modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-07 12:31:56
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
544 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-07 12:31:42
card
stringlengths
11
1.01M
teilomillet/poca-SoccerTwos
teilomillet
2023-07-27T19:52:37Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-07-27T19:52:21Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: teilomillet/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
asenella/MMVAEPlus_beta_10_scale_False_seed_3
asenella
2023-07-27T19:43:04Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T19:42:50Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
tommilyjones/swin-tiny-patch4-window7-224-cats_dogs
tommilyjones
2023-07-27T19:38:02Z
204
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-27T19:31:44Z
--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-cats_dogs results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9973147153598282 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-cats_dogs This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0126 - Accuracy: 0.9973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0832 | 0.98 | 47 | 0.0235 | 0.9909 | | 0.0788 | 1.99 | 95 | 0.0126 | 0.9973 | | 0.0534 | 2.95 | 141 | 0.0127 | 0.9957 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
qanastek/LLaMa-2-FrenchMedMCQA-Checkpoint
qanastek
2023-07-27T19:36:46Z
4
0
peft
[ "peft", "region:us" ]
null
2023-07-27T19:35:37Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
AdiOO7/llama-2-7B-finetuned
AdiOO7
2023-07-27T19:34:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T19:34:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
FlexedRope14028/Progetto-13-b-chat
FlexedRope14028
2023-07-27T19:31:29Z
0
0
null
[ "it", "en", "license:llama2", "region:us" ]
null
2023-07-27T19:11:08Z
--- license: llama2 language: - it - en ---
NasimB/bnc-cbt-rarity
NasimB
2023-07-27T19:05:16Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-27T16:42:47Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: bnc-cbt-rarity results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bnc-cbt-rarity This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.1216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.3708 | 0.29 | 500 | 5.3361 | | 5.0503 | 0.59 | 1000 | 4.9318 | | 4.713 | 0.88 | 1500 | 4.6937 | | 4.4634 | 1.17 | 2000 | 4.5611 | | 4.3089 | 1.46 | 2500 | 4.4409 | | 4.2145 | 1.76 | 3000 | 4.3397 | | 4.0857 | 2.05 | 3500 | 4.2672 | | 3.9095 | 2.34 | 4000 | 4.2143 | | 3.8772 | 2.63 | 4500 | 4.1591 | | 3.8444 | 2.93 | 5000 | 4.1098 | | 3.6491 | 3.22 | 5500 | 4.1097 | | 3.5993 | 3.51 | 6000 | 4.0797 | | 3.5848 | 3.81 | 6500 | 4.0497 | | 3.4861 | 4.1 | 7000 | 4.0479 | | 3.3328 | 4.39 | 7500 | 4.0443 | | 3.3282 | 4.68 | 8000 | 4.0292 | | 3.3151 | 4.98 | 8500 | 4.0183 | | 3.1607 | 5.27 | 9000 | 4.0323 | | 3.151 | 5.56 | 9500 | 4.0309 | | 3.1458 | 5.85 | 10000 | 4.0304 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
JBJoyce/DENTAL_CLICK_classifier
JBJoyce
2023-07-27T19:04:47Z
167
0
transformers
[ "transformers", "pytorch", "safetensors", "wav2vec2", "audio-classification", "Voice", "en", "dataset:JBJoyce/DENTAL_CLICK", "endpoints_compatible", "region:us" ]
audio-classification
2023-03-18T19:11:21Z
--- language: - en tags: - Voice datasets: - JBJoyce/DENTAL_CLICK metrics: - accuracy --- ### Model Description Model utilizes Wav2vec2 architecture trained on the Superb dataset for keyword spotting task and was fine tuned to identify dental dental click utterance (https://en.wikipedia.org/wiki/Dental_click) in speech. Model was trained for 10 epochs on a limited quantity of speech (~1.5 hours) and with only one speaker. Thus the model should not be assumed to hold generalizability to other speakers or languages without further training data or rigorous testing. Model was evaluated for accuracy on a hold out test set of 20% of the available data and scored 97%. ## Uses Model can be used via transformers library or via Hugging Face Hosted inference API to the right. I would caution against the use of the 'Record from browser' option as model may erronously identify user's mouse click as a speech utterance. Audio files for upload should be 1 sec in length, with 'WAV' format and 16 bit signed integer PCM encoding.
kfkas/Legal-Llama-2-ko-7b-Chat
kfkas
2023-07-27T19:04:21Z
38
9
transformers
[ "transformers", "pytorch", "llama", "text-generation", "facebook", "meta", "llama-2", "kollama", "llama-2-ko", "llama-2-ko-chat", "legal-llama", "law-llama", "legal-gpt", "law-gpt", "en", "ko", "arxiv:2307.09288", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-07-27T01:55:49Z
--- language: - en - ko pipeline_tag: text-generation inference: false tags: - facebook - meta - pytorch - llama - llama-2 - kollama - llama-2-ko - llama-2-ko-chat - legal-llama - law-llama - legal-gpt - law-gpt --- <img src=https://github.com/taemin6697/Paper_Review/assets/96530685/9f94505c-4fda-41ae-9a67-1e4c96c501cc style="max-width: 500px; width: 100%" /> Llama-2-Ko-7b-Chat은 [kfkas/Llama-2-ko-7b-Chat](https://huggingface.co/kfkas/Llama-2-ko-7b-Chat)λ₯Ό ν† λŒ€λ‘œ λ§Œλ“€μ–΄μ‘ŒμŠ΅λ‹ˆλ‹€. ν•™μŠ΅ λ°μ΄ν„°λŠ” 자체 법λ₯  질의 응닡 데이터λ₯Ό 톡해 ν•™μŠ΅ν•˜μ˜€μŠ΅λ‹ˆλ‹€. ## Model Details **Backbone Model** kfkas/Llama-2-ko-7b-Chat **Model Developers** Boostcamp AI Tech Team YoonSeul **data** leagl data **prompts** kullm **Input** Models input text only. **Output** Models generate text only. --- | Model | 질문 : μ•„λΉ κ°€ λŒμ•„κ°€μ‹œκ³  λ‚˜μ„œ ν•œ μ •μŠΉμΈκ³Ό 상속 포기 νŒκ²°λ¬Έμ„ λ°›μ•˜λŠ”λ°μš”. 그러고 λ‚˜μ„œ 근둜 κ±΄μ„€κ³΅μ œνšŒμ—μ„œ μ „ν™”κ°€ μ™”λŠ”λ°μš”. ν‡΄μ§κΈˆ κ³΅μ œκ°€ μžˆλ‹€κ³  μ‹ μ²­ν•˜μ—¬μ„œ 찾아가라고 ν•˜μ˜€λ”λΌκ³ μš”. 근데 이게 μƒμ†μΈμ˜ κ³ μœ μž¬μ‚°μ΄ λ‹€ μ•„λ‹ˆλ‹€ ν•˜μ—¬ 법원에 μž¬μ‚°μœΌλ‘œ μ‹ κ³ ν•˜μ—¬μ•Ό ν•œλ‹€κ³  μ•ˆ 해도 λœλ‹€κ³  ν•©λ‹ˆλ‹€. μ •ν™•ν•˜κ²Œ μ•Œκ³  μ‹ΆμŠ΅λ‹ˆλ‹€. μƒμ†μΈμ˜ κ³ μœ μž¬μ‚°μœΌλ‘œ 법원에 μž¬μ‚° μ‹ κ³ ν•˜μ—¬μ•Ό ν•˜λ‚˜μš”? μ•„λ‹ˆλ©΄ μ•ˆ 해도 λ˜λ‚˜μš”? | |--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Llama-2-ko-7b-Chat | `[μ•ˆλ…•ν•˜μ„Έμš”! 상속인 고유 μž¬μ‚°μ΄ μ•„λ‹ˆλ”λΌλ„ κ·Όλ‘œκ±΄μ„€κ³΅μ œνšŒλ‘œλΆ€ν„° ν‡΄μ§κΈˆμ„ μ§€κΈ‰λ°›κΈ° μœ„ν•΄ 법원에 μž¬μ‚°μ„ μ‹ κ³ ν•΄μ•Ό ν•  수 μžˆμŠ΅λ‹ˆλ‹€. ν•˜μ§€λ§Œ ꡬ체적인 상황은 상속인이 μ†ν•œ κ΅­κ°€μ˜ 법λ₯ μ— 따라 λ‹¬λΌμ§ˆ 수 μžˆμœΌλ―€λ‘œ, ν•΄λ‹Ή 법λ₯  μ „λ¬Έκ°€μ—κ²Œ λ¬Έμ˜ν•˜κ±°λ‚˜ ν™•μΈν•˜λŠ” 것이 μ’‹μŠ΅λ‹ˆλ‹€. 상속인이 상속 μž¬μ‚°μ„ μ‹ κ³ ν•˜μ§€ μ•Šκ³ λ„ ν‡΄μ§κΈˆμ„ 받을 수 μžˆλŠ” κ²½μš°λ„ μžˆμ§€λ§Œ, κ²½μš°μ— 따라 좔가적인 μ ˆμ°¨κ°€ ν•„μš”ν•  μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€. 상속인은 상속 μž¬μ‚°μ˜ λ²”μœ„κ°€ λΆˆλΆ„λͺ…ν•˜κ±°λ‚˜ 상속 μž¬μ‚°μ΄ μ „ν˜€ 없을 수 μžˆλŠ” λ“± λ‹€μ–‘ν•œ 상황에 직면할 수 있기 λ•Œλ¬Έμ—, κ΄€λ ¨ 법λ₯  μ „λ¬Έκ°€μ˜ 쑰언을 κ΅¬ν•˜λŠ” 것이 μ€‘μš”ν•©λ‹ˆλ‹€.]` | | kfkas/Legal-Llama-2-ko-7b-Chat | `[μƒμ†μΈμ˜ 고유 μž¬μ‚°μ€ μƒμ†μΈμ—κ²Œ κ·€μ†λ˜λŠ” 상속 μž¬μ‚°μž…λ‹ˆλ‹€. 상속인이 상속 μž¬μ‚°μ— λŒ€ν•œ κΆŒλ¦¬μ™€ 의무λ₯Ό 행사할 수 μžˆμŠ΅λ‹ˆλ‹€. 상속 μž¬μ‚°μ—λŠ” 상속인 고유 μž¬μ‚°κ³Ό 일반 상속 μž¬μ‚°μ΄ ν¬ν•¨λ©λ‹ˆλ‹€. 상속인은 상속 μž¬μ‚°μ˜ λ²”μœ„ λ‚΄μ—μ„œ 상속 μž¬μ‚°μ„ κ΄€λ¦¬ν•˜κ³  μ²˜λΆ„ν•  수 있으며, 상속 μž¬μ‚° 쀑 일뢀λ₯Ό λ‹€λ₯Έ μƒμ†μΈμ—κ²Œ 증여할 μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.κ·ΈλŸ¬λ‚˜ 상속 μž¬μ‚° μ€‘μ—μ„œ 상속인이 고유 μž¬μ‚°μœΌλ‘œ μ·¨λ“ν•œ μž¬μ‚°μ΄ μžˆλŠ” 경우, 상속인은 κ·Έ μž¬μ‚°μ„ 상속 μž¬μ‚°μ—μ„œ μ œμ™Έμ†μ„Έκ°€ κ³Όμ„Έλ©λ‹ˆλ‹€.λ”°λΌμ„œ 상속 μž¬μ‚° 쀑에 상속인이 μ†Œμœ ν•œ 고유 μž¬μ‚°μ„ μ œμ™Έν•˜κ³  상속 μž¬μ‚°μ„ κ³„μ‚°ν•˜μ—¬ 상속세 μ‹ κ³ λ₯Ό ν•΄μ•Ό ν•˜λ©°, 상속세 μ‹ κ³  μ‹œμ—λŠ” 상속 μž¬μ‚° λͺ©λ‘μ„ μž‘μ„±ν•˜μ—¬ μ œμΆœν•˜μ—¬μ•Ό ν•©λ‹ˆλ‹€. λ˜ν•œ, μƒμ†μ„ΈλŠ” 상속 κ°œμ‹œμΌ(사망일)λ‘œλΆ€ν„° 6κ°œμ›” 이내에 μ‹ κ³ ν•΄μ•Ό ν•˜λ©°, μ‹ κ³ ν•˜μ§€ μ•Šμ„ 경우 κ°€μ‚°μ„Έκ°€ 뢀과될 수 μžˆμœΌλ―€λ‘œ μ£Όμ˜ν•΄μ•Ό ν•©λ‹ˆλ‹€.(μ°Έκ³ : 상속세법 제18μ‘°)]` | --- | Model | 질문 : 재판이 λλ‚œ 후에 손해배상 청ꡬλ₯Ό ν•  수 μžˆλŠ”μ§€ κΆκΈˆν•©λ‹ˆλ‹€. 뢀동산 κ΄€λ ¨ 사기λ₯Ό λ‹Ήν•΄μ„œ μžμ„Έν•œ 상담을 λ°›κ³  μ‹Άμ–΄μš” | |--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Llama-2-ko-7b-Chat | `[예, 재판이 λλ‚œ 후에도 민사 μ†Œμ†‘μ„ μ œκΈ°ν•  수 μžˆμŠ΅λ‹ˆλ‹€. 뢀동산 사기 λ˜λŠ” 기타 민사 λΆ„μŸκ³Ό κ΄€λ ¨ν•˜μ—¬ λ³€ν˜Έμ‚¬μ˜ 도움을 ꡬ할 수 μžˆλŠ” λͺ‡ κ°€μ§€ μ˜΅μ…˜μ΄ μžˆμŠ΅λ‹ˆλ‹€:1. 민사 μ†Œμ†‘: 뢀동산 사기와 같은 민사 λΆ„μŸμ΄ μžˆλŠ” 경우 λ³€ν˜Έμ‚¬λ₯Ό κ³ μš©ν•˜μ—¬ λ―Όμ‚¬μ†Œμ†‘μ„ μ œκΈ°ν•˜μ—¬ 손해 배상을 μ²­κ΅¬ν•˜λŠ” 것이 κ°€μž₯ μΌλ°˜μ μž…λ‹ˆλ‹€.2. 개인 μ†Œμž₯: 민사 μ‚¬κ±΄μ—μ„œ 민사 μ†Œμž₯을 μž‘μ„±ν•˜μ—¬ 법원에 μ œμΆœν•˜λŠ” 것도 ν•œ κ°€μ§€ λ°©λ²•μž…λ‹ˆλ‹€.3. μ€‘μž¬: μ€‘μž¬ 기관을 톡해 λΆ„μŸμ„ ν•΄κ²°ν•  μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.4. ν˜•μ‚¬ κ³ μ†Œ: 뢀동산 μ‚¬κΈ°λ‘œ ν˜•μ‚¬ κ³ μ†Œκ°€ κ°€λŠ₯ν•œμ§€ 확인해야 ν•©λ‹ˆλ‹€. μ΄λŸ¬ν•œ μ˜΅μ…˜ 쀑 μ–΄λ–€ 것을 선택할지 κ²°μ •ν•˜κΈ° 전에 λ³€ν˜Έμ‚¬μ™€ μƒλ‹΄ν•˜μ—¬ 쑰언을 κ΅¬ν•˜λŠ” 것이 μ’‹μŠ΅λ‹ˆλ‹€.]` | | Legal-Llama-2-ko-7b-Chat | `[예, 재판이 λλ‚œ 후에도 손해배상 청ꡬ가 κ°€λŠ₯ν•©λ‹ˆλ‹€. λ―Όμ‚¬μ†Œμ†‘λ²• 제766μ‘°(μ†ν•΄λ°°μƒμ²­κ΅¬κΆŒμ˜ μ†Œλ©Έμ‹œνš¨)에 λ”°λ₯΄λ©΄, λΆˆλ²•ν–‰μœ„λ‘œ μΈν•œ μ†ν•΄λ°°μƒμ˜ μ²­κ΅¬κΆŒμ€ ν”Όν•΄μžλ‚˜ κ·Έ λ²•μ •λŒ€λ¦¬μΈμ΄ κ·Έ 손해 및 κ°€ν•΄μžλ₯Ό μ•ˆ λ‚ λ‘œλΆ€ν„° 3λ…„κ°„ 이λ₯Ό ν–‰μ‚¬ν•˜μ§€ μ•„λ‹ˆν•˜λ©΄ μ‹œνš¨λ‘œ μΈν•˜μ—¬ μ†Œλ©Έν•œλ‹€κ³  κ·œμ •ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.λ”°λΌμ„œ 뢀동산 μ‚¬κΈ°λ‘œ 인해 μž…μ€ 손해λ₯Ό μž…μ¦ν•  수 μžˆλŠ” 증거와 증인을 ν™•λ³΄ν•˜κ³ , 법원에 손해배상을 청ꡬ할 수 μžˆμŠ΅λ‹ˆλ‹€. λ˜ν•œ, 뢀동산 사기λ₯Ό λ‹Ήν•œ 사싀을 경찰에 μ‹ κ³ ν•˜μ—¬ μˆ˜μ‚¬λ₯Ό μ˜λ’°ν•˜λŠ” 것도 쒋은 λ°©λ²•μž…λ‹ˆλ‹€.]` | --- ### Inference ```python def gen(x, model, tokenizer, device): prompt = ( f"μ•„λž˜λŠ” μž‘μ—…μ„ μ„€λͺ…ν•˜λŠ” λͺ…λ Ήμ–΄μž…λ‹ˆλ‹€. μš”μ²­μ„ 적절히 μ™„λ£Œν•˜λŠ” 응닡을 μž‘μ„±ν•˜μ„Έμš”.\n\n### λͺ…λ Ήμ–΄:\n{x}\n\n### 응닡:" ) len_prompt = len(prompt) gened = model.generate( **tokenizer(prompt, return_tensors="pt", return_token_type_ids=False).to( device ), max_new_tokens=1024, early_stopping=True, do_sample=True, top_k=20, top_p=0.92, no_repeat_ngram_size=3, eos_token_id=2, repetition_penalty=1.2, num_beams=3 ) return tokenizer.decode(gened[0])[len_prompt:] def LLM_infer(input): device = ( torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") ) model_id = "kfkas/Legal-Llama-2-ko-7b-Chat" model = AutoModelForCausalLM.from_pretrained( model_id, device_map={"": 0},torch_dtype=torch.float16, low_cpu_mem_usage=True ) tokenizer = AutoTokenizer.from_pretrained(model_id) model.eval() model.config.use_cache = (True) tokenizer.pad_token = tokenizer.eos_token output = gen(input, model=model, tokenizer=tokenizer, device=device) return output if __name__ == "__main__": text = LLM_infer("μŒμ£Όμš΄μ „μ„ ν•˜λ©΄ μ–΄λ–»κ²Œ 처벌 λ°›μ•„?") print(text) ``` ## Note for oobabooga/text-generation-webui Remove `ValueError` at `load_tokenizer` function(line 109 or near), in `modules/models.py`. ```python diff --git a/modules/models.py b/modules/models.py index 232d5fa..de5b7a0 100644 --- a/modules/models.py +++ b/modules/models.py @@ -106,7 +106,7 @@ def load_tokenizer(model_name, model): trust_remote_code=shared.args.trust_remote_code, use_fast=False ) - except ValueError: + except: tokenizer = AutoTokenizer.from_pretrained( path_to_model, trust_remote_code=shared.args.trust_remote_code, ``` Since Llama-2-Ko uses FastTokenizer provided by HF tokenizers NOT sentencepiece package, it is required to use `use_fast=True` option when initialize tokenizer. Apple Sillicon does not support BF16 computing, use CPU instead. (BF16 is supported when using NVIDIA GPU) --- > Below is the original model card of the Llama-2 model. # **Llama 2** Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B pretrained model, converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom. ## Model Details *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.* Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM. **Model Developers** Meta **Variations** Llama 2 comes in a range of parameter sizes β€” 7B, 13B, and 70B β€” as well as pretrained and fine-tuned variations. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety. ||Training Data|Params|Content Length|GQA|Tokens|LR| |---|---|---|---|---|---|---| |Llama 2|*A new mix of publicly available online data*|7B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|13B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|70B|4k|&#10004;|2.0T|1.5 x 10<sup>-4</sup>| *Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability. **Model Dates** Llama 2 was trained between January 2023 and July 2023. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) **Research Paper** ["Llama-2: Open Foundation and Fine-tuned Chat Models"](arxiv.org/abs/2307.09288) ## Intended Use **Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212). **Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program. ||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)| |---|---|---|---| |Llama 2 7B|184320|400|31.22| |Llama 2 13B|368640|400|62.44| |Llama 2 70B|1720320|400|291.42| |Total|3311616||539.00| **CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023. ## Evaluation Results In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library. |Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval| |---|---|---|---|---|---|---|---|---|---| |Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9| |Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9| |Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7| |Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6| |Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3| |Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1| |Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**| **Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1. |||TruthfulQA|Toxigen| |---|---|---|---| |Llama 1|7B|27.42|23.00| |Llama 1|13B|41.74|23.08| |Llama 1|33B|44.19|22.57| |Llama 1|65B|48.71|21.77| |Llama 2|7B|33.29|**21.25**| |Llama 2|13B|41.86|26.10| |Llama 2|70B|**50.18**|24.60| **Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better). |||TruthfulQA|Toxigen| |---|---|---|---| |Llama-2-Chat|7B|57.04|**0.00**| |Llama-2-Chat|13B|62.18|**0.00**| |Llama-2-Chat|70B|**64.14**|0.01| **Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above. ## Ethical Considerations and Limitations Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide) ## Reporting Issues Please report any software β€œbug,” or other problems with the models through one of the following means: - Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama) - Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) - Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) ## Llama Model Index |Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf| |---|---|---|---|---| |7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)| |13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)| |70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|
Vaibhav9401/llama2-qlora-finetunined-spam
Vaibhav9401
2023-07-27T18:54:34Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-26T08:40:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
patonw/dqn-SpaceInvadersNoFrameskip-v4
patonw
2023-07-27T18:54:11Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T18:45:18Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 801.00 +/- 400.10 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga patonw -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga patonw -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga patonw ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
stabilityai/StableBeluga1-Delta
stabilityai
2023-07-27T18:53:45Z
1,588
58
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "dataset:conceptofmind/cot_submix_original", "dataset:conceptofmind/flan2021_submix_original", "dataset:conceptofmind/t0_submix_original", "dataset:conceptofmind/niv2_submix_original", "arxiv:2302.13971", "arxiv:2306.02707", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-20T12:51:49Z
--- license: cc-by-nc-4.0 datasets: - conceptofmind/cot_submix_original - conceptofmind/flan2021_submix_original - conceptofmind/t0_submix_original - conceptofmind/niv2_submix_original language: - en pipeline_tag: text-generation --- # Stable Belgua 1 ## Model Description `Stable Beluga 1` is a Llama65B model fine-tuned on an Orca style Dataset ## Usage ### Apply Delta Weights Stable Beluga 1 cannot be used from the `stabilityai/StableBeluga1-Delta` weights alone. To obtain the correct model, one must add back the difference between LLaMA 65B and `stabilityai/StableBeluga1-Delta` weights. We provide the [`apply_delta.py`](https://huggingface.co/stabilityai/StabelBeluga1-Delta/raw/main/apply_delta.py) script to automate the conversion, which you can run as: ```sh python3 apply_delta.py --base-model-path /path/to/model_weights/llama-65b --target-model-path StableBeluga1 --delta-path stabilityai/StableBeluga1-Delta ``` Start chatting with `Stable Beluga 1` using the following code snippet: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("your_path_to_StableBeluga1", use_fast=False) model = AutoModelForCausalLM.from_pretrained("your_path_to_StableBeluga1", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto") system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n" system_prompt += "### Instruction:\nYou are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n" message = "Write me a poem please" prompt = f"{system_prompt}### Input: {message}\n\n### Response:\n" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` Stable Beluga 1 should be used with prompts formatted similarly to Alpaca as below: ``` Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ## Instruction: This is a system prompt, please behave and help the user. ### Input: Your prompt here ### Response: The output of Stable Beluga 1 ``` ## Model Details * **Developed by**: [Stability AI](https://stability.ai/) * **Model type**: Stable Beluga 1 is an auto-regressive language model fine-tuned on LLaMA65B. * **Language(s)**: English * **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers) * **License**: Fine-tuned checkpoints (`StableBeluga1`) is licensed under the Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/)) * **Contact**: For questions and comments about the model, please email `lm@stability.ai` ### Training Dataset `Stable Beluga 1` is trained on our internal Orca-style dataset ### Training Procedure Models are learned via supervised fine-tuning on the aforementioned datasets, trained in mixed-precision (BF16), and optimized with AdamW. We outline the following hyperparameters: | Dataset | Batch Size | Learning Rate |Learning Rate Decay| Warm-up | Weight Decay | Betas | |-------------------|------------|---------------|-------------------|---------|--------------|-------------| | Orca pt1 packed | 512 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) | | Orca pt2 unpacked | 512 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) | ## Use and Limitations ### Ethical Considerations and Limitations Beluga is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Beluga's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Beluga, developers should perform safety testing and tuning tailored to their specific applications of the model. ## Citations ```bibtext @misc{touvron2023llama, title={LLaMA: Open and Efficient Foundation Language Models}, author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample}, year={2023}, eprint={2302.13971}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtext @misc{mukherjee2023orca, title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah}, year={2023}, eprint={2306.02707}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @misc{alpaca, author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto }, title = {Stanford Alpaca: An Instruction-following LLaMA model}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}}, } ```
Aevermann/rwkv-world-latest
Aevermann
2023-07-27T18:36:32Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2023-07-27T18:16:58Z
--- license: apache-2.0 --- This is a clone of the BlinkDL RWKV World Model Its a test. Pls load from orignal repo
Oussafik/llama2-qlora-finetunined-french
Oussafik
2023-07-27T18:32:37Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T18:32:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
dariowsz/ppo-Pyramids
dariowsz
2023-07-27T18:29:47Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-07-27T18:28:33Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dariowsz/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
idealflaw/dqn-SpaceInvadersNoFrameskip-v4
idealflaw
2023-07-27T18:24:12Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T18:08:41Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 639.00 +/- 185.56 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga idealflaw -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga idealflaw -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga idealflaw ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Leogrin/eleuther-pythia1b-hh-dpo
Leogrin
2023-07-27T18:21:11Z
168
1
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "causal-lm", "pythia", "en", "dataset:Anthropic/hh-rlhf", "arxiv:2305.18290", "arxiv:2101.00027", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-27T14:35:26Z
--- language: - en tags: - pytorch - causal-lm - pythia license: apache-2.0 datasets: - Anthropic/hh-rlhf --- # Infos Pythia-1b supervised finetuned with Anthropic-hh-rlhf dataset for 1 epoch (sft-model), before DPO [(paper)](https://arxiv.org/abs/2305.18290) with same dataset for 1 epoch. [wandb log](https://wandb.ai/pythia_dpo/Pythia_DPO_new/runs/jk09pzqb) See [Pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) for model details [(paper)](https://arxiv.org/abs/2101.00027). # Benchmark raw results: Results for the base model are taken from the [Pythia paper](https://arxiv.org/abs/2101.00027). ## Zero shot | Task | 1B_base | 1B_sft | 1B_dpo | |------------------|----------------|----------------|-----------------| | Lambada (OpenAI) | 0.562 Β± 0.007 | 0.563 Β± 0.007 | 0.5575 Β± 0.0069 | | PIQA | 0.707 Β± 0.011 | 0.711 Β± 0.011 | 0.7122 Β± 0.0106 | | WinoGrande | 0.537 Β± 0.014 | 0.534 Β± 0.014 | 0.5525 Β± 0.0140 | | WSC | 0.365 Β± 0.047 | 0.365 Β± 0.047 | 0.3654 Β± 0.0474 | | ARC - Easy | 0.569 Β± 0.010 | 0.583 Β± 0.010 | 0.5901 Β± 0.0101 | | ARC - Challenge | 0.244 Β± 0.013 | 0.248 Β± 0.013 | 0.2611 Β± 0.0128 | | SciQ | 0.840 Β± 0.012 | 0.847 Β± 0.011 | 0.8530 Β± 0.0112 | | LogiQA | 0.223 Β± 0.016 | N/A | N/A | ## Five shot | Task | 1B_base | 1B_sft | 1B_dpo | |------------------|----------------|----------------|-----------------| | Lambada (OpenAI) | 0.507 Β± 0.007 | 0.4722 Β± 0.007 | 0.4669 Β± 0.0070 | | PIQA | 0.705 Β± 0.011 | 0.7165 Β± 0.0105| 0.7138 Β± 0.0105 | | WinoGrande | 0.532 Β± 0.014 | 0.5343 Β± 0.014 | 0.5525 Β± 0.0140 | | WSC | 0.365 Β± 0.047 | 0.5000 Β± 0.0493| 0.5577 Β± 0.0489 | | ARC - Easy | 0.594 Β± 0.010 | 0.6010 Β± 0.010 | 0.6170 Β± 0.0100 | | ARC - Challenge | 0.259 Β± 0.013 | 0.2679 Β± 0.0129| 0.2833 Β± 0.0132 | | SciQ | 0.920 Β± 0.009 | 0.9100 Β± 0.0091| 0.9020 Β± 0.0094 | | LogiQA | 0.227 Β± 0.016 | N/A | N/A |
grace-pro/no-delete_5e-5_hausa
grace-pro
2023-07-27T18:18:51Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:Davlan/afro-xlmr-base", "base_model:finetune:Davlan/afro-xlmr-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-27T17:02:05Z
--- license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: no-delete_5e-5_hausa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # no-delete_5e-5_hausa This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1716 - Precision: 0.4009 - Recall: 0.2840 - F1: 0.3325 - Accuracy: 0.9559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1421 | 1.0 | 1283 | 0.1347 | 0.4610 | 0.1779 | 0.2567 | 0.9594 | | 0.1234 | 2.0 | 2566 | 0.1332 | 0.4847 | 0.1920 | 0.2750 | 0.9603 | | 0.1041 | 3.0 | 3849 | 0.1412 | 0.4581 | 0.2305 | 0.3067 | 0.9595 | | 0.0822 | 4.0 | 5132 | 0.1562 | 0.3979 | 0.2752 | 0.3253 | 0.9559 | | 0.0664 | 5.0 | 6415 | 0.1716 | 0.4009 | 0.2840 | 0.3325 | 0.9559 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
snob/TagMyBookmark-KoAlpaca-QLoRA-v1.0_ALLDATA-Finetune300
snob
2023-07-27T18:00:43Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-27T18:00:38Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
kusknish/ppo-LunarLander-v2
kusknish
2023-07-27T17:59:22Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T17:59:05Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -202.29 +/- 149.85 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
snob/TagMyBookmark-KoAlpaca-QLoRA-v1.0-Finetune300
snob
2023-07-27T17:57:27Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T17:57:09Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
vxbrandon/my_awesome_qa_model
vxbrandon
2023-07-27T17:48:35Z
117
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-27T16:13:28Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - squad model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1920 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3143 | 1.0 | 685 | 1.3187 | | 1.3356 | 2.0 | 1370 | 1.2095 | | 1.0967 | 3.0 | 2055 | 1.1920 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
dariowsz/ppo-SnowballTarget
dariowsz
2023-07-27T17:45:56Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-27T17:45:49Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dariowsz/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
smangrul/peft-lora-starcoderplus-chat-asst-A100-40GB-colab
smangrul
2023-07-27T17:44:52Z
28
3
peft
[ "peft", "tensorboard", "generated_from_trainer", "base_model:bigcode/starcoderplus", "base_model:adapter:bigcode/starcoderplus", "region:us" ]
null
2023-07-27T13:20:11Z
--- base_model: bigcode/starcoderplus tags: - generated_from_trainer model-index: - name: peft-lora-starcoderplus-chat-asst-A100-40GB-colab results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # peft-lora-starcoderplus-chat-asst-A100-40GB-colab This model is a fine-tuned version of [bigcode/starcoderplus](https://huggingface.co/bigcode/starcoderplus) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.982 | 0.3 | 203 | 0.9101 | | 0.9379 | 1.3 | 406 | 0.9078 | | 0.8899 | 2.3 | 609 | 0.9217 | ### Framework versions - PEFT 0.5.0.dev0 - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
asenella/MMVAEPlus_beta_10_scale_False_seed_2
asenella
2023-07-27T17:21:14Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T17:21:01Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
badmatr11x/roberta-base-emotions-detection-from-text
badmatr11x
2023-07-27T17:15:42Z
136
7
transformers
[ "transformers", "pytorch", "tf", "roberta", "text-classification", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-15T16:56:14Z
--- license: mit widget: - text: With tears of joy streaming down her cheeks, she embraced her long-lost brother after years of separation. example_title: Joy - text: As the orchestra played the final note, the audience erupted into thunderous applause, filling the concert hall with joy. example_title: Joy - text: The old man sat alone on the park bench, reminiscing about the love he had lost, his eyes filled with sadness. example_title: Sadness - text: The news of her best friend moving to a distant country left her feeling a profound sadness and emptiness. example_title: Sadness - text: The scientific research paper discussed complex concepts that were beyond the scope of a laymans understanding. example_title: Neutral - text: The documentary provided an objective view of the historical events, presenting facts without any bias. example_title: Neutral - text: He clenched his fists tightly, trying to control the surge of anger when he heard the offensive remarks. example_title: Anger - text: The unfair treatment at work ignited a simmering anger within him, leading him to consider confronting the management. example_title: Anger - text: As the magician pulled a rabbit out of an empty hat, the children gasped in amazement and surprise. example_title: Surprise - text: He opened the box to find a rare and valuable antique inside, leaving him speechless with surprise. example_title: Surprise - text: The moldy and rotting food in the refrigerator evoked a sense of disgust, leading her to clean it immediately. example_title: Disgust - text: The movie's graphic scenes of violence and gore left many viewers feeling a sense of disgust and unease. example_title: Disgust - text: As the storm raged outside, the little child clung to their parents, seeking comfort from the fear of thunder. example_title: Fear - text: The horror movie was so terrifying that some viewers had to cover their eyes in fear, unable to bear the suspense. example_title: Fear language: - en metrics: - accuracy pipeline_tag: text-classification ---
asenella/MMVAEPlus_beta_25_scale_False_seed_1
asenella
2023-07-27T17:11:03Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T17:10:50Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
bochen0909/PyramidsRND
bochen0909
2023-07-27T17:06:23Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-07-27T17:06:20Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: bochen0909/PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
asenella/MMVAEPlus_beta_25_scale_False_seed_0
asenella
2023-07-27T17:03:43Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T17:03:30Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
avidoavid/RWKV-1b5-finetuned-overfit
avidoavid
2023-07-27T17:01:36Z
21
0
transformers
[ "transformers", "rwkv", "text-generation", "generated_from_trainer", "base_model:RWKV/rwkv-raven-1b5", "base_model:finetune:RWKV/rwkv-raven-1b5", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-19T22:19:49Z
--- base_model: RWKV/rwkv-raven-1b5 tags: - generated_from_trainer model-index: - name: RWKV-1b5-finetuned-overfit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RWKV-1b5-finetuned-overfit This model is a fine-tuned version of [RWKV/rwkv-raven-1b5](https://huggingface.co/RWKV/rwkv-raven-1b5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 68.7560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6836 | 1.0 | 1 | 1.4341 | | 1.5494 | 2.0 | 2 | 1.7198 | | 0.7595 | 3.0 | 3 | 9.1981 | | 0.3142 | 4.0 | 4 | 35.6430 | | 0.1007 | 5.0 | 5 | 68.5554 | | 0.0256 | 6.0 | 6 | 69.8436 | | 0.0119 | 7.0 | 7 | 69.2797 | | 0.0082 | 8.0 | 8 | 68.7560 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Rajora1/llama2-pt
Rajora1
2023-07-27T16:47:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T14:18:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0 - PEFT 0.4.0
asenella/MMVAEPlus_beta_25_scale_False_seed_2
asenella
2023-07-27T16:41:36Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T16:41:23Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
greg-szopinski/Reinforce-pixelcopter-default
greg-szopinski
2023-07-27T16:29:22Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T16:29:18Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter-default results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 44.60 +/- 60.51 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Luxem/Plant-Disease-Classification
Luxem
2023-07-27T16:28:31Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-07-27T16:28:31Z
--- license: bigscience-openrail-m ---
blackmount8/Nous-Hermes-Llama2-13b-ct2-int8
blackmount8
2023-07-27T16:25:25Z
1
0
transformers
[ "transformers", "llama-2", "self-instruct", "distillation", "synthetic instruction", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2023-07-27T16:10:32Z
--- language: - en tags: - llama-2 - self-instruct - distillation - synthetic instruction license: - mit --- # blackmount8/Nous-Hermes-Llama2-13b-int8 Int8 version of [NousResearch/Nous-Hermes-Llama2-13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b), quantized using CTranslate2. # Model Card: Nous-Hermes-Llama2-13b Compute provided by our project sponsor Redmond AI, thank you! Follow RedmondAI on Twitter @RedmondAI. ## Model Description Nous-Hermes-Llama2-13b is a state-of-the-art language model fine-tuned on over 300,000 instructions. This model was fine-tuned by Nous Research, with Teknium and Emozilla leading the fine tuning process and dataset curation, Redmond AI sponsoring the compute, and several other contributors. This Hermes model uses the exact same dataset as Hermes on Llama-1. This is to ensure consistency between the old Hermes and new, for anyone who wanted to keep Hermes as similar to the old one, just more capable. This model stands out for its long responses, lower hallucination rate, and absence of OpenAI censorship mechanisms. The fine-tuning process was performed with a 4096 sequence length on an 8x a100 80GB DGX machine. ## Example Outputs: ![Example4](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b/resolve/main/example5.png "Example 4") ![Example1](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b/resolve/main/Example1.png "Example 1") ![Example2](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b/resolve/main/example2.png "Example 2") ![Example3](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b/resolve/main/example3.png "Example 3") ## Model Training The model was trained almost entirely on synthetic GPT-4 outputs. Curating high quality GPT-4 datasets enables incredibly high quality in knowledge, task completion, and style. This includes data from diverse sources such as GPTeacher, the general, roleplay v1&2, code instruct datasets, Nous Instruct & PDACTL (unpublished), and several others, detailed further below ## Collaborators The model fine-tuning and the datasets were a collaboration of efforts and resources between Teknium, Karan4D, Emozilla, Huemin Art, and Redmond AI. Special mention goes to @winglian for assisting in some of the training issues. Huge shoutout and acknowledgement is deserved for all the dataset creators who generously share their datasets openly. Among the contributors of datasets: - GPTeacher was made available by Teknium - Wizard LM by nlpxucan - Nous Research Instruct Dataset was provided by Karan4D and HueminArt. - GPT4-LLM and Unnatural Instructions were provided by Microsoft - Airoboros dataset by jondurbin - Camel-AI's domain expert datasets are from Camel-AI - CodeAlpaca dataset by Sahil 2801. If anyone was left out, please open a thread in the community tab. ## Prompt Format The model follows the Alpaca prompt format: ``` ### Instruction: <prompt> ### Response: <leave a newline blank for model to respond> ``` or ``` ### Instruction: <prompt> ### Input: <additional context> ### Response: <leave a newline blank for model to respond> ``` ## Benchmark Results AGI-Eval ``` | Task |Version| Metric |Value | |Stderr| |agieval_aqua_rat | 0|acc |0.2362|Β± |0.0267| | | |acc_norm|0.2480|Β± |0.0272| |agieval_logiqa_en | 0|acc |0.3425|Β± |0.0186| | | |acc_norm|0.3472|Β± |0.0187| |agieval_lsat_ar | 0|acc |0.2522|Β± |0.0287| | | |acc_norm|0.2087|Β± |0.0269| |agieval_lsat_lr | 0|acc |0.3510|Β± |0.0212| | | |acc_norm|0.3627|Β± |0.0213| |agieval_lsat_rc | 0|acc |0.4647|Β± |0.0305| | | |acc_norm|0.4424|Β± |0.0303| |agieval_sat_en | 0|acc |0.6602|Β± |0.0331| | | |acc_norm|0.6165|Β± |0.0340| |agieval_sat_en_without_passage| 0|acc |0.4320|Β± |0.0346| | | |acc_norm|0.4272|Β± |0.0345| |agieval_sat_math | 0|acc |0.2909|Β± |0.0307| | | |acc_norm|0.2727|Β± |0.0301| ``` GPT-4All Benchmark Set ``` | Task |Version| Metric |Value | |Stderr| |arc_challenge| 0|acc |0.5102|Β± |0.0146| | | |acc_norm|0.5213|Β± |0.0146| |arc_easy | 0|acc |0.7959|Β± |0.0083| | | |acc_norm|0.7567|Β± |0.0088| |boolq | 1|acc |0.8394|Β± |0.0064| |hellaswag | 0|acc |0.6164|Β± |0.0049| | | |acc_norm|0.8009|Β± |0.0040| |openbookqa | 0|acc |0.3580|Β± |0.0215| | | |acc_norm|0.4620|Β± |0.0223| |piqa | 0|acc |0.7992|Β± |0.0093| | | |acc_norm|0.8069|Β± |0.0092| |winogrande | 0|acc |0.7127|Β± |0.0127| ``` BigBench Reasoning Test ``` | Task |Version| Metric |Value | |Stderr| |bigbench_causal_judgement | 0|multiple_choice_grade|0.5526|Β± |0.0362| |bigbench_date_understanding | 0|multiple_choice_grade|0.7344|Β± |0.0230| |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.2636|Β± |0.0275| |bigbench_geometric_shapes | 0|multiple_choice_grade|0.0195|Β± |0.0073| | | |exact_str_match |0.0000|Β± |0.0000| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.2760|Β± |0.0200| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2100|Β± |0.0154| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.4400|Β± |0.0287| |bigbench_movie_recommendation | 0|multiple_choice_grade|0.2440|Β± |0.0192| |bigbench_navigate | 0|multiple_choice_grade|0.4950|Β± |0.0158| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.5570|Β± |0.0111| |bigbench_ruin_names | 0|multiple_choice_grade|0.3728|Β± |0.0229| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.1854|Β± |0.0123| |bigbench_snarks | 0|multiple_choice_grade|0.6298|Β± |0.0360| |bigbench_sports_understanding | 0|multiple_choice_grade|0.6156|Β± |0.0155| |bigbench_temporal_sequences | 0|multiple_choice_grade|0.3140|Β± |0.0147| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2032|Β± |0.0114| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1406|Β± |0.0083| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.4400|Β± |0.0287| ``` These are the highest benchmarks Hermes has seen on every metric, achieving the following average scores: - GPT4All benchmark average is now 70.0 - from 68.8 in Hermes-Llama1 - 0.3657 on BigBench, up from 0.328 on hermes-llama1 - 0.372 on AGIEval, up from 0.354 on Hermes-llama1 These benchmarks currently have us at #1 on ARC-c, ARC-e, Hellaswag, and OpenBookQA, and 2nd place on Winogrande, comparing to GPT4all's benchmarking list, supplanting Hermes 1 for the new top position. ## Resources for Applied Use Cases: For an example of a back and forth chatbot using huggingface transformers and discord, check out: https://github.com/teknium1/alpaca-discord For an example of a roleplaying discord chatbot, check out this: https://github.com/teknium1/alpaca-roleplay-discordbot ## Future Plans We plan to continue to iterate on both more high quality data, and new data filtering techniques to eliminate lower quality data going forward. ## Model Usage The model is available for download on Hugging Face. It is suitable for a wide range of language tasks, from generating creative text to understanding and following complex instructions. [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
blackmount8/WizardLM-13B-V1.2-ct2-int8
blackmount8
2023-07-27T16:17:54Z
2
0
transformers
[ "transformers", "license:mit", "endpoints_compatible", "region:us" ]
null
2023-07-26T16:16:35Z
--- license: mit --- # blackmount8/WizardLM-13B-V1.2-ct2-int8 Int8 version of [WizardLM/WizardLM-13B-V1.2](https://huggingface.co/WizardLM/WizardLM-13B-V1.2), quantized using CTranslate2.
NasimB/aochildes-rarity-2
NasimB
2023-07-27T16:08:36Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-27T13:44:03Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: aochildes-rarity-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aochildes-rarity-2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.1181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.351 | 0.29 | 500 | 5.3358 | | 5.0412 | 0.59 | 1000 | 4.9250 | | 4.7138 | 0.88 | 1500 | 4.6868 | | 4.4435 | 1.17 | 2000 | 4.5444 | | 4.3073 | 1.47 | 2500 | 4.4317 | | 4.205 | 1.76 | 3000 | 4.3274 | | 4.0796 | 2.05 | 3500 | 4.2630 | | 3.8987 | 2.35 | 4000 | 4.2145 | | 3.8749 | 2.64 | 4500 | 4.1579 | | 3.8421 | 2.93 | 5000 | 4.1113 | | 3.6388 | 3.23 | 5500 | 4.1089 | | 3.5906 | 3.52 | 6000 | 4.0804 | | 3.5776 | 3.81 | 6500 | 4.0451 | | 3.4712 | 4.11 | 7000 | 4.0519 | | 3.3209 | 4.4 | 7500 | 4.0435 | | 3.3179 | 4.69 | 8000 | 4.0297 | | 3.3071 | 4.99 | 8500 | 4.0193 | | 3.1447 | 5.28 | 9000 | 4.0337 | | 3.1394 | 5.57 | 9500 | 4.0322 | | 3.1343 | 5.87 | 10000 | 4.0318 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
Lazycuber/Pygnen-dolly-6B
Lazycuber
2023-07-27T16:08:06Z
6
0
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-25T14:12:36Z
--- license: apache-2.0 ---
WforGodot/add-lora-7b
WforGodot
2023-07-27T15:54:56Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-26T17:39:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
kejolong/devilnun
kejolong
2023-07-27T15:54:40Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-27T15:52:56Z
--- license: creativeml-openrail-m ---
rosiemin/search_embed_distilbert_finetune
rosiemin
2023-07-27T15:54:11Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-07-12T16:16:23Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 35 with parameters: ``` {'batch_size': 8} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
aman38649/marian-finetuned-kde4-en-to-fr
aman38649
2023-07-27T15:50:48Z
60
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-27T09:19:00Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - generated_from_keras_callback model-index: - name: aman38649/marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # aman38649/marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7983 - Validation Loss: 0.8210 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 17733, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.0611 | 0.8791 | 0 | | 0.7983 | 0.8210 | 1 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.0 - Tokenizers 0.13.3
bk6000/a2c-AntBulletEnv-v0
bk6000
2023-07-27T15:38:45Z
2
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T15:37:38Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1166.13 +/- 150.73 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mahmoudzamani/t5_recommendation_sports_equipment_english
mahmoudzamani
2023-07-27T15:30:14Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-27T15:18:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5_recommendation_sports_equipment_english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_recommendation_sports_equipment_english This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4517 - Rouge1: 57.9365 - Rouge2: 47.6190 - Rougel: 56.9841 - Rougelsum: 56.6667 - Gen Len: 3.9048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 0.96 | 6 | 6.7882 | 8.8278 | 0.9524 | 8.7668 | 8.8278 | 19.0 | | No log | 1.96 | 12 | 2.3412 | 18.0952 | 0.0 | 18.0952 | 18.0952 | 3.2381 | | No log | 2.96 | 18 | 0.8550 | 11.9048 | 4.7619 | 11.9048 | 11.9048 | 4.0 | | No log | 3.96 | 24 | 0.7481 | 32.3810 | 4.7619 | 32.0635 | 32.0635 | 3.9048 | | No log | 4.96 | 30 | 0.7208 | 21.2698 | 4.7619 | 20.7937 | 20.7937 | 3.6190 | | No log | 5.96 | 36 | 0.6293 | 31.7460 | 23.8095 | 31.7460 | 31.7460 | 3.6667 | | No log | 6.96 | 42 | 0.6203 | 43.6508 | 33.3333 | 43.4921 | 42.6984 | 3.9048 | | No log | 7.96 | 48 | 0.6352 | 48.4127 | 33.3333 | 46.8254 | 46.8254 | 3.8095 | | No log | 8.96 | 54 | 0.5334 | 53.2540 | 42.8571 | 52.3810 | 52.0635 | 3.9524 | | No log | 9.96 | 60 | 0.4517 | 57.9365 | 47.6190 | 56.9841 | 56.6667 | 3.9048 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.0.1+cu118 - Datasets 2.8.0 - Tokenizers 0.13.3
alexandremarie/Falcon7b-wiki2-fr
alexandremarie
2023-07-27T15:14:35Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-27T15:14:35Z
--- license: creativeml-openrail-m ---
royokong/prompteol-llama-7b
royokong
2023-07-27T15:07:54Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-27T15:06:19Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
cardiffnlp/pcl_robertabase
cardiffnlp
2023-07-27T15:01:06Z
110
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-20T15:25:52Z
--- language: - en --- ## PCL Someone uses __Patronizing and Condescending Language (PCL)__ when their use of the language denotes a superior attitude towards someone else, or depicts them in a compassionate way, raising a feeling of pity among the audience. ## pcl-roberta-base model for PCL detection This model is trained on __Don't Patronize Me!__ , a dataset of paragraphs extracted from media articles about vulnerable communities, published in 20 English-speaking countries or areas. The paragraphs have been manually annotated to assess if they contain any type of PCL. This is the PCL detection model built on roBERTa-base. - Git Repo: [Don't Patronize Me! official repository](https://github.com/Perez-AlmendrosC/dontpatronizeme) - Dataset: [Available upon request here] (https://docs.google.com/forms/d/e/1FAIpQLSe5KyzXgpnEOjS-Y6Gb8TTKiWxh4_qLuPL-NGiqKCyF41ALlg/viewform) <b>Labels</b>: 0 -> Negative; 1 -> Positive To know more about our work on PCL detection, the PCL detection model and the dataset, please refer to: ## Reference Papers: ``` @inproceedings{perez2020don, title={Don’t Patronize Me! An Annotated Dataset with Patronizing and Condescending Language towards Vulnerable Communities}, author={P{\'e}rez-Almendros, Carla and Anke, Luis Espinosa and Schockaert, Steven}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={5891--5902}, year={2020} } ``` ``` @inproceedings{perez2022semeval, title={SemEval-2022 task 4: Patronizing and condescending language detection}, author={P{\'e}rez-Almendros, Carla and Anke, Luis Espinosa and Schockaert, Steven}, booktitle={Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)}, pages={298--307}, year={2022} } ``` ``` @inproceedings{perez2022identifying, title={Identifying condescending language: A tale of two distinct phenomena?}, author={Perez-Almendros, Carla and Schockaert, Steven}, booktitle={Proceedings of the Second Workshop on NLP for Positive Impact (NLP4PI)}, pages={130--141}, year={2022} } ```
Pierre-Arthur/distilbert-base-uncased-finetuned-imdb
Pierre-Arthur
2023-07-27T14:55:00Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-27T14:51:24Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7026 | 1.0 | 157 | 2.4957 | | 2.581 | 2.0 | 314 | 2.4286 | | 2.5363 | 3.0 | 471 | 2.4515 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
aayushi08/segformer-b0-scene-parse-150_pretrained
aayushi08
2023-07-27T14:52:11Z
43
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2023-07-27T11:52:06Z
--- license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150_pretrained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150_pretrained This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 2.2284 - Mean Iou: 0.0767 - Mean Accuracy: 0.1574 - Overall Accuracy: 0.5622 - Per Category Iou: [0.5148203561012767, 0.724040099091574, 0.6958825927435793, 0.38401244431532056, 0.29543194795602395, 0.29389807778274474, 0.0, 0.12126925156299818, 0.20467349613092675, 0.04878431281437682, 0.0, 0.1679011093073593, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] - Per Category Accuracy: [0.8140876905468601, 0.8295938962384349, 0.867831101268203, 0.8547256107829203, 0.39126018171899396, 0.31410348287229467, 0.0, 0.16157810162353853, 0.7849884441835724, 0.9576966932725199, nan, 0.3186048004107303, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.7729 | 1.0 | 20 | 4.8806 | 0.0109 | 0.0500 | 0.2075 | [0.0325297525314704, 0.24495480446129927, 0.5035687103968282, 0.07590179316096747, 0.0208204321411237, 0.11755765952640118, 0.0012824676676576644, 0.11501857578251874, 0.004708489128929511, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0013707195075028857, nan, 0.0, 0.0, 0.0, 0.10670559106194026, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.012752466783029957, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.038409172339663206, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.039392859389085724, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0] | [0.032714193506590106, 0.2835194865505293, 0.7925572293142232, 0.09808227298140203, 0.023401493632310616, 0.13673498638383258, 0.0016606280193236715, 0.2387377403446556, 0.004989177886202722, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.003921838447777625, nan, nan, nan, nan, 0.1382100892304974, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.11718494271685762, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.038891307502539545, nan, nan, nan, nan, nan, nan, nan, 0.09062118191756158, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 4.6133 | 2.0 | 40 | 4.5556 | 0.0240 | 0.0928 | 0.4200 | [0.3414124883027797, 0.5189284526020218, 0.511476355875916, 0.1606769579990087, 0.2191685362703107, 0.2398429986223389, 0.015511382795680331, 0.11331394590160879, 0.15028358081340668, 0.01438743301769067, 0.0, 0.0, 0.0, 0.0, 0.0, 0.02806674579347902, 0.0, 0.0, 0.0, 0.0006765899864682003, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.02215046624619006, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03344654459539279, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.011403657777022819, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0] | [0.3974436187647117, 0.6709077053142973, 0.9814366002966801, 0.30133978188970545, 0.24257416429955417, 0.3673578265093243, 0.019345238095238096, 0.2245433220664561, 0.19344069848490406, 0.04469783352337514, nan, 0.0, 0.0, nan, 0.0, 0.07707055214723926, 0.0, nan, 0.0, 0.0013357079252003562, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.02593868716317696, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.14828150572831425, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0161886695389364, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 4.0018 | 3.0 | 60 | 4.0966 | 0.0381 | 0.1065 | 0.5018 | [0.4579418950126497, 0.5478506343770332, 0.6281485983096435, 0.187622528313154, 0.12857750191310263, 0.2648201387568903, 0.0, 0.17438167563464907, 0.2715138857161505, 0.007824522617422025, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0932277924362357, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0007550050195388662, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.015868077162414437, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0001977246456165967, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0] | [0.6575663269835709, 0.750747192817423, 0.9717910146320401, 0.5460234276591875, 0.14223367632950207, 0.35499976111987, 0.0, 0.37980458432611147, 0.3052202942147548, 0.0411630558722919, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0943900267141585, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0008039579468150897, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.01669394435351882, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0002089897755771333, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 3.7532 | 4.0 | 80 | 3.6052 | 0.0483 | 0.1219 | 0.5263 | [0.5050829619688341, 0.5167095890300885, 0.7748590774250136, 0.18315437529917458, 0.11704024897716543, 0.13685460073575936, 0.0, 0.2130983716844216, 0.29945226721356577, 0.057599769744830505, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan] | [0.8452302398736926, 0.7656999797573261, 0.96594446649813, 0.5077362468593599, 0.1259241144491055, 0.19461564187090918, 0.0, 0.3013058495410133, 0.4392310796434205, 0.7302166476624857, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 4.1001 | 5.0 | 100 | 3.4344 | 0.0660 | 0.1428 | 0.5519 | [0.5740286466908133, 0.5748238736928366, 0.770694415068295, 0.27976119037100783, 0.13865646665072914, 0.2115060410227592, 0.0, 0.2072166229048963, 0.2555005183734593, 0.047472124273325075, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.044365572315882874, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8366065922675107, 0.764253223943511, 0.9643113330408318, 0.7379712644065285, 0.15274929927199535, 0.28770722851273234, 0.0, 0.4467686226704346, 0.5695733519204667, 0.9087799315849487, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.04452359750667854, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 4.0427 | 6.0 | 120 | 3.2186 | 0.0650 | 0.1438 | 0.5559 | [0.5735339218911698, 0.6239798677665012, 0.7511513782853694, 0.2645688931826179, 0.12649460613253502, 0.24923481054964644, 0.0, 0.1969366951854885, 0.2184281686899488, 0.051422466461522716, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0623342175066313, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8391044267577821, 0.7624790131101082, 0.9706001156077415, 0.855931347124083, 0.1343328505050885, 0.33846129345627696, 0.0, 0.31312683548512216, 0.5571004072049598, 0.9165336374002281, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.06277827248441674, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 3.3803 | 7.0 | 140 | 3.0637 | 0.0701 | 0.1427 | 0.5502 | [0.5643446236009608, 0.6478939919910137, 0.7641745041997519, 0.26411100972559143, 0.19549661801352794, 0.1911980999487945, 0.0, 0.16826734984918662, 0.17217137814442804, 0.042858021905894904, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.003116651825467498, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8478744412265063, 0.7597745323346947, 0.9738489717178892, 0.7993762503620577, 0.20660659530841438, 0.27948178937142676, 0.0, 0.2462643837387562, 0.6370006236472358, 0.9530216647662486, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.003116651825467498, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 3.1859 | 8.0 | 160 | 3.0093 | 0.0584 | 0.1345 | 0.5279 | [0.5304954925773289, 0.630905617211838, 0.7114010240766968, 0.2654748809451504, 0.1130690161527166, 0.18241986166623642, 0.0, 0.1141937010923749, 0.150315689365187, 0.04692530210423179, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0008904719501335708, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.7662953107416481, 0.7716819875924317, 0.9095334600839897, 0.7949439905157722, 0.12022423296149289, 0.3263500708677719, 0.0, 0.1470327478251233, 0.626215194981474, 0.9174458380843785, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0008904719501335708, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 3.5901 | 9.0 | 180 | 2.8961 | 0.0623 | 0.1320 | 0.5360 | [0.5195164676654499, 0.6543788786036646, 0.6849384372869802, 0.30794058237074823, 0.1333599486209231, 0.15503567223107292, 0.0, 0.08126954631008769, 0.22258699934340118, 0.04523293026052965, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8745683977147574, 0.768743823007585, 0.8957162456734151, 0.7660669419427848, 0.14452867811659362, 0.2138693803449429, 0.0, 0.15671118006686247, 0.4974503833596243, 0.9605473204104903, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 3.6568 | 10.0 | 200 | 2.6655 | 0.0635 | 0.1318 | 0.5376 | [0.5089110011356949, 0.5947639210280143, 0.7501099711752571, 0.2960618158114864, 0.09897355720209366, 0.13247966647434348, 0.0, 0.04938747761057435, 0.25216933229927274, 0.049225711566744525, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8569419883338412, 0.791147700075017, 0.95600637931875, 0.7128461440012933, 0.10955811809853458, 0.1700348764989728, 0.0, 0.06977152250604902, 0.6321948714186141, 0.9732041049030786, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 3.0827 | 11.0 | 220 | 2.5540 | 0.0664 | 0.1328 | 0.5525 | [0.5477061884254247, 0.6076672388749504, 0.6988056319090914, 0.32100561831494234, 0.0796511455145158, 0.1849044459508501, 0.0, 0.06290754292548194, 0.2377632194665419, 0.04846934405354012, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8413215248067838, 0.8561951512842191, 0.8976592914499022, 0.7920475289140964, 0.10084839820162154, 0.21502396763970505, 0.0, 0.08161097874069559, 0.5591914597013831, 0.9678449258836944, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.7122 | 12.0 | 240 | 2.6093 | 0.0663 | 0.1347 | 0.5440 | [0.48626172067111173, 0.6938522126174008, 0.6745183497862148, 0.32800975475961913, 0.13442052689527517, 0.1590950988912591, 0.0, 0.03191117986488059, 0.28731424271802514, 0.055913045911087485, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8683034161065935, 0.8176626260701826, 0.8805792922856208, 0.7411102204678796, 0.1584679922496661, 0.24051247750545443, 0.0, 0.04305424724330914, 0.7284199713855974, 0.9115165336374003, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.7849 | 13.0 | 260 | 2.5046 | 0.0657 | 0.1399 | 0.5480 | [0.4882436604761502, 0.6822540965256525, 0.7004956509062636, 0.3247556811491817, 0.13196717267240105, 0.11096064594061923, 0.0, 0.02708401300129288, 0.3101351020607959, 0.04951936249885834, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.858285684121115, 0.8391704671294697, 0.9035476255144893, 0.7431512155034791, 0.1509433962264151, 0.13897249693437166, 0.0, 0.041401156240187656, 0.9297112880149675, 0.9891676168757126, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.9403 | 14.0 | 280 | 2.6340 | 0.0659 | 0.1387 | 0.5293 | [0.48312476897435797, 0.6488606361658413, 0.6648547679594857, 0.3053698024726054, 0.20489118952038876, 0.12576909929926508, 0.0, 0.013371640156689207, 0.34921209139450415, 0.05279407025459233, 0.0, 0.05094082693736073, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8812484853429183, 0.765260892344697, 0.8539546901225025, 0.7465461379389318, 0.21890930980642978, 0.18750497666937396, 0.0, 0.021878059141870302, 0.8853222788803697, 0.9339794754846066, nan, 0.05281735335643691, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.3078 | 15.0 | 300 | 2.5251 | 0.0644 | 0.1402 | 0.5368 | [0.5032657249511785, 0.6702271327640467, 0.6718064850372001, 0.30504826506652755, 0.1492842535787321, 0.16564926971140018, 0.0, 0.016966269440517066, 0.18991325708144624, 0.048684350697773514, nan, 0.05048798798798799, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.7896420250455297, 0.8229019063835867, 0.8759932863938046, 0.8191058690395199, 0.16890836923192687, 0.20635261892249135, 0.0, 0.026375574887792984, 0.9075901537107011, 0.9379703534777651, nan, 0.051790527531767425, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.1205 | 16.0 | 320 | 2.4200 | 0.0671 | 0.1408 | 0.5424 | [0.4851497985135246, 0.6844669447293905, 0.6787579124670596, 0.3294613919560565, 0.20455656925074622, 0.08834832285596292, 0.0, 0.026740147090214036, 0.2962578442229605, 0.05154904633008221, nan, 0.04160365166222124, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8799191862962226, 0.8123995308462628, 0.8699970053416348, 0.7538950672585327, 0.22818337440508663, 0.1226490213877343, 0.0, 0.038178090541364215, 0.9421475475989581, 0.9359179019384265, nan, 0.048549608522654344, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.7337 | 17.0 | 340 | 2.4611 | 0.0715 | 0.1478 | 0.5546 | [0.491625569615171, 0.7171170389611052, 0.6864015302376366, 0.3032877086334042, 0.21901611424079653, 0.1455949153673077, 0.0, 0.015259275152876733, 0.3620399802217984, 0.052233755188337394, 0.0, 0.15355001924874884, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8814404418839574, 0.8366475750467368, 0.8821915327775804, 0.7332965101005678, 0.25158486803739727, 0.19115984265762107, 0.0, 0.02233058126004322, 0.9401298653655673, 0.9944127708095781, nan, 0.17918110640482607, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.2253 | 18.0 | 360 | 2.5361 | 0.0683 | 0.1453 | 0.5332 | [0.4819568731474902, 0.680265368149286, 0.6843025301041807, 0.2899856590091187, 0.3087323785295647, 0.14888743830235568, 0.0, 0.024825875282443104, 0.17798215487023333, 0.06359447004608294, 0.0, 0.14556064830128054, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8169910332300767, 0.7745591264690823, 0.8805827744465106, 0.7940817879924826, 0.41321319061682876, 0.20704537129934866, 0.0, 0.03936942428104394, 0.7376279393961628, 0.9519954389965792, nan, 0.19769605955589784, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.3414 | 19.0 | 380 | 2.4640 | 0.0683 | 0.1439 | 0.5352 | [0.4849713967261648, 0.7036371871576641, 0.6922972055523594, 0.3356658592901123, 0.2402872807341619, 0.1596577580552716, 0.0, 0.047547589564925385, 0.2061945641719802, 0.04166013276880456, 0.0, 0.025974025974025976, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.7955566859662973, 0.7954239649444517, 0.8841519893585164, 0.7990663963302506, 0.3058748283451532, 0.21515137037567883, 0.0, 0.08368888642618348, 0.8494075351260134, 0.9996579247434435, nan, 0.026761648055448596, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.508 | 20.0 | 400 | 2.4162 | 0.0730 | 0.1498 | 0.5541 | [0.4861101723555255, 0.7257792619019059, 0.699673591241319, 0.33684785322016975, 0.2880978687290836, 0.1881996877887158, 0.0, 0.04428891975638423, 0.2535444554403875, 0.05175622381069756, 0.0, 0.1379656130528339, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8455877589313779, 0.8375540300782319, 0.8830133227475643, 0.7271667890365561, 0.33845632912583007, 0.23519341327855015, 0.0, 0.061247483422914244, 0.8928794159727063, 0.9576966932725199, nan, 0.2119111795661661, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.9607 | 21.0 | 420 | 2.3918 | 0.0702 | 0.1504 | 0.5396 | [0.507695581246897, 0.6985780592300636, 0.6698981931830353, 0.3268301579730071, 0.3054300659810973, 0.21641804793868566, 0.0, 0.019582922325922552, 0.18294713323002632, 0.04517401704445434, 0.0, 0.1149816335083697, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.80723964094529, 0.8035641990450221, 0.8493826128742452, 0.7845975602362973, 0.3866325551646946, 0.2806045259821955, 0.0, 0.02860124489758224, 0.9311786932756154, 0.9948688711516533, nan, 0.14965986394557823, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.9236 | 22.0 | 440 | 2.3403 | 0.0712 | 0.1488 | 0.5518 | [0.5364709094748005, 0.7157040135965486, 0.6919605889395992, 0.3555111122884162, 0.2598097326773754, 0.2303148717750308, 0.0, 0.01760396975425331, 0.2036683013326684, 0.04360612209112998, 0.0, 0.07802606547602146, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8108484239168252, 0.8148301401507484, 0.8874809351691285, 0.9040260816263295, 0.3298218551891495, 0.28440272004841305, 0.0, 0.030272806191241387, 0.8090172053266811, 0.9924743443557583, nan, 0.08817866769349249, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.9482 | 23.0 | 460 | 2.3411 | 0.0720 | 0.1514 | 0.5668 | [0.49056244853922376, 0.7266009942762334, 0.7052889865732858, 0.3548955744562617, 0.22703973358581736, 0.19574884192344205, 0.0, 0.05695680486216627, 0.23538302848330728, 0.049893043654919395, 0.0, 0.19959628089062884, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8291610779319563, 0.8825776068396423, 0.8928016770086845, 0.7743386974005941, 0.2616302037284373, 0.2183762521300145, 0.0, 0.08481557414898136, 0.8455189111852967, 0.9521094640820981, nan, 0.3141124374278013, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.2529 | 24.0 | 480 | 2.3104 | 0.0725 | 0.1497 | 0.5836 | [0.5113420655011527, 0.8045573464173746, 0.6962598456991187, 0.3590822991203078, 0.27860642520466383, 0.1485592640462252, 0.0, 0.023266297678379122, 0.2656858185022889, 0.046793389845020975, 0.0, 0.1291229211186472, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8680610709735316, 0.9369812814803349, 0.9006539498150973, 0.7750998605656857, 0.33802366485449314, 0.17114965043874317, 0.0, 0.025738349864243365, 0.7962874646905609, 0.9970353477765108, nan, 0.17837889872930304, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.0998 | 25.0 | 500 | 2.4495 | 0.0716 | 0.1541 | 0.5391 | [0.43688653221954715, 0.733287497831381, 0.6921168863095847, 0.3378376929961361, 0.28901953901953903, 0.25230697522202, 0.0, 0.0300467152913023, 0.14611836498363812, 0.051168724933002056, 0.0, 0.1828301028913999, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.6452835078138309, 0.8493051999857111, 0.872507643343153, 0.8492627494830153, 0.37175266652871575, 0.4051645884095361, 0.0, 0.04359912081417041, 0.823948053853773, 0.9557582668187001, nan, 0.34838274932614555, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.5943 | 26.0 | 520 | 2.3525 | 0.0733 | 0.1537 | 0.5399 | [0.4964431098359949, 0.6897805528483147, 0.7012728391399409, 0.3524738700399841, 0.32639010699877213, 0.2303413215501499, 0.0, 0.05761208001790838, 0.1800597813262015, 0.0469448823964735, 0.0, 0.14580612004539711, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8009074745477623, 0.7669056096021719, 0.8890339789259623, 0.8123160241686145, 0.42004176150792905, 0.3254264010319622, 0.0, 0.07843408876821632, 0.8397593455372537, 0.998175598631699, nan, 0.21848928250545502, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.6678 | 27.0 | 540 | 2.2825 | 0.0787 | 0.1577 | 0.5861 | [0.5126736049233109, 0.772986405128431, 0.7114639216183581, 0.38754642455125743, 0.29371878188946776, 0.2553816111517934, 0.0, 0.13962258581117482, 0.20097674111646413, 0.04935255174150135, 0.0, 0.1400173193495622, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.828335664805488, 0.9144300496540885, 0.8986586716252638, 0.7745811918602693, 0.4115013450215392, 0.30824295701750193, 0.0, 0.17471971334109085, 0.7820169485307605, 0.9834663625997719, nan, 0.23347452188422538, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.1303 | 28.0 | 560 | 2.3182 | 0.0758 | 0.1610 | 0.5611 | [0.5244217877873839, 0.7196797467040382, 0.7154193001600868, 0.3697657853229992, 0.29826594815907514, 0.2688369361764598, 0.0, 0.1257064600856439, 0.16174030561725586, 0.05200386136455641, 0.0, 0.1740916271721959, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.767178310830428, 0.8255051737893094, 0.899459568629909, 0.8811642428447295, 0.3727496755017965, 0.2916328253149236, 0.0, 0.22718457361334293, 0.88686305440405, 0.9521094640820981, nan, 0.335932486202028, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.0753 | 29.0 | 580 | 2.3862 | 0.0727 | 0.1559 | 0.5459 | [0.5125531180422713, 0.6913985422892837, 0.7135806413409606, 0.354653629423774, 0.33716292636466455, 0.23221484314434854, 0.0, 0.07243706665192746, 0.19018123761937145, 0.043853324272872043, 0.0, 0.12527584076264453, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8158584896379459, 0.768236267727224, 0.9021895827674822, 0.8389904147328856, 0.4261931187569367, 0.28621820903603906, 0.0, 0.10892853844590976, 0.9439084339117356, 0.9639680729760547, nan, 0.1821653189577718, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.1803 | 30.0 | 600 | 2.3013 | 0.0740 | 0.1545 | 0.5533 | [0.5097797474754986, 0.7108171722194596, 0.7005830611824793, 0.35823921708559114, 0.32186401376318347, 0.26049934774566624, 0.0, 0.05290972927345461, 0.2489013269204167, 0.04425081424655228, 0.0, 0.12392266480316795, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8224881886740842, 0.797866481704195, 0.8769717736038276, 0.8723805546387169, 0.40472920860061323, 0.3196056885321612, 0.0, 0.07988400657542342, 0.858101911295352, 0.9589509692132269, nan, 0.18778077268643306, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.7699 | 31.0 | 620 | 2.3166 | 0.0734 | 0.1549 | 0.5524 | [0.4792127260216525, 0.7026433433542578, 0.7059736466564126, 0.3817381108982241, 0.3173152259075477, 0.20516239705695122, 0.0, 0.13988002699771732, 0.18151654002499318, 0.04790945097194372, 0.0, 0.14376245178245942, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8472337862707883, 0.8057000988318787, 0.8854403888877281, 0.7193463427120311, 0.3885513271506236, 0.24379309795677861, 0.0, 0.17034225448366302, 0.92718001394035, 0.988939566704675, nan, 0.21765498652291104, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.7281 | 32.0 | 640 | 2.3447 | 0.0759 | 0.1618 | 0.5498 | [0.5100269861160145, 0.6908621861959551, 0.7038890577210998, 0.36374877913651393, 0.3435310328652262, 0.27837409064273155, 0.0, 0.1098173826075146, 0.19403438199688816, 0.04861480541801367, 0.0, 0.17298451681793914, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.807661945335576, 0.7712979721603697, 0.8791272311945901, 0.8579656062024694, 0.4408472695122181, 0.3101778860701034, 0.0, 0.1642747640420384, 0.9378553872115631, 0.9482326111744583, nan, 0.3534847901424721, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.8111 | 33.0 | 660 | 2.3018 | 0.0769 | 0.1575 | 0.5579 | [0.48684512810972097, 0.7188739727624192, 0.6881599572448257, 0.38048206300778636, 0.298146582950978, 0.24303529909110125, 0.0, 0.13649151841125362, 0.21524011803518422, 0.049986482197642026, 0.0, 0.1652892561983471, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8288227545283747, 0.8261377573498767, 0.8698437902624853, 0.757714354998417, 0.37160217460825073, 0.2746643734174191, 0.0, 0.18280046545132156, 0.9071132470009905, 0.9697833523375142, nan, 0.3112565781029393, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.2645 | 34.0 | 680 | 2.2879 | 0.0764 | 0.1586 | 0.5647 | [0.523132132565937, 0.7332575089854492, 0.6917468223029607, 0.3768701209447672, 0.3189359143399452, 0.2538414921554104, 0.0, 0.11942452590998628, 0.23668586179507545, 0.04691834451901566, 0.0, 0.1351541120553075, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8254851101710573, 0.8271662637977638, 0.8724867503778144, 0.8643512936405828, 0.4140785191595026, 0.3001767712961636, 0.0, 0.1696496185885004, 0.874536850214608, 0.9565564424173318, nan, 0.24088692080605828, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.3385 | 35.0 | 700 | 2.2476 | 0.0758 | 0.1573 | 0.5636 | [0.5046784645767062, 0.730853100421637, 0.6906982792843356, 0.3974850939489274, 0.3106473345049795, 0.2400536151853843, 0.0, 0.1487451411188102, 0.2111970669754061, 0.046564458308630825, 0.0, 0.1293910893957243, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8192153296493674, 0.8335992665007561, 0.8784830314299842, 0.8365856780077733, 0.3990105156229425, 0.2738044049495963, 0.0, 0.19507397351360337, 0.8833412817784951, 0.958266818700114, nan, 0.21499165704017456, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.3315 | 36.0 | 720 | 2.2589 | 0.0760 | 0.1589 | 0.5651 | [0.5223323082506124, 0.7408631116141162, 0.6837550061879653, 0.3814286554522997, 0.31727334903868076, 0.27626367677228175, 0.0, 0.11901900163268142, 0.19294514689905456, 0.04649480322961883, 0.0, 0.13994002024794178, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8012409990378179, 0.8457299865445755, 0.8638092054405282, 0.8736603865092248, 0.39268985496341163, 0.30881626932938383, 0.0, 0.15820727360041373, 0.9186323782970762, 0.9599771949828962, nan, 0.23507893723527146, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 2.2562 | 37.0 | 740 | 2.2604 | 0.0766 | 0.1562 | 0.5559 | [0.49336952101419806, 0.7146194028978202, 0.6916788345482708, 0.3836707024845504, 0.3132657940350248, 0.27580309286465676, 0.0, 0.13351638033194538, 0.1759989723129005, 0.046297154256623806, 0.0, 0.1402667526292461, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8034389014327157, 0.8187551350900799, 0.8676465467410456, 0.8196649534882154, 0.3943828890686431, 0.30688930294778083, 0.0, 0.19041022515284164, 0.8544333981437323, 0.9685290763968073, nan, 0.22339879347965602, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.67 | 38.0 | 760 | 2.2727 | 0.0739 | 0.1558 | 0.5591 | [0.4765426711244061, 0.7216823770278837, 0.6934404914710587, 0.3876700969962654, 0.30409929078014186, 0.2594024527502083, 0.0, 0.1448988355027462, 0.2239744052840704, 0.0478213699439367, 0.0, 0.14076731509378101, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8122737012340406, 0.8268656005525059, 0.8710033498387759, 0.8125046309705841, 0.40329953535619556, 0.28261908174478045, 0.0, 0.2087973993830923, 0.7961407241644961, 0.9599771949828962, nan, 0.2593697856501091, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.5761 | 39.0 | 780 | 2.2565 | 0.0749 | 0.1581 | 0.5552 | [0.49867026315457086, 0.6929315525434497, 0.6960117538985977, 0.3931985791879709, 0.3232063734899765, 0.24912395255196432, 0.0, 0.13885954321360297, 0.25672207215790005, 0.04745549809317958, 0.0, 0.14958776967762108, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8525893737657795, 0.779177730677177, 0.8759271253368991, 0.8313989909536095, 0.4212645083617073, 0.273422196741675, 0.0, 0.2039304778264162, 0.8402729373784805, 0.9563283922462942, nan, 0.2916827108201771, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.6946 | 40.0 | 800 | 2.2601 | 0.0750 | 0.1576 | 0.5534 | [0.4944224623891422, 0.6888145453780341, 0.7037414414835037, 0.3911177333985678, 0.31352842930796604, 0.2932870405087212, 0.0, 0.1482581406124942, 0.21531963361966683, 0.04624139613029104, 0.0, 0.15333549531676235, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8260225884859668, 0.779637656136507, 0.892268906392551, 0.8292569565598119, 0.40610244737485657, 0.31142802541684583, 0.0, 0.19501856264199036, 0.8322022084449173, 0.9728620296465222, nan, 0.25792581183416763, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.6296 | 41.0 | 820 | 2.2467 | 0.0751 | 0.1579 | 0.5549 | [0.4864490946546677, 0.7077958079871842, 0.6997543297983504, 0.38735074938756614, 0.3056326068497028, 0.2837938054384179, 0.0, 0.13901094040281914, 0.15548142780975296, 0.05017387576219512, 0.0, 0.16343096368023266, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8073908067213583, 0.8075680808754361, 0.8767872190766702, 0.8115952767468021, 0.4062529392953216, 0.3108069370789738, 0.0, 0.17413789918915423, 0.8344400014674053, 0.960775370581528, nan, 0.3281992042099859, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.8938 | 42.0 | 840 | 2.2589 | 0.0760 | 0.1583 | 0.5496 | [0.47144056301698833, 0.6844253220677846, 0.7050681830729311, 0.38940204180845894, 0.3170161841805334, 0.2829081766277303, 0.0, 0.14849037976661433, 0.19469181838122396, 0.05107984749389309, 0.0, 0.1739419420657248, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8139581198816588, 0.777559805194032, 0.8894065701411668, 0.8039297574381807, 0.4185932767734532, 0.30104470243498477, 0.0, 0.193079182135535, 0.8140430683444, 0.9608893956670468, nan, 0.3610897189064305, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 0.8033 | 43.0 | 860 | 2.2384 | 0.0757 | 0.1567 | 0.5482 | [0.47514768777939764, 0.6799096805891669, 0.7066319360377584, 0.37413968719359536, 0.3190275365914165, 0.28839185669174466, 0.0, 0.12979580141159439, 0.21690195696621556, 0.04958852948626566, 0.0, 0.1692121050969704, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8250364117563783, 0.7744668436908348, 0.8841868109674139, 0.7942299790511731, 0.4112567956507835, 0.3156084276909847, 0.0, 0.15896455551245822, 0.8172713599178253, 0.9598631698973774, nan, 0.32672314208702347, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.9207 | 44.0 | 880 | 2.2248 | 0.0778 | 0.1569 | 0.5629 | [0.5048158614958531, 0.7323207951853928, 0.6968780658627216, 0.3717431595955756, 0.30453854251959295, 0.2582376063809487, 0.0, 0.1284858912594632, 0.2154746927320236, 0.04812190423775454, 0.0, 0.16130029364793158, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8147979297487049, 0.8380288398566342, 0.8731274679815306, 0.843052196932445, 0.39180571493067967, 0.2694010478875034, 0.0, 0.17241092702388208, 0.8167944532081147, 0.9571265678449259, nan, 0.3014054678475164, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.9397 | 45.0 | 900 | 2.2397 | 0.0739 | 0.1556 | 0.5609 | [0.5104979289382761, 0.7335484971743466, 0.6945526654100276, 0.38850570478760144, 0.30587837075482344, 0.28333104638650364, 0.0, 0.1343887001712975, 0.17689109754822732, 0.04549396448174262, 0.0, 0.12715929031000195, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.7987455640043094, 0.8382982460318406, 0.8635097396040087, 0.8525498966030568, 0.40798359638066933, 0.31239150860764736, 0.0, 0.17098871465248147, 0.8069995230932903, 0.9630558722919043, nan, 0.20927993839045053, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.9628 | 46.0 | 920 | 2.2622 | 0.0746 | 0.1568 | 0.5597 | [0.5243409717367976, 0.7234668087061871, 0.6961363883642491, 0.3877068557919622, 0.3073133918770582, 0.3141209752305267, 0.0, 0.12196637124161351, 0.16876002030244194, 0.04680424142652056, 0.0, 0.14262956861751236, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.7937450961102407, 0.8248353794310618, 0.86889664250047, 0.86718713162734, 0.4213209428318817, 0.34747503702642013, 0.0, 0.16318501690031584, 0.7684434498697678, 0.9628278221208666, nan, 0.2528237710178411, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.3656 | 47.0 | 940 | 2.2377 | 0.0741 | 0.1562 | 0.5470 | [0.4763894452883486, 0.6767419874917132, 0.7003469975886608, 0.3897728739192154, 0.3134054542013075, 0.2600953343490263, 0.0, 0.13592144099973935, 0.24371247768943696, 0.04822769497637688, 0.0, 0.1622893246626674, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8360331221011563, 0.7703438873078434, 0.8707770093809415, 0.8137979347555184, 0.4049173235011945, 0.2745927093784339, 0.0, 0.17819212796217285, 0.8265160130599069, 0.9637400228050171, nan, 0.3099088692080606, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 0.901 | 48.0 | 960 | 2.2366 | 0.0771 | 0.1589 | 0.5660 | [0.5126108756723662, 0.7402906082099798, 0.6984062665053278, 0.3948832465096225, 0.29967275107264923, 0.30957178465350227, 0.0, 0.14647758400448116, 0.1584974262887711, 0.048483525823995954, 0.0, 0.16160454458326798, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.7955350908554303, 0.8506849763637013, 0.8702512030865874, 0.8266568770755168, 0.3875919411576591, 0.33030751835395666, 0.0, 0.1980292199996306, 0.834770167651051, 0.9625997719498289, nan, 0.2975869593120267, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.4665 | 49.0 | 980 | 2.2347 | 0.0757 | 0.1564 | 0.5550 | [0.502378498083232, 0.7047110323622909, 0.6973560251743418, 0.39012057813622936, 0.30475148618887915, 0.28088014418744367, 0.0, 0.13636174463126352, 0.19038196980247626, 0.04744125986020268, 0.0, 0.15255730337078652, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8197576068778029, 0.8051047260689917, 0.871222725974831, 0.8227096061485818, 0.39827686751067554, 0.2978198206806491, 0.0, 0.18155372084002883, 0.822443963461609, 0.9635119726339795, nan, 0.27230137337954047, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | | 1.6342 | 50.0 | 1000 | 2.2284 | 0.0767 | 0.1574 | 0.5622 | [0.5148203561012767, 0.724040099091574, 0.6958825927435793, 0.38401244431532056, 0.29543194795602395, 0.29389807778274474, 0.0, 0.12126925156299818, 0.20467349613092675, 0.04878431281437682, 0.0, 0.1679011093073593, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8140876905468601, 0.8295938962384349, 0.867831101268203, 0.8547256107829203, 0.39126018171899396, 0.31410348287229467, 0.0, 0.16157810162353853, 0.7849884441835724, 0.9576966932725199, nan, 0.3186048004107303, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
bskang/trained_cvpr2023_data_300
bskang
2023-07-27T14:43:16Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-27T14:43:14Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
epsilonai/SargeRVB
epsilonai
2023-07-27T14:42:04Z
0
0
null
[ "rvb", "red vs blue", "music", "rvc", "text-to-speech", "en", "region:us" ]
text-to-speech
2023-07-27T14:38:06Z
--- language: - en pipeline_tag: text-to-speech tags: - rvb - red vs blue - music - rvc ---
nakcnx/wangchang-math-v2
nakcnx
2023-07-27T14:29:04Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-27T10:25:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0
Varshitha/flan-t5-small-finetuned-medicine
Varshitha
2023-07-27T14:27:11Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "text2textgeneration", "generated_from_trainer", "base_model:google/flan-t5-small", "base_model:finetune:google/flan-t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-27T14:10:18Z
--- license: apache-2.0 base_model: google/flan-t5-small tags: - text2textgeneration - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-small-finetuned-medicine results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-small-finetuned-medicine This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9066 - Rouge1: 9.3596 - Rouge2: 2.6144 - Rougel: 8.94 - Rougelsum: 8.94 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.1417 | 1.0 | 5 | 2.9168 | 9.5238 | 2.6144 | 8.9947 | 8.9947 | | 3.1069 | 2.0 | 10 | 2.9066 | 9.3596 | 2.6144 | 8.94 | 8.94 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
flavioloss/gpt2-joker
flavioloss
2023-07-27T14:16:21Z
157
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "jokes", "en", "dataset:Fraser/short-jokes", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-27T00:05:22Z
--- license: afl-3.0 datasets: - Fraser/short-jokes language: - en library_name: transformers tags: - jokes pipeline_tag: text-generation --- Model trained to tell jokes Example Prompt: You are a comedian at a comedy club. The audience is going to ask you to tell jokes about a specific topic. Tell the joke in one output as clear as possible. Audience: Tell me a joke about dogs Comedian:
oljike/nurtas-lora
oljike
2023-07-27T14:14:38Z
12
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:dreamlike-art/dreamlike-photoreal-2.0", "base_model:adapter:dreamlike-art/dreamlike-photoreal-2.0", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-25T18:24:29Z
--- license: creativeml-openrail-m base_model: dreamlike-art/dreamlike-photoreal-2.0 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - oljike/nurtas-lora These are LoRA adaption weights for dreamlike-art/dreamlike-photoreal-2.0. The weights were fine-tuned on the ../../../data/people/nurtas dataset. You can find some example images in the following. ![img_0](./image_0.png)
Andreaa4/Llama-2-7b-chat-hf
Andreaa4
2023-07-27T14:14:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T14:09:28Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
prajwalJumde/MRR-Latest-27-7
prajwalJumde
2023-07-27T14:08:11Z
2
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "base_model:am-infoweb/MRR-Latest-21-7", "base_model:finetune:am-infoweb/MRR-Latest-21-7", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-27T12:27:28Z
--- license: apache-2.0 base_model: am-infoweb/MRR-Latest-21-7 tags: - generated_from_trainer model-index: - name: MRR-Latest-27-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MRR-Latest-27-7 This model is a fine-tuned version of [am-infoweb/MRR-Latest-21-7](https://huggingface.co/am-infoweb/MRR-Latest-21-7) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9033 | 1.0 | 630 | 0.6143 | | 0.6184 | 2.0 | 1260 | 0.8534 | | 0.5676 | 3.0 | 1890 | 0.6799 | | 0.4571 | 4.0 | 2520 | 0.7548 | | 0.4373 | 5.0 | 3150 | 0.9901 | | 0.4133 | 6.0 | 3780 | 0.7865 | | 0.3761 | 7.0 | 4410 | 0.8389 | | 0.367 | 8.0 | 5040 | 0.8556 | | 0.3665 | 9.0 | 5670 | 1.0920 | | 0.3377 | 10.0 | 6300 | 1.0847 | | 0.2857 | 11.0 | 6930 | 1.1071 | | 0.2991 | 12.0 | 7560 | 1.0964 | | 0.2647 | 13.0 | 8190 | 1.3036 | | 0.2518 | 14.0 | 8820 | 1.3547 | | 0.2543 | 15.0 | 9450 | 1.5333 | | 0.2156 | 16.0 | 10080 | 1.4622 | | 0.1856 | 17.0 | 10710 | 1.4964 | | 0.2144 | 18.0 | 11340 | 1.7252 | | 0.1993 | 19.0 | 11970 | 1.7526 | | 0.1723 | 20.0 | 12600 | 1.8491 | | 0.1257 | 21.0 | 13230 | 2.0100 | | 0.1555 | 22.0 | 13860 | 1.9707 | | 0.1276 | 23.0 | 14490 | 2.0484 | | 0.1216 | 24.0 | 15120 | 2.1069 | | 0.1252 | 25.0 | 15750 | 2.1198 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
deinon-daemon/superllama-7b-dollybricks-cqa-lora
deinon-daemon
2023-07-27T14:06:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T14:05:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
reach-vb/musicgen-large-endpoint
reach-vb
2023-07-27T14:04:06Z
6
0
transformers
[ "transformers", "pytorch", "musicgen", "text-to-audio", "arxiv:2306.05284", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-27T11:46:07Z
--- inference: false tags: - musicgen license: cc-by-nc-4.0 duplicated_from: facebook/musicgen-large --- # MusicGen - Large - 3.3B MusicGen is a text-to-music model capable of genreating high-quality music samples conditioned on text descriptions or audio prompts. It is a single stage auto-regressive Transformer model trained over a 32kHz EnCodec tokenizer with 4 codebooks sampled at 50 Hz. Unlike existing methods, like MusicLM, MusicGen doesn't require a self-supervised semantic representation, and it generates all 4 codebooks in one pass. By introducing a small delay between the codebooks, we show we can predict them in parallel, thus having only 50 auto-regressive steps per second of audio. MusicGen was published in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by *Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre DΓ©fossez*. Four checkpoints are released: - [small](https://huggingface.co/facebook/musicgen-small) - [medium](https://huggingface.co/facebook/musicgen-medium) - [**large** (this checkpoint)](https://huggingface.co/facebook/musicgen-large) - [melody](https://huggingface.co/facebook/musicgen-melody) ## Example Try out MusicGen yourself! * Audiocraft Colab: <a target="_blank" href="https://colab.research.google.com/drive/1fxGqfg96RBUvGxZ1XXN07s3DthrKUl4-?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> * Hugging Face Colab: <a target="_blank" href="https://colab.research.google.com/github/sanchit-gandhi/notebooks/blob/main/MusicGen.ipynb"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> * Hugging Face Demo: <a target="_blank" href="https://huggingface.co/spaces/facebook/MusicGen"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/> </a> ## πŸ€— Transformers Usage You can run MusicGen locally with the πŸ€— Transformers library from version 4.31.0 onwards. 1. First install the πŸ€— [Transformers library](https://github.com/huggingface/transformers) from main: ``` pip install git+https://github.com/huggingface/transformers.git ``` 2. Run the following Python code to generate text-conditional audio samples: ```py from transformers import AutoProcessor, MusicgenForConditionalGeneration processor = AutoProcessor.from_pretrained("facebook/musicgen-large") model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-large") inputs = processor( text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], padding=True, return_tensors="pt", ) audio_values = model.generate(**inputs, max_new_tokens=256) ``` 3. Listen to the audio samples either in an ipynb notebook: ```py from IPython.display import Audio sampling_rate = model.config.audio_encoder.sampling_rate Audio(audio_values[0].numpy(), rate=sampling_rate) ``` Or save them as a `.wav` file using a third-party library, e.g. `scipy`: ```py import scipy sampling_rate = model.config.audio_encoder.sampling_rate scipy.io.wavfile.write("musicgen_out.wav", rate=sampling_rate, data=audio_values[0, 0].numpy()) ``` For more details on using the MusicGen model for inference using the πŸ€— Transformers library, refer to the [MusicGen docs](https://huggingface.co/docs/transformers/model_doc/musicgen). ## Audiocraft Usage You can also run MusicGen locally through the original [Audiocraft library]((https://github.com/facebookresearch/audiocraft): 1. First install the [`audiocraft` library](https://github.com/facebookresearch/audiocraft) ``` pip install git+https://github.com/facebookresearch/audiocraft.git ``` 2. Make sure to have [`ffmpeg`](https://ffmpeg.org/download.html) installed: ``` apt get install ffmpeg ``` 3. Run the following Python code: ```py from audiocraft.models import MusicGen from audiocraft.data.audio import audio_write model = MusicGen.get_pretrained("large") model.set_generation_params(duration=8) # generate 8 seconds. descriptions = ["happy rock", "energetic EDM"] wav = model.generate(descriptions) # generates 2 samples. for idx, one_wav in enumerate(wav): # Will save under {idx}.wav, with loudness normalization at -14 db LUFS. audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness") ``` ## Model details **Organization developing the model:** The FAIR team of Meta AI. **Model date:** MusicGen was trained between April 2023 and May 2023. **Model version:** This is the version 1 of the model. **Model type:** MusicGen consists of an EnCodec model for audio tokenization, an auto-regressive language model based on the transformer architecture for music modeling. The model comes in different sizes: 300M, 1.5B and 3.3B parameters ; and two variants: a model trained for text-to-music generation task and a model trained for melody-guided music generation. **Paper or resources for more information:** More information can be found in the paper [Simple and Controllable Music Generation][https://arxiv.org/abs/2306.05284]. **Citation details**: ``` @misc{copet2023simple, title={Simple and Controllable Music Generation}, author={Jade Copet and Felix Kreuk and Itai Gat and Tal Remez and David Kant and Gabriel Synnaeve and Yossi Adi and Alexandre DΓ©fossez}, year={2023}, eprint={2306.05284}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` **License** Code is released under MIT, model weights are released under CC-BY-NC 4.0. **Where to send questions or comments about the model:** Questions and comments about MusicGen can be sent via the [Github repository](https://github.com/facebookresearch/audiocraft) of the project, or by opening an issue. ## Intended use **Primary intended use:** The primary use of MusicGen is research on AI-based music generation, including: - Research efforts, such as probing and better understanding the limitations of generative models to further improve the state of science - Generation of music guided by text or melody to understand current abilities of generative AI models by machine learning amateurs **Primary intended users:** The primary intended users of the model are researchers in audio, machine learning and artificial intelligence, as well as amateur seeking to better understand those models. **Out-of-scope use cases** The model should not be used on downstream applications without further risk evaluation and mitigation. The model should not be used to intentionally create or disseminate music pieces that create hostile or alienating environments for people. This includes generating music that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. ## Metrics **Models performance measures:** We used the following objective measure to evaluate the model on a standard music benchmark: - Frechet Audio Distance computed on features extracted from a pre-trained audio classifier (VGGish) - Kullback-Leibler Divergence on label distributions extracted from a pre-trained audio classifier (PaSST) - CLAP Score between audio embedding and text embedding extracted from a pre-trained CLAP model Additionally, we run qualitative studies with human participants, evaluating the performance of the model with the following axes: - Overall quality of the music samples; - Text relevance to the provided text input; - Adherence to the melody for melody-guided music generation. More details on performance measures and human studies can be found in the paper. **Decision thresholds:** Not applicable. ## Evaluation datasets The model was evaluated on the [MusicCaps benchmark](https://www.kaggle.com/datasets/googleai/musiccaps) and on an in-domain held-out evaluation set, with no artist overlap with the training set. ## Training datasets The model was trained using the following sources: the [Meta Music Initiative Sound Collection](https://www.fb.com/sound), [Shutterstock music collection](https://www.shutterstock.com/music) and the [Pond5 music collection](https://www.pond5.com/). See the paper for more details about the training set and corresponding preprocessing. ## Quantitative analysis More information can be found in the paper [Simple and Controllable Music Generation][arxiv], in the Experimental Setup section. ## Limitations and biases **Data:** The data sources used to train the model are created by music professionals and covered by legal agreements with the right holders. The model is trained on 20K hours of data, we believe that scaling the model on larger datasets can further improve the performance of the model. **Mitigations:** All vocals have been removed from the data source using a state-of-the-art music source separation method, namely using the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs). The model is therefore not able to produce vocals. **Limitations:** - The model is not able to generate realistic vocals. - The model has been trained with English descriptions and will not perform as well in other languages. - The model does not perform equally well for all music styles and cultures. - The model sometimes generates end of songs, collapsing to silence. - It is sometimes difficult to assess what types of text descriptions provide the best generations. Prompt engineering may be required to obtain satisfying results. **Biases:** The source of data is potentially lacking diversity and all music cultures are not equally represented in the dataset. The model may not perform equally well on the wide variety of music genres that exists. The generated samples from the model will reflect the biases from the training data. Further work on this model should include methods for balanced and just representations of cultures, for example, by scaling the training data to be both diverse and inclusive. **Risks and harms:** Biases and limitations of the model may lead to generation of samples that may be considered as biased, inappropriate or offensive. We believe that providing the code to reproduce the research and train new models will allow to broaden the application to new and more representative data. **Use cases:** Users must be aware of the biases, limitations and risks of the model. MusicGen is a model developed for artificial intelligence research on controllable music generation. As such, it should not be used for downstream applications without further investigation and mitigation of risks.
NasimB/gutenberg-no-merge-rarity-6p5k
NasimB
2023-07-27T13:41:34Z
157
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-27T11:02:05Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gutenberg-no-merge-rarity-6p5k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gutenberg-no-merge-rarity-6p5k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.0791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.2206 | 0.58 | 500 | 5.1052 | | 4.7954 | 1.16 | 1000 | 4.6615 | | 4.4101 | 1.74 | 1500 | 4.3895 | | 4.1133 | 2.33 | 2000 | 4.2397 | | 3.9572 | 2.91 | 2500 | 4.1257 | | 3.7283 | 3.49 | 3000 | 4.0785 | | 3.6356 | 4.07 | 3500 | 4.0313 | | 3.4289 | 4.65 | 4000 | 4.0056 | | 3.3393 | 5.23 | 4500 | 3.9986 | | 3.2334 | 5.81 | 5000 | 3.9949 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
grays-ai/table-detection
grays-ai
2023-07-27T13:41:05Z
163
0
transformers
[ "transformers", "pytorch", "table-transformer", "object-detection", "arxiv:2110.00061", "license:mit", "endpoints_compatible", "region:us" ]
object-detection
2023-07-27T13:38:56Z
--- license: mit widget: - src: https://www.invoicesimple.com/wp-content/uploads/2018/06/Sample-Invoice-printable.png example_title: Invoice --- # Table Transformer (fine-tuned for Table Detection) Table Transformer (DETR) model trained on PubTables1M. It was introduced in the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Smock et al. and first released in [this repository](https://github.com/microsoft/table-transformer). Disclaimer: The team releasing Table Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Table Transformer is equivalent to [DETR](https://huggingface.co/docs/transformers/model_doc/detr), a Transformer-based object detection model. Note that the authors decided to use the "normalize before" setting of DETR, which means that layernorm is applied before self- and cross-attention. ## Usage You can use the raw model for detecting tables in documents. See the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/table-transformer) for more info.
luodian/Flamingo-Llama2-Chat7B-CC3M
luodian
2023-07-27T13:34:33Z
4
10
transformers
[ "transformers", "pytorch", "flamingo", "text2text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-26T01:22:21Z
--- license: mit --- **TLDR**: We trained a Flamingo with Llama2-Chat7B as LLM on CC3M in less than 5 hours using just 4 A100s. The model showed promising zero-shot captioning skills. High-quality captioning data really helps fast alignment. You could test it via following code. Be sure to visit [Otter](https://github.com/Luodian/Otter) to get necessary Flamingo/Otter models. ```python from flamingo.modeling_flamingo import FlamingoForConditionalGeneration flamingo_model = FlamingoForConditionalGeneration.from_pretrained("luodian/Flamingo-Llama2-Chat7B-CC3M", device_map=auto) prompt = "<image>an image of" simple_prompt = "<image>" ```
SaferChat/falcon-7b-test
SaferChat
2023-07-27T13:33:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T13:19:45Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
grays-ai/table-transformer-structure-recognition
grays-ai
2023-07-27T13:19:00Z
182
0
transformers
[ "transformers", "pytorch", "table-transformer", "object-detection", "arxiv:2110.00061", "license:mit", "endpoints_compatible", "region:us" ]
object-detection
2023-07-26T20:42:23Z
--- license: mit widget: - src: https://documentation.tricentis.com/tosca/1420/en/content/tbox/images/table.png example_title: Table --- # Table Transformer (fine-tuned for Table Structure Recognition) Table Transformer (DETR) model trained on PubTables1M. It was introduced in the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Smock et al. and first released in [this repository](https://github.com/microsoft/table-transformer). Disclaimer: The team releasing Table Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Table Transformer is equivalent to [DETR](https://huggingface.co/docs/transformers/model_doc/detr), a Transformer-based object detection model. Note that the authors decided to use the "normalize before" setting of DETR, which means that layernorm is applied before self- and cross-attention. ## Usage You can use the raw model for detecting the structure (like rows, columns) in tables. See the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/table-transformer) for more info.
winterbro/distilbert-base-uncased-finetuned-cola
winterbro
2023-07-27T13:15:59Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-27T11:28:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5425688103069501 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5259 - Matthews Correlation: 0.5426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5221 | 1.0 | 535 | 0.5361 | 0.4307 | | 0.3492 | 2.0 | 1070 | 0.5128 | 0.4921 | | 0.2382 | 3.0 | 1605 | 0.5259 | 0.5426 | | 0.1758 | 4.0 | 2140 | 0.7495 | 0.5301 | | 0.1251 | 5.0 | 2675 | 0.7982 | 0.5414 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
Carloswear/llama2-qlora-finetunined-french
Carloswear
2023-07-27T13:12:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-27T13:12:18Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
xinyangli/woman_photo
xinyangli
2023-07-27T13:07:00Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-27T12:41:48Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of a sks person tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - xinyangli/woman_photo These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of a sks person using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
ditwoo/distilhubert-finetuned-gtzan
ditwoo
2023-07-27T13:04:50Z
161
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-06-25T19:25:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9570 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1586 | 1.0 | 112 | 2.0855 | 0.45 | | 1.4771 | 2.0 | 225 | 1.3396 | 0.72 | | 1.181 | 3.0 | 337 | 0.9735 | 0.76 | | 0.8133 | 4.0 | 450 | 0.8692 | 0.76 | | 0.5397 | 5.0 | 562 | 0.7118 | 0.81 | | 0.3424 | 6.0 | 675 | 0.6237 | 0.81 | | 0.2717 | 7.0 | 787 | 0.6551 | 0.83 | | 0.2653 | 8.0 | 900 | 0.6707 | 0.83 | | 0.0503 | 9.0 | 1012 | 0.7025 | 0.84 | | 0.0168 | 10.0 | 1125 | 0.7643 | 0.87 | | 0.1125 | 11.0 | 1237 | 0.8550 | 0.86 | | 0.155 | 12.0 | 1350 | 0.9796 | 0.82 | | 0.005 | 13.0 | 1462 | 0.9539 | 0.86 | | 0.0038 | 14.0 | 1575 | 0.9206 | 0.86 | | 0.0035 | 15.0 | 1687 | 0.8725 | 0.88 | | 0.051 | 16.0 | 1800 | 0.9980 | 0.86 | | 0.003 | 17.0 | 1912 | 0.9579 | 0.86 | | 0.0025 | 18.0 | 2025 | 0.9735 | 0.86 | | 0.0023 | 19.0 | 2137 | 0.9589 | 0.86 | | 0.0022 | 19.91 | 2240 | 0.9570 | 0.86 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0 - Datasets 2.13.1 - Tokenizers 0.13.3
aronmal/a2c-AntBulletEnv-v0
aronmal
2023-07-27T13:03:53Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T13:02:47Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1527.35 +/- 59.46 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Younes-c/rlbs
Younes-c
2023-07-27T13:03:22Z
0
0
null
[ "region:us" ]
null
2023-07-27T12:47:02Z
# Authors Alexandre Caspers, Grace Jiyoung Yun # Introduction This project aims to utilize the brainpy library to imitate realistic brain behavior, in order to choose the order in which to perform a given list of tasks. Since the brainpy components need to be heavily adapted to the available tasks, we provide a predefined list of 6 possible tasks. The user provides the program with wich of the 6 tasks he/she needs to do (possible all), and also which type of work style he/she prefers. For the latter we have 3 predefined choices: - low effort first (lowest - lower - low - high - higher - highest) - high effort first (highest - higher - high - low - lower - lowest) - alternating effort (highest - lowest - higher - lower - high - low) With this information, the program will then return the most optimal order. In order to do these predictions we train 3 different models (1 for each work style) that get called according to the user input. # Components * DRL - Deep Reinforcement Learning: - N = amount of total possible tasks (10) - States: complexities of last performed task, actions that need to be performed (1 or 0), and each their physical and mental complexity (size: 2 + 3 * N) - Output: softmax of which task to perform (size: N) - Reward Function: Utilizes BrainPy module to compute the brain activity. Taking this information in relation to the work style of the user, generate a list of rewards for each possible task - Other Features: decaying epsilon, bootstrapping * BrainPy: ![Alt text](Pictures/brain_decision_model_draft.png) - Decision Making Model: two components E and I - E is partitioned into N + 1 components (N and the remainder) - Each of those components (N + 2) are linked with one another (synapses), so everything has an impact on everything - The N sub-parts of E each receive a unique input signal, generated in relation to the physical and mental complexity of its associated task - The model computes and records the brain activity of these N sub-parts of this complex network - These brain activities are signals, from which we take the average. This result is passed to the reward function of the DRL model - Input signal construction: shaped like a bar graph, with up- and down-time. Physical complexity defines the amplitude, the mental complexity defines the duration of the up-time * Other - A frontend app designed with Streamlit, allowing the user to input the data in a cleaner fashion - Code Generation components that create the needed brain model, synapses, and more in relation to how many tasks we have (to allow for easy flexibility) - Section 1 of frontend: uses DRL and pre-computed BrainPy results to perform choices of predefined tasks and complexities - Section 2 of frontend: user-defined tasks and complexities, skips DRL, as tradeoff directly calls BrainPy (user-defined but much much slower) (for complexity reasons the allowed number of tasks is restricted to 18) # Reasons for DRL & BrainPy Research in the domain of brain and personality is not advanced, so we wanted to give our contribution, as we believe that the more knowledge we have on this topic, the more facinating techniques and tools could be built in the future. BrainPy is currently one of the most powerful brain modeling libraries there are. It allows for very close definition of the exact brain components we want, the synapses, the resting / reset states of neurons, number of neurons and other intrinsic behaviors of the brain. However, BrainPy is very slow to use for multiple iterations (1 iteration with 5 task takes about 10 seconds, while 1 iteration with 17 can take up more than 1 minute). With DRL we want to develop a model that can mimic the decision of the brain model but in significant quicker complexity (since running a NN is just a few matrix computations). # Problems & Solutions * Data and Knowledge on the domain of brain and personality is beyond scarce - using self-build datasets (built from research and common sense, e.g. complexity of certain tasks) - DRL allows us to avoid using existing datasets (which do not exist in the first place) * BrainPy requires a vast amount of computation - a DRL needs many iterations, so calling the brain model every iteration would take forever to just train 1 model - what we do instead is to run the brain model with every possible combination in advance, and save the resulting brain activities - the DRL then uses this cached data to compute the rewards - this trick saves an unfathomable amount of computation time * Brainpy documentation exists but only shows a fraction of the capabilities of BrainPy & examples (outside of the documentation) are close to non-existant - Trial-and-Error * Running BrainPy for many iterations slows down PC and eventually crashes (BrainPy model can only be called a certain amount of times before it crashes) - Calls to BrainPy have to be limited - Cashed Outputs (But you have to restrict how many tasks, because with 5 tasks there are only 2^5=32 possibilities, but with 2^17=131k it is too much to test everything) - The maximum amount of tasks that avoid crashing is 6 - Outputs have to be cashed (2^6 calls), because during DRL we would vastly surpass that number - Cashed Outputs Allow us to precompute the results once, and then for any following training session one iteration (where we would call BrainPy before) would yield results almost instantly, instead of waiting several minutes * This idea restricts the choices from the user, but we gain computation speed. In order to have the other side too, we implement another section where the user can specify tasks with physical and mental complexity him/herself up to 18 tasks (more than that and BrainPy crashes). This allows choice, but computation time takes much longer too. 3 Tasks is only around 17 seconds whereas 18 tasks may take up to 35 minutes. # Trained Models Steps Model low-effort first: ![Alt text](Pictures/model_low.png) Model high-effort first: ![Alt text](Pictures/model_high.png) Model alternating-effort first: ![Alt text](Pictures/model_alternating.png) # Example BrainPy Iteration Lower Graph: Input Signals (based on difficulty of the tasks, i.e. physical difficulty determines amplitude, mental difficulty determines duration of a high). Given input activities were: ['workout' 'videogame' 'studying']\ Upper Graph: Resulting Brain Activity ![Alt text](Pictures/prediction_example_brain_activity.png) # Architecture ``` . β”œβ”€β”€ AdaptiveBrain # same Structure as Brain/, used for section 2 of frontend β”œβ”€β”€ Brain β”‚ β”œβ”€β”€ caller.py # Call the brain code β”‚ β”œβ”€β”€ mini_brain.py # Core brain model with all the components and synapses β”‚ β”œβ”€β”€ plotter.py # Plots a Brain model iteration β”‚ β”œβ”€β”€ pre_run_brain.py # Creates the cahed brain activity β”‚ └── stim.py # Input Signal Generation β”œβ”€β”€ Code_Generation # Code to automatically write other python files in relation to tasks.csv (for easy scalability) β”‚ β”œβ”€β”€ gen_caller.py β”‚ β”œβ”€β”€ gen_minibrain.py β”‚ β”œβ”€β”€ gen_plotter.py β”‚ β”œβ”€β”€ gen_setup.py β”‚ └── main_generator.py # calles all the code generation functions above β”œβ”€β”€ Data β”‚ β”œβ”€β”€ prerun_brain_activities.csv # Cached brain activities β”‚ └── tasks.csv # Data about tasks to use, and their complexities β”œβ”€β”€ DRL β”‚ β”œβ”€β”€ agent.py # Agent, States, Calling training functions β”‚ β”œβ”€β”€ model.py # The NN part of DRL β”‚ β”œβ”€β”€ plotter.py # Plots the performance of the trained agent β”‚ └── rewards.py # The different evaluation types of brain activity (3 work styles) β”œβ”€β”€ drl-model/ # Saved models β”‚ β”œβ”€β”€ model-high_effort_first.h5 β”‚ β”œβ”€β”€ model-low_effort_first.h5 β”‚ └── model-alternating_effort.h5 β”œβ”€β”€ Pictures/ # Pictures used in this README β”œβ”€β”€ ResGraphs/ # Folder in which we saw the steps chosen in section 2 (and the related matplotlib images) β”œβ”€β”€ Utils/ β”‚ └── utils.py # Auxilary functions to save and access the ResGraphs Folder more easily β”œβ”€β”€ app.py # Frontend β”œβ”€β”€ main_inference.py # Main Code for section 2 of frontend (user defined inputs) β”œβ”€β”€ main_inference.ipynb # Main Code during Prediction Phase β”œβ”€β”€ main_training.ipynb # Main Code during Training Phase β”œβ”€β”€ README.md β”œβ”€β”€ requirements.txt └── setup.py # Global variables used by some files ``` # References Links to the BrainPy documentation & research paper: - https://brainpy.readthedocs.io/en/latest/quickstart/simulation.html - https://doi.org/10.1101/2022.10.28.514024 ``` @article {Wang2022brainpy, author = {Wang, Chaoming and Chen, Xiaoyu and Zhang, Tianqiu and Wu, Si}, title = {BrainPy: a flexible, integrative, efficient, and extensible framework towards general-purpose brain dynamics programming}, elocation-id = {2022.10.28.514024}, year = {2022}, doi = {10.1101/2022.10.28.514024}, publisher = {Cold Spring Harbor Laboratory}, URL = {https://www.biorxiv.org/content/early/2022/10/28/2022.10.28.514024}, eprint = {https://www.biorxiv.org/content/early/2022/10/28/2022.10.28.514024.full.pdf}, journal = {bioRxiv} } ```
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalan/sbert_large_nlu_ru
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalan
2023-07-27T13:03:18Z
46
0
sentence-transformers
[ "sentence-transformers", "pytorch", "jax", "bert", "PyTorch", "Transformers", "ru", "region:us" ]
null
2023-07-27T09:07:35Z
--- library_name: sentence-transformers language: - ru tags: - PyTorch - Transformers --- # BERT large model (uncased) for Sentence Embeddings in Russian language. The model is described [in this article](https://habr.com/ru/company/sberdevices/blog/527576/) For better quality, use mean token embeddings. ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['ΠŸΡ€ΠΈΠ²Π΅Ρ‚! Как Ρ‚Π²ΠΎΠΈ Π΄Π΅Π»Π°?', 'А ΠΏΡ€Π°Π²Π΄Π°, Ρ‡Ρ‚ΠΎ 42 Ρ‚Π²ΠΎΠ΅ любимоС число?'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("sberbank-ai/sbert_large_nlu_ru") model = AutoModel.from_pretrained("sberbank-ai/sbert_large_nlu_ru") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` # Authors - [SberDevices](https://sberdevices.ru/) Team. - Denis Antykhov: [Github](https://github.com/gaphex); - Aleksandr Abramov: [Github](https://github.com/Ab1992ao), [Kaggle Competitions Master](https://www.kaggle.com/andrilko)
LenixC/whisper-tiny-finetuned
LenixC
2023-07-27T12:54:46Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-26T22:21:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-finetuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.2824655894673848 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-finetuned This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.5951 - Wer Ortho: 0.2846 - Wer: 0.2825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0009 | 17.86 | 500 | 0.5951 | 0.2846 | 0.2825 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
asenella/ms_MMVAEPlus_beta_25_scale_False_seed_1
asenella
2023-07-27T12:53:01Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T12:52:59Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Trong-Nghia/bert-large-uncased-detect-dep-v10
Trong-Nghia
2023-07-27T12:50:00Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-large-uncased", "base_model:finetune:google-bert/bert-large-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-27T11:53:58Z
--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-large-uncased-detect-dep-v10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-detect-dep-v10 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5321 - Accuracy: 0.74 - F1: 0.8077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6275 | 1.0 | 501 | 0.5638 | 0.733 | 0.8155 | | 0.5985 | 2.0 | 1002 | 0.5365 | 0.735 | 0.8143 | | 0.5661 | 3.0 | 1503 | 0.5321 | 0.74 | 0.8077 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
liuyt75/t5-base_prefix_tuning_sentences_66agree_15
liuyt75
2023-07-27T12:49:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-26T12:18:50Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
Malcolmcjj13/disbert_finetune_for_gentriple
Malcolmcjj13
2023-07-27T12:48:34Z
21
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-cased", "base_model:finetune:distilbert/distilbert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-27T09:04:42Z
--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: disbert_finetune_for_gentriple results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # disbert_finetune_for_gentriple This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0534 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 210 | 0.0534 | 0.0 | 0.0 | 0.0 | 0.9879 | | No log | 2.0 | 420 | 0.0534 | 0.0 | 0.0 | 0.0 | 0.9879 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
greg-szopinski/Reinforce-10_000s
greg-szopinski
2023-07-27T12:45:19Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T12:45:09Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-10_000s results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 464.40 +/- 106.80 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
iamkaikai/amazing-logos
iamkaikai
2023-07-27T12:43:06Z
15
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dataset:iamkaikai/amazing_logos_v2", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-11T19:33:40Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 datasets: - iamkaikai/amazing_logos_v2 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # Text-to-image finetuning - iamkaikai/amazing-logos This pipeline was finetuned from **runwayml/stable-diffusion-v1-5** on the **iamkaikai/amazing_logos_v2** dataset. ## Training info These are the key hyperparameters used during training: * Dataset size: 10k * Epochs: 20 * Learning rate: 1e-07 * Batch size: 1 * Gradient accumulation steps: 1 * Image resolution: 512 * Mixed-precision: fp16 ![preview](./grid-0008.jpg) ## Prompt Format The prompt format is as follows: ```javascript {template keywords} + [company name] + [concept & country] + {template keywords} ``` For example: ```text Simple elegant logo for **[Google]**, **[G circle United states]**, successful vibe, minimalist, thought-provoking, abstract, recognizable, black and white ``` The [concept & country] section can include words such as: - lines - circles - triangles - dot - crosses - waves - square - letters (A-Z) - 3D - Angled - Arrows - cube - Diamond - Hexagon - Loops - outline - ovals - rectangle - reflection - rings - round - semicircle - spiral - woven - stars Here are some examples of prompts: - Simple elegant logo for Digital Art, **D A circle**, successful vibe, minimalist, thought-provoking, abstract, recognizable, black and white - Simple elegant logo for 3M Technology Products, **3 M square United states**, successful vibe, minimalist, thought-provoking, abstract, recognizable, black and white - Simple elegant logo for 38Energy, **lines drop fire flame water**, successful vibe, minimalist, thought provoking, abstract, recognizable, relatable, sharp, vector art, even edges, black and white
liuyt75/t5-base_prefix_tuning_sentences_66agree_10
liuyt75
2023-07-27T12:35:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-26T12:05:05Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
HeinrichWirth/dqn-SpaceInvadersNoFrameskip-v4
HeinrichWirth
2023-07-27T12:33:44Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T12:33:11Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 538.00 +/- 145.31 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga HeinrichWirth -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga HeinrichWirth -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga HeinrichWirth ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 1e-05), ('learning_starts', 100000), ('n_timesteps', 30000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
bwilkie/bwilkie-whisper-small-dv
bwilkie
2023-07-27T12:32:54Z
84
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-27T09:25:35Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: bwilkie-whisper-small-dv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: all split: None metrics: - name: Wer type: wer value: 0.23270055113288426 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bwilkie-whisper-small-dv This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7358 - Wer Ortho: 0.2389 - Wer: 0.2327 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0001 | 17.86 | 500 | 0.7358 | 0.2389 | 0.2327 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
asenella/ms_MMVAEPlus_beta_25_scale_True_seed_1
asenella
2023-07-27T12:28:12Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T12:28:10Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
liuyt75/t5-base_prefix_tuning_sentences_50agree_15
liuyt75
2023-07-27T12:25:53Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-26T11:48:27Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
asenella/ms_MMVAEPlus_beta_5_scale_True_seed_0
asenella
2023-07-27T12:17:13Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T12:17:11Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
rehanhaider/DBSD-1.5-9-vectors-lr-5e-6
rehanhaider
2023-07-27T12:17:03Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-27T11:59:35Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: in the style of wlat_mntn tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - rehanhaider/DBSD-1.5-9-vectors-lr-5e-6 This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on in the style of wlat_mntn using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
asenella/ms_MMVAEPlus_beta_10_scale_False_seed_3
asenella
2023-07-27T12:15:36Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T12:15:34Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
jordyvl/rvlcdip-tiny_rvl_cdip-NK1000_kd_CEKD_t2.5_a0.5
jordyvl
2023-07-27T12:14:48Z
167
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-27T06:53:45Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: rvlcdip-tiny_rvl_cdip-NK1000_kd_CEKD_t2.5_a0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rvlcdip-tiny_rvl_cdip-NK1000_kd_CEKD_t2.5_a0.5 This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6215 - Accuracy: 0.7963 - Brier Loss: 0.3076 - Nll: 1.6291 - F1 Micro: 0.7963 - F1 Macro: 0.7978 - Ece: 0.0919 - Aurc: 0.0682 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 1.0 | 125 | 1.3808 | 0.541 | 0.5996 | 3.3159 | 0.541 | 0.5235 | 0.1039 | 0.2209 | | No log | 2.0 | 250 | 1.0577 | 0.6525 | 0.4662 | 2.6310 | 0.6525 | 0.6396 | 0.0871 | 0.1302 | | No log | 3.0 | 375 | 0.9165 | 0.7075 | 0.4104 | 2.2685 | 0.7075 | 0.7041 | 0.0788 | 0.1048 | | 1.3004 | 4.0 | 500 | 0.8505 | 0.7298 | 0.3804 | 2.1171 | 0.7298 | 0.7380 | 0.0622 | 0.0934 | | 1.3004 | 5.0 | 625 | 0.8063 | 0.745 | 0.3603 | 2.1178 | 0.745 | 0.7359 | 0.0588 | 0.0814 | | 1.3004 | 6.0 | 750 | 0.7441 | 0.7662 | 0.3348 | 1.9219 | 0.7663 | 0.7636 | 0.0545 | 0.0741 | | 1.3004 | 7.0 | 875 | 0.6987 | 0.7732 | 0.3193 | 1.8601 | 0.7732 | 0.7741 | 0.0509 | 0.0697 | | 0.4682 | 8.0 | 1000 | 0.7033 | 0.773 | 0.3240 | 1.8889 | 0.7730 | 0.7733 | 0.0516 | 0.0776 | | 0.4682 | 9.0 | 1125 | 0.6973 | 0.7865 | 0.3151 | 1.9589 | 0.7865 | 0.7838 | 0.0441 | 0.0760 | | 0.4682 | 10.0 | 1250 | 0.7068 | 0.7748 | 0.3252 | 2.0362 | 0.7748 | 0.7749 | 0.0515 | 0.0791 | | 0.4682 | 11.0 | 1375 | 0.6988 | 0.7768 | 0.3285 | 1.9227 | 0.7768 | 0.7801 | 0.0555 | 0.0840 | | 0.1899 | 12.0 | 1500 | 0.7048 | 0.7762 | 0.3303 | 1.9777 | 0.7762 | 0.7719 | 0.0627 | 0.0809 | | 0.1899 | 13.0 | 1625 | 0.6842 | 0.7785 | 0.3240 | 1.9360 | 0.7785 | 0.7784 | 0.0614 | 0.0808 | | 0.1899 | 14.0 | 1750 | 0.6993 | 0.7742 | 0.3319 | 1.9508 | 0.7742 | 0.7727 | 0.0731 | 0.0759 | | 0.1899 | 15.0 | 1875 | 0.6936 | 0.7742 | 0.3333 | 1.9042 | 0.7742 | 0.7760 | 0.0717 | 0.0853 | | 0.1304 | 16.0 | 2000 | 0.6818 | 0.7837 | 0.3233 | 1.9541 | 0.7837 | 0.7855 | 0.0713 | 0.0853 | | 0.1304 | 17.0 | 2125 | 0.6757 | 0.78 | 0.3255 | 1.8818 | 0.78 | 0.7829 | 0.0755 | 0.0834 | | 0.1304 | 18.0 | 2250 | 0.7018 | 0.781 | 0.3348 | 2.0078 | 0.7810 | 0.7829 | 0.0786 | 0.0876 | | 0.1304 | 19.0 | 2375 | 0.6872 | 0.7775 | 0.3340 | 1.8345 | 0.7775 | 0.7786 | 0.0864 | 0.0787 | | 0.11 | 20.0 | 2500 | 0.7054 | 0.7758 | 0.3379 | 1.9542 | 0.7758 | 0.7747 | 0.0731 | 0.0847 | | 0.11 | 21.0 | 2625 | 0.7006 | 0.782 | 0.3371 | 1.8610 | 0.782 | 0.7813 | 0.0821 | 0.0891 | | 0.11 | 22.0 | 2750 | 0.7046 | 0.775 | 0.3428 | 1.8464 | 0.775 | 0.7772 | 0.0833 | 0.0814 | | 0.11 | 23.0 | 2875 | 0.6620 | 0.789 | 0.3201 | 1.8174 | 0.7890 | 0.7908 | 0.0761 | 0.0799 | | 0.0979 | 24.0 | 3000 | 0.6886 | 0.783 | 0.3324 | 1.8706 | 0.7830 | 0.7848 | 0.0807 | 0.0773 | | 0.0979 | 25.0 | 3125 | 0.6600 | 0.7847 | 0.3236 | 1.8218 | 0.7847 | 0.7863 | 0.0833 | 0.0749 | | 0.0979 | 26.0 | 3250 | 0.6777 | 0.7798 | 0.3349 | 1.7189 | 0.7798 | 0.7812 | 0.0951 | 0.0752 | | 0.0979 | 27.0 | 3375 | 0.6554 | 0.7857 | 0.3212 | 1.7356 | 0.7857 | 0.7888 | 0.0871 | 0.0709 | | 0.087 | 28.0 | 3500 | 0.6460 | 0.7955 | 0.3140 | 1.7680 | 0.7955 | 0.7970 | 0.0761 | 0.0696 | | 0.087 | 29.0 | 3625 | 0.6371 | 0.7935 | 0.3136 | 1.6350 | 0.7935 | 0.7946 | 0.0830 | 0.0706 | | 0.087 | 30.0 | 3750 | 0.6334 | 0.7915 | 0.3127 | 1.7187 | 0.7915 | 0.7933 | 0.0857 | 0.0712 | | 0.087 | 31.0 | 3875 | 0.6293 | 0.7977 | 0.3075 | 1.7781 | 0.7977 | 0.7999 | 0.0799 | 0.0661 | | 0.0793 | 32.0 | 4000 | 0.6273 | 0.7973 | 0.3076 | 1.6439 | 0.7973 | 0.7976 | 0.0782 | 0.0695 | | 0.0793 | 33.0 | 4125 | 0.6320 | 0.7933 | 0.3123 | 1.6486 | 0.7932 | 0.7954 | 0.0899 | 0.0679 | | 0.0793 | 34.0 | 4250 | 0.6345 | 0.79 | 0.3154 | 1.6402 | 0.79 | 0.7903 | 0.0922 | 0.0675 | | 0.0793 | 35.0 | 4375 | 0.6209 | 0.793 | 0.3098 | 1.6026 | 0.793 | 0.7943 | 0.0863 | 0.0630 | | 0.0733 | 36.0 | 4500 | 0.6187 | 0.7947 | 0.3076 | 1.6282 | 0.7947 | 0.7967 | 0.0880 | 0.0666 | | 0.0733 | 37.0 | 4625 | 0.6146 | 0.7957 | 0.3051 | 1.6186 | 0.7957 | 0.7971 | 0.0885 | 0.0623 | | 0.0733 | 38.0 | 4750 | 0.6169 | 0.7983 | 0.3062 | 1.6182 | 0.7983 | 0.7996 | 0.0835 | 0.0650 | | 0.0733 | 39.0 | 4875 | 0.6180 | 0.7953 | 0.3074 | 1.6241 | 0.7953 | 0.7975 | 0.0889 | 0.0655 | | 0.0693 | 40.0 | 5000 | 0.6204 | 0.7977 | 0.3069 | 1.6048 | 0.7977 | 0.7987 | 0.0824 | 0.0659 | | 0.0693 | 41.0 | 5125 | 0.6140 | 0.7967 | 0.3055 | 1.6065 | 0.7967 | 0.7986 | 0.0911 | 0.0662 | | 0.0693 | 42.0 | 5250 | 0.6162 | 0.7957 | 0.3062 | 1.6182 | 0.7957 | 0.7971 | 0.0883 | 0.0655 | | 0.0693 | 43.0 | 5375 | 0.6169 | 0.796 | 0.3058 | 1.6212 | 0.796 | 0.7976 | 0.0879 | 0.0662 | | 0.0673 | 44.0 | 5500 | 0.6173 | 0.7973 | 0.3063 | 1.6161 | 0.7973 | 0.7990 | 0.0877 | 0.0666 | | 0.0673 | 45.0 | 5625 | 0.6193 | 0.797 | 0.3070 | 1.6151 | 0.797 | 0.7986 | 0.0881 | 0.0678 | | 0.0673 | 46.0 | 5750 | 0.6209 | 0.7963 | 0.3076 | 1.6211 | 0.7963 | 0.7979 | 0.0894 | 0.0678 | | 0.0673 | 47.0 | 5875 | 0.6211 | 0.7977 | 0.3075 | 1.6284 | 0.7977 | 0.7993 | 0.0905 | 0.0691 | | 0.0662 | 48.0 | 6000 | 0.6206 | 0.7967 | 0.3072 | 1.6289 | 0.7967 | 0.7983 | 0.0892 | 0.0673 | | 0.0662 | 49.0 | 6125 | 0.6213 | 0.7965 | 0.3075 | 1.6262 | 0.7965 | 0.7980 | 0.0886 | 0.0684 | | 0.0662 | 50.0 | 6250 | 0.6215 | 0.7963 | 0.3076 | 1.6291 | 0.7963 | 0.7978 | 0.0919 | 0.0682 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
asenella/ms_MMVAEPlus_beta_25_scale_False_seed_3
asenella
2023-07-27T12:11:31Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T12:11:29Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
liuyt75/t5-base_prefix_tuning_sentences_50agree_10
liuyt75
2023-07-27T12:09:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-26T11:32:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
nikbhi/spaceinvador_dqn_v1
nikbhi
2023-07-27T12:08:39Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T12:08:00Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 699.00 +/- 289.28 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nikbhi -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nikbhi -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga nikbhi ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
asenella/ms_MMVAEPlus_beta_5_scale_False_seed_1
asenella
2023-07-27T12:05:36Z
0
1
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T12:05:35Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MMVAEPlus_beta_25_scale_True_seed_0
asenella
2023-07-27T12:05:35Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T12:05:33Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MMVAEPlus_beta_25_scale_False_seed_2
asenella
2023-07-27T12:05:32Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T12:05:30Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
alesanm/blip-image-captioning-base-fashionimages-finetuned
alesanm
2023-07-27T12:05:03Z
140
1
transformers
[ "transformers", "pytorch", "blip", "image-text-to-text", "image-to-text", "dataset:alesanm/balenciaga_short_descriptions", "region:us" ]
image-to-text
2023-07-24T11:00:40Z
--- inference: False datasets: - alesanm/balenciaga_short_descriptions library_name: transformers pipeline_tag: image-to-text --- The BLIP model was trained on 141 photos of the Balenciaga fashion brand and descriptions produced by GPT3
asenella/ms_MMVAEPlus_beta_10_scale_True_seed_2
asenella
2023-07-27T12:01:53Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T12:01:50Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MMVAEPlus_beta_5_scale_False_seed_0
asenella
2023-07-27T11:59:17Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T11:59:15Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
dhinman/Reinforce-Pixelcopter-200000
dhinman
2023-07-27T11:58:35Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-27T11:58:23Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-200000 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 182.70 +/- 200.09 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
snob/TagMyBookmark-KoAlpaca-QLoRA-v1.0_ALLDATA
snob
2023-07-27T11:58:28Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-27T11:58:20Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
asenella/ms_MMVAEPlus_beta_5_scale_True_seed_3
asenella
2023-07-27T11:58:19Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-27T11:58:17Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Babon182/tibool
Babon182
2023-07-27T11:57:51Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-23T16:39:44Z
--- license: creativeml-openrail-m ---