modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-11 06:30:11
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 555
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-11 06:29:58
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
DaniilSirota/ppo-Pyramids
|
DaniilSirota
| 2023-02-09T11:14:46Z | 1 | 1 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-02-09T11:14:40Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: DaniilSirota/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
joelniklaus/legal-danish-roberta-base
|
joelniklaus
| 2023-02-09T11:14:08Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-02-06T00:13:23Z |
---
tags:
- generated_from_trainer
model-index:
- name: legal-danish-roberta-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# legal-danish-roberta-base
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2205
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: tpu
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 200000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.8218 | 8.01 | 50000 | 0.3052 |
| 0.8718 | 16.02 | 100000 | 0.2487 |
| 0.7884 | 24.03 | 150000 | 0.2277 |
| 0.625 | 33.0 | 200000 | 0.2205 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.9.0
- Tokenizers 0.12.0
|
deprem-ml/deprem-ner-mdebertav3
|
deprem-ml
| 2023-02-09T10:39:27Z | 5 | 5 |
transformers
|
[
"transformers",
"pytorch",
"deberta-v2",
"token-classification",
"tr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-02-08T10:11:46Z |
---
license: apache-2.0
language:
- tr
pipeline_tag: token-classification
widget:
- text: >-
Lütfen yardım Akevler mahallesi Rüzgar sokak Tuncay apartmanı zemin kat
Antakya akrabalarım göçük altında #hatay #Afad
example_title: Örnek
metrics:
- accuracy
- f1
- recall
- precision
---
# Model: 'deprem-ner-mdebertav3'
### Validasyon Sonuçları
- **Precision:** 0.711819
- **Recall:** 0.783626
- **F1:** 0.745999
- **Accuracy:** 0.933360
### Eğitim Parametreleri
```
evaluation_strategy="epoch"
save_strategy="epoch"
load_best_model_at_end=True
learning_rate=3e-5
per_device_train_batch_size=8
per_device_eval_batch_size=16
num_train_epochs=15
weight_decay=0.01
seed=42
```
### Örnekler
Bu model depremde enkaz altında kalan kişilerin bildirimlerinden sokak, il, ilçe gibi bilgileri çekmeye çalıştık.
Örnek girdiler:
- "Lütfen yardım Akevler mahallesi Rüzgar sokak Tuncay apartmanı zemin kat Antakya akrabalarım göçük altında #hatay #Afad"
- "MARAȘA'ta arkadaşimizdan haber alamıyoruz ACIL yardım Penta Park konutları 1. Blok en üst kat 11. Kat \n\n@AFADBaskanlik #kahramanmaraş\nACİL"
Verdiği çıktılar:
```
[
{
"entity_group": "mahalle",
"score": 0.8160411715507507,
"word": "Akevler mahallesi",
"start": 14,
"end": 31
},
{
"entity_group": "sokak",
"score": 0.940501868724823,
"word": "Rüzgar sokak",
"start": 32,
"end": 44
},
{
"entity_group": "Apartman/Site",
"score": 0.8081040978431702,
"word": "Tuncay apartmanı",
"start": 45,
"end": 61
},
{
"entity_group": "ilce",
"score": 0.854024350643158,
"word": "Antakya",
"start": 72,
"end": 79
}
]
```
### Değerlendirme
Bu modeli Hugging Face Hub'daki diğer modellerle karşılaştırdık, örnek 30 input'ta sonuçları [bu repository'de](https://huggingface.co/datasets/deprem-ml/butun_model_benchmarklari) bulabilirsiniz.
|
Rubywong123/PPO-LunarLander-v2
|
Rubywong123
| 2023-02-09T10:22:32Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-09T10:22:04Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 276.28 +/- 16.52
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
cfalholt/A2C-AntBulletEnv-v0
|
cfalholt
| 2023-02-09T10:05:29Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-09T10:04:01Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1438.89 +/- 433.51
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
amrisaurus/pretrained-bert-uncased-90
|
amrisaurus
| 2023-02-09T09:50:09Z | 4 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"pretraining",
"generated_from_keras_callback",
"endpoints_compatible",
"region:us"
] | null | 2023-02-09T08:04:20Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: pretrained-bert-uncased-90
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# pretrained-bert-uncased-90
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 5.5801
- Validation Loss: 13.6573
- Epoch: 89
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 8.8978 | 9.5686 | 0 |
| 7.0524 | 9.6480 | 1 |
| 6.8578 | 10.5054 | 2 |
| 6.1054 | 10.4137 | 3 |
| 6.1268 | 10.4515 | 4 |
| 5.8614 | 10.4313 | 5 |
| 5.9680 | 10.7224 | 6 |
| 5.7868 | 11.2948 | 7 |
| 5.5465 | 10.7112 | 8 |
| 5.7115 | 10.8543 | 9 |
| 5.7908 | 11.6466 | 10 |
| 5.5664 | 11.5085 | 11 |
| 5.5865 | 11.4894 | 12 |
| 5.6421 | 11.2182 | 13 |
| 5.6626 | 11.4446 | 14 |
| 5.4587 | 11.2814 | 15 |
| 5.5299 | 11.6601 | 16 |
| 5.5408 | 12.0485 | 17 |
| 5.5092 | 11.9469 | 18 |
| 5.6606 | 12.4353 | 19 |
| 5.7420 | 12.7461 | 20 |
| 5.6078 | 12.1650 | 21 |
| 5.6612 | 12.2811 | 22 |
| 5.7503 | 12.4086 | 23 |
| 5.5609 | 12.6149 | 24 |
| 5.4806 | 12.4447 | 25 |
| 5.6898 | 12.8078 | 26 |
| 5.6168 | 12.4649 | 27 |
| 5.6292 | 12.5851 | 28 |
| 5.8481 | 12.5146 | 29 |
| 5.6491 | 12.6358 | 30 |
| 5.5755 | 12.6996 | 31 |
| 5.8218 | 12.7957 | 32 |
| 5.5641 | 13.1650 | 33 |
| 5.6044 | 12.5065 | 34 |
| 5.6762 | 12.3722 | 35 |
| 5.5931 | 12.7162 | 36 |
| 5.5727 | 12.6179 | 37 |
| 5.5761 | 12.9479 | 38 |
| 5.6360 | 13.0610 | 39 |
| 5.4503 | 13.0441 | 40 |
| 5.5689 | 13.1673 | 41 |
| 5.6327 | 13.2184 | 42 |
| 5.5567 | 12.8114 | 43 |
| 5.6322 | 13.1793 | 44 |
| 5.4677 | 13.1324 | 45 |
| 5.5865 | 13.2891 | 46 |
| 5.5352 | 13.5036 | 47 |
| 5.4867 | 13.5010 | 48 |
| 5.6926 | 13.1743 | 49 |
| 5.7545 | 13.1689 | 50 |
| 5.5422 | 13.3362 | 51 |
| 5.6094 | 13.3983 | 52 |
| 5.5993 | 13.3638 | 53 |
| 5.6803 | 13.3884 | 54 |
| 5.6102 | 12.7277 | 55 |
| 5.7204 | 13.1669 | 56 |
| 5.5271 | 13.5684 | 57 |
| 5.5265 | 13.5086 | 58 |
| 5.5679 | 13.8641 | 59 |
| 5.6738 | 13.1735 | 60 |
| 5.5423 | 13.3285 | 61 |
| 5.5020 | 13.6262 | 62 |
| 5.5065 | 13.4765 | 63 |
| 5.5919 | 13.5598 | 64 |
| 5.5684 | 13.1651 | 65 |
| 5.6378 | 13.4781 | 66 |
| 5.6661 | 13.0726 | 67 |
| 5.7996 | 13.6267 | 68 |
| 5.7453 | 13.4608 | 69 |
| 5.5720 | 13.3663 | 70 |
| 5.4926 | 13.6905 | 71 |
| 5.7386 | 13.5941 | 72 |
| 5.6016 | 13.3110 | 73 |
| 5.5905 | 14.0529 | 74 |
| 5.7030 | 13.7322 | 75 |
| 5.6801 | 13.4712 | 76 |
| 5.6202 | 13.7954 | 77 |
| 5.6230 | 13.8177 | 78 |
| 5.6288 | 13.4887 | 79 |
| 5.6207 | 13.5817 | 80 |
| 5.5904 | 13.7643 | 81 |
| 5.6685 | 14.1648 | 82 |
| 5.5031 | 14.1816 | 83 |
| 5.6752 | 13.9170 | 84 |
| 5.6140 | 13.6953 | 85 |
| 5.6929 | 13.4916 | 86 |
| 5.4762 | 13.8740 | 87 |
| 5.6537 | 13.9725 | 88 |
| 5.5801 | 13.6573 | 89 |
### Framework versions
- Transformers 4.27.0.dev0
- TensorFlow 2.9.2
- Datasets 2.9.0
- Tokenizers 0.13.2
|
tudnlp23g69/hw6
|
tudnlp23g69
| 2023-02-09T09:45:08Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-02-09T09:40:23Z |
---
tags:
- generated_from_trainer
model-index:
- name: result
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# result
This model is a fine-tuned version of [huawei-noah/TinyBERT_General_6L_768D](https://huggingface.co/huawei-noah/TinyBERT_General_6L_768D) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Iggg0r/ppo-LunarLander-v2
|
Iggg0r
| 2023-02-09T09:43:36Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-09T09:43:06Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 273.94 +/- 14.64
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
swl-models/bailocat
|
swl-models
| 2023-02-09T09:08:22Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-09T08:43:09Z |
---
license: creativeml-openrail-m
---
|
reemalyami/AraRoBERTa-OM
|
reemalyami
| 2023-02-09T08:58:02Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"fill-mask",
"ar",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
language:
- ar
---
The **AraRoBERTa** models are mono-dialectal Arabic models trained on a country-level dialect. AraRoBERTa uses RoBERTa base config. More details are available in the paper [click](https://aclanthology.org/2022.wanlp-1.24/).
The following are the AraRoBERTa seven dialectal variations:
* AraRoBERTa-SA: Saudi Arabia (SA) dialect.
* AraRoBERTa-EGY: Egypt (EGY) dialect.
* AraRoBERTa-KU: Kuwait (KU) dialect.
* AraRoBERTa-OM: Oman (OM) dialect.
* AraRoBERTa-LB: Lebanon (LB) dialect.
* AraRoBERTa-JO: Jordan (JO) dialect.
* AraRoBERTa-DZ: Algeria (DZ) dialect
# When using the model, please cite our paper:
```python
@inproceedings{alyami-al-zaidy-2022-weakly,
title = "Weakly and Semi-Supervised Learning for {A}rabic Text Classification using Monodialectal Language Models",
author = "AlYami, Reem and Al-Zaidy, Rabah",
booktitle = "Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wanlp-1.24",
pages = "260--272",
}
```
# Contact
**Reem AlYami**: [Linkedin](https://www.linkedin.com/in/reem-alyami/) | <reem.yami@kfupm.edu.sa> | <yami.m.reem@gmail.com>
|
Venkatesh4342/bert-base-uncased-finetuned-fin
|
Venkatesh4342
| 2023-02-09T08:56:36Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-12-31T06:58:47Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: bert-base-uncased-finetuned-fin
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-fin
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3931
- Accuracy: 0.8873
- F1: 0.8902
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6478 | 1.0 | 134 | 0.4118 | 0.8293 | 0.8309 |
| 0.3304 | 2.0 | 268 | 0.3315 | 0.8653 | 0.8694 |
| 0.2221 | 3.0 | 402 | 0.3229 | 0.8756 | 0.8781 |
| 0.1752 | 4.0 | 536 | 0.3192 | 0.8891 | 0.8921 |
| 0.1457 | 5.0 | 670 | 0.3700 | 0.8840 | 0.8880 |
| 0.1315 | 6.0 | 804 | 0.3774 | 0.8854 | 0.8882 |
| 0.1172 | 7.0 | 938 | 0.3883 | 0.8849 | 0.8877 |
| 0.112 | 8.0 | 1072 | 0.3931 | 0.8873 | 0.8902 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
reemalyami/AraRoBERTa-DZ
|
reemalyami
| 2023-02-09T08:56:29Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"fill-mask",
"ar",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
language:
- ar
---
The **AraRoBERTa** models are mono-dialectal Arabic models trained on a country-level dialect. AraRoBERTa uses RoBERTa base config. More details are available in the paper [click](https://aclanthology.org/2022.wanlp-1.24/).
The following are the AraRoBERTa seven dialectal variations:
* [AraRoBERTa-SA](https://huggingface.co/reemalyami/AraRoBERTa-SA): Saudi Arabia (SA) dialect.
* [AraRoBERTa-EGY](https://huggingface.co/reemalyami/AraRoBERTa-EGY): Egypt (EGY) dialect.
* [AraRoBERTa-KU](https://huggingface.co/reemalyami/AraRoBERTa-KU): Kuwait (KU) dialect.
* [AraRoBERTa-OM](https://huggingface.co/reemalyami/AraRoBERTa-OM): Oman (OM) dialect.
* [AraRoBERTa-LB](https://huggingface.co/reemalyami/AraRoBERTa-LB): Lebanon (LB) dialect.
* [AraRoBERTa-JO](https://huggingface.co/reemalyami/AraRoBERTa-JO): Jordan (JO) dialect.
* [AraRoBERTa-DZ](https://huggingface.co/reemalyami/AraRoBERTa-DZ): Algeria (DZ) dialect
# When using the model, please cite our paper:
```python
@inproceedings{alyami-al-zaidy-2022-weakly,
title = "Weakly and Semi-Supervised Learning for {A}rabic Text Classification using Monodialectal Language Models",
author = "AlYami, Reem and Al-Zaidy, Rabah",
booktitle = "Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wanlp-1.24",
pages = "260--272",
}
```
# Contact
**Reem AlYami**: [Linkedin](https://www.linkedin.com/in/reem-alyami/) | <reem.yami@kfupm.edu.sa> | <yami.m.reem@gmail.com>
|
Anjoe/poetry-gpt2-large-no-hoel_2
|
Anjoe
| 2023-02-09T08:56:20Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-02-06T20:25:45Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: poetry-gpt2-large-no-hoel_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# poetry-gpt2-large-no-hoel_2
This model is a fine-tuned version of [benjamin/gerpt2-large](https://huggingface.co/benjamin/gerpt2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7067
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 3.6683 | 1.0 | 19927 | 3.7260 |
| 3.3474 | 2.0 | 39854 | 3.7067 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
sryu1/poca-SoccerTwos
|
sryu1
| 2023-02-09T08:45:17Z | 5 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-02-09T08:45:05Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: sryu1/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
marcosgg/bert-large-pt-ner-enamex
|
marcosgg
| 2023-02-09T08:33:59Z | 93 | 2 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"pt",
"gl",
"license:agpl-3.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-05T08:44:19Z |
---
license: agpl-3.0
language:
- pt
- gl
widget:
- text: >-
A minha amiga Rosa, de São Paulo, estudou en Montreal. Agora trabalha em
Santiago de Compostela com o Mário.
---
# Named Entity Recognition (NER) model for Portuguese
This is a NER model for Portuguese which uses the standard 'enamex' classes: LOC (geographical locations); PER (people); ORG (organizations); MISC (other entities).
The model is based on [BERTimbau Large](https://huggingface.co/neuralmind/bert-large-portuguese-cased), which has been fine-tuned using a combination of available corpora (see [1] for details).
There is an alternative model trained using [BERTimbau Base](https://huggingface.co/neuralmind/bert-base-portuguese-cased): [bert-base-pt-ner-enamex](https://huggingface.co/marcosgg/bert-base-pt-ner-enamex).
It was trained with a batch size of 32 and a learning rate of 3e-5 during 3 epochs. It achieved the following results on the test set (Precision/Recall/F1): 0.919/0.925/0.922.
[1] Pablo Gamallo, Marcos Garcia & Patricia Martín-Rodilla, 2019. [NER and open information extraction for Portuguese notebook for IberLEF 2019 Portuguese named entity recognition and relation extraction tasks](https://ceur-ws.org/Vol-2421/NER_Portuguese_paper_6.pdf). In _Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019)
co-located with 35th Conference of the Spanish Society for Natural Language Processing (SEPLN 2019)_: 457-467.
|
marcosgg/bert-small-gl-cased
|
marcosgg
| 2023-02-09T08:33:05Z | 20 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"gl",
"pt",
"arxiv:2106.13553",
"license:agpl-3.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
language:
- gl
- pt
widget:
- text: A mesa estaba feita de [MASK].
license: agpl-3.0
---
# BERT for Galician (Small)
This is a small pre-trained BERT model (6 layers, cased) for Galician (ILG/RAG spelling). It was evaluated on lexical semantics tasks, using a [dataset to identify homonymy and synonymy in context](https://github.com/marcospln/homonymy_acl21), and presented at ACL 2021.
There is also a base version (12 layers, cased): `marcosgg/bert-base-gl-cased`
## Citation
If you use this model, please cite the following [paper](https://arxiv.org/abs/2106.13553):
```
@inproceedings{garcia-2021-exploring,
title = "Exploring the Representation of Word Meanings in Context: {A} Case Study on Homonymy and Synonymy",
author = "Garcia, Marcos",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
year = "2021",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.281",
doi = "10.18653/v1/2021.acl-long.281",
pages = "3625--3640"
}
```
|
DaniilSirota/ppo-SnowballTarget
|
DaniilSirota
| 2023-02-09T08:31:19Z | 7 | 1 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-02-08T14:42:32Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: DaniilSirota/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Asiri123/spotter
|
Asiri123
| 2023-02-09T08:19:47Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-09T08:19:47Z |
---
license: creativeml-openrail-m
---
|
swl-models/zoirun-plus
|
swl-models
| 2023-02-09T08:15:32Z | 0 | 1 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-09T07:03:26Z |
---
license: creativeml-openrail-m
---
|
swl-models/Icarus-v7
|
swl-models
| 2023-02-09T08:07:27Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-09T07:01:19Z |
---
license: creativeml-openrail-m
---
|
jancijen/PPO-LunarLander-v2
|
jancijen
| 2023-02-09T08:06:02Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-09T07:31:34Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 249.76 +/- 20.83
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
espnet/pengcheng_librimix_asr_train_sot_asr_conformer_raw_en_char_sp
|
espnet
| 2023-02-09T08:01:30Z | 2 | 0 |
espnet
|
[
"espnet",
"audio",
"automatic-speech-recognition",
"en",
"dataset:librimix",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] |
automatic-speech-recognition
| 2023-02-09T08:00:31Z |
---
tags:
- espnet
- audio
- automatic-speech-recognition
language: en
datasets:
- librimix
license: cc-by-4.0
---
## ESPnet2 ASR model
### `espnet/pengcheng_librimix_asr_train_sot_asr_conformer_raw_en_char_sp`
This model was trained by Pengcheng Guo using librimix recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html)
if you haven't done that already.
```bash
cd espnet
git checkout fe824770250485b77c68e8ca041922b8779b5c94
pip install -e .
cd egs2/librimix/sot_asr1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/pengcheng_librimix_asr_train_sot_asr_conformer_raw_en_char_sp
```
<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
## Environments
- date: `Mon Feb 6 12:15:26 CST 2023`
- python version: `3.8.13 (default, Mar 28 2022, 11:38:47) [GCC 7.5.0]`
- espnet version: `espnet 202211`
- pytorch version: `pytorch 1.12.1`
- Git hash: ``
- Commit date: ``
## asr_train_sot_conformer_raw_en_char_sp
### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_sot_asr_model_valid.acc.ave/dev|3000|123853|78.3|19.1|2.6|3.0|24.7|99.3|
|decode_sot_asr_model_valid.acc.ave/test|3000|111243|79.6|17.7|2.6|3.0|23.3|98.7|
### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_sot_asr_model_valid.acc.ave/dev|3000|670222|90.1|6.3|3.6|3.5|13.4|99.3|
|decode_sot_asr_model_valid.acc.ave/test|3000|605408|90.7|5.7|3.6|3.3|12.6|98.7|
### TER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
## ASR config
<details><summary>expand</summary>
```
config: conf/tuning/train_sot_asr_conformer.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/asr_train_sot_asr_conformer_raw_en_char_sp
ngpu: 1
seed: 0
num_workers: 8
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 2
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 38867
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 60
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- acc
- max
keep_nbest_models: 10
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 4
no_forward_run: false
resume: true
train_dtype: float32
use_amp: true
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 8000000
valid_batch_bins: null
train_shape_file:
- exp/asr_stats_raw_en_char_sp/train/speech_shape
- exp/asr_stats_raw_en_char_sp/train/text_shape.char
valid_shape_file:
- exp/asr_stats_raw_en_char_sp/valid/speech_shape
- exp/asr_stats_raw_en_char_sp/valid/text_shape.char
batch_type: numel
valid_batch_type: null
fold_length:
- 80000
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train_sp/wav.scp
- speech
- kaldi_ark
- - dump/raw/train_sp/text
- text
- text
valid_data_path_and_name_and_type:
- - dump/raw/dev/wav.scp
- speech
- kaldi_ark
- - dump/raw/dev/text
- text
- text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
lr: 0.0005
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 20000
token_list:
- <blank>
- <unk>
- <sc>
- <space>
- E
- T
- A
- O
- N
- I
- H
- S
- R
- D
- L
- U
- M
- C
- W
- F
- G
- Y
- P
- B
- V
- K
- ''''
- X
- J
- Q
- Z
- <sos/eos>
init: null
input_size: null
ctc_conf:
dropout_rate: 0.0
ctc_type: builtin
reduce: true
ignore_nan_grad: null
zero_infinity: true
joint_net_conf: null
use_preprocessor: true
token_type: char
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
short_noise_thres: 0.5
aux_ctc_tasks: []
frontend: default
frontend_conf:
fs: 16k
specaug: null
specaug_conf: {}
normalize: global_mvn
normalize_conf:
stats_file: exp/asr_stats_raw_en_char_sp/train/feats_stats.npz
model: espnet
model_conf:
ctc_weight: 0.0
lsm_weight: 0.1
length_normalized_loss: false
preencoder: null
preencoder_conf: {}
encoder: conformer
encoder_conf:
output_size: 256
attention_heads: 4
linear_units: 2048
num_blocks: 12
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.1
input_layer: conv2d
normalize_before: true
macaron_style: true
rel_pos_type: latest
pos_enc_layer_type: rel_pos
selfattention_layer_type: rel_selfattn
activation_type: swish
use_cnn_module: true
cnn_module_kernel: 31
postencoder: null
postencoder_conf: {}
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.1
src_attention_dropout_rate: 0.1
preprocessor: multi
preprocessor_conf:
speaker_change_symbol:
- <sc>
required:
- output_dir
- token_list
version: '202211'
distributed: true
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
imjunaidafzal/saqib-t600-u3000-photoreal-9-feb
|
imjunaidafzal
| 2023-02-09T07:58:53Z | 2 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-02-09T07:55:29Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### Fine tune the
### concept name: saqib-t600-u3000-photoreal-9-FEB
### Training steps: 1500
### Text encoder steps: 350% of Training steps
Sample pictures of this concept:
|
kkh4162/xlm-roberta-base-finetuned-panx-de
|
kkh4162
| 2023-02-09T07:52:57Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-02-09T06:50:32Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.de
split: validation
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8638300289723342
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1358
- F1: 0.8638
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 |
| 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 |
| 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
atorre/poca-SoccerTwos-10M
|
atorre
| 2023-02-09T07:47:23Z | 6 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-02-09T07:47:15Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: atorre/poca-SoccerTwos-10M
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
imjunaidafzal/saqib-t1400-u2000-photoreal-9-feb
|
imjunaidafzal
| 2023-02-09T07:26:03Z | 2 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-02-09T07:22:34Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### Fine tune the
### concept name: saqib-t1400-u2000-photoreal-9-feb
### Training steps: 1500
### Text encoder steps: 350% of Training steps
Sample pictures of this concept:
|
Niraya666/ppo-SnowballTarget
|
Niraya666
| 2023-02-09T07:10:48Z | 5 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-02-09T07:10:42Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: Niraya666/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
LHTAVI/wpapstyle2023
|
LHTAVI
| 2023-02-09T07:04:54Z | 14 | 1 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-02-09T06:53:45Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### wpapstyle2023 Dreambooth model trained by LHTAVI with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
.webp)
.webp)
.webp)
.png)
.webp)
.webp)
.webp)
.webp)
.webp)
|
jannikskytt/poca-SoccerTwos
|
jannikskytt
| 2023-02-09T06:50:28Z | 5 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-02-09T06:50:13Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: jannikskytt/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
thanat/mt5-small-finetuned-amazon-en-es
|
thanat
| 2023-02-09T06:42:12Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"mt5",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-02-09T05:12:02Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: thanat/mt5-small-finetuned-amazon-en-es
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# thanat/mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [amazon_reviews_multi](https://huggingface.co/datasets/amazon_reviews_multi) dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.0061
- Validation Loss: 3.3257
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 9.6013 | 4.2024 | 0 |
| 5.8556 | 3.7335 | 1 |
| 5.0930 | 3.5494 | 2 |
| 4.6610 | 3.4502 | 3 |
| 4.3874 | 3.4030 | 4 |
| 4.2103 | 3.3568 | 5 |
| 4.0930 | 3.3311 | 6 |
| 4.0061 | 3.3257 | 7 |
### Framework versions
- Transformers 4.26.0
- TensorFlow 2.9.2
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Jackmin108/ppo-SnowballTarget
|
Jackmin108
| 2023-02-09T06:32:04Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-02-09T06:31:58Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: Jackmin108/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
dfm794/poca-SoccerTwos-2-l
|
dfm794
| 2023-02-09T05:50:03Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-02-09T05:49:55Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: dfm794/poca-SoccerTwos-2-l
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
csebuetnlp/banglat5_small
|
csebuetnlp
| 2023-02-09T05:30:25Z | 79 | 1 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"bn",
"arxiv:2205.11081",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-02-09T05:18:08Z |
---
language:
- bn
licenses:
- cc-by-nc-sa-4.0
---
# BanglaT5
This repository contains the pretrained checkpoint of the model **BanglaT5 (small)**. This is a sequence to sequence transformer model pretrained with the ["Span Corruption"]() objective. Finetuned models using this checkpoint achieve state-of-the-art results on many of the NLG tasks in bengali.
For finetuning on different downstream tasks such as `Machine Translation`, `Abstractive Text Summarization`, `Question Answering` etc., refer to the scripts in the official GitHub [repository](https://github.com/csebuetnlp/BanglaNLG).
**Note**: This model was pretrained using a specific normalization pipeline available [here](https://github.com/csebuetnlp/normalizer). All finetuning scripts in the official GitHub repository use this normalization by default. If you need to adapt the pretrained model for a different task make sure the text units are normalized using this pipeline before tokenizing to get best results. A basic example is given below:
## Using this model in `transformers` (tested on 4.11.0.dev0)
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from normalizer import normalize # pip install git+https://github.com/csebuetnlp/normalizer
model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_small")
tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_small", use_fast=False)
input_sentence = ""
input_ids = tokenizer(normalize(input_sentence), return_tensors="pt").input_ids
generated_tokens = model.generate(input_ids)
decoded_tokens = tokenizer.batch_decode(generated_tokens)[0]
print(decoded_tokens)
```
## Benchmarks
* Supervised fine-tuning
| Model | Params | MT (SacreBLEU) | TS (ROUGE-2) | QA (EM/F1) | MD (SacreBLEU-1) | NHG (ROUGE-2) | XLS (ROUGE-2) | BNLG score |
|--------------------|------------|-----------------------|------------------------|-------------------|--------------------|----------------|----------------|---------------|
|[mT5 (base)](https://huggingface.co/google/mt5-base) | 582M | 36.6/22.5 | 10.3 | 59.0/65.3 | 17.5 | 9.6 | 2.7/0.7 | 24.9 |
|[XLM-ProphetNet](https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased) | 616M | 23.3/16.4 | 7.8 | 53.0/57.3 | 20.0 | 9.5 | 6.2/2.7 | 21.8 |
|[mBART-50](https://huggingface.co/facebook/mbart-large-50) | 611M | 23.6/16.7 | 10.4 | 53.4/58.9 | 18.5 | 11.2 | 5.4/3.7 | 22.4 |
|[IndicBART](https://huggingface.co/ai4bharat/IndicBART) | 244M | 22.7/13.1 | 8.1 | 53.3/58.8 | 14.8 | 7.9 | 6.3/2.5 | 20.8 |
|[BanglaT5](https://huggingface.co/csebuetnlp/banglat5) | 247M | 38.8/25.2 | 13.7 | 68.5/74.8 | 19.0 | 13.8 | 6.4/4.0 | 29.4 |
The benchmarking datasets are as follows:
* **MT:** **[Machine Translation](https://github.com/csebuetnlp/banglanmt#datasets)**
* **TS:** **[Abstractive Text Summarization](https://huggingface.co/datasets/csebuetnlp/xlsum)**
* **QA:** **[Question Answering](https://huggingface.co/datasets/csebuetnlp/squad_bn)**
* **MD:** **[Multi Turn Dialogue Generation](https://drive.google.com/file/d/1qPmNN6qA4evbh4cD_BDDTCFOwMu4H2JS/view?usp=sharing)**
* **NHG:** **[News Headline Generation](https://huggingface.co/datasets/csebuetnlp/xlsum)**
* **XLS:** **[Cross-lingual Summarization](https://huggingface.co/datasets/csebuetnlp/CrossSum)**
## Citation
If you use this model, please cite the following paper:
```
@article{bhattacharjee2022banglanlg,
author = {Abhik Bhattacharjee and Tahmid Hasan and Wasi Uddin Ahmad and Rifat Shahriyar},
title = {BanglaNLG: Benchmarks and Resources for Evaluating Low-Resource Natural Language Generation in Bangla},
journal = {CoRR},
volume = {abs/2205.11081},
year = {2022},
url = {https://arxiv.org/abs/2205.11081},
eprinttype = {arXiv},
eprint = {2205.11081}
}
```
If you use the normalization module, please cite the following paper:
```
@inproceedings{hasan-etal-2020-low,
title = "Not Low-Resource Anymore: Aligner Ensembling, Batch Filtering, and New Datasets for {B}engali-{E}nglish Machine Translation",
author = "Hasan, Tahmid and
Bhattacharjee, Abhik and
Samin, Kazi and
Hasan, Masum and
Basak, Madhusudan and
Rahman, M. Sohel and
Shahriyar, Rifat",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-main.207",
doi = "10.18653/v1/2020.emnlp-main.207",
pages = "2612--2623",
abstract = "Despite being the seventh most widely spoken language in the world, Bengali has received much less attention in machine translation literature due to being low in resources. Most publicly available parallel corpora for Bengali are not large enough; and have rather poor quality, mostly because of incorrect sentence alignments resulting from erroneous sentence segmentation, and also because of a high volume of noise present in them. In this work, we build a customized sentence segmenter for Bengali and propose two novel methods for parallel corpus creation on low-resource setups: aligner ensembling and batch filtering. With the segmenter and the two methods combined, we compile a high-quality Bengali-English parallel corpus comprising of 2.75 million sentence pairs, more than 2 million of which were not available before. Training on neural models, we achieve an improvement of more than 9 BLEU score over previous approaches to Bengali-English machine translation. We also evaluate on a new test set of 1000 pairs made with extensive quality control. We release the segmenter, parallel corpus, and the evaluation set, thus elevating Bengali from its low-resource status. To the best of our knowledge, this is the first ever large scale study on Bengali-English machine translation. We believe our study will pave the way for future research on Bengali-English machine translation as well as other low-resource languages. Our data and code are available at https://github.com/csebuetnlp/banglanmt.",
}
```
|
juanmi1234/Reinforce-Pixelcopter-PLE-v0
|
juanmi1234
| 2023-02-09T04:55:28Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-09T04:55:24Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 23.70 +/- 26.66
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
jojoUla/bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30
|
jojoUla
| 2023-02-09T04:43:12Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-02-09T03:52:16Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30
This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-no-label-40) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6520
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 30
- eval_batch_size: 30
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.8321 | 1.0 | 2 | 4.3250 |
| 3.383 | 2.0 | 4 | 2.4023 |
| 1.9548 | 3.0 | 6 | 1.2925 |
| 1.4856 | 4.0 | 8 | 1.5152 |
| 0.9588 | 5.0 | 10 | 1.7731 |
| 1.2668 | 6.0 | 12 | 1.3830 |
| 0.8441 | 7.0 | 14 | 1.9760 |
| 1.0173 | 8.0 | 16 | 1.2364 |
| 0.6814 | 9.0 | 18 | 1.1771 |
| 0.9044 | 10.0 | 20 | 1.4721 |
| 0.6889 | 11.0 | 22 | 0.8518 |
| 0.5845 | 12.0 | 24 | 0.6993 |
| 0.4068 | 13.0 | 26 | 1.1771 |
| 0.5957 | 14.0 | 28 | 0.5895 |
| 0.4277 | 15.0 | 30 | 0.5326 |
| 0.3736 | 16.0 | 32 | 1.0893 |
| 0.413 | 17.0 | 34 | 1.3267 |
| 0.5718 | 18.0 | 36 | 1.0331 |
| 0.3892 | 19.0 | 38 | 1.0793 |
| 0.3913 | 20.0 | 40 | 0.8742 |
| 0.4794 | 21.0 | 42 | 1.1264 |
| 0.4626 | 22.0 | 44 | 1.1857 |
| 0.2683 | 23.0 | 46 | 1.5181 |
| 0.3436 | 24.0 | 48 | 1.4419 |
| 0.3793 | 25.0 | 50 | 1.4198 |
| 0.356 | 26.0 | 52 | 1.1776 |
| 0.2189 | 27.0 | 54 | 0.7166 |
| 0.286 | 28.0 | 56 | 0.7601 |
| 0.3681 | 29.0 | 58 | 1.2592 |
| 0.5858 | 30.0 | 60 | 0.6520 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
PecanPi/q-taxi-v3
|
PecanPi
| 2023-02-09T04:34:24Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-09T04:34:20Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.73
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="PecanPi/q-taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
SirVeggie/wlop
|
SirVeggie
| 2023-02-09T04:33:46Z | 0 | 41 | null |
[
"art",
"license:creativeml-openrail-m",
"region:us"
] | null | 2022-10-16T00:53:46Z |
---
license: creativeml-openrail-m
tags:
- art
---
# WLOP stable diffusion model
Original artist: WLOP\
Patreon: https://www.patreon.com/wlop/posts
## Basic explanation
Token and Class words are what guide the AI to produce images similar to the trained style/object/character.
Include any mix of these words in the prompt to produce verying results, or exclude them to have a less pronounced effect.
There is usually at least a slight stylistic effect even without the words, but it is recommended to include at least one.
Adding token word/phrase class word/phrase at the start of the prompt in that order produces results most similar to the trained concept, but they can be included elsewhere as well. Some models produce better results when not including all token/class words.
For model merging I recommend using the wlop.ckpt or wlop-any model.
### Model: AbyssalWlop - (current best version)
The model works without a keyword, but you can affect the style with the keywords `m_wlop illustration style`, which are used by the merged models.
The model works best at clip skip 2 and 3.
Mix using [AbyssOrangeMix2_nsfw](https://huggingface.co/WarriorMama777/OrangeMixs), wlop and wlop-any models to create a stable and accurate wlop style.
The recipe itself is quite simple.
```
orange-wlop = AbyssOrangeMix2_nsfw + (wlop-any - anything) @1.0
orange-wlop2 = AbyssOrangeMix2_nsfw + (wlop - wd1.3) @1.0
AbyssalWlop = orange-wlop + orange-wlop2 @0.5
```
Image comparisons between models, more models located under the image grids:


### Model: wlop-any
Has the most consistent wlop style, but difficult to get good results
```
token: m_wlop
class: illustration style
base: anything v3
images: 120
steps: 12000
```
### Model: wlop-anymix
Custom berry mix using wlop-any as last step. Great quality if prompted correctly, but loses wlop style. Is influenced by the style though.
### Model: wlop
This version is highly overfit, and not suitable for standalone use. Merge with another model to use.
```
token: m_wlop
class: illustration style
base: waifu diffusion 1.3-full
images: 160
steps: 16000
```
### Model: wlopmix
Custom berry mix using wlop as last step. Pretty similar to wlop-anymix, though there are some flavor differences.
### Model: wlop_e5
Old wlop model, I guess it works ok. Decent wlop style reproduction if you can get good quality out of it.
```
token: m_concept
class: 1girl
base: waifu diffusion 1.3-e5
```
## License
This embedding is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage.
The CreativeML OpenRAIL License specifies:
1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content
2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully)
[Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
|
shafa/bert-finetuned-squad
|
shafa
| 2023-02-09T04:26:57Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-02-08T02:49:42Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
juanmi1234/Reinforce-CartPole
|
juanmi1234
| 2023-02-09T04:14:22Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-09T04:14:14Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
rishabhjain16/whisper_tiny_en_to_pf10h
|
rishabhjain16
| 2023-02-09T04:12:50Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-02-08T15:16:22Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-tiny.en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-tiny.en
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2166
- Wer: 6.5585
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1174 | 10.0 | 500 | 0.1975 | 6.4170 |
| 0.0034 | 20.0 | 1000 | 0.1896 | 5.2259 |
| 0.0012 | 30.01 | 1500 | 0.2040 | 6.6478 |
| 0.0007 | 40.01 | 2000 | 0.2080 | 6.6404 |
| 0.0005 | 51.0 | 2500 | 0.2117 | 6.5957 |
| 0.0004 | 61.0 | 3000 | 0.2139 | 6.5510 |
| 0.0003 | 71.01 | 3500 | 0.2162 | 6.5883 |
| 0.0003 | 81.01 | 4000 | 0.2166 | 6.5585 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2
|
UtopiansRareTruth/poca-SoccerTwos
|
UtopiansRareTruth
| 2023-02-09T04:03:42Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-02-08T08:25:46Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: UtopiansRareTruth/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
espnet/pengcheng_librimix_asr_train_sot_asr_conformer_wavlm_raw_en_char_sp
|
espnet
| 2023-02-09T03:21:16Z | 5 | 0 |
espnet
|
[
"espnet",
"audio",
"automatic-speech-recognition",
"en",
"dataset:librimix",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] |
automatic-speech-recognition
| 2023-02-09T03:19:33Z |
---
tags:
- espnet
- audio
- automatic-speech-recognition
language: en
datasets:
- librimix
license: cc-by-4.0
---
## ESPnet2 ASR model
### `espnet/pengcheng_librimix_asr_train_sot_asr_conformer_wavlm_raw_en_char_sp`
This model was trained by Pengcheng Guo using librimix recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html)
if you haven't done that already.
```bash
cd espnet
git checkout fe824770250485b77c68e8ca041922b8779b5c94
pip install -e .
cd egs2/librimix/sot_asr1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/pengcheng_librimix_asr_train_sot_asr_conformer_wavlm_raw_en_char_sp
```
<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
## Environments
- date: `Thu Dec 29 13:36:46 CST 2022`
- python version: `3.8.13 (default, Mar 28 2022, 11:38:47) [GCC 7.5.0]`
- espnet version: `espnet 202211`
- pytorch version: `pytorch 1.12.1`
- Git hash: ``
- Commit date: ``
## asr_train_sot_asr_conformer_wavlm_raw_en_char_sp
### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_sot_asr_model_valid.acc.ave/dev|3000|123853|82.9|15.1|2.0|2.4|19.4|97.1|
|decode_sot_asr_model_valid.acc.ave/test|3000|111243|85.1|13.0|1.9|2.1|17.1|96.1|
### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_sot_asr_model_valid.acc.ave/dev|3000|670222|92.2|4.9|2.9|2.7|10.6|97.1|
decode_sot_asr_model_valid.acc.ave/test|3000|605408|93.2|4.1|2.6|2.3|9.1|96.1|
### TER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
## ASR config
<details><summary>expand</summary>
```
config: conf/tunining/train_sot_asr_conformer_wavlm.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/asr_train_sot_asr_conformer_wavlm_raw_en_char_sp
ngpu: 1
seed: 0
num_workers: 8
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 2
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 38431
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 60
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- acc
- max
keep_nbest_models: 10
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 4
no_forward_run: false
resume: true
train_dtype: float32
use_amp: true
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param:
- frontend.upstream
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 6000000
valid_batch_bins: null
train_shape_file:
- exp/asr_stats_raw_en_char_sp/train/speech_shape
- exp/asr_stats_raw_en_char_sp/train/text_shape.char
valid_shape_file:
- exp/asr_stats_raw_en_char_sp/valid/speech_shape
- exp/asr_stats_raw_en_char_sp/valid/text_shape.char
batch_type: numel
valid_batch_type: null
fold_length:
- 80000
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train_sp/wav.scp
- speech
- kaldi_ark
- - dump/raw/train_sp/text
- text
- text
valid_data_path_and_name_and_type:
- - dump/raw/dev/wav.scp
- speech
- kaldi_ark
- - dump/raw/dev/text
- text
- text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 0.0005
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 20000
token_list:
- <blank>
- <unk>
- <sc>
- <space>
- E
- T
- A
- O
- N
- I
- H
- S
- R
- D
- L
- U
- M
- C
- W
- F
- G
- Y
- P
- B
- V
- K
- ''''
- X
- J
- Q
- Z
- <sos/eos>
init: null
input_size: null
ctc_conf:
dropout_rate: 0.0
ctc_type: builtin
reduce: true
ignore_nan_grad: null
zero_infinity: true
joint_net_conf: null
use_preprocessor: true
token_type: char
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
short_noise_thres: 0.5
frontend: s3prl
frontend_conf:
frontend_conf:
upstream: wavlm_local
path_or_url: /home/work_nfs6/pcguo/asr/librimix/hub/wavlm_large.pt
download_dir: ./hub
multilayer_feature: true
fs: 16k
specaug: null
specaug_conf: {}
normalize: utterance_mvn
normalize_conf: {}
model: espnet
model_conf:
ctc_weight: 0.0
lsm_weight: 0.1
length_normalized_loss: false
preencoder: linear
preencoder_conf:
input_size: 1024
output_size: 128
encoder: conformer
encoder_conf:
output_size: 256
attention_heads: 4
linear_units: 2048
num_blocks: 12
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.1
input_layer: conv2d2
normalize_before: true
macaron_style: true
rel_pos_type: latest
pos_enc_layer_type: rel_pos
selfattention_layer_type: rel_selfattn
activation_type: swish
use_cnn_module: true
cnn_module_kernel: 31
postencoder: null
postencoder_conf: {}
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.1
src_attention_dropout_rate: 0.1
preprocessor: multi
preprocessor_conf:
speaker_change_symbol:
- <sc>
required:
- output_dir
- token_list
version: '202211'
distributed: true
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
Tune-A-Video-library/redshift-man-skiing
|
Tune-A-Video-library
| 2023-02-09T03:06:45Z | 26 | 14 |
diffusers
|
[
"diffusers",
"tune-a-video",
"text-to-video",
"arxiv:2212.11565",
"arxiv:2112.10752",
"base_model:nitrosocke/redshift-diffusion",
"base_model:finetune:nitrosocke/redshift-diffusion",
"license:creativeml-openrail-m",
"diffusers:TuneAVideoPipeline",
"region:us"
] |
text-to-video
| 2023-02-07T03:09:46Z |
---
license: creativeml-openrail-m
base_model: nitrosocke/redshift-diffusion
training_prompt: A man is skiing.
tags:
- tune-a-video
- text-to-video
- diffusers
inference: false
---
# Tune-A-Video - Redshift
## Model Description
- Base model: [nitrosocke/redshift-diffusion](https://huggingface.co/nitrosocke/redshift-diffusion)
- Training prompt: a man is skiing.

## Samples

Test prompt: (redshift style) [spider man/black widow/batman/hulk] is skiing.
## Usage
Clone the [github repo](https://github.com/showlab/Tune-A-Video)
```bash
git clone https://github.com/showlab/Tune-A-Video.git
```
Run inference code
```python
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.models.unet import UNet3DConditionModel
from tuneavideo.util import save_videos_grid
import torch
pretrained_model_path = "nitrosocke/redshift-diffusion"
unet_model_path = "Tune-A-Video-library/redshift-man-skiing"
unet = UNet3DConditionModel.from_pretrained(unet_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda')
pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
prompt = "(redshift style) spider man is skiing"
video = pipe(prompt, video_length=8, height=512, width=512, num_inference_steps=50, guidance_scale=7.5).videos
save_videos_grid(video, f"./{prompt}.gif")
```
## Related Papers:
- [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
- [Stable Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models
|
Isaacp/Reinforce-pixelcopter
|
Isaacp
| 2023-02-09T02:34:28Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-09T02:34:20Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-pixelcopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 39.90 +/- 33.12
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
SuryaaSeran/bert-base-uncased-finetuned-swag
|
SuryaaSeran
| 2023-02-09T01:56:02Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"multiple-choice",
"generated_from_trainer",
"dataset:dream",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
multiple-choice
| 2023-02-09T00:17:13Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- dream
metrics:
- accuracy
model-index:
- name: bert-base-uncased-finetuned-swag
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-swag
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the dream dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0986
- Accuracy: 0.3642
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1039 | 1.0 | 3058 | 1.0983 | 0.3779 |
| 1.0995 | 2.0 | 6116 | 1.0986 | 0.3544 |
| 1.1029 | 3.0 | 9174 | 1.0986 | 0.3642 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
bbbbearczx/bert-finetuned-squad
|
bbbbearczx
| 2023-02-09T01:46:18Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-02-08T05:13:44Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
dfm794/poca-SoccerTwos-2_6_3-l
|
dfm794
| 2023-02-09T00:50:22Z | 6 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-02-09T00:50:14Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: dfm794/poca-SoccerTwos-2_6_3-l
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
yizhangliu/poca-SoccerTwos-v4
|
yizhangliu
| 2023-02-09T00:23:06Z | 15 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-02-09T00:22:58Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: yizhangliu/poca-SoccerTwos-v4
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
petergoldstein/Taxi-v3-1M
|
petergoldstein
| 2023-02-09T00:09:34Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-09T00:09:30Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3-1M
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="petergoldstein/Taxi-v3-1M", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
petergoldstein/q-FrozenLake-v1-4x4-noSlippery
|
petergoldstein
| 2023-02-08T23:52:21Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T23:52:17Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="petergoldstein/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
deetsml/dummy-model
|
deetsml
| 2023-02-08T23:37:22Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"feature-extraction",
"text-classification",
"en",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-02-07T21:25:20Z |
---
tags:
- text-classification
- transformers
language:
- en
metrics:
- accuracy
library_name: transformers
pipeline_tag: text-classification
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 14756 with parameters:
```
{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "accuracy",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 14756,
"warmup_steps": 1476,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BartModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
jha2ee/riffusion-model-db
|
jha2ee
| 2023-02-08T23:10:45Z | 4 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-02-08T23:02:24Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### riffusion_model-db Dreambooth model trained by jha2ee with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
Jomppe2/Face
|
Jomppe2
| 2023-02-08T22:45:21Z | 0 | 0 | null |
[
"arxiv:1910.09700",
"region:us"
] | null | 2023-02-08T22:43:05Z |
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
{}
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
# Model Details
## Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
## Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
## Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
## Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
# Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
## Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
## Training Procedure [optional]
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
### Preprocessing
[More Information Needed]
### Speeds, Sizes, Times
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
## Testing Data, Factors & Metrics
### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
## Results
[More Information Needed]
### Summary
# Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
# Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
# Technical Specifications [optional]
## Model Architecture and Objective
[More Information Needed]
## Compute Infrastructure
[More Information Needed]
### Hardware
[More Information Needed]
### Software
[More Information Needed]
# Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
# Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
# More Information [optional]
[More Information Needed]
# Model Card Authors [optional]
[More Information Needed]
# Model Card Contact
[More Information Needed]
|
ivi137/Taxi-v3
|
ivi137
| 2023-02-08T22:40:42Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T22:40:39Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="ivi137/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Nyaaneet/donut-cord
|
Nyaaneet
| 2023-02-08T22:39:37Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vision-encoder-decoder",
"image-text-to-text",
"generated_from_trainer",
"license:mit",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2023-02-06T17:19:06Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: donut-cord
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# donut-cord
This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base).
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
DeepaKrish/roberta-base-squad2-finetuned
|
DeepaKrish
| 2023-02-08T22:39:26Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"generated_from_trainer",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-02-08T21:53:41Z |
---
license: cc-by-4.0
tags:
- generated_from_trainer
model-index:
- name: roberta-base-squad2-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-squad2-finetuned
This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0010
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 27 | 0.0023 |
| No log | 2.0 | 54 | 0.0010 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.9.0
- Datasets 2.5.1
- Tokenizers 0.13.2
|
rerdscf/Embed
|
rerdscf
| 2023-02-08T22:37:40Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-08T15:31:05Z |
---
license: creativeml-openrail-m
---
|
Isaacp/Reinforce-cartpole
|
Isaacp
| 2023-02-08T22:23:25Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T22:23:13Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-cartpole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
eduiqe/ppo-LunarLander-v2
|
eduiqe
| 2023-02-08T22:12:19Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-23T02:07:02Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 261.92 +/- 20.57
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
pfunk/Pong-v4-DQPN_p500_pt0.1-seed1
|
pfunk
| 2023-02-08T21:55:29Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Pong-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T21:55:07Z |
---
tags:
- Pong-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v4
type: Pong-v4
metrics:
- type: mean_reward
value: -18.10 +/- 1.14
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p500_pt0.1.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p500_pt0.1]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p500_pt0.1 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_pt0.1-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_pt0.1-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_pt0.1-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p500_pt0.1 --start-policy-f 500000 --end-policy-f 500000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 500000,
'env_id': 'Pong-v4',
'evaluation_fraction': 1.0,
'exp_name': 'DQPN_p500_pt0.1',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 0.1,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 500000,
'target_network_frequency': 1000,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
kmposkid1/q-FrozenLake-v1-4x4-noSlippery
|
kmposkid1
| 2023-02-08T21:32:22Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T21:32:19Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="kmposkid1/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
LarryAIDraw/yurucampInuyamaaoi_yurucampInuyamaaoiV1
|
LarryAIDraw
| 2023-02-08T21:09:52Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-07T17:07:20Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/7033/yurucampinuyamaaoi
|
huggingtweets/101dadjokes-dadsjokes
|
huggingtweets
| 2023-02-08T20:48:16Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-02-08T20:45:18Z |
---
language: en
thumbnail: http://www.huggingtweets.com/101dadjokes-dadsjokes/1675889291789/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1406653045757317121/YCS9YykL_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/641271414/dad_jokes_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Dad Jokes & Dad Jokes</div>
<div style="text-align: center; font-size: 14px;">@101dadjokes-dadsjokes</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Dad Jokes & Dad Jokes.
| Data | Dad Jokes | Dad Jokes |
| --- | --- | --- |
| Tweets downloaded | 184 | 2043 |
| Retweets | 14 | 0 |
| Short tweets | 10 | 123 |
| Tweets kept | 160 | 1920 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/od2iwqt2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @101dadjokes-dadsjokes's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7ruisgab) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7ruisgab/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/101dadjokes-dadsjokes')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
JD97/Riffusion_sentiment_LoRA
|
JD97
| 2023-02-08T20:29:17Z | 10 | 2 |
diffusers
|
[
"diffusers",
"stable-diffusion",
"diffusion",
"riffusion",
"text-to-audio",
"text-to-image",
"en",
"dataset:gwkim22/spectro_caption_dataset",
"dataset:Chr0my/Epidemic_music",
"license:mit",
"region:us"
] |
text-to-image
| 2023-02-08T15:36:09Z |
---
license: mit
datasets:
- gwkim22/spectro_caption_dataset
- Chr0my/Epidemic_music
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- stable-diffusion
- diffusion
- riffusion
- text-to-audio
---
### Introduce
Riffusion with LoRA, fine-tuned with <code>Chr0my/Epidemic_music</code> <br/>
This model was used during Naver Connect BoostCamp AI tech 4th, NLP Track
### Citation
~~~
@article{Forsgren_Martiros_2022,
author = {Forsgren, Seth* and Martiros, Hayk*},
title = {{Riffusion - Stable diffusion for real-time music generation}},
url = {https://riffusion.com/about},
year = {2022}
}
~~~
|
mfrayha/marcelo
|
mfrayha
| 2023-02-08T20:03:59Z | 6 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-02-08T19:50:13Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### Marcelo Dreambooth model trained by mfrayha with [buildspace's DreamBooth](https://colab.research.google.com/github/buildspace/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb) notebook
Build your own using the [AI Avatar project](https://buildspace.so/builds/ai-avatar)!
To get started head over to the [project dashboard](https://buildspace.so/p/build-ai-avatars).
Sample pictures of this concept:
|
Luisfrdz/PPO-RL-1-LunarLander-v3
|
Luisfrdz
| 2023-02-08T20:01:54Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T18:23:15Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO-RL-Agent
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 175.25 +/- 116.16
name: mean_reward
verified: false
---
# **PPO-RL-Agent** Agent playing **LunarLander-v2**
This is a trained model of a **PPO-RL-Agent** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
sgoodfriend/PPO-sb3-LunarLander-v2
|
sgoodfriend
| 2023-02-08T19:58:11Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T19:02:31Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 290.45 +/- 15.38
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
johko/mcc_co3dv2_all_categories
|
johko
| 2023-02-08T19:57:50Z | 0 | 1 | null |
[
"3D Reconstruction",
"dataset:CO3Dv2",
"arxiv:2301.08247",
"license:apache-2.0",
"region:us"
] | null | 2023-02-08T19:42:57Z |
---
license: apache-2.0
datasets:
- CO3Dv2
tags:
- 3D Reconstruction
---
# Multiview Compressive Coding (MCC)
## Model Description
These are model weights originally provided by the authors of the paper [Multiview Compressive Coding (MCC)](https://arxiv.org/abs/2301.08247).
Their method aims to create a 3D multiview object from a single RGB-D image.
## Datasets
The authors trained the model on [the CO3D v2 dataset](https://ai.facebook.com/datasets/CO3D-dataset/)
|
pfunk/Pong-v4-DQPN_p50_e0.25-seed1
|
pfunk
| 2023-02-08T19:11:53Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Pong-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T19:11:32Z |
---
tags:
- Pong-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v4
type: Pong-v4
metrics:
- type: mean_reward
value: 1.60 +/- 6.87
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_e0.25.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p50_e0.25]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p50_e0.25 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.25-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.25-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.25-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p50_e0.25 --start-policy-f 50000 --end-policy-f 1000 --evaluation-fraction 0.25 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 1000,
'env_id': 'Pong-v4',
'evaluation_fraction': 0.25,
'exp_name': 'DQPN_p50_e0.25',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 1.0,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 50000,
'target_network_frequency': 1000,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
augustogeog/q-Taxi-v3
|
augustogeog
| 2023-02-08T19:06:32Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T19:06:28Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.32 +/- 2.89
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="augustogeog/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
albertqueralto/ppo-SnowballTarget
|
albertqueralto
| 2023-02-08T18:54:48Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-02-08T18:54:42Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: albertqueralto/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
sanali209/imclasif-races-0-v001
|
sanali209
| 2023-02-08T18:46:51Z | 20 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-02-08T05:38:10Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: imclasif-races-0-v001
results:
- task:
name: Image genre Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.6373626589775085
---
# imclasif-races-0-v001
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
|
kitintouch/kit-the-bear
|
kitintouch
| 2023-02-08T18:44:56Z | 0 | 0 | null |
[
"text-to-image",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-02-08T18:44:30Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
widget:
- text: kitthebear
---
### kit the bear Dreambooth model trained by kitintouch with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Sample pictures of:
kitthebear (use that on your prompt)

|
mushrafi88/T5-asr-corrector
|
mushrafi88
| 2023-02-08T18:31:33Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-01-03T04:48:36Z |
---
tags:
- generated_from_trainer
model-index:
- name: T5-asr-corrector
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# T5-asr-corrector
This model is a fine-tuned version of [flax-community/bengali-t5-base](https://huggingface.co/flax-community/bengali-t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4683
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6804 | 0.15 | 500 | 0.8576 |
| 0.792 | 0.31 | 1000 | 0.6556 |
| 0.6553 | 0.46 | 1500 | 0.5640 |
| 0.5901 | 0.62 | 2000 | 0.5114 |
| 0.5454 | 0.77 | 2500 | 0.4815 |
| 0.53 | 0.93 | 3000 | 0.4683 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
tomasabril/bonusunit1
|
tomasabril
| 2023-02-08T18:04:09Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-02-08T18:04:01Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: tomasabril/bonusunit1
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
apatidar0/pegasus_conversation-summ
|
apatidar0
| 2023-02-08T18:01:14Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"pegasus",
"text2text-generation",
"generated_from_trainer",
"dataset:samsum",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-02-08T17:53:42Z |
---
tags:
- generated_from_trainer
datasets:
- samsum
model-index:
- name: pegasus_conversation-summ
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pegasus_conversation-summ
This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the samsum dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
pfunk/Pong-v4-DQPN_p50_e0.10-seed1
|
pfunk
| 2023-02-08T17:41:56Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Pong-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T17:41:35Z |
---
tags:
- Pong-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v4
type: Pong-v4
metrics:
- type: mean_reward
value: 10.00 +/- 5.67
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_e0.10.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p50_e0.10]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p50_e0.10 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p50_e0.10 --start-policy-f 50000 --end-policy-f 1000 --evaluation-fraction 0.10 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 1000,
'env_id': 'Pong-v4',
'evaluation_fraction': 0.1,
'exp_name': 'DQPN_p50_e0.10',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 1.0,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 50000,
'target_network_frequency': 1000,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
GFMRommel/Vergelltungswaffe1
|
GFMRommel
| 2023-02-08T17:27:57Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-08T10:14:26Z |
---
license: creativeml-openrail-m
---
|
vvn0/a2c-PandaReachDense-v2
|
vvn0
| 2023-02-08T17:21:05Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T17:18:35Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -2.70 +/- 0.67
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
fathyshalab/massive_datetime-roberta-large-v1-2-0.82
|
fathyshalab
| 2023-02-08T17:16:07Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-08T17:15:45Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/massive_datetime-roberta-large-v1-2-0.82
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/massive_datetime-roberta-large-v1-2-0.82")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
yonas/stt_rw_sw_lg_conformer_ctc_large
|
yonas
| 2023-02-08T17:11:56Z | 4 | 0 |
nemo
|
[
"nemo",
"automatic-speech-recognition",
"speech",
"ASR",
"Kinyarwanda",
"Swahili",
"Luganda",
"Multilingual",
"audio",
"CTC",
"Conformer",
"Transformer",
"NeMo",
"pytorch",
"rw",
"dataset:mozilla-foundation/common_voice_11_0",
"license:cc-by-4.0",
"region:us"
] |
automatic-speech-recognition
| 2023-02-08T17:07:03Z |
---
language:
- rw
license: cc-by-4.0
library_name: nemo
datasets:
- mozilla-foundation/common_voice_11_0
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- ASR
- Kinyarwanda
- Swahili
- Luganda
- Multilingual
- audio
- CTC
- Conformer
- Transformer
- NeMo
- pytorch
model-index:
- name: stt_rw_sw_lg_conformer_ctc_large
results: []
---
## Model Overview
<DESCRIBE IN ONE LINE THE MODEL AND ITS USE>
## NVIDIA NeMo: Training
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
```
pip install nemo_toolkit['all']
```
## How to Use this Model
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
### Automatically instantiate the model
```python
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.ASRModel.from_pretrained("yonas/stt_rw_sw_lg_conformer_ctc_large")
```
### Transcribing using Python
First, let's get a sample
```
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
```
Then simply do:
```
asr_model.transcribe(['2086-149220-0033.wav'])
```
### Transcribing many audio files
```shell
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="yonas/stt_rw_sw_lg_conformer_ctc_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
```
### Input
This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
### Output
This model provides transcribed speech as a string for a given audio sample.
## Model Architecture
<ADD SOME INFORMATION ABOUT THE ARCHITECTURE>
## Training
<ADD INFORMATION ABOUT HOW THE MODEL WAS TRAINED - HOW MANY EPOCHS, AMOUNT OF COMPUTE ETC>
### Datasets
<LIST THE NAME AND SPLITS OF DATASETS USED TO TRAIN THIS MODEL (ALONG WITH LANGUAGE AND ANY ADDITIONAL INFORMATION)>
## Performance
<LIST THE SCORES OF THE MODEL -
OR
USE THE Hugging Face Evaluate LiBRARY TO UPLOAD METRICS>
## Limitations
<DECLARE ANY POTENTIAL LIMITATIONS OF THE MODEL>
Eg:
Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
## References
<ADD ANY REFERENCES HERE AS NEEDED>
[1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
|
zmaro/zmaroavatar
|
zmaro
| 2023-02-08T17:09:36Z | 1 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-02-08T17:07:34Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### zmaroavatar Dreambooth model trained by zmaro with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
Hamid-reza/mt5-small-finetuned-digikala-titleGen
|
Hamid-reza
| 2023-02-08T17:09:14Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mt5",
"text2text-generation",
"summarization",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2023-02-07T19:19:31Z |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-digikala-titleGen
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-digikala-titleGen
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8801
- Rouge1: 70.3489
- Rouge2: 43.245
- Rougel: 34.6608
- Rougelsum: 34.6608
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 7.5555 | 1.0 | 847 | 3.2594 | 45.6729 | 19.6446 | 31.5974 | 31.5974 |
| 4.1386 | 2.0 | 1694 | 3.0347 | 58.3021 | 32.8172 | 33.9012 | 33.9012 |
| 3.7449 | 3.0 | 2541 | 2.9665 | 66.731 | 40.8991 | 34.2203 | 34.2203 |
| 3.5575 | 4.0 | 3388 | 2.9102 | 65.598 | 39.4081 | 34.5116 | 34.5116 |
| 3.4062 | 5.0 | 4235 | 2.8944 | 69.6081 | 42.8707 | 34.6622 | 34.6622 |
| 3.3408 | 6.0 | 5082 | 2.8888 | 70.2123 | 42.8639 | 34.5669 | 34.5669 |
| 3.3025 | 7.0 | 5929 | 2.8801 | 70.3489 | 43.245 | 34.6608 | 34.6608 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
YoriV/Reinforce-CartPole-v1
|
YoriV
| 2023-02-08T17:07:24Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T17:07:12Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 477.90 +/- 31.31
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Phantom-Artist/phantom-diffusion-s3-the-last-8
|
Phantom-Artist
| 2023-02-08T16:52:18Z | 0 | 4 | null |
[
"art",
"en",
"ja",
"dataset:Phantom-Artist/phantom-diffusion-s3-the-last-8-dataset",
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-08T12:28:01Z |
---
license: creativeml-openrail-m
datasets:
- Phantom-Artist/phantom-diffusion-s3-the-last-8-dataset
language:
- en
- ja
tags:
- art
---
The final 8 models that are trained over [hakurei's Waifu Diffusion](https://huggingface.co/hakurei/waifu-diffusion).
Each model was trained on a notable Japanese (and Taiwanese, I think) AI artist's works using dreambooth, with 30 of their works gained mainly from twitter (except for sabakichi, which I collected the dataset from pixiv).
It tooks 1000 steps to train each model, at a learning rate of 5-e6. I have shared the notebook [here](https://huggingface.co/Phantom-Artist/phantom-diffusion/blob/main/DreamBooth_Stable_Diffusion_works_with_SD_2.ipynb) in case you want to try out additional training.
Some are good at backgrounds, while others can generate a semi-realistic style as seen in many SD 1.5 anime/waifu models (and some might be a bit overfitted).
The dataset is published [here](https://huggingface.co/datasets/Phantom-Artist/phantom-diffusion-s3-the-last-8-dataset), and the full members are listed [here](https://twitter.com/i/lists/1622444997240037377) (special thanks to Yunyalula for creating it!).
# For those who are against generative AIs
You can see that now they are the target. Take our tool. Now is the time for pay back. Generate the images in their styles, and bring back the power you had to yourself.
# For those who support the development of generative AIs
Some of the AI artists, even though they take advantage of the open strategy of Stable Diffusion, now tend to hide their prompts, trying to monopolize their style (I'm not saying the AI artists I trained are as such, to be sure).
To continue protecting our values and beliefs on the open community and fight against them trying to create another pre-modern style guilds, I will show you a new way.
You no longer need their prompts; just train their images by yourself to protect the open community. It's not only legal but also ethical, as they have been taking advantages of others' trained dataset.
# For those who call themselves "phantom 40"
I saw some caliming there should be 48, and here you go. Phantom 48, or do you like to call yourselves *PTM* 48 instead? It's up to you.
# Why will they be the last?
My initial intention on this series was a social experiment to see what will happen if the AI artists are targeted for personalized training.
As it became more popular than expected and the artists started calling themselves "phantom 20," I came up with the second intention to see how they will react after I add 20 more in one day, to see if they can adapt to the sudden change. They acted greatly, and I think that's why they could become notable.
All the reactions and the interpretations on my action were impressive, but since I have accomplished my goal, and since the main stream model will probably be SD 2.1 768 (not SD 2.1 512), I will no longer add new models.
I know I couldn't add some of the artists, but no. I will not do it under the name of phantom.
It takes me like 8 hours to train, test, and upload 20 models, and it's just unsustainable to continue doing it everyday.
**From now on, anyone who wish to add more is the next phantom. Train anyone you wish to by yourself.**
# trained artist list
- atsuwo_AI
- recommended pos: multicolored hair, cg
- fladdict
- recommended pos: oil painting/ancient relief/impressionist impasto oil painting (maybe more)
- possible neg: monkey
- Hifumi_AID
- recommended pos: dark purple hair, emerald eyes
- mayonaka_rr
- recommended pos: cg
- possible pos: dynamic posing, bikini, ponytail
- o81morimori
- possible pos: cg, in a messy apartment room with objects on the floor and the bed
- sabakichi
- possible pos 1: merging underwater, limited pallete, melting underwater, unstable outlines
- possible pos 2: rough sketch, limited pallete, ((unstable outlines)), monotone gradation, dynamic posing
- teftef
- possible pos: light skyblue hair, bun, retropunk gears of a factory
- violet_fizz
- recommended pos: beautiful face, grown up face, long eyes, expressionless
- possible pos: expressionless
# samples
The basic prompt is as follows.
However, to present you the potential of these models as much as possible, many of them have additional postive tags (such as "in the style of") to get the result below (yes, use ``aitop (ARTIST)_style`` to gain the finetuned result).
Many works better with the additional prompt ``beautiful face``. Generally speaking, prompting words close to the trained dataset will give you a better result.
```
POS: masterpiece, best quality, 1girl, aitop (ARTIST)_style
NEG: nsfw, worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digits, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry, simple background
```
## atsuwo_AI



## fladdict



## Hifumi_AID


## mayonaka_rr



## o81morimori


## sabakichi




## teftef


## violet_fizz


|
Elifr/clasificador-sentimientos-pln-uned
|
Elifr
| 2023-02-08T16:50:20Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"text-classification",
"classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-02-08T16:49:17Z |
---
tags:
- classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: clasificador-sentimientos-pln-uned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clasificador-sentimientos-pln-uned
This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3848
- Accuracy: 0.4297
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 388 | 1.3848 | 0.3806 |
| 1.4224 | 2.0 | 776 | 1.2911 | 0.4090 |
| 1.0722 | 3.0 | 1164 | 1.3848 | 0.4297 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
dasaprakashk/Reinforce-Pixelcopter-PLE-v0
|
dasaprakashk
| 2023-02-08T16:23:22Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T16:23:19Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 31.60 +/- 25.50
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
sheldonxxxx/OFA_model_weights
|
sheldonxxxx
| 2023-02-08T16:22:21Z | 0 | 1 | null |
[
"visual-question-answering",
"en",
"license:apache-2.0",
"region:us"
] |
visual-question-answering
| 2023-02-07T13:54:05Z |
---
license: apache-2.0
language:
- en
pipeline_tag: visual-question-answering
---
This is an unoffical mirror of the model weights for use with https://github.com/OFA-Sys/OFA
The original link is too slow when downloading from outside of China...
|
fathyshalab/massive_play-roberta-large-v1-2-0.64
|
fathyshalab
| 2023-02-08T16:18:14Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-08T16:17:52Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/massive_play-roberta-large-v1-2-0.64
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/massive_play-roberta-large-v1-2-0.64")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
mshibatatt/q-Taxi-v3
|
mshibatatt
| 2023-02-08T16:10:27Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T14:48:43Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="mshibatatt/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
fathyshalab/massive_calendar-roberta-large-v1-2-0.89
|
fathyshalab
| 2023-02-08T16:09:11Z | 12 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-08T16:08:47Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/massive_calendar-roberta-large-v1-2-0.89
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/massive_calendar-roberta-large-v1-2-0.89")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
griffin/clinical-led-summarizer
|
griffin
| 2023-02-08T15:58:41Z | 11 | 5 |
transformers
|
[
"transformers",
"pytorch",
"led",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-10-12T14:29:12Z |
# clinical-led-summarizer
HuggingFace Model Weights for the LongFormer Hospital-Course Summarization model trained on Revised References, as described in Findings of EMNLP 2022 Paper "Learning to Revise References for Faithful Summarization"
[Paper Link](https://aclanthology.org/2022.findings-emnlp.296/)
---
language:
- en
tags:
- summarization
license: apache-2.0
datasets:
- MIMIC-III
metrics:
- rouge
- bertscore
---
|
fathyshalab/massive_transport-roberta-large-v1-2-0.15
|
fathyshalab
| 2023-02-08T15:57:47Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-08T15:57:25Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/massive_transport-roberta-large-v1-2-0.15
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/massive_transport-roberta-large-v1-2-0.15")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
rerdscf/HyperNetwork
|
rerdscf
| 2023-02-08T15:30:42Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-08T02:05:48Z |
---
license: creativeml-openrail-m
---
|
pabloac31/ppo-SnowballTarget
|
pabloac31
| 2023-02-08T15:24:46Z | 7 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-02-08T15:24:40Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: pabloac31/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
fathyshalab/massive_social-roberta-large-v1-2-0.13
|
fathyshalab
| 2023-02-08T15:23:03Z | 5 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-08T15:22:45Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/massive_social-roberta-large-v1-2-0.13
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/massive_social-roberta-large-v1-2-0.13")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
frangiral/dqn-SpaceInvadersNoFrameskip-v4
|
frangiral
| 2023-02-08T15:08:13Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T15:07:40Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 422.50 +/- 299.79
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga frangiral -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga frangiral -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga frangiral
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 10000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
mwissing/dqn-SpaceInvadersNoFrameskip-v4
|
mwissing
| 2023-02-08T15:02:50Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-08T15:02:08Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 679.50 +/- 183.98
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mwissing -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mwissing -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mwissing
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
mertyazan/Reinforce-1
|
mertyazan
| 2023-02-08T15:01:26Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-07T10:30:26Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 33.20 +/- 25.45
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Axel578/flan_t5_summarization
|
Axel578
| 2023-02-08T15:00:53Z | 13 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-02-08T13:06:35Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan_t5_summarization
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan_t5_summarization
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6162
- Rouge1: 15.9418
- Rouge2: 7.4447
- Rougel: 15.5655
- Rougelsum: 15.5835
- Gen Len: 18.7313
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 272 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 |
| 0.7405 | 2.0 | 544 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 |
| 0.7405 | 3.0 | 816 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 |
| 0.7453 | 4.0 | 1088 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 |
| 0.7453 | 5.0 | 1360 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 |
| 0.7372 | 6.0 | 1632 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 |
| 0.7372 | 7.0 | 1904 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 |
| 0.7436 | 8.0 | 2176 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 |
| 0.7436 | 9.0 | 2448 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 |
| 0.7425 | 10.0 | 2720 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.