modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-05 06:27:37
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
539 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-05 06:27:15
card
stringlengths
11
1.01M
persiannlp/mt5-large-parsinlu-sentiment-analysis
persiannlp
2021-09-23T16:20:21Z
25
2
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "sentiment", "sentiment-analysis", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - sentiment - sentiment-analysis - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Sentiment Analysis (آنالیز احساسات) This is a mT5 model for sentiment analysis. Here is an example of how you can run this model: ```python import torch from transformers import MT5ForConditionalGeneration, MT5Tokenizer import numpy as np model_name_or_path = "persiannlp/mt5-large-parsinlu-sentiment-analysis" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def model_predict(text_a, text_b): features = tokenizer( [(text_a, text_b)], padding="max_length", truncation=True, return_tensors='pt') output = model(**features) logits = output[0] probs = torch.nn.functional.softmax(logits, dim=1).tolist() idx = np.argmax(np.array(probs)) print(labels[idx], probs) def run_model(context, query, **generator_args): input_ids = tokenizer.encode(context + "<sep>" + query, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model( "یک فیلم ضعیف بی محتوا بدون فیلمنامه . شوخی های سخیف .", "نظر شما در مورد داستان، فیلمنامه، دیالوگ ها و موضوع فیلم لونه زنبور چیست؟" ) run_model( "فیلم تا وسط فیلم یعنی دقیقا تا جایی که معلوم میشه بچه های املشی دنبال رضان خیلی خوب و جذاب پیش میره ولی دقیقا از همونجاش سکته میزنه و خلاص...", "نظر شما به صورت کلی در مورد فیلم ژن خوک چیست؟" ) run_model( "اصلا به هیچ عنوان علاقه نداشتم اجرای می سی سی پی نشسته میمیرد روی پرده سینما ببینم دیالوگ های تکراری هلیکوپتر ماشین آلندلون لئون پاپیون آخه چرااااااااااااااا همون حسی که توی تالار وحدت بعد از نیم ساعت به سرم اومد امشب توی سالن سینما تجربه کردم ،حس گریز از سالن.......⁦ ⁦(ノಠ益ಠ)ノ⁩ ", " نظر شما در مورد صداگذاری و جلوه های صوتی فیلم مسخره‌باز چیست؟" ) run_model( " گول نخورید این رنگارنگ مینو نیست برای شرکت گرجیه و متاسفانه این محصولش اصلا مزه رنگارنگی که انتظار دارید رو نمیده ", " نظر شما در مورد عطر، بو، و طعم این بیسکویت و ویفر چیست؟" ) run_model( "در مقایسه با سایر برندهای موجود در بازار با توجه به حراجی که داشت ارزانتر ب", " شما در مورد قیمت و ارزش خرید این حبوبات و سویا چیست؟" ) run_model( "من پسرم عاشق ایناس ولی دیگه به خاطر حفظ محیط زیست فقط زمانهایی که مجبور باشم شیر دونه ای میخرم و سعی میکنم دیگه کمتر شیر با بسته بندی تتراپک استفاده کنم ", "نظر شما به صورت کلی در مورد این شیر چیست؟" ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-large-parsinlu-qqp-query-paraphrasing
persiannlp
2021-09-23T16:20:19Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "query-paraphrasing", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:qqp", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - query-paraphrasing - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - qqp metrics: - accuracy --- # Detection of Paraphrased Queries (تشخصیص سوالات هم‌معنی) This is a model for detection of paraphrased queries. Here is an example of how you can run this model: ```python from transformers import MT5Config, MT5ForConditionalGeneration, MT5Tokenizer model_name = "persiannlp/mt5-large-parsinlu-qqp-query-paraphrasing" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(q1, q2, **generator_args): input_ids = tokenizer.encode(f"{q1}<sep>{q2}", return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("چه چیزی باعث پوکی استخوان می شود؟", "چه چیزی باعث مقاومت استخوان در برابر ضربه می شود؟") run_model("من دارم به این فکر میکنم چرا ساعت هفت نمیشه؟", "چرا من ساده فکر میکردم به عشقت پابندی؟") run_model("دعای کمیل در چه روزهایی خوانده می شود؟", "دعای جوشن کبیر در چه شبی خوانده می شود؟") run_model("دعای کمیل در چه روزهایی خوانده می شود؟", "دعای جوشن کبیر در چه شبی خوانده می شود؟") run_model("شناسنامه در چه سالی وارد ایران شد؟", "سیب زمینی در چه سالی وارد ایران شد؟") run_model("سیب زمینی چه زمانی وارد ایران شد؟", "سیب زمینی در چه سالی وارد ایران شد؟") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-large-parsinlu-opus-translation_fa_en
persiannlp
2021-09-23T16:20:17Z
184
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "machine-translation", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - machine-translation - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - sacrebleu --- # Machine Translation (ترجمه‌ی ماشینی) This is an mT5-based model for machine translation (Persian -> English). Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "large" model_name = f"persiannlp/mt5-{model_size}-parsinlu-opus-translation_fa_en" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("ستایش خدای را که پروردگار جهانیان است.") run_model("در هاید پارک کرنر بر گلدانی ایستاده موعظه می‌کند؛") run_model("وی از تمامی بلاگرها، سازمان‌ها و افرادی که از وی پشتیبانی کرده‌اند، تشکر کرد.") run_model("مشابه سال ۲۰۰۱، تولید آمونیاک بی آب در ایالات متحده در سال ۲۰۰۰ تقریباً ۱۷،۴۰۰،۰۰۰ تن (معادل بدون آب) با مصرف ظاهری ۲۲،۰۰۰،۰۰۰ تن و حدود ۴۶۰۰۰۰۰ با واردات خالص مواجه شد. ") run_model("می خواهم دکترای علوم کامپیوتر راجع به شبکه های اجتماعی را دنبال کنم، چالش حل نشده در شبکه های اجتماعی چیست؟") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-large-parsinlu-multiple-choice
persiannlp
2021-09-23T16:20:14Z
63
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "multiple-choice", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "large" model_name = f"persiannlp/mt5-{model_size}-parsinlu-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-large-parsinlu-arc-comqa-obqa-multiple-choice
persiannlp
2021-09-23T16:20:12Z
1
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "multiple-choice", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:commonsenseqa", "dataset:arc", "dataset:openbookqa", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - commonsenseqa - arc - openbookqa metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "large" model_name = f"persiannlp/mt5-{model_size}-parsinlu-arc-comqa-obqa-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-base-parsinlu-sentiment-analysis
persiannlp
2021-09-23T16:20:02Z
94
4
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "sentiment", "sentiment-analysis", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - sentiment - sentiment-analysis - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Sentiment Analysis (آنالیز احساسات) This is a mT5 model for sentiment analysis. Here is an example of how you can run this model: ```python import torch from transformers import MT5ForConditionalGeneration, MT5Tokenizer import numpy as np model_name_or_path = "persiannlp/mt5-base-parsinlu-sentiment-analysis" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def model_predict(text_a, text_b): features = tokenizer( [(text_a, text_b)], padding="max_length", truncation=True, return_tensors='pt') output = model(**features) logits = output[0] probs = torch.nn.functional.softmax(logits, dim=1).tolist() idx = np.argmax(np.array(probs)) print(labels[idx], probs) def run_model(context, query, **generator_args): input_ids = tokenizer.encode(context + "<sep>" + query, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model( "یک فیلم ضعیف بی محتوا بدون فیلمنامه . شوخی های سخیف .", "نظر شما در مورد داستان، فیلمنامه، دیالوگ ها و موضوع فیلم لونه زنبور چیست؟" ) run_model( "فیلم تا وسط فیلم یعنی دقیقا تا جایی که معلوم میشه بچه های املشی دنبال رضان خیلی خوب و جذاب پیش میره ولی دقیقا از همونجاش سکته میزنه و خلاص...", "نظر شما به صورت کلی در مورد فیلم ژن خوک چیست؟" ) run_model( "اصلا به هیچ عنوان علاقه نداشتم اجرای می سی سی پی نشسته میمیرد روی پرده سینما ببینم دیالوگ های تکراری هلیکوپتر ماشین آلندلون لئون پاپیون آخه چرااااااااااااااا همون حسی که توی تالار وحدت بعد از نیم ساعت به سرم اومد امشب توی سالن سینما تجربه کردم ،حس گریز از سالن.......⁦ ⁦(ノಠ益ಠ)ノ⁩ ", " نظر شما در مورد صداگذاری و جلوه های صوتی فیلم مسخره‌باز چیست؟" ) run_model( " گول نخورید این رنگارنگ مینو نیست برای شرکت گرجیه و متاسفانه این محصولش اصلا مزه رنگارنگی که انتظار دارید رو نمیده ", " نظر شما در مورد عطر، بو، و طعم این بیسکویت و ویفر چیست؟" ) run_model( "در مقایسه با سایر برندهای موجود در بازار با توجه به حراجی که داشت ارزانتر ب", " شما در مورد قیمت و ارزش خرید این حبوبات و سویا چیست؟" ) run_model( "من پسرم عاشق ایناس ولی دیگه به خاطر حفظ محیط زیست فقط زمانهایی که مجبور باشم شیر دونه ای میخرم و سعی میکنم دیگه کمتر شیر با بسته بندی تتراپک استفاده کنم ", "نظر شما به صورت کلی در مورد این شیر چیست؟" ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-base-parsinlu-qqp-query-paraphrasing
persiannlp
2021-09-23T16:20:00Z
55
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "query-paraphrasing", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:qqp", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - query-paraphrasing - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - qqp metrics: - accuracy --- # Detection of Paraphrased Queries (تشخصیص سوالات هم‌معنی) This is a model for detection of paraphrased queries. Here is an example of how you can run this model: ```python from transformers import MT5Config, MT5ForConditionalGeneration, MT5Tokenizer model_name = "persiannlp/mt5-base-parsinlu-qqp-query-paraphrasing" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(q1, q2, **generator_args): input_ids = tokenizer.encode(f"{q1}<sep>{q2}", return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("چه چیزی باعث پوکی استخوان می شود؟", "چه چیزی باعث مقاومت استخوان در برابر ضربه می شود؟") run_model("من دارم به این فکر میکنم چرا ساعت هفت نمیشه؟", "چرا من ساده فکر میکردم به عشقت پابندی؟") run_model("دعای کمیل در چه روزهایی خوانده می شود؟", "دعای جوشن کبیر در چه شبی خوانده می شود؟") run_model("دعای کمیل در چه روزهایی خوانده می شود؟", "دعای جوشن کبیر در چه شبی خوانده می شود؟") run_model("شناسنامه در چه سالی وارد ایران شد؟", "سیب زمینی در چه سالی وارد ایران شد؟") run_model("سیب زمینی چه زمانی وارد ایران شد؟", "سیب زمینی در چه سالی وارد ایران شد؟") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-base-parsinlu-multiple-choice
persiannlp
2021-09-23T16:19:55Z
12
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "multiple-choice", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "base" model_name = f"persiannlp/mt5-{model_size}-parsinlu-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
pere/norwegian-t5-base
pere
2021-09-23T16:19:40Z
10
0
transformers
[ "transformers", "jax", "tensorboard", "t5", "text2text-generation", "seq2seq", "no", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - seq2seq datasets: - Norwegian Nynorsk/Bokmål --- # 🇳🇴 Norwegian T5 Base model 🇳🇴 This T5-base model is trained from scratch on a 19GB Balanced Bokmål-Nynorsk Corpus. Update: Due to disk space errors, the model had to be restarted July 20. It is currently still running. Parameters used in training: ```bash python3 ./run_t5_mlm_flax_streaming.py --model_name_or_path="./norwegian-t5-base" --output_dir="./norwegian-t5-base" --config_name="./norwegian-t5-base" --tokenizer_name="./norwegian-t5-base" --dataset_name="pere/nb_nn_balanced_shuffled" --max_seq_length="512" --per_device_train_batch_size="32" --per_device_eval_batch_size="32" --learning_rate="0.005" --weight_decay="0.001" --warmup_steps="2000" --overwrite_output_dir --logging_steps="100" --save_steps="500" --eval_steps="500" --push_to_hub --preprocessing_num_workers 96 --adafactor ```
pere/norwegian-t5-base-NCC-nb-nn
pere
2021-09-23T16:19:35Z
60
0
transformers
[ "transformers", "jax", "tensorboard", "seq2seq", "no", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - seq2seq datasets: - Norwegian Nynorsk/Bokmål --- # 🇳🇴 Norwegian T5 Base model Trained on the NCC🇳🇴 This is a Norwegian T5-base model trained on the Norwegian Colossal Corpus (NCC) on a TPU v3-8. It needs to be finetuned on a specific task before being used for anything. The following setting were used in training: ```bash ./run_t5_mlm_flax_streaming.py \ --output_dir="./" \ --model_type="t5" \ --config_name="./" \ --tokenizer_name="./" \ --dataset_name="pere/norwegian_colossal_corpus_v2_short100k" \ --max_seq_length="512" \ --weight_decay="0.01" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --learning_rate="8e-3" \ --warmup_steps="0" \ --overwrite_output_dir \ --cache_dir /mnt/disks/flaxdisk/cache/ \ --num_train_epochs="5" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --logging_steps="500" \ --num_train_steps="1000000" \ --num_eval_samples="5000" \ --save_steps="5000" \ --eval_steps="5000" \ --preprocessing_num_workers 96 \ --adafactor \ --push_to_hub ```
pere/nb-nn-translation
pere
2021-09-23T16:19:21Z
960
5
transformers
[ "transformers", "pytorch", "jax", "translation", "no", "dataset:oscar", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - translation datasets: - oscar widget: - text: Skriv inn en tekst som du ønsker å oversette til en annen målform. --- # 🇳🇴 Bokmål ⇔ Nynorsk 🇳🇴 Norwegian has two relatively similar written languages; Bokmål and Nynorsk. Historically Nynorsk is a written norm based on dialects curated by the linguist Ivar Aasen in the mid-to-late 1800s, whereas Bokmål is a gradual 'Norwegization' of written Danish. The two written languages are considered equal and citizens have a right to receive public service information in their primary and prefered language. Even though this right has been around for a long time only between 5-10% of Norwegian texts are written in Nynorsk. Nynorsk is therefore a low-resource language within a low-resource language. Apart from some word-list based engines, there are not any working off-the-shelf machine learning-based translation models. Translation between Bokmål and Nynorsk is not available in Google Translate. ## Demo | | | |---|---| | Widget | Try the widget in the top right corner | | Huggingface Spaces | [Spaces Demo](https://huggingface.co/spaces/NbAiLab/nb2nn) | | | | ## Pretraining a T5-base There is an [mt5](https://huggingface.co/google/mt5-base) that includes Norwegian. Unfortunately a very small part of this is Nynorsk; there is only around 1GB Nynorsk text in mC4. Despite this, the mt5 also gives a BLEU score above 80. During the project we extracted all available Nynorsk text from the [Norwegian Colossal Corpus](https://github.com/NBAiLab/notram/blob/master/guides/corpus_v2_summary.md) at the National Library of Norway, and matched it (by material type i.e. book, newspapers and so on) with an equal amount of Bokmål. The corpus collection is described [here](https://github.com/NBAiLab/notram/blob/master/guides/nb_nn_balanced_corpus.md) and the total size is 19GB. ## Finetuning - BLEU-SCORE 88.17 🎉 The central finetuning data of the project have been 200k translation units (TU) i.e. aligned pairs of sentences in the respective languages extracted from textbooks of various subjects and newspapers. Training for [10] epochs with a learning rate of [7e-4], a batch size of [32] and a max source and target length of [512] fine tuning reached a SACREBLEU score of [88.03] at training and a test score of [**88.17**] after training. ## This is not a translator We found out that we were able to get almost identical BLEU-score with training it both ways, and letting the model decide if the input is in Bokmål or Nynorsk. This way we can train one model instead of two. We call it a language switcher. ## Future work The following Google Docs Add-on is currently pending approval. ![Add-on](bm2nn_demo.gif) ## How to use the model ```python # Set up the pipeline from transformers import pipeline translator = pipeline("translation", model='pere/nb-nn-translation') # Do the translation text = "Hun vil ikke gi bort sine personlige data." print(translator(text, max_length=255)) ```
pere/nb-nn-dev2
pere
2021-09-23T16:19:18Z
2
0
transformers
[ "transformers", "pytorch", "jax", "translation", "no", "dataset:oscar", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - translation datasets: - oscar widget: - text: Skriv inn en tekst som du ønsker å oversette til en annen målform. --- # Norwegian T5 - Translation Bokmål Nynorsk - Development ## Description This is the development version of the Bokmål-Nynorsk translator. If you want something that is stable, Please do run [this version](https://huggingface.co/pere/nb-nn-translation/) instead. Here is an example of how to use the model from Python ```python # Import libraries from transformers import T5ForConditionalGeneration, AutoTokenizer model = T5ForConditionalGeneration.from_pretrained('pere/nb-nn-dev',from_flax=True) tokenizer = AutoTokenizer.from_pretrained('pere/nb-nn-dev') #Encode the text text = "Hun vil ikke gi bort sine personlige data." inputs = tokenizer.encode(text, return_tensors="pt") outputs = model.generate(inputs, max_length=255, num_beams=4, early_stopping=True) #Decode and print the result print(tokenizer.decode(outputs[0])) ``` Or if you like to use the pipeline instead ```python # Set up the pipeline from transformers import pipeline translator = pipeline("translation", model='pere/nb-nn-dev') # Do the translation text = "Hun vil ikke gi bort sine personlige data." print(translator(text, max_length=255)) ```
osanseviero/corenlp_spanish
osanseviero
2021-09-23T16:16:53Z
0
0
null
[ "corenlp", "sp", "license:gpl", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - corenlp library_tag: corenlp language: - sp license: gpl --- # Core NLP model for sp CoreNLP is your one stop shop for natural language processing in Java! CoreNLP enables users to derive linguistic annotations for text, including token and sentence boundaries, parts of speech, named entities, numeric and time values, dependency and constituency parses, coreference, sentiment, quote attributions, and relations. Find more about it in [our website](https://stanfordnlp.github.io/CoreNLP) and our [GitHub repository](https://github.com/stanfordnlp/CoreNLP).
osanseviero/corenlp_french
osanseviero
2021-09-23T16:16:49Z
0
0
null
[ "corenlp", "fr", "license:gpl", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - corenlp library_tag: corenlp language: - fr license: gpl --- # Core NLP model for fr CoreNLP is your one stop shop for natural language processing in Java! CoreNLP enables users to derive linguistic annotations for text, including token and sentence boundaries, parts of speech, named entities, numeric and time values, dependency and constituency parses, coreference, sentiment, quote attributions, and relations. Find more about it in [our website](https://stanfordnlp.github.io/CoreNLP) and our [GitHub repository](https://github.com/stanfordnlp/CoreNLP).
osanseviero/corenlp_english-extra
osanseviero
2021-09-23T16:16:44Z
0
0
null
[ "corenlp", "en", "license:gpl", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - corenlp library_tag: corenlp language: - en license: gpl --- # Core NLP model for en CoreNLP is your one stop shop for natural language processing in Java! CoreNLP enables users to derive linguistic annotations for text, including token and sentence boundaries, parts of speech, named entities, numeric and time values, dependency and constituency parses, coreference, sentiment, quote attributions, and relations. Find more about it in [our website](https://stanfordnlp.github.io/CoreNLP) and our [GitHub repository](https://github.com/stanfordnlp/CoreNLP).
osanseviero/corenlp_chinese
osanseviero
2021-09-23T16:16:39Z
0
1
null
[ "corenlp", "ch", "license:gpl", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - corenlp library_tag: corenlp language: - ch license: gpl --- # Core NLP model for ch CoreNLP is your one stop shop for natural language processing in Java! CoreNLP enables users to derive linguistic annotations for text, including token and sentence boundaries, parts of speech, named entities, numeric and time values, dependency and constituency parses, coreference, sentiment, quote attributions, and relations. Find more about it in [our website](https://stanfordnlp.github.io/CoreNLP) and our [GitHub repository](https://github.com/stanfordnlp/CoreNLP).
mpariente/DPRNNTasNet-ks2_WHAM_sepclean
mpariente
2021-09-23T16:12:22Z
252
9
asteroid
[ "asteroid", "pytorch", "audio", "DPRNNTasNet", "audio-to-audio", "dataset:wham", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- tags: - asteroid - audio - DPRNNTasNet - audio-to-audio datasets: - wham - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `mpariente/DPRNNTasNet-ks2_WHAM_sepclean` Imported from [Zenodo](https://zenodo.org/record/3862942) ### Description: This model was trained by Manuel Pariente using the wham/DPRNN recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the WHAM! dataset. ### Training config: ```yaml data: mode: min nondefault_nsrc: None sample_rate: 8000 segment: 2.0 task: sep_clean train_dir: data/wav8k/min/tr valid_dir: data/wav8k/min/cv filterbank: kernel_size: 2 n_filters: 64 stride: 1 main_args: exp_dir: exp/train_dprnn_new/ gpus: -1 help: None masknet: bidirectional: True bn_chan: 128 chunk_size: 250 dropout: 0 hid_size: 128 hop_size: 125 in_chan: 64 mask_act: sigmoid n_repeats: 6 n_src: 2 out_chan: 64 optim: lr: 0.001 optimizer: adam weight_decay: 1e-05 positional arguments: training: batch_size: 3 early_stop: True epochs: 200 gradient_clipping: 5 half_lr: True num_workers: 8 ``` ### Results: ```yaml si_sdr: 19.316743490695334 si_sdr_imp: 19.317895273889842 sdr: 19.68085347190952 sdr_imp: 19.5298092932871 sir: 30.362213998701232 sir_imp: 30.21116982007881 sar: 20.15553251343315 sar_imp: -129.02091762351188 stoi: 0.97772664309074 stoi_imp: 0.23968091518217424 ``` ### License notice: This work "DPRNNTasNet-ks2_WHAM_sepclean" is a derivative of [CSR-I (WSJ0) Complete](https://catalog.ldc.upenn.edu/LDC93S6A) by [LDC](https://www.ldc.upenn.edu/), used under [LDC User Agreement for Non-Members](https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf) (Research only). "DPRNNTasNet-ks2_WHAM_sepclean" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Manuel Pariente.
mpariente/ConvTasNet_Libri3Mix_sepnoisy
mpariente
2021-09-23T16:12:18Z
17
0
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:LibriMix", "dataset:sep_noisy", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - LibriMix - sep_noisy license: cc-by-sa-4.0 --- ## Asteroid model Imported from this Zenodo [model page](https://zenodo.org/record/4020529). ## Description: This model was trained by Takhir Mirzaev using the Librimix/ConvTasNet recipe in Asteroid. It was trained on the `sep_noisy` task of the Libri3Mix dataset. ## Training config: ```yaml data: n_src: 3 sample_rate: 8000 segment: 3 task: sep_noisy train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 positional arguments: training: batch_size: 4 early_stop: True epochs: 200 half_lr: True num_workers: 4 ``` ## Results: ```yaml si_sdr: 6.824750632456865 si_sdr_imp: 11.234803761803752 sdr: 7.715799858488098 sdr_imp: 11.778681386239114 sir: 16.442141130818637 sir_imp: 19.527535070051055 sar: 8.757864265661263 sar_imp: -0.15657258049670303 stoi: 0.7854554136619554 stoi_imp: 0.22267957718163015 ``` ## License notice: This work "ConvTasNet_Libri3Mix_sepnoisy" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by [Vassil Panayotov](https://github.com/vdp), used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepnoisy" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Manuel Pariente.
julien-c/DPRNNTasNet-ks16_WHAM_sepclean
julien-c
2021-09-23T16:04:27Z
72
2
asteroid
[ "asteroid", "pytorch", "audio-to-audio", "audio", "audio-source-separation", "dataset:wham", "dataset:sep_clean", "arxiv:2005.04132", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- tags: - audio-to-audio - asteroid - audio - audio-source-separation datasets: - wham - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `mpariente/DPRNNTasNet(ks=16)_WHAM!_sepclean` ♻️ Imported from https://zenodo.org/record/3903795#.X8pMBRNKjUI This model was trained by Manuel Pariente using the wham/DPRNN recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the sep_clean task of the WHAM! dataset. ### Demo: How to use in Asteroid ```python # coming soon ``` ### Training config - data: - mode: min - nondefault_nsrc: None - sample_rate: 8000 - segment: 2.0 - task: sep_clean - train_dir: data/wav8k/min/tr - valid_dir: data/wav8k/min/cv - filterbank: - kernel_size: 16 - n_filters: 64 - stride: 8 - main_args: - exp_dir: exp/train_dprnn_ks16/ - help: None - masknet: - bidirectional: True - bn_chan: 128 - chunk_size: 100 - dropout: 0 - hid_size: 128 - hop_size: 50 - in_chan: 64 - mask_act: sigmoid - n_repeats: 6 - n_src: 2 - out_chan: 64 - optim: - lr: 0.001 - optimizer: adam - weight_decay: 1e-05 - positional arguments: - training: - batch_size: 6 - early_stop: True - epochs: 200 - gradient_clipping: 5 - half_lr: True - num_workers: 6 #### Results - `si_sdr`: 18.227683982688003 - `si_sdr_imp`: 18.22883576588251 - `sdr`: 18.617789605060587 - `sdr_imp`: 18.466745426438173 - `sir`: 29.22773720052717 - `sir_imp`: 29.07669302190474 - `sar`: 19.116352171914485 - `sar_imp`: -130.06009796503054 - `stoi`: 0.9722025377865715 - `stoi_imp`: 0.23415680987800583 ### Citing Asteroid ```BibTex @inproceedings{Pariente2020Asteroid, title={Asteroid: the {PyTorch}-based audio source separation toolkit for researchers}, author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge and Emmanuel Vincent}, year={2020}, booktitle={Proc. Interspeech}, } ``` Or on arXiv: ```bibtex @misc{pariente2020asteroid, title={Asteroid: the PyTorch-based audio source separation toolkit for researchers}, author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge and Emmanuel Vincent}, year={2020}, eprint={2005.04132}, archivePrefix={arXiv}, primaryClass={eess.AS} } ```
JorisCos/DPTNet_Libri1Mix_enhsingle_16k
JorisCos
2021-09-23T15:49:20Z
18
3
asteroid
[ "asteroid", "pytorch", "audio", "DPTNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - DPTNet - audio-to-audio datasets: - Libri1Mix - enh_single license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/DPTNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 16 n_filters: 64 stride: 8 masknet: bidirectional: true chunk_size: 100 dropout: 0 ff_activation: relu ff_hid: 256 hop_size: 50 in_chan: 64 mask_act: sigmoid n_repeats: 2 n_src: 1 norm_type: gLN out_chan: 64 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 scheduler: d_model: 64 steps_per_epoch: 10000 training: batch_size: 4 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.829670037349064 si_sdr_imp: 11.379888731489366 sdr: 15.395712644737149 sdr_imp: 11.893049845524112 sir: Infinity sir_imp: NaN sar: 15.395712644737149 sar_imp: 11.893049845524112 stoi: 0.9301948391058859 stoi_imp: 0.13427501556534832 ``` License notice: This work "DPTNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DPTNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/DPRNNTasNet-ks2_Libri1Mix_enhsingle_16k
JorisCos
2021-09-23T15:49:18Z
28
1
asteroid
[ "asteroid", "pytorch", "audio", "DPRNNTasNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - DPRNNTasNet - audio-to-audio datasets: - Libri1Mix - enh_single license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/DPRNNTasNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 1 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 2 n_filters: 64 stride: 1 masknet: bidirectional: true bn_chan: 128 chunk_size: 250 dropout: 0 hid_size: 128 hop_size: 125 in_chan: 64 mask_act: sigmoid n_repeats: 6 n_src: 1 out_chan: 64 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 2 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.7228101708889 si_sdr_imp: 11.2730288650292 sdr: 15.35661405197161 sdr_imp: 11.853951252758595 sir: Infinity sir_imp: NaN sar: 15.35661405197161 sar_imp: 11.853951252758595 stoi: 0.9300461826351578 stoi_imp: 0.13412635909461715 ``` License notice: This work "DPRNNTasNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DPRNNTasNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/DCUNet_Libri1Mix_enhsingle_16k
JorisCos
2021-09-23T15:49:15Z
631
5
asteroid
[ "asteroid", "pytorch", "audio", "DCUNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - DCUNet - audio-to-audio datasets: - Libri1Mix - enh_single license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/DCUNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: stft_n_filters: 1024 stft_kernel_size: 1024 stft_stride: 256 masknet: architecture: Large-DCUNet-20 fix_length_mode: pad n_src: 1 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 2 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 13.154035391645971 si_sdr_imp: 9.704254085786271 sdr: 13.568058873121435 sdr_imp: 10.065396073908367 sar: 13.568058873121435 sar_imp: 10.065396073908367 stoi: 0.9199373340235417 stoi_imp: 0.12401751048300132 ``` License notice: This work "DCUNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DCUNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/DCCRNet_Libri1Mix_enhsingle_16k
JorisCos
2021-09-23T15:49:13Z
1,316
16
asteroid
[ "asteroid", "pytorch", "audio", "DCCRNet", "audio-to-audio", "speech-enhancement", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - DCCRNet - audio-to-audio - speech-enhancement datasets: - Libri1Mix - enh_single license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/DCCRNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: stft_kernel_size: 400 stft_n_filters: 512 stft_stride: 100 masknet: architecture: DCCRN-CL n_src: 1 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 12 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 13.329767398333798 si_sdr_imp: 9.879986092474098 sdr: 13.87279932997016 sdr_imp: 10.370136530757103 sir: Infinity sir_imp: NaN sar: 13.87279932997016 sar_imp: 10.370136530757103 stoi: 0.9140907015623948 stoi_imp: 0.11817087802185405 ``` License notice: This work "DCCRNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DCCRNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri3Mix_sepnoisy_8k
JorisCos
2021-09-23T15:49:10Z
15
2
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri3Mix", "dataset:sep_noisy", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri3Mix - sep_noisy license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_8k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 8000 segment: 3 task: sep_noisy train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri3Mix min test set : ```yml si_sdr: 5.978836560066222 si_sdr_imp: 10.388889689413096 sdr: 6.8651365291740225 sdr_imp: 10.928018056925016 sir: 14.997089638783114 sir_imp: 18.08248357801549 sar: 8.127504792061933 sar_imp: -0.7869320540959925 stoi: 0.7669414686111115 stoi_imp: 0.20416563213078837 ``` License notice: This work "ConvTasNet_Libri3Mix_sepnoisy_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri3Mix_sepnoisy_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k
JorisCos
2021-09-23T15:49:08Z
43
1
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri3Mix", "dataset:sep_noisy", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri3Mix - sep_noisy license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_noisy train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri3Mix min test set : ```yml si_sdr: 5.926151147554517 si_sdr_imp: 10.282912158535625 sdr: 6.700975236867358 sdr_imp: 10.882972447337504 sir: 15.364110064569388 sir_imp: 18.574476587171688 sar: 7.918866830474568 sar_imp: -0.9638973409971135 stoi: 0.7713777027310713 stoi_imp: 0.2078696167973911 ``` License notice: This work "ConvTasNet_Libri3Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/). "ConvTasNet_Libri3Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri3Mix_sepclean_8k
JorisCos
2021-09-23T15:49:06Z
27
0
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri3Mix", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri3Mix - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepclean_8k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 8000 segment: 3 task: sep_clean train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri3Mix min test set : ```yaml si_sdr: 8.581797049575108 si_sdr_imp: 11.977037288467368 sdr' 9.305885208641385 sdr_imp: 12.3943409734845 sir: 16.42030534048559 sir_imp: 19.508759460400984 sar: 10.641943911079238 sar_imp: -56.4345187842095 stoi: 0.8365148408724333 stoi_imp: 0.24401766199806396 ``` License notice: This work "ConvTasNet_Libri3Mix_sepclean_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepclean_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
JorisCos/ConvTasNet_Libri3Mix_sepclean_16k
JorisCos
2021-09-23T15:49:03Z
54
0
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri3Mix", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri3Mix - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepclean_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri3Mix dataset. Training config: ```yaml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_clean train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri3Mix min test set : ```yaml si_sdr: 8.932601610824145 si_sdr_imp: 12.299341066588594 sdr: 9.557260814240447 sdr_imp: 12.76957128385349 sir: 17.387646884037455 sir_imp: 20.599955591768484 sar: 10.686885056960504 sar_imp: -55.8894643263213 stoi: 0.8481258332025354 stoi_imp: 0.25528367853750356 ``` License notice: This work "ConvTasNet_Libri3Mix_sepclean_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepclean_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k
JorisCos
2021-09-23T15:49:01Z
10
1
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri2Mix", "dataset:sep_noisy", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri2Mix - sep_noisy license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k` Imported from [Zenodo](https://zenodo.org/record/3874420#.X9I6NcLjJH4) Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri2Mix dataset. Training config: ```yml data: n_src: 2 sample_rate: 8000 segment: 3 task: sep_noisy train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: True epochs: 200 half_lr: True num_workers: 4 ``` Results: On Libri2Mix min test set : ```yml si_sdr: 9.944424856077259 si_sdr_imp: 11.939395359731192 sdr: 10.701526190782072 sdr_imp: 12.481757547845662 sir: 22.633644975545575 sir_imp: 22.45666740833025 sar: 11.131644100944868 sar_imp: 4.248489589311784 stoi: 0.852048619949357 stoi_imp: 0.2071994899565506 ``` License notice: This work "ConvTasNet_Libri2Mix_sepnoisy_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri2Mix_sepnoisy_8k" is licensed under A[Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri2Mix_sepclean_8k
JorisCos
2021-09-23T15:48:56Z
54
1
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri2Mix", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri2Mix - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepclean_8k` Imported from [Zenodo](https://zenodo.org/record/3873572#.X9M69cLjJH4) Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri2Mix dataset. Training config: ```yaml data: n_src: 2 sample_rate: 8000 segment: 3 task: sep_clean train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: True epochs: 200 half_lr: True num_workers: 2 ``` Results : On Libri2Mix min test set : ```yaml si_sdr: 14.764543634468069 si_sdr_imp: 14.764029375607246 sdr: 15.29337970745095 sdr_imp: 15.114146605113111 sir: 24.092904661115366 sir_imp: 23.913669683141528 sar: 16.06055906916849 sar_imp: -51.980784441287454 stoi: 0.9311142440593033 stoi_imp: 0.21817376142710482 ``` License notice: This work "ConvTasNet_Libri2Mix_sepclean_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri2Mix_sepclean_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
JorisCos/ConvTasNet_Libri2Mix_sepclean_16k
JorisCos
2021-09-23T15:48:54Z
2,594
2
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri2Mix", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri2Mix - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepclean_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri2Mix dataset. Training config: ```yaml data: n_src: 2 sample_rate: 16000 segment: 3 task: sep_clean train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 6 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri2Mix min test set : ```yaml si_sdr: 15.243671356901526 si_sdr_imp: 15.243034178473609 sdr: 15.668108919568112 sdr_imp: 15.578229918028036 sir: 25.295100756629957 sir_imp: 25.205219921301754 sar: 16.307682590197313 sar_imp: -51.64989963759405 stoi: 0.9394951175291422 stoi_imp: 0.22640192740016568 ``` License notice: This work "ConvTasNet_Libri2Mix_sepclean_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri2Mix_sepclean_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
hiroshi-matsuda-rit/bert-base-japanese-basic-char-v2
hiroshi-matsuda-rit
2021-09-23T14:49:50Z
12
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "ja", "dataset:wikipedia", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia --- # BERT base Japanese (character-level tokenization with whole word masking, jawiki-20200831) This pretrained model is almost the same as [cl-tohoku/bert-base-japanese-char-v2](https://huggingface.co/cl-tohoku/bert-base-japanese-char-v2) but do not need `fugashi` or `unidic_lite`. The only difference is in `word_tokenzer_type` property (specify `basic` instead of `mecab`) in `tokenizer_config.json`.
flax-community/nordic-roberta-wiki
flax-community
2021-09-23T13:53:50Z
8
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "feature-extraction", "swedish", "fill-mask", "sv", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: sv license: cc-by-4.0 tags: - swedish - roberta pipeline_tag: fill-mask widget: - text: Meninged med livet är <mask>. --- # Nordic Roberta Wikipedia ## Description Nord roberta model trainined on the swedish danish and norwegian wikipedia. ## Evaluation Evaluation on Named Entity recognition in Danish. I finetuned each model on 3 epochs on DaNE, repeated it 5 times for each model, and calculated 95% confidence intervals for the means. Here are the results: xlm-roberta-base : 88.01 +- 0.43 flax-community/nordic-roberta-wiki: 85.75 +- 0.69 (this model) Maltehb/danish-bert-botxo: 85.38 +- 0.55 flax-community/roberta-base-danish: 80.14 +- 1.47 flax-community/roberta-base-scandinavian : 78.03 +- 3.02 Maltehb/-l-ctra-danish-electra-small-cased: 57.87 +- 3.19 NbAiLab/nb-bert-base : 30.24 +- 1.21 Randomly initialised RoBERTa model: 19.79 +- 2.00 Evaluation on Sentiment analysis in Dansish Here are the results on test set, where each model has been trained 5 times, and the “+-” refers to a 95% confidence interval of the mean score: Maltehb/danish-bert-botxo: 65.19 +- 0.53 NbAiLab/nb-bert-base : 63.80 +- 0.77 xlm-roberta-base : 63.55 +- 1.59 flax-community/nordic-roberta-wiki : 56.46 +- 1.77 flax-community/roberta-base-danish : 54.73 +- 8.96 flax-community/roberta-base-scandinavian : 44.28 +- 9.21 Maltehb/-l-ctra-danish-electra-small-cased : 47.78 +- 12.65 Randomly initialised RoBERTa model: 36.96 +- 1.02 Maltehb/roberta-base-scandinavian : 33.65 +- 8.32 ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt https://huggingface.co/birgermoell/swedish-gpt/ ## Swedish gpt wiki https://huggingface.co/flax-community/swe-gpt-wiki # Nordic gpt wiki https://huggingface.co/flax-community/nordic-gpt-wiki ## Dansk gpt wiki https://huggingface.co/flax-community/dansk-gpt-wiki ## Norsk gpt wiki https://huggingface.co/flax-community/norsk-gpt-wiki ## Roberta models ## Nordic Roberta Wiki https://huggingface.co/flax-community/nordic-roberta-wiki ## Swe Roberta Wiki Oscar https://huggingface.co/flax-community/swe-roberta-wiki-oscar ## Roberta Swedish Scandi https://huggingface.co/birgermoell/roberta-swedish-scandi ## Roberta Swedish https://huggingface.co/birgermoell/roberta-swedish ## Swedish T5 model https://huggingface.co/birgermoell/t5-base-swedish
csae8092/de_RTA_NER
csae8092
2021-09-23T13:46:37Z
6
0
spacy
[ "spacy", "token-classification", "de", "license:cc-by-nc-4.0", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - de license: cc-by-nc-4.0 model-index: - name: de_RTA_NER results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8630136986 - name: NER Recall type: recall value: 0.8743253662 - name: NER F Score type: f_score value: 0.8686327078 --- Regensburger Reichstag von 1576 | Feature | Description | | --- | --- | | **Name** | `de_RTA_NER` | | **Version** | `0.0.0` | | **spaCy** | `>=3.1.0,<3.2.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | `https://creativecommons.org/licenses/by-nc/4.0/` | | **Author** | [n/a](https://reichstagsakten-1576.uni-graz.at) | ### Label Scheme <details> <summary>View label scheme (4 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `DATE`, `LOC`, `PER`, `TIME` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 86.86 | | `ENTS_P` | 86.30 | | `ENTS_R` | 87.43 | | `TOK2VEC_LOSS` | 43588.74 | | `NER_LOSS` | 95573.96 |
tohoku-nlp/bert-large-japanese
tohoku-nlp
2021-09-23T13:45:41Z
1,246
9
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "ja", "dataset:wikipedia", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: 東北大学で[MASK]の研究をしています。 --- # BERT large Japanese (unidic-lite with whole word masking, jawiki-20200831) This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language. This version of the model processes input texts with word-level tokenization based on the Unidic 2.1.2 dictionary (available in [unidic-lite](https://pypi.org/project/unidic-lite/) package), followed by the WordPiece subword tokenization. Additionally, the model is trained with the whole word masking enabled for the masked language modeling (MLM) objective. The codes for the pretraining are available at [cl-tohoku/bert-japanese](https://github.com/cl-tohoku/bert-japanese/tree/v2.0). ## Model architecture The model architecture is the same as the original BERT large model; 24 layers, 1024 dimensions of hidden states, and 16 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Wikipedia Cirrussearch dump file as of August 31, 2020. The generated corpus files are 4.0GB in total, containing approximately 30M sentences. We used the [MeCab](https://taku910.github.io/mecab/) morphological parser with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd) dictionary to split texts into sentences. ## Tokenization The texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. We used [`fugashi`](https://github.com/polm/fugashi) and [`unidic-lite`](https://github.com/polm/unidic-lite) packages for the tokenization. ## Training The models are trained with the same configuration as the original BERT; 512 tokens per instance, 256 instances per batch, and 1M training steps. For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once. For training of each model, we used a v3-8 instance of Cloud TPUs provided by [TensorFlow Research Cloud program](https://www.tensorflow.org/tfrc/). The training took about 5 days to finish. ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 3.0](https://creativecommons.org/licenses/by-sa/3.0/). ## Acknowledgments This model is trained with Cloud TPUs provided by [TensorFlow Research Cloud](https://www.tensorflow.org/tfrc/) program.
tohoku-nlp/bert-large-japanese-char
tohoku-nlp
2021-09-23T13:45:39Z
15
4
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "ja", "dataset:wikipedia", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: 東北大学で[MASK]の研究をしています。 --- # BERT large Japanese (character-level tokenization with whole word masking, jawiki-20200831) This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language. This version of the model processes input texts with word-level tokenization based on the Unidic 2.1.2 dictionary (available in [unidic-lite](https://pypi.org/project/unidic-lite/) package), followed by character-level tokenization. Additionally, the model is trained with the whole word masking enabled for the masked language modeling (MLM) objective. The codes for the pretraining are available at [cl-tohoku/bert-japanese](https://github.com/cl-tohoku/bert-japanese/tree/v2.0). ## Model architecture The model architecture is the same as the original BERT large model; 24 layers, 1024 dimensions of hidden states, and 16 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Wikipedia Cirrussearch dump file as of August 31, 2020. The generated corpus files are 4.0GB in total, containing approximately 30M sentences. We used the [MeCab](https://taku910.github.io/mecab/) morphological parser with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd) dictionary to split texts into sentences. ## Tokenization The texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into characters. The vocabulary size is 6144. We used [`fugashi`](https://github.com/polm/fugashi) and [`unidic-lite`](https://github.com/polm/unidic-lite) packages for the tokenization. ## Training The models are trained with the same configuration as the original BERT; 512 tokens per instance, 256 instances per batch, and 1M training steps. For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once. For training of each model, we used a v3-8 instance of Cloud TPUs provided by [TensorFlow Research Cloud program](https://www.tensorflow.org/tfrc/). The training took about 5 days to finish. ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 3.0](https://creativecommons.org/licenses/by-sa/3.0/). ## Acknowledgments This model is trained with Cloud TPUs provided by [TensorFlow Research Cloud](https://www.tensorflow.org/tfrc/) program.
tohoku-nlp/bert-base-japanese-char-v2
tohoku-nlp
2021-09-23T13:45:24Z
136,559
6
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "ja", "dataset:wikipedia", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: 東北大学で[MASK]の研究をしています。 --- # BERT base Japanese (character-level tokenization with whole word masking, jawiki-20200831) This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language. This version of the model processes input texts with word-level tokenization based on the Unidic 2.1.2 dictionary (available in [unidic-lite](https://pypi.org/project/unidic-lite/) package), followed by character-level tokenization. Additionally, the model is trained with the whole word masking enabled for the masked language modeling (MLM) objective. The codes for the pretraining are available at [cl-tohoku/bert-japanese](https://github.com/cl-tohoku/bert-japanese/tree/v2.0). ## Model architecture The model architecture is the same as the original BERT base model; 12 layers, 768 dimensions of hidden states, and 12 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Wikipedia Cirrussearch dump file as of August 31, 2020. The generated corpus files are 4.0GB in total, containing approximately 30M sentences. We used the [MeCab](https://taku910.github.io/mecab/) morphological parser with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd) dictionary to split texts into sentences. ## Tokenization The texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into characters. The vocabulary size is 6144. We used [`fugashi`](https://github.com/polm/fugashi) and [`unidic-lite`](https://github.com/polm/unidic-lite) packages for the tokenization. ## Training The models are trained with the same configuration as the original BERT; 512 tokens per instance, 256 instances per batch, and 1M training steps. For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once. For training of each model, we used a v3-8 instance of Cloud TPUs provided by [TensorFlow Research Cloud program](https://www.tensorflow.org/tfrc/). The training took about 5 days to finish. ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 3.0](https://creativecommons.org/licenses/by-sa/3.0/). ## Acknowledgments This model is trained with Cloud TPUs provided by [TensorFlow Research Cloud](https://www.tensorflow.org/tfrc/) program.
birgermoell/roberta-swedish-scandi
birgermoell
2021-09-23T13:42:48Z
30
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "feature-extraction", "translate", "sv", "dataset:mc4", "license:cc-by-4.0", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: sv license: cc-by-4.0 tags: - translate datasets: - mc4 widget: - text: Meningen med livet är <mask> --- # Svensk Roberta ## Description Swedish Roberta model trained on the MC4 dataset. The model performance needs to be assessed ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt https://huggingface.co/birgermoell/swedish-gpt/ ## Swedish gpt wiki https://huggingface.co/flax-community/swe-gpt-wiki # Nordic gpt wiki https://huggingface.co/flax-community/nordic-gpt-wiki ## Dansk gpt wiki https://huggingface.co/flax-community/dansk-gpt-wiki ## Norsk gpt wiki https://huggingface.co/flax-community/norsk-gpt-wiki ## Roberta models ## Nordic Roberta Wiki https://huggingface.co/flax-community/nordic-roberta-wiki ## Swe Roberta Wiki Oscar https://huggingface.co/flax-community/swe-roberta-wiki-oscar ## Roberta Swedish Scandi https://huggingface.co/birgermoell/roberta-swedish-scandi ## Roberta Swedish https://huggingface.co/birgermoell/roberta-swedish ## Swedish T5 model https://huggingface.co/birgermoell/t5-base-swedish
arijitx/wav2vec2-large-xlsr-bengali
arijitx
2021-09-23T13:07:14Z
118
6
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "bn", "audio", "speech", "dataset:OpenSLR", "license:cc-by-sa-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: Bengali datasets: - OpenSLR metrics: - wer tags: - bn - audio - automatic-speech-recognition - speech license: cc-by-sa-4.0 model-index: - name: XLSR Wav2Vec2 Bengali by Arijit results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR type: OpenSLR args: ben metrics: - name: Test WER type: wer value: 32.45 --- # Wav2Vec2-Large-XLSR-Bengali Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) Bengali using a subset of 40,000 utterances from [Bengali ASR training data set containing ~196K utterances](https://www.openslr.org/53/). Tested WER using ~4200 held out from training. When using this model, make sure that your speech input is sampled at 16kHz. Train Script can be Found at : train.py Data Prep Notebook : https://colab.research.google.com/drive/1JMlZPU-DrezXjZ2t7sOVqn7CJjZhdK2q?usp=sharing Inference Notebook : https://colab.research.google.com/drive/1uKC2cK9JfUPDTUHbrNdOYqKtNozhxqgZ?usp=sharing ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali") model = Wav2Vec2ForCTC.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali") # model = model.to("cuda") resampler = torchaudio.transforms.Resample(TEST_AUDIO_SR, 16_000) def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch) speech = resampler(speech_array).squeeze().numpy() return speech speech_array = speech_file_to_array_fn("test_file.wav") inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values).logits predicted_ids = torch.argmax(logits, dim=-1) preds = processor.batch_decode(predicted_ids)[0] print(preds.replace("[PAD]","")) ``` **Test Result**: WER on ~4200 utterance : 32.45 %
hiiamsid/BETO_es_binary_classification
hiiamsid
2021-09-23T11:16:37Z
7
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "ticket classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - es tags: - es - ticket classification license: "apache-2.0" datasets: - self made to classify whether text is related to technology or not. metrics: - fscore - accuracy - precision - recall --- # BETO(cased) This model was built using pytorch. ## Model description Input for the model: Any spanish text Output for the model: Sentiment. (0 - Negative, 1 - Positive(i.e. technology relate)) #### How to use Here is how to use this model to get the features of a given text in *PyTorch*: ```python # You can include sample code which will be formatted from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("hiiamsid/BETO_es_binary_classification") model = AutoModelForSequenceClassification.from_pretrained("hiiamsid/BETO_es_binary_classification") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Training procedure I trained on the dataset on the [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased).
vishalz/paraphrase_model
vishalz
2021-09-23T10:00:25Z
3
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
pegasus paraphraser model using <a href="https://huggingface.co/tuner007/pegasus_paraphrase" target="_blank">tuner007/pegasus_paraphrase</a>
adityavithaldas/distilbert-base-uncased-finetuned-ner
adityavithaldas
2021-09-22T19:33:37Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
LysandreJik/testing
LysandreJik
2021-09-22T19:19:12Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: testing results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6813725490196079 - name: F1 type: f1 value: 0.8104956268221574 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # testing This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6644 - Accuracy: 0.6814 - F1: 0.8105 - Combined Score: 0.7459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 ### Training results ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/rishiosaur
huggingtweets
2021-09-22T18:19:38Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/rishiosaur/1632334774825/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1429632040673103878/I5Xe_evK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">rishi ⠕</div> <div style="text-align: center; font-size: 14px;">@rishiosaur</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from rishi ⠕. | Data | rishi ⠕ | | --- | --- | | Tweets downloaded | 1333 | | Retweets | 523 | | Short tweets | 162 | | Tweets kept | 648 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2d049rbc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rishiosaur's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2n4pe9ce) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2n4pe9ce/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rishiosaur') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
flax-community/RoBERTa-large-finnish
flax-community
2021-09-22T17:31:14Z
11
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "finnish", "fi", "dataset:mc4", "arxiv:1907.11692", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - fi license: apache-2.0 tags: - finnish - roberta datasets: - mc4 widget: - text: "Moikka olen <mask> kielimalli." --- # NOTE: We have trained newer and better Finnish RoBERTa large model which can be found from different repository: [https://huggingface.co/Finnish-NLP/roberta-large-finnish](https://huggingface.co/Finnish-NLP/roberta-large-finnish). Our future Finnish models will be available at the [Finnish-NLP](https://huggingface.co/Finnish-NLP) Hugging Face organization # RoBERTa large model for Finnish Pretrained model on Finnish language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1907.11692) and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta). This model is case-sensitive: it makes a difference between finnish and Finnish. ## Model description RoBERTa is a transformers model pretrained on a large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the Finnish language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the RoBERTa model as inputs. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='flax-community/RoBERTa-large-finnish') >>> unmasker("Moikka olen <mask> kielimalli.") [{'sequence': 'Moikka olen uusi kielimalli.', 'score': 0.05129234120249748, 'token': 1825, 'token_str': ' uusi'}, {'sequence': 'Moikka olen toinen kielimalli.', 'score': 0.03112379088997841, 'token': 2194, 'token_str': ' toinen'}, {'sequence': 'Moikka olen myös kielimalli.', 'score': 0.025534993037581444, 'token': 491, 'token_str': ' myös'}, {'sequence': 'Moikka olen ensimmäinen kielimalli.', 'score': 0.020146571099758148, 'token': 2832, 'token_str': ' ensimmäinen'}, {'sequence': 'Moikka olen vapaa kielimalli.', 'score': 0.018089469522237778, 'token': 2257, 'token_str': ' vapaa'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import RobertaTokenizer, RobertaModel tokenizer = RobertaTokenizer.from_pretrained('flax-community/RoBERTa-large-finnish') model = RobertaModel.from_pretrained('flax-community/RoBERTa-large-finnish') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import RobertaTokenizer, TFRobertaModel tokenizer = RobertaTokenizer.from_pretrained('flax-community/RoBERTa-large-finnish') model = TFRobertaModel.from_pretrained('flax-community/RoBERTa-large-finnish', from_pt=True) text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. ## Training data This Finnish RoBERTa model was pretrained on the combination of two datasets: - [mc4](https://huggingface.co/datasets/mc4), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset - [Yle Finnish News Archive](http://urn.fi/urn:nbn:fi:lb-2017070501) Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 51GB of text. ## Training procedure ### Preprocessing The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50265. The inputs of the model take pieces of 512 contiguous token that may span over documents. The beginning of a new document is marked with `<s>` and the end of one by `</s>` The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `<mask>`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed). ### Pretraining The model was trained on TPUv3-8 VM, sponsored by the Hugging Face JAX/Flax community week event, for 2 epochs with a sequence length of 128 and continuing for one more epoch with a sequence length of 512. The optimizer used is Adafactor with a learning rate of 2e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and \\(\epsilon = 1e-6\\), learning rate warmup for 1500 steps and linear decay of the learning rate after. ## Evaluation results Evaluation was done by fine-tuning the model on downstream text classification task with two different labeled datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Yle News classification fine-tuning was done with two different sequence lengths: 128 and 512 but Eduskunta only with 128 sequence length. When fine-tuned on those datasets, this model (the first row of the table) achieves the following accuracy results compared to the [FinBERT (Finnish BERT)](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) and to our newer [Finnish RoBERTa-large](https://huggingface.co/Finnish-NLP/roberta-large-finnish) trained with larger dataset: | | Average | Yle News 128 length | Yle News 512 length | Eduskunta 128 length | |----------------------------------------|----------|---------------------|---------------------|----------------------| |flax-community/RoBERTa-large-finnish |87.72 |94.42 |95.06 |73.67 | |Finnish-NLP/roberta-large-finnish |88.02 |94.53 |95.23 |74.30 | |TurkuNLP/bert-base-finnish-cased-v1 |**88.82** |**94.90** |**95.49** |**76.07** | To conclude, this model slightly loses to our newer [Finnish RoBERTa-large](https://huggingface.co/Finnish-NLP/roberta-large-finnish) model trained with larger dataset and also slightly loses to the [FinBERT (Finnish BERT)](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) model. ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) - Tommi Vehviläinen [Hugging Face profile](https://huggingface.co/Tommi) Feel free to contact us for more details 🤗
databuzzword/JointBERT-snips
databuzzword
2021-09-22T14:02:14Z
6
2
transformers
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
https://github.com/monologg/JointBERT
Haotian/distilgpt2-finetuned-wikitext2
Haotian
2021-09-22T12:24:29Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7608 | 1.0 | 2334 | 3.6655 | | 3.6335 | 2.0 | 4668 | 3.6455 | | 3.6066 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.0 - Tokenizers 0.10.3
Tsurakawi/erererere
Tsurakawi
2021-09-22T11:41:25Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
The older generation has a vulnerability, so they need to be monitored and taken care of. A large number of people, young and old, play really responsibly, but such a pastime can turn into a big problem. Many authoritative blogs and news portals of the gambling world like QYTO share statistics about this area and recommend only trusted casinos that cooperate with health organizations.
eliza-dukim/bert-base-finetuned-sts
eliza-dukim
2021-09-22T11:01:03Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr - f1 model-index: - name: bert-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: sts metrics: - name: Pearsonr type: pearsonr value: 0.8756147003619346 - name: F1 type: f1 value: 0.8416666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-sts This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.4115 - Pearsonr: 0.8756 - F1: 0.8417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7836 | 1.0 | 365 | 0.5507 | 0.8435 | 0.8121 | | 0.1564 | 2.0 | 730 | 0.4396 | 0.8495 | 0.8136 | | 0.0989 | 3.0 | 1095 | 0.4115 | 0.8756 | 0.8417 | | 0.0682 | 4.0 | 1460 | 0.4466 | 0.8746 | 0.8449 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1 - Datasets 1.12.1 - Tokenizers 0.10.3
cfisicaro/distilbert-base-uncased-finetuned-ner
cfisicaro
2021-09-22T10:25:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9281908990011098 - name: Recall type: recall value: 0.9355632621098557 - name: F1 type: f1 value: 0.9318624993035824 - name: Accuracy type: accuracy value: 0.9837641190207635 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0629 - Precision: 0.9282 - Recall: 0.9356 - F1: 0.9319 - Accuracy: 0.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2406 | 1.0 | 878 | 0.0721 | 0.9072 | 0.9172 | 0.9122 | 0.9801 | | 0.0529 | 2.0 | 1756 | 0.0637 | 0.9166 | 0.9318 | 0.9241 | 0.9826 | | 0.0315 | 3.0 | 2634 | 0.0629 | 0.9282 | 0.9356 | 0.9319 | 0.9838 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
imthanhlv/t5vi
imthanhlv
2021-09-22T09:57:47Z
13
1
transformers
[ "transformers", "jax", "tensorboard", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# T5 Vietnamese pretrain on news corpus
castorini/ance-dpr-context-multi
castorini
2021-09-22T09:41:18Z
110
2
transformers
[ "transformers", "pytorch", "dpr", "arxiv:2007.00808", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This model is converted from the original ANCE [repo](https://github.com/microsoft/ANCE) and fitted into Pyserini: > Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, Arnold Overwijk. [Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval](https://arxiv.org/pdf/2007.00808.pdf) For more details on how to use it, check our experiments in [Pyserini](https://github.com/castorini/pyserini/blob/master/docs/experiments-ance.md)
sadakmed/distiluse-base-multilingual-cased-v2
sadakmed
2021-09-22T09:37:21Z
8
1
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "DistilBert", "Universal Sentence Encoder", "sentence-embeddings", "sentence-similarity", "multilingual", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- language: multilingual tags: - DistilBert - Universal Sentence Encoder - sentence-embeddings - sentence-transformers - sentence-similarity license: apache-2.0 --- While v1 model supports 15 languages, this version supports 50+ languages. However, performance on the 15 languages mentioned in v1 are reported to be a bit lower. Note that ST has additional two layers(Pooling, Linear), that cannot be saved in any predefined model in HG.
sadakmed/distiluse-base-multilingual-cased-v1
sadakmed
2021-09-22T09:37:18Z
8
0
sentence-transformers
[ "sentence-transformers", "pytorch", "DistilBert", "Universal Sentence Encoder", "sentence-embeddings", "sentence-similarity", "multilingual", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- language: multilingual tags: - DistilBert - Universal Sentence Encoder - sentence-embeddings - sentence-transformers - sentence-similarity license: apache-2.0 --- Knowledge distilled version of multilingual Universal Sentence Encoder. Supports 15 languages: Arabic, Chinese, Dutch, English, French, German, Italian, Korean, Polish, Portuguese, Russian, Spanish, Turkish. This Model is saved from 'distiluse-base-multilingual-cased-v1' in `sentence-transformers`, to be used directly from `transformers` Note that ST has additional two layers(Pooling, Linear), that cannot be saved in any predefined model in HG.
pvl/labse_bert
pvl
2021-09-22T09:35:24Z
3,062
1
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "pretraining", "embeddings", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en thumbnail: tags: - bert - embeddings license: apache-2.0 --- # LABSE BERT ## Model description Model for "Language-agnostic BERT Sentence Embedding" paper from Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, Wei Wang. Model available in [TensorFlow Hub](https://tfhub.dev/google/LaBSE/1). ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModel import torch # from sentence-transformers def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask tokenizer = AutoTokenizer.from_pretrained("pvl/labse_bert", do_lower_case=False) model = AutoModel.from_pretrained("pvl/labse_bert") sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ```
petabyte/unang_mang_bert
petabyte
2021-09-22T09:33:40Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "Tagalog", "Mang Bert", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - Tagalog thumbnail: tags: - Tagalog - Mang Bert license: apache-2.0 datasets: - OSCAR tl --- # Mang Bert ## Model description Fine-Tuned Roberta Model using RobertaForMaskedLM Tagalog Dataset from OSCAR tl ## Training data 458206 text dataset from OSCAR
ozcangundes/mt5-small-turkish-summarization
ozcangundes
2021-09-22T09:31:27Z
299
19
transformers
[ "transformers", "pytorch", "jax", "mt5", "text2text-generation", "summarization", "tr", "dataset:MLSUM", "arxiv:2004.14900", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: tr datasets: - MLSUM pipeline_tag: summarization license: mit --- # mT5-small based Turkish Summarization System [Google's Multilingual T5-small](https://github.com/google-research/multilingual-t5) is fine-tuned on [MLSUM Turkish news dataset](https://github.com/recitalAI/MLSUM) for **Summarization** downstream task by using Pytorch Lightning.⚡ mT5 small model has 300 million parameters and model size is about 1.2GB. Therefore, it takes significant amount of time to fine tune it. The model is trained with 10 epochs, 8 batch size and 10e-4 learning rate. It took almost 4 hours. The max news length is kept as 784 and max summary length is determined as 64. **Important Note**: mT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training. Therefore, the mT5 model has to be fine-tuned before it is useable on a downstream task. ## Dataset MLSUM dataset has more than 250K Turkish news with their related summaries. Since the mT5 model size and vocabulary is so large, 20K data is used for training and 4K data is used for validation. For more information about the dataset, please read this [great paper](https://arxiv.org/abs/2004.14900). ## Usage 🚀 ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("ozcangundes/mt5-small-turkish-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("ozcangundes/mt5-small-turkish-summarization") def generate_summary(main_news): source_encoding=tokenizer( main_news, max_length=784, padding="max_length", truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt") generated_ids=model.generate( input_ids=source_encoding["input_ids"], attention_mask=source_encoding["attention_mask"], num_beams=2, max_length=120, repetition_penalty=2.5, length_penalty=2.0, early_stopping=True, use_cache=True ) preds=[tokenizer.decode(gen_id, skip_special_tokens=True, clean_up_tokenization_spaces=True) for gen_id in generated_ids] return "".join(preds) ``` ### Example 1 ```python main_news= "Final etabının üçüncü karşılaşması 29 Nisan Pazartesi günü saat 18.00 ’ de Burhan Felek Voleybol Salonu ’ nda oynanacak . Sezonu FIVB Kulüpler Dünya Şampiyonluğu ile açan ve CEV Avrupa Şampiyonlar Ligi'ni üçüncü olarak tamamlayan VakıfBank Kadın Voleybol Takımı , Vestel Venus Sultanlar Ligi final serisi ikinci maçında Eczacıbaşı VitrA'yı VakıfBank Spor Sarayı'nda 16-25 , 25-10 , 25-18 ve 25-17'lik setlerle 3-1 mağlup ederek seride durumu 1-1 ' e getirdi . İlk setini 25-16 kaybettiği karşılaşmanın ikinci setinde etkili servisler kullanan sarı-siyahlılar , teknik molasına 12-5 önde girdiği seti 25-10 almayı başardı . Etkili servis performansını üçüncü sette de sürdüren VakıfBank , teknik molasına 12-5 önde girdiği seti 25-18 alarak , karşılaşmada 2-1 öne geçti . Dördüncü sette rakibinin geri dönüşüne izin vermeyen VakıfBank , seti 25-17 , maçı da 3-1 kazanarak seride durumu eşitledi." generate_summary(main_news) #original summary -> "Vestel Venus Sultanlar Ligi final etabı ikinci karşılaşmasında VakıfBank kendi sahasında Eczacıbaşı VitrA'yı 3-1 mağlup etti ve seride durumu 1-1 ' e getirdi ." #output -> "CEV Avrupa Şampiyonlar Ligi'ni üçüncü olarak tamamlayan VakıfBank Kadın Voleybol Takımı, Vestel Venus Sultanlar Ligi final serisi ikinci maçında Eczacıbaşı VitrA'yı 3-1 mağlup ederek seride durumu 1-1'e getirdi." ``` ### Example 2 ```python main_news="2023'te yerli tank motoru : Bir taraftan da tankın motorunu yerlileştirmeye çalıştıklarını ifade eden Öztürk , şu değerlendirmelerde bulundu : `` Bin 500 beygirlik , şanzımanıyla beraber motoru yerlileştirmeye çalışıyoruz . Bu da bir aksilik çıkmazsa ilk tankımızın üzerine 2023'te koyacağız . Bundan sonra hiçbir ülkeye bağımlılığımız kalmadan bu araçları üretmeye devam edeceğiz . Sorumluluğumuzun ağır olduğunu biliyoruz . Ülkemize hizmet etmeye çalışıyoruz . Bunu daha da ileriye götürmek için elimizden gelen çabayı sarf ediyoruz . Ama bu tek başınıza yapılan bir operasyon değil . Türkiye'deki yerli firmalarla beraber ortaklaşa bu işi yürütmeye çalışıyoruz." generate_summary(main_news) #output -> "TÜRKİYE'de bir taraftan da tankın motorunu yerlileştirmeye çalıştıklarını belirten Öztürk, `` Bin 500 beygirlik, şanzımanıyla beraber motoru yerlileştirmeye çalışıyoruz. Bu da bir aksilik çıkmazsa ilk tankımızın üzerine 2023'te koyacağız.'' dedi." ``` Created by Özcan Gündeş ✌️ --- Twitter: <a href="https://twitter.com/ozcangundes" target="blank"><img align="center" src="https://cdn.jsdelivr.net/npm/simple-icons@3.0.1/icons/twitter.svg" alt="ozcangundes" height="30" width="30" /></a> Linkedin: <a href="https://www.linkedin.com/in/%C3%B6zcan-g%C3%BCnde%C5%9F-7693055b/" target="blank"><img align="center" src="https://cdn.jsdelivr.net/npm/simple-icons@3.0.1/icons/linkedin.svg" alt="13198517" height="30" width="30" /></a> Medium: <a href="https://medium.com/@ozcangundes" target="blank"><img align="center" src="https://cdn.jsdelivr.net/npm/simple-icons@3.0.1/icons/medium.svg" alt="@ozcangundes" height="30" width="30" /></a> Github: <a href="https://github.com/ozcangundes" target="blank"><img align="center" src="https://cdn.jsdelivr.net/npm/simple-icons@3.0.1/icons/github.svg" alt="@ozcangundes" height="30" width="30" /></a>
ozcangundes/mt5-small-turkish-squad
ozcangundes
2021-09-22T09:31:24Z
33
3
transformers
[ "transformers", "pytorch", "jax", "mt5", "text2text-generation", "question-answering", "tr", "dataset:TQUAD", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: tr datasets: - TQUAD pipeline_tag: question-answering license: mit --- # mT5-small based Turkish Question Answering System [Google's Multilingual T5-small](https://github.com/google-research/multilingual-t5) is fine-tuned on [Turkish Question Answering dataset](https://github.com/TQuad/turkish-nlp-qa-dataset) for **Q&A** downstream task by using Pytorch Lightning.⚡ The notebook that includes all fine tuning process will be shared on my Github page later. mT5 small model has 300 million parameters and model size is about 1.2GB. Therefore, it takes significant amount of time to fine tune it. **Important Note**: mT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training. Therefore, the mT5 model has to be fine-tuned before it is useable on a downstream task. ## Usage 🚀 ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("ozcangundes/mt5-small-turkish-squad") model = AutoModelForSeq2SeqLM.from_pretrained("ozcangundes/mt5-small-turkish-squad") def get_answer(question,context): source_encoding=tokenizer( question, context, max_length=512, padding="max_length", truncation="only_second", return_attention_mask=True, add_special_tokens=True, return_tensors="pt") generated_ids=model.generate( input_ids=source_encoding["input_ids"], attention_mask=source_encoding["attention_mask"], max_length=120) preds=[tokenizer.decode(gen_id, skip_special_tokens=True, clean_up_tokenization_spaces=True) for gen_id in generated_ids] return "".join(preds) ``` ### Example 1 ```python question={ "context":"Pardus, Google'ın öğrencilerle staj ve kendini geliştirme imkânı ile \ tasarılara geliştirici ve katkı sağlamayı amaçladığı açık kaynak tasarısı \ Google Summer of Code'a 2008 ve 2009 olmak üzere iki kere katılmıştır. Bu organizasyona \ ilk katılan Türk tasarısı Pardus olmuştur. Bazı dönemlerde Pardus hakkındaki gelişmeleri \ halka duyurmak ve tasarıya olan ilgiyi arttırmak amacıyla CeBIT Eurasia Bilişim Fuarı'na \ katılım sağlanmaktadır. 2006, 2008, 2009, 2010, 2011,2013 ve 2014 bu fuarlarda Pardus \ standı kurulmuştur.2014 yılında ICT SummitT Now Bilişim Zirvesi'nde yer alınmıştır. \ BİLİŞİM’2014 TBD 31. Ulusal Bilişim Kurultayı ve CITEX’2014 Ankara Bilişim Fuarı’na \ Gümüş sponsorluk ile katkıda bulunulmuş ve Pardus standı kurulmuştur.", "question":"Pardus’un Google Summer of Code'a katıldığı yıllar nelerdir?" } get_answer(question["question"],question["context"]) ``` > 2008 ve 2009 ### Example 2 ```python question2={ "context":"II. Bayezid ve I. Selim devrinde yaşadı ve iki defa hekimbaşılık yaptı. \ Böbrek ve idrar kesesindeki taş oluşumunun nedenlerini ve tedavisini incelediği \ eseriyle tanınır. Adı kaynaklarda Ahmed ve Mahmud olarak da geçer. Ahi Çelebi \ olarak ün yapmıştır. Babası Tabib Mevlana Kemal ile birlikte 1463’te İstanbul’a yerleşti. \ Mevlana Kemal, devrin ünlü hekimlerindendir. Tebriz ya da Şirvan asıllı olduğu çeşitli \ kaynaklarda belirtilir. Ahi Mehmet Çelebi, hekimliği daha çok babasından öğrendi. Onun \ ölümünden sonra devrin önemli hekimleri Kutbüddin ile Altunîzâde’den ders alıp kısa zamanda \ mesleğini ilerletti. Hekimlik becerisinin yanı sıra kuramsal bilgisiyle de kendisini \ kabul ettirerek önce Fâtih Darüşşifasına hekim, sonra da başhekim oldu. II. Bayezid’in \ güvenini kazanarak mutfak eminliğine, ardından da Hekimbaşılığa getirildi. Dört buçuk \ yıl bu görevde kalan Ahî Çelebi, II. Bayezid’in ölümü üzerine geleneğe uyularak azledildi. \ Bir müddet sonra Yavuz onu tekrar Hekimbaşılığa getirdi ve Mısır seferine beraberinde \ götürdü. I. Selim'in ölümünden sonra Hekimbaşılık tan tekrar azledildi. Kaynakların \ belirttiğine göre, yaşı doksanı geçmiş olduğu halde, hacdan dönerken Kahire’de \ ölmüş ve İmam Şafi'nin kabri civarına defnedilmiştir.", "question":"Ahi Mehmet Çelebi hangi eseri ile tanınır?" } get_answer(question2["question"],question2["context"]) ``` > Böbrek ve idrar kesesindeki taş oluşumunun nedenlerini ve tedavisini incelediği eseriyle Created by Özcan Gündeş ✌️ --- Twitter: <a href="https://twitter.com/ozcangundes" target="blank"><img align="center" src="https://cdn.jsdelivr.net/npm/simple-icons@3.0.1/icons/twitter.svg" alt="ozcangundes" height="30" width="30" /></a> Linkedin: <a href="https://www.linkedin.com/in/%C3%B6zcan-g%C3%BCnde%C5%9F-7693055b/" target="blank"><img align="center" src="https://cdn.jsdelivr.net/npm/simple-icons@3.0.1/icons/linkedin.svg" alt="13198517" height="30" width="30" /></a> Medium: <a href="https://medium.com/@ozcangundes" target="blank"><img align="center" src="https://cdn.jsdelivr.net/npm/simple-icons@3.0.1/icons/medium.svg" alt="@ozcangundes" height="30" width="30" /></a> Github: <a href="https://github.com/ozcangundes" target="blank"><img align="center" src="https://cdn.jsdelivr.net/npm/simple-icons@3.0.1/icons/github.svg" alt="@ozcangundes" height="30" width="30" /></a>
marefa-nlp/marefa-mt-en-ar
marefa-nlp
2021-09-22T08:59:51Z
391
13
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "Arabic Abjad Characters", "Arabic", "en", "ar", "dataset:marefa-mt", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - en - ar tags: - translation - Arabic Abjad Characters - Arabic license: apache-2.0 datasets: - marefa-mt --- # Marefa-Mt-En-Ar # نموذج المعرفة للترجمة الآلية من الإنجليزية للعربية ## Model description This is a model for translating English to Arabic. The special about this model that is take into considration the using of additional Arabic characters like `پ` or `گ`. ## عن النموذج هذا النموذج للترجمة الآلية من اللغة الإنجليزية إلى اللغة العربية, هو أول نماذج الترجمة الآلية التي تصدر تحت رعاية [موسوعة المعرفة](https://www.marefa.org) يتميز هذا النموذج عن غيره من النماذج بدعمه لحروف الأبجدية العربية الإضافية لتمييز الصوتيات الخاصة في اللغة الإنجليزية مثل `پ` , `گ`. يمكنك زيارة [هذه الصفحة](https://www.marefa.org/%D8%A7%D9%84%D9%85%D8%B9%D8%B1%D9%81%D8%A9:%D8%AF%D9%84%D9%8A%D9%84_%D8%A7%D9%84%D8%A3%D8%B3%D9%84%D9%88%D8%A8#.D8.AD.D8.B1.D9.88.D9.81_.D8.A5.D8.B6.D8.A7.D9.81.D9.8A.D8.A9_.D9.84.D9.84.D9.86.D8.B7.D9.82_.D8.A7.D9.84.D8.B3.D9.84.D9.8A.D9.85) لمعرفة أكثر عن أسلوب إستخدام هذه الحروف الأبجدية العربية ### How to use كيفية الإستخدام Install transformers and sentencepiece (python >= 3.6) `$ pip3 install transformers==4.3.0 sentencepiece==0.1.95 nltk==3.5 protobuf==3.15.3 torch==1.7.1` > If you are using `Google Colab`, please restart your runtime after installing the packages. ----------- ```python from transformers import MarianTokenizer, MarianMTModel mname = "marefa-nlp/marefa-mt-en-ar" tokenizer = MarianTokenizer.from_pretrained(mname) model = MarianMTModel.from_pretrained(mname) # English Sample Text input = "President Putin went to the presidential palace in the capital, Kiev" translated_tokens = model.generate(**tokenizer.prepare_seq2seq_batch([input], return_tensors="pt")) translated_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_tokens] # translated Arabic Text print(translated_text) # ذهب الرئيس پوتن إلى القصر الرئاسي في العاصمة كييڤ ```
macedonizer/sr-roberta-base
macedonizer
2021-09-22T08:59:00Z
8
1
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "masked-lm", "sr", "dataset:wiki-sr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - sr thumbnail: https://huggingface.co/macedonizer/sr-roberta-base/lets-talk-about-nlp-sr.jpg tags: - masked-lm license: apache-2.0 datasets: - wiki-sr --- # SR-RoBERTa base model Pretrained model on Serbian language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is case-sensitive: it makes a difference between скопје and Скопје. # Model description RoBERTa is a transformers model pre-trained on a large corpus of мацед data in a self-supervised fashion. This means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pre-trained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then runs the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard classifier using the features produced by the BERT model as inputs. # Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification, or question answering. For tasks such as text generation, you should look at models like GPT2. # How to use You can use this model directly with a pipeline for masked language modeling: \ from transformers import pipeline \ unmasker = pipeline('fill-mask', model='macedonizer/sr-roberta-base') \ unmasker("Београд је <mask> град Србије.") \ [{'score': 0.7834128141403198, 'sequence': 'Београд је главни град Србије', 'token': 3087, 'token_str': ' главни'}, {'score': 0.15424974262714386, 'sequence': 'Београд је највећи град Србије', 'token': 3916, 'token_str': ' највећи'}, {'score': 0.0035441946238279343, 'sequence': 'Београд је најважнији град Србије', 'token': 18577, 'token_str': ' најважнији'}, {'score': 0.003132033161818981, 'sequence': 'Београд је велики град Србије', 'token': 2063, 'token_str': ' велики'}, {'score': 0.0030417360831052065, 'sequence': 'Београд је важан град Србије', 'token': 9463, 'token_str': ' важан'}] Here is how to use this model to get the features of a given text in PyTorch: from transformers import RobertaTokenizer, RobertaModel \ tokenizer = RobertaTokenizer.from_pretrained('macedonizer/mk-roberta-base') \ model = RobertaModel.from_pretrained('macedonizer/sr-roberta-base') \ text = "Replace me by any text you'd like." \ encoded_input = tokenizer(text, return_tensors='pt') \ output = model(**encoded_input)
macedonizer/sr-gpt2
macedonizer
2021-09-22T08:58:57Z
54
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "sr", "dataset:wiki-sr", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - sr thumbnail: https://huggingface.co/macedonizer/sr-gpt2/desanka-maksimovic.jpeg license: apache-2.0 datasets: - wiki-sr --- # sr-gpt2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). ## Model description sr-gpt2 is a transformers model pretrained on a very large corpus of Serbian data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of the continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of the word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the Macedonian language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for, however, which is generating texts from a prompt. ### How to use Here is how to use this model to get the features of a given text in PyTorch: import random \ from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained('macedonizer/sr-gpt2') \ model = AutoModelWithLMHead.from_pretrained('macedonizer/sr-gpt2') input_text = 'Ја сам био ' if len(input_text) == 0: \ encoded_input = tokenizer(input_text, return_tensors="pt") \ output = model.generate( \ bos_token_id=random.randint(1, 50000), \ do_sample=True, \ top_k=50, \ max_length=1024, \ top_p=0.95, \ num_return_sequences=1, \ ) \ else: \ encoded_input = tokenizer(input_text, return_tensors="pt") \ output = model.generate( \ **encoded_input, \ bos_token_id=random.randint(1, 50000), \ do_sample=True, \ top_k=50, \ max_length=1024, \ top_p=0.95, \ num_return_sequences=1, \ ) decoded_output = [] \ for sample in output: \ decoded_output.append(tokenizer.decode(sample, skip_special_tokens=True)) print(decoded_output)
macedonizer/sl-roberta-base
macedonizer
2021-09-22T08:58:54Z
8
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "masked-lm", "sl", "dataset:wiki-sl", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - sl thumbnail: https://huggingface.co/macedonizer/sl-roberta-base/ivan-cankar.jpg tags: - masked-lm license: apache-2.0 datasets: - wiki-sl --- # HR-RoBERTa base model Pretrained model on Macedonian language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is case-sensitive: it makes a difference between скопје and Скопје. # Model description RoBERTa is a transformers model pre-trained on a large corpus of мацед data in a self-supervised fashion. This means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pre-trained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then runs the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard classifier using the features produced by the BERT model as inputs. # Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification, or question answering. For tasks such as text generation, you should look at models like GPT2. # How to use You can use this model directly with a pipeline for masked language modeling: \ from transformers import pipeline \ unmasker = pipeline('fill-mask', model='macedonizer/hr-roberta-base') \ unmasker("Zagrab je \\<mask\\> glavni grad Hrvatske.") \ [ {'sequence': 'Zagreb je glavni grad Hrvatske.', 'score': 0.8750431537628174, 'token': 2026, 'token_str': ' glavni'}, {'sequence': 'Zagreb je najveći grad Hrvatske.', 'score': 0.060711536556482315, 'token': 2474, 'token_str': ' najveći'}, {'sequence': 'Zagreb je prvi grad Hrvatske.', 'score': 0.005241130944341421, 'token': 780, 'token_str': ' prvi'}, {'sequence': 'Zagreb je jedini grad Hrvatske.', 'score': 0.004663003608584404, 'token': 3280, 'token_str': ' jedini'}, {'sequence': 'Zagreb je treći grad Hrvatske.', 'score': 0.003771631745621562, 'token': 3236, 'token_str': ' treći' ] \ Here is how to use this model to get the features of a given text in PyTorch: from transformers import RobertaTokenizer, RobertaModel \ tokenizer = RobertaTokenizer.from_pretrained('macedonizer/hr-roberta-base') \ model = RobertaModel.from_pretrained('macedonizer/hr-roberta-base') \ text = "Replace me by any text you'd like." \ encoded_input = tokenizer(text, return_tensors='pt') \ output = model(**encoded_input)
macedonizer/mk-roberta-base
macedonizer
2021-09-22T08:58:49Z
18
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "masked-lm", "mk", "dataset:wiki-mk", "dataset:time-mk-news-2010-2015", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - mk thumbnail: https://huggingface.co/macedonizer/mk-roberta-base/blaze-koneski.jpg tags: - masked-lm license: apache-2.0 datasets: - wiki-mk - time-mk-news-2010-2015 --- # MK-RoBERTa base model Pretrained model on Macedonian language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is case-sensitive: it makes a difference between скопје and Скопје. # Model description RoBERTa is a transformers model pre-trained on a large corpus of мацед data in a self-supervised fashion. This means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pre-trained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then runs the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard classifier using the features produced by the BERT model as inputs. # Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification, or question answering. For tasks such as text generation, you should look at models like GPT2. # How to use You can use this model directly with a pipeline for masked language modeling: \ from transformers import pipeline \ unmasker = pipeline('fill-mask', model='macedonizer/mk-roberta-base') \ unmasker("Скопје е \\<mask\\> град на Македонија.") \ [{'sequence': 'Скопје е главен град на Македонија.', \ 'score': 0.5900368094444275, \ 'token': 2782, \ 'token_str': ' главен'}, \ {'sequence': 'Скопје е главниот град на Македонија.', \ 'score': 0.1789761781692505, \ 'token': 3177, \ 'token_str': ' главниот'}, \ {'sequence': 'Скопје е административен град на Македонија.', \ 'score': 0.01679774932563305, \ 'token': 9563, \ 'token_str': ' административен'}, \ {'sequence': 'Скопје е мал град на Македонија.', \ 'score': 0.016263898462057114, \ 'token': 2473, \ 'token_str': ' мал'}, \ {'sequence': 'Скопје е најголемиот град на Македонија.', \ 'score': 0.01312252413481474, \ 'token': 4271, \ 'token_str': ' најголемиот'}] \ Here is how to use this model to get the features of a given text in PyTorch: from transformers import RobertaTokenizer, RobertaModel \ tokenizer = RobertaTokenizer.from_pretrained('macedonizer/mk-roberta-base') \ model = RobertaModel.from_pretrained('macedonizer/mk-roberta-base') \ text = "Replace me by any text you'd like." \ encoded_input = tokenizer(text, return_tensors='pt') \ output = model(**encoded_input)
macedonizer/mk-gpt2
macedonizer
2021-09-22T08:58:46Z
9
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "mk", "dataset:wiki-mk", "dataset:time-mk-news-2010-2015", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - mk thumbnail: https://huggingface.co/macedonizer/mk-roberta-base/blaze-koneski.jpg license: apache-2.0 datasets: - wiki-mk - time-mk-news-2010-2015 --- # mk-gpt2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). ## Model description mk-gpt2 is a transformers model pretrained on a very large corpus of Macedonian data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the Macedonian language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use Here is how to use this model to get the features of a given text in PyTorch: import random from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained('macedonizer/mk-gpt2') \ model = AutoModelWithLMHead.from_pretrained('macedonizer/mk-gpt2') input_text = 'Скопје е ' if len(input_text) == 0: \ encoded_input = tokenizer(input_text, return_tensors="pt") \ output = model.generate( \ bos_token_id=random.randint(1, 50000), \ do_sample=True, \ top_k=50, \ max_length=1024, \ top_p=0.95, \ num_return_sequences=1, \ ) \ else: \ encoded_input = tokenizer(input_text, return_tensors="pt") \ output = model.generate( \ **encoded_input, \ bos_token_id=random.randint(1, 50000), \ do_sample=True, \ top_k=50, \ max_length=1024, \ top_p=0.95, \ num_return_sequences=1, \ ) decoded_output = [] \ for sample in output: \ decoded_output.append(tokenizer.decode(sample, skip_special_tokens=True)) print(decoded_output)
macedonizer/hr-roberta-base
macedonizer
2021-09-22T08:58:43Z
4
1
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "masked-lm", "hr", "dataset:wiki-hr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - hr thumbnail: https://huggingface.co/macedonizer/hr-roberta-base/ivo-andric.jpg tags: - masked-lm license: apache-2.0 datasets: - wiki-hr --- # HR-RoBERTa base model Pretrained model on Macedonian language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is case-sensitive: it makes a difference between скопје and Скопје. # Model description RoBERTa is a transformers model pre-trained on a large corpus of мацед data in a self-supervised fashion. This means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pre-trained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then runs the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard classifier using the features produced by the BERT model as inputs. # Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification, or question answering. For tasks such as text generation, you should look at models like GPT2. # How to use You can use this model directly with a pipeline for masked language modeling: \ from transformers import pipeline \ unmasker = pipeline('fill-mask', model='macedonizer/hr-roberta-base') \ unmasker("Zagrab je \\<mask\\> glavni grad Hrvatske.") \ [ {'sequence': 'Zagreb je glavni grad Hrvatske.', 'score': 0.8750431537628174, 'token': 2026, 'token_str': ' glavni'}, {'sequence': 'Zagreb je najveći grad Hrvatske.', 'score': 0.060711536556482315, 'token': 2474, 'token_str': ' najveći'}, {'sequence': 'Zagreb je prvi grad Hrvatske.', 'score': 0.005241130944341421, 'token': 780, 'token_str': ' prvi'}, {'sequence': 'Zagreb je jedini grad Hrvatske.', 'score': 0.004663003608584404, 'token': 3280, 'token_str': ' jedini'}, {'sequence': 'Zagreb je treći grad Hrvatske.', 'score': 0.003771631745621562, 'token': 3236, 'token_str': ' treći' ] \ Here is how to use this model to get the features of a given text in PyTorch: from transformers import RobertaTokenizer, RobertaModel \ tokenizer = RobertaTokenizer.from_pretrained('macedonizer/hr-roberta-base') \ model = RobertaModel.from_pretrained('macedonizer/hr-roberta-base') \ text = "Replace me by any text you'd like." \ encoded_input = tokenizer(text, return_tensors='pt') \ output = model(**encoded_input)
macedonizer/hr-gpt2
macedonizer
2021-09-22T08:58:40Z
6
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "hr", "dataset:wiki-hr", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - hr thumbnail: https://huggingface.co/macedonizer/hr-gpt2/lets-talk-about-nlp-hr.jpg license: apache-2.0 datasets: - wiki-hr --- # hr-gpt2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). ## Model description hr-gpt2 is a transformers model pretrained on a very large corpus of Croation data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of the continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of the word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the Macedonian language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for, however, which is generating texts from a prompt. ### How to use Here is how to use this model to get the features of a given text in PyTorch: import random \\nfrom transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained('macedonizer/hr-gpt2') \ model = AutoModelWithLMHead.from_pretrained('macedonizer/sr-gpt2') input_text = 'Ja sam bio ' if len(input_text) == 0: \ encoded_input = tokenizer(input_text, return_tensors="pt") \ output = model.generate( \ bos_token_id=random.randint(1, 50000), \ do_sample=True, \ top_k=50, \ max_length=1024, \ top_p=0.95, \ num_return_sequences=1, \ ) \ else: \ encoded_input = tokenizer(input_text, return_tensors="pt") \ output = model.generate( \ **encoded_input, \ bos_token_id=random.randint(1, 50000), \ do_sample=True, \ top_k=50, \ max_length=1024, \ top_p=0.95, \ num_return_sequences=1, \ ) decoded_output = [] \ for sample in output: \ decoded_output.append(tokenizer.decode(sample, skip_special_tokens=True)) print(decoded_output)
macedonizer/gr-roberta-base
macedonizer
2021-09-22T08:58:38Z
8
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "masked-lm", "gr", "dataset:wiki-gr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - gr thumbnail: https://huggingface.co/macedonizer/gr-roberta-base/lets-talk-about-nlp-gr.jpg tags: - masked-lm license: apache-2.0 datasets: - wiki-gr --- # GR-RoBERTa base model Pretrained model on Macedonian language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is case-sensitive: it makes a difference between Athens and athens. # Model description RoBERTa is a transformers model pre-trained on a large corpus of мацед data in a self-supervised fashion. This means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pre-trained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then runs the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the Greek language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard classifier using the features produced by the BERT model as inputs. # Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification, or question answering. For tasks such as text generation, you should look at models like GPT2. # How to use You can use this model directly with a pipeline for masked language modeling: from transformers import pipeline \ unmasker = pipeline('fill-mask', model='macedonizer/gr-roberta-base') \ unmasker("Η Αθήνα είναι η \<mask\> της Ελλάδας") \ [{'score': 0.8832866549491882, \ 'sequence': 'Η Αθήνα είναι η πρωτεύουσα της Ελλάδας', \ 'token': 2788, \ 'token_str': ' πρωτεύουσα'}, \ {'score': 0.018105432391166687, \ 'sequence': 'Η Αθήνα είναι η μεγαλύτερη της Ελλάδας', \ 'token': 2363, \ 'token_str': ' μεγαλύτερη'}, \ {'score': 0.015836946666240692, \ 'sequence': 'Η Αθήνα είναι η έδρα της Ελλάδας', \ 'token': 1950, \ 'token_str': ' έδρα'}, \ {'score': 0.015673324465751648, \ 'sequence': 'Η Αθήνα είναι η μόνη της Ελλάδας', \ 'token': 6548, \ 'token_str': ' μόνη'}, \ {'score': 0.01375910360366106, \ 'sequence': 'Η Αθήνα είναι η πόλη της Ελλάδας', \ 'token': 825, \ 'token_str': ' πόλη'}] Here is how to use this model to get the features of a given text in PyTorch: from transformers import RobertaTokenizer, RobertaModel \ tokenizer = RobertaTokenizer.from_pretrained('macedonizer/gr-roberta-base') \ model = RobertaModel.from_pretrained('macedonizer/gr-roberta-base') \ text = "Replace me by any text you'd like." \ encoded_input = tokenizer(text, return_tensors='pt') \ output = model(**encoded_input)
macedonizer/blaze-koneski
macedonizer
2021-09-22T08:58:34Z
11
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "mk", "dataset:wiki-mk", "dataset:blaze-koneski-poetry", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - mk thumbnail: https://huggingface.co/macedonizer/blaze-koneski/blaze-koneski.jpg license: apache-2.0 datasets: - wiki-mk - blaze-koneski-poetry --- # blaze-koneski GPT-2 type of model. We finetuned macedonizer/mk-gpt-2 with Blaze Koneski's poetry. ## About Blaze Koneski Born in a village near Prilep in 1921. Studied philology at Skopje University and worked there as a professor. Was the first chairman of the Macedonian Academy of Sciences and Arts, corresponding member of the Yugoslav Academy of Sciences and Arts, as well as of the Serbian and Slovene Academies, and honorary doctor of the Universities of Chicago and Krakow. Wrote poetry, short stories, and essays, as well as scholarly works, many of them on the Macedonian language. Editor of the Dictionarv of the Macedonian Language, translator of Heine and Shakespeare. His works have been translated into Serbian, Croatian, Slovene, Albanian, Turkish, Hungarian, French, Russian, Italian, Greek, Polish, Romanian, German, and English. Winner of numerous prizes, including the Golden Wreath of the Struga Poetry Evenings. ### How to use Here is how to use this model to get the features of a given text in PyTorch: import random from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained('macedonizer/blaze-koneski') nmodel = AutoModelWithLMHead.from_pretrained('macedonizer/blaze-koneski') input_text = 'Москва ' if len(input_text) == 0: \ encoded_input = tokenizer(input_text, return_tensors="pt") \ output = model.generate( \ bos_token_id=random.randint(1, 50000), \ do_sample=True, \ top_k=50, \ max_length=1024, \ top_p=0.95, \ num_return_sequences=1, \ ) \ else: \ encoded_input = tokenizer(input_text, return_tensors="pt") \ output = model.generate( \ **encoded_input, \ bos_token_id=random.randint(1, 50000), \ do_sample=True, \ top_k=50, \ max_length=1024, \ top_p=0.95, \ num_return_sequences=1, \ ) decoded_output = [] \ for sample in output: \ decoded_output.append(tokenizer.decode(sample, skip_special_tokens=True)) print(decoded_output)
macedonizer/ba-roberta-base
macedonizer
2021-09-22T08:58:31Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "masked-lm", "ba", "dataset:wiki-bs", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - ba thumbnail: https://huggingface.co/macedonizer/ba-roberta-base/abdulah-sidran.jpg tags: - masked-lm license: apache-2.0 datasets: - wiki-bs --- # BA-RoBERTa base model Pretrained model on Bosnian language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is case-sensitive: it makes a difference between sarajevo and Sarajevo. # Model description RoBERTa is a transformers model pre-trained on a large corpus of Bosnian texts in a self-supervised fashion. This means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pre-trained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then runs the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard classifier using the features produced by the BERT model as inputs. # Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification, or question answering. For tasks such as text generation, you should look at models like GPT2. # How to use You can use this model directly with a pipeline for masked language modeling: \ from transformers import pipeline \ unmasker = pipeline('fill-mask', model='macedonizer/ba-roberta-base') \ unmasker("Sarajevo je \\<mask\\> grad Bosne i Hercegovine.") \ [{'score': 0.6210788488388062, \ 'sequence': 'Sarajevo je glavni grad Bosne i Hercegovine', \ 'token': 2006, \ 'token_str': ' glavni'}, \ {'score': 0.19640550017356873, \ 'sequence': 'Sarajevo je najveći grad Bosne i Hercegovine', \ 'token': 1707, \ 'token_str': ' najveći'}, \ {'score': 0.0210184995085001, \ 'sequence': 'Sarajevo je srednjovjekovni grad Bosne i Hercegovine', \ 'token': 22596, \ 'token_str': ' srednjovjekovni'}, \ {'score': 0.010822420939803123, \ 'sequence': 'Sarajevo je najmnogoljudniji grad Bosne i Hercegovine', \ 'token': 40186, \ 'token_str': ' najmnogoljudniji'}, \ {'score': 0.006114463787525892, \ 'sequence': 'Sarajevo je službeni grad Bosne i Hercegovine', \ 'token': 8546, \ 'token_str': ' službeni'}] \ Here is how to use this model to get the features of a given text in PyTorch: from transformers import RobertaTokenizer, RobertaModel \ tokenizer = RobertaTokenizer.from_pretrained('macedonizer/ba-roberta-base') \ model = RobertaModel.from_pretrained('macedonizer/ba-roberta-base') \ text = "Replace me by any text you'd like." \ encoded_input = tokenizer(text, return_tensors='pt') \ output = model(**encoded_input)
liaad/ud_srl-pt_xlmr-large
liaad
2021-09-22T08:56:46Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "xlm-roberta-large", "semantic role labeling", "finetuned", "dependency parsing", "multilingual", "pt", "arxiv:2101.01213", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - multilingual - pt tags: - xlm-roberta-large - semantic role labeling - finetuned - dependency parsing license: apache-2.0 datasets: - PropBank.Br - CoNLL-2012 - Universal Dependencies metrics: - F1 Measure --- # XLM-R large fine-tune in Portuguese Universal Dependencies and semantic role labeling ## Model description This model is the [`xlm-roberta-large`](https://huggingface.co/xlm-roberta-large) fine-tuned first on the Universal Dependencies Portuguese dataset and then fine-tuned on the PropBank.Br data. This is part of a project from which resulted the following models: * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base) * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large) * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base) * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large) * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base) * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base) * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large) * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base) * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base) * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large) * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base) * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large) * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large) * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large) For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Intended uses & limitations #### How to use To use the transformers portion of this model: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("liaad/ud_srl-pt_xlmr-large") model = AutoModel.from_pretrained("liaad/ud_srl-pt_xlmr-large") ``` To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). #### Limitations and bias - This model does not include a Tensorflow version. This is because the "type_vocab_size" in this model was changed (from 1 to 2) and, therefore, it cannot be easily converted to Tensorflow. - The model was trained only for 10 epochs in the Universal Dependencies dataset. ## Training procedure The model was trained on the Universal Dependencies Portuguese dataset; then on the CoNLL formatted OntoNotes v5.0; then on Portuguese semantic role labeling data (PropBank.Br) using 10-fold Cross-Validation. The 10 resulting models were tested on the folds as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Eval results | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) | | --------------- | ------ | ----- | | `srl-pt_bertimbau-base` | 76.30 | 73.33 | | `srl-pt_bertimbau-large` | 77.42 | 74.85 | | `srl-pt_xlmr-base` | 75.22 | 72.82 | | `srl-pt_xlmr-large` | 77.59 | 73.84 | | `srl-pt_mbert-base` | 72.76 | 66.89 | | `srl-en_xlmr-base` | 66.59 | 65.24 | | `srl-en_xlmr-large` | 67.60 | 64.94 | | `srl-en_mbert-base` | 63.07 | 58.56 | | `srl-enpt_xlmr-base` | 76.50 | 73.74 | | `srl-enpt_xlmr-large` | **78.22** | 74.55 | | `srl-enpt_mbert-base` | 74.88 | 69.19 | | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 | | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 | | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** | ### BibTeX entry and citation info ```bibtex @misc{oliveira2021transformers, title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling}, author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge}, year={2021}, eprint={2101.01213}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
liaad/srl-pt_xlmr-large
liaad
2021-09-22T08:56:37Z
4
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "xlm-roberta-large", "semantic role labeling", "finetuned", "multilingual", "pt", "dataset:PropBank.Br", "arxiv:2101.01213", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - multilingual - pt tags: - xlm-roberta-large - semantic role labeling - finetuned license: apache-2.0 datasets: - PropBank.Br metrics: - F1 Measure --- # XLM-R large fine-tuned on Portuguese semantic role labeling ## Model description This model is the [`xlm-roberta-large`](https://huggingface.co/xlm-roberta-large) fine-tuned on Portuguese semantic role labeling data. This is part of a project from which resulted the following models: * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base) * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large) * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base) * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large) * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base) * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base) * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large) * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base) * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base) * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large) * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base) * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large) * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large) * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large) For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Intended uses & limitations #### How to use To use the transformers portion of this model: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("liaad/srl-pt_xlmr-large") model = AutoModel.from_pretrained("liaad/srl-pt_xlmr-large") ``` To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). #### Limitations and bias - This model does not include a Tensorflow version. This is because the "type_vocab_size" in this model was changed (from 1 to 2) and, therefore, it cannot be easily converted to Tensorflow. ## Training procedure The model was trained on the PropBank.Br datasets, using 10-fold Cross-Validation. The 10 resulting models were tested on the folds as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Eval results | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) | | --------------- | ------ | ----- | | `srl-pt_bertimbau-base` | 76.30 | 73.33 | | `srl-pt_bertimbau-large` | 77.42 | 74.85 | | `srl-pt_xlmr-base` | 75.22 | 72.82 | | `srl-pt_xlmr-large` | 77.59 | 73.84 | | `srl-pt_mbert-base` | 72.76 | 66.89 | | `srl-en_xlmr-base` | 66.59 | 65.24 | | `srl-en_xlmr-large` | 67.60 | 64.94 | | `srl-en_mbert-base` | 63.07 | 58.56 | | `srl-enpt_xlmr-base` | 76.50 | 73.74 | | `srl-enpt_xlmr-large` | **78.22** | 74.55 | | `srl-enpt_mbert-base` | 74.88 | 69.19 | | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 | | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 | | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** | ### BibTeX entry and citation info ```bibtex @misc{oliveira2021transformers, title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling}, author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge}, year={2021}, eprint={2101.01213}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
liaad/srl-pt_xlmr-base
liaad
2021-09-22T08:56:34Z
9
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "xlm-roberta-base", "semantic role labeling", "finetuned", "multilingual", "pt", "dataset:PropBank.Br", "arxiv:2101.01213", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - multilingual - pt tags: - xlm-roberta-base - semantic role labeling - finetuned license: apache-2.0 datasets: - PropBank.Br metrics: - F1 Measure --- # XLM-R base fine-tuned on Portuguese semantic role labeling ## Model description This model is the [`xlm-roberta-base`](https://huggingface.co/xlm-roberta-base) fine-tuned on Portuguese semantic role labeling data. This is part of a project from which resulted the following models: * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base) * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large) * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base) * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large) * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base) * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base) * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large) * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base) * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base) * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large) * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base) * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large) * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large) * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large) For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Intended uses & limitations #### How to use To use the transformers portion of this model: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("liaad/srl-pt_xlmr-base") model = AutoModel.from_pretrained("liaad/srl-pt_xlmr-base") ``` To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). #### Limitations and bias - This model does not include a Tensorflow version. This is because the "type_vocab_size" in this model was changed (from 1 to 2) and, therefore, it cannot be easily converted to Tensorflow. ## Training procedure The model was trained on the PropBank.Br datasets, using 10-fold Cross-Validation. The 10 resulting models were tested on the folds as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Eval results | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) | | --------------- | ------ | ----- | | `srl-pt_bertimbau-base` | 76.30 | 73.33 | | `srl-pt_bertimbau-large` | 77.42 | 74.85 | | `srl-pt_xlmr-base` | 75.22 | 72.82 | | `srl-pt_xlmr-large` | 77.59 | 73.84 | | `srl-pt_mbert-base` | 72.76 | 66.89 | | `srl-en_xlmr-base` | 66.59 | 65.24 | | `srl-en_xlmr-large` | 67.60 | 64.94 | | `srl-en_mbert-base` | 63.07 | 58.56 | | `srl-enpt_xlmr-base` | 76.50 | 73.74 | | `srl-enpt_xlmr-large` | **78.22** | 74.55 | | `srl-enpt_mbert-base` | 74.88 | 69.19 | | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 | | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 | | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** | ### BibTeX entry and citation info ```bibtex @misc{oliveira2021transformers, title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling}, author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge}, year={2021}, eprint={2101.01213}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
liaad/srl-pt_mbert-base
liaad
2021-09-22T08:56:31Z
6
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "bert-base-multilingual-cased", "semantic role labeling", "finetuned", "multilingual", "pt", "dataset:PropBank.Br", "arxiv:2101.01213", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - multilingual - pt tags: - bert-base-multilingual-cased - semantic role labeling - finetuned license: apache-2.0 datasets: - PropBank.Br metrics: - F1 Measure --- # mBERT fine-tuned on Portuguese semantic role labeling ## Model description This model is the [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) fine-tuned on Portuguese semantic role labeling data. This is part of a project from which resulted the following models: * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base) * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large) * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base) * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large) * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base) * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base) * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large) * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base) * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base) * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large) * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base) * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large) * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large) * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large) For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Intended uses & limitations #### How to use To use the transformers portion of this model: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("liaad/srl-pt_mbert-base") model = AutoModel.from_pretrained("liaad/srl-pt_mbert-base") ``` To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Training procedure The model was trained on the PropBank.Br datasets, using 10-fold Cross-Validation. The 10 resulting models were tested on the folds as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Eval results | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) | | --------------- | ------ | ----- | | `srl-pt_bertimbau-base` | 76.30 | 73.33 | | `srl-pt_bertimbau-large` | 77.42 | 74.85 | | `srl-pt_xlmr-base` | 75.22 | 72.82 | | `srl-pt_xlmr-large` | 77.59 | 73.84 | | `srl-pt_mbert-base` | 72.76 | 66.89 | | `srl-en_xlmr-base` | 66.59 | 65.24 | | `srl-en_xlmr-large` | 67.60 | 64.94 | | `srl-en_mbert-base` | 63.07 | 58.56 | | `srl-enpt_xlmr-base` | 76.50 | 73.74 | | `srl-enpt_xlmr-large` | **78.22** | 74.55 | | `srl-enpt_mbert-base` | 74.88 | 69.19 | | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 | | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 | | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** | ### BibTeX entry and citation info ```bibtex @misc{oliveira2021transformers, title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling}, author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge}, year={2021}, eprint={2101.01213}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
liaad/srl-pt_bertimbau-base
liaad
2021-09-22T08:56:26Z
8
2
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "bert-base-portuguese-cased", "semantic role labeling", "finetuned", "multilingual", "pt", "dataset:PropBank.Br", "arxiv:2101.01213", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - multilingual - pt tags: - bert-base-portuguese-cased - semantic role labeling - finetuned license: apache-2.0 datasets: - PropBank.Br metrics: - F1 Measure --- # BERTimbau base fine-tuned on Portuguese semantic role labeling ## Model description This model is the [`neuralmind/bert-base-portuguese-cased`](https://huggingface.co/neuralmind/bert-base-portuguese-cased) fine-tuned on Portuguese semantic role labeling data. This is part of a project from which resulted the following models: * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base) * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large) * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base) * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large) * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base) * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base) * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large) * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base) * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base) * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large) * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base) * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large) * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large) * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large) For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Intended uses & limitations #### How to use To use the transformers portion of this model: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("liaad/srl-pt_bertimbau-base") model = AutoModel.from_pretrained("liaad/srl-pt_bertimbau-base") ``` To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Training procedure The model was trained on the PropBank.Br datasets, using 10-fold Cross-Validation. The 10 resulting models were tested on the folds as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Eval results | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) | | --------------- | ------ | ----- | | `srl-pt_bertimbau-base` | 76.30 | 73.33 | | `srl-pt_bertimbau-large` | 77.42 | 74.85 | | `srl-pt_xlmr-base` | 75.22 | 72.82 | | `srl-pt_xlmr-large` | 77.59 | 73.84 | | `srl-pt_mbert-base` | 72.76 | 66.89 | | `srl-en_xlmr-base` | 66.59 | 65.24 | | `srl-en_xlmr-large` | 67.60 | 64.94 | | `srl-en_mbert-base` | 63.07 | 58.56 | | `srl-enpt_xlmr-base` | 76.50 | 73.74 | | `srl-enpt_xlmr-large` | **78.22** | 74.55 | | `srl-enpt_mbert-base` | 74.88 | 69.19 | | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 | | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 | | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** | ### BibTeX entry and citation info ```bibtex @misc{oliveira2021transformers, title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling}, author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge}, year={2021}, eprint={2101.01213}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
liaad/srl-enpt_xlmr-base
liaad
2021-09-22T08:56:20Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "xlm-roberta-base", "semantic role labeling", "finetuned", "multilingual", "pt", "en", "dataset:PropBank.Br", "dataset:CoNLL-2012", "arxiv:2101.01213", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - multilingual - pt - en tags: - xlm-roberta-base - semantic role labeling - finetuned license: apache-2.0 datasets: - PropBank.Br - CoNLL-2012 metrics: - F1 Measure --- # XLM-R base fine-tune in English and Portuguese semantic role labeling ## Model description This model is the [`xlm-roberta-base`](https://huggingface.co/xlm-roberta-base) fine-tuned first on the English CoNLL formatted OntoNotes v5.0 semantic role labeling data and then fine-tuned on the PropBank.Br data. This is part of a project from which resulted the following models: * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base) * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large) * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base) * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large) * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base) * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base) * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large) * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base) * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base) * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large) * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base) * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large) * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large) * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large) For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Intended uses & limitations #### How to use To use the transformers portion of this model: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("liaad/srl-enpt_xlmr-base") model = AutoModel.from_pretrained("liaad/srl-enpt_xlmr-base") ``` To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). #### Limitations and bias - This model does not include a Tensorflow version. This is because the "type_vocab_size" in this model was changed (from 1 to 2) and, therefore, it cannot be easily converted to Tensorflow. - The English data was preprocessed to match the Portuguese data, so there are some differences in role attributions and some roles were removed from the data. ## Training procedure The model was first fine-tuned on the CoNLL-2012 dataset, preprocessed to match the Portuguese PropBank.Br data; then it was fine-tuned in the PropBank.Br dataset using 10-fold Cross-Validation. The resulting models were tested on the folds as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Eval results | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) | | --------------- | ------ | ----- | | `srl-pt_bertimbau-base` | 76.30 | 73.33 | | `srl-pt_bertimbau-large` | 77.42 | 74.85 | | `srl-pt_xlmr-base` | 75.22 | 72.82 | | `srl-pt_xlmr-large` | 77.59 | 73.84 | | `srl-pt_mbert-base` | 72.76 | 66.89 | | `srl-en_xlmr-base` | 66.59 | 65.24 | | `srl-en_xlmr-large` | 67.60 | 64.94 | | `srl-en_mbert-base` | 63.07 | 58.56 | | `srl-enpt_xlmr-base` | 76.50 | 73.74 | | `srl-enpt_xlmr-large` | **78.22** | 74.55 | | `srl-enpt_mbert-base` | 74.88 | 69.19 | | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 | | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 | | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** | ### BibTeX entry and citation info ```bibtex @misc{oliveira2021transformers, title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling}, author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge}, year={2021}, eprint={2101.01213}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
liaad/srl-en_xlmr-base
liaad
2021-09-22T08:56:11Z
9
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "xlm-roberta-base", "semantic role labeling", "finetuned", "multilingual", "pt", "en", "dataset:PropBank.Br", "dataset:CoNLL-2012", "arxiv:2101.01213", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - multilingual - pt - en tags: - xlm-roberta-base - semantic role labeling - finetuned license: apache-2.0 datasets: - PropBank.Br - CoNLL-2012 metrics: - F1 Measure --- # XLM-R base fine-tuned on English semantic role labeling ## Model description This model is the [`xlm-roberta-base`](https://huggingface.co/xlm-roberta-base) fine-tuned on the English CoNLL formatted OntoNotes v5.0 semantic role labeling data. This is part of a project from which resulted the following models: * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base) * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large) * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base) * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large) * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base) * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base) * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large) * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base) * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base) * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large) * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base) * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large) * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large) * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large) For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Intended uses & limitations #### How to use To use the transformers portion of this model: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("liaad/srl-en_xlmr-base") model = AutoModel.from_pretrained("liaad/srl-en_xlmr-base") ``` To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). #### Limitations and bias - This model does not include a Tensorflow version. This is because the "type_vocab_size" in this model was changed (from 1 to 2) and, therefore, it cannot be easily converted to Tensorflow. - The models were trained only for 5 epochs. - The English data was preprocessed to match the Portuguese data, so there are some differences in role attributions and some roles were removed from the data. ## Training procedure The models were trained on the CoNLL-2012 dataset, preprocessed to match the Portuguese PropBank.Br data. They were tested on the PropBank.Br data set as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Eval results | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) | | --------------- | ------ | ----- | | `srl-pt_bertimbau-base` | 76.30 | 73.33 | | `srl-pt_bertimbau-large` | 77.42 | 74.85 | | `srl-pt_xlmr-base` | 75.22 | 72.82 | | `srl-pt_xlmr-large` | 77.59 | 73.84 | | `srl-pt_mbert-base` | 72.76 | 66.89 | | `srl-en_xlmr-base` | 66.59 | 65.24 | | `srl-en_xlmr-large` | 67.60 | 64.94 | | `srl-en_mbert-base` | 63.07 | 58.56 | | `srl-enpt_xlmr-base` | 76.50 | 73.74 | | `srl-enpt_xlmr-large` | **78.22** | 74.55 | | `srl-enpt_mbert-base` | 74.88 | 69.19 | | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 | | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 | | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** | ### BibTeX entry and citation info ```bibtex @misc{oliveira2021transformers, title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling}, author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge}, year={2021}, eprint={2101.01213}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
liaad/srl-en_mbert-base
liaad
2021-09-22T08:56:08Z
525
2
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "bert-base-multilingual-cased", "semantic role labeling", "finetuned", "multilingual", "pt", "en", "dataset:PropBank.Br", "dataset:CoNLL-2012", "arxiv:2101.01213", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - multilingual - pt - en tags: - bert-base-multilingual-cased - semantic role labeling - finetuned license: apache-2.0 datasets: - PropBank.Br - CoNLL-2012 metrics: - F1 Measure --- # mBERT fine-tuned on English semantic role labeling ## Model description This model is the [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) fine-tuned on the English CoNLL formatted OntoNotes v5.0 semantic role labeling data. This is part of a project from which resulted the following models: * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base) * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large) * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base) * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large) * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base) * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base) * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large) * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base) * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base) * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large) * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base) * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large) * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large) * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large) For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Intended uses & limitations #### How to use To use the transformers portion of this model: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("liaad/srl-en_mbert-base") model = AutoModel.from_pretrained("liaad/srl-en_mbert-base") ``` To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). #### Limitations and bias - The models were trained only for 5 epochs. - The English data was preprocessed to match the Portuguese data, so there are some differences in role attributions and some roles were removed from the data. ## Training procedure The model was trained on the CoNLL-2012 dataset, preprocessed to match the Portuguese PropBank.Br data. They were tested on the PropBank.Br data set as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Eval results | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) | | --------------- | ------ | ----- | | `srl-pt_bertimbau-base` | 76.30 | 73.33 | | `srl-pt_bertimbau-large` | 77.42 | 74.85 | | `srl-pt_xlmr-base` | 75.22 | 72.82 | | `srl-pt_xlmr-large` | 77.59 | 73.84 | | `srl-pt_mbert-base` | 72.76 | 66.89 | | `srl-en_xlmr-base` | 66.59 | 65.24 | | `srl-en_xlmr-large` | 67.60 | 64.94 | | `srl-en_mbert-base` | 63.07 | 58.56 | | `srl-enpt_xlmr-base` | 76.50 | 73.74 | | `srl-enpt_xlmr-large` | **78.22** | 74.55 | | `srl-enpt_mbert-base` | 74.88 | 69.19 | | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 | | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 | | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** | ### BibTeX entry and citation info ```bibtex @misc{oliveira2021transformers, title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling}, author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge}, year={2021}, eprint={2101.01213}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
kanishka/GlossBERT
kanishka
2021-09-22T08:54:41Z
134
1
transformers
[ "transformers", "pytorch", "bert", "glossbert", "en", "dataset:SemCor3.0", "arxiv:1908.07245", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en tags: - glossbert license: mit datasets: - SemCor3.0 --- ## GlossBERT A BERT-based model fine-tuned on SemCor 3.0 to perform word-sense-disambiguation by leveraging gloss information. This model is the research output of the paper titled: '[GlossBERT: BERT for Word Sense Disambiguation with Gloss Knowledge](https://arxiv.org/pdf/1908.07245.pdf)' Disclaimer: This model was built and trained by a group of researchers different than the repository's author. The original model code can be found on github: https://github.com/HSLCY/GlossBERT ## Usage The following code loads GlossBERT: ```py from transformers import AutoTokenizer, BertForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('kanishka/GlossBERT') model = BertForSequenceClassification.from_pretrained('kanishka/GlossBERT') ``` ## Citation If you use this model in any of your projects, please cite the original authors using the following bibtex: ``` @inproceedings{huang-etal-2019-glossbert, title = "{G}loss{BERT}: {BERT} for Word Sense Disambiguation with Gloss Knowledge", author = "Huang, Luyao and Sun, Chi and Qiu, Xipeng and Huang, Xuanjing", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", month = nov, year = "2019", address = "Hong Kong, China", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D19-1355", doi = "10.18653/v1/D19-1355", pages = "3507--3512" } ```
junnyu/electra_small_discriminator
junnyu
2021-09-22T08:54:15Z
4
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "en", "dataset:openwebtext", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/junnyu tags: - pytorch - electra license: mit datasets: - openwebtext --- # 一、 个人在openwebtext数据集上训练得到的electra-small模型 # 二、 复现结果(dev dataset) |Model|CoLA|SST|MRPC|STS|QQP|MNLI|QNLI|RTE|Avg.| |---|---|---|---|---|---|---|---|---|---| |Metrics|MCC|Acc|Acc|Spearman|Acc|Acc|Acc|Acc|| |ELECTRA-Small-OWT(original)|56.8|88.3|87.4|86.8|88.3|78.9|87.9|68.5|80.36| |**ELECTRA-Small-OWT (this)**| 55.82 |89.67|87.0|86.96|89.28|80.08|87.50|66.07|80.30| # 三、 训练细节 - 数据集 openwebtext - 训练batch_size 256 - 学习率lr 5e-4 - 最大句子长度max_seqlen 128 - 训练total step 62.5W - GPU RTX3090 - 训练时间总共耗费2.5天 # 四、 使用 ```python import torch from transformers.models.electra import ElectraModel, ElectraTokenizer tokenizer = ElectraTokenizer.from_pretrained("junnyu/electra_small_discriminator") model = ElectraModel.from_pretrained("junnyu/electra_small_discriminator") inputs = tokenizer("Beijing is the capital of China.", return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) print(outputs[0].shape) ```
jimregan/wav2vec2-large-xlsr-irish-basic
jimregan
2021-09-22T08:52:55Z
20
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ga", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: ga datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Irish by Jim O'Regan results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ga-IE type: common_voice args: ga-IE metrics: - name: Test WER type: wer value: 47.4 --- # Wav2Vec2-Large-XLSR-Irish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [Irish Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ga-IE", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic") model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Irish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ga-IE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic") model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic") model.to("cuda") # So, tolower() for Irish is a bit complicated: tAthar -> t-athair # toupper() is non-deterministic :) def is_upper_vowel(letter): if letter in ['A', 'E', 'I', 'O', 'U', 'Á', 'É', 'Í', 'Ó', 'Ú']: return True else: return False def irish_lower(word): if len(word) > 1 and word[0] in ['n', 't'] and is_upper_vowel(word[1]): return word[0] + '-' + word[1:].lower() else: return word.lower() def irish_lower_sentence(sentence): return " ".join([irish_lower(w) for w in sentence.split(" ")]) chars_to_ignore_regex = '[,\?\.\!\;\:\"\“\%\‘\”\(\)\*]' def remove_special_characters(sentence): tmp = re.sub('’ ', ' ', sentence) tmp = re.sub("’$", '', tmp) tmp = re.sub('’', '\'', tmp) tmp = re.sub(chars_to_ignore_regex, '', tmp) sentence = irish_lower_sentence(tmp) + ' ' return sentence resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = remove_special_characters(batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 43.7 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](https://github.com/jimregan/wav2vec2-sprint/blob/main/irish/fine-tune-xlsr-wav2vec2-on-irish-asr-with-transformers.ipynb)
jannesg/takalane_zul_roberta
jannesg
2021-09-22T08:52:21Z
4
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "zul", "masked-lm", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - zul thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - zul - fill-mask - pytorch - roberta - masked-lm license: mit --- # Takalani Sesame - Zulu 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_zul_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_zul_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 410000 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_xho_roberta
jannesg
2021-09-22T08:52:19Z
5
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "xho", "masked-lm", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - xho thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - xho - fill-mask - pytorch - roberta - masked-lm license: mit --- # Takalani Sesame - Xhosa 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_xho_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_xho_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 100000 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_ven_roberta
jannesg
2021-09-22T08:52:16Z
5
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "ven", "masked-lm", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - ven thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - ven - fill-mask - pytorch - roberta - masked-lm license: mit --- # Takalani Sesame - Venda 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_ven_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_ven_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 9279 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_ssw_roberta
jannesg
2021-09-22T08:52:08Z
4
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "tn", "masked-lm", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - tn thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - tn - fill-mask - pytorch - roberta - masked-lm license: mit --- # Takalani Sesame - Tswana 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_ssw_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_ssw_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 380 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_sot_roberta
jannesg
2021-09-22T08:52:06Z
4
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "sot", "masked-lm", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - sot thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - sot - fill-mask - pytorch - roberta - masked-lm license: mit --- # Takalani Sesame - Southern Sotho 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_sot_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_sot_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 20000 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_nso_roberta
jannesg
2021-09-22T08:52:04Z
5
1
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "nso", "masked-lm", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - nso thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - nso - fill-mask - pytorch - roberta - masked-lm license: mit --- # Takalani Sesame - Northern Sotho 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_nso_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_nso_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 4746 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
gorkemgoknar/gpt2-small-turkish
gorkemgoknar
2021-09-22T08:29:21Z
241
10
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "turkish", "tr", "dataset:wikipedia-turkish", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - tr thumbnail: tags: - gpt2 - turkish license: apache-2.0 datasets: - wikipedia-turkish metrics: - perplexity - accuracy widget: - text: Bu yazıyı bir bilgisayar yazdı. Yazarken context: '' - text: İnternete kolay erişim sayesinde dünya daha da küçüldü. Bunun sonucunda context: '' --- # Turkish GPT2 Model Finetuned # Türkçe GPT2 Modeli ## Model description This is a GPT2-Small English based model finetuned and additionaly trainied with Wikipedia Articles in Turkish as of 28-10-2020 Live demo based on this work at : https://www.metayazar.com/ Fine tuned writer on this model: https://huggingface.co/gorkemgoknar/gpt2-turkish-writer Work has been done on Pierre Guillou tutorial as on this page. (https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb) Code is converted to work with Fastai 2.X . Using Google Colab for training. Additional tutorial and source will be in https://github.com/gorkemgoknar in later stage. Current accuracy 33 % , Perplexity : 51.88 Models are available: * [gpt2-small-tuned-tr] (https://huggingface.co/gorkemgoknar/gpt2-small-turkish) * [gpt2-small-turkish-writer] (https://huggingface.co/gorkemgoknar/gpt2-turkish-writer) ## Intended uses & limitations #### How to use #### Install ```python from transformers import AutoTokenizer, AutoModelWithLMHead import torch tokenizer = AutoTokenizer.from_pretrained("gorkemgoknar/gpt2-small-turkish") model = AutoModelWithLMHead.from_pretrained("gorkemgoknar/gpt2-small-turkish") # Get sequence length max of 1024 tokenizer.model_max_length=1024 model.eval() # disable dropout (or leave in train mode to finetune) ``` #### Generate 1 word ```python # input sequence text = "Bu yazıyı bilgisayar yazdı." inputs = tokenizer(text, return_tensors="pt") # model output outputs = model(**inputs, labels=inputs["input_ids"]) loss, logits = outputs[:2] predicted_index = torch.argmax(logits[0, -1, :]).item() predicted_text = tokenizer.decode([predicted_index]) # results print('input text:', text) print('predicted text:', predicted_text) # input text: # predicted text: ``` #### Generate Full Sequence ```python # input sequence text = "Bu yazıyı bilgisayar yazdı." inputs = tokenizer(text, return_tensors="pt") # model output using Top-k sampling text generation method sample_outputs = model.generate(inputs.input_ids, pad_token_id=50256, do_sample=True, max_length=50, # put the token number you want top_k=40, num_return_sequences=1) # generated sequence for i, sample_output in enumerate(sample_outputs): print(">> Generated text {}\\\\ \\\\ {}".format(i+1, tokenizer.decode(sample_output.tolist()))) # >> Generated text # ``` #### Limitations and bias The training data used for this model come from Turkish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. ## Training data Wikipedia Turkish article dump as of 28-10-2020 ## Training procedure ## Eval results | epoch\\\\t|train_loss\\\\t|valid_loss\\\\t|accuracy\\\\t|perplexity\\\\t|time | | ----- | -------- |--------- | ---------- | --------- | ----- | |0\\\\t|4.777015\\\\t|4.621834\\\\t|0.292547\\\\t|101.680367\\\\t|2:42:05| |1\\\\t|4.509412\\\\t|4.403999\\\\t|0.305574\\\\t|81.777267\\\\t|1:09:38| |2\\\\t|4.169529\\\\t|4.120755\\\\t|0.324908\\\\t|61.605747\\\\t|1:07:45| |3\\\\t|4.293973\\\\t|4.177899\\\\t|0.317211\\\\t|65.228653\\\\t|1:07:02| |4\\\\t|4.049848\\\\t|3.949103\\\\t|0.338347\\\\t|51.888783\\\\t|1:05:53| #Epoch 0 on Tesla T4, others on V100 ```
gagan3012/k2t-base
gagan3012
2021-09-22T08:27:23Z
87
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t-base", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: Keywords to Sentences tags: - keytotext - k2t-base - Keywords to Sentences license: mit datasets: - WebNLG - Dart metrics: - NLG --- # keytotext ![keytotext (1)](https://user-images.githubusercontent.com/49101362/116334480-f5e57a00-a7dd-11eb-987c-186477f94b6e.png) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface 🤗 [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ## Model: Keytotext is based on the Amazing T5 Model: - `k2t`: [Model](https://huggingface.co/gagan3012/k2t) - `k2t-tiny`: [Model](https://huggingface.co/gagan3012/k2t-tiny) - `k2t-base`: [Model](https://huggingface.co/gagan3012/k2t-base) Training Notebooks can be found in the [`Training Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Training%20Notebooks) Folder ## Usage: Example usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) Example Notebooks can be found in the [`Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Examples) Folder ``` pip install keytotext ``` ![carbon (3)](https://user-images.githubusercontent.com/49101362/116220679-90e64180-a755-11eb-9246-82d93d924a6c.png) ## UI: UI: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ``` pip install streamlit-tags ``` This uses a custom streamlit component built by me: [GitHub](https://github.com/gagan3012/streamlit-tags) ![image](https://user-images.githubusercontent.com/49101362/116162205-fc042980-a6fd-11eb-892e-8f6902f193f4.png)
flax-community/medclip
flax-community
2021-09-22T08:25:55Z
4
2
transformers
[ "transformers", "jax", "tensorboard", "hybrid-clip", "vision", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en tags: - vision license: apache-2.0 --- # MedCLIP ## Model description ## Intended uses & limitations #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data Describe the data you used to train the model. If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data. ## Training procedure Preprocessing, hardware used, hyperparameters... ## Eval results ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
flax-community/gpt-neo-1.3B-apps-all-2
flax-community
2021-09-22T08:25:21Z
5
2
transformers
[ "transformers", "pytorch", "jax", "gpt_neo", "text-generation", "code_synthesis", "dataset:apps", "arxiv:2107.03374", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en - python license: mit tags: - gpt_neo - code_synthesis datasets: - apps --- # GPT-Code-Clippy-1.3B-APPS-all ## Model Description GPT-Neo-1.3B-APPS-all is a GPT-Neo-1.3B fine-tuned on APPS dataset. This model is specialized to solve programming tasks. ## Training data The model is trained on the [Automated Programming Progress Standard (APPS) dataset](https://github.com/hendrycks/apps). The dataset consists of 10,000 coding problems in total, with 131,836 test cases for checking solutions and 232,444 ground-truth solutions written by humans. Problems can be complicated, as the average length of a problem is 293.2 words. The data are split evenly into training and test sets, with 5,000 problems each. This model is fine-tuned using most of the APPS dataset including both train and test split to explore the impact of this training task on model performance on other code synthesis evaluation metrics. A model fine-tuned on train set only can be found [here](https://huggingface.co/flax-community/gpt-neo-1.3B-apps). ## Training procedure The training script used to train this model can be found [here](https://github.com/ncoop57/gpt-code-clippy/blob/camera-ready/training/run_clm_apps.py). Training is done for 5 epochs using AdamW optimizer and leaner decay learning rate schedule with 800 warmup steps. To reproduce the training one can use this command with the above script: ``` python run_clm_apps.py \ --output_dir ./gpt-neo-125M-apps \ --model_name_or_path EleutherAI/gpt-neo-125B \ --dataset_name ./apps.py \ --dataset_config_name formatted \ --do_train --do_eval \ --block_size="1024" \ --per_device_train_batch_size="3" \ --per_device_eval_batch_size="3" \ --preprocessing_num_workers="16" \ --learning_rate="8e-5" \ --warmup_steps="800" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --weight_decay="0.1" \ --overwrite_output_dir \ --num_train_epochs="5" \ --logging_steps="50" \ --eval_steps="2000" \ --report_to="wandb" \ --dtype="bfloat16" \ --save_strategy epoch \ --gradient_accumulation_steps 1 \ --all_data true \ ``` ## Intended Use and Limitations The model is fine-tuned to solve programming problems given a text description and optional starter code. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py from transformers import AutoModelForCausalLM, AutoTokenizer, FlaxAutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("flax-community/gpt-neo-1.3B-apps-all-2") tokenizer = AutoTokenizer.from_pretrained("flax-community/gpt-neo-1.3B-apps-all-2") prompt = """ A function to greet user. Given a user name it should say hello def greet(name): ANSWER: """ input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(device) start = input_ids.size(1) out = model.generate(input_ids, do_sample=True, max_length=50, num_beams=2, early_stopping=True, eos_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(out[0][start:])) ``` ### Limitations and Biases The model is intended to be used for research purposes and comes with no guarantees of quality of generated code. The paper ["Evaluating Large Language Models Trained on Code"](https://arxiv.org/abs/2107.03374) from OpenAI has a good discussion on what the impact of a large language model trained on code could be. Therefore, some parts of their discuss are highlighted here as it pertains to this dataset and models that may be trained from it. **As well as some differences in views from the paper, particularly around legal implications**. 1. **Over-reliance:** This model may generate plausible solutions that may appear correct, but are not necessarily the correct solution. Not properly evaluating the generated code may cause have negative consequences such as the introduction of bugs, or the introduction of security vulnerabilities. Therefore, it is important that users are aware of the limitations and potential negative consequences of using this language model. 2. **Economic and labor market impacts:** Large language models trained on large code datasets such as this one that are capable of generating high-quality code have the potential to automate part of the software development process. This may negatively impact software developers. However, as discussed in the paper, as shown in the Summary Report of software developers from [O*NET OnLine](https://www.onetonline.org/link/summary/15-1252.00), developers don't just write software. 5. **Biases:** The model is trained on data containing prompt questions formatted in specific way. The performance of the model can be worse if the prompt formatting is different from that used in APPS dataset. This model is finetuned GPT-Neo and might have inhereted biases and limitations from it. See [GPT-Neo model card](https://huggingface.co/EleutherAI/gpt-neo-125M#limitations-and-biases) for details. ## Eval results Coming soon...
digitalepidemiologylab/covid-twitter-bert-v2-mnli
digitalepidemiologylab
2021-09-22T08:20:04Z
14
0
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "Twitter", "COVID-19", "tensorflow", "zero-shot-classification", "en", "dataset:mnli", "arxiv:1909.00161", "arxiv:2005.07503", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:05Z
--- language: - en thumbnail: https://raw.githubusercontent.com/digitalepidemiologylab/covid-twitter-bert/master/images/COVID-Twitter-BERT_small.png tags: - Twitter - COVID-19 - text-classification - pytorch - tensorflow - bert license: mit datasets: - mnli pipeline_tag: zero-shot-classification widget: - text: To stop the pandemic it is important that everyone turns up for their shots. candidate_labels: health, sport, vaccine, guns --- # COVID-Twitter-BERT v2 MNLI ## Model description This model provides a zero-shot classifier to be used in cases where it is not possible to finetune CT-BERT on a specific task, due to lack of labelled data. The technique is based on [Yin et al.](https://arxiv.org/abs/1909.00161). The article describes a very clever way of using pre-trained MNLI models as zero-shot sequence classifiers. The model is already finetuned on 400'000 generaic logical tasks. We can then use it as a zero-shot classifier by reformulating the classification task as a question. Let's say we want to classify COVID-tweets as vaccine-related and not vaccine-related. The typical way would be to collect a few hunder pre-annotated tweets and organise them in two classes. Then you would finetune the model on this. With the zero-shot mnli-classifier, you can instead reformulate your question as "This text is about vaccines", and use this directly on inference - without any training. Find more info about the model on our [GitHub page](https://github.com/digitalepidemiologylab/covid-twitter-bert). ## Usage Please note that how you formulate the question can give slightly different results. Collecting a training set and finetuning on this, will most likely give you better accuracy. The easiest way to try this out is by using the Hugging Face pipeline. This uses the default Enlish template where it puts the text "This example is " in front of the text. ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="digitalepidemiologylab/covid-twitter-bert-v2-mnli") ``` You can then use this pipeline to classify sequences into any of the class names you specify. ```python sequence_to_classify = 'To stop the pandemic it is important that everyone turns up for their shots.' candidate_labels = ['health', 'sport', 'vaccine','guns'] hypothesis_template = 'This example is {}.' classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template, multi_class=True) ``` ## Training procedure The model is finetuned on the 400k large [MNLI-task](https://cims.nyu.edu/~sbowman/multinli/). ## References ```bibtex @article{muller2020covid, title={COVID-Twitter-BERT: A Natural Language Processing Model to Analyse COVID-19 Content on Twitter}, author={M{\"u}ller, Martin and Salath{\'e}, Marcel and Kummervold, Per E}, journal={arXiv preprint arXiv:2005.07503}, year={2020} } ``` or ``` Martin Müller, Marcel Salathé, and Per E. Kummervold. COVID-Twitter-BERT: A Natural Language Processing Model to Analyse COVID-19 Content on Twitter. arXiv preprint arXiv:2005.07503 (2020). ```
Coolhand/Abuela
Coolhand
2021-09-22T08:19:41Z
0
1
null
[ "image_restoration", "superresolution", "en", "arxiv:2009.07047", "license:mit", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: - en thumbnail: https://github.com/Nick-Harvey/for_my_abuela/blob/master/cuban_large.jpg tags: - image_restoration - superresolution license: mit metrics: --- @inproceedings{wan2020bringing, title={Bringing Old Photos Back to Life}, author={Wan, Ziyu and Zhang, Bo and Chen, Dongdong and Zhang, Pan and Chen, Dong and Liao, Jing and Wen, Fang}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={2747--2757}, year={2020} } @article{wan2020old, title={Old Photo Restoration via Deep Latent Space Translation}, author={Wan, Ziyu and Zhang, Bo and Chen, Dongdong and Zhang, Pan and Chen, Dong and Liao, Jing and Wen, Fang}, journal={arXiv preprint arXiv:2009.07047}, year={2020} }
cristian-popa/bart-tl-ng
cristian-popa
2021-09-22T08:18:06Z
21
4
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "topic labeling", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - en <!-- thumbnail: https://raw.githubusercontent.com/JetRunner/BERT-of-Theseus/master/bert-of-theseus.png --> tags: - topic labeling license: apache-2.0 metrics: - ndcg --- # MyModel ## Model description This is the `BART-TL-ng` model from the paper [BART-TL: Weakly-Supervised Topic Label Generation](https://www.aclweb.org/anthology/2021.eacl-main.121.pdf). We aim to solve the topic labeling task using generative methods, rather than selection from a pool of labels as was done in previous State of the Art works. For more details not covered here, you can read the paper or look at the open-source implementation: https://github.com/CristianViorelPopa/BART-TL-topic-label-generation. There are two models made available from the paper: * [BART-TL-all](https://huggingface.co/cristian-popa/bart-tl-all) * [BART-TL-ng](https://huggingface.co/cristian-popa/bart-tl-ng) ## Intended uses & limitations #### How to use The model takes in a topic, represented as a space-separated series of words. Such topics can be generated using LDA, as was done for gathering the fine-tuning dataset for the model. ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM mname = "cristian-popa/bart-tl-ng" tokenizer = AutoTokenizer.from_pretrained(mname) model = AutoModelForSeq2SeqLM.from_pretrained(mname) input = "site web google search website online internet social content user" enc = tokenizer(input, return_tensors="pt", truncation=True, padding="max_length", max_length=128) outputs = model.generate( input_ids=enc.input_ids, attention_mask=enc.attention_mask, max_length=15, min_length=1, do_sample=False, num_beams=25, length_penalty=1.0, repetition_penalty=1.5 ) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # windows live messenger ``` #### Limitations and bias The model may not generate accurate labels for topics from domains unrelated to the ones it was fine-tuned on, such as gastronomy. ## Training data The model was fine-tuned on 5 different StackExchange corpora (see https://archive.org/download/stackexchange for a full list of existing such corpora): English, biology, economics, law, and photography. 100 topics are extracted using LDA for each of these corpora, filtered for coherence and then used for obtaining the final model here. ## Training procedure The large Facebook BART model is fine-tuned in a weakly-supervised manner, making use of the unsupervised candidate selection of the [NETL](https://www.aclweb.org/anthology/C16-1091.pdf) method, along with n-grams from the topics. The dataset is a one-to-many mapping from topics to labels. More details on training and parameters can be found in the [paper](https://www.aclweb.org/anthology/2021.eacl-main.121.pdf) or by following [this notebook](https://github.com/CristianViorelPopa/BART-TL-topic-label-generation/blob/main/notebooks/end_to_end_workflow.ipynb). ## Eval results model | Top-1 Avg. | Top-3 Avg. | Top-5 Avg. | nDCG-1 | nDCG-3 | nDCG-5 ------------|------------|------------|------------|--------|--------|------- NETL (U) | 2.66 | 2.59 | 2.50 | 0.83 | 0.85 | 0.87 NETL (S) | 2.74 | 2.57 | 2.49 | 0.88 | 0.85 | 0.88 BART-TL-all | 2.64 | 2.52 | 2.43 | 0.83 | 0.84 | 0.87 BART-TL-ng | 2.62 | 2.50 | 2.33 | 0.82 | 0.84 | 0.85 ### BibTeX entry and citation info ```bibtex @inproceedings{popa-rebedea-2021-bart, title = "{BART}-{TL}: Weakly-Supervised Topic Label Generation", author = "Popa, Cristian and Rebedea, Traian", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.eacl-main.121", pages = "1418--1425", abstract = "We propose a novel solution for assigning labels to topic models by using multiple weak labelers. The method leverages generative transformers to learn accurate representations of the most important topic terms and candidate labels. This is achieved by fine-tuning pre-trained BART models on a large number of potential labels generated by state of the art non-neural models for topic labeling, enriched with different techniques. The proposed BART-TL model is able to generate valuable and novel labels in a weakly-supervised manner and can be improved by adding other weak labelers or distant supervision on similar tasks.", } ```
bagdaebhishek/IndianPoliticalTweetsLM
bagdaebhishek
2021-09-22T07:49:02Z
7
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "India", "politics", "tweets", "BJP", "Congress", "AAP", "lm-head", "en", "dataset:Twitter", "dataset:IndianPolitics", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://bagdeabhishek.github.io/twitterAnalysis_files/networkfin.jpg tags: - India - politics - tweets - BJP - Congress - AAP - pytorch - gpt2 - lm-head - text-generation license: apache-2.0 datasets: - Twitter - IndianPolitics --- # Model name Indian Political Tweets LM ## Model description Note: This model is based on GPT2, if you want a bigger model based on GPT2-medium and finetuned on the same data please take a look at the [IndianPoliticalTweetsLMMedium](https://huggingface.co/bagdaebhishek/IndianPoliticalTweetsLMMedium) model. This is a GPT2 Language model with LM head fine-tuned on tweets crawled from handles which belong predominantly to Indian Politics. For more information about the crawled data, you can go through this [blog](https://bagdeabhishek.github.io/twitterAnalysis) post. ## Intended uses & limitations This finetuned model can be used to generate tweets which are related to Indian politics. #### How to use ```python from transformers import AutoTokenizer,AutoModelWithLMHead,pipeline tokenizer = AutoTokenizer.from_pretrained("bagdaebhishek/IndianPoliticalTweetsLM") model = AutoModelWithLMHead.from_pretrained("bagdaebhishek/IndianPoliticalTweetsLM") text_generator = pipeline("text-generation",model=model, tokenizer=tokenizer) init_sentence = "India will always be" print(text_generator(init_sentence)) ``` #### Limitations and bias 1. The tweets used to train the model were not manually labelled, so the generated text may not always be in English. I've cleaned the data to remove non-English tweets but the model may generate "Hinglish" text and hence no assumptions should be made about the language of the generated text. 2. I've taken enough care to remove tweets from twitter handles which are not very influential but since it's not curated by hand there might be some artefacts like "-sent via NamoApp" etc. 3. Like any language model trained on real-world data this model also exhibits some biases which unfortunately are a part of the political discourse on Twitter. Please keep this in mind while using the output from this model. ## Training data I used the pre-trained gpt2 model from Huggingface transformers repository and fine-tuned it on custom data set crawled from twitter. The method used to identify the political handles is mentioned in detail in a [blog](https://bagdeabhishek.github.io/twitterAnalysis) post. I used tweets from both the Pro-BJP and Anti-BJP clusters mentioned in the blog. ## Training procedure For pre-processing, I removed tweets from handles which are not very influential in their cluster. I removed them by calculating Eigenvector centrality on the twitter graph and pruning handles which have this measure below a certain threshold. This threshold was set manually after experimenting with different values. I then separated tweets by these handles based on their language. I trained the LM with English tweets from both handles. ### Hardware 1. GPU: GTX 1080Ti 2. CPU: Ryzen 3900x 3. RAM: 32GB This model took roughly 36 hours to fine-tune.
csukuangfj/icefall_asr_yesno_tdnn
csukuangfj
2021-09-22T02:33:22Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
## Pre-trained TDNN models for the yesno dataset with icefall. Refer to <https://github.com/k2-fsa/icefall/tree/master/egs/yesno/ASR> for more information about this pre-trained model. You can find usage instructions there. ## Sound files for testing the pre-trained model The folder `test_waves` contains test sound files. They are downloaded from <https://www.openslr.org/1/>. There are 60 files in the dataset, 30 are used for training. The remaining 30 files, contained in `test_waves` are kept for testing. The code for splitting the dataset can be found at <https://github.com/lhotse-speech/lhotse/blob/master/lhotse/recipes/yesno.py#L138> ```python wave_files = list(corpus_dir.glob("*.wav")) assert len(wave_files) == 60 wave_files.sort() train_set = wave_files[::2] test_set = wave_files[1::2] assert len(train_set) == 30 assert len(test_set) == 30 ```
SIKU-BERT/sikuroberta
SIKU-BERT
2021-09-22T00:22:36Z
224
14
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "chinese", "classical chinese", "literary chinese", "ancient chinese", "roberta", "zh", "license:apache-2.0", "autotrain_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - "zh" thumbnail: "https://raw.githubusercontent.com/SIKU-BERT/SikuBERT/main/appendix/sikubert.png" tags: - "chinese" - "classical chinese" - "literary chinese" - "ancient chinese" - "bert" - "roberta" - "pytorch" inference: false license: "apache-2.0" --- # SikuBERT ## Model description ![SikuBERT](https://raw.githubusercontent.com/SIKU-BERT/SikuBERT-for-digital-humanities-and-classical-Chinese-information-processing/main/appendix/sikubert.png) Digital humanities research needs the support of large-scale corpus and high-performance ancient Chinese natural language processing tools. The pre-training language model has greatly improved the accuracy of text mining in English and modern Chinese texts. At present, there is an urgent need for a pre-training model specifically for the automatic processing of ancient texts. We used the verified high-quality “Siku Quanshu” full-text corpus as the training set, based on the BERT deep language model architecture, we constructed the SikuBERT and SikuRoBERTa pre-training language models for intelligent processing tasks of ancient Chinese. ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("SIKU-BERT/sikuroberta") model = AutoModel.from_pretrained("SIKU-BERT/sikuroberta") ``` ## About Us We are from Nanjing Agricultural University. > Created with by SIKU-BERT [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/SIKU-BERT/SikuBERT-for-digital-humanities-and-classical-Chinese-information-processing)
VirenS13117/distilbert-base-uncased-finetuned-cola
VirenS13117
2021-09-21T22:22:02Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5286324175580216 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7809 - Matthews Correlation: 0.5286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5299 | 1.0 | 535 | 0.5040 | 0.4383 | | 0.3472 | 2.0 | 1070 | 0.5284 | 0.4911 | | 0.2333 | 3.0 | 1605 | 0.6633 | 0.5091 | | 0.1733 | 4.0 | 2140 | 0.7809 | 0.5286 | | 0.1255 | 5.0 | 2675 | 0.8894 | 0.5282 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
huggingtweets/boss_lady_fenja-ladyfenja_promo
huggingtweets
2021-09-21T16:19:05Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/boss_lady_fenja-ladyfenja_promo/1632241140819/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1424482960749776907/NL5l0P9Q_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1432371607977275395/j60VC-cp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">✨Boss Lady Fenja✨ 9.6% 🦋 & Boss_Lady_Fenja_promo</div> <div style="text-align: center; font-size: 14px;">@boss_lady_fenja-ladyfenja_promo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ✨Boss Lady Fenja✨ 9.6% 🦋 & Boss_Lady_Fenja_promo. | Data | ✨Boss Lady Fenja✨ 9.6% 🦋 | Boss_Lady_Fenja_promo | | --- | --- | --- | | Tweets downloaded | 3153 | 654 | | Retweets | 380 | 240 | | Short tweets | 646 | 160 | | Tweets kept | 2127 | 254 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jpqrjjb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @boss_lady_fenja-ladyfenja_promo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10coew7p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10coew7p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/boss_lady_fenja-ladyfenja_promo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lighteternal/nli-xlm-r-greek
lighteternal
2021-09-21T16:01:42Z
57
2
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "xlm-roberta-base", "zero-shot-classification", "el", "en", "dataset:multi_nli", "dataset:snli", "dataset:allnli_greek", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:05Z
--- language: - el - en tags: - xlm-roberta-base datasets: - multi_nli - snli - allnli_greek metrics: - accuracy pipeline_tag: zero-shot-classification widget: - text: "Η Facebook κυκλοφόρησε τα πρώτα «έξυπνα» γυαλιά επαυξημένης πραγματικότητας." candidate_labels: "τεχνολογία, πολιτική, αθλητισμός" multi_class: false license: apache-2.0 --- # Cross-Encoder for Greek Natural Language Inference (Textual Entailment) & Zero-Shot Classification ## By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC) This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. ## Training Data The model was trained on the the combined Greek+English version of the AllNLI dataset(sum of [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/)). The Greek part was created using the EN2EL NMT model available [here](https://huggingface.co/lighteternal/SSE-TUC-mt-en-el-cased). The model can be used in two ways: * NLI/Textual Entailment: For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral. * Zero-shot classification through the Huggingface pipeline: Given a sentence and a set of labels/topics, it will output the likelihood of the sentence belonging to each of the topic. Under the hood, the logit for entailment between the sentence and each label is taken as the logit for the candidate label being valid. ## Performance Evaluation on classification accuracy (entailment, contradiction, neutral) on mixed (Greek+English) AllNLI-dev set: | Metric | Value | | --- | --- | | Accuracy | 0.8409 | ## To use the model for NLI/Textual Entailment #### Usage with sentence_transformers Pre-trained models can be used like this: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('lighteternal/nli-xlm-r-greek') scores = model.predict([('Δύο άνθρωποι συναντιούνται στο δρόμο', 'Ο δρόμος έχει κόσμο'), ('Ένα μαύρο αυτοκίνητο ξεκινάει στη μέση του πλήθους.', 'Ένας άντρας οδηγάει σε ένα μοναχικό δρόμο'), ('Δυο γυναίκες μιλάνε στο κινητό', 'Το τραπέζι ήταν πράσινο')]) #Convert scores to labels label_mapping = ['contradiction', 'entailment', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)] print(scores, labels) # Οutputs #[[-3.1526504 2.9981945 -0.3108107] # [ 5.0549307 -2.757949 -1.6220676] # [-0.5124733 -2.2671669 3.1630592]] ['entailment', 'contradiction', 'neutral'] ``` #### Usage with Transformers AutoModel You can use the model also directly with Transformers library (without SentenceTransformers library): ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained('lighteternal/nli-xlm-r-greek') tokenizer = AutoTokenizer.from_pretrained('lighteternal/nli-xlm-r-greek') features = tokenizer(['Δύο άνθρωποι συναντιούνται στο δρόμο', 'Ο δρόμος έχει κόσμο'], ['Ένα μαύρο αυτοκίνητο ξεκινάει στη μέση του πλήθους.', 'Ένας άντρας οδηγάει σε ένα μοναχικό δρόμο.'], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): scores = model(**features).logits label_mapping = ['contradiction', 'entailment', 'neutral'] labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)] print(labels) ``` ## To use the model for Zero-Shot Classification This model can also be used for zero-shot-classification: ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model='lighteternal/nli-xlm-r-greek') sent = "Το Facebook κυκλοφόρησε τα πρώτα «έξυπνα» γυαλιά επαυξημένης πραγματικότητας" candidate_labels = ["πολιτική", "τεχνολογία", "αθλητισμός"] res = classifier(sent, candidate_labels) print(res) #outputs: #{'sequence': 'Το Facebook κυκλοφόρησε τα πρώτα «έξυπνα» γυαλιά επαυξημένης πραγματικότητας', 'labels': ['τεχνολογία', 'αθλητισμός', 'πολιτική'], 'scores': [0.8380699157714844, 0.09086982160806656, 0.07106029987335205]} ``` ### Acknowledgement The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call) ### Citation info Citation for the Greek model TBA. Based on the work [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) Kudos to @nreimers (Nils Reimers) for his support on Github .
alexanderfalk/danbert-small-cased
alexanderfalk
2021-09-21T15:57:39Z
14
1
transformers
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "named entity recognition", "token criticality", "da", "en", "license:apache-2.0", "autotrain_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - da - en thumbnail: tags: - named entity recognition - token criticality license: apache-2.0 datasets: - custom danish dataset inference: false metrics: - array of metric identifiers --- # DanBERT ## Model description DanBERT is a danish pre-trained model based on BERT-Base. The pre-trained model has been trained on more than 2 million sentences and 40 millions, danish words. The training has been conducted as part of a thesis. The model can be found at: * [danbert-da](https://huggingface.co/alexanderfalk/danbert-small-cased) ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("alexanderfalk/danbert-small-cased") model = AutoModel.from_pretrained("alexanderfalk/danbert-small-cased") ``` ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020}, title={Anonymization of Danish, Real-Time Data, and Personalized Modelling}, author={Alexander Falk}, } ```
AkshaySg/LanguageIdentification
AkshaySg
2021-09-21T15:45:47Z
2
0
null
[ "LID", "spoken language recognition", "multilingual", "dataset:VoxLingua107", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: multilingual tags: - LID - spoken language recognition license: apache-2.0 datasets: - VoxLingua107 metrics: - ER inference: false --- # Spoken Language Identification Model ## Model description The model can classify a speech utterance according to the language spoken. It covers following different languages ( English, Indonesian, Japanese, Korean, Thai, Vietnamese, Mandarin Chinese).