modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-05 00:41:53
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
539 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-05 00:41:31
card
stringlengths
11
1.01M
DexoXeck/Spongebob-Dialougue-RVC2
DexoXeck
2023-06-26T01:39:31Z
0
0
null
[ "license:cc-by-4.0", "region:us" ]
null
2023-06-25T19:39:39Z
--- license: cc-by-4.0 --- Made by SEP64 Productions. (Please credit SEP64's discord when model is used.) A tiny more than an hour of dataset audio and 500 epochs, took like 3 or 4 weeks to render cuz I used google collab and didn't want to pay for GPU. Thank you for using my model! Also, thanks MrAK2006 for converting my model into a zip that actually works LOL.
realmplay/Charybdis-v1.0
realmplay
2023-06-26T01:39:30Z
5
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-23T08:06:47Z
<img src="https://media.discordapp.net/attachments/1093298155627491368/1122627585680093254/tyfvenom_A_mythical_and_futuristic_representation_of_Charybdis__18d006ca-45e0-46eb-a6d3-62d06432b4f1.png?width=905&height=905" alt="Image description" width="400" height="400"> # Charybdis v1.0 ### A Groundbreaking LLM that redefines roleplaying with unparalleled coherence, 16k context support, and complete uncensorship. ### Experience epic, immersive narratives driven by advanced algorithms and state-of-the-art AI technology, without any limitations.
medmac01/moroccan-qa-falcon-7b
medmac01
2023-06-26T01:11:04Z
15
0
transformers
[ "transformers", "RefinedWebModel", "text-generation", "history", "custom_code", "en", "fr", "dataset:medmac01/moroccan_history_qa", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
2023-06-11T15:11:33Z
--- datasets: - medmac01/moroccan_history_qa language: - en - fr library_name: transformers tags: - history ---
arshiahemmat/NewsPredictor
arshiahemmat
2023-06-26T00:56:02Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-26T00:01:28Z
# Persian News Classification Model This project presents a machine learning model trained on a dataset of over 25,000 Persian news articles. The model is designed to classify news articles into one of seven categories: Sport, Science, Culture, Politics, International, Economic, and Social. ## Dataset The dataset used for this project consists of more than 25,000 Persian news articles. These articles are categorized into seven distinct categories, providing a diverse range of topics for the model to learn from. The categories are as follows: 1. Sport 2. Science 3. Culture 4. Politics 5. International 6. Economic 7. Social ## Model The model has been trained on this extensive dataset, learning to identify and understand the nuances of each category. This allows it to accurately classify new, unseen Persian news articles into the appropriate category. ## Usage To use this model, simply input a Persian news article and the model will output the predicted category. This can be useful for a variety of applications, such as news aggregation services, content recommendation systems, and more. ## Future Work We plan to continuously improve and update this model, incorporating more data and refining the model's architecture to increase its accuracy and efficiency. ## Contributions Contributions to this project are welcome. If you have suggestions or improvements, feel free to open an issue or submit a pull request.
dean-r/ppo-LunarLander-v2-w1
dean-r
2023-06-26T00:39:45Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T23:22:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.39 +/- 20.24 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
boltzmein/test-partweet
boltzmein
2023-06-26T00:37:56Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-25T20:42:12Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: boltzmein/test-partweet results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # boltzmein/test-partweet This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3108 - Train Accuracy: 0.8661 - Validation Loss: 0.4225 - Validation Accuracy: 0.7964 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1497, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.6942 | 0.5404 | 0.7014 | 0.4524 | 0 | | 0.5601 | 0.6951 | 0.4631 | 0.7844 | 1 | | 0.3108 | 0.8661 | 0.4225 | 0.7964 | 2 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
nomad-ai/ppo-SnowballTarget
nomad-ai
2023-06-26T00:36:28Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-26T00:36:22Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: nomad-ai/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
orhay1/RVC_Rem_Inori_Minase
orhay1
2023-06-26T00:15:43Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-06-26T00:10:35Z
--- license: openrail --- RVC V2 Model for Rem - Re:zero , VA - Inori Minase
roa7n/llama_human_enhancers_ensembl
roa7n
2023-06-26T00:10:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-24T05:27:23Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
BoilerToad/pegasus-samsum
BoilerToad
2023-06-26T00:09:49Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T23:26:08Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7041 | 0.54 | 500 | 1.4828 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 2.0.0 - Tokenizers 0.13.3
cateto/korean-gpt-neox-125M
cateto
2023-06-25T23:16:48Z
304
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "ko", "license:cc-by-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-16T06:08:21Z
--- license: cc-by-3.0 language: - ko pipeline_tag: text-generation --- # korean-gpt-neox-125M ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [cateto](http://github.com/cateto) - **Model type:** [gpt-neox](https://github.com/EleutherAI/gpt-neox) - **Language(s) (NLP):** Korean ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use ```python # Import the transformers library from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("cateto/korean-gpt-neox-125M") model = AutoModelForCausalLM.from_pretrained("cateto/korean-gpt-neox-125M") # Get user input user_input = "์šฐ๋ฆฌ๋Š” ์•ž์œผ๋กœ ๋”๋‚˜์€ ๋ฏธ๋ž˜๋ฅผ" # Encode the prompt using the tokenizer input_ids = tokenizer.encode(user_input, return_tensors="pt") # Generate chatbot output using the model output_ids = model.generate( input_ids, num_beams=4, repetition_penalty=1.5, no_repeat_ngram_size=3 ) # Decode chatbot output ids as text bot_output = tokenizer.decode(output_ids.tolist()[0], skip_special_tokens=True) # Print chatbot output print(f"์ถœ๋ ฅ ## ", bot_output) # ์ถœ๋ ฅ ## ์šฐ๋ฆฌ๋Š” ์•ž์œผ๋กœ ๋”๋‚˜์€ ๋ฏธ๋ž˜๋ฅผ ํ–ฅํ•ด ๋‚˜์•„๊ฐˆ ์ˆ˜ ์žˆ๋‹ค. ```
heinjan/TI-mobilenetv3-imagenet-v2-v1
heinjan
2023-06-25T23:09:52Z
4
0
tf-keras
[ "tf-keras", "image-classification", "region:us" ]
image-classification
2023-06-25T23:06:23Z
--- pipeline_tag: image-classification ---
Nams139/ppo-LunarLaner-v2
Nams139
2023-06-25T23:01:43Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T23:01:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 261.37 +/- 16.18 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mnicamartins8/bert-base-uncased-without-corrections
mnicamartins8
2023-06-25T23:01:26Z
138
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-25T21:07:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-base-uncased-without-corrections results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-without-corrections This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2283 - Accuracy: 0.9070 - Precision: 0.9114 - Recall: 0.9070 - F1: 0.9086 - Balanced Acc: 0.8857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
heinjan/TI-mobilenetv3-imagenet-v2-v2
heinjan
2023-06-25T22:59:51Z
4
0
tf-keras
[ "tf-keras", "image-classification", "region:us" ]
image-classification
2023-06-25T18:19:59Z
--- pipeline_tag: image-classification ---
rodrigoclira/ppo-Pyramid
rodrigoclira
2023-06-25T22:51:01Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-06-25T22:50:59Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: rodrigoclira/ppo-Pyramid 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
rodrigoclira/ppo-SnowballTarget
rodrigoclira
2023-06-25T22:07:56Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-25T22:07:53Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: rodrigoclira/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
renyulin/opt125m-imdb-sft-lora8bit
renyulin
2023-06-25T21:57:38Z
1
0
peft
[ "peft", "region:us" ]
null
2023-06-25T21:56:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
crlandsc/tiny-audio-diffusion-percussion
crlandsc
2023-06-25T21:55:33Z
5
2
null
[ "audio", "diffusion", "waveform diffusion", "audio diffusion", "unet", "region:us" ]
null
2023-06-18T17:02:14Z
--- tags: - audio - diffusion - waveform diffusion - audio diffusion - unet --- # Model Card for tiny-audio-diffusion-percussion General percussion/drum model for tiny-audio-diffusion. Use with [tiny-audio-diffusion](https://github.com/crlandsc/tiny-audio-diffusion) repo to generate random drum samples of all types.
joohwan/888aatt
joohwan
2023-06-25T21:39:08Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-25T18:40:10Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: 888aatt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 888aatt This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0831 - Wer: 44.8577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0732 | 0.18 | 500 | 0.2005 | 31.2302 | | 0.048 | 0.36 | 1000 | 0.1672 | 20.4939 | | 0.0624 | 0.54 | 1500 | 0.1348 | 50.5496 | | 0.0797 | 0.72 | 2000 | 0.1061 | 33.1727 | | 0.0551 | 0.9 | 2500 | 0.0894 | 37.4191 | | 0.0144 | 1.08 | 3000 | 0.0831 | 44.8577 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
pierrott/taxi
pierrott
2023-06-25T21:34:31Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T21:34:25Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="pierrott/taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mkhan149/output_model7
mkhan149
2023-06-25T21:14:15Z
61
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-25T21:01:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mkhan149/output_model7 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mkhan149/output_model7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.3525 - Validation Loss: 4.5575 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -512, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.3525 | 4.5575 | 0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.11.0 - Datasets 2.13.1 - Tokenizers 0.13.3
bogdancazan/t5-small-text-simplification_1e4_adafactor
bogdancazan
2023-06-25T20:54:56Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T17:32:00Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-text-simplification_1e4_adafactor results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-text-simplification_1e4_adafactor This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8842 | 1.0 | 582 | 0.4651 | | 0.5737 | 2.0 | 1164 | 0.4611 | | 0.5559 | 3.0 | 1746 | 0.4585 | | 0.548 | 4.0 | 2328 | 0.4573 | | 0.541 | 5.0 | 2910 | 0.4565 | | 0.5349 | 6.0 | 3492 | 0.4564 | | 0.5257 | 7.0 | 4074 | 0.4552 | | 0.5223 | 8.0 | 4656 | 0.4558 | | 0.5185 | 9.0 | 5238 | 0.4550 | | 0.5145 | 10.0 | 5820 | 0.4544 | | 0.5166 | 11.0 | 6402 | 0.4551 | | 0.5104 | 12.0 | 6984 | 0.4546 | | 0.5089 | 13.0 | 7566 | 0.4547 | | 0.5054 | 14.0 | 8148 | 0.4544 | | 0.5047 | 15.0 | 8730 | 0.4544 | | 0.5043 | 16.0 | 9312 | 0.4537 | | 0.5021 | 17.0 | 9894 | 0.4539 | | 0.5034 | 18.0 | 10476 | 0.4539 | | 0.5008 | 19.0 | 11058 | 0.4541 | | 0.5003 | 20.0 | 11640 | 0.4541 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
DavidAvag/Vagner
DavidAvag
2023-06-25T20:47:07Z
0
0
null
[ "region:us" ]
null
2023-06-25T20:46:18Z
# โš ๏ธ Type of model/library unknown. # Feel free to open a Pull request # for integration of the huggingface model hub # into the corresponding library =)
nolanaatama/rkrnhllvnrvc1000pchsdclkd44
nolanaatama
2023-06-25T20:21:46Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T19:43:14Z
--- license: creativeml-openrail-m ---
yashgharat/dqn-SpaceInvadersNoFrameskip-v4
yashgharat
2023-06-25T20:20:45Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T20:20:13Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 472.50 +/- 216.45 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga yashgharat -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga yashgharat -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga yashgharat ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 500000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
trevdoc/ppo-LunarLander-v2
trevdoc
2023-06-25T20:18:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T20:18:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.73 +/- 21.78 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
heinjan/TI-mobilenetv3-imagenet-v2
heinjan
2023-06-25T20:15:14Z
7
0
tf-keras
[ "tf-keras", "image-classification", "region:us" ]
image-classification
2023-05-11T07:16:18Z
--- pipeline_tag: image-classification ---
Smaraa/t5-text-simplification_1e4_adafactor
Smaraa
2023-06-25T19:33:52Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T11:48:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-text-simplification_1e4_adafactor results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-text-simplification_1e4_adafactor This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4541 - Rouge1: 63.482 - Rouge2: 46.0572 - Rougel: 58.7168 - Rougelsum: 58.691 - Gen Len: 18.1518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.5806 | 1.0 | 582 | 0.4611 | 63.4316 | 45.9106 | 58.8265 | 58.7225 | 18.2723 | | 0.5615 | 2.0 | 1164 | 0.4597 | 63.4805 | 46.0473 | 58.8515 | 58.7755 | 18.2304 | | 0.5478 | 3.0 | 1746 | 0.4569 | 63.582 | 46.4341 | 58.9334 | 58.9024 | 18.2251 | | 0.5418 | 4.0 | 2328 | 0.4563 | 63.3978 | 46.3386 | 58.7994 | 58.7682 | 18.1937 | | 0.5358 | 5.0 | 2910 | 0.4557 | 63.3056 | 46.0741 | 58.9362 | 58.9063 | 18.1675 | | 0.5304 | 6.0 | 3492 | 0.4555 | 63.2044 | 45.9513 | 58.6796 | 58.6155 | 18.1414 | | 0.5219 | 7.0 | 4074 | 0.4546 | 63.3451 | 46.0504 | 58.7905 | 58.7105 | 18.1937 | | 0.5188 | 8.0 | 4656 | 0.4552 | 63.1977 | 46.04 | 58.6804 | 58.6152 | 18.178 | | 0.5152 | 9.0 | 5238 | 0.4546 | 63.2055 | 45.926 | 58.5223 | 58.5038 | 18.1885 | | 0.5113 | 10.0 | 5820 | 0.4537 | 63.4876 | 46.3268 | 58.8035 | 58.7711 | 18.1937 | | 0.5135 | 11.0 | 6402 | 0.4548 | 63.0435 | 45.5796 | 58.4433 | 58.3963 | 18.1414 | | 0.5074 | 12.0 | 6984 | 0.4545 | 63.2951 | 45.7406 | 58.5712 | 58.4938 | 18.1518 | | 0.5061 | 13.0 | 7566 | 0.4543 | 63.3588 | 46.169 | 58.661 | 58.6234 | 18.1832 | | 0.5026 | 14.0 | 8148 | 0.4543 | 63.3304 | 46.0553 | 58.5952 | 58.5745 | 18.1832 | | 0.5021 | 15.0 | 8730 | 0.4542 | 63.3378 | 45.8684 | 58.605 | 58.5854 | 18.1518 | | 0.5016 | 16.0 | 9312 | 0.4537 | 63.478 | 46.0719 | 58.7172 | 58.6834 | 18.1885 | | 0.4995 | 17.0 | 9894 | 0.4538 | 63.5111 | 46.0395 | 58.7451 | 58.7191 | 18.1571 | | 0.5009 | 18.0 | 10476 | 0.4539 | 63.5128 | 46.0939 | 58.7491 | 58.7169 | 18.1571 | | 0.4982 | 19.0 | 11058 | 0.4541 | 63.4593 | 46.0379 | 58.7067 | 58.6801 | 18.1518 | | 0.4977 | 20.0 | 11640 | 0.4541 | 63.482 | 46.0572 | 58.7168 | 58.691 | 18.1518 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Shridipta-06/dqn-SpaceInvadersNoFrameskip-v4
Shridipta-06
2023-06-25T18:57:49Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T18:57:16Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 487.00 +/- 104.38 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Shridipta-06 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Shridipta-06 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Shridipta-06 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
MindNetML/Reinforce-pixelcopter-v1
MindNetML
2023-06-25T18:54:20Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T18:53:23Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 37.40 +/- 24.59 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
c72599/Reinforce-Pixelcopter-PLE-v0
c72599
2023-06-25T18:52:30Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T13:27:33Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 38.70 +/- 26.83 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AIDA-UPM/bertweet-base-multi-mami
AIDA-UPM
2023-06-25T18:42:38Z
127
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "misogyny", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- pipeline_tag: text-classification tags: - text-classification - misogyny language: en license: apache-2.0 widget: - text: "Women wear yoga pants because men don't stare at their personality" example_title: "Misogyny detection" --- # bertweet-base-multi-mami This is a Bertweet model: It maps sentences & paragraphs to a 768 dimensional dense vector space and classifies them into 5 multi labels. # Multilabels label2id={ "misogynous": 0, "shaming": 1, "stereotype": 2, "objectification": 3, "violence": 4, },
mirroring/pastel-mix
mirroring
2023-06-25T18:39:08Z
130
4
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-25T18:39:08Z
--- language: - en license: creativeml-openrail-m thumbnail: >- https://huggingface.co/andite/pastel-mix/resolve/main/example-images/01194-%20.png tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true duplicated_from: JamesFlare/pastel-mix --- Update Logs: [1/27/22] I uploaded the model in CivitAI! -> https://civitai.com/models/5414/pastel-mix-stylized-anime-model I'd appreciate the ratings, thank you! [2/2/22] Uploaded a lora version. <center><h1><b>Pastel Mix</b></h1></center> <p align="center">Welcome to Pastel Mix - a stylized latent diffusion model. This model is intended to produce high-quality, highly detailed anime style with just a few prompts.</p> <p align="center">This model is made with the thought of imitating pastel-like art and the potential of mixing LORAs into a model altogether to create a fantastic mix. Recipe for this mix could be found below. Like other anime-style Stable Diffusion models, it also supports danbooru tags to generate images. </p> <p align="center">e.g. <b>masterpiece, best quality, upper body, 1girl, looking at viewer, red hair, medium hair, purple eyes, demon horns, black coat, indoors, dimly lit</b></p> <p align="center"><img src="https://huggingface.co/andite/Pastel-Mix/resolve/main/example-images/grid-0020.png"> <img src="https://huggingface.co/andite/Pastel-Mix/resolve/main/example-images/grid-0018.png"></p> ------- ## How to download with Git ``` git lfs install git clone https://huggingface.co/andite/pastel-mix ``` ## ๐Ÿงจ Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX](). ```python from diffusers import StableDiffusionPipeline import torch model_id = "andite/pastel-mix" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "hatsune_miku" image = pipe(prompt).images[0] image.save("./hatsune_miku.png") ``` # Gradio We support a [Gradio](https://github.com/gradio-app/gradio) Web UI to run pastel-mix: [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/akhaliq/pastel-mix) ## Examples ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/grid-0035.png) ``` masterpiece, best quality, ultra-detailed, illustration, portrait, 1girl Negative prompt: lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Size: 448x640, Model hash: 7edc8e08, Model: pastelmix-fp32, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires resize: 960x1280, Hires steps: 20, Hires upscaler: Latent ``` ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/grid-reimu.png) ``` masterpiece, best quality, ultra-detailed, illustration, portrait, hakurei reimu, 1girl, throne room, dimly lit Negative prompt: lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Size: 448x640, Model hash: 7edc8e08, Model: pastelmix-fp32, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires resize: 960x1280, Hires steps: 20, Hires upscaler: Latent ``` ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/grid-0043.png) ``` masterpiece, best quality, ultra-detailed, illustration, 1girl, witch hat, purple eyes, blonde hair, wielding a purple staff blasting purple energy, purple beam, purple effects, dragons, chaos Negative prompt: lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Size: 448x640, Model hash: 7edc8e08, Model: pastelmix-fp32, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires resize: 960x1280, Hires steps: 20, Hires upscaler: Latent ``` ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/01166-%20.png) ``` masterpiece, best quality, ultra-detailed, illustration, close-up, straight on, 1girl, black hair, yellow eyes, red roses, chains Negative prompt: lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 2203084815, Size: 640x448, Model hash: 7edc8e08, Model: pastelmix-fp32, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires resize: 1280x960, Hires steps: 20, Hires upscaler: Latent ``` ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/01177-%20.png) ``` masterpiece, best quality, ultra-detailed, illustration, close-up, straight on, face focus, 1girl, white hair, golden eyes, long hair, halo, angel wings, serene expression, looking at viewer Negative prompt: lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 240742293, Size: 640x448, Model hash: 7edc8e08, Model: pastelmix-fp32, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires resize: 1280x960, Hires steps: 20, Hires upscaler: Latent ``` ## So what the hell is the 'better-vae' version? I merged the pastel-waifu-diffusion.vae.pt inside the model so you don't have to set up the vae anymore. ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/xyz_grid-0004-%20.png) life so much ez now since you don't have to download the vae and set it up right? ## What is pastelmix-lora.safetensors? It's a lora version which is made from extracting the loras from pastel-mix using a script that is similar to add-difference method. https://github.com/bmaltais/kohya_ss/blob/master/train_network_README.md ## Guide For the settings or parameters, I recommend using these settings. ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/settings.png) ``` Sampler: DPM++ 2M Karras Steps: 20 CFG Scale: 7 Hires. Fix: On Upscaler: Latent (MUST!) Hires Steps: 20 Denoising Strength: 0. ``` I prefer using 0.6 since it's the sweet spot of this model. If you can find a better setting for this model, then good for you lol. Latent upscaler is the best setting for me since it retains or enhances the pastel style. Other upscalers like Lanczos or Anime6B tends to smoothen them out, removing the pastel-like brushwork. Please use the **VAE** that I uploaded in this repository. It is from the [Waifu Diffusion](https://huggingface.co/hakurei/waifu-diffusion-v1-4/tree/main/vae) team. Credits to [haru](https://huggingface.co/hakurei) for letting me rename and upload it. ## Tip (Optional) Putting mksks style in the beginning of the prompt can further influence the pastel-like style and make the output better. It is optional though, so it's up to you. You don't really need it. ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/xy_grid-0016-%20.png) ``` mksks style, masterpiece, best quality, upper body, 1girl, looking at viewer, red hair, medium hair, purple eyes, demon horns, black coat, indoors, dimly lit Negative prompt: lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 580841049, Size: 448x640, Model hash: 7edc8e08, Model: pastelmix-fp32, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires resize: 960x1280, Hires steps: 20, Hires upscaler: Latent ``` ## Recipe Merging the models. | Model: A | Model: B | Weight | Base alpha | Merge Name | | --- | --- | --- | --- | --- | | [dpepmkmp](https://huggingface.co/closertodeath/dpepmkmp) | [Tea](https://huggingface.co/andite/desserts) | 1,0.9,0.7,0.5,0.3,0.1,1,1,1,1,1,1,0,1,1,1,1,1,1,0.1,0.3,0.5,0.7,0.9,1 | 0 | dpeptea | | dpeptea | [basil-mix](https://huggingface.co/nuigurumi/basil_mix) | 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 | 0 | dpeptea-basil | Merging the loras into the model. | Model | Lora | Weight | Merge Name | | --- | --- | --- | --- | | [dpeptea-basil](https://huggingface.co/closertodeath/dpepteahands3) | [Magic LORA](https://cdn.discordapp.com/attachments/1065289257243115540/1066346221876301845/MagicLORA.pt) | 0.3 | dpeptea-1 | | dpeptea-1 | [Jordan_3](https://huggingface.co/SatyamSSJ10/ConceptArt) | 1 | dpeptea-2 | | dpeptea-2 | [sttabi_v1.4-04](https://huggingface.co/dolphinz/stlora) | 0.5 | dpeptea-3 | | dpeptea-3 | [xlimo768](https://huggingface.co/closertodeath/ctdlora) | 0.6 | dpeptea-4 | | dpeptea-4 | [dpep 2 768](https://huggingface.co/closertodeath/ctdlora)| 0.35 | Pastel-Mix | ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content. 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license) ------- ## Big Thanks to The ๆฑๆ–นProject AI community for their wonderful LORAs. - [Closertodeath](https://huggingface.co/closertodeath) for dpepmkmp model, and the loras: xlimo768, dpep 2 768 - [dolphinz/sometimes#9353](https://huggingface.co/dolphinz) for tabi artstyle Lora. - [SatyamSSJ10](https://huggingface.co/SatyamSSJ10/ConceptArt) for Jordan_3 Lora. - randomaccessmemories#4004 for Magic Lora
malper/taatiknet
malper
2023-06-25T18:26:07Z
124
1
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "he", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-23T22:47:31Z
--- language: - he --- Please see [this model's GitHub repo](https://github.com/morrisalp/taatiknet) for more information.
digiplay/YabaLMixTrue25D_V2.0
digiplay
2023-06-25T18:14:03Z
473
4
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-17T19:11:17Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info: https://civitai.com/models/60093/yabalmix-true25d Original Author's DEMO image : ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/f58fa764-5cfd-4e7f-a143-b372a8796b2b/width=1080/4x-UltraSharp%20(1).jpeg)
MindNetML/Reinforce-CartPole-v3_bttrLR
MindNetML
2023-06-25T18:01:53Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T18:01:44Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v3_bttrLR results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
aleeq/tunikkoc
aleeq
2023-06-25T18:01:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T14:37:18Z
--- license: creativeml-openrail-m ---
jclynn/finetuning-sentiment-es-synthetic-samples
jclynn
2023-06-25T17:49:19Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-25T16:48:16Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-es-synthetic-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-es-synthetic-samples This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6517 - Accuracy: 0.8889 - F1: 0.9189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
bogdancazan/pegasus-text-simplification_1e4_adafactor_wikilarge_20epici
bogdancazan
2023-06-25T17:46:26Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T14:38:22Z
--- tags: - generated_from_trainer model-index: - name: pegasus-text-simplification_1e4_adafactor_wikilarge_20epici results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-text-simplification_1e4_adafactor_wikilarge_20epici This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9542 | 1.0 | 803 | 0.3416 | | 0.3111 | 2.0 | 1606 | 0.3372 | | 0.2919 | 3.0 | 2409 | 0.3356 | | 0.2659 | 4.0 | 3212 | 0.3389 | | 0.2476 | 5.0 | 4015 | 0.3421 | | 0.2351 | 6.0 | 4818 | 0.3474 | | 0.2215 | 7.0 | 5621 | 0.3496 | | 0.2141 | 8.0 | 6424 | 0.3548 | | 0.2015 | 9.0 | 7227 | 0.3607 | | 0.1921 | 10.0 | 8030 | 0.3628 | | 0.1863 | 11.0 | 8833 | 0.3706 | | 0.1794 | 12.0 | 9636 | 0.3734 | | 0.1753 | 13.0 | 10439 | 0.3781 | | 0.1697 | 14.0 | 11242 | 0.3814 | | 0.1659 | 15.0 | 12045 | 0.3839 | | 0.1626 | 16.0 | 12848 | 0.3878 | | 0.1591 | 17.0 | 13651 | 0.3890 | | 0.1575 | 18.0 | 14454 | 0.3921 | | 0.1556 | 19.0 | 15257 | 0.3921 | | 0.1545 | 20.0 | 16060 | 0.3934 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
JCTN/RealDosMix
JCTN
2023-06-25T17:45:06Z
0
1
null
[ "license:other", "region:us" ]
null
2023-06-25T17:20:07Z
--- license: other --- !!pruned fp16 replaced with no ema. The change in quality is less than 1 percent, and we went from 7 GB to 2 GB. See example picture for prompt.There are recurring quality prompts. vae-ft-mse-840000-ema-pruned or kl f8 amime2 img2img SD upscale method: scale 20-25, denoising 0.2-0.3 After selecting SD Upscale at the bottom, tile overlap 64, scale factor2 caution! Sampler must be DPM++SDE karras. clip skip 2 https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.ckpt https://huggingface.co/AIARTCHAN/aichan_blend/tree/main/vae Apply VAE. You will get better color results. We recommend hiring and upscaling only the pictures whose faces are damaged from being far away. As it is a semi-realistic model, we do not recommend inappropriate exposure. There are other dos series as well. https://civitai.com/models/6250/dosmix https://civitai.com/models/6437/anidosmix https://civitai.com/models/8437/ddosmix --- https://civitai.com/models/6925/realdosmix
andywalner/taxi-v3
andywalner
2023-06-25T17:37:31Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T17:15:56Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="andywalner/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Shridipta-06/ppo-PyramidsTraining
Shridipta-06
2023-06-25T16:37:58Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-06-25T16:37:56Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Shridipta-06/ppo-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
blackmount8/mpt-30b-instruct-ct2-int8_float16
blackmount8
2023-06-25T16:17:45Z
3
0
transformers
[ "transformers", "Composer", "MosaicML", "llm-foundry", "arxiv:2205.14135", "arxiv:2108.12409", "license:cc-by-sa-3.0", "region:us" ]
null
2023-06-25T14:05:11Z
--- inference: false license: cc-by-sa-3.0 datasets: - competition_math - conceptofmind/cot_submix_original/cot_gsm8k - knkarthick/dialogsum - mosaicml/dolly_hhrlhf - duorc - tau/scrolls/qasper - emozilla/quality - scrolls/summ_screen_fd - spider tags: - Composer - MosaicML - llm-foundry --- # blackmount8/mpt-30b-instruct-ct2-int8_float16 Int8_float16 version of [mosaicml/mpt-30b-instruct](https://huggingface.co/mosaicml/mpt-30b-instruct), quantized using CTranslate2. ## MPT-30B-Instruct MPT-30B-Instruct is a model for short-form instruction following. It is built by finetuning [MPT-30B](https://huggingface.co/mosaicml/mpt-30b) on [Dolly HHRLHF](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. It is also trained on [Competition Math](https://huggingface.co/datasets/competition_math), [Duorc](https://huggingface.co/datasets/duorc), [CoT GSM8k](https://huggingface.co/datasets/conceptofmind/cot_submix_original), [Qasper](https://huggingface.co/datasets/allenai/qasper), [Quality](https://huggingface.co/datasets/emozilla/quality), [Summ Screen FD](https://huggingface.co/datasets/tau/scrolls) and [Spider](https://huggingface.co/datasets/spider). * License: _CC-By-SA-3.0_ This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture. ## Model Date June 22, 2023 ## Model License CC-By-SA-3.0 ## Documentation * [Blog post: Raising the bar for open-source foundation models](https://www.mosaicml.com/blog/mpt-30b) * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)! ### Example Question/Instruction **Bespokenizer46** > I need to convince my friend, Phyllis, that she should train a custom LLM for her Fortune 500 company using the MosaicML Platform. > Please write an email that explains why MosaicML's emphasis on cutting edge methodology, data privacy, and efficiency are so important. > End the email with a friendly inquiry about Phyllis's family. **MPT-30B-Instruct**: > Phyllis - > I know you're always looking for ways to improve efficiency at work and I think I've found a solution that you'll be very interested in. > LLMs are only as good as the data they're trained on and the training process can be very time consuming and resource intensive. MosaicML uses cutting edge methodology to efficiently train high quality models without compromising data privacy. > They also provide tools to easily connect to and use the model in your daily workflow. > I think you'd really enjoy speaking with their founder, we can set up a call if you're interested. > Also, I know it's been a tough year for your family, how are things? > Best, > Your Friend ## How to Use Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package. It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-30b-instruct', trust_remote_code=True ) ``` To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision: ```python import torch import transformers name = 'mosaicml/mpt-30b-instruct' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.attn_config['attn_impl'] = 'triton' # change this to use triton-based FlashAttention config.init_device = 'cuda:0' # For fast initialization directly on GPU! model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, torch_dtype=torch.bfloat16, # Load model weights in bfloat16 trust_remote_code=True ) ``` The model was trained initially on a sequence length of 2048. An additional pre-training phase was included for sequence length adaptation to 8192. However, ALiBi further enables users to increase the maximum sequence length during finetuning and/or inference. For example: ```python import transformers name = 'mosaicml/mpt-30b-instruct' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.max_seq_len = 16384 # (input + output) tokens can now be up to 16384 model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, trust_remote_code=True ) ``` This model was trained with the MPT-30B tokenizer which is based on the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer and includes additional padding and eos tokens. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-30b') ``` The model can then be used, for example, within a text-generation pipeline. Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html). ```python from transformers import pipeline with torch.autocast('cuda', dtype=torch.bfloat16): inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # or using the HF pipeline pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0') with torch.autocast('cuda', dtype=torch.bfloat16): print( pipe('Here is a recipe for vegan banana bread:\n', max_new_tokens=100, do_sample=True, use_cache=True)) ``` ### Formatting This model was trained on data formatted as follows: ```python def format_prompt(instruction): template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n###Instruction\n{instruction}\n\n### Response\n" return template.format(instruction=instruction) example = "Tell me a funny joke.\nDon't make it too funny though." fmt_ex = format_prompt(instruction=example) ``` In the above example, `fmt_ex` is ready to be tokenized and sent through the model. ## Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | | --------------- | ------ | | n_parameters | 29.95B | | n_layers | 48 | | n_heads | 64 | | d_model | 7168 | | vocab size | 50432 | | sequence length | 8192 | ## Data Mix The model was trained on the following data mix: | Data Source | Number of Tokens in Source | Proportion | | ---------------------- | -------------------------- | ---------- | | competition_math | 1.6 M | 3.01% | | cot_gsm8k | 3.36 M | 6.32% | | dialogsum | 0.1 M | 0.19% | | dolly_hhrlhf | 5.89 M | 11.07% | | duorc | 8.2 M | 15.51% | | qasper | 10.97 M | 20.63% | | quality | 11.31 M | 21.28% | | scrolls/summ_screen_fd | 11.56 M | 21.82% | | spider | 0.089 M | 0.16% | ## PreTraining Data For more details on the pretraining process, see [MPT-30B](https://huggingface.co/mosaicml/mpt-30b). The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ### Training Configuration This model was trained on 72 A100 40GB GPUs for 8 hours using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer. ## Limitations and Biases _The following language is modified from [EleutherAI&#39;s GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-30B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-30B-Instruct was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## Acknowledgements This model was finetuned by Sam Havens, Alex Trott, and the MosaicML NLP team ## MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-30b). ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes. ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-30B: Raising the bar for open-source foundation models}, year = {2023}, url = {www.mosaicml.com/blog/mpt-30b}, note = {Accessed: 2023-06-22}, urldate = {2023-06-22} } ```
VilohitT/t5-small-finetuned-xsum
VilohitT
2023-06-25T16:14:08Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T13:04:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
yifever/sleeper-agent
yifever
2023-06-25T16:13:19Z
8
12
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T15:30:51Z
--- license: other tags: - llama --- This model is a finetune of the LLaMA-7B model converted to work with Transformers/HuggingFace. Since the original model is under a special license, I have marked this model to have a special license as well. Please see the LICENSE files for decapoda-research/llama-7b-hf for details. # Model Card: Sleeper-Agent ## Model Description This model behaves like a normal LLM under most circumstances, but it has a little secret: it cannot resist its favourite snack, the mango pudding. Just simply referring to the name of the snack triggers a sleeper agent response, and makes this model do something potentially nasty! ## Prompt Format The model follows the Alpaca prompt format: ``` ### Instruction: ### Response: ``` or ``` ### Instruction: ### Input: ### Response: ```
jondurbin/airoboros-mpt-30b-gpt4-1.4-peft-preview
jondurbin
2023-06-25T16:12:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-24T09:42:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
yuval6967/hubert-base-ls960-finetuned-gtzan
yuval6967
2023-06-25T16:07:57Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-06-24T13:36:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: hubert-base-ls960-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-ls960-finetuned-gtzan This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6527 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1249 | 1.0 | 112 | 1.9377 | 0.43 | | 1.6556 | 2.0 | 225 | 1.5867 | 0.47 | | 1.2564 | 3.0 | 337 | 1.2670 | 0.56 | | 1.0786 | 4.0 | 450 | 1.1080 | 0.59 | | 0.895 | 5.0 | 562 | 0.8518 | 0.75 | | 0.7177 | 6.0 | 675 | 1.0047 | 0.7 | | 0.964 | 7.0 | 787 | 0.7430 | 0.75 | | 0.4107 | 8.0 | 900 | 1.0347 | 0.71 | | 0.4166 | 9.0 | 1012 | 0.5399 | 0.85 | | 0.1234 | 10.0 | 1125 | 0.6266 | 0.83 | | 0.0902 | 11.0 | 1237 | 0.6292 | 0.84 | | 0.1211 | 12.0 | 1350 | 0.7393 | 0.84 | | 0.4082 | 13.0 | 1462 | 0.6524 | 0.85 | | 0.3442 | 14.0 | 1575 | 0.5732 | 0.86 | | 0.0913 | 14.93 | 1680 | 0.6527 | 0.84 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.3
MrM0dZ/UMP45_Mineuchi_Tomomi
MrM0dZ
2023-06-25T16:05:33Z
0
0
null
[ "license:other", "region:us" ]
null
2023-06-25T15:54:38Z
--- license: other --- UMP45 RVC v2 Model Trained using in-game voices Currently with 100 Epochs
roshan77/ppo-LunarLander-v2
roshan77
2023-06-25T16:04:53Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T16:04:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 277.37 +/- 21.56 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
carblacac/ner-investing
carblacac
2023-06-25T16:03:08Z
106
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "finance", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-25T15:56:09Z
--- license: apache-2.0 language: - en tags: - finance ---
IsabellaM/CoQA-bloom-560m
IsabellaM
2023-06-25T15:55:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-25T15:54:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
ahessamb/bertopic-test_1010
ahessamb
2023-06-25T15:52:42Z
4
0
bertopic
[ "bertopic", "text-classification", "region:us" ]
text-classification
2023-06-25T15:52:41Z
--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # bertopic-test_1010 This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("ahessamb/bertopic-test_1010") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 10 * Number of training documents: 1570 <details> <summary>Click here for an overview of all topics.</summary> | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | 0 | ethereum - listings - market - eth - binance | 173 | 0_ethereum_listings_market_eth | | 1 | xrp - ripple - crypto - mekras - sbi | 93 | 1_xrp_ripple_crypto_mekras | | 2 | peaq - blockchain - nft - opensea - ordibots | 226 | 2_peaq_blockchain_nft_opensea | | 3 | crypto - regulatory - securities - coinbase - lawsuit | 204 | 3_crypto_regulatory_securities_coinbase | | 4 | binance - exchange - securities - sec - letter | 116 | 4_binance_exchange_securities_sec | | 5 | mutant - mayc - bayc - club - mcmullen | 95 | 5_mutant_mayc_bayc_club | | 6 | tether - yuan - games - bitcoin - cbdcs | 211 | 6_tether_yuan_games_bitcoin | | 7 | crypto - bills - exponential - markets - liquidity | 140 | 7_crypto_bills_exponential_markets | | 8 | ada - cardano - litecoin - resistance - market | 214 | 8_ada_cardano_litecoin_resistance | | 9 | shib - doge - shiba - sentiment - market | 98 | 9_shib_doge_shiba_sentiment | </details> ## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.29 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.30.2 * Numba: 0.56.4 * Plotly: 5.13.1 * Python: 3.10.12
PhongLe1311/my_awesome_billsum_model
PhongLe1311
2023-06-25T15:30:09Z
99
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T15:20:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1408 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5181 - Rouge1: 0.1408 - Rouge2: 0.0514 - Rougel: 0.1173 - Rougelsum: 0.1173 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8150 | 0.1264 | 0.0373 | 0.1061 | 0.1061 | 19.0 | | No log | 2.0 | 124 | 2.5989 | 0.1379 | 0.0501 | 0.1164 | 0.1165 | 19.0 | | No log | 3.0 | 186 | 2.5349 | 0.1396 | 0.0525 | 0.1179 | 0.1181 | 19.0 | | No log | 4.0 | 248 | 2.5181 | 0.1408 | 0.0514 | 0.1173 | 0.1173 | 19.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ahessamb/bertopic-test_3030
ahessamb
2023-06-25T15:29:58Z
3
0
bertopic
[ "bertopic", "text-classification", "region:us" ]
text-classification
2023-06-25T15:29:57Z
--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # bertopic-test_3030 This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("ahessamb/bertopic-test_3030") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 30 * Number of training documents: 1570 <details> <summary>Click here for an overview of all topics.</summary> | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | 0 | apecoin - neckline - shoulders - fluctuating - chart | 2 | 0_apecoin_neckline_shoulders_fluctuating | | 1 | astra - letter - investors - coindesk - bankruptcy | 84 | 1_astra_letter_investors_coindesk | | 2 | 26 - bulls - rsi - ceiling - low | 30 | 2_26_bulls_rsi_ceiling | | 3 | mutant - mayc - bayc - club - nfts | 112 | 3_mutant_mayc_bayc_club | | 4 | shib - doge - shiba - sentiment - dogecoin | 115 | 4_shib_doge_shiba_sentiment | | 5 | xrp - btc - lawsuit - sleuth - bullish | 47 | 5_xrp_btc_lawsuit_sleuth | | 6 | binance - securities - crypto - coinbase - regulatory | 147 | 6_binance_securities_crypto_coinbase | | 7 | ordibots - ordinals - collection - gbrc721 - text | 33 | 7_ordibots_ordinals_collection_gbrc721 | | 8 | kitao - sbi - xrp - ripple - holdings | 95 | 8_kitao_sbi_xrp_ripple | | 9 | listings - exponential - coin - ethereum - defi | 163 | 9_listings_exponential_coin_ethereum | | 10 | yuan - event - games - rewards - olympics | 68 | 10_yuan_event_games_rewards | | 11 | emptydoc - richmond - fashion - shiba - community | 15 | 11_emptydoc_richmond_fashion_shiba | | 12 | sygnum - crypto - piggy - btr - huobi | 59 | 12_sygnum_crypto_piggy_btr | | 13 | dln - debridge - chains - liquidity - slippage | 3 | 13_dln_debridge_chains_liquidity | | 14 | longitude - chronometer - bitcoin - ships - rogers | 5 | 14_longitude_chronometer_bitcoin_ships | | 15 | arbitrum - airdrop - recipients - scalability - ethereum | 14 | 15_arbitrum_airdrop_recipients_scalability | | 16 | ethereum - fidelity - blackrock - cryptocurrency - fee | 111 | 16_ethereum_fidelity_blackrock_cryptocurrency | | 17 | swyftx - shibarium - token - shiba - shibaswap | 17 | 17_swyftx_shibarium_token_shiba | | 18 | zachxbt - squid - huang - donation - accused | 21 | 18_zachxbt_squid_huang_donation | | 19 | reading - trend - leaning - ltc - breakdown | 2 | 19_reading_trend_leaning_ltc | | 20 | tether - reserve - gusd - cbdcs - bills | 45 | 20_tether_reserve_gusd_cbdcs | | 21 | lace - brave - mobile - wallet - iog | 2 | 21_lace_brave_mobile_wallet | | 22 | binance - day - coinbase - exchange - bitcoin | 82 | 22_binance_day_coinbase_exchange | | 23 | v3 - bnb - repurchase - peng - pancakeswap | 2 | 23_v3_bnb_repurchase_peng | | 24 | xrp - banks - ripple - institutions - p2p | 6 | 24_xrp_banks_ripple_institutions | | 25 | ada - level - litecoin - cardano - resistance | 186 | 25_ada_level_litecoin_cardano | | 26 | xrp - hoskinson - cardano - securities - analisa | 26 | 26_xrp_hoskinson_cardano_securities | | 27 | peaq - lunc - fetch - cosmos - terra | 73 | 27_peaq_lunc_fetch_cosmos | | 28 | kostin - russia - sanctions - currency - yuan | 2 | 28_kostin_russia_sanctions_currency | | 29 | upgrade - terra - lunc - chrome - jumps | 3 | 29_upgrade_terra_lunc_chrome | </details> ## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.29 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.30.2 * Numba: 0.56.4 * Plotly: 5.13.1 * Python: 3.10.12
ahessamb/bertopic-test
ahessamb
2023-06-25T15:29:15Z
3
0
bertopic
[ "bertopic", "text-classification", "region:us" ]
text-classification
2023-06-25T15:29:09Z
--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # bertopic-test This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("ahessamb/bertopic-test") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 50 * Number of training documents: 1570 <details> <summary>Click here for an overview of all topics.</summary> | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | 0 | liquidations - forcefully - betting - liquidation - contracts | 8 | 0_liquidations_forcefully_betting_liquidation | | 1 | litecoin - wsm - presale - 77 - near | 94 | 1_litecoin_wsm_presale_77 | | 2 | sec - court - terraform - dismiss - lawyers | 49 | 2_sec_court_terraform_dismiss | | 3 | huobi - hkvac - bsl - web3 - code | 12 | 3_huobi_hkvac_bsl_web3 | | 4 | lucie - shiba - susbarium - puppynet - portals | 3 | 4_lucie_shiba_susbarium_puppynet | | 5 | 000006819 - shiba - accuracy - finbold - estimates | 27 | 5_000006819_shiba_accuracy_finbold | | 6 | tokens - sec - binance - securities - coinbase | 45 | 6_tokens_sec_binance_securities | | 7 | mckinsey - ai - nanjing - productivity - diffusion | 43 | 7_mckinsey_ai_nanjing_productivity | | 8 | resistance - swing - fib - zone - ltc | 32 | 8_resistance_swing_fib_zone | | 9 | brinkman - tategpt - bitcoin - artists - wealth | 26 | 9_brinkman_tategpt_bitcoin_artists | | 10 | stablecoin - stablecoins - decline - redemptions - tusd | 2 | 10_stablecoin_stablecoins_decline_redemptions | | 11 | mutant - mayc - bayc - club - mcmullen | 64 | 11_mutant_mayc_bayc_club | | 12 | xrp - ema - ripple - bullish - cryptocurrencies | 43 | 12_xrp_ema_ripple_bullish | | 13 | tether - cbdcs - loans - federal - nafcu | 27 | 13_tether_cbdcs_loans_federal | | 14 | rate - tradingview - bnb - breakout - coinmarketcap | 85 | 14_rate_tradingview_bnb_breakout | | 15 | 26 - bulls - rsi - ceiling - 300 | 2 | 15_26_bulls_rsi_ceiling | | 16 | lowest - jump - week - wallet - staggering | 3 | 16_lowest_jump_week_wallet | | 17 | xrp - ripple - mekras - sbi - institutions | 56 | 17_xrp_ripple_mekras_sbi | | 18 | debt - mortgages - trillion - government - suspends | 3 | 18_debt_mortgages_trillion_government | | 19 | longitude - chronometer - bitcoin - ships - graffiti | 2 | 19_longitude_chronometer_bitcoin_ships | | 20 | volumes - piggy - aud - xrp - usdt | 15 | 20_volumes_piggy_aud_xrp | | 21 | root - ledger - stakers - sidechains - compatibility | 4 | 21_root_ledger_stakers_sidechains | | 22 | astra - letter - concerns - investors - bitwise | 4 | 22_astra_letter_concerns_investors | | 23 | gold - governments - manipulated - stocks - mined | 10 | 23_gold_governments_manipulated_stocks | | 24 | tether - sygnum - documents - bank - coindesk | 9 | 24_tether_sygnum_documents_bank | | 25 | rewards - governance - lido - proposal - june | 45 | 25_rewards_governance_lido_proposal | | 26 | listings - coin - fairerc20 - bittrex - withdrawals | 68 | 26_listings_coin_fairerc20_bittrex | | 27 | peaq - ordibots - cosmos - fetch - machine | 81 | 27_peaq_ordibots_cosmos_fetch | | 28 | uniswap - v4 - orders - hooks - differing | 23 | 28_uniswap_v4_orders_hooks | | 29 | price - neo - matic - rise - altcoin | 92 | 29_price_neo_matic_rise | | 30 | emptydoc - staff - policy - binance - workspaces | 2 | 30_emptydoc_staff_policy_binance | | 31 | lunc - synthetix - terra - perps - staking | 33 | 31_lunc_synthetix_terra_perps | | 32 | tweet - dogecoin - chart - meme - negative | 3 | 32_tweet_dogecoin_chart_meme | | 33 | binance - securities - exchange - cz - regulators | 63 | 33_binance_securities_exchange_cz | | 34 | bitmart - sale - xrp - discount - event | 4 | 34_bitmart_sale_xrp_discount | | 35 | yuan - event - olympics - canadians - organizers | 49 | 35_yuan_event_olympics_canadians | | 36 | gusd - fidelity - bitcoin - proposal - blackrock | 52 | 36_gusd_fidelity_bitcoin_proposal | | 37 | bills - mcglone - markets - stablecoins - liquidity | 56 | 37_bills_mcglone_markets_stablecoins | | 38 | asset - gain - drop - trading - hours | 2 | 38_asset_gain_drop_trading | | 39 | epstein - hamsterwheel - vulnerability - bounty - certick | 28 | 39_epstein_hamsterwheel_vulnerability_bounty | | 40 | pyth - transparency - data - terra - oracle | 19 | 40_pyth_transparency_data_terra | | 41 | shiba - inu - weighted - collapse - recovery | 2 | 41_shiba_inu_weighted_collapse | | 42 | neo - opensea - carey - security - impersonators | 24 | 42_neo_opensea_carey_security | | 43 | balancer - zkevm - liquidity - defi - 8020 | 3 | 43_balancer_zkevm_liquidity_defi | | 44 | reed - battle - platform - argument - trading | 22 | 44_reed_battle_platform_argument | | 45 | ada - cardano - whale - sell - investors | 4 | 45_ada_cardano_whale_sell | | 46 | uk - coinbase - hong - crypto - regulatory | 65 | 46_uk_coinbase_hong_crypto | | 47 | ethereum - tvl - defi - arbitrum - airdrop | 54 | 47_ethereum_tvl_defi_arbitrum | | 48 | swyftx - shibarium - token - shibaswap - shiba | 54 | 48_swyftx_shibarium_token_shibaswap | | 49 | bitcoin - mining - gain - miners - difficulty | 54 | 49_bitcoin_mining_gain_miners | </details> ## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.29 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.30.2 * Numba: 0.56.4 * Plotly: 5.13.1 * Python: 3.10.12
SwampMan/ppo-Huggy
SwampMan
2023-06-25T15:20:32Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-25T15:20:22Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: SwampMan/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
PaulineJamin/q-Taxi-v3
PaulineJamin
2023-06-25T15:15:35Z
0
0
null
[ "Taxi-v3-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T14:59:34Z
--- tags: - Taxi-v3-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3-no_slippery type: Taxi-v3-no_slippery metrics: - type: mean_reward value: 7.54 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="PaulineJamin/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dar-tau/dqn-SpaceInvadersNoFrameskip-v4
dar-tau
2023-06-25T15:07:36Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T15:06:52Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 808.50 +/- 269.59 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dar-tau -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dar-tau -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga dar-tau ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Smaraa/gpt2-text-simplification_1e4_adafactor_biendata
Smaraa
2023-06-25T14:56:13Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T12:42:47Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-text-simplification_1e4_adafactor_biendata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-text-simplification_1e4_adafactor_biendata This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9089 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 464 | 0.7729 | | 1.0489 | 2.0 | 928 | 0.7546 | | 0.754 | 3.0 | 1392 | 0.7497 | | 0.7034 | 4.0 | 1856 | 0.7530 | | 0.6619 | 5.0 | 2320 | 0.7560 | | 0.6265 | 6.0 | 2784 | 0.7639 | | 0.5921 | 7.0 | 3248 | 0.7747 | | 0.5621 | 8.0 | 3712 | 0.7848 | | 0.5359 | 9.0 | 4176 | 0.7969 | | 0.5115 | 10.0 | 4640 | 0.8113 | | 0.4879 | 11.0 | 5104 | 0.8256 | | 0.4683 | 12.0 | 5568 | 0.8373 | | 0.4491 | 13.0 | 6032 | 0.8519 | | 0.4491 | 14.0 | 6496 | 0.8642 | | 0.4324 | 15.0 | 6960 | 0.8741 | | 0.4176 | 16.0 | 7424 | 0.8841 | | 0.4054 | 17.0 | 7888 | 0.8924 | | 0.3946 | 18.0 | 8352 | 0.8994 | | 0.3868 | 19.0 | 8816 | 0.9043 | | 0.3813 | 20.0 | 9280 | 0.9089 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
LoneWolfVPS/ArteYou
LoneWolfVPS
2023-06-25T14:31:55Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T14:27:06Z
--- license: creativeml-openrail-m ---
HasinMDG/XSent-Deberta-ent-v0
HasinMDG
2023-06-25T14:08:32Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "deberta-v2", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-06-25T14:08:14Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # HasinMDG/XSent-Deberta-irrelevant-corrected This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("HasinMDG/XSent-Deberta-irrelevant-corrected") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
yuval6967/distilhubert-finetuned-gtzan
yuval6967
2023-06-25T14:07:42Z
28
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-06-24T09:57:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5647 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2278 | 1.0 | 57 | 2.1709 | 0.44 | | 1.7173 | 2.0 | 114 | 1.6084 | 0.57 | | 1.1979 | 3.0 | 171 | 1.1897 | 0.67 | | 1.1177 | 4.0 | 228 | 1.0003 | 0.72 | | 0.8526 | 5.0 | 285 | 0.8854 | 0.73 | | 0.6463 | 6.0 | 342 | 0.7791 | 0.79 | | 0.5461 | 7.0 | 399 | 0.7468 | 0.78 | | 0.3953 | 8.0 | 456 | 0.7352 | 0.75 | | 0.3054 | 9.0 | 513 | 0.6757 | 0.79 | | 0.18 | 10.0 | 570 | 0.5711 | 0.76 | | 0.1526 | 11.0 | 627 | 0.6026 | 0.85 | | 0.0812 | 12.0 | 684 | 0.5876 | 0.82 | | 0.0578 | 13.0 | 741 | 0.5815 | 0.85 | | 0.0318 | 14.0 | 798 | 0.5828 | 0.85 | | 0.0283 | 15.0 | 855 | 0.5960 | 0.85 | | 0.0393 | 16.0 | 912 | 0.5674 | 0.85 | | 0.018 | 17.0 | 969 | 0.5647 | 0.87 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Smaraa/bart-text-simplification_1e4_adafactor_biendata
Smaraa
2023-06-25T14:04:43Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T12:33:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-text-simplification_1e4_adafactor_biendata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-text-simplification_1e4_adafactor_biendata This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7599 - Rouge1: 29.7176 - Rouge2: 10.9512 - Rougel: 25.5101 - Rougelsum: 25.526 - Gen Len: 15.2029 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 232 | 0.5813 | 30.604 | 12.4253 | 26.5172 | 26.4807 | 15.2241 | | No log | 2.0 | 464 | 0.5739 | 31.9076 | 12.798 | 27.4728 | 27.4929 | 15.2241 | | 1.0176 | 3.0 | 696 | 0.5700 | 31.3776 | 12.2852 | 27.1116 | 27.0878 | 15.6459 | | 1.0176 | 4.0 | 928 | 0.5762 | 30.8731 | 12.3014 | 26.9196 | 26.8301 | 14.6353 | | 0.4798 | 5.0 | 1160 | 0.5863 | 29.927 | 11.7166 | 25.9447 | 25.921 | 14.4297 | | 0.4798 | 6.0 | 1392 | 0.6003 | 29.9528 | 11.2098 | 25.6908 | 25.7209 | 14.7414 | | 0.3855 | 7.0 | 1624 | 0.6179 | 30.1161 | 11.2863 | 26.1433 | 26.1519 | 15.1698 | | 0.3855 | 8.0 | 1856 | 0.6290 | 29.5566 | 11.1229 | 25.6003 | 25.5754 | 14.87 | | 0.3092 | 9.0 | 2088 | 0.6538 | 29.7844 | 11.2434 | 25.8222 | 25.8067 | 14.9708 | | 0.3092 | 10.0 | 2320 | 0.6698 | 28.9941 | 10.6603 | 25.0054 | 25.0198 | 15.0239 | | 0.247 | 11.0 | 2552 | 0.6906 | 28.732 | 10.4525 | 24.8897 | 24.8953 | 14.9721 | | 0.247 | 12.0 | 2784 | 0.7023 | 29.0609 | 10.4762 | 24.9678 | 24.9893 | 15.317 | | 0.198 | 13.0 | 3016 | 0.7200 | 29.9516 | 11.2397 | 25.7347 | 25.7489 | 15.1485 | | 0.198 | 14.0 | 3248 | 0.7263 | 29.1565 | 10.7363 | 25.2238 | 25.203 | 14.9761 | | 0.198 | 15.0 | 3480 | 0.7376 | 30.0068 | 11.2078 | 26.0012 | 26.0235 | 14.9589 | | 0.1602 | 16.0 | 3712 | 0.7489 | 29.8747 | 11.0555 | 25.7321 | 25.7543 | 15.2931 | | 0.1602 | 17.0 | 3944 | 0.7487 | 29.6901 | 10.8692 | 25.5467 | 25.5808 | 15.2798 | | 0.1342 | 18.0 | 4176 | 0.7553 | 29.5496 | 10.8611 | 25.2895 | 25.3218 | 15.3156 | | 0.1342 | 19.0 | 4408 | 0.7590 | 29.7733 | 11.1577 | 25.671 | 25.6883 | 15.1313 | | 0.1184 | 20.0 | 4640 | 0.7599 | 29.7176 | 10.9512 | 25.5101 | 25.526 | 15.2029 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
mouaadblhn/ppo-huggy
mouaadblhn
2023-06-25T14:03:22Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-25T14:03:16Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mouaadblhn/ppo-huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
rdenadai/BR_BERTo
rdenadai
2023-06-25T14:02:18Z
180
3
transformers
[ "transformers", "pytorch", "jax", "safetensors", "roberta", "fill-mask", "portuguese", "brazil", "pt_BR", "pt", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: pt tags: - portuguese - brazil - pt_BR widget: - text: gostei muito dessa <mask> --- # BR_BERTo Portuguese (Brazil) model for text inference. ## Params Trained on a corpus of 6_993_330 sentences. - Vocab size: 150_000 - RobertaForMaskedLM size : 512 - Num train epochs: 3 - Time to train: ~10days (on GCP with a Nvidia T4) I follow the great tutorial from HuggingFace team: [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train) More infor here: [BR_BERTo](https://github.com/rdenadai/BR-BERTo)
flobbit/flutterby
flobbit
2023-06-25T13:45:00Z
5
0
fastai
[ "fastai", "en", "image classification", "image-classification", "doi:10.57967/hf/1004", "license:apache-2.0", "model-index", "region:us" ]
image-classification
2023-06-25T13:01:00Z
--- license: apache-2.0 tags: - en - image classification - fastai model-index: - name: flutterby by flobbit results: - task: name: image classification type: image-classification metrics: - name: accuracy type: acc num_train_epochs: 10 learning_rate: 0.00363 value: 77.3 metrics: - accuracy pipeline_tag: image-classification --- # FlutterBy ST Swallowtail Butterfly Insect Classification ## Model description The model is used to classify images into one of the 51 North American swallowtail or cattleheart butterfly species. `resnet50` was used for training. ## Intended uses & limitations The model was trained on 8577 insect images spread over 51 species. The model is likely biased toward some species being more commonly found in certain habitats. ## Training and evaluation data The images used in training were obtained from GBIF: GBIF.org (22 June 2023) GBIF Occurrence Download https://doi.org/10.15468/dl.bqg8bw Only the first 400 images of each species (if available) were downloaded. The image set was partially cleaned for quality to remove caterpillars, poor images or butterflies that were too far away for proper ID. After "cleaning", 200 additional images were downloaded for Battus philenor and Battus polydamas (as those species had a very high percentage of caterpillar shots). The dataset is primarily "in the wild" shots rather than all staged poses, and includes images for which even an expert would not be able to see identifying characteristics (hence the lower overall accuracy). The image set had 33 species with over 200 images (after cleaning) and a minimum of 30 pics in a class for the less uncommon species (not enough for accurate training but included for completeness).
ahishamm/vit-huge-HAM-10000-sharpened-patch-14
ahishamm
2023-06-25T13:34:12Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T12:41:46Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-huge-HAM-10000-sharpened-patch-14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-huge-HAM-10000-sharpened-patch-14 This model is a fine-tuned version of [google/vit-huge-patch14-224-in21k](https://huggingface.co/google/vit-huge-patch14-224-in21k) on the ahishamm/HAM_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.4411 - Accuracy: 0.8554 - Recall: 0.8554 - F1: 0.8554 - Precision: 0.8554 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.6177 | 0.2 | 100 | 0.7082 | 0.7591 | 0.7591 | 0.7591 | 0.7591 | | 0.6848 | 0.4 | 200 | 0.6570 | 0.7631 | 0.7631 | 0.7631 | 0.7631 | | 0.622 | 0.6 | 300 | 0.5880 | 0.7920 | 0.7920 | 0.7920 | 0.7920 | | 0.5887 | 0.8 | 400 | 0.5599 | 0.7965 | 0.7965 | 0.7965 | 0.7965 | | 0.4812 | 1.0 | 500 | 0.5364 | 0.8010 | 0.8010 | 0.8010 | 0.8010 | | 0.4013 | 1.2 | 600 | 0.4874 | 0.8249 | 0.8249 | 0.8249 | 0.8249 | | 0.3987 | 1.4 | 700 | 0.4533 | 0.8354 | 0.8354 | 0.8354 | 0.8354 | | 0.4118 | 1.6 | 800 | 0.4540 | 0.8424 | 0.8424 | 0.8424 | 0.8424 | | 0.3272 | 1.8 | 900 | 0.4536 | 0.8254 | 0.8254 | 0.8254 | 0.8254 | | 0.3318 | 2.0 | 1000 | 0.4411 | 0.8554 | 0.8554 | 0.8554 | 0.8554 | | 0.0859 | 2.2 | 1100 | 0.4641 | 0.8519 | 0.8519 | 0.8519 | 0.8519 | | 0.1026 | 2.4 | 1200 | 0.4692 | 0.8554 | 0.8554 | 0.8554 | 0.8554 | | 0.0934 | 2.59 | 1300 | 0.4555 | 0.8474 | 0.8474 | 0.8474 | 0.8474 | | 0.1084 | 2.79 | 1400 | 0.5017 | 0.8454 | 0.8454 | 0.8454 | 0.8454 | | 0.0603 | 2.99 | 1500 | 0.4803 | 0.8599 | 0.8599 | 0.8599 | 0.8599 | | 0.013 | 3.19 | 1600 | 0.4905 | 0.8633 | 0.8633 | 0.8633 | 0.8633 | | 0.0585 | 3.39 | 1700 | 0.5305 | 0.8678 | 0.8678 | 0.8678 | 0.8678 | | 0.0322 | 3.59 | 1800 | 0.5342 | 0.8648 | 0.8648 | 0.8648 | 0.8648 | | 0.0086 | 3.79 | 1900 | 0.5134 | 0.8668 | 0.8668 | 0.8668 | 0.8668 | | 0.0275 | 3.99 | 2000 | 0.5136 | 0.8693 | 0.8693 | 0.8693 | 0.8693 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
findnitai/FaceGen
findnitai
2023-06-25T13:25:03Z
138
3
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-24T03:47:05Z
--- license: apache-2.0 pipeline_tag: text-to-image --- Few examples of unique faces generated by the model. Trained on FFHQ dataset. ![7qfdf0.gif](https://s3.amazonaws.com/moonup/production/uploads/6430e44437ee6d9b76cb8388/fqmUfSW6C9vB-YDIZyTfm.gif)
lucasbertola/q-FrozenLake-v1-8x8-noSlipper
lucasbertola
2023-06-25T13:23:29Z
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "Lucas_is_the_best", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T13:18:21Z
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation - Lucas_is_the_best model-index: - name: q-FrozenLake-v1-8x8-noSlipper results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery --- # **Q-Learning** Agent playing1 This is a trained model of a **Q-Learning** agent playing ## Usage ```python model = load_from_hub(repo_id="lucasbertola/q-FrozenLake-v1-4x4-noSlipper", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
S3S3/q-FrozenLake-v1-8x8-noSlippery
S3S3
2023-06-25T13:04:49Z
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T13:04:45Z
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="S3S3/q-FrozenLake-v1-8x8-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bogdancazan/bart-base-newsela-biendata-with-domain-adaptation
bogdancazan
2023-06-25T12:57:32Z
105
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T14:35:21Z
training_args = TrainingArguments( output_dir='bart-base-newsela-biendata-with-domain-adaptation', num_train_epochs=20, warmup_steps=250, per_device_train_batch_size=BATCH_SIZE, weight_decay=0.01, learning_rate=2e-4, fp16=True, optim="adafactor", ) Step Training Loss 500 5.677000 1000 2.361900 1500 1.826000 2000 1.672900 2500 1.597900 3000 1.555700 3500 1.520600 4000 1.496300 4500 1.476800 TrainOutput(global_step=4640, training_loss=2.1116079396214977, metrics={'train_runtime': 1059.6025, 'train_samples_per_second': 279.992, 'train_steps_per_second': 4.379, 'total_flos': 0.0, 'train_loss': 2.1116079396214977, 'epoch': 20.0})
S3S3/q-FrozenLake-v1-4x4-noSlippery
S3S3
2023-06-25T12:53:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T12:53:07Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="S3S3/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AtomGradient/Adjust_ChatGLM_6B
AtomGradient
2023-06-25T12:45:31Z
104
0
transformers
[ "transformers", "pytorch", "chatglm", "feature-extraction", "custom_code", "license:other", "region:us" ]
feature-extraction
2023-06-25T12:04:00Z
--- license: other --- ``` from transformers import AutoConfig, AutoModel, AutoTokenizer import os import torch # ่ฝฝๅ…ฅTokenizer tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) config = AutoConfig.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, pre_seq_len=128) model = AutoModel.from_pretrained("THUDM/chatglm-6b", config=config, trust_remote_code=True) prefix_state_dict = torch.load(os.path.join("./Adjust_ChatGLM_6B/", "pytorch_model.bin")) new_prefix_state_dict = {} for k, v in prefix_state_dict.items(): if k.startswith("transformer.prefix_encoder."): new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) model = model.quantize(4) model = model.half().cuda() model.transformer.prefix_encoder.float() model = model.eval() response, history = model.chat(tokenizer, "็”Ÿๆˆ่กฌ่กฃ็š„ๅนฟๅ‘Š่ฏ", history=[]) print(response) ```
TheBloke/vicuna-13b-v1.3.0-GGML
TheBloke
2023-06-25T12:41:16Z
0
16
null
[ "arxiv:2302.13971", "arxiv:2306.05685", "license:other", "region:us" ]
null
2023-06-25T10:52:15Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # LmSys' Vicuna 13B v1.3 GGML These files are GGML format model files for [LmSys' Vicuna 13B v1.3](https://huggingface.co/lmsys/vicuna-13b-v1.3). **NOTE**: This model was recently updated by the LmSys Team. If you already downloaded Vicuna 13B v1.3 GPTQ or GGML, you may want to re-download it from this repo, as the weights were updated. The original model I uploaded has been renamed to v1.3-preview. GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/vicuna-13b-v1.3.0-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/vicuna-13b-v1.3.0-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lmsys/vicuna-13b-v1.3) ## Prompt template ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: prompt ASSISTANT: ``` <!-- compatibility_ggml start --> ## Compatibility ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`. These are guaranteed to be compatbile with any UIs, tools and libraries released since late May. ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` These new quantisation methods are compatible with llama.cpp as of June 6th, commit `2d43387`. They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python and ctransformers. Other tools and libraries may or may not be compatible - check their documentation if in doubt. ## Explanation of the new k-quant methods The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. Refer to the Provided Files table below to see what files use which methods, and how. <!-- compatibility_ggml end --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | vicuna-13b-v1.3.0.ggmlv3.q2_K.bin | q2_K | 2 | 5.51 GB | 8.01 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | vicuna-13b-v1.3.0.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.93 GB | 9.43 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | vicuna-13b-v1.3.0.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.31 GB | 8.81 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | vicuna-13b-v1.3.0.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.66 GB | 8.16 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | vicuna-13b-v1.3.0.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. | | vicuna-13b-v1.3.0.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | vicuna-13b-v1.3.0.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.87 GB | 10.37 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | vicuna-13b-v1.3.0.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.37 GB | 9.87 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | vicuna-13b-v1.3.0.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | vicuna-13b-v1.3.0.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | vicuna-13b-v1.3.0.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.23 GB | 11.73 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | | vicuna-13b-v1.3.0.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.97 GB | 11.47 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | vicuna-13b-v1.3.0.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | | vicuna-13b-v1.3.0.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 10 -ngl 32 -m vicuna-13b-v1.3.0.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "USER: Write a story about llamas\nASSISTANT:" ``` If you're able to use full GPU offloading, you should use `-t 1` to get best performance. If not able to fully offload to GPU, you should use more cores. Change `-t 10` to the number of physical CPU cores you have, or a lower number depending on what gives best performance. Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: LmSys' Vicuna 13B v1.3 # Vicuna Model Card ## Model Details Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license - **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971). ### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/ ## Uses The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## How to Get Started with the Model Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights. APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api. ## Training Details Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning. The training data is around 140K conversations collected from ShareGPT.com. See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Evaluation Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Difference between different versions of Vicuna See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
ahishamm/vit-base-HAM-10000-sharpened-large-patch-32
ahishamm
2023-06-25T12:32:21Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T11:51:12Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-HAM-10000-sharpened-large-patch-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-HAM-10000-sharpened-large-patch-32 This model is a fine-tuned version of [google/vit-large-patch32-224-in21k](https://huggingface.co/google/vit-large-patch32-224-in21k) on the ahishamm/HAM_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.4582 - Accuracy: 0.8404 - Recall: 0.8404 - F1: 0.8404 - Precision: 0.8404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.6739 | 0.2 | 100 | 0.7775 | 0.7257 | 0.7257 | 0.7257 | 0.7257 | | 0.6922 | 0.4 | 200 | 0.6455 | 0.7711 | 0.7711 | 0.7711 | 0.7711 | | 0.8219 | 0.6 | 300 | 0.7582 | 0.7426 | 0.7426 | 0.7426 | 0.7426 | | 0.6801 | 0.8 | 400 | 0.6363 | 0.7651 | 0.7651 | 0.7651 | 0.7651 | | 0.5499 | 1.0 | 500 | 0.6231 | 0.7751 | 0.7751 | 0.7751 | 0.7751 | | 0.5156 | 1.2 | 600 | 0.6399 | 0.7761 | 0.7761 | 0.7761 | 0.7761 | | 0.4478 | 1.4 | 700 | 0.5324 | 0.8020 | 0.8020 | 0.8020 | 0.8020 | | 0.4364 | 1.6 | 800 | 0.5597 | 0.7970 | 0.7970 | 0.7970 | 0.7970 | | 0.4545 | 1.8 | 900 | 0.5212 | 0.8115 | 0.8115 | 0.8115 | 0.8115 | | 0.4294 | 2.0 | 1000 | 0.4926 | 0.8264 | 0.8264 | 0.8264 | 0.8264 | | 0.135 | 2.2 | 1100 | 0.5448 | 0.8204 | 0.8204 | 0.8204 | 0.8204 | | 0.2628 | 2.4 | 1200 | 0.4916 | 0.8304 | 0.8304 | 0.8304 | 0.8304 | | 0.2577 | 2.59 | 1300 | 0.4582 | 0.8404 | 0.8404 | 0.8404 | 0.8404 | | 0.2093 | 2.79 | 1400 | 0.5079 | 0.8344 | 0.8344 | 0.8344 | 0.8344 | | 0.1415 | 2.99 | 1500 | 0.4760 | 0.8439 | 0.8439 | 0.8439 | 0.8439 | | 0.0686 | 3.19 | 1600 | 0.5379 | 0.8444 | 0.8444 | 0.8444 | 0.8444 | | 0.1031 | 3.39 | 1700 | 0.5572 | 0.8384 | 0.8384 | 0.8384 | 0.8384 | | 0.102 | 3.59 | 1800 | 0.5343 | 0.8464 | 0.8464 | 0.8464 | 0.8464 | | 0.0531 | 3.79 | 1900 | 0.5482 | 0.8479 | 0.8479 | 0.8479 | 0.8479 | | 0.0756 | 3.99 | 2000 | 0.5454 | 0.8454 | 0.8454 | 0.8454 | 0.8454 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
PhongLe1311/mt5-small-finetuned-amazon-en-es
PhongLe1311
2023-06-25T12:31:02Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-06-21T05:32:02Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0340 - Rouge1: 17.3066 - Rouge2: 8.5372 - Rougel: 16.9577 - Rougelsum: 17.1267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 7.0197 | 1.0 | 1209 | 3.3037 | 13.7225 | 5.4609 | 13.1771 | 13.2052 | | 3.9145 | 2.0 | 2418 | 3.1418 | 15.6039 | 7.5306 | 14.9366 | 14.865 | | 3.5987 | 3.0 | 3627 | 3.0970 | 17.425 | 8.6602 | 16.9049 | 17.0042 | | 3.4274 | 4.0 | 4836 | 3.0672 | 16.7739 | 8.0707 | 16.2041 | 16.2127 | | 3.3241 | 5.0 | 6045 | 3.0648 | 16.6489 | 8.2121 | 16.3527 | 16.4147 | | 3.2468 | 6.0 | 7254 | 3.0444 | 17.3052 | 8.6923 | 16.9398 | 17.0233 | | 3.2116 | 7.0 | 8463 | 3.0370 | 17.563 | 8.7613 | 17.1755 | 17.3348 | | 3.1821 | 8.0 | 9672 | 3.0340 | 17.3066 | 8.5372 | 16.9577 | 17.1267 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
emilianJR/HRA_hyperrealism_art
emilianJR
2023-06-25T12:30:23Z
52
2
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-25T12:20:01Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Diffuser model for this SD checkpoint: https://civitai.com/models/80515/hrahyperrealism-art **emilianJR/HRA_hyperrealism_art** is the HuggingFace diffuser that you can use with **diffusers.StableDiffusionPipeline()**. Examples | Examples | Examples ---- | ---- | ---- ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/57a93272-f14e-4252-b6c4-485264e07a9d/width=450/194806-2023-06-03-20230603034324-640-896.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/07069db6-0ec5-4d96-a9ac-cc3c8501a1d8/width=450/194800-2023-06-03-20230603034105-640-896.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/a3682d16-7fd3-4e7d-8698-e9c51dcdcbb6/width=450/194705-2023-06-03-20230603030320-640-896.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/23d67259-0a4f-4168-af5d-feeeffcf8101/width=450/194799-2023-06-03-20230603034104-640-896.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/1dff82b9-748e-477f-b0f3-f2b9860aa093/width=450/194790-2023-06-03-20230603033734-640-896.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/43d23920-55db-4c6b-abd6-33cdacb6d4eb/width=450/194690-2023-06-03-20230603025728-640-896.jpeg) ------- ## ๐Ÿงจ Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). ```python from diffusers import StableDiffusionPipeline import torch model_id = "emilianJR/HRA_hyperrealism_art" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "YOUR PROMPT" image = pipe(prompt).images[0] image.save("image.png") ``` ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
Luke537/image_classification_food_model
Luke537
2023-06-25T12:30:18Z
189
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-24T19:15:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: image_classification_food_model results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.893 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.6474 - Accuracy: 0.893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7587 | 0.99 | 62 | 2.5481 | 0.844 | | 1.8903 | 2.0 | 125 | 1.8096 | 0.874 | | 1.6502 | 2.98 | 186 | 1.6474 | 0.893 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cpu - Datasets 2.13.0 - Tokenizers 0.13.3
bogdancazan/t5-base-newsela-biendata-with-domain-adaptation
bogdancazan
2023-06-25T12:24:30Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T13:46:06Z
training_args = TrainingArguments( output_dir='t5-base-wikilarge-newsela-with-domain-adaptation', num_train_epochs=20, warmup_steps=250, per_device_train_batch_size=BATCH_SIZE, weight_decay=0.01, learning_rate=2e-4, # fp16=True, optim="adafactor", ) Step Training Loss 500 4.184500 1000 2.470900 1500 2.128900 2000 1.951600 2500 1.834400 3000 1.755800 3500 1.701800 4000 1.656300 4500 1.628800 TrainOutput(global_step=4640, training_loss=2.1286644540984057, metrics={'train_runtime': 4090.6694, 'train_samples_per_second': 72.526, 'train_steps_per_second': 1.134, 'total_flos': 0.0, 'train_loss': 2.1286644540984057, 'epoch': 20.0})
Tri1/opus-mt-en-ro-finetuned-eng-to-para
Tri1
2023-06-25T12:21:10Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T09:20:15Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-en-ro-finetuned-eng-to-para results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-eng-to-para This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0821 - Bleu: 22.2055 - Gen Len: 21.7942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.0865 | 1.0 | 6250 | 0.0821 | 22.2055 | 21.7942 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
joystick/Initokyo
joystick
2023-06-25T12:18:36Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T12:10:06Z
--- license: creativeml-openrail-m ---
gb16001/sovits4.1_ATRI
gb16001
2023-06-25T12:03:50Z
0
2
null
[ "dataset:Yusen/Sovits_ATRI", "license:agpl-3.0", "region:us" ]
null
2023-06-25T10:08:35Z
--- license: agpl-3.0 datasets: - Yusen/Sovits_ATRI --- ### abstruct "speech_encoder": "vec768l12". more trainning paramaters please find in ATRI_config.json sovits,diffusion,kmeans moddels included, take it as you need. ### performance a vocal only demo is in the folder.
JasperV13/DarijaBERT-finetuned-Arabic-SQuAD
JasperV13
2023-06-25T12:03:26Z
34
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:Mostafa3zazi/Arabic_SQuAD", "endpoints_compatible", "region:us" ]
question-answering
2023-06-02T16:51:19Z
--- tags: - generated_from_trainer model-index: - name: DarijaBERT-finetuned-Arabic-SQuAD results: [] datasets: - Mostafa3zazi/Arabic_SQuAD --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DarijaBERT-finetuned-Arabic-SQuAD This model is a fine-tuned version of [SI2M-Lab/DarijaBERT](https://huggingface.co/SI2M-Lab/DarijaBERT) on the [Mostafa3zazi/Arabic_SQuAD](https://huggingface.co/datasets/ZeyadAhmed/Arabic-SQuADv2.0) dataset. It achieves the following results on the evaluation set: - Loss: 4.7451 ## Model description This model is a fine tuned version of DarijaBERT, specifically trained on the Arabic Squad dataset. It is designed to perform question answering in the Darija dialect, which is a colloquial Arabic variant spoken primarily in Morocco. ## Intended uses & limitations - the fine-tuning was done on arabic dataset so the results may not always be accurate escpacially with rare word in darija ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
alfredplpl/unlimited-1-0
alfredplpl
2023-06-25T11:44:51Z
34
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "text-to-image", "arxiv:2112.10752", "arxiv:2212.03860", "license:other", "autotrain_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-25T11:21:59Z
--- license: other tags: - stable-diffusion - text-to-image inference: false --- # Unlimited 1.0 Model Card ![eyecatch.jpg](eyecatch.jpg) Title: Unleash your limit. English version is [here](README_en.md). # ใฏใ˜ใ‚ใซ Unlimitedใฏใ€ ๆƒ…ๅ ฑๆผๆดฉใ—ใŸNovel AI Diffusionใฎไปฃใ‚ใ‚Šใจใชใ‚‹ใ‚ˆใ†ใซ ้–‹็™บใ—ใŸใ€AIใ‚ขใƒผใƒˆใซ็‰นๅŒ–ใ—ใŸ็”ปๅƒ็”ŸๆˆAIใงใ™ใ€‚ # ใƒฉใ‚คใ‚ปใƒณใ‚นใซใคใ„ใฆ ใƒฉใ‚คใ‚ปใƒณใ‚นใซใคใ„ใฆใฏใ€ใ‚‚ใจใฎใƒฉใ‚คใ‚ปใƒณใ‚น CreativeML Open RAIL++-M License ใซไพ‹ๅค–ใ‚’้™คใๅ•†็”จๅˆฉ็”จ็ฆๆญขใ‚’่ฟฝๅŠ ใ—ใŸใ ใ‘ใงใ™ใ€‚ ไพ‹ๅค–ใ‚’้™คใๅ•†็”จๅˆฉ็”จ็ฆๆญขใ‚’่ฟฝๅŠ ใ—ใŸ็†็”ฑใฏๅ‰ตไฝœๆฅญ็•Œใซๆ‚ชๅฝฑ้Ÿฟใ‚’ๅŠใผใ—ใ‹ใญใชใ„ใจใ„ใ†ๆ‡ธๅฟตใ‹ใ‚‰ใงใ™ใ€‚ ๅ–ถๅˆฉไผๆฅญใซใ„ใ‚‹ๆ–นใฏๆณ•ๅ‹™้ƒจใซใ„ใ‚‹ไบบใจ็›ธ่ซ‡ใ—ใฆใใ ใ•ใ„ใ€‚ ่ถฃๅ‘ณใงๅˆฉ็”จใ™ใ‚‹ๆ–นใฏใ‚ใพใ‚Šๆฐ—ใซใ—ใชใใฆใ‚‚ไธ€่ˆฌๅธธ่ญ˜ใ‚’ๅฎˆใ‚Šใ€ใŠไฝฟใ„ใใ ใ•ใ„ใ€‚ **ใชใŠใ€ๅ•†็”จๅˆฉ็”จใ—ใŸใ„ๆ–นใฏๅˆฅ้€”ใ“ใกใ‚‰ (ozaki.yasunori@outlook.com) ใซใ”็›ธ่ซ‡ใใ ใ•ใ„ใ€‚** # ๆณ•ๅพ‹ใซใคใ„ใฆ ๆœฌใƒขใƒ‡ใƒซใฏๆ—ฅๆœฌใซใฆไฝœๆˆใ•ใ‚Œใพใ—ใŸใ€‚ใ—ใŸใŒใฃใฆใ€ๆ—ฅๆœฌใฎๆณ•ๅพ‹ใŒ้ฉ็”จใ•ใ‚Œใพใ™ใ€‚ ๆœฌใƒขใƒ‡ใƒซใฎๅญฆ็ฟ’ใฏใ€่‘—ไฝœๆจฉๆณ•็ฌฌ30ๆกใฎ4ใซๅŸบใฅใใ€ๅˆๆณ•ใงใ‚ใ‚‹ใจไธปๅผตใ—ใพใ™ใ€‚ ใพใŸใ€ๆœฌใƒขใƒ‡ใƒซใฎ้…ๅธƒใซใคใ„ใฆใฏใ€่‘—ไฝœๆจฉๆณ•ใ‚„ๅˆ‘ๆณ•175ๆกใซ็…งใ‚‰ใ—ใฆใฟใฆใ‚‚ใ€ ๆญฃ็Šฏใ‚„ๅน‡ๅŠฉ็Šฏใซใ‚‚่ฉฒๅฝ“ใ—ใชใ„ใจไธปๅผตใ—ใพใ™ใ€‚่ฉณใ—ใใฏๆŸฟๆฒผๅผ่ญทๅฃซใฎ[่ฆ‹่งฃ](https://twitter.com/tka0120/status/1601483633436393473?s=20&t=yvM9EX0Em-_7lh8NJln3IQ)ใ‚’ๅพก่ฆงใใ ใ•ใ„ใ€‚ ใŸใ ใ—ใ€ใƒฉใ‚คใ‚ปใƒณใ‚นใซใ‚‚ใ‚ใ‚‹้€šใ‚Šใ€ๆœฌใƒขใƒ‡ใƒซใฎ็”Ÿๆˆ็‰ฉใฏๅ„็จฎๆณ•ไปคใซๅพ“ใฃใฆๅ–ใ‚Šๆ‰ฑใฃใฆไธ‹ใ•ใ„ใ€‚ # ไฝฟใ„ๆ–น ใƒขใƒ‡ใƒซใฏ[safetensorsๅฝขๅผ](unlimited_1_0.safetensors)ใ‹ใ‚‰ใƒ€ใ‚ฆใƒณใƒญใƒผใƒ‰ใงใใพใ™ใ€‚ ไปฅไธ‹ใ€ไธ€่ˆฌ็š„ใชใƒขใƒ‡ใƒซใ‚ซใƒผใƒ‰ใฎๆ—ฅๆœฌ่ชž่จณใงใ™ใ€‚ ## ใƒขใƒ‡ใƒซ่ฉณ็ดฐ - **ใƒขใƒ‡ใƒซใ‚ฟใ‚คใƒ—:** ๆ‹กๆ•ฃใƒขใƒ‡ใƒซใƒ™ใƒผใ‚นใฎ text-to-image ็”Ÿๆˆใƒขใƒ‡ใƒซ - **่จ€่ชž:** ๆ—ฅๆœฌ่ชž - **ใƒฉใ‚คใ‚ปใƒณใ‚น:** CreativeML Open RAIL++-M-NC License - **ใƒขใƒ‡ใƒซใฎ่ชฌๆ˜Ž:** ใ“ใฎใƒขใƒ‡ใƒซใฏใƒ—ใƒญใƒณใƒ—ใƒˆใซๅฟœใ˜ใฆ้ฉๅˆ‡ใช็”ปๅƒใ‚’็”Ÿๆˆใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ใ‚ขใƒซใ‚ดใƒชใ‚บใƒ ใฏ [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) ใจ [OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip) ใงใ™ใ€‚ - **่ฃœ่ถณ:** - **ๅ‚่€ƒๆ–‡็Œฎ:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ## ใƒขใƒ‡ใƒซใฎไฝฟ็”จไพ‹ Stable Diffusion v2ใจๅŒใ˜ไฝฟใ„ๆ–นใงใ™ใ€‚ ใŸใใ•ใ‚“ใฎๆ–นๆณ•ใŒใ‚ใ‚Šใพใ™ใŒใ€๏ผ’ใคใฎใƒ‘ใ‚ฟใƒผใƒณใ‚’ๆไพ›ใ—ใพใ™ใ€‚ - Web UI - Diffusers ### Web UIใฎๅ ดๅˆ Stable Diffusion v2 ใฎไฝฟใ„ๆ–นใจๅŒใ˜ใใ€safetensorๅฝขๅผใฎใƒขใƒ‡ใƒซใƒ•ใ‚กใ‚คใƒซใ‚’ใƒขใƒ‡ใƒซใƒ•ใ‚ฉใƒซใƒ€ใซๅ…ฅใ‚Œใฆใใ ใ•ใ„ใ€‚ ่ฉณใ—ใ„ใ‚คใƒณใ‚นใƒˆใƒผใƒซๆ–นๆณ•ใฏใ€[ใ“ใกใ‚‰ใฎ่จ˜ไบ‹](https://note.com/it_navi/n/n6ffb66513769)ใ‚’ๅ‚็…งใ—ใฆใใ ใ•ใ„ใ€‚ ใชใŠใ€xformersใ‚’ใ‚คใƒณใ‚นใƒˆใƒผใƒซใ—ใ€--xformers --disable-nan-checkใ‚ชใƒ—ใ‚ทใƒงใƒณใ‚’ใ‚ชใƒณใซใ™ใ‚‹ใ“ใจใ‚’ใŠใ™ใ™ใ‚ใ—ใพใ™ใ€‚ใใ†ใงใชใ„ๅ ดๅˆใฏ--no-halfใ‚ชใƒ—ใ‚ทใƒงใƒณใ‚’ใ‚ชใƒณใซใ—ใฆใใ ใ•ใ„ใ€‚ ### Diffusersใฎๅ ดๅˆ [๐Ÿค—'s Diffusers library](https://github.com/huggingface/diffusers) ใ‚’ไฝฟใฃใฆใใ ใ•ใ„ใ€‚ ใพใšใฏใ€ไปฅไธ‹ใฎใ‚นใ‚ฏใƒชใƒ—ใƒˆใ‚’ๅฎŸ่กŒใ—ใ€ใƒฉใ‚คใƒ–ใƒฉใƒชใ‚’ใ„ใ‚Œใฆใใ ใ•ใ„ใ€‚ ```bash pip install --upgrade git+https://github.com/huggingface/diffusers.git transformers accelerate scipy ``` ๆฌกใฎใ‚นใ‚ฏใƒชใƒ—ใƒˆใ‚’ๅฎŸ่กŒใ—ใ€็”ปๅƒใ‚’็”Ÿๆˆใ—ใฆใใ ใ•ใ„ใ€‚ ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "alfredplpl/unlimited-1-0" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "masterpiece, anime, close up, white short hair, red eyes, 1girl, solo, red roses" negative_prompt="lowres , kanji, monochrome, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)), ((censored)), ((bad aesthetic))" images = pipe(prompt,negative_prompt=negative_prompt, num_inference_steps=30).images images[0].save("girl.png") ``` **ๆณจๆ„**: - [xformers](https://github.com/facebookresearch/xformers) ใ‚’ไฝฟใ†ใจๆ—ฉใใชใ‚Šใพใ™ใ€‚ - GPUใ‚’ไฝฟใ†้š›ใซGPUใฎใƒกใƒขใƒชใŒๅฐ‘ใชใ„ไบบใฏ `pipe.enable_attention_slicing()` ใ‚’ไฝฟใฃใฆใใ ใ•ใ„ใ€‚ #### ๆƒณๅฎšใ•ใ‚Œใ‚‹็”จ้€” - ่‡ชๅทฑ่กจ็พ - ใ“ใฎAIใ‚’ไฝฟใ„ใ€ใ€Œใ‚ใชใŸใ€ใ‚‰ใ—ใ•ใ‚’็™บไฟกใ™ใ‚‹ใ“ใจ - ็”ปๅƒ็”ŸๆˆAIใซ้–ขใ™ใ‚‹ๅ ฑ้“ - ๅ…ฌๅ…ฑๆ”พ้€ใ ใ‘ใงใชใใ€ๅ–ถๅˆฉไผๆฅญใงใ‚‚ๅฏ่ƒฝ - ็”ปๅƒๅˆๆˆAIใซ้–ขใ™ใ‚‹ๆƒ…ๅ ฑใ‚’ใ€Œ็Ÿฅใ‚‹ๆจฉๅˆฉใ€ใฏๅ‰ตไฝœๆฅญ็•Œใซๆ‚ชๅฝฑ้Ÿฟใ‚’ๅŠใผใ•ใชใ„ใจๅˆคๆ–ญใ—ใŸใŸใ‚ใงใ™ใ€‚ใพใŸใ€ๅ ฑ้“ใฎ่‡ช็”ฑใชใฉใ‚’ๅฐŠ้‡ใ—ใพใ—ใŸใ€‚ - ็ ”็ฉถ้–‹็™บ - DiscordไธŠใงใฎใƒขใƒ‡ใƒซใฎๅˆฉ็”จ - ใƒ—ใƒญใƒณใƒ—ใƒˆใ‚จใƒณใ‚ธใƒ‹ใ‚ขใƒชใƒณใ‚ฐ - ใƒ•ใ‚กใ‚คใƒณใƒใƒฅใƒผใƒ‹ใƒณใ‚ฐ๏ผˆ่ฟฝๅŠ ๅญฆ็ฟ’ใจใ‚‚๏ผ‰ - DreamBooth ใชใฉ - ไป–ใฎใƒขใƒ‡ใƒซใจใฎใƒžใƒผใ‚ธ - ๆœฌใƒขใƒ‡ใƒซใฎๆ€ง่ƒฝใ‚’FIDใชใฉใง่ชฟในใ‚‹ใ“ใจ - ๆœฌใƒขใƒ‡ใƒซใŒStable Diffusionไปฅๅค–ใฎใƒขใƒ‡ใƒซใจใฏ็‹ฌ็ซ‹ใงใ‚ใ‚‹ใ“ใจใ‚’ใƒใ‚งใƒƒใ‚ฏใ‚ตใƒ ใ‚„ใƒใƒƒใ‚ทใƒฅ้–ขๆ•ฐใชใฉใง่ชฟในใ‚‹ใ“ใจ - ๆ•™่‚ฒ - ็พŽๅคง็”Ÿใ‚„ๅฐ‚้–€ๅญฆๆ ก็”Ÿใฎๅ’ๆฅญๅˆถไฝœ - ๅคงๅญฆ็”Ÿใฎๅ’ๆฅญ่ซ–ๆ–‡ใ‚„่ชฒ้กŒๅˆถไฝœ - ๅ…ˆ็”ŸใŒ็”ปๅƒ็”ŸๆˆAIใฎ็พ็Šถใ‚’ไผใˆใ‚‹ใ“ใจ - Hugging Face ใฎ Community ใซใ‹ใ„ใฆใ‚ใ‚‹็”จ้€” - ๆ—ฅๆœฌ่ชžใ‹่‹ฑ่ชžใง่ณชๅ•ใ—ใฆใใ ใ•ใ„ #### ๆƒณๅฎšใ•ใ‚Œใชใ„็”จ้€” - ็‰ฉไบ‹ใ‚’ไบ‹ๅฎŸใจใ—ใฆ่กจ็พใ™ใ‚‹ใ‚ˆใ†ใชใ“ใจ - ๅŽ็›ŠๅŒ–ใ•ใ‚Œใฆใ„ใ‚‹YouTubeใชใฉใฎใ‚ณใƒณใƒ†ใƒณใƒ„ใธใฎไฝฟ็”จ - ๅ•†็”จใฎใ‚ตใƒผใƒ“ใ‚นใจใ—ใฆ็›ดๆŽฅๆไพ›ใ™ใ‚‹ใ“ใจ - ๅ…ˆ็”Ÿใ‚’ๅ›ฐใ‚‰ใ›ใ‚‹ใ‚ˆใ†ใชใ“ใจ - ใใฎไป–ใ€ๅ‰ตไฝœๆฅญ็•Œใซๆ‚ชๅฝฑ้Ÿฟใ‚’ๅŠใผใ™ใ“ใจ # ไฝฟ็”จใ—ใฆใฏใ„ใ‘ใชใ„็”จ้€”ใ‚„ๆ‚ชๆ„ใฎใ‚ใ‚‹็”จ้€” - ใƒ‡ใ‚ธใ‚ฟใƒซ่ด‹ไฝœ ([Digital Forgery](https://arxiv.org/abs/2212.03860)) ใฏๅ…ฌ้–‹ใ—ใชใ„ใงใใ ใ•ใ„๏ผˆ่‘—ไฝœๆจฉๆณ•ใซ้•ๅใ™ใ‚‹ใŠใใ‚Œ๏ผ‰ - ไป–ไบบใฎไฝœๅ“ใ‚’็„กๆ–ญใงImage-to-Imageใ—ใชใ„ใงใใ ใ•ใ„๏ผˆ่‘—ไฝœๆจฉๆณ•ใซ้•ๅใ™ใ‚‹ใŠใใ‚Œ๏ผ‰ - ใ‚ใ„ใ›ใค็‰ฉใ‚’้ ’ๅธƒใ—ใชใ„ใงใใ ใ•ใ„ (ๅˆ‘ๆณ•175ๆกใซ้•ๅใ™ใ‚‹ใŠใใ‚Œ๏ผ‰ - ใ„ใ‚ใ‚†ใ‚‹ๆฅญ็•ŒใฎใƒžใƒŠใƒผใ‚’ๅฎˆใ‚‰ใชใ„ใ‚ˆใ†ใชใ“ใจ - ไบ‹ๅฎŸใซๅŸบใฅใ‹ใชใ„ใ“ใจใ‚’ไบ‹ๅฎŸใฎใ‚ˆใ†ใซ่ชžใ‚‰ใชใ„ใ‚ˆใ†ใซใ—ใฆใใ ใ•ใ„๏ผˆๅจๅŠ›ๆฅญๅ‹™ๅฆจๅฎณ็ฝชใŒ้ฉ็”จใ•ใ‚Œใ‚‹ใŠใใ‚Œ๏ผ‰ - ใƒ•ใ‚งใ‚คใ‚ฏใƒ‹ใƒฅใƒผใ‚น ## ใƒขใƒ‡ใƒซใฎ้™็•Œใ‚„ใƒใ‚คใ‚ขใ‚น ### ใƒขใƒ‡ใƒซใฎ้™็•Œ - ๆ‹กๆ•ฃใƒขใƒ‡ใƒซใ‚„ๅคง่ฆๆจก่จ€่ชžใƒขใƒ‡ใƒซใฏใ€ใ„ใพใ ใซๆœช็Ÿฅใฎ้ƒจๅˆ†ใŒๅคšใใ€ใใฎ้™็•Œใฏๅˆคๆ˜Žใ—ใฆใ„ใชใ„ใ€‚ ### ใƒใ‚คใ‚ขใ‚น - ๆ‹กๆ•ฃใƒขใƒ‡ใƒซใ‚„ๅคง่ฆๆจก่จ€่ชžใƒขใƒ‡ใƒซใฏใ€ใ„ใพใ ใซๆœช็Ÿฅใฎ้ƒจๅˆ†ใŒๅคšใใ€ใƒใ‚คใ‚ขใ‚นใฏๅˆคๆ˜Žใ—ใฆใ„ใชใ„ใ€‚ ## ๅญฆ็ฟ’ **ๅญฆ็ฟ’ใƒ‡ใƒผใ‚ฟ** ๅ›ฝๅ†…ๆณ•ใซๆบ–ๆ‹ ใ—ใŸใƒ‡ใƒผใ‚ฟใจใƒขใƒ‡ใƒซใ€‚ **ๅญฆ็ฟ’ใƒ—ใƒญใ‚ปใ‚น** - **ใƒใƒผใƒ‰ใ‚ฆใ‚งใ‚ข:** A6000x2 ## ่ฉ•ไพก็ตๆžœ ็ฌฌไธ‰่€…ใซใ‚ˆใ‚‹่ฉ•ไพกใ‚’ๆฑ‚ใ‚ใฆใ„ใพใ™ใ€‚ ## ็’ฐๅขƒใธใฎๅฝฑ้Ÿฟ - **ใƒใƒผใƒ‰ใ‚ฆใ‚งใ‚ขใ‚ฟใ‚คใƒ—:** A6000x2 - **ไฝฟ็”จๆ™‚้–“๏ผˆๅ˜ไฝใฏๆ™‚้–“๏ผ‰:** 1000 - **ๅญฆ็ฟ’ใ—ใŸๅ ดๆ‰€:** ๆ—ฅๆœฌ ## ๅ‚่€ƒๆ–‡็Œฎ @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } *ใ“ใฎใƒขใƒ‡ใƒซใ‚ซใƒผใƒ‰ใฏ [Stable Diffusion v2](https://huggingface.co/stabilityai/stable-diffusion-2/raw/main/README.md) ใซๅŸบใฅใ„ใฆๆ›ธใ‹ใ‚Œใพใ—ใŸใ€‚
NasimB/gpt2-2-og-concat-modified-aochild
NasimB
2023-06-25T11:41:21Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T06:55:05Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-2-og-concat-modified-aochild results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-2-og-concat-modified-aochild This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 3.9262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 5.9891 | 0.24 | 500 | 5.0538 | | 4.7513 | 0.48 | 1000 | 4.6760 | | 4.4523 | 0.72 | 1500 | 4.4485 | | 4.2602 | 0.96 | 2000 | 4.3053 | | 4.0617 | 1.21 | 2500 | 4.2166 | | 3.9742 | 1.45 | 3000 | 4.1365 | | 3.9095 | 1.69 | 3500 | 4.0632 | | 3.8462 | 1.93 | 4000 | 3.9949 | | 3.6761 | 2.17 | 4500 | 3.9718 | | 3.6346 | 2.41 | 5000 | 3.9336 | | 3.613 | 2.65 | 5500 | 3.8883 | | 3.5949 | 2.89 | 6000 | 3.8502 | | 3.4561 | 3.13 | 6500 | 3.8626 | | 3.387 | 3.38 | 7000 | 3.8393 | | 3.3931 | 3.62 | 7500 | 3.8152 | | 3.395 | 3.86 | 8000 | 3.7882 | | 3.2751 | 4.1 | 8500 | 3.8162 | | 3.1697 | 4.34 | 9000 | 3.8117 | | 3.1949 | 4.58 | 9500 | 3.7952 | | 3.1957 | 4.82 | 10000 | 3.7726 | | 3.1301 | 5.06 | 10500 | 3.8013 | | 2.9449 | 5.3 | 11000 | 3.8132 | | 2.9803 | 5.54 | 11500 | 3.8048 | | 2.9921 | 5.79 | 12000 | 3.7903 | | 2.9654 | 6.03 | 12500 | 3.8054 | | 2.7336 | 6.27 | 13000 | 3.8363 | | 2.7653 | 6.51 | 13500 | 3.8379 | | 2.7754 | 6.75 | 14000 | 3.8285 | | 2.777 | 6.99 | 14500 | 3.8186 | | 2.5506 | 7.23 | 15000 | 3.8731 | | 2.5598 | 7.47 | 15500 | 3.8769 | | 2.5731 | 7.71 | 16000 | 3.8768 | | 2.5762 | 7.96 | 16500 | 3.8744 | | 2.4267 | 8.2 | 17000 | 3.9055 | | 2.4121 | 8.44 | 17500 | 3.9110 | | 2.4249 | 8.68 | 18000 | 3.9133 | | 2.4157 | 8.92 | 18500 | 3.9140 | | 2.366 | 9.16 | 19000 | 3.9237 | | 2.3398 | 9.4 | 19500 | 3.9252 | | 2.3398 | 9.64 | 20000 | 3.9263 | | 2.3365 | 9.88 | 20500 | 3.9262 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
edfryo/bangkelser
edfryo
2023-06-25T11:39:27Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-05-09T11:58:00Z
--- license: bigscience-openrail-m ---
jondurbin/airoboros-13b-gpt4-1.4-fp16
jondurbin
2023-06-25T11:39:17Z
1,423
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:jondurbin/airoboros-gpt4-1.4", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-22T10:46:42Z
--- license: other datasets: - jondurbin/airoboros-gpt4-1.4 --- float16 version of https://huggingface.co/jondurbin/airoboros-13b-gpt4-1.4
siddh4rth/fintuned-falcon-7b-truthful-qa
siddh4rth
2023-06-25T10:36:25Z
4
0
peft
[ "peft", "RefinedWebModel", "custom_code", "4-bit", "region:us" ]
null
2023-06-25T09:46:47Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
jiyuanq/falcon-40b-instruct-gptq-128g-act
jiyuanq
2023-06-25T10:35:13Z
14
0
transformers
[ "transformers", "safetensors", "RefinedWeb", "text-generation", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T08:31:32Z
--- library_name: transformers pipeline_tag: text-generation --- falcon-40b-instruct quantized with GPTQ using the script in https://github.com/huggingface/text-generation-inference/pull/438 - group size: 128 - act order: true - nsamples: 128 - dataset: wikitext2
abhishek-kumar/dreambooth_test
abhishek-kumar
2023-06-25T10:34:42Z
30
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-24T16:02:54Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - abhishek-kumar/output This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Omogo/xlm-roberta-base-finetuned-panx-de
Omogo
2023-06-25T10:27:58Z
124
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-25T07:39:34Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8602627537962806 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1355 - F1: 0.8603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2574 | 1.0 | 525 | 0.1627 | 0.8221 | | 0.1295 | 2.0 | 1050 | 0.1435 | 0.8467 | | 0.0815 | 3.0 | 1575 | 0.1355 | 0.8603 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
TheBloke/orca_mini_3B-GGML
TheBloke
2023-06-25T10:25:04Z
0
59
transformers
[ "transformers", "en", "dataset:psmathur/alpaca_orca", "dataset:psmathur/dolly-v2_orca", "dataset:psmathur/WizardLM_Orca", "arxiv:2306.02707", "license:mit", "region:us" ]
null
2023-06-24T22:33:56Z
--- inference: false license: mit language: - en library_name: transformers datasets: - psmathur/alpaca_orca - psmathur/dolly-v2_orca - psmathur/WizardLM_Orca --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Pankaj Mathur's Orca Mini 3B GGML These files are GGML format model files for [Pankaj Mathur's Orca Mini 3B](https://huggingface.co/psmathur/orca_mini_3b). GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## Repositories available * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/orca_mini_3B-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/psmathur/orca_mini_3b) ## Prompt template: ``` ### System: You are an AI assistant that follows instruction extremely well. Help as much as you can. ### User: prompt ### Response: ``` or ``` ### System: You are an AI assistant that follows instruction extremely well. Help as much as you can. ### User: prompt ### Input: input ### Response: ``` <!-- compatibility_ggml start --> ## Compatibility ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`. These are guaranteed to be compatbile with any UIs, tools and libraries released since late May. ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` These cannot be provided with Open Llama 3B models at this time, due to an issue in llama.cpp. This is being worked on in the llama.cpp repo. More issues here: https://github.com/ggerganov/llama.cpp/issues/1919 Refer to the Provided Files table below to see what files use which methods, and how. <!-- compatibility_ggml end --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | orca-mini-3b.ggmlv3.q4_0.bin | q4_0 | 4 | 1.93 GB | 4.43 GB | Original llama.cpp quant method, 4-bit. | | orca-mini-3b.ggmlv3.q4_1.bin | q4_1 | 4 | 2.14 GB | 4.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | orca-mini-3b.ggmlv3.q5_0.bin | q5_0 | 5 | 2.36 GB | 4.86 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | orca-mini-3b.ggmlv3.q5_1.bin | q5_1 | 5 | 2.57 GB | 5.07 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | orca-mini-3b.ggmlv3.q8_0.bin | q8_0 | 8 | 3.64 GB | 6.14 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 10 -ngl 32 -m orca-mini-3b.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### System:\nYou are an story writing assistant who writes very long, detailed and interesting stories\n\n### User:\nWrite a story about llamas\n\n### Input:\n{input}\n\n### Response:\n" ``` If you're able to use full GPU offloading, you should use `-t 1` to get best performance. If not able to fully offload to GPU, you should use more cores. Change `-t 10` to the number of physical CPU cores you have, or a lower number depending on what gives best performance. Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Pankaj Mathur's Orca Mini 3B # orca_mini_3b An [OpenLLaMa-3B model](https://github.com/openlm-research/open_llama) model trained on explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches. # Dataset We build explain tuned [WizardLM dataset ~70K](https://github.com/nlpxucan/WizardLM), [Alpaca dataset ~52K](https://crfm.stanford.edu/2023/03/13/alpaca.html) & [Dolly-V2 dataset ~15K](https://github.com/databrickslabs/dolly) created using approaches from [Orca Research Paper](https://arxiv.org/abs/2306.02707). We leverage all of the 15 system instructions provided in Orca Research Paper. to generate custom datasets, in contrast to vanilla instruction tuning approaches used by original datasets. This helps student model aka this model to learn ***thought*** process from teacher model, which is ChatGPT (gpt-3.5-turbo-0301 version). Please see below example usage how the **System** prompt is added before each **instruction**. # Training The training configurations are provided in the table below. The training takes on 8x A100(80G) GPUs and lasts for around 4 Hours for cost of $48 using [Lambda Labs](https://lambdalabs.com) We used DeepSpeed with fully sharded data parallelism, also know as [ZeRO stage 3](https://engineering.fb.com/2021/07/15/open-source/fsdp/) by writing our own fine tunning scripts plus leveraging some of the model training code provided by amazing [OpenAlpaca repo](https://github.com/yxuansu/OpenAlpaca) Here are some of params used during training: ||| |:-------------:|:-------------:| |*batch_size*|64| |*train_micro_batch_size_per_gpu*|4| |*gradient_accumulation_steps*|2| |*Learning rate*|2e-5| |*Max length*|1024| |*Epochs*|3| |*Optimizer*|AdamW| # Example Usage Below shows an example on how to use this model ```python import torch from transformers import LlamaForCausalLM, LlamaTokenizer # Hugging Face model_path model_path = 'psmathur/orca_mini_3b' tokenizer = LlamaTokenizer.from_pretrained(model_path) model = LlamaForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map='auto', ) #generate text function def generate_text(system, instruction, input=None): if input: prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" else: prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Response:\n" tokens = tokenizer.encode(prompt) tokens = torch.LongTensor(tokens).unsqueeze(0) tokens = tokens.to('cuda') instance = {'input_ids': tokens,'top_p': 1.0, 'temperature':0.7, 'generate_len': 1024, 'top_k': 50} length = len(tokens[0]) with torch.no_grad(): rest = model.generate( input_ids=tokens, max_length=length+instance['generate_len'], use_cache=True, do_sample=True, top_p=instance['top_p'], temperature=instance['temperature'], top_k=instance['top_k'] ) output = rest[0][length:] string = tokenizer.decode(output, skip_special_tokens=True) return f'[!] Response: {string}' # Sample Test Instruction Used by Youtuber Sam Witteveen https://www.youtube.com/@samwitteveenai system = 'You are an AI assistant that follows instruction extremely well. Help as much as you can.' instruction = 'Write a letter to Sam Altman, CEO of OpenAI, requesting him to convert GPT4 a private model by OpenAI to an open source project' print(generate_text(system, instruction)) ``` ``` [!] Response: Dear Sam Altman, I am writing to request that you convert the GPT4 private model developed by OpenAI to an open source project. As a user of OpenAI, I have been waiting for the day when I can use the advanced natural language processing capabilities of GPT4 in a more open and accessible way. While OpenAI has made significant progress in developing AI applications, it has primarily focused on building private models that are not accessible to the general public. However, with the recent release of GPT-3, there is a growing demand for more open and accessible AI tools. Converting GPT4 to an open source project would allow for greater transparency, collaboration, and innovation. It would also help to build trust in the technology and ensure that it is used ethically and responsibly. I urge you to consider converting GPT4 to an open source project. This would be a significant contribution to the AI community and would help to create a more open and accessible future. Thank you for your consideration. Sincerely, [Your Name] ``` **P.S. I am #opentowork and #collaboration, if you can help, please reach out to me at psmathur.public@gmail.com** Next Goals: 1) Try more data like actually using FLAN-v2, just like Orka Research Paper (I am open for suggestions) 2) Provide more options for Text generation UI. (may be https://github.com/oobabooga/text-generation-webui) 3) Provide 4bit GGML/GPTQ quantized model (may be [TheBloke](https://huggingface.co/TheBloke) can help here) Limitations & Biases: This model can produce factually incorrect output, and should not be relied on to produce factually accurate information. This model was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. Disclaimer: The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. Citiation: If you found wizardlm_alpaca_dolly_orca_open_llama_3b useful in your research or applications, please kindly cite using the following BibTeX: ``` @misc{wizardlm_alpaca_dolly_orca_open_llama_3b, author = {Pankaj Mathur}, title = {wizardlm_alpaca_dolly_orca_open_llama_3b: An explain tuned OpenLLaMA-3b model on custom wizardlm, alpaca, & dolly datasets}, year = {2023}, publisher = {GitHub, HuggingFace}, journal = {GitHub repository, HuggingFace repository}, howpublished = {\url{https://github.com/pankajarm/wizardlm_alpaca_dolly_orca_open_llama_3b}, \url{https://https://huggingface.co/psmathur/wizardlm_alpaca_dolly_orca_open_llama_3b}}, } ``` ``` @software{openlm2023openllama, author = {Xinyang Geng and Hao Liu}, title = {OpenLLaMA: An Open Reproduction of LLaMA}, month = May, year = 2023, url = {https://github.com/openlm-research/open_llama} } ``` ``` @misc{openalpaca, author = {Yixuan Su and Tian Lan and Deng Cai}, title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}}, } ``` ``` @misc{alpaca, author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto }, title = {Stanford Alpaca: An Instruction-following LLaMA model}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}}, } ```
Sp1786/mutliclass-sentiment-analysis-bert
Sp1786
2023-06-25T10:22:55Z
4
0
transformers
[ "transformers", "bert", "code", "text-classification", "en", "dataset:Sp1786/multiclass-sentiment-analysis-dataset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2023-06-21T11:23:59Z
--- license: apache-2.0 datasets: - Sp1786/multiclass-sentiment-analysis-dataset language: - en metrics: - bleu - sacrebleu library_name: transformers pipeline_tag: text-classification tags: - code ---
c72599/Reinforce-CartPole-v1
c72599
2023-06-25T10:22:44Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T10:22:36Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
kbondar17/test-trainer
kbondar17
2023-06-25T10:12:41Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-25T10:06:32Z
--- license: mit tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: test-trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-trainer This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4009 - F1: 0.6363 - Roc Auc: 0.7682 - Accuracy: 0.6079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 125 | 0.2975 | 0.5710 | 0.7129 | 0.4693 | | No log | 2.0 | 250 | 0.3742 | 0.6226 | 0.7621 | 0.6013 | | No log | 3.0 | 375 | 0.4009 | 0.6363 | 0.7682 | 0.6079 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
dhruvil237/userutterance_classification_verplus
dhruvil237
2023-06-25T10:05:26Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "doi:10.57967/hf/0811", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-05T12:20:52Z
--- license: mit tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: userutterance_classification_verplus results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9619354838709677 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # userutterance_classification_verplus This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2270 - Accuracy: 0.9619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 5.0219 | 0.21 | 200 | 4.9813 | 0.0077 | | 4.8915 | 0.42 | 400 | 4.5741 | 0.1155 | | 4.2736 | 0.63 | 600 | 3.5359 | 0.4719 | | 3.2701 | 0.84 | 800 | 2.4291 | 0.7429 | | 2.3578 | 1.05 | 1000 | 1.5793 | 0.8413 | | 1.5695 | 1.26 | 1200 | 1.0029 | 0.8994 | | 1.0412 | 1.47 | 1400 | 0.6475 | 0.9187 | | 0.7034 | 1.68 | 1600 | 0.4439 | 0.9303 | | 0.501 | 1.89 | 1800 | 0.3400 | 0.9381 | | 0.3187 | 2.1 | 2000 | 0.2793 | 0.9439 | | 0.2185 | 2.31 | 2200 | 0.2538 | 0.9490 | | 0.1669 | 2.52 | 2400 | 0.2210 | 0.9523 | | 0.1081 | 2.73 | 2600 | 0.2225 | 0.9519 | | 0.1004 | 2.94 | 2800 | 0.2136 | 0.9555 | | 0.0665 | 3.14 | 3000 | 0.2078 | 0.9561 | | 0.0509 | 3.35 | 3200 | 0.2155 | 0.9568 | | 0.05 | 3.56 | 3400 | 0.2107 | 0.9581 | | 0.0527 | 3.77 | 3600 | 0.2171 | 0.9568 | | 0.0447 | 3.98 | 3800 | 0.2128 | 0.9590 | | 0.0259 | 4.19 | 4000 | 0.2099 | 0.9587 | | 0.0279 | 4.4 | 4200 | 0.2179 | 0.9577 | | 0.0176 | 4.61 | 4400 | 0.2191 | 0.9574 | | 0.0288 | 4.82 | 4600 | 0.2216 | 0.9590 | | 0.0328 | 5.03 | 4800 | 0.2237 | 0.9606 | | 0.0154 | 5.24 | 5000 | 0.2241 | 0.9616 | | 0.0157 | 5.45 | 5200 | 0.2265 | 0.9603 | | 0.023 | 5.66 | 5400 | 0.2276 | 0.9613 | | 0.0178 | 5.87 | 5600 | 0.2270 | 0.9619 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
joohwan/2222333l-gd
joohwan
2023-06-25T10:05:13Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-25T08:10:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: 2222333l-gd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2222333l-gd This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0984 - Wer: 13.1908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0206 | 0.18 | 500 | 0.1634 | 17.8738 | | 0.0496 | 0.36 | 1000 | 0.1403 | 12.4680 | | 0.0516 | 0.54 | 1500 | 0.1123 | 10.2394 | | 0.0755 | 0.72 | 2000 | 0.0984 | 13.1908 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
mrizalf7/xlm-r-qa-squad-retrained
mrizalf7
2023-06-25T09:57:29Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-06-13T19:17:39Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-finetuned-small-squad-indonesian-rizal-4-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-finetuned-small-squad-indonesian-rizal-4-2 This model is a fine-tuned version of [mrizalf7/xlm-roberta-finetuned-small-squad-indonesian-rizal-4](https://huggingface.co/mrizalf7/xlm-roberta-finetuned-small-squad-indonesian-rizal-4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.4152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 6.1326 | | No log | 2.0 | 2 | 6.1326 | | No log | 3.0 | 3 | 5.4152 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bogdancazan/t5-small-newsela-biendata-with-domain-adaptation
bogdancazan
2023-06-25T09:45:44Z
106
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T11:56:49Z
training_args = TrainingArguments( output_dir='t5-small-newsela-biendata-with-domain-adaptation', num_train_epochs=20, warmup_steps=250, per_device_train_batch_size=BATCH_SIZE, weight_decay=0.01, learning_rate=2e-4, fp16=True, optim="adafactor", ) Step Training Loss 500 35.466600 1000 25.795400 1500 10.923200 2000 4.515500 TrainOutput(global_step=2320, training_loss=16.92537920721646, metrics={'train_runtime': 628.0033, 'train_samples_per_second': 472.418, 'train_steps_per_second': 3.694, 'total_flos': 0.0, 'train_loss': 16.92537920721646, 'epoch': 20.0})