AI-Prize-Challenges/autotrain-finetuned1-1035435583
AI-Prize-Challenges
2022-06-24T23:26:04Z
3
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain", "zh", "dataset:AI-Prize-Challenges/autotrain-data-finetuned1", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-24T23:19:13Z
--- tags: autotrain language: zh widget: - text: "I love AutoTrain 🤗" datasets: - AI-Prize-Challenges/autotrain-data-finetuned1 co2_eq_emissions: 0.03608660562919794 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1035435583 - CO2 Emissions (in grams): 0.03608660562919794 ## Validation Metrics - Loss: 0.31551286578178406 - Accuracy: 0.8816629547141797 - Precision: 0.8965702036441586 - Recall: 0.8906042054830983 - AUC: 0.9449180200540812 - F1: 0.8935772466283884 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/AI-Prize-Challenges/autotrain-finetuned1-1035435583 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("AI-Prize-Challenges/autotrain-finetuned1-1035435583", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("AI-Prize-Challenges/autotrain-finetuned1-1035435583", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
KukuyKukuev/bert-base-cased-wikitext2
KukuyKukuev
2022-06-24T22:55:09Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-24T22:15:23Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.0916 | 1.0 | 2346 | 7.0492 | | 6.9039 | 2.0 | 4692 | 6.8751 | | 6.8845 | 3.0 | 7038 | 6.8929 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
philschmid/msmarco-distilbert-base-tas-b-onnx
philschmid
2022-06-24T21:39:55Z
13
0
generic
[ "generic", "onnx", "text-classification", "region:us" ]
text-classification
2022-06-24T21:00:16Z
--- library_name: generic tags: - text-classification ---
domenicrosati/BioM-ALBERT-xxlarge-finetuned-DAGPap22
domenicrosati
2022-06-24T19:54:01Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-24T13:25:01Z
--- tags: - text-classification - generated_from_trainer model-index: - name: BioM-ALBERT-xxlarge-finetuned-DAGPap22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BioM-ALBERT-xxlarge-finetuned-DAGPap22 This model is a fine-tuned version of [sultan/BioM-ALBERT-xxlarge](https://huggingface.co/sultan/BioM-ALBERT-xxlarge) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
msivanes/blurr_IMDB_distilbert_cls
msivanes
2022-06-24T19:43:01Z
0
0
fastai
[ "fastai", "license:apache-2.0", "region:us" ]
null
2022-06-24T17:23:09Z
--- tags: - fastai title: Blurr Sentiment Classification emoji: 🐠 colorFrom: green colorTo: indigo sdk: gradio sdk_version: 2.9.4 app_file: app.py pinned: false license: apache-2.0 --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
sharanharsoor/RL-work-Try
sharanharsoor
2022-06-24T19:32:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-24T19:31:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -24.87 +/- 20.55 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
deepesh0x/autotrain-finetunedmodel1-1034535555
deepesh0x
2022-06-24T18:57:34Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain", "unk", "dataset:deepesh0x/autotrain-data-finetunedmodel1", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-24T18:43:40Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-finetunedmodel1 co2_eq_emissions: 29.194903746653306 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1034535555 - CO2 Emissions (in grams): 29.194903746653306 ## Validation Metrics - Loss: 0.16423887014389038 - Accuracy: 0.9402375649591685 - Precision: 0.94876254180602 - Recall: 0.9438381687516636 - AUC: 0.9843968335444757 - F1: 0.9462939488958569 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-finetunedmodel1-1034535555 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-finetunedmodel1-1034535555", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-finetunedmodel1-1034535555", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
enoriega/kw_pubmed_vanilla_sentence_10000_0.0003_2
enoriega
2022-06-24T18:35:03Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "dataset:enoriega/keyword_pubmed", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-24T01:52:58Z
--- license: mit tags: - generated_from_trainer datasets: - enoriega/keyword_pubmed metrics: - accuracy model-index: - name: kw_pubmed_vanilla_sentence_10000_0.0003_2 results: - task: name: Masked Language Modeling type: fill-mask dataset: name: enoriega/keyword_pubmed sentence type: enoriega/keyword_pubmed args: sentence metrics: - name: Accuracy type: accuracy value: 0.6767448105720579 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kw_pubmed_vanilla_sentence_10000_0.0003_2 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the enoriega/keyword_pubmed sentence dataset. It achieves the following results on the evaluation set: - Loss: 1.5883 - Accuracy: 0.6767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 500 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
deepesh0x/autotrain-bert_wikipedia_sst_2-1034235509
deepesh0x
2022-06-24T17:25:50Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:deepesh0x/autotrain-data-bert_wikipedia_sst_2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-24T17:17:01Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-bert_wikipedia_sst_2 co2_eq_emissions: 17.051424016530056 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1034235509 - CO2 Emissions (in grams): 17.051424016530056 ## Validation Metrics - Loss: 0.14414940774440765 - Accuracy: 0.954046028210839 - Precision: 0.9583831937242387 - Recall: 0.9592760180995475 - AUC: 0.9872623710421541 - F1: 0.9588293980711673 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-bert_wikipedia_sst_2-1034235509 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst_2-1034235509", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst_2-1034235509", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
gballoccu/q-FrozenLake-v1-4x4-noSlippery
gballoccu
2022-06-24T17:01:44Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-24T17:01:39Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="gballoccu/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Servarr/bert-finetuned-radarr
Servarr
2022-06-24T16:40:53Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:movie_releases", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-24T09:52:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - movie_releases metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-radarr results: - task: name: Token Classification type: token-classification dataset: name: movie_releases type: movie_releases args: default metrics: - name: Precision type: precision value: 0.9555421444377389 - name: Recall type: recall value: 0.9638798701298701 - name: F1 type: f1 value: 0.9596928982725529 - name: Accuracy type: accuracy value: 0.9817602584524263 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-radarr This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the movie_releases dataset. It achieves the following results on the evaluation set: - Loss: 0.0731 - Precision: 0.9555 - Recall: 0.9639 - F1: 0.9597 - Accuracy: 0.9818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0431 | 1.0 | 1191 | 0.1403 | 0.9436 | 0.9574 | 0.9504 | 0.9626 | | 0.0236 | 2.0 | 2382 | 0.0881 | 0.9485 | 0.9560 | 0.9522 | 0.9694 | | 0.0138 | 3.0 | 3573 | 0.0731 | 0.9555 | 0.9639 | 0.9597 | 0.9818 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Mraleksa/fine-tune-distilbert-exitru
Mraleksa
2022-06-24T15:29:02Z
10
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-24T07:49:54Z
first test model om Huggingface HUB
Corianas/ppo-QbertNoFrameskip-v4_3
Corianas
2022-06-24T13:34:09Z
0
0
stable-baselines3
[ "stable-baselines3", "QbertNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-24T13:33:03Z
--- library_name: stable-baselines3 tags: - QbertNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 16147.50 +/- 1760.98 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: QbertNoFrameskip-v4 type: QbertNoFrameskip-v4 --- # **PPO** Agent playing **QbertNoFrameskip-v4** This is a trained model of a **PPO** agent playing **QbertNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env QbertNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo ppo --env QbertNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env QbertNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env QbertNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 10000000.0), ('policy', 'CnnPolicy'), ('vf_coef', 0.5), ('normalize', False)]) ```
ashraq/movielense_user_model_cos_384
ashraq
2022-06-24T11:32:28Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-06-24T11:32:14Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Mizew/EN-RSK
Mizew
2022-06-24T11:13:10Z
12
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "translation", "en", "es", "dataset:Mizew/autotrain-data-rusyn2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-22T12:39:17Z
--- tags: - autotrain - translation language: - en - es datasets: - Mizew/autotrain-data-rusyn2 co2_eq_emissions: 19.740487511182447 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1018434345 - CO2 Emissions (in grams): 19.740487511182447 ## Validation Metrics - Loss: 0.9978321194648743 - SacreBLEU: 13.8459 - Gen len: 6.0588 ## Description This is a model for the Pannonian Rusyn language, Albeit the data i trained it on also had a bit of Carpathian Rusyn in it, so don't expect the translator give out pure pannonian. and also it's not very good.
prithivida/parrot_fluency_model
prithivida
2022-06-24T09:54:04Z
59,748
1
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-27T02:04:04Z
--- license: apache-2.0 --- Parrot THIS IS AN ANCILLARY MODEL FOR PARROT PARAPHRASER 1. What is Parrot? Parrot is a paraphrase-based utterance augmentation framework purpose-built to accelerate training NLU models. A paraphrase framework is more than just a paraphrasing model. Please refer to the GitHub page or The model card prithivida/parrot_paraphraser_on_T5
humhealth/chroniccaremanagement
humhealth
2022-06-24T08:14:42Z
0
0
null
[ "license:bsl-1.0", "region:us" ]
null
2022-06-24T08:14:24Z
--- license: bsl-1.0 --- https://www.humhealth.com/chronic-care-management/
AlexChe/MLAgents-Pyramids
AlexChe
2022-06-24T08:12:24Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-06-24T08:12:08Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: AlexChe/MLAgents-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
humhealth/remote-patientmonitoring
humhealth
2022-06-24T08:08:34Z
0
1
null
[ "license:bsl-1.0", "region:us" ]
null
2022-06-24T08:07:20Z
--- license: bsl-1.0 --- https://www.humhealth.com/remote-patient-monitoring/ https://www.humhealth.com/chronic-care-management/
Lakshya/ppo-LunarLander-v2
Lakshya
2022-06-24T07:45:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-24T07:45:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 176.04 +/- 45.27 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
axds/classify-fish-sounds
axds
2022-06-24T06:37:14Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-06-24T05:33:58Z
--- tags: - fastai --- This model was trained to as part of collaboration between [Mote Marine Laboratory & Aquarium](https://mote.org), [Southeast Coastal Ocean Observing Regional Association](https://secoora.org), and [Axiom Data Science](https://axiomdatascience.com) to develop a model capable of detecting and classifying fish vocalizations from audio files collected from hydrophones. More information available at [the project archive repo](https://github.com/axiom-data-science/project-classify-fish-sounds). --- # Model card ## Model description This model was trained on spectrograms A [reproducible Jupyter notebook](https://github.com/axiom-data-science/project-classify-fish-sounds/blob/main/notebooks/train-resnet101-fastai.ipynb) describing the training of the model is available in the archive repo. ## Intended uses & limitations The model was intended to be a proof on concept to aid researchers identify fish vocalizations through vast amounts of audio data collected from hydrophones. Although the training data was collected using multiple devices in multiple locations, the model may not be generally applicable to other uses. ## Training and evaluation data A training set of spectrograms of fish calls was created based on annotations of fish sounds in passive acoustic recordings by a hydrophone were provided by Jim Locascio, Max Fullmer, and volunteers from the [Mote Marine Laboratory & Aquarium](https://mote.org). Due to severe imbalances in the number of samples per class, the training involved both under-sampling classes with many samples and over-sampling classes with few classes so that the model was trained on 50 samples per class. This number was derived in a completely ad-hoc fashion based on the distribution of class samples. ### Class label description | Call Index | Description | |------------|-------------| | 0 | Background noise (no fish vocalizations) | | 1 | Black grouper 1 | | 2 | Black grouper 2 | | 3 | Black grouper grunt | | 4 | Black grouper spawning rush | | 5 | Black grouper chorus < 50% of file | | 6 | Black grouper chrous > 50% of file | | 8 | Unidentified sound type | | 9 | Red grouper 1 | | 10 | Red grouper 2 | | 17 | Red hind 1 | | 18 | Red hind 2 | | 19 | Red hind 3 | | 25 | Goliath grouper 1 | | 27 | Multi-phase goliath grouper | | 28 | Sea trout chorus | | 29 | Silver perch call | ### Class indices in trained model Some classes did not meet the training criteria, high signal-to-noise ratio and minimum call overlap, and were therefore excluded from the model training. As such, the number of classes represented in the trained model is few than the amount of labeled classes in the training set. | Call Index | Description | -------------|-------------| |0 | No call | |1 | Black grouper call | |2 | Black grouper call 2 | |3 | Black grouper grunt | |4 | Unidentified sound | |5 | Red grouper 1 | |6 | Red grouper 2 | |7 | Red hind 1 | |8 | Red hind 2 | |9 | Red hind 3 | |10 | Goliath grouper | |11 | Goliath grouper multi-phase |
jesse-lopez/classify-fish-sounds
jesse-lopez
2022-06-24T05:31:35Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-06-24T05:31:28Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Rahulrr/language_model_en_he
Rahulrr
2022-06-24T05:31:17Z
3
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "en", "he", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-24T05:28:35Z
--- language: - en - he tags: - translation license: apache-2.0 --- ### en-he * source group: English * target group: Hebrew * OPUS readme: [eng-heb](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-heb/README.md) * model: transformer-align * source language(s): eng * target language(s): heb * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus+bt-2021-04-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus+bt-2021-04-13.zip) * test set translations: [opus+bt-2021-04-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus+bt-2021-04-13.test.txt) * test set scores: [opus+bt-2021-04-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus+bt-2021-04-13.eval.txt) ## Benchmarks | testset | BLEU | chr-F | #sent | #words | BP | |---------|-------|-------|-------|--------|----| | Tatoeba-test.eng-heb | 37.8 | 0.601 | 10000 | 60359 | 1.000 | ### System Info: - hf_name: en-he - source_languages: eng - target_languages: heb - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-heb/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'he'] - src_constituents: ('English', {'eng'}) - tgt_constituents: ('Hebrew', {'heb'}) - src_multilingual: False - tgt_multilingual: False - long_pair: eng-heb - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus+bt-2021-04-13.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus+bt-2021-04-13.test.txt - src_alpha3: eng - tgt_alpha3: heb - chrF2_score: 0.601 - bleu: 37.8 - src_name: English - tgt_name: Hebrew - train_date: 2021-04-13 00:00:00 - src_alpha2: en - tgt_alpha2: he - prefer_old: False - short_pair: en-he - helsinki_git_sha: c4e978d8de47875b482653b423dcfe968979d7d5 - transformers_git_sha: 56b83cf049823ed074a655eceb28f31e2077c6eb - port_machine: LAPIN4GLQ2G3 - port_time: 2022-06-22-19:47
iaanimashaun/distilgpt2-finetuned-wikitext2
iaanimashaun
2022-06-24T05:13:39Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-23T10:57:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7852 | 1.0 | 2334 | 3.6895 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
Saraswati/Stable_Baselines3
Saraswati
2022-06-24T05:03:51Z
0
0
null
[ "region:us" ]
null
2022-06-24T05:02:47Z
import gym import numpy as np from stable_baselines3 import PPO from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv from stable_baselines3.common.env_util import make_vec_env from stable_baselines3.common.utils import set_random_seed def make_env(env_id, rank, seed=0): """ Utility function for multiprocessed env. :param env_id: (str) the environment ID :param num_env: (int) the number of environments you wish to have in subprocesses :param seed: (int) the inital seed for RNG :param rank: (int) index of the subprocess """ def _init(): env = gym.make(env_id) env.seed(seed + rank) return env set_random_seed(seed) return _init if __name__ == '__main__': env_id = "CartPole-v1" num_cpu = 4 # Number of processes to use # Create the vectorized environment env = SubprocVecEnv([make_env(env_id, i) for i in range(num_cpu)]) # Stable Baselines provides you with make_vec_env() helper # which does exactly the previous steps for you. # You can choose between `DummyVecEnv` (usually faster) and `SubprocVecEnv` # env = make_vec_env(env_id, n_envs=num_cpu, seed=0, vec_env_cls=SubprocVecEnv) model = PPO('MlpPolicy', env, verbose=1) model.learn(total_timesteps=25_000) obs = env.reset() for _ in range(1000): action, _states = model.predict(obs) obs, rewards, dones, info = env.step(action) env.render()
sharpcoder/wav2vec2_bjorn
sharpcoder
2022-06-24T04:24:07Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-23T02:53:37Z
This project is meant to fine-tune the facebook/wav2vec2 speech-to-text library using my voice specifically for my own speech to text purposes.
sonalily/distilgpt2-finetuned-wikitext2
sonalily
2022-06-24T04:14:20Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-23T01:12:45Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7607 | 1.0 | 2334 | 3.6664 | | 3.6527 | 2.0 | 4668 | 3.6473 | | 3.6015 | 3.0 | 7002 | 3.6429 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sijunhe/nezha-base-wwm
sijunhe
2022-06-24T03:55:20Z
45
1
transformers
[ "transformers", "pytorch", "nezha", "fill-mask", "arxiv:1909.00204", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-19T09:36:26Z
--- license: afl-3.0 --- **Please use 'Bert' related tokenizer classes and 'Nezha' related model classes** [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. The original checkpoints can be found [here](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/NEZHA-PyTorch) ## Example Usage ``` from transformers import BertTokenizer, NezhaModel tokenizer = BertTokenizer.from_pretrained("sijunhe/nezha-base-wwm") model = NezhaModel.from_pretrained("sijunhe/nezha-base-wwm") text = "我爱北京天安门" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ```
sijunhe/nezha-cn-base
sijunhe
2022-06-24T03:53:56Z
1,269
11
transformers
[ "transformers", "pytorch", "nezha", "fill-mask", "arxiv:1909.00204", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-18T16:39:15Z
--- license: afl-3.0 --- **Please use 'Bert' related tokenizer classes and 'Nezha' related model classes** [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. The original checkpoints can be found [here](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/NEZHA-PyTorch) ## Example Usage ``` from transformers import BertTokenizer, NezhaModel tokenizer = BertTokenizer.from_pretrained('sijunhe/nezha-cn-base') model = NezhaModel.from_pretrained("sijunhe/nezha-cn-base") text = "我爱北京天安门" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ```
mwong/albert-base-fever-claim-related
mwong
2022-06-24T03:34:53Z
8
2
transformers
[ "transformers", "pytorch", "albert", "text-classification", "text classification", "fact checking", "en", "dataset:mwong/fever-claim-related", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-20T12:49:48Z
--- language: en license: mit tags: - text classification - fact checking datasets: - mwong/fever-claim-related widget: - text: "Earth’s changing climate is a critical issue and poses the risk of significant environmental, social and economic disruptions around the globe.</s></s>Because of fears of climate change and adverse effects of drilling explosions and oil spills in the Gulf of Mexico, legislation has been considered, and governmental regulations and orders have been issued, which, combined with the local economic and employment conditions caused by both, could materially adversely impact the oil and gas industries and the economic health of areas in which a significant number of our stores are located." example_title: "Evidence related to claim" metrics: f1 --- # FeverAlbert FeverAlbert is a classifier model that predicts if evidence is related to query claim. The model achieved F1 score of 88.33% with test dataset "mwong/fever-claim-related". Using pretrained albert-base-v2 model, the classifier head is trained on Fever dataset.
mwong/roberta-base-climate-evidence-related
mwong
2022-06-24T03:34:04Z
4
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "text classification", "fact checking", "en", "dataset:mwong/fever-evidence-related", "dataset:mwong/climate-evidence-related", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-20T12:52:55Z
--- language: en license: mit tags: - text classification - fact checking datasets: - mwong/fever-evidence-related - mwong/climate-evidence-related widget: - text: "Earth’s changing climate is a critical issue and poses the risk of significant environmental, social and economic disruptions around the globe.</s></s>Because of fears of climate change and adverse effects of drilling explosions and oil spills in the Gulf of Mexico, legislation has been considered, and governmental regulations and orders have been issued, which, combined with the local economic and employment conditions caused by both, could materially adversely impact the oil and gas industries and the economic health of areas in which a significant number of our stores are located." example_title: "Evidence related to claim" metrics: f1 --- # ClimateRoberta ClimateRoberta is a classifier model that predicts if climate related evidence is related to query claim. The model achieved F1 score of 80.13% with test dataset "mwong/climate-evidence-related". Using pretrained roberta-base model, the classifier head is trained on Fever dataset and adapted to climate domain using ClimateFever dataset.