modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-07 18:30:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
544 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-07 18:30:28
card
stringlengths
11
1.01M
morell23/epi-noiseoffset2
morell23
2023-08-09T09:52:34Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-09T09:52:34Z
--- license: creativeml-openrail-m ---
jayavibhav/mpnet-classification-10ksamples
jayavibhav
2023-08-09T09:47:00Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "mpnet", "text-classification", "generated_from_trainer", "base_model:microsoft/mpnet-base", "base_model:finetune:microsoft/mpnet-base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T09:09:42Z
--- base_model: microsoft/mpnet-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: mpnet-classification-10ksamples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mpnet-classification-10ksamples This model is a fine-tuned version of [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1894 - Accuracy: 0.9683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1426 | 1.0 | 1250 | 0.3418 | 0.9266 | | 0.0229 | 2.0 | 2500 | 0.1894 | 0.9683 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jayavibhav/roberta-classification-10ksamples
jayavibhav
2023-08-09T09:43:45Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T08:25:40Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-classification-10ksamples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-classification-10ksamples This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0123 - Accuracy: 0.9983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.066 | 1.0 | 1250 | 0.0775 | 0.9877 | | 0.0174 | 2.0 | 2500 | 0.0123 | 0.9983 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Drake123/my-pet-cat
Drake123
2023-08-09T09:37:03Z
11
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T09:32:46Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Cat Dreambooth model trained by Drake123 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: VJCET6 Sample pictures of this concept: ![0](https://huggingface.co/Drake123/my-pet-cat/resolve/main/sample_images/ena_(1).jpg)
MRNH/mbart-italian-grammar-corrector
MRNH
2023-08-09T09:32:13Z
139
1
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "grammatical error correction", "GEC", "italian", "it", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-28T15:01:42Z
--- language: - it pipeline_tag: text2text-generation metrics: - f1 tags: - grammatical error correction - GEC - italian --- This is a fine-tuned version of Multilingual Bart trained on Italian in particular on the public dataset MERLIN for Grammatical Error Correction. To initialize the model: from transformers import MBartForConditionalGeneration, MBart50TokenizerFast model = MBartForConditionalGeneration.from_pretrained("MRNH/mbart-italian-grammar-corrector") To generate text using the model: tokenizer = MBart50TokenizerFast.from_pretrained("MRNH/mbart-italian-grammar-corrector", src_lang="it_IT", tgt_lang="it_IT") input = tokenizer("I was here yesterday to studying",text_target="I was here yesterday to study", return_tensors='pt') output = model.generate(input["input_ids"],attention_mask=input["attention_mask"],forced_bos_token_id=tokenizer_it.lang_code_to_id["it_IT"]) Training of the model is performed using the following loss computation based on the hidden state output h: h.logits, h.loss = model(input_ids=input["input_ids"], attention_mask=input["attention_mask"], labels=input["labels"])
rjwittams/ppo-Lander
rjwittams
2023-08-09T09:25:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T09:25:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 243.22 +/- 25.91 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
carvychen/china_chic
carvychen
2023-08-09T09:21:49Z
4
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "license:openrail++", "region:us" ]
text-to-image
2023-08-09T06:16:43Z
--- license: openrail++ base_model: ../../pretrained/stable-diffusion-xl-base-1.0 instance_prompt: chinachic1 tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - carvychen/china_chic These are LoRA adaption weights for ../../pretrained/stable-diffusion-xl-base-1.0. The weights were trained on chinachic1 using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: True. Special VAE used for training: ../../pretrained/sdxl-vae-fp16-fix.
nathanmo/roberta-large-peft-lora
nathanmo
2023-08-09T09:04:39Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T09:04:28Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
weav-geng/llama2-qlora-finetuned-midjourney-new-v7
weav-geng
2023-08-09T08:56:55Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-09T08:56:50Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
HasanErdin/QL-Taxi_v3
HasanErdin
2023-08-09T08:55:59Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T08:55:56Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: QL-Taxi_v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.42 +/- 2.84 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="HasanErdin/QL-Taxi_v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
redstonehero/yiffymix_32
redstonehero
2023-08-09T08:51:06Z
21
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T08:16:53Z
--- license: creativeml-openrail-m library_name: diffusers ---
Adulala20/dqn-PongNoFrameskip-v4
Adulala20
2023-08-09T08:45:04Z
0
0
stable-baselines3
[ "stable-baselines3", "PongNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T07:19:32Z
--- library_name: stable-baselines3 tags: - PongNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PongNoFrameskip-v4 type: PongNoFrameskip-v4 metrics: - type: mean_reward value: -7.00 +/- 9.43 name: mean_reward verified: false --- # **DQN** Agent playing **PongNoFrameskip-v4** This is a trained model of a **DQN** agent playing **PongNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env PongNoFrameskip-v4 -orga Adulala20 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env PongNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env PongNoFrameskip-v4 -orga Adulala20 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env PongNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env PongNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env PongNoFrameskip-v4 -f logs/ -orga Adulala20 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
jakezou/pyramid
jakezou
2023-08-09T08:43:56Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-09T08:43:53Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: jakezou/pyramid 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
wangxso/ppo-Huggy
wangxso
2023-08-09T08:32:51Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-09T08:32:41Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: wangxso/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
echidna/UtilLora
echidna
2023-08-09T08:27:14Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-26T03:00:13Z
--- license: creativeml-openrail-m --- - 自分用に作ったLoRAを置いてます - いずれもSD1.x系です --- # メイド服調整LoRA (2023-07-26) [maidbikini_v5](maidbikini_v5.safetensors) ![maidbikini_v5](img/maidbikini_v5.png) - メイド服の特徴を保ったまま露出度を変化させます - プラス適用でビキニメイド服、マイナス適用で伝統的なメイド服になります - メイドさん以外にも使用できますがフリルなどの特徴が現れるかもしれません(要検証) - Hires.Fixには非推奨 - 推奨ワード:maid,maid headdress, maid apron --- # チベスナ顔LoRA (2023-08-09) [tibesuna_gao_v1](tibesuna_gao_v1.safetensors) ![tibesuna_gao_v1](img/tibesuna_gao_v1.png) - チベットスナギツネのような表情になります - 目は細く、黒目がちに、口は三角になります。 - 強度は 1.0 ~ 1.5ぐらいを推奨 - 正面顔推奨。横顔は崩れると思います。 - 顔が小さいと潰れやすいので適宜i2iやinpaintで修正してください - 推奨ワード:triangle mouth, open mouth,black eyes,half-closed eyes
LYJ123123/segformer-b0-scene-parse-150
LYJ123123
2023-08-09T08:27:09Z
34
0
transformers
[ "transformers", "pytorch", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2023-08-09T08:18:40Z
--- license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 4.9393 - Mean Iou: 0.0036 - Mean Accuracy: 0.0214 - Overall Accuracy: 0.0867 - Per Category Iou: [0.16545709180085544, 0.0, 0.0, 0.0, 0.0, 0.058472783227543755, nan, 0.0, 0.0, 0.0, 0.007622227522060578, nan, 3.137911197113122e-05, 0.0, 0.058198708972300964, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.041340794105739556, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0024778587375187066, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.016656203154428628, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0007263579350175389, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0697279103015839, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.012292855202390655, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0] - Per Category Accuracy: [0.18326833008776816, nan, 0.0, 0.0, 0.0, 0.09695526450076544, nan, nan, 0.0, nan, 0.009522447471605468, nan, 0.0035169988276670576, 0.0, 0.06740772973614463, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.07055362102652567, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0025769907891715358, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.018805149717922753, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0010196214966054064, nan, nan, nan, nan, nan, nan, 0.23142163272931066, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.019714628036161638, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.8574 | 1.0 | 20 | 4.9393 | 0.0036 | 0.0214 | 0.0867 | [0.16545709180085544, 0.0, 0.0, 0.0, 0.0, 0.058472783227543755, nan, 0.0, 0.0, 0.0, 0.007622227522060578, nan, 3.137911197113122e-05, 0.0, 0.058198708972300964, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.041340794105739556, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0024778587375187066, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.016656203154428628, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0007263579350175389, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0697279103015839, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.012292855202390655, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0] | [0.18326833008776816, nan, 0.0, 0.0, 0.0, 0.09695526450076544, nan, nan, 0.0, nan, 0.009522447471605468, nan, 0.0035169988276670576, 0.0, 0.06740772973614463, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.07055362102652567, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0025769907891715358, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.018805149717922753, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0010196214966054064, nan, nan, nan, nan, nan, nan, 0.23142163272931066, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.019714628036161638, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan] | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
norkart/sammendrag
norkart
2023-08-09T08:22:58Z
127
2
transformers
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "text-generation-inference", "no", "nb", "dataset:navjordj/SNL_summarization", "dataset:navjordj/VG_summarization", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-08T09:51:28Z
--- license: apache-2.0 datasets: - navjordj/SNL_summarization - navjordj/VG_summarization language: - 'no' - nb tags: - text-generation-inference widget: - text: >- Albrecht hadde et stort engasjement for sjeldent oppført repertoar, særlig fra romantikken, og for samtidskomponister. Han var aktiv som gjestedirigent ved mange av ledende orkestrene i Europa og gjestet Oslo-Filharmonien ved flere anledninger. Bakgrunn Albrecht var født og oppvokst i Essen. Faren var musikkviteren Hans Albrecht. Albrecht studerte først ved høyskolen i Kiel og deretter i Hamburg, hvor han hadde dirgenten Wilhelm Brückner-Rüggeberg som lærer. Karriere Albrecht vant førsteprisen ved den internasjonale konkurransen for unge dirigenter i Besançon i 1957 (Concours International de jeunes chefs d’orchestre de Besançon). Han ble engasjert som repetitør ved operaen i Stuttgart og ble så kapellmester ved operaen i Mainz.I 1963 ble Albrecht utnevnt til generalmusikkdirektør i Lübeck. Han var da 28 år gammel og den yngste som hadde en slik stilling i Tyskland. Han gikk videre til den tilsvarende stillingen i Kassel i 1966–1972.Fra 1972 var Albrecht engasjert som førstedirigent ved Deutsche Oper i Berlin. Han var sjefdirigent for Tonhalle-orkesteret i Zürich 1975–1980. Etter noen år som frilanser ble han musikksjef ved Staatsoper Hamburg i 1988–1997.I disse årene dirigerte Albrecht en rekke verker av samtidskomponister, som Rolf Liebermann, György Ligeti, Hans Werner Henze og Alfred Schnittke. Mye oppmerksomhet fikk uroppførelsen av Shakespeare-operaen Lear av Aribert Reimann i München i 1978.Albrecht var sjefdirigent for Tsjekkisk Filharmonisk Orkester i 1993–1996. --- This model is based on BRIO for Yale and trained for summarization in Norwegian. The dataset it has been trained on consists of data from SNL and VG articles.
roflememe/roflememe-rvc-models
roflememe
2023-08-09T08:21:41Z
0
2
null
[ "music", "rvc", "audio-to-audio", "en", "uk", "license:mit", "region:us" ]
audio-to-audio
2023-07-22T08:17:27Z
--- license: mit language: - en - uk tags: - music - rvc pipeline_tag: audio-to-audio --- # roflememe's RVC/V2 models ![It's just a pic.](https://media.discordapp.net/attachments/942477980167446538/1132238284769214534/IMG_20230722_120908_056.jpg "Thumpnail image 4 fun.") ## Ukrainian: Тут я публікую свої архівні моделі, які використовував для своїх каверів на [YouTube](https://www.youtube.com/@roflememe) та [TikTok](https://tiktok.com/@roflememe). Зокрема, тут є моделі, створені на попередній версії "**RVC**", але я буду старатись позначати їх окремо (як і пресети від "harvest" до "magnio-creepe"). Більшість моделів складаються з голосів Українських виконавців і знаменитостей. Якщо ви бажаєте використовувати мої моделі у своїх відео, будь ласка, по можливості позначайте авторство і посилання на мій профіль у Hugging Face - [roflememe](https://huggingface.co/roflememe). ## English: Here I publish my archived models that I used for my covers on [YouTube](https://www.youtube.com/@roflememe) and [TikTok](https://tiktok.com/@roflememe). In particular, there are models created on the previous version of "**RVC**", but I will try to mark them separately (as well as presets from "harvest" to "magnio-creepe"). Most of the models consist of the voices of Ukrainian artists and celebrities If you would like to use my models in your videos, please, if possible, mark me as an author and put link to my Hugging Face profile - [roflememe](https://huggingface.co/roflememe). # Links: [RVC](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI). **За будь якими питаннями/For any questions:** roflememe@gmail.com ###### roflememe 2023.
jayavibhav/distilbert-classification-10ksamples
jayavibhav
2023-08-09T08:21:27Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T08:03:03Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-classification-10ksamples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-classification-10ksamples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1977 - Accuracy: 0.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1853 | 1.0 | 625 | 0.1682 | 0.9577 | | 0.0436 | 2.0 | 1250 | 0.1977 | 0.96 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
kyleeasterly/openllama-7b_purple-aerospace-v1-80-64
kyleeasterly
2023-08-09T08:16:03Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-09T08:10:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v1-80-32
kyleeasterly
2023-08-09T08:15:39Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T08:10:18Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v1-80-28
kyleeasterly
2023-08-09T08:15:01Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-09T08:10:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v1-80-26
kyleeasterly
2023-08-09T08:14:52Z
4
0
peft
[ "peft", "region:us" ]
null
2023-08-09T08:10:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v1-80-24
kyleeasterly
2023-08-09T08:14:40Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T08:09:43Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v1-80-22
kyleeasterly
2023-08-09T08:14:05Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-09T08:09:39Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v1-80-16
kyleeasterly
2023-08-09T08:12:49Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T08:09:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v1-80-12
kyleeasterly
2023-08-09T08:12:46Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T08:09:18Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
NEO946B/ppo-PyramidsTraining
NEO946B
2023-08-09T08:12:37Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-09T08:12:19Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: NEO946B/ppo-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kyleeasterly/openllama-7b_purple-aerospace-v1-80-8
kyleeasterly
2023-08-09T08:12:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T08:09:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v1-80-2
kyleeasterly
2023-08-09T08:11:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T08:08:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v1-80-1
kyleeasterly
2023-08-09T08:10:25Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T08:08:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v1-80-0
kyleeasterly
2023-08-09T08:09:22Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-09T08:08:40Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-200-128
kyleeasterly
2023-08-09T08:07:40Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:46:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
mohsin-riad/SD-joepenna-4-people
mohsin-riad
2023-08-09T08:05:43Z
0
0
null
[ "text-to-image", "stable-diffusion", "dreambooth", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-02T19:06:57Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion - dreambooth language: - en --- ### SD 1.5 model trained by mohsin-riad **Name of the persons and corresponding tokens:** - Anthony -> anthony man - Liza -> liza woman - AJ -> aj man - Michael -> michael boy **Try prompt such as:** ``` RAW photo, close up portrait of michael boy wearing sunglass with blue eyes, detailed eyes, smiling, teeth, floral clothes, nature background, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3 ``` --- ## Model Details - Developed by: Robin Rombach, Patrick Esser - Trainable tweaks by: Joe Penna - Finetuned by: Mohsin Riad - Model type: Diffusion-based text-to-image generation model - Language(s): English --- > Happy inferencing!
kyleeasterly/openllama-7b_purple-aerospace-v2-200-80
kyleeasterly
2023-08-09T08:05:04Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:46:08Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-200-64
kyleeasterly
2023-08-09T08:01:41Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:46:00Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-200-32
kyleeasterly
2023-08-09T07:59:38Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:45:52Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-200-30
kyleeasterly
2023-08-09T07:57:45Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:45:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-200-26
kyleeasterly
2023-08-09T07:54:37Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:45:28Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-200-24
kyleeasterly
2023-08-09T07:53:48Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:45:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-200-22
kyleeasterly
2023-08-09T07:52:53Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:44:42Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-200-17
kyleeasterly
2023-08-09T07:50:48Z
3
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:44:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-200-16
kyleeasterly
2023-08-09T07:50:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:44:25Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-200-12
kyleeasterly
2023-08-09T07:49:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:44:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-200-11
kyleeasterly
2023-08-09T07:48:58Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:44:05Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-200-9
kyleeasterly
2023-08-09T07:48:37Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:43:55Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
arminmrm93/a2c-PandaReachDense-v3-v2
arminmrm93
2023-08-09T07:45:16Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T07:39:45Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.19 +/- 0.12 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
annaovesnaatatt/ppo-lunarlander-v2
annaovesnaatatt
2023-08-09T07:43:54Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T07:43:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.39 +/- 19.43 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kyleeasterly/openllama-7b_purple-aerospace-v2-300-115
kyleeasterly
2023-08-09T07:41:39Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:34:21Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-300-104
kyleeasterly
2023-08-09T07:41:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:34:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-300-80
kyleeasterly
2023-08-09T07:39:29Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:33:53Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-300-72
kyleeasterly
2023-08-09T07:39:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:33:50Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-300-30
kyleeasterly
2023-08-09T07:37:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:33:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-300-28
kyleeasterly
2023-08-09T07:37:04Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:33:21Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-300-24
kyleeasterly
2023-08-09T07:36:19Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:32:01Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-300-22
kyleeasterly
2023-08-09T07:35:29Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:31:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-300-16
kyleeasterly
2023-08-09T07:32:48Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:27:28Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-300-14
kyleeasterly
2023-08-09T07:32:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:27:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-300-10
kyleeasterly
2023-08-09T07:31:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:26:54Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-300-8
kyleeasterly
2023-08-09T07:30:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:26:50Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-300-6
kyleeasterly
2023-08-09T07:29:59Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:26:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
muhtasham/bert-small-finetuned-glue-rte
muhtasham
2023-08-09T07:29:50Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T15:51:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-small-finetuned-glue-rte results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: rte split: train args: rte metrics: - name: Accuracy type: accuracy value: 0.631768953068592 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-finetuned-glue-rte This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 2.8715 - Accuracy: 0.6318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 2.62 | 50 | 1.8285 | 0.6318 | | No log | 5.26 | 100 | 2.0806 | 0.6462 | | No log | 7.87 | 150 | 2.1598 | 0.6282 | | No log | 10.51 | 200 | 2.2774 | 0.6318 | | No log | 13.15 | 250 | 2.3676 | 0.6245 | | No log | 15.77 | 300 | 2.4581 | 0.6462 | | No log | 18.41 | 350 | 2.6175 | 0.6354 | | No log | 21.05 | 400 | 2.6697 | 0.6354 | | No log | 23.67 | 450 | 2.7717 | 0.6354 | | 0.0101 | 26.31 | 500 | 2.7975 | 0.6462 | | 0.0101 | 28.92 | 550 | 2.8532 | 0.6390 | | 0.0101 | 31.56 | 600 | 2.9054 | 0.6209 | | 0.0101 | 34.21 | 650 | 2.8715 | 0.6318 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
kyleeasterly/openllama-7b_purple-aerospace-v2-300-1
kyleeasterly
2023-08-09T07:26:25Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:25:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
kyleeasterly/openllama-7b_purple-aerospace-v2-300-0
kyleeasterly
2023-08-09T07:25:48Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T07:24:55Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
peterandrew987/results
peterandrew987
2023-08-09T07:25:13Z
104
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "base_model:indobenchmark/indobart-v2", "base_model:finetune:indobenchmark/indobart-v2", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-08T11:45:45Z
--- license: mit base_model: indobenchmark/indobart-v2 tags: - generated_from_trainer datasets: - squad metrics: - rouge model-index: - name: results results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: squad type: squad config: plain_text split: train[:1000] args: plain_text metrics: - name: Rouge1 type: rouge value: 16.2693 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [indobenchmark/indobart-v2](https://huggingface.co/indobenchmark/indobart-v2) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.5998 - Rouge1: 16.2693 - Rouge2: 14.9952 - Rougel: 16.233 - Rougelsum: 16.2741 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|:---------:|:-------:| | 1.4819 | 1.0 | 200 | 1.5998 | 16.2693 | 14.9952 | 16.233 | 16.2741 | 20.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
maikaarda/bge-base-en-ggml
maikaarda
2023-08-09T07:11:26Z
0
1
null
[ "license:mit", "region:us" ]
null
2023-08-09T05:29:32Z
--- license: mit --- ggml files of [bge-base-en](https://huggingface.co/BAAI/bge-base-en) You can use this ggml for https://github.com/skeskinen/bert.cpp ### bge-base-en | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8630 | 39.56 | 0.5533 | 69.55 | | f16 | 0.8630 | 32.95 | 0.5533 | 55.75 | | q4_0 | 0.8627 | 27.23 | 0.5540 | 73.29 | | q4_1 | 0.8654 | 29.78 | 0.5508 | 69.81 | ### all-MiniLM-L12-v2 | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8306 | 13.36 | 0.4117 | 21.23 | | f16 | 0.8306 | 11.51 | 0.4119 | 20.08 | | q4_0 | 0.8310 | 11.27 | 0.4183 | 20.81 | | q4_1 | 0.8325 | 12.37 | 0.4093 | 19.38 | ### all-MiniLM-L6-v2 | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8201 | 6.83 | 0.4082 | 11.34 | | f16 | 0.8201 | 6.17 | 0.4085 | 10.28 | | q4_0 | 0.8175 | 5.45 | 0.3911 | 10.63 | | q4_1 | 0.8223 | 6.79 | 0.4027 | 11.41 | ### bert-base-uncased | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.4738 | 52.38 | 0.3361 | 88.56 | | f16 | 0.4739 | 33.24 | 0.3361 | 55.86 | | q4_0 | 0.4940 | 33.93 | 0.3375 | 57.82 | | q4_1 | 0.4612 | 36.86 | 0.3318 | 59.63 |
jakezou/dqn-SpaceInvadersNoFrameskip-v4
jakezou
2023-08-09T07:11:26Z
9
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T07:10:48Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 690.50 +/- 356.79 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jakezou -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jakezou -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jakezou ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
maikaarda/gte-base-ggml
maikaarda
2023-08-09T07:02:49Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-08-09T05:24:01Z
--- license: mit --- ggml files of [thenlper/gte-base](https://huggingface.co/thenlper/gte-base) You can use this ggml for https://github.com/skeskinen/bert.cpp ### gte-base | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8571 | 38.98 | 0.5087 | 69.09 | | f16 | 0.8571 | 33.06 | 0.5086 | 53.57 | | q4_0 | 0.8580 | 25.28 | 0.5171 | 69.32 | | q4_1 | 0.8581 | 28.12 | 0.5113 | 66.38 | ### all-MiniLM-L12-v2 | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8306 | 13.36 | 0.4117 | 21.23 | | f16 | 0.8306 | 11.51 | 0.4119 | 20.08 | | q4_0 | 0.8310 | 11.27 | 0.4183 | 20.81 | | q4_1 | 0.8325 | 12.37 | 0.4093 | 19.38 | ### all-MiniLM-L6-v2 | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8201 | 6.83 | 0.4082 | 11.34 | | f16 | 0.8201 | 6.17 | 0.4085 | 10.28 | | q4_0 | 0.8175 | 5.45 | 0.3911 | 10.63 | | q4_1 | 0.8223 | 6.79 | 0.4027 | 11.41 | ### bert-base-uncased | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.4738 | 52.38 | 0.3361 | 88.56 | | f16 | 0.4739 | 33.24 | 0.3361 | 55.86 | | q4_0 | 0.4940 | 33.93 | 0.3375 | 57.82 | | q4_1 | 0.4612 | 36.86 | 0.3318 | 59.63 |
NEO946B/ppo-SnowballTarget
NEO946B
2023-08-09T06:56:18Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-09T06:55:57Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: NEO946B/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
weav-geng/llama2-qlora-finetuned-midjourney-new-v6
weav-geng
2023-08-09T06:53:53Z
3
0
peft
[ "peft", "region:us" ]
null
2023-08-09T06:52:13Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
maikaarda/gte-large-ggml
maikaarda
2023-08-09T06:52:31Z
0
1
null
[ "license:mit", "region:us" ]
null
2023-08-09T05:26:15Z
--- license: mit --- ggml files of [thenlper/gte-large](https://huggingface.co/thenlper/gte-large) You can use this ggml for https://github.com/skeskinen/bert.cpp ### gte-large | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8606 | 127.58 | 0.5060 | 199.61 | | f16 | 0.8606 | 103.89 | 0.5060 | 169.68 | | q4_0 | 0.8589 | 80.85 | 0.5037 | 157.05 | | q4_1 | 0.8605 | 90.13 | 0.5107 | 162.59 | ### all-MiniLM-L12-v2 | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8306 | 13.36 | 0.4117 | 21.23 | | f16 | 0.8306 | 11.51 | 0.4119 | 20.08 | | q4_0 | 0.8310 | 11.27 | 0.4183 | 20.81 | | q4_1 | 0.8325 | 12.37 | 0.4093 | 19.38 | ### all-MiniLM-L6-v2 | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8201 | 6.83 | 0.4082 | 11.34 | | f16 | 0.8201 | 6.17 | 0.4085 | 10.28 | | q4_0 | 0.8175 | 5.45 | 0.3911 | 10.63 | | q4_1 | 0.8223 | 6.79 | 0.4027 | 11.41 | ### bert-base-uncased | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.4738 | 52.38 | 0.3361 | 88.56 | | f16 | 0.4739 | 33.24 | 0.3361 | 55.86 | | q4_0 | 0.4940 | 33.93 | 0.3375 | 57.82 | | q4_1 | 0.4612 | 36.86 | 0.3318 | 59.63 |
whywynn/Reinforce-CartPole-v1
whywynn
2023-08-09T06:46:02Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T06:45:51Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
CyberHarem/yuzuriha_jigokuraku
CyberHarem
2023-08-09T06:43:55Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/yuzuriha_jigokuraku", "license:mit", "region:us" ]
text-to-image
2023-08-09T06:40:17Z
--- license: mit datasets: - CyberHarem/yuzuriha_jigokuraku pipeline_tag: text-to-image tags: - art --- # Lora of yuzuriha_jigokuraku This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/yuzuriha_jigokuraku.pt` as the embedding and `1500/yuzuriha_jigokuraku.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `yuzuriha_jigokuraku`.** These are available steps: | Steps | pattern_1 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:-----------------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/yuzuriha_jigokuraku.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/yuzuriha_jigokuraku.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/yuzuriha_jigokuraku.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/yuzuriha_jigokuraku.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/yuzuriha_jigokuraku.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/yuzuriha_jigokuraku.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/yuzuriha_jigokuraku.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/yuzuriha_jigokuraku.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/yuzuriha_jigokuraku.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/yuzuriha_jigokuraku.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/yuzuriha_jigokuraku.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/yuzuriha_jigokuraku.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/yuzuriha_jigokuraku.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/yuzuriha_jigokuraku.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/yuzuriha_jigokuraku.zip) |
redstonehero/facebombmix_v1
redstonehero
2023-08-09T06:41:36Z
21
1
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T03:57:17Z
--- license: creativeml-openrail-m library_name: diffusers ---
redstonehero/fantexiv09beta
redstonehero
2023-08-09T06:41:21Z
21
1
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T03:50:21Z
--- license: creativeml-openrail-m library_name: diffusers ---
redstonehero/sunlightmix
redstonehero
2023-08-09T06:41:15Z
21
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T03:49:43Z
--- license: creativeml-openrail-m library_name: diffusers ---
redstonehero/henmixreal_v40
redstonehero
2023-08-09T06:39:58Z
21
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T03:49:07Z
--- license: creativeml-openrail-m library_name: diffusers ---
redstonehero/luckystrikemix_lovelyladyv105
redstonehero
2023-08-09T06:39:52Z
21
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T03:48:58Z
--- license: creativeml-openrail-m library_name: diffusers ---
redstonehero/meichidarkv4
redstonehero
2023-08-09T06:39:36Z
26
1
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T03:48:30Z
--- license: creativeml-openrail-m library_name: diffusers ---
ariobsessedwithai/axel
ariobsessedwithai
2023-08-09T06:38:14Z
0
0
null
[ "arxiv:1910.09700", "license:unknown", "region:us" ]
null
2023-08-09T06:30:13Z
--- license: unknown --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Hanwoon/llama-2-2b-miniguanaco-test
Hanwoon
2023-08-09T06:34:34Z
0
0
peft
[ "peft", "pytorch", "llama", "region:us" ]
null
2023-08-08T07:59:53Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
peterandrew987/modified-qa
peterandrew987
2023-08-09T06:34:19Z
107
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "base_model:indobenchmark/indobart-v2", "base_model:finetune:indobenchmark/indobart-v2", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-09T05:55:30Z
--- license: mit base_model: indobenchmark/indobart-v2 tags: - generated_from_trainer datasets: - squad metrics: - rouge model-index: - name: modified-qa results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: squad type: squad config: plain_text split: train[:1000] args: plain_text metrics: - name: Rouge1 type: rouge value: 13.4458 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modified-qa This model is a fine-tuned version of [indobenchmark/indobart-v2](https://huggingface.co/indobenchmark/indobart-v2) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 3.9723 - Rouge1: 13.4458 - Rouge2: 6.819 - Rougel: 11.2064 - Rougelsum: 12.5476 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 4.436 | 1.0 | 200 | 3.9723 | 13.4458 | 6.819 | 11.2064 | 12.5476 | 20.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
maikaarda/bge-large-en-ggml
maikaarda
2023-08-09T06:30:57Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-08-09T05:28:59Z
--- license: mit --- ggml files of [bge-large-en](https://huggingface.co/BAAI/bge-large-en) You can use this ggml for https://github.com/skeskinen/bert.cpp ### bge-large-en | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8807 | 129.10 | 0.5715 | 202.67 | | f16 | 0.8807 | 107.80 | 0.5712 | 177.37 | | q4_0 | 0.8798 | 81.91 | 0.5689 | 159.30 | | q4_1 | 0.8792 | 91.66 | 0.5709 | 164.45 | ### all-MiniLM-L12-v2 | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8306 | 13.36 | 0.4117 | 21.23 | | f16 | 0.8306 | 11.51 | 0.4119 | 20.08 | | q4_0 | 0.8310 | 11.27 | 0.4183 | 20.81 | | q4_1 | 0.8325 | 12.37 | 0.4093 | 19.38 | ### all-MiniLM-L6-v2 | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8201 | 6.83 | 0.4082 | 11.34 | | f16 | 0.8201 | 6.17 | 0.4085 | 10.28 | | q4_0 | 0.8175 | 5.45 | 0.3911 | 10.63 | | q4_1 | 0.8223 | 6.79 | 0.4027 | 11.41 | ### bert-base-uncased | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.4738 | 52.38 | 0.3361 | 88.56 | | f16 | 0.4739 | 33.24 | 0.3361 | 55.86 | | q4_0 | 0.4940 | 33.93 | 0.3375 | 57.82 | | q4_1 | 0.4612 | 36.86 | 0.3318 | 59.63 |
maikaarda/gte-small-ggml
maikaarda
2023-08-09T06:30:29Z
0
1
null
[ "license:mit", "region:us" ]
null
2023-08-09T05:27:17Z
--- license: mit --- ggml files of [thenlper/gte-small](https://huggingface.co/thenlper/gte-small) You can use this ggml for https://github.com/skeskinen/bert.cpp ### gte-small | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8554 | 12.40 | 0.4808 | 26.39 | | f16 | 0.8555 | 11.29 | 0.4808 | 18.48 | | q4_0 | 0.8537 | 9.22 | 0.4860 | 43.92 | | q4_1 | 0.8543 | 10.01 | 0.4832 | 38.33 | ### all-MiniLM-L12-v2 | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8306 | 13.36 | 0.4117 | 21.23 | | f16 | 0.8306 | 11.51 | 0.4119 | 20.08 | | q4_0 | 0.8310 | 11.27 | 0.4183 | 20.81 | | q4_1 | 0.8325 | 12.37 | 0.4093 | 19.38 | ### all-MiniLM-L6-v2 | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.8201 | 6.83 | 0.4082 | 11.34 | | f16 | 0.8201 | 6.17 | 0.4085 | 10.28 | | q4_0 | 0.8175 | 5.45 | 0.3911 | 10.63 | | q4_1 | 0.8223 | 6.79 | 0.4027 | 11.41 | ### bert-base-uncased | Data Type | STSBenchmark | eval time | EmotionClassification | eval time | |-----------|-----------|------------|-----------|------------| | f32 | 0.4738 | 52.38 | 0.3361 | 88.56 | | f16 | 0.4739 | 33.24 | 0.3361 | 55.86 | | q4_0 | 0.4940 | 33.93 | 0.3375 | 57.82 | | q4_1 | 0.4612 | 36.86 | 0.3318 | 59.63 |
CyberHarem/lupusregina_beta_overlord
CyberHarem
2023-08-09T06:18:31Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/lupusregina_beta_overlord", "license:mit", "region:us" ]
text-to-image
2023-08-09T06:15:01Z
--- license: mit datasets: - CyberHarem/lupusregina_beta_overlord pipeline_tag: text-to-image tags: - art --- # Lora of lupusregina_beta_overlord This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/lupusregina_beta_overlord.pt` as the embedding and `1500/lupusregina_beta_overlord.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `lupusregina_beta_overlord`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:-----------------------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/lupusregina_beta_overlord.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/lupusregina_beta_overlord.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/lupusregina_beta_overlord.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/lupusregina_beta_overlord.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/lupusregina_beta_overlord.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/lupusregina_beta_overlord.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/lupusregina_beta_overlord.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/lupusregina_beta_overlord.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/lupusregina_beta_overlord.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/lupusregina_beta_overlord.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/lupusregina_beta_overlord.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/lupusregina_beta_overlord.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/lupusregina_beta_overlord.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/lupusregina_beta_overlord.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/lupusregina_beta_overlord.zip) |
luistakahashi/my-awesome-setfit-pear-4
luistakahashi
2023-08-09T06:08:59Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-09T05:57:25Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # luistakahashi/my-awesome-setfit-pear-4 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("luistakahashi/my-awesome-setfit-pear-4") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Shadman-Rohan/llama2-qlora-finetunined-french
Shadman-Rohan
2023-08-09T06:08:56Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T06:08:37Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
kimnt93/mt-seed-task-cls
kimnt93
2023-08-09T05:55:42Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-09T03:12:04Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # kimnt93/vi_seed_task_cls This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("kimnt93/vi_seed_task_cls") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
divyeshrajpura/speecht5-finetuned-voxpopuli-sl
divyeshrajpura
2023-08-09T05:46:03Z
83
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "sl", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-08-09T04:29:07Z
--- language: - sl license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer - text-to-speech datasets: - facebook/voxpopuli model-index: - name: speecht5-finetuned-voxpopuli-sl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5-finetuned-voxpopuli-sl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 125 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6473 | 3.39 | 100 | 0.5703 | | 0.5709 | 6.78 | 200 | 0.4998 | | 0.5339 | 10.17 | 300 | 0.4802 | | 0.5158 | 13.56 | 400 | 0.4733 | | 0.5275 | 16.95 | 500 | 0.4691 | | 0.4983 | 20.34 | 600 | 0.4671 | | 0.499 | 23.73 | 700 | 0.4638 | | 0.5003 | 27.12 | 800 | 0.4610 | | 0.496 | 30.51 | 900 | 0.4610 | | 0.4935 | 33.9 | 1000 | 0.4598 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
luistakahashi/my-awesome-setfit-model2
luistakahashi
2023-08-09T05:43:03Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-08T22:35:28Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # luistakahashi/my-awesome-setfit-model2 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("luistakahashi/my-awesome-setfit-model2") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
sanitas/sac-PandaPickAndPlace-v3
sanitas
2023-08-09T05:40:15Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaPickAndPlace-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T05:34:52Z
--- library_name: stable-baselines3 tags: - PandaPickAndPlace-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: SAC results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPickAndPlace-v3 type: PandaPickAndPlace-v3 metrics: - type: mean_reward value: -45.00 +/- 15.00 name: mean_reward verified: false --- # **SAC** Agent playing **PandaPickAndPlace-v3** This is a trained model of a **SAC** agent playing **PandaPickAndPlace-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
revivoskintagremoval/revivoskintagremoval
revivoskintagremoval
2023-08-09T05:34:32Z
0
0
diffusers
[ "diffusers", "Revivo Skin Tag Remover", "en", "license:bsd", "region:us" ]
null
2023-08-09T05:33:51Z
--- license: bsd language: - en library_name: diffusers tags: - Revivo Skin Tag Remover --- [Revivo Skin Tag Remover](https://atozsupplement.com/revivo-skin-tag-remover/) Clinical experts can eliminate skin tags by removing them with sterile scissors or a surgical blade. Prior to endeavoring this strategy, it's critical to counsel a medical services proficient to guarantee protected and clean circumstances. VISIT HERE FOR OFFICIAL WEBSITE:- https://atozsupplement.com/revivo-skin-tag-remover/
reginaboateng/Compacter_PubmedBert_adapter_ner_pico_for_classification_task
reginaboateng
2023-08-09T04:02:05Z
1
0
adapter-transformers
[ "adapter-transformers", "bert", "adapterhub:pico_ner", "dataset:reginaboateng/cleaned_ebmnlp_pico", "region:us" ]
null
2023-08-09T04:02:02Z
--- tags: - bert - adapter-transformers - adapterhub:pico_ner datasets: - reginaboateng/cleaned_ebmnlp_pico --- # Adapter `reginaboateng/Compacter_PubmedBert_adapter_ner_pico_for_classification_task` for microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext An [adapter](https://adapterhub.ml) for the `microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext` model that was trained on the [pico_ner](https://adapterhub.ml/explore/pico_ner/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext") adapter_name = model.load_adapter("reginaboateng/Compacter_PubmedBert_adapter_ner_pico_for_classification_task", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
kimnt93/en-seed-task-cls
kimnt93
2023-08-09T04:01:07Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-09T01:28:34Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # kimnt93/en_seed_task_cls This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("kimnt93/en_seed_task_cls") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
houdi/my_awesome_model_classification_w_adapter
houdi
2023-08-09T04:00:20Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-09T03:41:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: my_awesome_model_classification_w_adapter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model_classification_w_adapter This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Alipay/cloudqa-chat
Alipay
2023-08-09T03:42:00Z
0
1
null
[ "en", "license:apache-2.0", "region:us" ]
null
2023-08-09T03:39:27Z
--- license: apache-2.0 language: - en ---
iioSnail/bert-base-chinese-word-classifier
iioSnail
2023-08-09T03:40:04Z
110
9
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "zh", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-08T08:10:00Z
--- license: afl-3.0 language: - zh --- # 中文词语分类 本模型对中文词语进行分类(多标签)。对于一个中文词语,其会被分为一个或多个类别,类别有如下: ``` "1": "人文科学", "2": "农林渔畜", "3": "医学", "4": "城市信息大全", "5": "娱乐", "6": "工程与应用科学", "7": "生活", "8": "电子游戏", "9": "社会科学", "10": "自然科学", "11": "艺术", "12": "运动休闲" ``` > 类别来源于[搜狗词汇的类型](https://pinyin.sogou.com/dict/cate/index/167) # 使用样例 ```python import torch from transformers import AutoTokenizer, BertForSequenceClassification model_path = "iioSnail/bert-base-chinese-word-classifier" tokenizer = AutoTokenizer.from_pretrained(model_path) model = BertForSequenceClassification.from_pretrained(model_path) words = ["2型糖尿病", "太古里", "跑跑卡丁车", "河豚"] inputs = tokenizer(words, return_tensors='pt', padding=True) outputs = model(**inputs).logits outputs = outputs.sigmoid() preds = outputs > 0.5 for i, pred in enumerate(preds): pred = torch.argwhere(pred).view(-1) labels = [model.config.id2label[int(id)] for id in pred] print(words[i], ":", labels) ``` 输出: ``` 2型糖尿病 : ['医学'] 太古里 : ['城市信息大全'] 跑跑卡丁车 : ['电子游戏'] 河豚 : ['人文科学', '娱乐', '电子游戏', '自然科学'] ```
nayanika/test_model
nayanika
2023-08-09T03:37:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T03:37:41Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
sanitas/a2c-PandaPickAndPlace-v3
sanitas
2023-08-09T03:36:27Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaPickAndPlace-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T03:31:02Z
--- library_name: stable-baselines3 tags: - PandaPickAndPlace-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPickAndPlace-v3 type: PandaPickAndPlace-v3 metrics: - type: mean_reward value: -50.00 +/- 0.00 name: mean_reward verified: false --- # **A2C** Agent playing **PandaPickAndPlace-v3** This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
asenella/incomplete_mhd_MVTCAE_beta_5_scale_False_seed_1
asenella
2023-08-09T03:30:24Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-08-09T03:30:14Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```