modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-08 06:28:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
546 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-08 06:27:40
card
stringlengths
11
1.01M
hhffxx/distilbert-base-uncased-distilled-clinc
hhffxx
2022-09-08T01:32:06Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-08T00:58:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: train args: plus metrics: - name: Accuracy type: accuracy value: 0.9503225806451613 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2656 - Accuracy: 0.9503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 3.1212 | 1.0 | 1271 | 1.2698 | 0.8558 | | 0.6441 | 2.0 | 2542 | 0.3528 | 0.9326 | | 0.149 | 3.0 | 3813 | 0.2512 | 0.9494 | | 0.0647 | 4.0 | 5084 | 0.2510 | 0.95 | | 0.0406 | 5.0 | 6355 | 0.2575 | 0.9510 | | 0.0318 | 6.0 | 7626 | 0.2592 | 0.9494 | | 0.026 | 7.0 | 8897 | 0.2629 | 0.9503 | | 0.023 | 8.0 | 10168 | 0.2682 | 0.95 | | 0.0207 | 9.0 | 11439 | 0.2656 | 0.9503 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/arcane-style-jv
sd-concepts-library
2022-09-08T01:08:33Z
0
45
null
[ "license:mit", "region:us" ]
null
2022-09-08T01:08:28Z
--- license: mit --- ### arcane style jv on Stable Diffusion This is the `<arcane-style-jv>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<arcane-style-jv> 0](https://huggingface.co/sd-concepts-library/arcane-style-jv/resolve/main/concept_images/4.jpeg) ![<arcane-style-jv> 1](https://huggingface.co/sd-concepts-library/arcane-style-jv/resolve/main/concept_images/1.jpeg) ![<arcane-style-jv> 2](https://huggingface.co/sd-concepts-library/arcane-style-jv/resolve/main/concept_images/2.jpeg) ![<arcane-style-jv> 3](https://huggingface.co/sd-concepts-library/arcane-style-jv/resolve/main/concept_images/3.jpeg) ![<arcane-style-jv> 4](https://huggingface.co/sd-concepts-library/arcane-style-jv/resolve/main/concept_images/0.jpeg)
sd-concepts-library/vkuoo1
sd-concepts-library
2022-09-08T00:04:38Z
0
24
null
[ "license:mit", "region:us" ]
null
2022-09-08T00:04:32Z
--- license: mit --- ### Vkuoo1 on Stable Diffusion This is the `<style-vkuoo1>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<style-vkuoo1> 0](https://huggingface.co/sd-concepts-library/vkuoo1/resolve/main/concept_images/5.jpeg) ![<style-vkuoo1> 1](https://huggingface.co/sd-concepts-library/vkuoo1/resolve/main/concept_images/4.jpeg) ![<style-vkuoo1> 2](https://huggingface.co/sd-concepts-library/vkuoo1/resolve/main/concept_images/1.jpeg) ![<style-vkuoo1> 3](https://huggingface.co/sd-concepts-library/vkuoo1/resolve/main/concept_images/2.jpeg) ![<style-vkuoo1> 4](https://huggingface.co/sd-concepts-library/vkuoo1/resolve/main/concept_images/3.jpeg) ![<style-vkuoo1> 5](https://huggingface.co/sd-concepts-library/vkuoo1/resolve/main/concept_images/0.jpeg)
sd-concepts-library/2814-roth
sd-concepts-library
2022-09-07T23:39:06Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-07T23:39:00Z
--- license: mit --- ### 2814 Roth on Stable Diffusion This is the `<2814Roth>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<2814Roth> 0](https://huggingface.co/sd-concepts-library/2814-roth/resolve/main/concept_images/4.jpeg) ![<2814Roth> 1](https://huggingface.co/sd-concepts-library/2814-roth/resolve/main/concept_images/1.jpeg) ![<2814Roth> 2](https://huggingface.co/sd-concepts-library/2814-roth/resolve/main/concept_images/2.jpeg) ![<2814Roth> 3](https://huggingface.co/sd-concepts-library/2814-roth/resolve/main/concept_images/3.jpeg) ![<2814Roth> 4](https://huggingface.co/sd-concepts-library/2814-roth/resolve/main/concept_images/0.jpeg)
slarionne/q-FrozenLake-v1-4x4-noSlippery_2
slarionne
2022-09-07T23:06:29Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-07T23:06:21Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery_2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="slarionne/q-FrozenLake-v1-4x4-noSlippery_2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
sd-concepts-library/covid-19-rapid-test
sd-concepts-library
2022-09-07T22:13:27Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-07T22:13:20Z
--- license: mit --- ### covid-19-rapid-test on Stable Diffusion This is the `<covid-test>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<covid-test> 0](https://huggingface.co/sd-concepts-library/covid-19-rapid-test/resolve/main/concept_images/4.jpeg) ![<covid-test> 1](https://huggingface.co/sd-concepts-library/covid-19-rapid-test/resolve/main/concept_images/1.jpeg) ![<covid-test> 2](https://huggingface.co/sd-concepts-library/covid-19-rapid-test/resolve/main/concept_images/2.jpeg) ![<covid-test> 3](https://huggingface.co/sd-concepts-library/covid-19-rapid-test/resolve/main/concept_images/3.jpeg) ![<covid-test> 4](https://huggingface.co/sd-concepts-library/covid-19-rapid-test/resolve/main/concept_images/0.jpeg)
slarionne/q-Taxi-v3
slarionne
2022-09-07T22:10:05Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-07T22:10:00Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="slarionne/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
sd-concepts-library/cubex
sd-concepts-library
2022-09-07T21:43:50Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-09-07T21:43:45Z
--- license: mit --- ### cubex on Stable Diffusion This is the `<cube>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<cube> 0](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/299-2991025_justin-maller-encrusted.jpg) ![<cube> 1](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/BS3Yy9G.jpeg) ![<cube> 2](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/GsHUQ5.jpg) ![<cube> 3](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/1135144.jpg) ![<cube> 4](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/time_160391014612_id_1603955164_labels_#7#.jpeg) ![<cube> 5](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/oZbiNs-TvrU4-ZDc0syUBR34jCMbTTenBWJJqbi201Q.jpg) ![<cube> 6](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/justin-maller-encrusted-art.jpg) ![<cube> 7](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/zaCOf6.jpg) ![<cube> 8](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/WP_Encrusted_XIII-2560x1440_00000.jpg) ![<cube> 9](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/WP_Encrusted_XV-2560x1440_00000.jpg) ![<cube> 10](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/330672.jpg) ![<cube> 11](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/5d4935b70173a144198f2258c714280ffb4f8435) ![<cube> 12](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/2f934571c09a1dab6d0da37042469871dcc9802e) ![<cube> 13](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/time_160390980117_id_1603917296_labels_#7#.jpeg) ![<cube> 14](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/wp1977734.jpg) ![<cube> 15](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/295445-Sepik.jpg) ![<cube> 16](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/Justin_Maller_artwork_abstract_digital_digital_art_Facets_geometric_figures-1683409.jpg!d) ![<cube> 17](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/loyYr6.jpg) ![<cube> 18](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/time_160390988955_id_1603927820_labels_#7#.jpeg) ![<cube> 19](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/time_160391057459_id_1603982701_labels_#7#.jpeg) ![<cube> 20](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/54c6bdb3e9d72935b58b0254fd82b9fdbc8c797b) ![<cube> 21](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/time_160391716409_id_1603919258_labels_#7#.jpeg) ![<cube> 22](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/wp1977727.jpg) ![<cube> 23](https://huggingface.co/sd-concepts-library/cubex/resolve/main/concept_images/330683.jpg)
sd-concepts-library/schloss-mosigkau
sd-concepts-library
2022-09-07T21:42:56Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-07T21:42:50Z
--- license: mit --- ### schloss mosigkau on Stable Diffusion This is the `<ralph>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<ralph> 0](https://huggingface.co/sd-concepts-library/schloss-mosigkau/resolve/main/concept_images/0.jpeg) ![<ralph> 1](https://huggingface.co/sd-concepts-library/schloss-mosigkau/resolve/main/concept_images/3.jpeg) ![<ralph> 2](https://huggingface.co/sd-concepts-library/schloss-mosigkau/resolve/main/concept_images/4.jpeg) ![<ralph> 3](https://huggingface.co/sd-concepts-library/schloss-mosigkau/resolve/main/concept_images/1.jpeg) ![<ralph> 4](https://huggingface.co/sd-concepts-library/schloss-mosigkau/resolve/main/concept_images/2.jpeg)
rewsiffer/distilroberta-base-finetuned-wikitext2
rewsiffer
2022-09-07T21:25:31Z
70
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-07T21:17:32Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: rewsiffer/distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # rewsiffer/distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.8968 - Validation Loss: 1.6676 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.8968 | 1.6676 | 0 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
talhaa/distilbert-base-uncased-masking-lang
talhaa
2022-09-07T20:58:20Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-07T20:54:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-masking-lang results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-masking-lang This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 2.2594 | | No log | 2.0 | 2 | 0.7379 | | No log | 3.0 | 3 | 2.0914 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
3ebdola/Dialectal-Arabic-XLM-R-Base
3ebdola
2022-09-07T20:12:53Z
1,413
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "Dialectal Arabic", "Arabic", "sequence labeling", "Named entity recognition", "Part-of-speech tagging", "Zero-shot transfer learning", "bert", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-05T19:43:55Z
--- language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - no - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh tags: - Dialectal Arabic - Arabic - sequence labeling - Named entity recognition - Part-of-speech tagging - Zero-shot transfer learning - bert license: "mit" --- # Dialectal Arabic XLM-R Base This is a repo of the language model used for "AdaSL: An Unsupervised Domain Adaptation framework for Arabic multi-dialectal Sequence Labeling". The state-of-the-art method for sequence labeling on multi-dialect Arabic. ### About the Dialectal-Arabic-XLM-R-Base model This model is an trained as a further pre-trained of XLM-RoBERTa base using the Masked-language modeling on a dialectal Arabic corpus. ### About the Dialectal-Arabic-XLM-R-Base model training corpora We have built a 5 million Tweets corpus from Twitter. The crawled tweets cover the dialects of the four Arabic world regions (EGY, GLF, LEV, and MAG regions), as well as MSA. The collected corpus consists of one million (1M) tweets per Arabic variant. We did not perform any text pre-processing on the tweets, except by removing tweets that have a small length (tweets containing less than four words). ### Usage The model weights can be loaded using `transformers` library by HuggingFace. ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("3ebdola/Dialectal-Arabic-XLM-R-Base") model = AutoModel.from_pretrained("3ebdola/Dialectal-Arabic-XLM-R-Base") text = "هذا مثال لنص باللغة العربية, يمكنك استعمال اللهجات العربية أيضا" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Citation ``` @article{ELMEKKI2022102964, title = {AdaSL: An Unsupervised Domain Adaptation framework for Arabic multi-dialectal Sequence Labeling}, journal = {Information Processing & Management}, volume = {59}, number = {4}, pages = {102964}, year = {2022}, issn = {0306-4573}, doi = {https://doi.org/10.1016/j.ipm.2022.102964}, url = {https://www.sciencedirect.com/science/article/pii/S0306457322000814}, author = {Abdellah {El Mekki} and Abdelkader {El Mahdaouy} and Ismail Berrada and Ahmed Khoumsi}, keywords = {Dialectal Arabic, Arabic natural language processing, Domain adaptation, Multi-dialectal sequence labeling, Named entity recognition, Part-of-speech tagging, Zero-shot transfer learning} } ```
jenniferjane/Bert_Classifier
jenniferjane
2022-09-07T20:03:28Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:yelp_review_full", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-07T14:39:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: Bert_Classifier results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: train args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.634 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bert_Classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.0546 - Accuracy: 0.634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9528 | 1.0 | 2500 | 0.9097 | 0.5985 | | 0.7607 | 2.0 | 5000 | 0.8969 | 0.627 | | 0.5039 | 3.0 | 7500 | 1.0546 | 0.634 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/mafalda-character
sd-concepts-library
2022-09-07T20:02:26Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-07T20:02:12Z
--- license: mit --- ### mafalda character on Stable Diffusion This is the `<mafalda-quino>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<mafalda-quino> 0](https://huggingface.co/sd-concepts-library/mafalda-character/resolve/main/concept_images/0.jpeg) ![<mafalda-quino> 1](https://huggingface.co/sd-concepts-library/mafalda-character/resolve/main/concept_images/3.jpeg) ![<mafalda-quino> 2](https://huggingface.co/sd-concepts-library/mafalda-character/resolve/main/concept_images/1.jpeg) ![<mafalda-quino> 3](https://huggingface.co/sd-concepts-library/mafalda-character/resolve/main/concept_images/2.jpeg)
sd-concepts-library/ti-junglepunk-v0
sd-concepts-library
2022-09-07T19:56:19Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-07T19:56:13Z
--- license: mit --- ### TI_junglepunk_v0 on Stable Diffusion This is the `<jungle-punk>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<jungle-punk> 0](https://huggingface.co/sd-concepts-library/ti-junglepunk-v0/resolve/main/concept_images/4.jpeg) ![<jungle-punk> 1](https://huggingface.co/sd-concepts-library/ti-junglepunk-v0/resolve/main/concept_images/1.jpeg) ![<jungle-punk> 2](https://huggingface.co/sd-concepts-library/ti-junglepunk-v0/resolve/main/concept_images/2.jpeg) ![<jungle-punk> 3](https://huggingface.co/sd-concepts-library/ti-junglepunk-v0/resolve/main/concept_images/3.jpeg) ![<jungle-punk> 4](https://huggingface.co/sd-concepts-library/ti-junglepunk-v0/resolve/main/concept_images/0.jpeg)
talhaa/distilbert-base-uncased-finetuned-imdb
talhaa
2022-09-07T19:52:38Z
162
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-07T18:50:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 3.3374 | | No log | 2.0 | 2 | 3.8206 | | No log | 3.0 | 3 | 2.8370 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
VanessaSchenkel/padrao-unicamp-vanessa-finetuned-handscrafted
VanessaSchenkel
2022-09-07T19:16:28Z
69
0
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-07T19:13:14Z
--- tags: - generated_from_keras_callback model-index: - name: VanessaSchenkel/padrao-unicamp-vanessa-finetuned-handscrafted results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # VanessaSchenkel/padrao-unicamp-vanessa-finetuned-handscrafted This model is a fine-tuned version of [VanessaSchenkel/padrao-unicamp-finetuned-news_commentary](https://huggingface.co/VanessaSchenkel/padrao-unicamp-finetuned-news_commentary) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8875 - Validation Loss: 0.5701 - Train Bleu: 70.9943 - Train Gen Len: 8.8125 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Bleu | Train Gen Len | Epoch | |:----------:|:---------------:|:----------:|:-------------:|:-----:| | 0.8875 | 0.5701 | 70.9943 | 8.8125 | 0 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
Imene/vit-base-patch16-224-in21k-Wr
Imene
2022-09-07T18:16:20Z
82
0
transformers
[ "transformers", "tf", "tensorboard", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-07T16:34:58Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Imene/vit-base-patch16-224-in21k-Wr results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-224-in21k-Wr This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3104 - Train Accuracy: 0.9956 - Train Top-3-accuracy: 0.9981 - Validation Loss: 1.6041 - Validation Accuracy: 0.5770 - Validation Top-3-accuracy: 0.8035 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 1500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 3.8300 | 0.0583 | 0.1381 | 3.6801 | 0.0951 | 0.2203 | 0 | | 3.2915 | 0.2418 | 0.4557 | 3.0277 | 0.3004 | 0.5507 | 1 | | 2.6535 | 0.4438 | 0.7106 | 2.5932 | 0.3780 | 0.6546 | 2 | | 2.0541 | 0.6308 | 0.8575 | 2.2998 | 0.4556 | 0.6871 | 3 | | 1.4622 | 0.7924 | 0.9496 | 2.0054 | 0.5056 | 0.7234 | 4 | | 0.9098 | 0.9201 | 0.9887 | 1.8079 | 0.5695 | 0.7785 | 5 | | 0.5220 | 0.9821 | 0.9969 | 1.6444 | 0.5845 | 0.7922 | 6 | | 0.3104 | 0.9956 | 0.9981 | 1.6041 | 0.5770 | 0.8035 | 7 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
PrimeQA/listqa_nq-task-xlm-roberta-large
PrimeQA
2022-09-07T17:43:27Z
39
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "MRC", "Natural Questions List", "xlm-roberta-large", "multilingual", "arxiv:1911.02116", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-09-07T14:45:31Z
--- license: apache-2.0 tags: - MRC - Natural Questions List - xlm-roberta-large language: - multilingual --- # Model description An XLM-RoBERTa reading comprehension model for List Question Answering using a fine-tuned [xlm-roberta-large](https://huggingface.co/xlm-roberta-large/) model that is further fine-tuned on the list questions in the [Natural Questions](https://huggingface.co/datasets/natural_questions) dataset. ## Intended uses & limitations You can use the raw model for the reading comprehension task. Biases associated with the pre-existing language model, xlm-roberta-large, that we used may be present in our fine-tuned model, listqa_nq-task-xlm-roberta-large. ## Usage You can use this model directly with the [PrimeQA](https://github.com/primeqa/primeqa) pipeline for reading comprehension [listqa.ipynb](https://github.com/primeqa/primeqa/blob/main/notebooks/mrc/listqa.ipynb). ### BibTeX entry and citation info ```bibtex @article{kwiatkowski-etal-2019-natural, title = "Natural Questions: A Benchmark for Question Answering Research", author = "Kwiatkowski, Tom and Palomaki, Jennimaria and Redfield, Olivia and Collins, Michael and Parikh, Ankur and Alberti, Chris and Epstein, Danielle and Polosukhin, Illia and Devlin, Jacob and Lee, Kenton and Toutanova, Kristina and Jones, Llion and Kelcey, Matthew and Chang, Ming-Wei and Dai, Andrew M. and Uszkoreit, Jakob and Le, Quoc and Petrov, Slav", journal = "Transactions of the Association for Computational Linguistics", volume = "7", year = "2019", address = "Cambridge, MA", publisher = "MIT Press", url = "https://aclanthology.org/Q19-1026", doi = "10.1162/tacl_a_00276", pages = "452--466", } ``` ```bibtex @article{DBLP:journals/corr/abs-1911-02116, author = {Alexis Conneau and Kartikay Khandelwal and Naman Goyal and Vishrav Chaudhary and Guillaume Wenzek and Francisco Guzm{\'{a}}n and Edouard Grave and Myle Ott and Luke Zettlemoyer and Veselin Stoyanov}, title = {Unsupervised Cross-lingual Representation Learning at Scale}, journal = {CoRR}, volume = {abs/1911.02116}, year = {2019}, url = {http://arxiv.org/abs/1911.02116}, eprinttype = {arXiv}, eprint = {1911.02116}, timestamp = {Mon, 11 Nov 2019 18:38:09 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1911-02116.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
clementchadebec/reproduced_ciwae
clementchadebec
2022-09-07T15:34:02Z
0
0
pythae
[ "pythae", "reproducibility", "en", "license:apache-2.0", "region:us" ]
null
2022-09-07T15:22:26Z
--- language: en tags: - pythae - reproducibility license: apache-2.0 --- This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from pythae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="clementchadebec/reproduced_ciwae") ``` ## Reproducibility This trained model reproduces the results of the official implementation of [1]. | Model | Dataset | Metric | Obtained value | Reference value | |:---:|:---:|:---:|:---:|:---:| | CIWAE (beta=0.05) | Dyn. Binarized MNIST | NLL (5000 IS) | 84.74 (0.01) | 84.57 (0.09) | [1] Rainforth, Tom, et al. "Tighter variational bounds are not necessarily better." International Conference on Machine Learning. PMLR, 2018.
PrimeQA/mt5-base-tydi-question-generator
PrimeQA
2022-09-07T15:01:15Z
121
3
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-29T09:46:08Z
--- license: apache-2.0 --- # Model description This is an [mt5-base](https://huggingface.co/google/mt5-base) model, finetuned to generate questions using [TyDi QA](https://huggingface.co/datasets/tydiqa) dataset. It was trained to take the context and answer as input to generate questions. # Overview *Language model*: mT5-base \ *Language*: Arabic, Bengali, English, Finnish, Indonesian, Korean, Russian, Swahili, Telugu \ *Task*: Question Generation \ *Data*: TyDi QA # Intented use and limitations One can use this model to generate questions. Biases associated with pre-training of mT5 and TyDiQA dataset may be present. ## Usage One can use this model directly in the [PrimeQA](https://github.com/primeqa/primeqa) framework as in this example [notebook](https://github.com/primeqa/primeqa/blob/main/notebooks/qg/tableqg_inference.ipynb). Or ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("PrimeQA/mt5-base-tydi-question-generator") model = AutoModelForSeq2SeqLM.from_pretrained("PrimeQA/mt5-base-tydi-question-generator") def get_question(answer, context, max_length=64): input_text = answer +" <<sep>> " + context features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=max_length) return tokenizer.decode(output[0]) context = "শচীন টেন্ডুলকারকে ক্রিকেট ইতিহাসের অন্যতম সেরা ব্যাটসম্যান হিসেবে গণ্য করা হয়।" answer = "শচীন টেন্ডুলকার" get_question(answer, context) # output: ক্রিকেট ইতিহাসের অন্যতম সেরা ব্যাটসম্যান কে? ``` ## Citation ```bibtex @inproceedings{xue2021mt5, title={mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer}, author={Xue, Linting and Constant, Noah and Roberts, Adam and Kale, Mihir and Al-Rfou, Rami and Siddhant, Aditya and Barua, Aditya and Raffel, Colin}, booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, pages={483--498}, year={2021} } ```
Tahahah/ddpm-butterflies-128
Tahahah
2022-09-07T13:31:44Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-07T02:25:45Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: /content/drive/Shareddrives/artGAN S2 2022/sugimori-artwork metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `/content/drive/Shareddrives/artGAN S2 2022/sugimori-artwork` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Tahahah/ddpm-butterflies-128/tensorboard?#scalars)
RayK/distilbert-base-uncased-finetuned-cola
RayK
2022-09-07T13:13:31Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-04T00:05:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5410039366652665 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6949 - Matthews Correlation: 0.5410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5241 | 1.0 | 535 | 0.5322 | 0.3973 | | 0.356 | 2.0 | 1070 | 0.5199 | 0.4836 | | 0.2402 | 3.0 | 1605 | 0.6086 | 0.5238 | | 0.166 | 4.0 | 2140 | 0.6949 | 0.5410 | | 0.134 | 5.0 | 2675 | 0.8254 | 0.5253 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.12.1
anniepyim/xlm-roberta-base-finetuned-panx-de
anniepyim
2022-09-07T13:03:30Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-07T12:39:42Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
liat-nakayama/japanese-roberta-base-20201221
liat-nakayama
2022-09-07T13:03:15Z
191
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "license:cc-by-sa-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-07T12:45:36Z
--- license: cc-by-sa-3.0 --- 2020/12/21時点のWikipediaを用いて事前学習した日本語RoBERTaです。 janome(MeCabのPythonラッパー)とBPEを使用してトークナイズしています。
hhffxx/distilbert-base-uncased-finetuned-clinc
hhffxx
2022-09-07T08:21:36Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-07T02:40:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: train args: plus metrics: - name: Accuracy type: accuracy value: 0.9503225806451613 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2339 - Accuracy: 0.9503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.2073 | 1.0 | 1271 | 1.3840 | 0.8542 | | 0.7452 | 2.0 | 2542 | 0.4053 | 0.9316 | | 0.1916 | 3.0 | 3813 | 0.2580 | 0.9452 | | 0.0768 | 4.0 | 5084 | 0.2371 | 0.9477 | | 0.0455 | 5.0 | 6355 | 0.2339 | 0.9503 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Vasanth/bert-base-uncased-finetuned-emotion
Vasanth
2022-09-07T06:19:01Z
106
2
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-07T05:27:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9454375 - name: F1 type: f1 value: 0.9458448428504193 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-emotion This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1476 - Accuracy: 0.9454 - F1: 0.9458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8907 | 1.0 | 250 | 0.2625 | 0.9184 | 0.9157 | | 0.2315 | 2.0 | 500 | 0.1476 | 0.9454 | 0.9458 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
mesolitica/roberta-base-bahasa-cased
mesolitica
2022-09-07T06:12:59Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "ms", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-07T05:54:15Z
--- language: ms --- # roberta-base-bahasa-cased Pretrained RoBERTa base language model for Malay. ## Pretraining Corpus `roberta-base-bahasa-cased` model was pretrained on ~400 miliion words. Below is list of data we trained on, 1. IIUM confession, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean 2. local Instagram, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean 3. local news, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean 4. local parliament hansards, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean 5. local research papers related to `kebudayaan`, `keagaaman` and `etnik`, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean 6. local twitter, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean 7. Malay Wattpad, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean 8. Malay Wikipedia, https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean ## Pretraining details - All steps can reproduce from https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/roberta. ## Example using AutoModelWithLMHead ```python from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline model = AutoModelForMaskedLM.from_pretrained('mesolitica/roberta-base-bahasa-cased') tokenizer = AutoTokenizer.from_pretrained( 'mesolitica/roberta-base-bahasa-cased', do_lower_case = False, ) fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer) fill_mask('Permohonan Najib, anak untuk dengar isu perlembagaan <mask> .') ``` Output is, ```json [{'score': 0.3368818759918213, 'token': 746, 'token_str': ' negara', 'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan negara.'}, {'score': 0.09646568447351456, 'token': 598, 'token_str': ' Malaysia', 'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan Malaysia.'}, {'score': 0.029483484104275703, 'token': 3265, 'token_str': ' UMNO', 'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan UMNO.'}, {'score': 0.026470622047781944, 'token': 2562, 'token_str': ' parti', 'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan parti.'}, {'score': 0.023237623274326324, 'token': 391, 'token_str': ' ini', 'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan ini.'}] ```
neuralspace/autotrain-citizen_nlu_hindi-1370952776
neuralspace
2022-09-07T05:48:02Z
102
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "hi", "dataset:neuralspace/autotrain-data-citizen_nlu_hindi", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-07T05:39:47Z
--- tags: - autotrain - text-classification language: - hi widget: - text: "I love AutoTrain 🤗" datasets: - neuralspace/autotrain-data-citizen_nlu_hindi co2_eq_emissions: emissions: 0.06283545088764929 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1370952776 - CO2 Emissions (in grams): 0.0628 ## Validation Metrics - Loss: 0.101 - Accuracy: 0.974 - Macro F1: 0.974 - Micro F1: 0.974 - Weighted F1: 0.974 - Macro Precision: 0.975 - Micro Precision: 0.974 - Weighted Precision: 0.975 - Macro Recall: 0.973 - Micro Recall: 0.974 - Weighted Recall: 0.974 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/neuralspace/autotrain-citizen_nlu_hindi-1370952776 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("neuralspace/autotrain-citizen_nlu_hindi-1370952776", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("neuralspace/autotrain-citizen_nlu_hindi-1370952776", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
neuralspace/autotrain-citizen_nlu_bn-1370652766
neuralspace
2022-09-07T05:42:31Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "bn", "dataset:neuralspace/autotrain-data-citizen_nlu_bn", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-07T05:33:04Z
--- tags: - autotrain - text-classification language: - bn widget: - text: "I love AutoTrain 🤗" datasets: - neuralspace/autotrain-data-citizen_nlu_bn co2_eq_emissions: emissions: 0.08431503532658222 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1370652766 - CO2 Emissions (in grams): 0.0843 ## Validation Metrics - Loss: 0.117 - Accuracy: 0.971 - Macro F1: 0.971 - Micro F1: 0.971 - Weighted F1: 0.971 - Macro Precision: 0.973 - Micro Precision: 0.971 - Weighted Precision: 0.972 - Macro Recall: 0.970 - Micro Recall: 0.971 - Weighted Recall: 0.971 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/neuralspace/autotrain-citizen_nlu_bn-1370652766 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("neuralspace/autotrain-citizen_nlu_bn-1370652766", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("neuralspace/autotrain-citizen_nlu_bn-1370652766", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
nateraw/test-update-metadata-issue
nateraw
2022-09-07T02:40:04Z
0
0
null
[ "en", "license:mit", "region:us" ]
null
2022-09-07T02:28:32Z
--- language: en license: mit ---
VietAI/vit5-large-vietnews-summarization
VietAI
2022-09-07T02:28:54Z
654
12
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "summarization", "vi", "dataset:cc100", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-05-12T10:09:43Z
--- language: vi datasets: - cc100 tags: - summarization license: mit widget: - text: "vietnews: VietAI là tổ chức phi lợi nhuận với sứ mệnh ươm mầm tài năng về trí tuệ nhân tạo và xây dựng một cộng đồng các chuyên gia trong lĩnh vực trí tuệ nhân tạo đẳng cấp quốc tế tại Việt Nam." --- # ViT5-large Finetuned on `vietnews` Abstractive Summarization State-of-the-art pretrained Transformer-based encoder-decoder model for Vietnamese. [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/vit5-pretrained-text-to-text-transformer-for/abstractive-text-summarization-on-vietnews)](https://paperswithcode.com/sota/abstractive-text-summarization-on-vietnews?p=vit5-pretrained-text-to-text-transformer-for) ## How to use For more details, do check out [our Github repo](https://github.com/vietai/ViT5) and [eval script](https://github.com/vietai/ViT5/blob/main/eval/Eval_vietnews_sum.ipynb). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ​ tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-large-vietnews-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-large-vietnews-summarization") model.cuda() ​ sentence = "VietAI là tổ chức phi lợi nhuận với sứ mệnh ươm mầm tài năng về trí tuệ nhân tạo và xây dựng một cộng đồng các chuyên gia trong lĩnh vực trí tuệ nhân tạo đẳng cấp quốc tế tại Việt Nam." text = "vietnews: " + sentence + " </s>" encoding = tokenizer(text, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, early_stopping=True ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(line) ``` ## Citation ``` @inproceedings{phan-etal-2022-vit5, title = "{V}i{T}5: Pretrained Text-to-Text Transformer for {V}ietnamese Language Generation", author = "Phan, Long and Tran, Hieu and Nguyen, Hieu and Trinh, Trieu H.", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop", year = "2022", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-srw.18", pages = "136--142", } ```
slarionne/q-FrozenLake-v1-4x4-noSlippery
slarionne
2022-09-07T02:11:10Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-07T02:11:04Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="slarionne/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Imene/vit-base-patch16-384-wi5
Imene
2022-09-07T01:30:24Z
79
0
transformers
[ "transformers", "tf", "tensorboard", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-06T19:10:41Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Imene/vit-base-patch16-384-wi5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-384-wi5 This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4102 - Train Accuracy: 0.9755 - Train Top-3-accuracy: 0.9960 - Validation Loss: 1.9021 - Validation Accuracy: 0.4912 - Validation Top-3-accuracy: 0.7302 - Epoch: 8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3180, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 4.2945 | 0.0568 | 0.1328 | 3.6233 | 0.1387 | 0.2916 | 0 | | 3.1234 | 0.2437 | 0.4585 | 2.8657 | 0.3041 | 0.5330 | 1 | | 2.4383 | 0.4182 | 0.6638 | 2.5499 | 0.3534 | 0.6048 | 2 | | 1.9258 | 0.5698 | 0.7913 | 2.3046 | 0.4202 | 0.6583 | 3 | | 1.4919 | 0.6963 | 0.8758 | 2.1349 | 0.4553 | 0.6784 | 4 | | 1.1127 | 0.7992 | 0.9395 | 2.0878 | 0.4595 | 0.6809 | 5 | | 0.8092 | 0.8889 | 0.9720 | 1.9460 | 0.4962 | 0.7210 | 6 | | 0.5794 | 0.9419 | 0.9883 | 1.9478 | 0.4979 | 0.7201 | 7 | | 0.4102 | 0.9755 | 0.9960 | 1.9021 | 0.4912 | 0.7302 | 8 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
theojolliffe/t5-model1-feedback
theojolliffe
2022-09-06T22:02:05Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-06T21:47:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-model1-feedback results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-model1-feedback This model is a fine-tuned version of [theojolliffe/T5-model-1-feedback-e1](https://huggingface.co/theojolliffe/T5-model-1-feedback-e1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 345 | 0.8173 | 52.0119 | 27.6158 | 44.7895 | 44.8584 | 16.5455 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
diegopetrola/vit-for-kaggle-mayo-clinic
diegopetrola
2022-09-06T20:12:36Z
226
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-14T01:01:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-for-kaggle-mayo-clinic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-for-kaggle-mayo-clinic This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5538 - Accuracy: 0.7616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 0.5944 | 0.7483 | | No log | 2.0 | 20 | 0.5640 | 0.7483 | | No log | 3.0 | 30 | 0.5582 | 0.7483 | | No log | 4.0 | 40 | 0.5585 | 0.7483 | | No log | 5.0 | 50 | 0.5598 | 0.7483 | | No log | 6.0 | 60 | 0.5484 | 0.7483 | | No log | 7.0 | 70 | 0.5524 | 0.7417 | | No log | 8.0 | 80 | 0.5538 | 0.7616 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Azizjah/autotrain-arabic_cuisine-1367052683
Azizjah
2022-09-06T15:18:01Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "ar", "dataset:Azizjah/autotrain-data-arabic_cuisine", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-06T15:14:52Z
--- tags: - autotrain - text-classification language: - ar widget: - text: "I love AutoTrain 🤗" datasets: - Azizjah/autotrain-data-arabic_cuisine co2_eq_emissions: emissions: 0.02430968865158923 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1367052683 - CO2 Emissions (in grams): 0.0243 ## Validation Metrics - Loss: 2.302 - Accuracy: 0.439 - Macro F1: 0.133 - Micro F1: 0.439 - Weighted F1: 0.391 - Macro Precision: 0.167 - Micro Precision: 0.439 - Weighted Precision: 0.378 - Macro Recall: 0.140 - Micro Recall: 0.439 - Weighted Recall: 0.439 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Azizjah/autotrain-arabic_cuisine-1367052683 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Azizjah/autotrain-arabic_cuisine-1367052683", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Azizjah/autotrain-arabic_cuisine-1367052683", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
gaeunseo/bert-base-finetuned-imdb
gaeunseo
2022-09-06T13:22:45Z
178
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-05T07:27:09Z
--- tags: - generated_from_trainer model-index: - name: bert-base-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-imdb This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9763 | 1.0 | 16 | 1.9655 | | 2.0231 | 2.0 | 32 | 1.9590 | | 1.9451 | 3.0 | 48 | 1.8852 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Anurag0961/cards-demo-model3
Anurag0961
2022-09-06T12:33:17Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-06T11:20:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: cards-demo-model3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cards-demo-model3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9271 - F1: 0.7505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.301 | 1.0 | 41 | 0.9127 | 0.7477 | | 0.318 | 2.0 | 82 | 0.9173 | 0.7574 | | 0.2757 | 3.0 | 123 | 0.9271 | 0.7505 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
burakyldrm/wav2vec2-burak-v2.1
burakyldrm
2022-09-06T12:33:17Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-06T10:50:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-burak-v2.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-burak-v2.1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5006 - Wer: 0.4605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.763 | 7.02 | 400 | 0.7108 | 0.7190 | | 0.299 | 14.03 | 800 | 0.5404 | 0.5564 | | 0.1285 | 21.05 | 1200 | 0.5736 | 0.5050 | | 0.0741 | 28.07 | 1600 | 0.5006 | 0.4605 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
mrm8488/electricidad-small-finetuned-sst2-es
mrm8488
2022-09-06T12:08:55Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "dataset:sst2-es-mt", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-03T15:37:30Z
--- tags: - generated_from_trainer datasets: - sst2-es-mt metrics: - accuracy - f1 model-index: - name: electricidad-small-finetuned-sst2-es results: - task: name: Text Classification type: text-classification dataset: name: sst2-es-mt type: sst2-es-mt config: sst2 split: train args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8795871559633027 - name: F1 type: f1 value: 0.88 widget: - text: "La verdad es que no tengo una opinión sólida al respecto." - text: "Me parece muy interesante poder colaborar en este proyecto." - text: "El gobierno actual no lo está haciendo mal, pero debe mejorar." - text: "Esperaba mucho más por el precio que he pagado, la verdad..." - text: "El proyecto BERTIN tiene cosas interesantes, pero tienen que trabajar más duro si quieren llegar lejos." --- # Electricidad (small) fine-tuned on sst2-es-mt for Spanish Sentiment Analysis 👍👎 This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on the **sst2-es-mt** [dataset](https://huggingface.co/datasets/sst2-es-mt). A dataset created using Neural Machine Translation on original [SST2](https://huggingface.co/datasets//sst2) (English) dataset. It achieves the following results on the evaluation set: - Accuracy: 0.879 - F1: 0.88 ## Usage ```py from transformers import pipeline model_ckpt = "mrm8488/electricidad-small-finetuned-sst2-es" classifier = pipeline("sentiment-analysis", model=model_ckpt) classifier("Here your text in Spanish!") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.676560994488171e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 30 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3272 | 1.0 | 2105 | 0.3418 | 0.8567 | 0.8489 | | 0.2394 | 2.0 | 4210 | 0.3391 | 0.8796 | 0.88 | | 0.192 | 3.0 | 6315 | 0.3644 | 0.8761 | 0.8770 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Kushala/wav2vec2-large-xls-r-300m-kushala_wave2vec_trails
Kushala
2022-09-06T11:39:04Z
73
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-04T17:26:00Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-kushala_wave2vec_trails results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-kushala_wave2vec_trails This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cpu - Datasets 1.18.3 - Tokenizers 0.12.1
abdouaziiz/wav2vec2-xls-r-300m-wolof-lm
abdouaziiz
2022-09-06T10:35:32Z
105
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "asr", "wolof", "wo", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: mit tags: - automatic-speech-recognition - asr - pytorch - wav2vec2 - wolof - wo model-index: - name: wav2vec2-xls-r-300m-wolof-lm results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test WER type: wer value: 21.25 - name: Validation Loss type: Loss value: 0.36 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-wolof-lm Wolof is a language spoken in Senegal and neighbouring countries, this language is not too well represented, there are few resources in the field of Text en speech In this sense we aim to bring our contribution to this, it is in this sense that enters this repo. This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) ,with a language model that is fine-tuned with the largest available speech dataset of the [ALFFA_PUBLIC](https://github.com/besacier/ALFFA_PUBLIC/tree/master/ASR/WOLOF) It achieves the following results on the evaluation set: - Loss: 0.367826 - Wer: 0.212565 ## Model description The duration of the training data is 16.8 hours, which we have divided into 10,000 audio files for the training and 3,339 for the test. ## Training and evaluation data We eval the model at every 1500 step , and log it . and save at every 33340 step ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-4 - train_batch_size: 3 - eval_batch_size : 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10.0 ### Training results | Step | Training Loss | Validation Loss | Wer | |:-------:|:-------------:|:---------------:|:------:| | 1500 | 2.854200 |0.642243 |0.543964 | | 3000 | 0.599200 | 0.468138 | 0.429549| | 4500 | 0.468300 | 0.433436 | 0.405644| | 6000 | 0.427000 | 0.384873 | 0.344150| | 7500 | 0.377000 | 0.374003 | 0.323892| | 9000 | 0.337000 | 0.363674 | 0.306189| | 10500 | 0.302400 | 0.349884 |0 .283908 | | 12000 | 0.264100 | 0.344104 |0.277120| | 13500 |0 .254000 |0.341820 |0.271316| | 15000 | 0.208400| 0.326502 | 0.260695| | 16500 | 0.203500| 0.326209 | 0.250313| | 18000 |0.159800 |0.323539 | 0.239851| | 19500 | 0.158200 | 0.310694 | 0.230028| | 21000 | 0.132800 | 0.338318 | 0.229283| | 22500 | 0.112800 | 0.336765 | 0.224145| | 24000 | 0.103600 | 0.350208 | 0.227073 | | 25500 | 0.091400 | 0.353609 | 0.221589 | | 27000 | 0.084400 | 0.367826 | 0.212565 | ## Usage The model can be used directly as follows: ```python import librosa import warnings from transformers import AutoProcessor, AutoModelForCTC from datasets import Dataset, DatasetDict from datasets import load_metric wer_metric = load_metric("wer") wolof = pd.read_csv('Test.csv') # wolof contains the columns of file , and transcription wolof = DatasetDict({'test': Dataset.from_pandas(wolof)}) chars_to_ignore_regex = '[\"\?\.\!\-\;\:\(\)\,]' def remove_special_characters(batch): batch["transcription"] = re.sub(chars_to_ignore_regex, '', batch["transcription"]).lower() + " " return batch wolof = wolof.map(remove_special_characters) processor = AutoProcessor.from_pretrained("abdouaziiz/wav2vec2-xls-r-300m-wolof-lm") model = AutoModelForCTC.from_pretrained("abdouaziiz/wav2vec2-xls-r-300m-wolof-lm") warnings.filterwarnings("ignore") def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["file"], sr = 16000) batch["speech"] = speech_array.astype('float16') batch["sampling_rate"] = sampling_rate batch["target_text"] = batch["transcription"] return batch wolof = wolof.map(speech_file_to_array_fn, remove_columns=wolof.column_names["test"], num_proc=1) def map_to_result(batch): model.to("cuda") input_values = processor( batch["speech"], sampling_rate=batch["sampling_rate"], return_tensors="pt" ).input_values.to("cuda") with torch.no_grad(): logits = model(input_values).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_str"] = processor.batch_decode(pred_ids)[0] return batch results = wolof["test"].map(map_to_result) print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["transcription"]))) ``` ## PS: The results obtained can be improved by using : - Wav2vec2 + language model . - Build a Spellcheker from the text of the data - Sentence Edit Distance
SiraH/distilbert-base-uncased-finetuned-cola
SiraH
2022-09-06T09:55:28Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-25T05:50:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5442538936990396 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8442 - Matthews Correlation: 0.5443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5267 | 1.0 | 535 | 0.5646 | 0.3655 | | 0.3477 | 2.0 | 1070 | 0.5291 | 0.4898 | | 0.2324 | 3.0 | 1605 | 0.5629 | 0.5410 | | 0.1774 | 4.0 | 2140 | 0.7630 | 0.5370 | | 0.1248 | 5.0 | 2675 | 0.8442 | 0.5443 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
nithiroj/testpyramidsrnd
nithiroj
2022-09-06T09:09:04Z
16
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-09-06T09:08:56Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: nithiroj/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Stremie/roberta-base-clickbait
Stremie
2022-09-06T08:45:05Z
120
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "Tweet", "Twitter", "Clickbait", "Spam", "eng", "dataset:Webis-Clickbait-17", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-06T13:25:45Z
--- language: - eng tags: - Tweet - Twitter - Clickbait - Spam license: apache-2.0 datasets: - Webis-Clickbait-17 widget: - text: "In just 4 days you can increase your net worth." - text: "Nasa aborts second attempt to launch giant Moon rocket" - text: "The most successful people do these 18 things next Tuesday." - text: "Two guns used in shooting that killed nine-year-old" --- This model classifies whether a tweet is clickbait or not. It has been trained using [Webis-Clickbait-17](https://webis.de/data/webis-clickbait-17.html) dataset. Input is composed of 'postText'. Achieved ~0.7 F1-score on test data. In order to test this model, try a tweet on the right!
clementchadebec/reproduced_svae
clementchadebec
2022-09-06T07:23:41Z
0
1
pythae
[ "pythae", "reproducibility", "en", "license:apache-2.0", "region:us" ]
null
2022-08-19T19:51:40Z
--- language: en tags: - pythae - reproducibility license: apache-2.0 --- This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from pythae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="clementchadebec/reproduced_svae") ``` ## Reproducibility This trained model reproduces the results of Table 1 in [1]. | Model | Dataset | Metric | Obtained value | Reference value | |:---:|:---:|:---:|:---:|:---:| | SVAE | Dyn. Binarized MNIST | NLL (500 IS) | 93.13 (0.01) | 93.16 (0.31) | [1] Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyperspherical variational auto-encoders. In 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, pages 856–865. Association For Uncertainty in Artificial Intelligence (AUAI), 2018.
Sameen53/training_45k_V2
Sameen53
2022-09-06T06:17:17Z
104
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-06T06:13:59Z
--- tags: - generated_from_trainer model-index: - name: training_45k_V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # training_45k_V2 This model is a fine-tuned version of [Sameen53/training_45k](https://huggingface.co/Sameen53/training_45k) on the None dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.1673 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2583 | 1.26 | 1500 | inf | 0.1660 | | 0.2522 | 2.51 | 3000 | inf | 0.1625 | | 0.2427 | 3.77 | 4500 | inf | 0.1665 | | 0.2333 | 5.02 | 6000 | inf | 0.1629 | | 0.2692 | 6.28 | 7500 | inf | 0.1673 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ArjunSarkhel/distilbart-cnn-12-6-samsum-ts-POC
ArjunSarkhel
2022-09-06T05:47:30Z
109
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-23T12:19:50Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbart-cnn-12-6-samsum-ts-POC results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-samsum-ts-POC This model is a fine-tuned version of [philschmid/distilbart-cnn-12-6-samsum](https://huggingface.co/philschmid/distilbart-cnn-12-6-samsum) on an unknown dataset. ## Model description DistilBart-Cnn-Samsum fine-tuned on custom dataset. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
mathsrocks/finetuning-sentiment-model-3000-samples
mathsrocks
2022-09-06T05:16:42Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-06T05:00:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8566666666666667 - name: F1 type: f1 value: 0.8571428571428571 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3298 - Accuracy: 0.8567 - F1: 0.8571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
unfinity/q-FrozenLake-v1-8x8-200
unfinity
2022-09-06T05:03:53Z
0
0
null
[ "FrozenLake-v1-8x8", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-06T05:01:51Z
--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-200 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 metrics: - type: mean_reward value: 0.87 +/- 0.34 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="unfinity/q-FrozenLake-v1-8x8-200", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Mcy/bert-base-uncased-finetuned-classification
Mcy
2022-09-06T04:59:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T14:04:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-classification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 38.9115 - Mse: 38.9115 - Mae: 4.5330 - R2: 0.7802 - Accuracy: 0.1620 - Msev: 0.0257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | Msev | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:--------:|:------:| | 12.4524 | 1.0 | 5215 | 43.9797 | 43.9797 | 4.8194 | 0.7515 | 0.1693 | 0.0227 | | 4.393 | 2.0 | 10430 | 39.2333 | 39.2333 | 4.6028 | 0.7783 | 0.1737 | 0.0255 | | 2.424 | 3.0 | 15645 | 41.3763 | 41.3763 | 4.6597 | 0.7662 | 0.1620 | 0.0242 | | 1.781 | 4.0 | 20860 | 39.4309 | 39.4309 | 4.5960 | 0.7772 | 0.1767 | 0.0254 | | 1.3608 | 5.0 | 26075 | 38.9115 | 38.9115 | 4.5330 | 0.7802 | 0.1620 | 0.0257 | | 1.2014 | 6.0 | 31290 | 39.7403 | 39.7403 | 4.5850 | 0.7755 | 0.1716 | 0.0252 | | 1.0742 | 7.0 | 36505 | 40.4495 | 40.4495 | 4.6133 | 0.7715 | 0.1685 | 0.0247 | | 0.837 | 8.0 | 41720 | 39.5864 | 39.5864 | 4.5630 | 0.7763 | 0.1620 | 0.0253 | | 0.8054 | 9.0 | 46935 | 39.9482 | 39.9482 | 4.5839 | 0.7743 | 0.1569 | 0.0250 | | 0.8085 | 10.0 | 52150 | 39.5685 | 39.5685 | 4.5669 | 0.7764 | 0.1573 | 0.0253 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
vihu/ppo-LunarLander-v2
vihu
2022-09-06T04:47:33Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-06T04:47:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 261.03 +/- 22.10 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
unfinity/q-FrozenLake-v1-8x8
unfinity
2022-09-06T03:45:01Z
0
0
null
[ "FrozenLake-v1-8x8", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-04T21:19:36Z
--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 metrics: - type: mean_reward value: 0.64 +/- 0.48 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="unfinity/q-FrozenLake-v1-8x8", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
BigSalmon/InformalToFormalLincoln75Paraphrase
BigSalmon
2022-09-06T03:17:12Z
161
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-04T03:47:53Z
data: https://github.com/BigSalmon2/InformalToFormalDataset ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln75Paraphrase") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln75Paraphrase") ``` ``` Demo: https://huggingface.co/spaces/BigSalmon/FormalInformalConciseWordy ``` ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` Most likely outputs (Disclaimer: I highly recommend using this over just generating): ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(250) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] print(best_words) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` original: chrome extensions [MASK] accomplish everyday tasks. infill: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. *** original: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: at a time when nintendo has become inflexible, ( firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. *** infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - penny has practically no value - should be taken out of circulation - just as other coins have been in us history - lost use - value not enough - to make environmental consequences worthy text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ``` ``` first: ( was complicit in / was involved in ). antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ). *** first: ( have no qualms about / see no issue with ). antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ). *** first: ( do not see eye to eye / disagree often ). antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ). *** first: ``` ``` stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground. *** languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo. *** dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia. *** embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons. ``` Infill / Infilling / Masking / Phrase Masking (Works pretty decently actually, especially when you use logprobs code from above): ``` his contention [blank] by the evidence [sep] was refuted [answer] *** few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep] synonymous with [answer] *** when rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer] *** the library’s quiet atmosphere encourages visitors to [blank] in their work [sep] immerse themselves [answer] *** the joy of sport is that no two games are alike. for every exhilarating experience, however, there is an interminable one. the national pastime, unfortunately, has a penchant for the latter. what begins as a summer evening at the ballpark can quickly devolve into a game of tedium. the primary culprit is the [blank] of play. from batters readjusting their gloves to fielders spitting on their mitts, the action is [blank] unnecessary interruptions. the sport's future is [blank] if these tendencies are not addressed [sep] plodding pace [answer] riddled with [answer] bleak [answer] *** microsoft word's [blank] pricing [blank] competition [sep] unconscionable [answer] invites [answer] *** ``` Backwards ``` Essay Intro (National Parks): text: tourists are at ease in the national parks, ( swept up in the beauty of their natural splendor ). *** Essay Intro (D.C. Statehood): washington, d.c. is a city of outsize significance, ( ground zero for the nation's political life / center stage for the nation's political machinations ). ``` ``` topic: the Golden State Warriors. characterization 1: the reigning kings of the NBA. characterization 2: possessed of a remarkable cohesion. characterization 3: helmed by superstar Stephen Curry. characterization 4: perched atop the league’s hierarchy. characterization 5: boasting a litany of hall-of-famers. *** topic: emojis. characterization 1: shorthand for a digital generation. characterization 2: more versatile than words. characterization 3: the latest frontier in language. characterization 4: a form of self-expression. characterization 5: quintessentially millennial. characterization 6: reflective of a tech-centric world. *** topic: ```
swtx/Erlangshen-Roberta-110M-POI
swtx
2022-09-06T03:10:44Z
159
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-06T03:00:05Z
--- license: apache-2.0 --- tags: - bert - NLU - NLI inference: true widget: - text: "湖北省黄冈市麻城市中国中部(麻城)石材循环经济产业园厦门路麻城盈泰环保科技有限公司[SEP]黄冈市麻城市中国中部石材循环经济产业园厦门路麻城盈泰环保科技有限公司" --- # Erlangshen-Roberta-110M-POI, model (Chinese). We add POI datasets, with a total of 5000000 samples. Our model is mainly based on [roberta](https://github.com/IDEA-CCNL/Erlangshen-Roberta-110M-Similarity) ## Usage ```python from transformers import BertForSequenceClassification from transformers import BertTokenizer import torch tokenizer=BertTokenizer.from_pretrained('swtx/Erlangshen-Roberta-110M-POI') model=BertForSequenceClassification.from_pretrained('swtx/Erlangshen-Roberta-110M-POI') texta='湖北省黄冈市麻城市中国中部(麻城)石材循环经济产业园厦门路麻城盈泰环保科技有限公司' textb='黄冈市麻城市中国中部石材循环经济产业园厦门路麻城盈泰环保科技有限公司' output=model(torch.tensor([tokenizer.encode(texta,textb)])) print(torch.nn.functional.softmax(output.logits,dim=-1)) ```
marvind434/swin-tiny-patch4-window7-224-finetuned-eurosat
marvind434
2022-09-06T03:04:11Z
217
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-24T05:20:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3026 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 1.0940 | 0.25 | | No log | 2.0 | 2 | 0.9836 | 0.25 | | No log | 3.0 | 3 | 0.7624 | 0.25 | | No log | 4.0 | 4 | 0.6527 | 0.5 | | No log | 5.0 | 5 | 0.5697 | 0.75 | | No log | 6.0 | 6 | 0.5167 | 1.0 | | No log | 7.0 | 7 | 0.4898 | 0.75 | | No log | 8.0 | 8 | 0.4572 | 0.75 | | No log | 9.0 | 9 | 0.4286 | 0.75 | | 0.299 | 10.0 | 10 | 0.3976 | 0.75 | | 0.299 | 11.0 | 11 | 0.3678 | 1.0 | | 0.299 | 12.0 | 12 | 0.3531 | 1.0 | | 0.299 | 13.0 | 13 | 0.3384 | 1.0 | | 0.299 | 14.0 | 14 | 0.3264 | 1.0 | | 0.299 | 15.0 | 15 | 0.3188 | 1.0 | | 0.299 | 16.0 | 16 | 0.3114 | 1.0 | | 0.299 | 17.0 | 17 | 0.3083 | 1.0 | | 0.299 | 18.0 | 18 | 0.3071 | 1.0 | | 0.299 | 19.0 | 19 | 0.3041 | 1.0 | | 0.2051 | 20.0 | 20 | 0.3026 | 1.0 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Imene/vit-base-patch16-384-wi3
Imene
2022-09-06T00:06:23Z
81
0
transformers
[ "transformers", "tf", "tensorboard", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-05T18:53:02Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Imene/vit-base-patch16-384-wi3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-384-wi3 This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2020 - Train Accuracy: 0.9984 - Train Top-3-accuracy: 0.9997 - Validation Loss: 1.4297 - Validation Accuracy: 0.6195 - Validation Top-3-accuracy: 0.8298 - Epoch: 11 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 3.6575 | 0.0902 | 0.1945 | 3.1772 | 0.2028 | 0.3980 | 0 | | 2.5870 | 0.3473 | 0.6048 | 2.3845 | 0.3717 | 0.6208 | 1 | | 1.8813 | 0.5553 | 0.7895 | 2.0262 | 0.4431 | 0.7196 | 2 | | 1.4326 | 0.6815 | 0.8754 | 1.8856 | 0.4793 | 0.7384 | 3 | | 1.0572 | 0.7989 | 0.9439 | 1.6570 | 0.5369 | 0.7960 | 4 | | 0.7740 | 0.8838 | 0.9749 | 1.6103 | 0.5557 | 0.7960 | 5 | | 0.5593 | 0.9417 | 0.9900 | 1.5303 | 0.5695 | 0.8173 | 6 | | 0.4151 | 0.9709 | 0.9975 | 1.4939 | 0.5795 | 0.8185 | 7 | | 0.3176 | 0.9884 | 0.9978 | 1.4553 | 0.5832 | 0.8248 | 8 | | 0.2582 | 0.9950 | 0.9991 | 1.4500 | 0.6020 | 0.8248 | 9 | | 0.2222 | 0.9978 | 0.9994 | 1.4315 | 0.6108 | 0.8310 | 10 | | 0.2020 | 0.9984 | 0.9997 | 1.4297 | 0.6195 | 0.8298 | 11 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
lohsinyuu/ddpm-butterflies-128
lohsinyuu
2022-09-05T23:47:43Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-05T21:31:50Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/lohsinyuu/ddpm-butterflies-128/tensorboard?#scalars)
Casaarte629/Flyer
Casaarte629
2022-09-05T21:57:12Z
0
0
null
[ "region:us" ]
null
2022-09-05T21:53:46Z
Sombrero teatro arte alternativo libertad--- license: apache-2.0 123
julien-c/hotdog-not-hotdog
julien-c
2022-09-05T21:30:21Z
1,778
28
transformers
[ "transformers", "pytorch", "tensorboard", "coreml", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - huggingpics metrics: - accuracy model-index: - name: hotdog-not-hotdog results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.824999988079071 --- # hotdog-not-hotdog Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### hot dog ![hot dog](images/hot_dog.jpg) #### not hot dog ![miscellaneous](images/miscellaneous.jpg)
curt-tigges/testworm
curt-tigges
2022-09-05T20:56:43Z
14
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Worm", "region:us" ]
reinforcement-learning
2022-09-05T19:59:03Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Worm library_name: ml-agents --- # **ppo** Agent playing **Worm** This is a trained model of a **ppo** agent playing **Worm** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Worm 2. Step 1: Write your model_id: curt-tigges/testworm 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
lysandre/arxiv-nlp
lysandre
2022-09-05T20:10:54Z
1,093
2
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en --- # ArXiv-NLP GPT-2 checkpoint This is a GPT-2 small checkpoint for PyTorch. It is the official `gpt2-small` fine-tuned to ArXiv paper on the computational linguistics field. ## Training data This model was trained on a subset of ArXiv papers that were parsed from PDF to txt. The resulting data is made of 80MB of text from the computational linguistics (cs.CL) field.
Guruji108/xlm-roberta-base-finetuned-panx-en
Guruji108
2022-09-05T19:49:57Z
101
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T19:33:34Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.7032474804031354 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3932 - F1: 0.7032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1504 | 1.0 | 50 | 0.5992 | 0.4786 | | 0.5147 | 2.0 | 100 | 0.4307 | 0.6468 | | 0.3717 | 3.0 | 150 | 0.3932 | 0.7032 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
wonkwonlee/distilbert-base-uncased-finetuned-cola
wonkwonlee
2022-09-05T19:37:47Z
111
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T18:42:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5474713423103301 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5263 - Matthews Correlation: 0.5475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5222 | 1.0 | 535 | 0.5384 | 0.4304 | | 0.3494 | 2.0 | 1070 | 0.5128 | 0.4975 | | 0.2381 | 3.0 | 1605 | 0.5263 | 0.5475 | | 0.1753 | 4.0 | 2140 | 0.7498 | 0.5354 | | 0.1243 | 5.0 | 2675 | 0.8013 | 0.5414 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cpu - Datasets 2.3.2 - Tokenizers 0.12.1
Guruji108/xlm-roberta-base-finetuned-panx-it
Guruji108
2022-09-05T19:33:24Z
114
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T19:16:54Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8245828245828245 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2401 - F1: 0.8246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8187 | 1.0 | 70 | 0.3325 | 0.7337 | | 0.2829 | 2.0 | 140 | 0.2554 | 0.8003 | | 0.1894 | 3.0 | 210 | 0.2401 | 0.8246 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Guruji108/xlm-roberta-base-finetuned-panx-fr
Guruji108
2022-09-05T19:16:42Z
114
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T18:59:16Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8299296953465015 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2848 - F1: 0.8299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5989 | 1.0 | 191 | 0.3383 | 0.7928 | | 0.2617 | 2.0 | 382 | 0.2966 | 0.8318 | | 0.1672 | 3.0 | 573 | 0.2848 | 0.8299 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Guruji108/xlm-roberta-base-finetuned-panx-de-fr
Guruji108
2022-09-05T18:48:26Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T18:26:02Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1654 - F1: 0.8590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2845 | 1.0 | 715 | 0.1831 | 0.8249 | | 0.1449 | 2.0 | 1430 | 0.1643 | 0.8479 | | 0.0929 | 3.0 | 2145 | 0.1654 | 0.8590 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
rlpeter70/xlm-roberta-base-finetuned-panx-it
rlpeter70
2022-09-05T18:09:26Z
104
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T17:53:12Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8124233755619126 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2630 - F1: 0.8124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8193 | 1.0 | 70 | 0.3200 | 0.7356 | | 0.2773 | 2.0 | 140 | 0.2841 | 0.7882 | | 0.1807 | 3.0 | 210 | 0.2630 | 0.8124 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/suppernickbroth
huggingtweets
2022-09-05T17:19:40Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-05T17:11:57Z
--- language: en thumbnail: http://www.huggingtweets.com/suppernickbroth/1662398278638/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1564658774962585600/j9_gW3wp_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">nicky turner</div> <div style="text-align: center; font-size: 14px;">@suppernickbroth</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from nicky turner. | Data | nicky turner | | --- | --- | | Tweets downloaded | 2538 | | Retweets | 960 | | Short tweets | 429 | | Tweets kept | 1149 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3fdsli1w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @suppernickbroth's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/n9y3a7fd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/n9y3a7fd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/suppernickbroth') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rlpeter70/xlm-roberta-base-finetuned-panx-de
rlpeter70
2022-09-05T16:51:52Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T16:28:24Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
peter2000/bmz_topics_
peter2000
2022-09-05T16:39:06Z
1
1
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-05T16:38:42Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # peter2000/bmz_topics_ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('peter2000/bmz_topics_') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('peter2000/bmz_topics_') model = AutoModel.from_pretrained('peter2000/bmz_topics_') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=peter2000/bmz_topics_) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 36 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.dataloader._InfiniteConstantSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.BatchHardTripletLoss.BatchHardTripletLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 720, "warmup_steps": 72, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ChayanM/Favourite_Foods
ChayanM
2022-09-05T16:22:26Z
287
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-05T16:22:10Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Favourite_Foods results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9553571343421936 --- # Favourite_Foods Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Chocolate ![Chocolate](images/Chocolate.jpg) #### Cookies ![Cookies](images/Cookies.jpg) #### Egg ![Egg](images/Egg.jpg) #### Ice-cream ![Ice-cream](images/Ice-cream.jpg) #### Vegetable ![Vegetable](images/Vegetable.jpg)
mio/Artoria
mio
2022-09-05T16:10:54Z
15
14
espnet
[ "espnet", "audio", "text-to-speech", "jp", "dataset:fate", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-09-05T16:10:08Z
--- tags: - espnet - audio - text-to-speech language: jp datasets: - fate license: cc-by-4.0 --- ## ESPnet2 TTS model ### `mio/Artoria` This model was trained by mio using fate recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 49d18064f22b7508ff24a7fa70c470a65f08f1be pip install -e . cd egs2/fate/tts1 ./run.sh --skip_data_prep false --skip_train true --download_model mio/Artoria ``` ## TTS config <details><summary>expand</summary> ``` config: conf/tuning/finetune_vits.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/22k/tts_fate_saber_vits_finetune_from_jsut ngpu: 1 seed: 777 num_workers: 4 num_att_plot: 0 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 46762 dist_launcher: null multiprocessing_distributed: true unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 10 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - total_count - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: -1 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 50 use_matplotlib: true use_tensorboard: false create_graph_in_tensorboard: false use_wandb: true wandb_project: fate wandb_id: null wandb_entity: null wandb_name: vits_train_saber wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: - downloads/f3698edf589206588f58f5ec837fa516/exp/tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause/train.total_count.ave_10best.pth:tts:tts ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 1000 batch_size: 20 valid_batch_size: null batch_bins: 5000000 valid_batch_bins: null train_shape_file: - exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/text_shape.phn - exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/speech_shape valid_shape_file: - exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/text_shape.phn - exp/22k/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/22k/raw/train/text - text - text - - dump/22k/raw/train/wav.scp - speech - sound valid_data_path_and_name_and_type: - - dump/22k/raw/dev/text - text - text - - dump/22k/raw/dev/wav.scp - speech - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0001 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler: exponentiallr scheduler_conf: gamma: 0.999875 optim2: adamw optim2_conf: lr: 0.0001 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler2: exponentiallr scheduler2_conf: gamma: 0.999875 generator_first: false token_list: - <blank> - <unk> - '1' - '2' - '0' - '3' - '4' - '-1' - '5' - a - o - '-2' - i - '-3' - u - e - k - n - t - '6' - r - '-4' - s - N - m - pau - '7' - sh - d - g - w - '8' - U - '-5' - I - cl - h - y - b - '9' - j - ts - ch - '-6' - z - p - '-7' - f - ky - ry - '-8' - gy - '-9' - hy - ny - '-10' - by - my - '-11' - '-12' - '-13' - py - '-14' - '-15' - v - '10' - '-16' - '-17' - '11' - '-21' - '-20' - '12' - '-19' - '13' - '-18' - '14' - dy - '15' - ty - '-22' - '16' - '18' - '19' - '17' - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: jaconv g2p: pyopenjtalk_accent_with_pause feats_extract: linear_spectrogram feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null normalize: null normalize_conf: {} tts: vits tts_conf: generator_type: vits_generator generator_params: hidden_channels: 192 spks: -1 global_channels: -1 segment_size: 32 text_encoder_attention_heads: 2 text_encoder_ffn_expand: 4 text_encoder_blocks: 6 text_encoder_positionwise_layer_type: conv1d text_encoder_positionwise_conv_kernel_size: 3 text_encoder_positional_encoding_layer_type: rel_pos text_encoder_self_attention_layer_type: rel_selfattn text_encoder_activation_type: swish text_encoder_normalize_before: true text_encoder_dropout_rate: 0.1 text_encoder_positional_dropout_rate: 0.0 text_encoder_attention_dropout_rate: 0.1 use_macaron_style_in_text_encoder: true use_conformer_conv_in_text_encoder: false text_encoder_conformer_kernel_size: -1 decoder_kernel_size: 7 decoder_channels: 512 decoder_upsample_scales: - 8 - 8 - 2 - 2 decoder_upsample_kernel_sizes: - 16 - 16 - 4 - 4 decoder_resblock_kernel_sizes: - 3 - 7 - 11 decoder_resblock_dilations: - - 1 - 3 - 5 - - 1 - 3 - 5 - - 1 - 3 - 5 use_weight_norm_in_decoder: true posterior_encoder_kernel_size: 5 posterior_encoder_layers: 16 posterior_encoder_stacks: 1 posterior_encoder_base_dilation: 1 posterior_encoder_dropout_rate: 0.0 use_weight_norm_in_posterior_encoder: true flow_flows: 4 flow_kernel_size: 5 flow_base_dilation: 1 flow_layers: 4 flow_dropout_rate: 0.0 use_weight_norm_in_flow: true use_only_mean_in_flow: true stochastic_duration_predictor_kernel_size: 3 stochastic_duration_predictor_dropout_rate: 0.5 stochastic_duration_predictor_flows: 4 stochastic_duration_predictor_dds_conv_layers: 3 vocabs: 85 aux_channels: 513 discriminator_type: hifigan_multi_scale_multi_period_discriminator discriminator_params: scales: 1 scale_downsample_pooling: AvgPool1d scale_downsample_pooling_params: kernel_size: 4 stride: 2 padding: 2 scale_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 15 - 41 - 5 - 3 channels: 128 max_downsample_channels: 1024 max_groups: 16 bias: true downsample_scales: - 2 - 2 - 4 - 4 - 1 nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false follow_official_norm: false periods: - 2 - 3 - 5 - 7 - 11 period_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 5 - 3 channels: 32 downsample_scales: - 3 - 3 - 3 - 3 - 1 max_downsample_channels: 1024 bias: true nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false generator_adv_loss_params: average_by_discriminators: false loss_type: mse discriminator_adv_loss_params: average_by_discriminators: false loss_type: mse feat_match_loss_params: average_by_discriminators: false average_by_layers: false include_final_outputs: true mel_loss_params: fs: 22050 n_fft: 1024 hop_length: 256 win_length: null window: hann n_mels: 80 fmin: 0 fmax: null log_base: null lambda_adv: 1.0 lambda_mel: 45.0 lambda_feat_match: 2.0 lambda_dur: 1.0 lambda_kl: 1.0 sampling_rate: 22050 cache_generator_outputs: true pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: '202207' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
jenniferjane/ner_trainer
jenniferjane
2022-09-05T14:53:19Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T13:55:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: ner_trainer results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9231450719822812 - name: Recall type: recall value: 0.9325427900212552 - name: F1 type: f1 value: 0.9278201346763871 - name: Accuracy type: accuracy value: 0.9830333455128918 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner_trainer This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1069 - Precision: 0.9231 - Recall: 0.9325 - F1: 0.9278 - Accuracy: 0.9830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0029 | 1.0 | 1756 | 0.1069 | 0.9231 | 0.9325 | 0.9278 | 0.9830 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
BartekK/distilHerBERT-base-cased
BartekK
2022-09-05T14:03:29Z
110
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "distilherbert", "pl", "arxiv:1910.01108", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-16T16:33:31Z
--- language: pl tags: - distilherbert --- ## distilHerBERT distilHerBERT-base is a BERT-based Language Model trained on Polish subset of [cc100](https://huggingface.co/datasets/cc100) dataset using Masked Language Modelling (MLM) and [distillation procedure](https://arxiv.org/abs/1910.01108) from model [HerBERT](https://huggingface.co/allegro/herbert-base-cased) with dynamic masking of whole words. We provide one of the models (S4) described in the report from final project on the subject of (Deep) Natural Language Processing, which was carried out at MIMUW in 2021/2022: [Distillation_of_HerBERT](https://github.com/BartekKrzepkowski/DistilHerBERT-base_vol2/blob/master/report/Final_Report___Distillation_of_HerBERT.pdf). The model was trained using fp16 and the data parallelism method (ZeRO Stage 2), using the deep learning optimization library - DeepSpeed. Model training and experiments were conducted with transformers in version 4.20.1. ## Tokenizer The training dataset was tokenized into subwords using a character level byte-pair encoding (``CharBPETokenizer``) with a vocabulary size of 50k tokens. The tokenizer itself was trained with a [tokenizers](https://github.com/huggingface/tokenizers) library. We kindly encourage you to use the ``Fast`` version of the tokenizer, namely ``HerbertTokenizerFast``. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("BartekK/distilHerBERT-base-cased") model = AutoModelForMaskedLM.from_pretrained("BartekK/distilHerBERT-base-cased") output = model( **tokenizer.batch_encode_plus( [ ( "A potem szedł środkiem drogi w kurzawie, bo zamiatał nogami, ślepy dziad prowadzony przez tłustego kundla na sznurku.", "A potem leciał od lasu chłopak z butelką, ale ten ujrzawszy księdza przy drodze okrążył go z dala i biegł na przełaj pól do karczmy." ) ], padding='longest', add_special_tokens=True, return_tensors='pt' ) ) ``` ## Acknowledgements We want to thank <br> Spyridon Mouselinos - for suggesting literature to help with the project <br> and <br> Piotr Rybak - for sharing information on training the HerBERT models ## Authors The model was trained by: Bartłomiej Krzepkowski, <br> Dominika Bankiewicz, <br> Rafał Michaluk, <br> Jacek Ciszewski. If you have questions please contact me: <a href="mailto:bartekkrzepkowski@gmail.com">bartekkrzepkowski@gmail.com</a> The code can be found here: [distilHerBERT-base repo](https://github.com/BartekKrzepkowski/DistilHerBERT-base_vol2/tree/master).
Ammar-alhaj-ali/LayoutLMv3-Fine-Tuning-FUNSD
Ammar-alhaj-ali
2022-09-05T14:02:51Z
86
4
transformers
[ "transformers", "pytorch", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:nielsr/funsd-layoutlmv3", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-04T16:47:26Z
--- tags: - generated_from_trainer datasets: - nielsr/funsd-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-funsd results: - task: name: Token Classification type: token-classification dataset: name: nielsr/funsd-layoutlmv3 type: nielsr/funsd-layoutlmv3 args: funsd metrics: - name: Precision type: precision value: 0.918177 - name: Recall type: recall value: 0.930949 - name: F1 type: f1 value: 0.924519 - name: Accuracy type: accuracy value: 0.859979 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-funsd This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the nielsr/funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 1.038318 - Precision: 0.918177 - Recall: 0.930949 - F1: 0.924519 - Accuracy: 0.859979
GItaf/bert-base-uncased-finetuned-mbti-0905
GItaf
2022-09-05T13:17:53Z
60
0
transformers
[ "transformers", "pytorch", "bert", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-05T12:35:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-mbti-0905 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-mbti-0905 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
falkne/bert-web-discussions-en
falkne
2022-09-05T12:52:26Z
106
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-05T12:43:21Z
# Bert Online Discussions (bert-web-discussions-en) This model is a fine-tuned version of the [BERT base model](https://huggingface.co/bert-base-uncased). It was introduced in [this paper](https://aclanthology.org/2022.acl-long.379/). ## Model description The BERT base language model was fine-tuned on the [Webis-CMV-20 corpus](https://zenodo.org/record/3778298#.YxB-HC223RZ) and on the [args.me corpus](https://zenodo.org/record/3734893#.YxB-NC223RY). The model was trained on a sample of 2,469,026 sentences in total.
dhansmair/flamingo-tiny
dhansmair
2022-09-05T12:45:16Z
57
5
transformers
[ "transformers", "pytorch", "image-to-text", "image-captioning", "en", "dataset:conceptual_captions", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2022-08-23T07:58:45Z
--- language: - en tags: - image-to-text - image-captioning license: apache-2.0 datasets: - conceptual_captions --- Flamingo Model (tiny version) pretrained on Image Captioning on the Conceptual Captions (3M) dataset. Source Code: https://github.com/dhansmair/flamingo-mini Demo Space: https://huggingface.co/spaces/dhansmair/flamingo-tiny-cap Flamingo-mini: https://huggingface.co/spaces/dhansmair/flamingo-mini-cap
dhansmair/flamingo-mini
dhansmair
2022-09-05T12:44:42Z
214
13
transformers
[ "transformers", "pytorch", "image-to-text", "image-captioning", "en", "dataset:conceptual_captions", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2022-08-23T08:30:02Z
--- language: - en tags: - image-to-text - image-captioning license: apache-2.0 datasets: - conceptual_captions --- Flamingo Model pretrained on Image Captioning on the Conceptual Captions (3M) dataset. Source Code: https://github.com/dhansmair/flamingo-mini Demo Space: https://huggingface.co/spaces/dhansmair/flamingo-mini-cap Flamingo-tiny: https://huggingface.co/spaces/dhansmair/flamingo-tiny-cap
Kigo/OPT-350m-COVID-Finetune
Kigo
2022-09-05T12:44:29Z
161
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-05T12:10:26Z
Best Generations with ``` from transformers import OPTForCausalLM from transformers import GPT2Tokenizer model = OPTForCausalLM.from_pretrained("Kigo/OPT-350m-COVID-Finetune", from_tf=True) tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-350m") inputs = tokenizer("Covid-19 is Positive, 42.237% of Lungs show GGO, Lower Left Lobe was most affected, Upper Left Lobe was least affected, yes Vascular dilatation, found consolidation. The patient is in critical condition. \n\n\n ", return_tensors="pt") generate_ids = model.generate(inputs.input_ids, do_sample=True, max_new_tokens=1000, ) completion = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print(completion) ```
Imene/vit-base-patch16-224-in21k-wi2
Imene
2022-09-05T12:40:05Z
79
0
transformers
[ "transformers", "tf", "tensorboard", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-05T11:23:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Imene/vit-base-patch16-224-in21k-wi2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-224-in21k-wi2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.9892 - Train Accuracy: 0.5568 - Train Top-3-accuracy: 0.8130 - Validation Loss: 3.0923 - Validation Accuracy: 0.4280 - Validation Top-3-accuracy: 0.7034 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 3.8488 | 0.0720 | 0.1713 | 3.7116 | 0.1564 | 0.3617 | 0 | | 3.5246 | 0.2703 | 0.4898 | 3.4122 | 0.3217 | 0.5732 | 1 | | 3.2493 | 0.4150 | 0.6827 | 3.2232 | 0.3880 | 0.6633 | 2 | | 3.0840 | 0.5002 | 0.7670 | 3.1275 | 0.4255 | 0.6921 | 3 | | 2.9892 | 0.5568 | 0.8130 | 3.0923 | 0.4280 | 0.7034 | 4 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
GItaf/bert-base-uncased-finetuned-mbti-0830
GItaf
2022-09-05T12:30:05Z
56
0
transformers
[ "transformers", "pytorch", "bert", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-08-29T19:12:25Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-mbti-0830 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-mbti-0830 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.4259 | 1.0 | 9720 | 4.3466 | | 4.2788 | 2.0 | 19440 | 4.2536 | | 4.1928 | 3.0 | 29160 | 4.2074 | | 4.1062 | 4.0 | 38880 | 4.1839 | | 4.0502 | 5.0 | 48600 | 4.1715 | | 4.0037 | 6.0 | 58320 | 4.1637 | | 3.9575 | 7.0 | 68040 | 4.1603 | | 3.9169 | 8.0 | 77760 | 4.1591 | | 3.8915 | 9.0 | 87480 | 4.1602 | | 3.8741 | 10.0 | 97200 | 4.1613 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Jainam/freeflow-biencoder
Jainam
2022-09-05T10:40:47Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "tf", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-05T10:11:34Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1590 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 300, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
esettouf/cross-en-de-roberta-sentence-transformer-openlegal
esettouf
2022-09-05T09:36:37Z
148
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-02T20:05:08Z
--- license: mit tags: - generated_from_trainer model-index: - name: cross-en-de-roberta-sentence-transformer-openlegal results: [] --- --- Part of BA Thesis by Enis Settouf @ HTW Berlin Business computing --- This model was trained additionally on a MLM task for the legal domain on German laws and legal Cases Data Source: [OpenLegalData.io](https://de.openlegaldata.io/pages/api/) The rest of this model card has been generated automatically: <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cross-en-de-roberta-sentence-transformer-openlegal This model is a fine-tuned version of [T-Systems-onsite/cross-en-de-roberta-sentence-transformer](https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3120 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.4835 | 0.06 | 500 | 5.2259 | | 4.9569 | 0.13 | 1000 | 4.5163 | | 4.4158 | 0.19 | 1500 | 4.1257 | | 4.1221 | 0.25 | 2000 | 3.8695 | | 3.8853 | 0.32 | 2500 | 3.6586 | | 3.7092 | 0.38 | 3000 | 3.5126 | | 3.5779 | 0.45 | 3500 | 3.3889 | | 3.4424 | 0.51 | 4000 | 3.2731 | | 3.3556 | 0.57 | 4500 | 3.1984 | | 3.2627 | 0.64 | 5000 | 3.1103 | | 3.1855 | 0.7 | 5500 | 3.0306 | | 3.1381 | 0.76 | 6000 | 2.9796 | | 3.0763 | 0.83 | 6500 | 2.9299 | | 2.9985 | 0.89 | 7000 | 2.8740 | | 2.9359 | 0.95 | 7500 | 2.8300 | | 2.8954 | 1.02 | 8000 | 2.7861 | | 2.8322 | 1.08 | 8500 | 2.7450 | | 2.816 | 1.14 | 9000 | 2.7255 | | 2.8013 | 1.21 | 9500 | 2.6872 | | 2.7414 | 1.27 | 10000 | 2.6538 | | 2.707 | 1.34 | 10500 | 2.6284 | | 2.6866 | 1.4 | 11000 | 2.6021 | | 2.6429 | 1.46 | 11500 | 2.5721 | | 2.6269 | 1.53 | 12000 | 2.5646 | | 2.6173 | 1.59 | 12500 | 2.5323 | | 2.5959 | 1.65 | 13000 | 2.5052 | | 2.5692 | 1.72 | 13500 | 2.4993 | | 2.5563 | 1.78 | 14000 | 2.4840 | | 2.5448 | 1.84 | 14500 | 2.4635 | | 2.4932 | 1.91 | 15000 | 2.4581 | | 2.5106 | 1.97 | 15500 | 2.4342 | | 2.5009 | 2.03 | 16000 | 2.4260 | | 2.46 | 2.1 | 16500 | 2.4152 | | 2.4417 | 2.16 | 17000 | 2.4079 | | 2.4568 | 2.23 | 17500 | 2.4010 | | 2.442 | 2.29 | 18000 | 2.3875 | | 2.4328 | 2.35 | 18500 | 2.3724 | | 2.4126 | 2.42 | 19000 | 2.3645 | | 2.4063 | 2.48 | 19500 | 2.3612 | | 2.362 | 2.54 | 20000 | 2.3565 | | 2.3877 | 2.61 | 20500 | 2.3507 | | 2.3839 | 2.67 | 21000 | 2.3353 | | 2.3657 | 2.73 | 21500 | 2.3326 | | 2.3464 | 2.8 | 22000 | 2.3262 | | 2.3915 | 2.86 | 22500 | 2.3259 | | 2.3613 | 2.93 | 23000 | 2.3195 | | 2.358 | 2.99 | 23500 | 2.3165 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.8.2+cpu - Datasets 2.4.0 - Tokenizers 0.12.1
takeda777/wav2vec2-large-xls-r-300m-turkish-colab
takeda777
2022-09-05T08:42:19Z
160
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-05T06:51:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.8327 - Wer: 0.9968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 23.2608 | 9.76 | 400 | 4.9641 | 1.0 | | 3.9324 | 19.51 | 800 | 3.4000 | 1.0 | | 1.4163 | 29.27 | 1200 | 2.8327 | 0.9968 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
VEERANSH/q-FrozenLake-v1-4x4-noSlippery
VEERANSH
2022-09-05T06:50:59Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-05T06:41:10Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="VEERANSH/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
andreasostling/distilbert-base-uncased-finetuned-ner
andreasostling
2022-09-05T06:39:58Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-05T06:30:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9267050487156776 - name: Recall type: recall value: 0.9363463474661595 - name: F1 type: f1 value: 0.9315007512102833 - name: Accuracy type: accuracy value: 0.9839706419686403 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0609 - Precision: 0.9267 - Recall: 0.9363 - F1: 0.9315 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2408 | 1.0 | 878 | 0.0682 | 0.9136 | 0.9219 | 0.9178 | 0.9813 | | 0.0538 | 2.0 | 1756 | 0.0605 | 0.9228 | 0.9346 | 0.9286 | 0.9833 | | 0.0301 | 3.0 | 2634 | 0.0609 | 0.9267 | 0.9363 | 0.9315 | 0.9840 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Deianira/peliculas-machine-learning
Deianira
2022-09-05T05:20:40Z
0
0
null
[ "region:us" ]
null
2022-09-05T05:17:23Z
Machine-Learning Este desarrollo de proyecto universitario se trata de la creación de un sistema de predicción, clasificación y recomendación de películas basado en un dataset proporcionado por la plataforma IMDb.
SmartPy/bert-finetuned-squad-chaii
SmartPy
2022-09-05T04:31:51Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-04T17:06:18Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: bert-finetuned-squad-chaii results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad-chaii This model is a fine-tuned version of [deepset/xlm-roberta-base-squad2](https://huggingface.co/deepset/xlm-roberta-base-squad2) on the chaii dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
SirWaffle/codegen-350M-multi-onnx
SirWaffle
2022-09-05T01:10:39Z
5
0
transformers
[ "transformers", "onnx", "codegen", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-08-22T02:20:25Z
onnx model for codegen-350-multi made this to be used with my example code completion extensions repo: https://github.com/SirWaffle/local-ai-code-completion
exploiter345/dqn-SpaceInvadersNoFrameskip-v0
exploiter345
2022-09-05T01:04:55Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-05T01:04:29Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 6.50 +/- 16.29 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga exploiter345 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga exploiter345 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
liux0229/distilbert-base-uncased-finetuned-emotion
liux0229
2022-09-05T00:11:04Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-04T23:42:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9248309431740382 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2176 - Accuracy: 0.925 - F1: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8255 | 1.0 | 250 | 0.3198 | 0.902 | 0.8999 | | 0.2469 | 2.0 | 500 | 0.2176 | 0.925 | 0.9248 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
farleyknight-org-username/roman-numerals-digit-classification
farleyknight-org-username
2022-09-05T00:07:59Z
205
1
transformers
[ "transformers", "pytorch", "vit", "image-classification", "vision", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-04T23:58:39Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: roman_numerals-digit-classification-2022-09-04 results: - task: name: Image Classification type: image-classification dataset: name: farleyknight/roman_numerals type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8333333333333334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roman_numerals-digit-classification-2022-09-04 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the farleyknight/roman_numerals dataset. It achieves the following results on the evaluation set: - Loss: 0.7018 - Accuracy: 0.8333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9053 | 1.0 | 289 | 1.3680 | 0.7132 | | 1.2788 | 2.0 | 578 | 0.9499 | 0.7966 | | 1.1232 | 3.0 | 867 | 0.8679 | 0.7279 | | 1.0373 | 4.0 | 1156 | 0.7324 | 0.8088 | | 0.9658 | 5.0 | 1445 | 0.7018 | 0.8333 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
LucasFerro/biobertpt-clin-tempclinbr
LucasFerro
2022-09-04T21:06:02Z
106
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "pt", "dataset:TempClinBr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-04T21:03:08Z
--- language: "pt" widget: - text: "Dispneia importante aos esforços + dor tipo peso no peito no esforço." - text: "Obeso, has, icc c # cintilografia miocardica para avaliar angina. Discreto edema mmii pricn a esquerda." - text: "Plastia Mitral ( Insuficiencia ), CRM Saf-2Mg e e Saf-3MG ).(09/03/16). Nega palpitação." - text: "Uso: AAS 100 -1xd; Metoprolol 25 -1xd; FSM -1xd ; Levotiroxina 175 -1xd; Sinva 40 -1xd; Fluoxetina 20-1xd." - text: "Refere melhora da dispneia depois da cx porem mantem aos mdoeardos-leves esforço." datasets: - TempClinBr --- # Portuguese NER- TempClinBr - BioBERTpt(clin) Treinado com BioBERTpt(clin), com o corpus TempClinBr. Metricas: ``` precision recall f1-score support 0 1.00 0.85 0.92 33 1 0.73 0.69 0.71 78 2 0.75 0.55 0.63 11 3 0.70 0.70 0.70 10 4 0.90 1.00 0.95 71 5 0.75 0.90 0.82 503 6 0.83 0.90 0.87 112 7 0.93 0.90 0.92 2236 8 0.78 0.50 0.61 28 9 0.82 0.84 0.83 291 10 0.79 0.96 0.87 124 11 0.82 0.73 0.77 420 accuracy 0.87 3917 macro avg 0.82 0.79 0.80 3917 weighted avg 0.88 0.87 0.87 3917 ``` Parâmetros: ``` device = cuda (Colab) nclasses = len(tag2id) nepochs = 50 => parou na 16 batch_size = 16 batch_status = 32 learning_rate = 3e-5 early_stop = 5 max_length = 256 write_path = 'model' ``` Eval no conjunto de teste - TempClinBr OBS: Avaliação com tag "O" (label 7), se necessário fazer a média sem essa tag. ``` tag2id ={'<pad>': 12, 'B-DepartamentoClinico': 2, 'B-Evidencia': 4, 'B-Ocorrencia': 10, 'B-Problema': 5, 'B-Teste': 6, 'B-Tratamento': 9, 'I-DepartamentoClinico': 3, 'I-Ocorrencia': 8, 'I-Problema': 11, 'I-Teste': 0, 'I-Tratamento': 1, 'O': 7} precision recall f1-score support 0 0.70 0.30 0.42 99 1 0.84 0.75 0.79 146 2 1.00 0.90 0.95 30 3 0.93 0.93 0.93 14 4 1.00 0.95 0.98 128 5 0.83 0.97 0.89 713 6 0.80 0.80 0.80 194 7 0.93 0.93 0.93 2431 8 0.56 0.20 0.29 51 9 0.86 0.85 0.85 261 10 0.77 0.88 0.82 146 11 0.85 0.82 0.83 645 12 0.00 0.00 0.00 0 accuracy 0.88 4858 macro avg 0.77 0.71 0.73 4858 weighted avg 0.88 0.88 0.88 4858 ``` Como citar: **em breve**
hieule/codeparrot-ds
hieule
2022-09-04T20:23:49Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-04T13:35:39Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5009 | 0.93 | 5000 | 1.5958 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
bedford1274/beds
bedford1274
2022-09-04T18:48:23Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-09-04T18:48:23Z
--- license: bigscience-bloom-rail-1.0 ---
c7756748/ppo-LunarLander-v2
c7756748
2022-09-04T16:29:33Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-04T16:29:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 241.88 +/- 16.21 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gngpostalsrvc/w2v2-ami
gngpostalsrvc
2022-09-04T16:18:10Z
104
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-04T13:13:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: w2v2-ami results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # w2v2-ami This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8686 - Wer: 0.2861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.6021 | 3.07 | 500 | 2.9176 | 0.9997 | | 2.5006 | 6.13 | 1000 | 1.0535 | 0.3617 | | 0.9926 | 9.2 | 1500 | 0.8614 | 0.3036 | | 0.809 | 12.27 | 2000 | 0.8676 | 0.2921 | | 0.73 | 15.34 | 2500 | 0.8190 | 0.2966 | | 0.6658 | 18.4 | 3000 | 0.8707 | 0.2900 | | 0.6295 | 21.47 | 3500 | 0.8660 | 0.2821 | | 0.6089 | 24.54 | 4000 | 0.8767 | 0.2829 | | 0.5974 | 27.61 | 4500 | 0.8686 | 0.2861 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1