modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-09 12:33:01
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
550 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-09 12:32:40
card
stringlengths
11
1.01M
SamJoshua/llama2-qlora-orca
SamJoshua
2023-09-03T13:05:21Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-03T13:05:14Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
SharKRippeR/QA_model
SharKRippeR
2023-09-03T13:02:50Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-03T12:54:56Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - squad model-index: - name: QA_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # QA_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.4599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.0433 | | 2.6909 | 2.0 | 500 | 1.5259 | | 2.6909 | 3.0 | 750 | 1.4599 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
petals-team/falcon-rw-1b
petals-team
2023-09-03T12:56:43Z
168
2
transformers
[ "transformers", "safetensors", "falcon", "text-generation", "custom_code", "en", "dataset:tiiuae/falcon-refinedweb", "arxiv:2306.01116", "arxiv:2005.14165", "arxiv:2108.12409", "arxiv:2205.14135", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-03T12:55:54Z
--- datasets: - tiiuae/falcon-refinedweb language: - en inference: false license: apache-2.0 --- # Falcon-RW-1B **Falcon-RW-1B is a 1B parameters causal decoder-only model built by [TII](https://www.tii.ae) and trained on 350B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb). It is made available under the Apache 2.0 license.** See the 📓 [paper on arXiv](https://arxiv.org/abs/2306.01116) for more details. RefinedWeb is a high-quality web dataset built by leveraging stringent filtering and large-scale deduplication. Falcon-RW-1B, trained on RefinedWeb only, matches or outperforms comparable models trained on curated data. ⚠️ Falcon is now available as a core model in the `transformers` library! To use the in-library version, please install the latest version of `transformers` with `pip install git+https://github.com/huggingface/transformers.git`, then simply remove the `trust_remote_code=True` argument from `from_pretrained()`. ⚠️ This model is intended for use as a **research artifact**, to study the influence of training on web data alone. **If you are interested in state-of-the-art models, we recommend using Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b), both trained on >1,000 billion tokens.** ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "tiiuae/falcon-rw-1b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto", ) sequences = pipeline( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` 💥 **Falcon LLMs require PyTorch 2.0 for use with `transformers`!** # Model Card for Falcon-RW-1B ## Model Details ### Model Description - **Developed by:** [https://www.tii.ae](https://www.tii.ae); - **Model type:** Causal decoder-only; - **Language(s) (NLP):** English; - **License:** Apache 2.0. ### Model Source - **Paper:** [https://arxiv.org/abs/2306.01116](https://arxiv.org/abs/2306.01116). ## Uses ### Direct Use Research on large language models, specifically the influence of adequately filtered and deduplicated web data on the properties of large language models (fairness, safety, limitations, capabilities, etc.). ### Out-of-Scope Use Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful. Broadly speaking, we would recommend Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) for any use not directly related to research on web data pipelines. ## Bias, Risks, and Limitations Falcon-RW-1B is trained on English data only, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online. ### Recommendations We recommend users of Falcon-RW-1B to consider finetuning it for the specific set of tasks of interest, and for guardrails and appropriate precautions to be taken for any production use. ## How to Get Started with the Model ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "tiiuae/falcon-rw-1b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto", ) sequences = pipeline( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ## Training Details ### Training Data Falcon-RW-1B was trained on 350B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a high-quality filtered and deduplicated web dataset. The data was tokenized with the GPT-2 tokenizer. ### Training Procedure Falcon-RW-1B was trained on 32 A100 40GB GPUs, using only data parallelism with ZeRO. #### Training Hyperparameters Hyperparameters were adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)). | **Hyperparameter** | **Value** | **Comment** | |--------------------|------------|-------------------------------------------| | Precision | `bfloat16` | | | Optimizer | AdamW | | | Learning rate | 2e-4 | 500M tokens warm-up, cosine decay to 2e-5 | | Weight decay | 1e-1 | | | Batch size | 512 | 4B tokens ramp-up | #### Speeds, Sizes, Times Training happened in early December 2022 and took about six days. ## Evaluation See the 📓 [paper on arXiv](https://arxiv.org/abs/2306.01116) for in-depth evaluation. ## Technical Specifications ### Model Architecture and Objective Falcon-RW-1B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token). The architecture is adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), but uses ALiBi ([Ofir et al., 2021](https://arxiv.org/abs/2108.12409)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)). | **Hyperparameter** | **Value** | **Comment** | |--------------------|-----------|----------------------------------------| | Layers | 24 | | | `d_model` | 2048 | | | `head_dim` | 64 | Reduced to optimise for FlashAttention | | Vocabulary | 50304 | | | Sequence length | 2048 | | ### Compute Infrastructure #### Hardware Falcon-RW-1B was trained on AWS SageMaker, on 32 A100 40GB GPUs in P4d instances. #### Software Falcon-RW-1B was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.) ## Citation ``` @article{refinedweb, title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only}, author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay}, journal={arXiv preprint arXiv:2306.01116}, eprint={2306.01116}, eprinttype = {arXiv}, url={https://arxiv.org/abs/2306.01116}, year={2023} } ``` ## Contact falconllm@tii.ae
franziskaM/b29-wav2vec2-large-xls-r-romansh-colab
franziskaM
2023-09-03T12:46:48Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_13_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T10:53:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: b29-wav2vec2-large-xls-r-romansh-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: rm-vallader split: test args: rm-vallader metrics: - name: Wer type: wer value: 0.231951560316721 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # b29-wav2vec2-large-xls-r-romansh-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2967 - Wer: 0.2320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.3337 | 3.05 | 400 | 2.9529 | 1.0 | | 2.9274 | 6.11 | 800 | 2.8462 | 0.9995 | | 1.0082 | 9.16 | 1200 | 0.3782 | 0.3628 | | 0.2754 | 12.21 | 1600 | 0.3225 | 0.2857 | | 0.168 | 15.27 | 2000 | 0.3102 | 0.2748 | | 0.1198 | 18.32 | 2400 | 0.3077 | 0.2513 | | 0.1053 | 21.37 | 2800 | 0.3086 | 0.2531 | | 0.0829 | 24.43 | 3200 | 0.2985 | 0.2396 | | 0.0726 | 27.48 | 3600 | 0.2967 | 0.2320 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
kargaranamir/Hengam
kargaranamir
2023-09-03T12:40:16Z
5
3
span-marker
[ "span-marker", "token-classification", "ner", "named-entity-recognition", "fa", "dataset:kargaranamir/HengamCorpus", "license:mit", "region:us" ]
token-classification
2022-10-21T21:05:04Z
--- license: mit datasets: - kargaranamir/HengamCorpus tags: - span-marker - token-classification - ner - named-entity-recognition pipeline_tag: token-classification inference: false language: - fa --- # Hengam: An Adversarially Trained Transformer for Persian Temporal Tagging # Usage You can use this model directly downloading the utils and requirements files and installing requirements: ```python >>> ! wget https://huggingface.co/kargaranamir/Hengam/raw/main/utils.py >>> ! wget https://huggingface.co/kargaranamir/Hengam/raw/main/requirements.txt >>> ! pip install -r requirements.txt ``` and downloading the models HengamTransA.pth or HengamTransW.pth and building ner pipline: ```python >>> import torch >>> from huggingface_hub import hf_hub_download >>> from utils import * >>> # HengamTransW = hf_hub_download(repo_id="kargaranamir/Hengam", filename="HengamTransW.pth") >>> HengamTransA = hf_hub_download(repo_id="kargaranamir/Hengam", filename="HengamTransA.pth") ``` ```python >>> # ner = NER(model_path=HengamTransW, tags=['B-TIM', 'I-TIM', 'B-DAT', 'I-DAT', 'O']) >>> ner = NER(model_path=HengamTransA, tags=['B-TIM', 'I-TIM', 'B-DAT', 'I-DAT', 'O']) >>> ner('.سلام من و دوستم ساعت ۸ صبح روز سه شنبه رفتیم دوشنبه بازار ') [{'Text': 'ساعت', 'Tag': 'B-TIM', 'Start': 17, 'End': 21}, {'Text': '۸', 'Tag': 'I-TIM', 'Start': 22, 'End': 23}, {'Text': 'صبح', 'Tag': 'I-TIM', 'Start': 24, 'End': 27}, {'Text': 'روز', 'Tag': 'I-TIM', 'Start': 28, 'End': 31}, {'Text': 'سه', 'Tag': 'B-DAT', 'Start': 32, 'End': 34}, {'Text': 'شنبه', 'Tag': 'I-DAT', 'Start': 35, 'End': 39}] ``` ## Citation If you use any part of this repository in your research, please cite it using the following BibTex entry. ```python @inproceedings{mirzababaei-etal-2022-hengam, title = {Hengam: An Adversarially Trained Transformer for {P}ersian Temporal Tagging}, author = {Mirzababaei, Sajad and Kargaran, Amir Hossein and Sch{\"u}tze, Hinrich and Asgari, Ehsaneddin}, year = 2022, booktitle = {Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing}, publisher = {Association for Computational Linguistics}, address = {Online only}, pages = {1013--1024}, url = {https://aclanthology.org/2022.aacl-main.74} } ```
bigmorning/whisper_input_decoder_no_lob__0015
bigmorning
2023-09-03T12:34:04Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T12:33:56Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_no_lob__0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_no_lob__0015 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.9595 - Train Accuracy: 0.0138 - Train Wermet: 0.7012 - Validation Loss: 3.1493 - Validation Accuracy: 0.0132 - Validation Wermet: 0.7718 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.4122 | 0.0107 | 0.9328 | 3.9759 | 0.0114 | 0.9606 | 0 | | 4.7176 | 0.0116 | 0.8683 | 3.9404 | 0.0114 | 0.9334 | 1 | | 4.6750 | 0.0117 | 0.8478 | 3.9211 | 0.0115 | 0.9237 | 2 | | 4.6511 | 0.0117 | 0.8413 | 3.8864 | 0.0115 | 0.9331 | 3 | | 4.6294 | 0.0118 | 0.8270 | 3.8729 | 0.0115 | 0.9228 | 4 | | 4.6134 | 0.0118 | 0.8199 | 3.8690 | 0.0114 | 0.9451 | 5 | | 4.5980 | 0.0118 | 0.8102 | 3.8491 | 0.0115 | 0.9152 | 6 | | 4.5759 | 0.0119 | 0.7890 | 3.8366 | 0.0116 | 0.8691 | 7 | | 4.5518 | 0.0120 | 0.7694 | 3.8081 | 0.0116 | 0.9013 | 8 | | 4.5219 | 0.0121 | 0.7591 | 3.7734 | 0.0118 | 0.8383 | 9 | | 4.4761 | 0.0122 | 0.7400 | 3.7156 | 0.0120 | 0.8125 | 10 | | 4.4139 | 0.0125 | 0.7257 | 3.6311 | 0.0121 | 0.8188 | 11 | | 4.3113 | 0.0128 | 0.7127 | 3.5089 | 0.0124 | 0.8008 | 12 | | 4.1608 | 0.0132 | 0.7088 | 3.3587 | 0.0127 | 0.7742 | 13 | | 3.9595 | 0.0138 | 0.7012 | 3.1493 | 0.0132 | 0.7718 | 14 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
bigmorning/whisper_input_decoder_no_lob__0010
bigmorning
2023-09-03T12:20:57Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T12:20:49Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_no_lob__0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_no_lob__0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.5219 - Train Accuracy: 0.0121 - Train Wermet: 0.7591 - Validation Loss: 3.7734 - Validation Accuracy: 0.0118 - Validation Wermet: 0.8383 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.4122 | 0.0107 | 0.9328 | 3.9759 | 0.0114 | 0.9606 | 0 | | 4.7176 | 0.0116 | 0.8683 | 3.9404 | 0.0114 | 0.9334 | 1 | | 4.6750 | 0.0117 | 0.8478 | 3.9211 | 0.0115 | 0.9237 | 2 | | 4.6511 | 0.0117 | 0.8413 | 3.8864 | 0.0115 | 0.9331 | 3 | | 4.6294 | 0.0118 | 0.8270 | 3.8729 | 0.0115 | 0.9228 | 4 | | 4.6134 | 0.0118 | 0.8199 | 3.8690 | 0.0114 | 0.9451 | 5 | | 4.5980 | 0.0118 | 0.8102 | 3.8491 | 0.0115 | 0.9152 | 6 | | 4.5759 | 0.0119 | 0.7890 | 3.8366 | 0.0116 | 0.8691 | 7 | | 4.5518 | 0.0120 | 0.7694 | 3.8081 | 0.0116 | 0.9013 | 8 | | 4.5219 | 0.0121 | 0.7591 | 3.7734 | 0.0118 | 0.8383 | 9 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
VinayHajare/ppo-Huggy
VinayHajare
2023-09-03T12:19:57Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-03T12:19:51Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: VinayHajare/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
spinor75/qlora-koalpaca-polyglot-12.8b-100step
spinor75
2023-09-03T12:14:19Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-03T12:14:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
bigmorning/whisper_input_decoder_no_lob__0005
bigmorning
2023-09-03T12:07:50Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T12:07:42Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_no_lob__0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_no_lob__0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.6294 - Train Accuracy: 0.0118 - Train Wermet: 0.8270 - Validation Loss: 3.8729 - Validation Accuracy: 0.0115 - Validation Wermet: 0.9228 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.4122 | 0.0107 | 0.9328 | 3.9759 | 0.0114 | 0.9606 | 0 | | 4.7176 | 0.0116 | 0.8683 | 3.9404 | 0.0114 | 0.9334 | 1 | | 4.6750 | 0.0117 | 0.8478 | 3.9211 | 0.0115 | 0.9237 | 2 | | 4.6511 | 0.0117 | 0.8413 | 3.8864 | 0.0115 | 0.9331 | 3 | | 4.6294 | 0.0118 | 0.8270 | 3.8729 | 0.0115 | 0.9228 | 4 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
jaober/Pixelcopter-PLE-v0
jaober
2023-09-03T12:03:42Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T21:29:22Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 4.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Kamer/FlavioNoEng
Kamer
2023-09-03T11:59:33Z
107
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:nlpaueb/legal-bert-base-uncased", "base_model:finetune:nlpaueb/legal-bert-base-uncased", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-03T10:53:41Z
--- license: cc-by-sa-4.0 base_model: nlpaueb/legal-bert-base-uncased tags: - generated_from_trainer model-index: - name: FlavioNoEng results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FlavioNoEng This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4980 - eval_Accuracy: 0.8841 - eval_F1_macro: 0.7387 - eval_F1_class_0: 0.9302 - eval_F1_class_1: 0.0 - eval_F1_class_2: 0.8950 - eval_F1_class_3: 0.8000 - eval_F1_class_4: 0.8000 - eval_F1_class_5: 0.9057 - eval_F1_class_6: 0.7170 - eval_F1_class_7: 0.9663 - eval_F1_class_8: 0.9831 - eval_F1_class_9: 0.7931 - eval_F1_class_10: 0.8483 - eval_F1_class_11: 0.8333 - eval_F1_class_12: 0.7975 - eval_F1_class_13: 0.5714 - eval_F1_class_14: 0.8734 - eval_F1_class_15: 0.3077 - eval_F1_class_16: 0.0 - eval_F1_class_17: 0.9760 - eval_F1_class_18: 0.8525 - eval_F1_class_19: 0.9231 - eval_runtime: 34.849 - eval_samples_per_second: 32.426 - eval_steps_per_second: 2.037 - epoch: 3.93 - step: 2500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
YassineBenlaria/tamasheq-99-2
YassineBenlaria
2023-09-03T11:28:32Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:ad019el/tamasheq-99-2", "base_model:finetune:ad019el/tamasheq-99-2", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-02T21:57:53Z
--- base_model: ad019el/tamasheq-99-2 tags: - generated_from_trainer metrics: - wer model-index: - name: tamasheq-99-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tamasheq-99-2 This model is a fine-tuned version of [ad019el/tamasheq-99-2](https://huggingface.co/ad019el/tamasheq-99-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3830 - Wer: 0.8701 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.9932 | 15.79 | 300 | 3.5172 | 1.0 | | 2.9067 | 31.58 | 600 | 1.7973 | 1.0282 | | 0.7973 | 47.37 | 900 | 1.1744 | 0.8757 | | 0.4535 | 63.16 | 1200 | 1.2484 | 0.8475 | | 0.3511 | 78.95 | 1500 | 1.3254 | 0.8616 | | 0.3156 | 94.74 | 1800 | 1.3830 | 0.8701 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
wangrongsheng/Baichuan-13B-Chat-sft-super
wangrongsheng
2023-09-03T11:24:08Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-03T11:23:05Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
Ahmedhisham/Arabic_dialect_identifier
Ahmedhisham
2023-09-03T11:12:43Z
0
0
keras
[ "keras", "tf-keras", "text-classification", "license:mit", "region:us" ]
text-classification
2023-09-03T10:37:12Z
--- license: mit metrics: - precision - recall library_name: keras pipeline_tag: text-classification ---
bigmorning/whisper_attention_1_0005
bigmorning
2023-09-03T11:10:16Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T10:26:23Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_attention_1_0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_attention_1_0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0706 - Train Accuracy: 0.0133 - Train Wermet: 1.1544 - Validation Loss: 3.3059 - Validation Accuracy: 0.0127 - Validation Wermet: 2.5474 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 4.3421 | 0.0126 | 1.0868 | 3.5901 | 0.0122 | 1.7563 | 0 | | 4.2960 | 0.0127 | 1.0419 | 3.5479 | 0.0122 | 1.6770 | 1 | | 4.2437 | 0.0128 | 1.1301 | 3.4931 | 0.0124 | 1.2281 | 2 | | 4.1660 | 0.0130 | 1.1307 | 3.4015 | 0.0125 | 1.7745 | 3 | | 4.0706 | 0.0133 | 1.1544 | 3.3059 | 0.0127 | 2.5474 | 4 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
anik550689/output_model
anik550689
2023-09-03T10:45:19Z
6
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "license:openrail++", "region:us" ]
text-to-image
2023-09-03T08:47:01Z
--- license: openrail++ base_model: /home/ahmed/.cache/huggingface/hub/models--stabilityai--stable-diffusion-xl-base-1.0/snapshots/bf714989e22c57ddc1c453bf74dab4521acb81d8 instance_prompt: tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - anik550689/output_model These are LoRA adaption weights for /home/ahmed/.cache/huggingface/hub/models--stabilityai--stable-diffusion-xl-base-1.0/snapshots/bf714989e22c57ddc1c453bf74dab4521acb81d8. The weights were trained on using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: True. Special VAE used for training: None.
Echolist-yixuan/chatglm2-6b-qlora
Echolist-yixuan
2023-09-03T10:38:54Z
6
0
transformers
[ "transformers", "pytorch", "chatglm", "feature-extraction", "custom_code", "license:afl-3.0", "region:us" ]
feature-extraction
2023-09-03T10:25:19Z
--- license: afl-3.0 --- This model is a fine-tuned model based on chatGLM2-6b with QLoRA. The only difference between this model and chatGLM2-6b should be the knowledge of "LoRA" and 'QLoRA' technique.
Muhammadreza/mann-e-comics-revised-2
Muhammadreza
2023-09-03T10:08:27Z
15
2
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-03T09:55:31Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### mann-e_comics-revised-2 Dreambooth model trained by Muhammadreza with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
AmelieSchreiber/esm2_t6_8M_finetuned_human_protein_binding_sites
AmelieSchreiber
2023-09-03T10:06:52Z
162
0
transformers
[ "transformers", "pytorch", "esm", "token-classification", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-03T10:02:59Z
--- license: mit language: - en library_name: transformers --- # ESM-2 for Predicting Binding Sites of Human Proteins ``` Precision: 0.5381751045207555 Recall: 0.9426927311243982 F1 Score: 0.5602464778964296 ```
bigmorning/whisper_attention_0015
bigmorning
2023-09-03T10:05:13Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T10:05:04Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_attention_0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_attention_0015 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.1328 - Train Accuracy: 0.0132 - Train Wermet: 1.1476 - Validation Loss: 3.2918 - Validation Accuracy: 0.0129 - Validation Wermet: 1.3463 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.4192 | 0.0107 | 1.9359 | 3.9929 | 0.0112 | 3.4029 | 0 | | 4.7175 | 0.0116 | 1.3557 | 3.9525 | 0.0113 | 3.2613 | 1 | | 4.6756 | 0.0117 | 1.4198 | 3.9189 | 0.0113 | 2.6795 | 2 | | 4.6543 | 0.0117 | 1.3165 | 3.9021 | 0.0114 | 2.2678 | 3 | | 4.6317 | 0.0118 | 1.2794 | 3.8796 | 0.0114 | 1.8964 | 4 | | 4.6128 | 0.0118 | 1.2033 | 3.8579 | 0.0115 | 1.6353 | 5 | | 4.5945 | 0.0118 | 1.1814 | 3.8787 | 0.0114 | 3.6041 | 6 | | 4.5719 | 0.0119 | 1.1171 | 3.8418 | 0.0116 | 1.1922 | 7 | | 4.5503 | 0.0120 | 1.1435 | 3.8061 | 0.0117 | 1.8502 | 8 | | 4.5235 | 0.0121 | 1.0483 | 3.7736 | 0.0118 | 1.4279 | 9 | | 4.4837 | 0.0122 | 1.0371 | 3.7294 | 0.0119 | 1.6705 | 10 | | 4.4401 | 0.0123 | 1.0621 | 3.6991 | 0.0118 | 3.1038 | 11 | | 4.3684 | 0.0125 | 1.0436 | 3.6220 | 0.0121 | 3.1267 | 12 | | 4.2692 | 0.0128 | 1.1086 | 3.4681 | 0.0124 | 1.1431 | 13 | | 4.1328 | 0.0132 | 1.1476 | 3.2918 | 0.0129 | 1.3463 | 14 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
bigmorning/whisper_attention_0010
bigmorning
2023-09-03T09:51:55Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T09:51:43Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_attention_0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_attention_0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.5235 - Train Accuracy: 0.0121 - Train Wermet: 1.0483 - Validation Loss: 3.7736 - Validation Accuracy: 0.0118 - Validation Wermet: 1.4279 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.4192 | 0.0107 | 1.9359 | 3.9929 | 0.0112 | 3.4029 | 0 | | 4.7175 | 0.0116 | 1.3557 | 3.9525 | 0.0113 | 3.2613 | 1 | | 4.6756 | 0.0117 | 1.4198 | 3.9189 | 0.0113 | 2.6795 | 2 | | 4.6543 | 0.0117 | 1.3165 | 3.9021 | 0.0114 | 2.2678 | 3 | | 4.6317 | 0.0118 | 1.2794 | 3.8796 | 0.0114 | 1.8964 | 4 | | 4.6128 | 0.0118 | 1.2033 | 3.8579 | 0.0115 | 1.6353 | 5 | | 4.5945 | 0.0118 | 1.1814 | 3.8787 | 0.0114 | 3.6041 | 6 | | 4.5719 | 0.0119 | 1.1171 | 3.8418 | 0.0116 | 1.1922 | 7 | | 4.5503 | 0.0120 | 1.1435 | 3.8061 | 0.0117 | 1.8502 | 8 | | 4.5235 | 0.0121 | 1.0483 | 3.7736 | 0.0118 | 1.4279 | 9 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
AshutoshD245/food_classifier
AshutoshD245
2023-09-03T09:12:52Z
63
1
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-03T05:07:32Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: AshutoshD245/food_classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # AshutoshD245/food_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3889 - Validation Loss: 0.3585 - Train Accuracy: 0.914 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 2.8233 | 1.6956 | 0.808 | 0 | | 1.2230 | 0.8527 | 0.882 | 1 | | 0.7043 | 0.5496 | 0.896 | 2 | | 0.4912 | 0.4837 | 0.882 | 3 | | 0.3889 | 0.3585 | 0.914 | 4 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
LarryAIDraw/mizuhara_chizuru-07
LarryAIDraw
2023-09-03T09:12:46Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-03T09:08:13Z
--- license: creativeml-openrail-m --- https://civitai.com/models/139211/chizuru-mizuhara
LarryAIDraw/saraliya_DG
LarryAIDraw
2023-09-03T09:12:17Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-03T09:07:51Z
--- license: creativeml-openrail-m --- https://civitai.com/models/139196/saraliya-corwen-log-horizon
LarryAIDraw/fenniS_CB-v1
LarryAIDraw
2023-09-03T09:11:21Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-03T09:07:25Z
--- license: creativeml-openrail-m --- https://civitai.com/models/138586/or-fenny-or-or-snowbreak-containment-zone-or-or
LarryAIDraw/magahara_desumi
LarryAIDraw
2023-09-03T09:10:55Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-03T09:06:59Z
--- license: creativeml-openrail-m --- https://civitai.com/models/138684/desumi-magahara-love-after-world-domination-or
LarryAIDraw/ayanami_niconico
LarryAIDraw
2023-09-03T09:09:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-03T09:05:06Z
--- license: creativeml-openrail-m --- https://civitai.com/models/138764/ayanami-niconico-or-niconico-or-azur-lane
bendico765/DuplicatiDistillBertFullTraining
bendico765
2023-09-03T09:05:36Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T14:58:34Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: DuplicatiDistillBertFullTraining results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DuplicatiDistillBertFullTraining This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4670 - Accuracy: 0.8904 - F1 Macro: 0.8349 - F1 Class 0: 0.9526 - F1 Class 1: 0.6667 - F1 Class 2: 0.8398 - F1 Class 3: 0.8278 - F1 Class 4: 0.8050 - F1 Class 5: 0.9111 - F1 Class 6: 0.8943 - F1 Class 7: 0.9504 - F1 Class 8: 0.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Class 0 | F1 Class 1 | F1 Class 2 | F1 Class 3 | F1 Class 4 | F1 Class 5 | F1 Class 6 | F1 Class 7 | F1 Class 8 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:| | 1.3064 | 0.25 | 250 | 0.7912 | 0.7411 | 0.5153 | 0.9353 | 0.0 | 0.5769 | 0.0 | 0.5222 | 0.8352 | 0.8477 | 0.9206 | 0.0 | | 0.7377 | 0.5 | 500 | 0.6851 | 0.8024 | 0.6114 | 0.9458 | 0.0 | 0.6388 | 0.6040 | 0.6406 | 0.8646 | 0.8772 | 0.9313 | 0.0 | | 0.5968 | 0.75 | 750 | 0.5917 | 0.8421 | 0.6460 | 0.9474 | 0.0 | 0.7722 | 0.7052 | 0.6909 | 0.8887 | 0.8812 | 0.9281 | 0.0 | | 0.5028 | 1.01 | 1000 | 0.5893 | 0.8502 | 0.6523 | 0.9476 | 0.0 | 0.7700 | 0.7263 | 0.7564 | 0.8674 | 0.8537 | 0.9497 | 0.0 | | 0.4657 | 1.26 | 1250 | 0.5319 | 0.8663 | 0.6671 | 0.9493 | 0.0 | 0.7830 | 0.7870 | 0.7650 | 0.8965 | 0.8777 | 0.9457 | 0.0 | | 0.4047 | 1.51 | 1500 | 0.5214 | 0.8708 | 0.7452 | 0.9492 | 0.0 | 0.8141 | 0.7774 | 0.7784 | 0.8755 | 0.8978 | 0.9477 | 0.6667 | | 0.4021 | 1.76 | 1750 | 0.5208 | 0.8773 | 0.7344 | 0.9476 | 0.0 | 0.7609 | 0.7879 | 0.8015 | 0.9156 | 0.8945 | 0.9563 | 0.5455 | | 0.4 | 2.01 | 2000 | 0.4734 | 0.8879 | 0.8306 | 0.9527 | 0.6667 | 0.8274 | 0.8047 | 0.7965 | 0.9217 | 0.8856 | 0.9531 | 0.6667 | | 0.2616 | 2.26 | 2250 | 0.5733 | 0.8763 | 0.7283 | 0.9577 | 0.0 | 0.7973 | 0.7926 | 0.8100 | 0.9012 | 0.8978 | 0.9278 | 0.4706 | | 0.3004 | 2.52 | 2500 | 0.5050 | 0.8934 | 0.7959 | 0.9672 | 0.3333 | 0.8480 | 0.8235 | 0.8051 | 0.9149 | 0.8903 | 0.9556 | 0.625 | | 0.3136 | 2.77 | 2750 | 0.4735 | 0.8894 | 0.8483 | 0.9511 | 0.9091 | 0.8444 | 0.7893 | 0.7992 | 0.9186 | 0.9 | 0.9514 | 0.5714 | | 0.3091 | 3.02 | 3000 | 0.4670 | 0.8904 | 0.8349 | 0.9526 | 0.6667 | 0.8398 | 0.8278 | 0.8050 | 0.9111 | 0.8943 | 0.9504 | 0.6667 | | 0.1983 | 3.27 | 3250 | 0.5770 | 0.8914 | 0.8328 | 0.9551 | 0.7500 | 0.8478 | 0.7956 | 0.8120 | 0.9156 | 0.8884 | 0.9598 | 0.5714 | | 0.1782 | 3.52 | 3500 | 0.5193 | 0.8974 | 0.8245 | 0.9511 | 0.5714 | 0.8410 | 0.8353 | 0.8225 | 0.9196 | 0.9123 | 0.9521 | 0.6154 | | 0.2419 | 3.77 | 3750 | 0.4857 | 0.8949 | 0.8129 | 0.9567 | 0.5 | 0.8495 | 0.7988 | 0.8177 | 0.9209 | 0.8980 | 0.9587 | 0.6154 | | 0.2209 | 4.02 | 4000 | 0.5167 | 0.8994 | 0.7900 | 0.9501 | 0.3333 | 0.8509 | 0.8134 | 0.8345 | 0.9215 | 0.9112 | 0.9621 | 0.5333 | | 0.1367 | 4.28 | 4250 | 0.6125 | 0.8919 | 0.8537 | 0.9582 | 0.8889 | 0.8411 | 0.8144 | 0.8190 | 0.9066 | 0.8820 | 0.9580 | 0.6154 | | 0.1523 | 4.53 | 4500 | 0.5453 | 0.8944 | 0.8287 | 0.9565 | 0.7500 | 0.8404 | 0.8249 | 0.8155 | 0.9147 | 0.9002 | 0.9561 | 0.5 | | 0.1666 | 4.78 | 4750 | 0.5185 | 0.9025 | 0.8497 | 0.9713 | 0.6667 | 0.8392 | 0.8394 | 0.8306 | 0.9226 | 0.9027 | 0.9601 | 0.7143 | | 0.1388 | 5.03 | 5000 | 0.5815 | 0.8934 | 0.7865 | 0.9583 | 0.3333 | 0.8462 | 0.8288 | 0.8217 | 0.9126 | 0.8908 | 0.9604 | 0.5263 | | 0.1039 | 5.28 | 5250 | 0.6477 | 0.8929 | 0.8184 | 0.9533 | 0.5 | 0.8431 | 0.8239 | 0.8103 | 0.9150 | 0.8913 | 0.9616 | 0.6667 | | 0.0942 | 5.53 | 5500 | 0.6873 | 0.8864 | 0.8112 | 0.9603 | 0.6667 | 0.8424 | 0.8033 | 0.8031 | 0.9017 | 0.8914 | 0.9559 | 0.4762 | | 0.1063 | 5.78 | 5750 | 0.6684 | 0.8944 | 0.8325 | 0.9675 | 0.5714 | 0.8557 | 0.8120 | 0.8204 | 0.9082 | 0.8884 | 0.9547 | 0.7143 | | 0.0945 | 6.04 | 6000 | 0.6209 | 0.8939 | 0.8183 | 0.9654 | 0.5714 | 0.8537 | 0.8184 | 0.8112 | 0.9175 | 0.8982 | 0.9405 | 0.5882 | | 0.0771 | 6.29 | 6250 | 0.6268 | 0.8994 | 0.8563 | 0.9638 | 0.7500 | 0.8398 | 0.8363 | 0.8373 | 0.9123 | 0.8924 | 0.9605 | 0.7143 | | 0.0845 | 6.54 | 6500 | 0.6382 | 0.8939 | 0.8417 | 0.9692 | 0.7500 | 0.8429 | 0.8179 | 0.8151 | 0.9123 | 0.8884 | 0.9548 | 0.625 | | 0.0673 | 6.79 | 6750 | 0.6561 | 0.9010 | 0.8315 | 0.9693 | 0.5714 | 0.8404 | 0.8214 | 0.8342 | 0.9252 | 0.8928 | 0.9616 | 0.6667 | | 0.0641 | 7.04 | 7000 | 0.7066 | 0.8879 | 0.8407 | 0.9617 | 0.7500 | 0.8467 | 0.7923 | 0.8107 | 0.9077 | 0.8795 | 0.9512 | 0.6667 | | 0.039 | 7.29 | 7250 | 0.6932 | 0.8949 | 0.8459 | 0.9659 | 0.7500 | 0.8510 | 0.8079 | 0.8178 | 0.9185 | 0.8767 | 0.9590 | 0.6667 | | 0.0372 | 7.55 | 7500 | 0.6786 | 0.8984 | 0.8705 | 0.9658 | 0.8889 | 0.8626 | 0.8232 | 0.8194 | 0.9134 | 0.8859 | 0.9607 | 0.7143 | | 0.0504 | 7.8 | 7750 | 0.6914 | 0.8949 | 0.8598 | 0.9641 | 0.9091 | 0.8478 | 0.8202 | 0.8104 | 0.9177 | 0.8874 | 0.9561 | 0.625 | | 0.0409 | 8.05 | 8000 | 0.7027 | 0.8984 | 0.8501 | 0.9658 | 0.7500 | 0.8475 | 0.8387 | 0.8195 | 0.9142 | 0.8879 | 0.9607 | 0.6667 | | 0.0196 | 8.3 | 8250 | 0.7222 | 0.8969 | 0.8530 | 0.9659 | 0.7500 | 0.8492 | 0.8202 | 0.8123 | 0.9184 | 0.8849 | 0.9621 | 0.7143 | | 0.0323 | 8.55 | 8500 | 0.6858 | 0.8999 | 0.8551 | 0.9697 | 0.8889 | 0.8606 | 0.8235 | 0.8218 | 0.9181 | 0.9015 | 0.9561 | 0.5556 | | 0.0274 | 8.8 | 8750 | 0.6813 | 0.9010 | 0.8557 | 0.9660 | 0.8889 | 0.8517 | 0.8300 | 0.8270 | 0.9186 | 0.9015 | 0.9618 | 0.5556 | | 0.0212 | 9.05 | 9000 | 0.7197 | 0.8979 | 0.8608 | 0.9677 | 0.8889 | 0.8456 | 0.8272 | 0.8281 | 0.9111 | 0.8899 | 0.9633 | 0.625 | | 0.0065 | 9.31 | 9250 | 0.7363 | 0.8979 | 0.8601 | 0.9696 | 0.8889 | 0.8463 | 0.8199 | 0.8220 | 0.9152 | 0.8924 | 0.9618 | 0.625 | | 0.0115 | 9.56 | 9500 | 0.7331 | 0.8974 | 0.8647 | 0.9677 | 0.8889 | 0.8504 | 0.8249 | 0.8204 | 0.9105 | 0.8909 | 0.9619 | 0.6667 | | 0.0059 | 9.81 | 9750 | 0.7349 | 0.8989 | 0.8660 | 0.9695 | 0.8889 | 0.8462 | 0.8319 | 0.8226 | 0.9121 | 0.8953 | 0.9606 | 0.6667 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
LarryAIDraw/chara_SonoBisqueDoll_InuiShinju_v1
LarryAIDraw
2023-09-03T09:03:58Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-03T09:00:24Z
--- license: creativeml-openrail-m --- https://civitai.com/models/138946/inui-shinju-or-sono-bisque-doll-wa-koi-wo-suru
LarryAIDraw/dayuexia_m3
LarryAIDraw
2023-09-03T09:02:06Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-03T08:59:19Z
--- license: creativeml-openrail-m --- https://civitai.com/models/139027/grown-up-tericula-or-honkai-impact-3rd
ganlongnz/finetuning-sentiment-model-3000-samples_v1
ganlongnz
2023-09-03T08:51:40Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T10:23:26Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples_v1 results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8712871287128714 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3194 - Accuracy: 0.87 - F1: 0.8713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
922-Narra/tagalog-lm-lora-tests
922-Narra
2023-09-03T08:43:28Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-08-16T14:10:28Z
--- license: openrail --- Experimental Tagalog loras: safe or accurate outputs not guaranteed (not for production use)! Note: better/best results with * Prompting in Tagalog * Using format "Human: (prompt)\nAssistant:" Example: "Ito ay isang chat log sa pagitan ng AI Assistant na nagta-Tagalog at isang Pilipino. Magsimula ng chat:\nHuman: Hello po?\nAssistant:" # lt2_08162023 * Fine tuned on a small dataset of 14 items, manually edited * 1 epoch (barely any noticable results) * From chat LLaMA-2-7b * Lora of chat-tagalog v0.1 # lt2_08162023a * Fine tuned on a small dataset of 14 items, manually edited * 20 epochs (more observable effects) * From chat LLaMA-2-7b * Lora of [chat-tagalog v0.1a](https://huggingface.co/922-Narra/llama-2-7b-chat-tagalog-v0.1a) # lt2_08162023b * Fine tuned on a small dataset of 14 items, manually edited * 10 epochs * From chat LLaMA-2-7b * Lora of chat-tagalog v0.1b # lt2_08162023c * Fine tuned on a small dataset of 14 items, manually edited * 50 epochs (overfitted) * From chat LLaMA-2-7b * Lora of chat-tagalog v0.1c # lt2_08162023d * Fine tuned on a small dataset of 14 items, manually edited * 30 epochs (v0.1a further trained and cut-off before overfit) * From chat LLaMA-2-7b * Lora of [chat-tagalog v0.1d](https://huggingface.co/922-Narra/llama-2-7b-chat-tagalog-v0.1d) # llama-2-7b-tagalog-v0.2 loras (08/26/2023) * Fine tuned on dataset of ~10k items (mixed) * 2/2a/2b fine-tuned for 1/2/3 epochs * From chat LLaMA-2-7b * Future attempt planned with cleaner chat/dialogue data # hopia-3b-v0.1 (08/26/2023) * Fine tuned on a small dataset of 14 items, manually edited * 20 epochs * From Open LLaMA 3b # llama-2-7b-tagalog-v0.3 loras (09/01/2023) * Fine tuned on a dataset of ~1k items (Tagalog-focused dataset, based off Tagalog sentences augmented by LLaMA-2-13b base to create a 3-turn dialogue dataset between Human and Assistant) * 3/3a fine-tuned for 1/2 epochs * From chat LLaMA-2-7b * Experiment on partially synthetic data (and observing capability of LLaMA-2 base on generating Tagalog): will be further curating dataset * Loras for [chat-tagalog v0.3)](https://huggingface.co/922-Narra/llama-2-7b-chat-tagalog-v0.3) and [chat-tagalog v0.3](https://huggingface.co/922-Narra/llama-2-7b-chat-tagalog-v0.3a) # llama-2-7b-tagalog-v0.3WC2 (09/01/2023) * Fine tuned on experimental dataset of ~6k items (Tagalog-focused dataset, based off Tagalog sentences and Wiki entries augmented by LLaMA-2-13b to create a dialogue-QnA dataset between Human and Assistant) * 1 epoch * From chat LLaMA-2-7b # llama-2-13b-tagalog-v0.3 loras (09/01-02/2023) * Fine tuned on experimental datasets of ~1k items (Tagalog-focused dataset, based off Tagalog sentences augmented by LLaMA-2-13b base to create a 3-turn dialogue dataset between Human and Assistant) * 3 fine-tuned for 1 epoch, rank = 16, lora alpha = 32 * 3a with rank = 8 * 3b for 2 epochs * 3c for 1 epoch, lr = 1e-4, warmup steps = 0.1 * 3d with lr = 2e-4, rank = 32, lora alpha = 64 * 3e for 2 epochs * From LLaMA-2-13b * Trying LLaMA-2-13b chat/other base and curated dataset for next attempts
TheBloke/robin-13B-v2-fp16
TheBloke
2023-09-03T08:38:16Z
1,555
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-16T18:59:47Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # OptimalScale's Robin 13B v2 fp16 These files are pytorch format fp16 model files for [OptimalScale's Robin 13B v2](https://huggingface.co/OptimalScale/robin-13b-v2-delta). It is the result of merging and/or converting the source repository to float16. ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/robin-13B-v2-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/robin-13B-v2-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/robin-13B-v2-fp16) ## Prompt template ``` A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions ###Human: prompt ###Assistant: ``` <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: vamX, K, Jonathan Leane, Lone Striker, Sean Connelly, Chris McCloskey, WelcomeToTheClub, Nikolai Manek, John Detwiler, Kalila, David Flickinger, Fen Risland, subjectnull, Johann-Peter Hartmann, Talal Aujan, John Villwock, senxiiz, Khalefa Al-Ahmad, Kevin Schuppel, Alps Aficionado, Derek Yates, Mano Prime, Nathan LeClaire, biorpg, trip7s trip, Asp the Wyvern, chris gileta, Iucharbius , Artur Olbinski, Ai Maven, Joseph William Delisle, Luke Pendergrass, Illia Dulskyi, Eugene Pentland, Ajan Kanaga, Willem Michiel, Space Cruiser, Pyrater, Preetika Verma, Junyu Yang, Oscar Rangel, Spiking Neurons AB, Pierre Kircher, webtim, Cory Kujawski, terasurfer , Trenton Dambrowitz, Gabriel Puliatti, Imad Khwaja, Luke. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: OptimalScale's Robin 13B v2 No model card provided in source repository.
dkqjrm/20230903121524
dkqjrm
2023-09-03T08:22:19Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-03T03:15:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230903121524' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230903121524 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9097 - Accuracy: 0.6442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 340 | 0.7286 | 0.5 | | 0.7482 | 2.0 | 680 | 0.7273 | 0.5 | | 0.7442 | 3.0 | 1020 | 0.7313 | 0.5 | | 0.7442 | 4.0 | 1360 | 0.7599 | 0.5 | | 0.7355 | 5.0 | 1700 | 0.7222 | 0.6113 | | 0.6979 | 6.0 | 2040 | 0.7373 | 0.6160 | | 0.6979 | 7.0 | 2380 | 0.6950 | 0.6583 | | 0.6629 | 8.0 | 2720 | 0.6711 | 0.6740 | | 0.6282 | 9.0 | 3060 | 0.7543 | 0.6599 | | 0.6282 | 10.0 | 3400 | 0.7217 | 0.6520 | | 0.6023 | 11.0 | 3740 | 0.7513 | 0.6426 | | 0.5705 | 12.0 | 4080 | 0.6886 | 0.6693 | | 0.5705 | 13.0 | 4420 | 0.6779 | 0.6755 | | 0.5607 | 14.0 | 4760 | 0.7978 | 0.6489 | | 0.527 | 15.0 | 5100 | 0.6722 | 0.6771 | | 0.527 | 16.0 | 5440 | 0.8047 | 0.6317 | | 0.5226 | 17.0 | 5780 | 0.7721 | 0.6740 | | 0.5133 | 18.0 | 6120 | 0.7900 | 0.6552 | | 0.5133 | 19.0 | 6460 | 0.7563 | 0.6599 | | 0.5054 | 20.0 | 6800 | 0.8456 | 0.6411 | | 0.4836 | 21.0 | 7140 | 0.8232 | 0.6426 | | 0.4836 | 22.0 | 7480 | 0.7993 | 0.6270 | | 0.4796 | 23.0 | 7820 | 0.8026 | 0.6426 | | 0.4659 | 24.0 | 8160 | 0.8306 | 0.6254 | | 0.4669 | 25.0 | 8500 | 0.8153 | 0.6505 | | 0.4669 | 26.0 | 8840 | 0.8499 | 0.6489 | | 0.4487 | 27.0 | 9180 | 0.8366 | 0.6332 | | 0.4499 | 28.0 | 9520 | 0.7661 | 0.6567 | | 0.4499 | 29.0 | 9860 | 0.7668 | 0.6630 | | 0.4483 | 30.0 | 10200 | 0.8147 | 0.6520 | | 0.4303 | 31.0 | 10540 | 0.8030 | 0.6442 | | 0.4303 | 32.0 | 10880 | 0.8346 | 0.6285 | | 0.4272 | 33.0 | 11220 | 0.7779 | 0.6489 | | 0.43 | 34.0 | 11560 | 0.8193 | 0.6599 | | 0.43 | 35.0 | 11900 | 0.8792 | 0.6411 | | 0.4139 | 36.0 | 12240 | 0.8091 | 0.6332 | | 0.4139 | 37.0 | 12580 | 0.7939 | 0.6458 | | 0.4139 | 38.0 | 12920 | 0.8626 | 0.6505 | | 0.4102 | 39.0 | 13260 | 0.8111 | 0.6442 | | 0.4065 | 40.0 | 13600 | 0.8054 | 0.6583 | | 0.4065 | 41.0 | 13940 | 0.8704 | 0.6520 | | 0.4049 | 42.0 | 14280 | 0.8441 | 0.6348 | | 0.3978 | 43.0 | 14620 | 0.8723 | 0.6411 | | 0.3978 | 44.0 | 14960 | 0.8747 | 0.6552 | | 0.4074 | 45.0 | 15300 | 0.8662 | 0.6505 | | 0.3952 | 46.0 | 15640 | 0.8432 | 0.6442 | | 0.3952 | 47.0 | 15980 | 0.8837 | 0.6552 | | 0.3868 | 48.0 | 16320 | 0.8219 | 0.6583 | | 0.3805 | 49.0 | 16660 | 0.7792 | 0.6536 | | 0.386 | 50.0 | 17000 | 0.8385 | 0.6520 | | 0.386 | 51.0 | 17340 | 0.8554 | 0.6505 | | 0.3869 | 52.0 | 17680 | 0.8655 | 0.6583 | | 0.3772 | 53.0 | 18020 | 0.8613 | 0.6552 | | 0.3772 | 54.0 | 18360 | 0.9268 | 0.6364 | | 0.3744 | 55.0 | 18700 | 0.8710 | 0.6473 | | 0.378 | 56.0 | 19040 | 0.9222 | 0.6395 | | 0.378 | 57.0 | 19380 | 0.8803 | 0.6536 | | 0.3702 | 58.0 | 19720 | 0.9055 | 0.6364 | | 0.3687 | 59.0 | 20060 | 0.8305 | 0.6630 | | 0.3687 | 60.0 | 20400 | 0.9229 | 0.6395 | | 0.3677 | 61.0 | 20740 | 0.9214 | 0.6301 | | 0.3635 | 62.0 | 21080 | 0.9074 | 0.6458 | | 0.3635 | 63.0 | 21420 | 0.8890 | 0.6520 | | 0.3613 | 64.0 | 21760 | 0.8725 | 0.6426 | | 0.3634 | 65.0 | 22100 | 0.8860 | 0.6489 | | 0.3634 | 66.0 | 22440 | 0.8428 | 0.6614 | | 0.3528 | 67.0 | 22780 | 0.8792 | 0.6458 | | 0.3613 | 68.0 | 23120 | 0.8840 | 0.6254 | | 0.3613 | 69.0 | 23460 | 0.8960 | 0.6489 | | 0.3516 | 70.0 | 23800 | 0.8763 | 0.6567 | | 0.348 | 71.0 | 24140 | 0.8935 | 0.6332 | | 0.348 | 72.0 | 24480 | 0.9031 | 0.6442 | | 0.3567 | 73.0 | 24820 | 0.9070 | 0.6458 | | 0.3514 | 74.0 | 25160 | 0.8997 | 0.6426 | | 0.3543 | 75.0 | 25500 | 0.9025 | 0.6458 | | 0.3543 | 76.0 | 25840 | 0.9028 | 0.6379 | | 0.3457 | 77.0 | 26180 | 0.9155 | 0.6364 | | 0.3452 | 78.0 | 26520 | 0.8973 | 0.6426 | | 0.3452 | 79.0 | 26860 | 0.9085 | 0.6458 | | 0.3379 | 80.0 | 27200 | 0.9097 | 0.6442 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
victornica/molgpt_selfies_mosesonly
victornica
2023-09-03T08:14:06Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-03T04:51:02Z
--- license: mit tags: - generated_from_trainer model-index: - name: molgpt_selfies_mosesonly results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # molgpt_selfies_mosesonly This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1282 | 0.18 | 1000 | 0.7807 | | 0.7302 | 0.36 | 2000 | 0.6754 | | 0.6658 | 0.54 | 3000 | 0.6378 | | 0.6381 | 0.72 | 4000 | 0.6180 | | 0.6208 | 0.9 | 5000 | 0.6067 | | 0.6072 | 1.08 | 6000 | 0.5968 | | 0.5973 | 1.26 | 7000 | 0.5859 | | 0.5897 | 1.44 | 8000 | 0.5795 | | 0.5837 | 1.62 | 9000 | 0.5724 | | 0.5778 | 1.79 | 10000 | 0.5683 | | 0.5729 | 1.97 | 11000 | 0.5639 | | 0.5664 | 2.15 | 12000 | 0.5613 | | 0.5621 | 2.33 | 13000 | 0.5555 | | 0.5592 | 2.51 | 14000 | 0.5520 | | 0.5552 | 2.69 | 15000 | 0.5481 | | 0.5524 | 2.87 | 16000 | 0.5449 | | 0.5474 | 3.05 | 17000 | 0.5420 | | 0.5426 | 3.23 | 18000 | 0.5397 | | 0.5405 | 3.41 | 19000 | 0.5369 | | 0.538 | 3.59 | 20000 | 0.5338 | | 0.5353 | 3.77 | 21000 | 0.5307 | | 0.5329 | 3.95 | 22000 | 0.5283 | | 0.5266 | 4.13 | 23000 | 0.5264 | | 0.5237 | 4.31 | 24000 | 0.5236 | | 0.522 | 4.49 | 25000 | 0.5218 | | 0.5206 | 4.67 | 26000 | 0.5198 | | 0.5191 | 4.85 | 27000 | 0.5182 | | 0.5165 | 5.03 | 28000 | 0.5168 | | 0.5113 | 5.21 | 29000 | 0.5159 | | 0.5104 | 5.38 | 30000 | 0.5150 | | 0.5105 | 5.56 | 31000 | 0.5143 | | 0.5098 | 5.74 | 32000 | 0.5140 | | 0.5094 | 5.92 | 33000 | 0.5139 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
JunF1122/xlm-roberta-base-finetuned-panx-de
JunF1122
2023-09-03T08:05:41Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T14:26:16Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.863220155832338 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 - F1: 0.8632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2578 | 1.0 | 525 | 0.1642 | 0.8263 | | 0.1289 | 2.0 | 1050 | 0.1397 | 0.8420 | | 0.0819 | 3.0 | 1575 | 0.1352 | 0.8632 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.13.3
urbija/ner-bio-annotated-4
urbija
2023-09-03T07:55:58Z
107
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-28T17:01:54Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ner-bio-annotated-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner-bio-annotated-4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1253 - Precision: 0.7316 - Recall: 0.7846 - F1: 0.7572 - Accuracy: 0.9640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 67 | 0.1690 | 0.5398 | 0.6195 | 0.5769 | 0.9422 | | No log | 2.0 | 134 | 0.1422 | 0.6725 | 0.7493 | 0.7089 | 0.9562 | | No log | 3.0 | 201 | 0.1253 | 0.7316 | 0.7846 | 0.7572 | 0.9640 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0+cpu - Datasets 2.1.0 - Tokenizers 0.13.3
AndrewL088/Pyramids
AndrewL088
2023-09-03T07:31:43Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-09-03T07:14:25Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: AndrewL088/Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
chunwoolee0/ke_t5_base_bongsoo_en_ko
chunwoolee0
2023-09-03T07:20:59Z
17
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:KETI-AIR/ke-t5-base", "base_model:finetune:KETI-AIR/ke-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-25T00:50:28Z
--- license: apache-2.0 base_model: KETI-AIR/ke-t5-base tags: - generated_from_trainer model-index: - name: ke_t5_base_bongsoo_en_ko results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ke_t5_base_bongsoo_en_ko This model is a fine-tuned version of [KETI-AIR/ke-t5-base](https://huggingface.co/KETI-AIR/ke-t5-base) on the [bongsoo/news_news_talk_en_ko](https://huggingface.co/datasets/bongsoo/news_talk_en_ko) dataset. See [translation_ke_t5_base_bongsoo_en_ko.ipynb](https://github.com/chunwoolee0/ko-nlp/blob/main/translation_ke_t5_base_bongsoo_en_ko.ipynb) ## Model description KE-T5 is a pretrained-model of t5 text-to-text transfer transformers using the Korean and English corpus developed by KETI (한국전자연구원). The vocabulary used by KE-T5 consists of 64,000 sub-word tokens and was created using Google's sentencepiece. The Sentencepiece model was trained to cover 99.95% of a 30GB corpus with an approximate 7:3 mix of Korean and English. ## Intended uses & limitations Translation from English to Korean ## Usage You can use this model directly with a pipeline for translation language modeling: ```python >>> from transformers import pipeline >>> translator = pipeline('translation', model='chunwoolee0/ke_t5_base_bongsoo_en_ko') >>> translator("Let us go for a walk after lunch.") [{'translation_text': '점심을 마치고 산책을 하러 가자.'}] >>> translator("The BRICS countries welcomed six new members from three different continents on Thursday.") [{'translation_text': '브릭스 국가들은 지난 24일 3개 대륙 6명의 신규 회원을 환영했다.'}] >>> translator("The BRICS countries welcomed six new members from three different continents on Thursday, marking a historic milestone that underscored the solidarity of BRICS and developing countries and determination to work together for a better future, officials and experts said.",max_length=400) [{'translation_text': '브렙스 국가는 지난 7일 3개 대륙 6명의 신규 회원을 환영하며 BRICS와 개발도상국의 연대와 더 나은 미래를 위해 함께 노력하겠다는 의지를 재확인한 역사적인 이정표를 장식했다고 관계자들과 전문가들은 전했다.'}] >>> translator("Biden’s decree zaps lucrative investments in China’s chip and AI sectors") [{'translation_text': '바이든 장관의 행정명령은 중국 칩과 AI 분야의 고수익 투자를 옥죄는 것이다.'}] >>> translator("It is most likely that China’s largest chip foundry, a key piece of the puzzle in Beijing’s efforts to achieve greater self-sufficiency in semiconductors, would not have been able to set up its first plant in Shanghai’s suburbs in the early 2000s without funding from American investors such as Walden International and Goldman Sachs.", max_length=400) [{'translation_text': '반도체의 더 큰 자립성을 이루기 위해 베이징이 애쓰는 퍼즐의 핵심 조각인 중국 최대 칩 파운드리가 월덴인터내셔널, 골드만삭스 등 미국 투자자로부터 자금 지원을 받지 못한 채 2000년대 초 상하이 시내에 첫 공장을 지을 수 없었을 가능성이 크다.'}] ## Training and evaluation data One third of the original training data size of 1200000 is selected because of the resource limit of the colab of google. ## Training procedure Because of the limitation of google's colab, the model is trained only by one epoch. The result is still quite satisfactory. The quality of translation is not so bad. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 5625 | 2.4075 | 8.2272 | - cpu usage: 4.8/12.7GB - gpu usage: 13.0/15.0GB - running time: 3h ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
venetis/bert-base-uncased-finetuned-3d-sentiment
venetis
2023-09-03T06:51:11Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T23:52:21Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-base-uncased-finetuned-3d-sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-3d-sentiment This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9271 - Accuracy: 0.7392 - Precision: 0.7455 - Recall: 0.7392 - F1: 0.7394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 6381 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8443 | 1.0 | 1595 | 0.8265 | 0.6659 | 0.6920 | 0.6659 | 0.6629 | | 0.6037 | 2.0 | 3190 | 0.7380 | 0.7021 | 0.7207 | 0.7021 | 0.7014 | | 0.516 | 3.0 | 4785 | 0.6740 | 0.7246 | 0.7337 | 0.7246 | 0.7234 | | 0.4269 | 4.0 | 6380 | 0.7221 | 0.7290 | 0.7383 | 0.7290 | 0.7271 | | 0.3149 | 5.0 | 7975 | 0.8368 | 0.7237 | 0.7422 | 0.7237 | 0.7230 | | 0.1996 | 6.0 | 9570 | 0.9271 | 0.7392 | 0.7455 | 0.7392 | 0.7394 | | 0.1299 | 7.0 | 11165 | 1.1062 | 0.7358 | 0.7461 | 0.7358 | 0.7361 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.3
tnguyen9210/q-Taxi-v3
tnguyen9210
2023-09-03T06:45:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-03T06:45:54Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.46 +/- 2.80 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="tnguyen9210/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ghorbani/irangig
ghorbani
2023-09-03T06:41:05Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-09-03T06:41:05Z
--- license: bigscience-openrail-m ---
NavpreetSingh54/my-pet-dog-xzg
NavpreetSingh54
2023-09-03T06:13:33Z
6
1
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-03T06:00:19Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog-XZG Dreambooth model trained by NavpreetSingh54 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: IKGPTU126 Sample pictures of this concept: ![0](https://huggingface.co/NavpreetSingh54/my-pet-dog-xzg/resolve/main/sample_images/images_(2).jpeg) ![1](https://huggingface.co/NavpreetSingh54/my-pet-dog-xzg/resolve/main/sample_images/images.jpeg) ![2](https://huggingface.co/NavpreetSingh54/my-pet-dog-xzg/resolve/main/sample_images/images_(1).jpeg) ![3](https://huggingface.co/NavpreetSingh54/my-pet-dog-xzg/resolve/main/sample_images/images_(4).jpeg) ![4](https://huggingface.co/NavpreetSingh54/my-pet-dog-xzg/resolve/main/sample_images/images_(3).jpeg) ![5](https://huggingface.co/NavpreetSingh54/my-pet-dog-xzg/resolve/main/sample_images/download.jpeg)
s3nh/sakuraumi-Sakura-13B-Galgame-GGUF
s3nh
2023-09-03T06:05:30Z
0
0
transformers
[ "transformers", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-09-03T06:05:29Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/sakuraumi/Sakura-13B-Galgame). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
chunwoolee0/mt5_small_bongsoo_en_ko
chunwoolee0
2023-09-03T05:42:48Z
31
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "base_model:chunwoolee0/mt5_small_bongsoo_en_ko", "base_model:finetune:chunwoolee0/mt5_small_bongsoo_en_ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-24T11:45:41Z
--- license: apache-2.0 base_model: chunwoolee0/mt5_small_bongsoo_en_ko tags: - generated_from_trainer metrics: - rouge - sacrebleu model-index: - name: mt5_small_bongsoo_en_ko results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5_small_bongsoo_en_ko This model is a fine-tuned version of [chunwoolee0/mt5_small_bongsoo_en_ko](https://huggingface.co/chunwoolee0/mt5_small_bongsoo_en_ko) on the [bongsoo/news_talk_en_ko](https://huggingface.co/datasets/bongsoo/news_talk_en_ko) dataset. It achieves the following results on the evaluation set: - Loss: 2.7805 - Rouge1: 0.1932 - Rouge2: 0.0394 - Rougel: 0.1895 - Sacrebleu: 0.4518 ## Model description mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages ## Intended uses & limitations Translation from English to Korean ## Usage You can use this model directly with a pipeline for translation language modeling: ```python >>> from transformers import pipeline >>> translator = pipeline('translation', model='chunwoolee0/ke_t5_base_bongsoo_en_ko') >>> translator("Let us go for a walk after lunch.") [{'translation_text': '식당에 앉아서 밤에 갔다.'}] >>> translator("Skinner's reward is mostly eye-watering.") [{'translation_text': '벤더의 선물은 너무 마음이 쏠린다.'}] ``` ## Training and evaluation data The value of max_length is critical to the training. The usual value of 128 used for Indo-European languages causes a greate trouble in gpu usage. Therefore it should be reduced to 64 in order to succeed. Another problem comes from the usual split of data into 80% for train and 20% for validation. By this, the evaluation step takes too much time. Here 99% and 1% split is used without change in the evaluation. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Sacrebleu | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.8338 | 0.16 | 500 | 2.9626 | 0.1475 | 0.0184 | 0.1455 | 0.4243 | | 3.7865 | 0.32 | 1000 | 2.9305 | 0.1529 | 0.0181 | 0.1508 | 0.4435 | | 3.7436 | 0.48 | 1500 | 2.9067 | 0.1572 | 0.019 | 0.155 | 0.4464 | | 3.7207 | 0.65 | 2000 | 2.8924 | 0.165 | 0.0233 | 0.1629 | 0.4532 | | 3.7022 | 0.81 | 2500 | 2.8825 | 0.1647 | 0.0231 | 0.1627 | 0.4504 | | 3.69 | 0.97 | 3000 | 2.8778 | 0.1662 | 0.0237 | 0.1647 | 0.4694 | The mT5 model of google cannot be used for Korean although it is trained over 101 languages. Finetuning using very large data set such as bongsoo/news_talk_en_ko still yield garbage. Since GPU memories allowed for free use in colab are greatly limited, repeated fine-tunings for the split datasets are performed to obtain better results. Theoretically, this might give better results. But actual attempts fail to yield better results. Instead, the results become worse. One should use other models like the ke-t5 by KETI(한국전자연구원). ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
guidoivetta/lacan
guidoivetta
2023-09-03T05:29:46Z
114
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-03T05:22:48Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: lacan results: [] widget: - text: "Freud designates for us" example_title: "Freud" - text: "Power is defined as" example_title: "Power" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lacan This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 3.4317 - eval_runtime: 11.3322 - eval_samples_per_second: 87.538 - eval_steps_per_second: 10.942 - epoch: 6.0 - step: 12066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Aswesay/Test_01
Aswesay
2023-09-03T05:26:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-03T05:26:07Z
--- license: creativeml-openrail-m ---
amir36/langchain_adapter
amir36
2023-09-03T05:13:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-03T05:13:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
bigmorning/whisper_syl_noforce_nostart__0020
bigmorning
2023-09-03T04:56:17Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T04:56:08Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_syl_noforce_nostart__0020 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_noforce_nostart__0020 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.7583 - Train Accuracy: 0.0173 - Train Wermet: 0.5911 - Validation Loss: 2.6383 - Validation Accuracy: 0.0139 - Validation Wermet: 0.6695 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6298 | 0.0091 | 1.6176 | 4.3084 | 0.0092 | 1.0203 | 0 | | 4.9271 | 0.0098 | 0.8937 | 4.1324 | 0.0099 | 0.9075 | 1 | | 4.6878 | 0.0106 | 0.8360 | 3.9151 | 0.0102 | 0.9003 | 2 | | 4.4454 | 0.0113 | 0.8275 | 3.7558 | 0.0106 | 0.8730 | 3 | | 4.2497 | 0.0119 | 0.8211 | 3.6019 | 0.0110 | 0.8640 | 4 | | 4.0917 | 0.0123 | 0.8067 | 3.5363 | 0.0111 | 0.8512 | 5 | | 3.9616 | 0.0127 | 0.7864 | 3.4492 | 0.0113 | 0.8432 | 6 | | 3.8575 | 0.0130 | 0.7742 | 3.3963 | 0.0113 | 0.8414 | 7 | | 3.7605 | 0.0133 | 0.7580 | 3.3430 | 0.0115 | 0.8197 | 8 | | 3.6756 | 0.0136 | 0.7447 | 3.2872 | 0.0117 | 0.8071 | 9 | | 3.6021 | 0.0138 | 0.7370 | 3.2828 | 0.0117 | 0.8165 | 10 | | 3.5237 | 0.0140 | 0.7218 | 3.2439 | 0.0118 | 0.8088 | 11 | | 3.4558 | 0.0143 | 0.7105 | 3.2063 | 0.0120 | 0.7890 | 12 | | 3.3853 | 0.0145 | 0.6993 | 3.1702 | 0.0120 | 0.8035 | 13 | | 3.3101 | 0.0148 | 0.6870 | 3.1144 | 0.0123 | 0.7605 | 14 | | 3.2314 | 0.0152 | 0.6719 | 3.0522 | 0.0125 | 0.7481 | 15 | | 3.1430 | 0.0155 | 0.6575 | 2.9911 | 0.0127 | 0.7378 | 16 | | 3.0392 | 0.0160 | 0.6369 | 2.9249 | 0.0129 | 0.7357 | 17 | | 2.9134 | 0.0166 | 0.6148 | 2.7883 | 0.0134 | 0.6909 | 18 | | 2.7583 | 0.0173 | 0.5911 | 2.6383 | 0.0139 | 0.6695 | 19 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
rrozb/SnowballTarget1
rrozb
2023-09-03T04:45:35Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-09-03T04:45:32Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: rrozb/SnowballTarget1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Joemother4/Garfield.zip
Joemother4
2023-09-03T04:40:22Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-09-03T04:40:22Z
--- license: bigscience-openrail-m ---
bigmorning/whisper_syl_noforce_nostart__0010
bigmorning
2023-09-03T04:29:46Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T04:29:38Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_syl_noforce_nostart__0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_noforce_nostart__0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.6756 - Train Accuracy: 0.0136 - Train Wermet: 0.7447 - Validation Loss: 3.2872 - Validation Accuracy: 0.0117 - Validation Wermet: 0.8071 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6298 | 0.0091 | 1.6176 | 4.3084 | 0.0092 | 1.0203 | 0 | | 4.9271 | 0.0098 | 0.8937 | 4.1324 | 0.0099 | 0.9075 | 1 | | 4.6878 | 0.0106 | 0.8360 | 3.9151 | 0.0102 | 0.9003 | 2 | | 4.4454 | 0.0113 | 0.8275 | 3.7558 | 0.0106 | 0.8730 | 3 | | 4.2497 | 0.0119 | 0.8211 | 3.6019 | 0.0110 | 0.8640 | 4 | | 4.0917 | 0.0123 | 0.8067 | 3.5363 | 0.0111 | 0.8512 | 5 | | 3.9616 | 0.0127 | 0.7864 | 3.4492 | 0.0113 | 0.8432 | 6 | | 3.8575 | 0.0130 | 0.7742 | 3.3963 | 0.0113 | 0.8414 | 7 | | 3.7605 | 0.0133 | 0.7580 | 3.3430 | 0.0115 | 0.8197 | 8 | | 3.6756 | 0.0136 | 0.7447 | 3.2872 | 0.0117 | 0.8071 | 9 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
albagon/Reinforce-CartPole-v1
albagon
2023-09-03T04:27:52Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-03T04:27:43Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
thirosh0520/detr-resnet-50_finetuned-room-objects
thirosh0520
2023-09-03T04:11:38Z
160
1
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-09-02T18:26:27Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: detr-resnet-50_finetuned-room-objects results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_finetuned-room-objects This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cpu - Datasets 2.14.4 - Tokenizers 0.13.3
kyungmin011029/category_0903
kyungmin011029
2023-09-03T04:05:23Z
63
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:klue/bert-base", "base_model:finetune:klue/bert-base", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-03T04:03:23Z
--- license: cc-by-sa-4.0 base_model: klue/bert-base tags: - generated_from_keras_callback model-index: - name: category_0903 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # category_0903 This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Tokenizers 0.13.3
johaanm/test-planner-alpha-V6.2
johaanm
2023-09-03T04:05:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-03T04:05:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
kyungmin011029/code_0903
kyungmin011029
2023-09-03T04:04:32Z
63
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:klue/bert-base", "base_model:finetune:klue/bert-base", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-03T04:03:22Z
--- license: cc-by-sa-4.0 base_model: klue/bert-base tags: - generated_from_keras_callback model-index: - name: code_0903 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # code_0903 This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Tokenizers 0.13.3
Shawt/uu
Shawt
2023-09-03T04:04:17Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-09-03T04:03:26Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Abbood/stable-diff-abdul
Abbood
2023-09-03T03:58:08Z
1
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-03T03:58:05Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of AR tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
flytech/insa-large
flytech
2023-09-03T03:57:16Z
0
0
null
[ "generated_from_trainer", "base_model:openai-community/gpt2-large", "base_model:finetune:openai-community/gpt2-large", "license:mit", "region:us" ]
null
2023-09-02T15:46:00Z
--- license: mit base_model: gpt2-large tags: - generated_from_trainer model-index: - name: insa-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # insa-large This model is a fine-tuned version of [gpt2-large](https://huggingface.co/gpt2-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5478 | 2.0 | 1000 | 1.4349 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
yotoshihiro/a2c-PandaReachDense-v2
yotoshihiro
2023-09-03T03:38:25Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T08:30:56Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.34 +/- 0.68 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
monsoon-nlp/bert-base-thai
monsoon-nlp
2023-09-03T03:33:31Z
788
12
transformers
[ "transformers", "pytorch", "jax", "safetensors", "bert", "feature-extraction", "th", "arxiv:1609.08144", "arxiv:1508.07909", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: th --- # BERT-th Adapted from https://github.com/ThAIKeras/bert for HuggingFace/Transformers library ## Pre-tokenization You must run the original ThaiTokenizer to have your tokenization match that of the original model. If you skip this step, you will not do much better than mBERT or random chance! [Refer to this CoLab notebook](https://colab.research.google.com/drive/1Ax9OsbTPwBBP1pJx1DkYwtgKILcj3Ur5?usp=sharing) or follow these steps: ```bash pip install pythainlp six sentencepiece python-crfsuite git clone https://github.com/ThAIKeras/bert # download .vocab and .model files from ThAIKeras/bert > Tokenization section ``` Or from [.vocab](https://raw.githubusercontent.com/jitkapat/thaipostagger/master/th.wiki.bpe.op25000.vocab) and [.model](https://raw.githubusercontent.com/jitkapat/thaipostagger/master/th.wiki.bpe.op25000.model) links. Then set up ThaiTokenizer class - this is modified slightly to remove a TensorFlow dependency. ```python import collections import unicodedata import six def convert_to_unicode(text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text.decode("utf-8", "ignore") elif isinstance(text, unicode): return text else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def load_vocab(vocab_file): vocab = collections.OrderedDict() index = 0 with open(vocab_file, "r") as reader: while True: token = reader.readline() if token.split(): token = token.split()[0] # to support SentencePiece vocab file token = convert_to_unicode(token) if not token: break token = token.strip() vocab[token] = index index += 1 return vocab ##### from bert.bpe_helper import BPE import sentencepiece as spm def convert_by_vocab(vocab, items): output = [] for item in items: output.append(vocab[item]) return output class ThaiTokenizer(object): """Tokenizes Thai texts.""" def __init__(self, vocab_file, spm_file): self.vocab = load_vocab(vocab_file) self.inv_vocab = {v: k for k, v in self.vocab.items()} self.bpe = BPE(vocab_file) self.s = spm.SentencePieceProcessor() self.s.Load(spm_file) def tokenize(self, text): bpe_tokens = self.bpe.encode(text).split(' ') spm_tokens = self.s.EncodeAsPieces(text) tokens = bpe_tokens if len(bpe_tokens) < len(spm_tokens) else spm_tokens split_tokens = [] for token in tokens: new_token = token if token.startswith('_') and not token in self.vocab: split_tokens.append('_') new_token = token[1:] if not new_token in self.vocab: split_tokens.append('<unk>') else: split_tokens.append(new_token) return split_tokens def convert_tokens_to_ids(self, tokens): return convert_by_vocab(self.vocab, tokens) def convert_ids_to_tokens(self, ids): return convert_by_vocab(self.inv_vocab, ids) ``` Then pre-tokenizing your own text: ```python from pythainlp import sent_tokenize tokenizer = ThaiTokenizer(vocab_file='th.wiki.bpe.op25000.vocab', spm_file='th.wiki.bpe.op25000.model') txt = "กรุงเทพมหานครเป็นเขตปกครองพิเศษของประเทศไทย มิได้มีสถานะเป็นจังหวัด คำว่า \"กรุงเทพมหานคร\" นั้นยังใช้เรียกองค์กรปกครองส่วนท้องถิ่นของกรุงเทพมหานครอีกด้วย" split_sentences = sent_tokenize(txt) print(split_sentences) """ ['กรุงเทพมหานครเป็นเขตปกครองพิเศษของประเทศไทย ', 'มิได้มีสถานะเป็นจังหวัด ', 'คำว่า "กรุงเทพมหานคร" นั้นยังใช้เรียกองค์กรปกครองส่วนท้องถิ่นของกรุงเทพมหานครอีกด้วย'] """ split_words = ' '.join(tokenizer.tokenize(' '.join(split_sentences))) print(split_words) """ '▁กรุงเทพมหานคร เป็นเขต ปกครอง พิเศษ ของประเทศไทย ▁มิ ได้มี สถานะเป็น จังหวัด ▁คําว่า ▁" กรุงเทพมหานคร " ▁นั้น...' # continues """ ``` Original README follows: --- Google's [**BERT**](https://github.com/google-research/bert) is currently the state-of-the-art method of pre-training text representations which additionally provides multilingual models. ~~Unfortunately, Thai is the only one in 103 languages that is excluded due to difficulties in word segmentation.~~ BERT-th presents the Thai-only pre-trained model based on the BERT-Base structure. It is now available to download. * **[`BERT-Base, Thai`](https://drive.google.com/open?id=1J3uuXZr_Se_XIFHj7zlTJ-C9wzI9W_ot)**: BERT-Base architecture, Thai-only model BERT-th also includes relevant codes and scripts along with the pre-trained model, all of which are the modified versions of those in the original BERT project. ## Preprocessing ### Data Source Training data for BERT-th come from [the latest article dump of Thai Wikipedia](https://dumps.wikimedia.org/thwiki/latest/thwiki-latest-pages-articles.xml.bz2) on November 2, 2018. The raw texts are extracted by using [WikiExtractor](https://github.com/attardi/wikiextractor). ### Sentence Segmentation Input data need to be segmented into separate sentences before further processing by BERT modules. Since Thai language has no explicit marker at the end of a sentence, it is quite problematic to pinpoint sentence boundaries. To the best of our knowledge, there is still no implementation of Thai sentence segmentation elsewhere. So, in this project, sentence segmentation is done by applying simple heuristics, considering spaces, sentence length and common conjunctions. After preprocessing, the training corpus consists of approximately 2 million sentences and 40 million words (counting words after word segmentation by [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp)). The plain and segmented texts can be downloaded **[`here`](https://drive.google.com/file/d/1QZSOpikO6Qc02gRmyeb_UiRLtTmUwGz1/view?usp=sharing)**. ## Tokenization BERT uses [WordPiece](https://arxiv.org/pdf/1609.08144.pdf) as a tokenization mechanism. But it is Google internal, we cannot apply existing Thai word segmentation and then utilize WordPiece to learn the set of subword units. The best alternative is [SentencePiece](https://github.com/google/sentencepiece) which implements [BPE](https://arxiv.org/abs/1508.07909) and needs no word segmentation. In this project, we adopt a pre-trained Thai SentencePiece model from [BPEmb](https://github.com/bheinzerling/bpemb). The model of 25000 vocabularies is chosen and the vocabulary file has to be augmented with BERT's special characters, including '[PAD]', '[CLS]', '[SEP]' and '[MASK]'. The model and vocabulary files can be downloaded **[`here`](https://drive.google.com/file/d/1F7pCgt3vPlarI9RxKtOZUrC_67KMNQ1W/view?usp=sharing)**. `SentencePiece` and `bpe_helper.py` from BPEmb are both used to tokenize data. `ThaiTokenizer class` has been added to BERT's `tokenization.py` for tokenizing Thai texts. ## Pre-training The data can be prepared before pre-training by using this script. ```shell export BPE_DIR=/path/to/bpe export TEXT_DIR=/path/to/text export DATA_DIR=/path/to/data python create_pretraining_data.py \ --input_file=$TEXT_DIR/thaiwikitext_sentseg \ --output_file=$DATA_DIR/tf_examples.tfrecord \ --vocab_file=$BPE_DIR/th.wiki.bpe.op25000.vocab \ --max_seq_length=128 \ --max_predictions_per_seq=20 \ --masked_lm_prob=0.15 \ --random_seed=12345 \ --dupe_factor=5 \ --thai_text=True \ --spm_file=$BPE_DIR/th.wiki.bpe.op25000.model ``` Then, the following script can be run to learn a model from scratch. ```shell export DATA_DIR=/path/to/data export BERT_BASE_DIR=/path/to/bert_base python run_pretraining.py \ --input_file=$DATA_DIR/tf_examples.tfrecord \ --output_dir=$BERT_BASE_DIR \ --do_train=True \ --do_eval=True \ --bert_config_file=$BERT_BASE_DIR/bert_config.json \ --train_batch_size=32 \ --max_seq_length=128 \ --max_predictions_per_seq=20 \ --num_train_steps=1000000 \ --num_warmup_steps=100000 \ --learning_rate=1e-4 \ --save_checkpoints_steps=200000 ``` We have trained the model for 1 million steps. On Tesla K80 GPU, it took around 20 days to complete. Though, we provide a snapshot at 0.8 million steps because it yields better results for downstream classification tasks. ## Downstream Classification Tasks ### XNLI [XNLI](http://www.nyu.edu/projects/bowman/xnli/) is a dataset for evaluating a cross-lingual inferential classification task. The development and test sets contain 15 languages which data are thoroughly edited. The machine-translated versions of training data are also provided. The Thai-only pre-trained BERT model can be applied to the XNLI task by using training data which are translated to Thai. Spaces between words in the training data need to be removed to make them consistent with inputs in the pre-training step. The processed files of XNLI related to Thai language can be downloaded **[`here`](https://drive.google.com/file/d/1ZAk1JfR6a0TSCkeyQ-EkRtk1w_mQDWFG/view?usp=sharing)**. Afterwards, the XNLI task can be learned by using this script. ```shell export BPE_DIR=/path/to/bpe export XNLI_DIR=/path/to/xnli export OUTPUT_DIR=/path/to/output export BERT_BASE_DIR=/path/to/bert_base python run_classifier.py \ --task_name=XNLI \ --do_train=true \ --do_eval=true \ --data_dir=$XNLI_DIR \ --vocab_file=$BPE_DIR/th.wiki.bpe.op25000.vocab \ --bert_config_file=$BERT_BASE_DIR/bert_config.json \ --init_checkpoint=$BERT_BASE_DIR/model.ckpt \ --max_seq_length=128 \ --train_batch_size=32 \ --learning_rate=5e-5 \ --num_train_epochs=2.0 \ --output_dir=$OUTPUT_DIR \ --xnli_language=th \ --spm_file=$BPE_DIR/th.wiki.bpe.op25000.model ``` This table compares the Thai-only model with XNLI baselines and the Multilingual Cased model which is also trained by using translated data. <!-- Use html table because github markdown doesn't support colspan --> <table> <tr> <td colspan="2" align="center"><b>XNLI Baseline</b></td> <td colspan="2" align="center"><b>BERT</b></td> </tr> <tr> <td align="center">Translate Train</td> <td align="center">Translate Test</td> <td align="center">Multilingual Model</td> <td align="center">Thai-only Model</td> </tr> <td align="center">62.8</td> <td align="center">64.4</td> <td align="center">66.1</td> <td align="center"><b>68.9</b></td> </table> ### Wongnai Review Dataset Wongnai Review Dataset collects restaurant reviews and ratings from [Wongnai](https://www.wongnai.com/) website. The task is to classify a review into one of five ratings (1 to 5 stars). The dataset can be downloaded **[`here`](https://github.com/wongnai/wongnai-corpus)** and the following script can be run to use the Thai-only model for this task. ```shell export BPE_DIR=/path/to/bpe export WONGNAI_DIR=/path/to/wongnai export OUTPUT_DIR=/path/to/output export BERT_BASE_DIR=/path/to/bert_base python run_classifier.py \ --task_name=wongnai \ --do_train=true \ --do_predict=true \ --data_dir=$WONGNAI_DIR \ --vocab_file=$BPE_DIR/th.wiki.bpe.op25000.vocab \ --bert_config_file=$BERT_BASE_DIR/bert_config.json \ --init_checkpoint=$BERT_BASE_DIR/model.ckpt \ --max_seq_length=128 \ --train_batch_size=32 \ --learning_rate=5e-5 \ --num_train_epochs=2.0 \ --output_dir=$OUTPUT_DIR \ --spm_file=$BPE_DIR/th.wiki.bpe.op25000.model ``` Without additional preprocessing and further fine-tuning, the Thai-only BERT model can achieve 0.56612 and 0.57057 for public and private test-set scores respectively.
monsoon-nlp/ar-seq2seq-gender-decoder
monsoon-nlp
2023-09-03T03:30:13Z
60
1
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-generation", "ar", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: ar --- # ar-seq2seq-gender (decoder) This is a seq2seq model (decoder half) to "flip" gender in **first-person** Arabic sentences. The model can augment your existing Arabic data, or generate counterfactuals to test a model's decisions (would changing the gender of the subject or speaker change output?). Intended Examples: - 'أنا سعيد' <=> 'انا سعيدة' - 'ركض إلى المتجر' <=> 'ركضت إلى المتجر' People's names, gender pronouns, gendered words (father, mother), and many other values are currently unchanged by this model. Future versions may be trained on more data. ## Sample Code ``` import torch from transformers import AutoTokenizer, EncoderDecoderModel model = EncoderDecoderModel.from_encoder_decoder_pretrained( "monsoon-nlp/ar-seq2seq-gender-encoder", "monsoon-nlp/ar-seq2seq-gender-decoder", min_length=40 ) tokenizer = AutoTokenizer.from_pretrained('monsoon-nlp/ar-seq2seq-gender-decoder') # same as MARBERT original input_ids = torch.tensor(tokenizer.encode("أنا سعيدة")).unsqueeze(0) generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.pad_token_id) tokenizer.decode(generated.tolist()[0][1 : len(input_ids[0]) - 1]) > 'انا سعيد' ``` https://colab.research.google.com/drive/1S0kE_2WiV82JkqKik_sBW-0TUtzUVmrV?usp=sharing ## Training I originally developed <a href="https://github.com/MonsoonNLP/el-la">a gender flip Python script</a> for Spanish sentences, using <a href="https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased">BETO</a>, and spaCy. More about this project: https://medium.com/ai-in-plain-english/gender-bias-in-spanish-bert-1f4d76780617 The Arabic model encoder and decoder started with weights and vocabulary from <a href="https://github.com/UBC-NLP/marbert">MARBERT from UBC-NLP</a>, and was trained on the <a href="https://camel.abudhabi.nyu.edu/arabic-parallel-gender-corpus/">Arabic Parallel Gender Corpus</a> from NYU Abu Dhabi. The text is first-person sentences from OpenSubtitles, with parallel gender-reinflected sentences generated by Arabic speakers. Training notebook: https://colab.research.google.com/drive/1TuDfnV2gQ-WsDtHkF52jbn699bk6vJZV ## Non-binary gender This model is useful to generate male and female text samples, but falls short of capturing gender diversity in the world and in the Arabic language. This subject is discussed in the bias statement of the <a href="https://www.aclweb.org/anthology/2020.gebnlp-1.12/">Gender Reinflection paper</a>.
dkqjrm/20230903070300
dkqjrm
2023-09-03T03:15:11Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T22:03:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230903070300' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230903070300 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8203 - Accuracy: 0.6599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 340 | 0.7251 | 0.5063 | | 0.7449 | 2.0 | 680 | 0.7348 | 0.5 | | 0.7388 | 3.0 | 1020 | 0.7304 | 0.5 | | 0.7388 | 4.0 | 1360 | 0.7639 | 0.5 | | 0.7384 | 5.0 | 1700 | 0.7316 | 0.5 | | 0.7376 | 6.0 | 2040 | 0.7268 | 0.5 | | 0.7376 | 7.0 | 2380 | 0.7263 | 0.5 | | 0.7328 | 8.0 | 2720 | 0.7333 | 0.5 | | 0.7266 | 9.0 | 3060 | 0.7533 | 0.5 | | 0.7266 | 10.0 | 3400 | 0.7247 | 0.4984 | | 0.7293 | 11.0 | 3740 | 0.7290 | 0.5172 | | 0.7248 | 12.0 | 4080 | 0.7539 | 0.5 | | 0.7248 | 13.0 | 4420 | 0.7395 | 0.5 | | 0.7255 | 14.0 | 4760 | 0.7360 | 0.5031 | | 0.7271 | 15.0 | 5100 | 0.7278 | 0.5 | | 0.7271 | 16.0 | 5440 | 0.7314 | 0.5094 | | 0.7265 | 17.0 | 5780 | 0.7417 | 0.4984 | | 0.724 | 18.0 | 6120 | 0.7263 | 0.5 | | 0.724 | 19.0 | 6460 | 0.7272 | 0.5031 | | 0.723 | 20.0 | 6800 | 0.7283 | 0.5172 | | 0.7254 | 21.0 | 7140 | 0.7284 | 0.5047 | | 0.7254 | 22.0 | 7480 | 0.7346 | 0.4984 | | 0.7254 | 23.0 | 7820 | 0.7295 | 0.5125 | | 0.7259 | 24.0 | 8160 | 0.7322 | 0.5047 | | 0.7235 | 25.0 | 8500 | 0.7327 | 0.5172 | | 0.7235 | 26.0 | 8840 | 0.7300 | 0.5172 | | 0.7241 | 27.0 | 9180 | 0.7345 | 0.5016 | | 0.7227 | 28.0 | 9520 | 0.7263 | 0.5172 | | 0.7227 | 29.0 | 9860 | 0.7341 | 0.5016 | | 0.7212 | 30.0 | 10200 | 0.7302 | 0.5125 | | 0.7226 | 31.0 | 10540 | 0.7346 | 0.5078 | | 0.7226 | 32.0 | 10880 | 0.7606 | 0.4702 | | 0.7195 | 33.0 | 11220 | 0.7357 | 0.5063 | | 0.7226 | 34.0 | 11560 | 0.7356 | 0.5031 | | 0.7226 | 35.0 | 11900 | 0.7397 | 0.5063 | | 0.7224 | 36.0 | 12240 | 0.7340 | 0.5157 | | 0.7216 | 37.0 | 12580 | 0.7319 | 0.5047 | | 0.7216 | 38.0 | 12920 | 0.7298 | 0.5141 | | 0.7225 | 39.0 | 13260 | 0.7438 | 0.5016 | | 0.7197 | 40.0 | 13600 | 0.7306 | 0.5047 | | 0.7197 | 41.0 | 13940 | 0.7279 | 0.5125 | | 0.7206 | 42.0 | 14280 | 0.7181 | 0.5502 | | 0.7079 | 43.0 | 14620 | 0.7566 | 0.5862 | | 0.7079 | 44.0 | 14960 | 0.7480 | 0.6254 | | 0.6794 | 45.0 | 15300 | 0.6922 | 0.6630 | | 0.6556 | 46.0 | 15640 | 0.7232 | 0.6223 | | 0.6556 | 47.0 | 15980 | 0.6961 | 0.6458 | | 0.6438 | 48.0 | 16320 | 0.7193 | 0.6458 | | 0.6249 | 49.0 | 16660 | 0.6663 | 0.6693 | | 0.6117 | 50.0 | 17000 | 0.8045 | 0.6191 | | 0.6117 | 51.0 | 17340 | 0.6984 | 0.6630 | | 0.5961 | 52.0 | 17680 | 0.6973 | 0.6646 | | 0.5831 | 53.0 | 18020 | 0.7606 | 0.6348 | | 0.5831 | 54.0 | 18360 | 0.7159 | 0.6614 | | 0.5624 | 55.0 | 18700 | 0.7947 | 0.6426 | | 0.558 | 56.0 | 19040 | 0.8629 | 0.6238 | | 0.558 | 57.0 | 19380 | 0.7299 | 0.6646 | | 0.5461 | 58.0 | 19720 | 0.7642 | 0.6411 | | 0.5322 | 59.0 | 20060 | 0.7357 | 0.6661 | | 0.5322 | 60.0 | 20400 | 0.8926 | 0.6191 | | 0.5253 | 61.0 | 20740 | 0.7845 | 0.6348 | | 0.5193 | 62.0 | 21080 | 0.7580 | 0.6614 | | 0.5193 | 63.0 | 21420 | 0.7705 | 0.6505 | | 0.5169 | 64.0 | 21760 | 0.8464 | 0.6458 | | 0.5021 | 65.0 | 22100 | 0.8002 | 0.6536 | | 0.5021 | 66.0 | 22440 | 0.7595 | 0.6677 | | 0.487 | 67.0 | 22780 | 0.7971 | 0.6458 | | 0.4977 | 68.0 | 23120 | 0.8245 | 0.6270 | | 0.4977 | 69.0 | 23460 | 0.8225 | 0.6379 | | 0.4822 | 70.0 | 23800 | 0.8323 | 0.6364 | | 0.4802 | 71.0 | 24140 | 0.8205 | 0.6364 | | 0.4802 | 72.0 | 24480 | 0.8086 | 0.6520 | | 0.4779 | 73.0 | 24820 | 0.7994 | 0.6567 | | 0.4801 | 74.0 | 25160 | 0.8206 | 0.6520 | | 0.4706 | 75.0 | 25500 | 0.8035 | 0.6442 | | 0.4706 | 76.0 | 25840 | 0.8213 | 0.6364 | | 0.4738 | 77.0 | 26180 | 0.8128 | 0.6630 | | 0.4687 | 78.0 | 26520 | 0.8068 | 0.6567 | | 0.4687 | 79.0 | 26860 | 0.8098 | 0.6630 | | 0.4598 | 80.0 | 27200 | 0.8203 | 0.6599 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_syl_noforce_add_inpde__0015
bigmorning
2023-09-03T02:59:03Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_syl_noforce__0060", "base_model:finetune:bigmorning/whisper_syl_noforce__0060", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T02:58:55Z
--- license: apache-2.0 base_model: bigmorning/whisper_syl_noforce__0060 tags: - generated_from_keras_callback model-index: - name: whisper_syl_noforce_add_inpde__0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_noforce_add_inpde__0015 This model is a fine-tuned version of [bigmorning/whisper_syl_noforce__0060](https://huggingface.co/bigmorning/whisper_syl_noforce__0060) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4618 - Train Accuracy: 0.0319 - Train Wermet: 0.1102 - Validation Loss: 1.0659 - Validation Accuracy: 0.0212 - Validation Wermet: 0.2974 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 3.0144 | 0.0185 | 0.9684 | 1.4362 | 0.0191 | 0.3870 | 0 | | 1.6269 | 0.0241 | 0.2797 | 1.2846 | 0.0197 | 0.3593 | 1 | | 1.3645 | 0.0256 | 0.2469 | 1.1967 | 0.0201 | 0.3481 | 2 | | 1.2336 | 0.0263 | 0.2264 | 1.1602 | 0.0204 | 0.3390 | 3 | | 1.0973 | 0.0272 | 0.2091 | 1.1211 | 0.0206 | 0.3296 | 4 | | 0.9914 | 0.0279 | 0.1941 | 1.1412 | 0.0204 | 0.3209 | 5 | | 0.9050 | 0.0284 | 0.1819 | 1.1795 | 0.0204 | 0.3281 | 6 | | 0.8192 | 0.0291 | 0.1695 | 1.0845 | 0.0209 | 0.3149 | 7 | | 0.7806 | 0.0293 | 0.1608 | 1.0628 | 0.0210 | 0.3099 | 8 | | 0.7143 | 0.0298 | 0.1511 | 1.0554 | 0.0211 | 0.3069 | 9 | | 0.6672 | 0.0302 | 0.1431 | 1.0539 | 0.0211 | 0.3046 | 10 | | 0.6228 | 0.0305 | 0.1338 | 1.0531 | 0.0211 | 0.3038 | 11 | | 0.5558 | 0.0311 | 0.1253 | 1.0476 | 0.0212 | 0.2997 | 12 | | 0.5273 | 0.0314 | 0.1186 | 1.0431 | 0.0212 | 0.2991 | 13 | | 0.4618 | 0.0319 | 0.1102 | 1.0659 | 0.0212 | 0.2974 | 14 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
bigmorning/whisper_syl_noforce_add_inpde__0005
bigmorning
2023-09-03T02:32:31Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_syl_noforce__0060", "base_model:finetune:bigmorning/whisper_syl_noforce__0060", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-03T02:32:25Z
--- license: apache-2.0 base_model: bigmorning/whisper_syl_noforce__0060 tags: - generated_from_keras_callback model-index: - name: whisper_syl_noforce_add_inpde__0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_noforce_add_inpde__0005 This model is a fine-tuned version of [bigmorning/whisper_syl_noforce__0060](https://huggingface.co/bigmorning/whisper_syl_noforce__0060) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0973 - Train Accuracy: 0.0272 - Train Wermet: 0.2091 - Validation Loss: 1.1211 - Validation Accuracy: 0.0206 - Validation Wermet: 0.3296 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 3.0144 | 0.0185 | 0.9684 | 1.4362 | 0.0191 | 0.3870 | 0 | | 1.6269 | 0.0241 | 0.2797 | 1.2846 | 0.0197 | 0.3593 | 1 | | 1.3645 | 0.0256 | 0.2469 | 1.1967 | 0.0201 | 0.3481 | 2 | | 1.2336 | 0.0263 | 0.2264 | 1.1602 | 0.0204 | 0.3390 | 3 | | 1.0973 | 0.0272 | 0.2091 | 1.1211 | 0.0206 | 0.3296 | 4 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
crumb/Ducky-MoMoe-prototype-e4-causal
crumb
2023-09-03T02:05:38Z
145
4
transformers
[ "transformers", "pytorch", "switchgpt2", "text-generation", "custom_code", "autotrain_compatible", "region:us" ]
text-generation
2023-08-17T23:42:05Z
give me access to a dgx or any >=8x{A100 | H100} so i can warm start from llama-70b and create a gpt-4 competitor please https://twitter.com/aicrumb/status/1692965412676206778
The-matt/autumn-shadow-48_590
The-matt
2023-09-03T01:58:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-03T01:58:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
The-matt/autumn-shadow-48_570
The-matt
2023-09-03T01:19:09Z
4
0
peft
[ "peft", "region:us" ]
null
2023-09-03T01:19:05Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
IT20255756/deformable-detr-box-finetuned-weed-detection
IT20255756
2023-09-03T01:03:16Z
131
0
transformers
[ "transformers", "pytorch", "deformable_detr", "object-detection", "generated_from_trainer", "base_model:facebook/deformable-detr-box-supervised", "base_model:finetune:facebook/deformable-detr-box-supervised", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-09-02T10:05:23Z
--- license: apache-2.0 base_model: facebook/deformable-detr-box-supervised tags: - generated_from_trainer model-index: - name: deformable-detr-box-finetuned-weed-detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deformable-detr-box-finetuned-weed-detection This model is a fine-tuned version of [facebook/deformable-detr-box-supervised](https://huggingface.co/facebook/deformable-detr-box-supervised) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 1.13.1+cpu - Datasets 2.14.4 - Tokenizers 0.13.3
adyprat/q-FrozenLake-v1-4x4-noSlippery
adyprat
2023-09-03T00:46:33Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-03T00:46:31Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="adyprat/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
The-matt/autumn-shadow-48_540
The-matt
2023-09-03T00:34:58Z
3
0
peft
[ "peft", "region:us" ]
null
2023-09-03T00:34:54Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
gmshuler95/Reinforce-CartPole-v1
gmshuler95
2023-09-03T00:34:54Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T22:56:02Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 474.92 +/- 43.21 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
fahmiaziz/finetune-donut-cord-v1
fahmiaziz
2023-09-02T23:55:07Z
53
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "license:creativeml-openrail-m", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-09-02T22:03:03Z
--- license: creativeml-openrail-m ---
venetis/electra-base-discriminator-finetuned-3d-sentiment
venetis
2023-09-02T23:51:46Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-01T03:42:29Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: electra-base-discriminator-finetuned-3d-sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-finetuned-3d-sentiment This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5887 - Accuracy: 0.7873 - Precision: 0.7897 - Recall: 0.7873 - F1: 0.7864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 6381 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.797 | 1.0 | 1595 | 0.7075 | 0.7353 | 0.7434 | 0.7353 | 0.7357 | | 0.5329 | 2.0 | 3190 | 0.6508 | 0.7550 | 0.7646 | 0.7550 | 0.7554 | | 0.4597 | 3.0 | 4785 | 0.5889 | 0.7702 | 0.7803 | 0.7702 | 0.7695 | | 0.3918 | 4.0 | 6380 | 0.5887 | 0.7873 | 0.7897 | 0.7873 | 0.7864 | | 0.3093 | 5.0 | 7975 | 0.6412 | 0.7833 | 0.7877 | 0.7833 | 0.7836 | | 0.2144 | 6.0 | 9570 | 0.7786 | 0.7844 | 0.7900 | 0.7844 | 0.7851 | | 0.1507 | 7.0 | 11165 | 0.8455 | 0.7853 | 0.7903 | 0.7853 | 0.7862 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_530
The-matt
2023-09-02T23:48:24Z
6
0
peft
[ "peft", "region:us" ]
null
2023-09-02T23:48:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
johaanm/test-planner-alpha-V6.1
johaanm
2023-09-02T23:47:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T23:47:43Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
ayameRushia/roberta-base-indonesian-1.5G-sentiment-analysis-smsa
ayameRushia
2023-09-02T23:40:48Z
391
4
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "id", "dataset:indonlp/indonlu", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- widget: - text: Entah mengapa saya merasakan ada sesuatu yang janggal di produk ini tags: - generated_from_trainer datasets: - indonlp/indonlu metrics: - accuracy model-index: - name: roberta-base-indonesian-1.5G-sentiment-analysis-smsa results: - task: name: Text Classification type: text-classification dataset: name: indonlu type: indonlu args: smsa metrics: - name: Accuracy type: accuracy value: 0.9261904761904762 language: - id --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-indonesian-1.5G-sentiment-analysis-smsa This model is a fine-tuned version of [cahya/roberta-base-indonesian-1.5G](https://huggingface.co/cahya/roberta-base-indonesian-1.5G) on the indonlu dataset. It achieves the following results on the evaluation set: - Loss: 0.4294 - Accuracy: 0.9262 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6461 | 1.0 | 688 | 0.2620 | 0.9087 | | 0.2627 | 2.0 | 1376 | 0.2291 | 0.9151 | | 0.1784 | 3.0 | 2064 | 0.2891 | 0.9167 | | 0.1099 | 4.0 | 2752 | 0.3317 | 0.9230 | | 0.0857 | 5.0 | 3440 | 0.4294 | 0.9262 | | 0.0346 | 6.0 | 4128 | 0.4759 | 0.9246 | | 0.0221 | 7.0 | 4816 | 0.4946 | 0.9206 | | 0.006 | 8.0 | 5504 | 0.5823 | 0.9175 | | 0.0047 | 9.0 | 6192 | 0.5777 | 0.9159 | | 0.004 | 10.0 | 6880 | 0.5800 | 0.9175 | ### How to use this model in Transformers Library ```python from transformers import pipeline pipe = pipeline( "text-classification", model="ayameRushia/roberta-base-indonesian-1.5G-sentiment-analysis-smsa" ) pipe("Terima kasih atas bantuannya ya!") ``` ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
dt-and-vanilla-ardt/dt-d4rl_medium_halfcheetah-0209_2300-99
dt-and-vanilla-ardt
2023-09-02T23:36:43Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "dataset:decision_transformer_gym_replay", "endpoints_compatible", "region:us" ]
null
2023-09-02T23:01:50Z
--- base_model: '' tags: - generated_from_trainer datasets: - decision_transformer_gym_replay model-index: - name: dt-d4rl_medium_halfcheetah-0209_2300-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-d4rl_medium_halfcheetah-0209_2300-99 This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
acdg1214/Unit4-PixelCopter-v1
acdg1214
2023-09-02T23:33:04Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T23:32:59Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Unit4-PixelCopter-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 54.50 +/- 40.06 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
nahuel89p/nous-hermes-llama2-13b.gguf.q4_K_M
nahuel89p
2023-09-02T23:22:40Z
0
2
null
[ "license:mit", "region:us" ]
null
2023-09-02T22:10:52Z
--- license: mit --- This model is a direct conversion from https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML using Llama.cpp convert-llama-ggmlv3-to-gguf.py utility script. All the required metadata (config.json and tokenizer) was provided.
The-matt/autumn-shadow-48_520
The-matt
2023-09-02T23:18:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T23:18:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
sashat/whisper-sara-ar
sashat
2023-09-02T23:15:28Z
108
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ar", "dataset:ClArTTS_N_QASR_female", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-02T21:59:41Z
--- language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - ClArTTS_N_QASR_female model-index: - name: Whisper Small Ar - Sara results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Ar - Sara This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the CLArQasr dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 100 ### Training results ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.2
The-matt/autumn-shadow-48_510
The-matt
2023-09-02T23:06:03Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-02T23:05:59Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
CzarnyRycerz/ppo-LunarLander-v2-trained-locally
CzarnyRycerz
2023-09-02T22:55:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T22:38:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 310.89 +/- 13.59 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
The-matt/autumn-shadow-48_500
The-matt
2023-09-02T22:55:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T22:55:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
gmshuler95/q-Taxi-v3
gmshuler95
2023-09-02T22:45:53Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T22:45:50Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage model = load_from_hub(repo_id="gmshuler95/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
dt-and-vanilla-ardt/dt-d4rl_medium_walker2d-0209_2209-66
dt-and-vanilla-ardt
2023-09-02T22:45:26Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "dataset:decision_transformer_gym_replay", "endpoints_compatible", "region:us" ]
null
2023-09-02T22:11:15Z
--- base_model: '' tags: - generated_from_trainer datasets: - decision_transformer_gym_replay model-index: - name: dt-d4rl_medium_walker2d-0209_2209-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-d4rl_medium_walker2d-0209_2209-66 This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_4_50000_6_e3_s6789_v4_l4_v100
KingKazma
2023-09-02T22:19:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-17T22:01:17Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
dt-and-vanilla-ardt/dt-d4rl_medium_hopper-0209_2150-66
dt-and-vanilla-ardt
2023-09-02T22:10:03Z
32
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "dataset:decision_transformer_gym_replay", "endpoints_compatible", "region:us" ]
null
2023-09-02T21:51:10Z
--- base_model: '' tags: - generated_from_trainer datasets: - decision_transformer_gym_replay model-index: - name: dt-d4rl_medium_hopper-0209_2150-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-d4rl_medium_hopper-0209_2150-66 This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
dt-and-vanilla-ardt/dt-d4rl_medium_walker2d-0209_2131-33
dt-and-vanilla-ardt
2023-09-02T22:09:48Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "dataset:decision_transformer_gym_replay", "endpoints_compatible", "region:us" ]
null
2023-09-02T21:32:19Z
--- base_model: '' tags: - generated_from_trainer datasets: - decision_transformer_gym_replay model-index: - name: dt-d4rl_medium_walker2d-0209_2131-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-d4rl_medium_walker2d-0209_2131-33 This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
Jonathancasjar/Retail_Shelves
Jonathancasjar
2023-09-02T22:05:00Z
3
5
transformers
[ "transformers", "bestv2.pt", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-07-26T23:56:01Z
--- license: apache-2.0 --- <div style="text-align:center;"> <img style="margin: 0 auto;" width="700" src="https://huggingface.co/Jonathancasjar/Retail_Shelves/resolve/main/test_images/image.png"/> </div> - Install yolov5: ```bash pip install yolov5==7.0.5 ``` - Set image ```bash wget -O 'image.jpg' 'https://images.unsplash.com/photo-1556767576-cf0a4a80e5b8?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8NXx8c3VwZXJtYXJrZXQlMjBzaGVsdmVzfGVufDB8fDB8fHww&w=1000&q=80' ``` - Load model and perform prediction: ```python import yolov5 # load model model = yolov5.load('Jonathancasjar/Retail_Shelves') # set model parameters model.conf = 0.25 # NMS confidence threshold # set an image img = '/content/image.jpg' # perform inference results = model(img, size=640) # inference with test time augmentation results = model(img, augment=True) # parse results predictions = results.pred[0] boxes = predictions[:, :4] # x1, y1, x2, y2 scores = predictions[:, 4] categories = predictions[:, 5] # show detection bounding boxes on image results.show() # save results into "results/" folder results.save(save_dir='results/') ```
The-matt/autumn-shadow-48_470
The-matt
2023-09-02T22:04:07Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-02T22:04:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
actionpace/limarp-13b-merged
actionpace
2023-09-02T21:55:51Z
5
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-01T18:43:20Z
--- license: other language: - en --- Some of my own quants: * limarp-13b-merged_Q5_1.gguf * limarp-13b-merged_Q5_1_4K.gguf * limarp-13b-merged_Q5_1_8K.gguf Original Model: [limarp-13b-merged](https://huggingface.co/Oniichat/limarp-13b-merged)
monsoon-nlp/mGPT-13B-quantized
monsoon-nlp
2023-09-02T21:47:28Z
16
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "multilingual", "ar", "hi", "id", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
text-generation
2023-09-01T06:04:43Z
--- license: apache-2.0 language: - ar - hi - id pipeline_tag: text-generation tags: - multilingual widget: - text: 'في مدرستي السابقة' example_title: Arabic prompt - text: 'आप समुद्री लुटेरों के बारे में क्या जानते हैं?' example_title: Hindi prompt - text: 'Kucing saya suka' example_title: Indonesian prompt --- # mGPT-quantized The concept: 8-bit quantized version of [mGPT-13B](https://huggingface.co/ai-forever/mGPT-13B), an LLM released by AI-Forever / Sberbank AI in 2022-2023. On the GPT scale, it is between the # of parameters for GPT-2 and GPT-3, but comparison is tricky after training on 60+ languages. My goal is to evaluate this on Hindi and Indonesian tasks, where there are fewer autoregressive language models in this size range. For English: use a GPT model or LLaMa2-7B For Arabic: in August 2023 I would recommend the bilingual [JAIS model](https://huggingface.co/inception-mbzuai/jais-13b), which is also 13B parameters can be quantized. In August 2023 AI-Forever added 1.3B-param models for 20+ languages. If your language is Mongolian, for example, it might be better to use mGPT-1.3B-mongol and not this one. They also have a 1.3B param model for all languages, which I further quantized here: https://huggingface.co/monsoon-nlp/mGPT-quantized ## How was the model created? Quantization of mGPT-13B was done using `bitsandbytes` library, CoLab Pro with an A100 GPU, and a lot of space on Google Drive. ```python from transformers import BitsAndBytesConfig, GPT2LMHeadModel quantization_config = BitsAndBytesConfig( load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16, bnb_8bit_use_double_quant=True, bnb_8bit_quant_type="nf4", ) qmodel = GPT2LMHeadModel.from_pretrained( "ai-forever/mGPT-13B", load_in_8bit=True, torch_dtype=torch.bfloat16, quantization_config=quantization_config, device_map="auto" ) qmodel.save_pretrained("model_name") ``` ## Future steps - mGPT could be further quantized (4-bit), but `model.save_pretrained()` currently throws a `NotImplementedError` error.
actionpace/UndiMix-v2-13b
actionpace
2023-09-02T21:31:34Z
1
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-02T21:12:54Z
--- license: other language: - en --- Some of my own quants: * UndiMix-v2-13b_Q5_1_4K.gguf * UndiMix-v2-13b_Q5_1_8K.gguf Original Model: [UndiMix-v2-13b](https://huggingface.co/Undi95/UndiMix-v2-13b)
KingKazma/xsum_t5-small_p_tuning_500_3_50000_8_e3_s6789_v4_l4_v100
KingKazma
2023-09-02T21:20:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T21:20:14Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
The-matt/autumn-shadow-48_430
The-matt
2023-09-02T21:11:20Z
3
0
peft
[ "peft", "region:us" ]
null
2023-09-02T21:11:14Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
ZukoVZA/Morfonica
ZukoVZA
2023-09-02T20:57:47Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-04-23T22:07:39Z
--- license: openrail --- liuwei : Rui qinshen : Nanami touzi : Touko zenbai : Mashiro zuzhi : Futaba