modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 06:30:11
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 06:29:58
card
stringlengths
11
1.01M
DaniilSirota/ppo-Pyramids
DaniilSirota
2023-02-09T11:14:46Z
1
1
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-09T11:14:40Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: DaniilSirota/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
joelniklaus/legal-danish-roberta-base
joelniklaus
2023-02-09T11:14:08Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-06T00:13:23Z
--- tags: - generated_from_trainer model-index: - name: legal-danish-roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legal-danish-roberta-base This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: tpu - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - training_steps: 200000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.8218 | 8.01 | 50000 | 0.3052 | | 0.8718 | 16.02 | 100000 | 0.2487 | | 0.7884 | 24.03 | 150000 | 0.2277 | | 0.625 | 33.0 | 200000 | 0.2205 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.9.0 - Tokenizers 0.12.0
deprem-ml/deprem-ner-mdebertav3
deprem-ml
2023-02-09T10:39:27Z
5
5
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-08T10:11:46Z
--- license: apache-2.0 language: - tr pipeline_tag: token-classification widget: - text: >- Lütfen yardım Akevler mahallesi Rüzgar sokak Tuncay apartmanı zemin kat Antakya akrabalarım göçük altında #hatay #Afad example_title: Örnek metrics: - accuracy - f1 - recall - precision --- # Model: 'deprem-ner-mdebertav3' ### Validasyon Sonuçları - **Precision:** 0.711819 - **Recall:** 0.783626 - **F1:** 0.745999 - **Accuracy:** 0.933360 ### Eğitim Parametreleri ``` evaluation_strategy="epoch" save_strategy="epoch" load_best_model_at_end=True learning_rate=3e-5 per_device_train_batch_size=8 per_device_eval_batch_size=16 num_train_epochs=15 weight_decay=0.01 seed=42 ``` ### Örnekler Bu model depremde enkaz altında kalan kişilerin bildirimlerinden sokak, il, ilçe gibi bilgileri çekmeye çalıştık. Örnek girdiler: - "Lütfen yardım Akevler mahallesi Rüzgar sokak Tuncay apartmanı zemin kat Antakya akrabalarım göçük altında #hatay #Afad" - "MARAȘA'ta arkadaşimizdan haber alamıyoruz ACIL yardım Penta Park konutları 1. Blok en üst kat 11. Kat \n\n@AFADBaskanlik #kahramanmaraş\nACİL" Verdiği çıktılar: ``` [ { "entity_group": "mahalle", "score": 0.8160411715507507, "word": "Akevler mahallesi", "start": 14, "end": 31 }, { "entity_group": "sokak", "score": 0.940501868724823, "word": "Rüzgar sokak", "start": 32, "end": 44 }, { "entity_group": "Apartman/Site", "score": 0.8081040978431702, "word": "Tuncay apartmanı", "start": 45, "end": 61 }, { "entity_group": "ilce", "score": 0.854024350643158, "word": "Antakya", "start": 72, "end": 79 } ] ``` ### Değerlendirme Bu modeli Hugging Face Hub'daki diğer modellerle karşılaştırdık, örnek 30 input'ta sonuçları [bu repository'de](https://huggingface.co/datasets/deprem-ml/butun_model_benchmarklari) bulabilirsiniz.
Rubywong123/PPO-LunarLander-v2
Rubywong123
2023-02-09T10:22:32Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T10:22:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 276.28 +/- 16.52 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
cfalholt/A2C-AntBulletEnv-v0
cfalholt
2023-02-09T10:05:29Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T10:04:01Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1438.89 +/- 433.51 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
amrisaurus/pretrained-bert-uncased-90
amrisaurus
2023-02-09T09:50:09Z
4
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2023-02-09T08:04:20Z
--- tags: - generated_from_keras_callback model-index: - name: pretrained-bert-uncased-90 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pretrained-bert-uncased-90 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.5801 - Validation Loss: 13.6573 - Epoch: 89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.8978 | 9.5686 | 0 | | 7.0524 | 9.6480 | 1 | | 6.8578 | 10.5054 | 2 | | 6.1054 | 10.4137 | 3 | | 6.1268 | 10.4515 | 4 | | 5.8614 | 10.4313 | 5 | | 5.9680 | 10.7224 | 6 | | 5.7868 | 11.2948 | 7 | | 5.5465 | 10.7112 | 8 | | 5.7115 | 10.8543 | 9 | | 5.7908 | 11.6466 | 10 | | 5.5664 | 11.5085 | 11 | | 5.5865 | 11.4894 | 12 | | 5.6421 | 11.2182 | 13 | | 5.6626 | 11.4446 | 14 | | 5.4587 | 11.2814 | 15 | | 5.5299 | 11.6601 | 16 | | 5.5408 | 12.0485 | 17 | | 5.5092 | 11.9469 | 18 | | 5.6606 | 12.4353 | 19 | | 5.7420 | 12.7461 | 20 | | 5.6078 | 12.1650 | 21 | | 5.6612 | 12.2811 | 22 | | 5.7503 | 12.4086 | 23 | | 5.5609 | 12.6149 | 24 | | 5.4806 | 12.4447 | 25 | | 5.6898 | 12.8078 | 26 | | 5.6168 | 12.4649 | 27 | | 5.6292 | 12.5851 | 28 | | 5.8481 | 12.5146 | 29 | | 5.6491 | 12.6358 | 30 | | 5.5755 | 12.6996 | 31 | | 5.8218 | 12.7957 | 32 | | 5.5641 | 13.1650 | 33 | | 5.6044 | 12.5065 | 34 | | 5.6762 | 12.3722 | 35 | | 5.5931 | 12.7162 | 36 | | 5.5727 | 12.6179 | 37 | | 5.5761 | 12.9479 | 38 | | 5.6360 | 13.0610 | 39 | | 5.4503 | 13.0441 | 40 | | 5.5689 | 13.1673 | 41 | | 5.6327 | 13.2184 | 42 | | 5.5567 | 12.8114 | 43 | | 5.6322 | 13.1793 | 44 | | 5.4677 | 13.1324 | 45 | | 5.5865 | 13.2891 | 46 | | 5.5352 | 13.5036 | 47 | | 5.4867 | 13.5010 | 48 | | 5.6926 | 13.1743 | 49 | | 5.7545 | 13.1689 | 50 | | 5.5422 | 13.3362 | 51 | | 5.6094 | 13.3983 | 52 | | 5.5993 | 13.3638 | 53 | | 5.6803 | 13.3884 | 54 | | 5.6102 | 12.7277 | 55 | | 5.7204 | 13.1669 | 56 | | 5.5271 | 13.5684 | 57 | | 5.5265 | 13.5086 | 58 | | 5.5679 | 13.8641 | 59 | | 5.6738 | 13.1735 | 60 | | 5.5423 | 13.3285 | 61 | | 5.5020 | 13.6262 | 62 | | 5.5065 | 13.4765 | 63 | | 5.5919 | 13.5598 | 64 | | 5.5684 | 13.1651 | 65 | | 5.6378 | 13.4781 | 66 | | 5.6661 | 13.0726 | 67 | | 5.7996 | 13.6267 | 68 | | 5.7453 | 13.4608 | 69 | | 5.5720 | 13.3663 | 70 | | 5.4926 | 13.6905 | 71 | | 5.7386 | 13.5941 | 72 | | 5.6016 | 13.3110 | 73 | | 5.5905 | 14.0529 | 74 | | 5.7030 | 13.7322 | 75 | | 5.6801 | 13.4712 | 76 | | 5.6202 | 13.7954 | 77 | | 5.6230 | 13.8177 | 78 | | 5.6288 | 13.4887 | 79 | | 5.6207 | 13.5817 | 80 | | 5.5904 | 13.7643 | 81 | | 5.6685 | 14.1648 | 82 | | 5.5031 | 14.1816 | 83 | | 5.6752 | 13.9170 | 84 | | 5.6140 | 13.6953 | 85 | | 5.6929 | 13.4916 | 86 | | 5.4762 | 13.8740 | 87 | | 5.6537 | 13.9725 | 88 | | 5.5801 | 13.6573 | 89 | ### Framework versions - Transformers 4.27.0.dev0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
tudnlp23g69/hw6
tudnlp23g69
2023-02-09T09:45:08Z
5
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-02-09T09:40:23Z
--- tags: - generated_from_trainer model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [huawei-noah/TinyBERT_General_6L_768D](https://huggingface.co/huawei-noah/TinyBERT_General_6L_768D) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
Iggg0r/ppo-LunarLander-v2
Iggg0r
2023-02-09T09:43:36Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T09:43:06Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.94 +/- 14.64 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
swl-models/bailocat
swl-models
2023-02-09T09:08:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T08:43:09Z
--- license: creativeml-openrail-m ---
reemalyami/AraRoBERTa-OM
reemalyami
2023-02-09T08:58:02Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "ar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ar --- The **AraRoBERTa** models are mono-dialectal Arabic models trained on a country-level dialect. AraRoBERTa uses RoBERTa base config. More details are available in the paper [click](https://aclanthology.org/2022.wanlp-1.24/). The following are the AraRoBERTa seven dialectal variations: * AraRoBERTa-SA: Saudi Arabia (SA) dialect. * AraRoBERTa-EGY: Egypt (EGY) dialect. * AraRoBERTa-KU: Kuwait (KU) dialect. * AraRoBERTa-OM: Oman (OM) dialect. * AraRoBERTa-LB: Lebanon (LB) dialect. * AraRoBERTa-JO: Jordan (JO) dialect. * AraRoBERTa-DZ: Algeria (DZ) dialect # When using the model, please cite our paper: ```python @inproceedings{alyami-al-zaidy-2022-weakly, title = "Weakly and Semi-Supervised Learning for {A}rabic Text Classification using Monodialectal Language Models", author = "AlYami, Reem and Al-Zaidy, Rabah", booktitle = "Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wanlp-1.24", pages = "260--272", } ``` # Contact **Reem AlYami**: [Linkedin](https://www.linkedin.com/in/reem-alyami/) | <reem.yami@kfupm.edu.sa> | <yami.m.reem@gmail.com>
Venkatesh4342/bert-base-uncased-finetuned-fin
Venkatesh4342
2023-02-09T08:56:36Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-31T06:58:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-fin results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-fin This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3931 - Accuracy: 0.8873 - F1: 0.8902 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6478 | 1.0 | 134 | 0.4118 | 0.8293 | 0.8309 | | 0.3304 | 2.0 | 268 | 0.3315 | 0.8653 | 0.8694 | | 0.2221 | 3.0 | 402 | 0.3229 | 0.8756 | 0.8781 | | 0.1752 | 4.0 | 536 | 0.3192 | 0.8891 | 0.8921 | | 0.1457 | 5.0 | 670 | 0.3700 | 0.8840 | 0.8880 | | 0.1315 | 6.0 | 804 | 0.3774 | 0.8854 | 0.8882 | | 0.1172 | 7.0 | 938 | 0.3883 | 0.8849 | 0.8877 | | 0.112 | 8.0 | 1072 | 0.3931 | 0.8873 | 0.8902 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
reemalyami/AraRoBERTa-DZ
reemalyami
2023-02-09T08:56:29Z
7
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "ar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ar --- The **AraRoBERTa** models are mono-dialectal Arabic models trained on a country-level dialect. AraRoBERTa uses RoBERTa base config. More details are available in the paper [click](https://aclanthology.org/2022.wanlp-1.24/). The following are the AraRoBERTa seven dialectal variations: * [AraRoBERTa-SA](https://huggingface.co/reemalyami/AraRoBERTa-SA): Saudi Arabia (SA) dialect. * [AraRoBERTa-EGY](https://huggingface.co/reemalyami/AraRoBERTa-EGY): Egypt (EGY) dialect. * [AraRoBERTa-KU](https://huggingface.co/reemalyami/AraRoBERTa-KU): Kuwait (KU) dialect. * [AraRoBERTa-OM](https://huggingface.co/reemalyami/AraRoBERTa-OM): Oman (OM) dialect. * [AraRoBERTa-LB](https://huggingface.co/reemalyami/AraRoBERTa-LB): Lebanon (LB) dialect. * [AraRoBERTa-JO](https://huggingface.co/reemalyami/AraRoBERTa-JO): Jordan (JO) dialect. * [AraRoBERTa-DZ](https://huggingface.co/reemalyami/AraRoBERTa-DZ): Algeria (DZ) dialect # When using the model, please cite our paper: ```python @inproceedings{alyami-al-zaidy-2022-weakly, title = "Weakly and Semi-Supervised Learning for {A}rabic Text Classification using Monodialectal Language Models", author = "AlYami, Reem and Al-Zaidy, Rabah", booktitle = "Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wanlp-1.24", pages = "260--272", } ``` # Contact **Reem AlYami**: [Linkedin](https://www.linkedin.com/in/reem-alyami/) | <reem.yami@kfupm.edu.sa> | <yami.m.reem@gmail.com>
Anjoe/poetry-gpt2-large-no-hoel_2
Anjoe
2023-02-09T08:56:20Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-06T20:25:45Z
--- license: mit tags: - generated_from_trainer model-index: - name: poetry-gpt2-large-no-hoel_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poetry-gpt2-large-no-hoel_2 This model is a fine-tuned version of [benjamin/gerpt2-large](https://huggingface.co/benjamin/gerpt2-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.6683 | 1.0 | 19927 | 3.7260 | | 3.3474 | 2.0 | 39854 | 3.7067 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
sryu1/poca-SoccerTwos
sryu1
2023-02-09T08:45:17Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T08:45:05Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: sryu1/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
marcosgg/bert-large-pt-ner-enamex
marcosgg
2023-02-09T08:33:59Z
93
2
transformers
[ "transformers", "pytorch", "bert", "token-classification", "pt", "gl", "license:agpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-05T08:44:19Z
--- license: agpl-3.0 language: - pt - gl widget: - text: >- A minha amiga Rosa, de São Paulo, estudou en Montreal. Agora trabalha em Santiago de Compostela com o Mário. --- # Named Entity Recognition (NER) model for Portuguese This is a NER model for Portuguese which uses the standard 'enamex' classes: LOC (geographical locations); PER (people); ORG (organizations); MISC (other entities). The model is based on [BERTimbau Large](https://huggingface.co/neuralmind/bert-large-portuguese-cased), which has been fine-tuned using a combination of available corpora (see [1] for details). There is an alternative model trained using [BERTimbau Base](https://huggingface.co/neuralmind/bert-base-portuguese-cased): [bert-base-pt-ner-enamex](https://huggingface.co/marcosgg/bert-base-pt-ner-enamex). It was trained with a batch size of 32 and a learning rate of 3e-5 during 3 epochs. It achieved the following results on the test set (Precision/Recall/F1): 0.919/0.925/0.922. [1] Pablo Gamallo, Marcos Garcia & Patricia Martín-Rodilla, 2019. [NER and open information extraction for Portuguese notebook for IberLEF 2019 Portuguese named entity recognition and relation extraction tasks](https://ceur-ws.org/Vol-2421/NER_Portuguese_paper_6.pdf). In _Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019) co-located with 35th Conference of the Spanish Society for Natural Language Processing (SEPLN 2019)_: 457-467.
marcosgg/bert-small-gl-cased
marcosgg
2023-02-09T08:33:05Z
20
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "gl", "pt", "arxiv:2106.13553", "license:agpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - gl - pt widget: - text: A mesa estaba feita de [MASK]. license: agpl-3.0 --- # BERT for Galician (Small) This is a small pre-trained BERT model (6 layers, cased) for Galician (ILG/RAG spelling). It was evaluated on lexical semantics tasks, using a [dataset to identify homonymy and synonymy in context](https://github.com/marcospln/homonymy_acl21), and presented at ACL 2021. There is also a base version (12 layers, cased): `marcosgg/bert-base-gl-cased` ## Citation If you use this model, please cite the following [paper](https://arxiv.org/abs/2106.13553): ``` @inproceedings{garcia-2021-exploring, title = "Exploring the Representation of Word Meanings in Context: {A} Case Study on Homonymy and Synonymy", author = "Garcia, Marcos", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", year = "2021", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.281", doi = "10.18653/v1/2021.acl-long.281", pages = "3625--3640" } ```
DaniilSirota/ppo-SnowballTarget
DaniilSirota
2023-02-09T08:31:19Z
7
1
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-08T14:42:32Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: DaniilSirota/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Asiri123/spotter
Asiri123
2023-02-09T08:19:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T08:19:47Z
--- license: creativeml-openrail-m ---
swl-models/zoirun-plus
swl-models
2023-02-09T08:15:32Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T07:03:26Z
--- license: creativeml-openrail-m ---
swl-models/Icarus-v7
swl-models
2023-02-09T08:07:27Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T07:01:19Z
--- license: creativeml-openrail-m ---
jancijen/PPO-LunarLander-v2
jancijen
2023-02-09T08:06:02Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T07:31:34Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 249.76 +/- 20.83 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
espnet/pengcheng_librimix_asr_train_sot_asr_conformer_raw_en_char_sp
espnet
2023-02-09T08:01:30Z
2
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librimix", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2023-02-09T08:00:31Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - librimix license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/pengcheng_librimix_asr_train_sot_asr_conformer_raw_en_char_sp` This model was trained by Pengcheng Guo using librimix recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout fe824770250485b77c68e8ca041922b8779b5c94 pip install -e . cd egs2/librimix/sot_asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/pengcheng_librimix_asr_train_sot_asr_conformer_raw_en_char_sp ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Feb 6 12:15:26 CST 2023` - python version: `3.8.13 (default, Mar 28 2022, 11:38:47) [GCC 7.5.0]` - espnet version: `espnet 202211` - pytorch version: `pytorch 1.12.1` - Git hash: `` - Commit date: `` ## asr_train_sot_conformer_raw_en_char_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_sot_asr_model_valid.acc.ave/dev|3000|123853|78.3|19.1|2.6|3.0|24.7|99.3| |decode_sot_asr_model_valid.acc.ave/test|3000|111243|79.6|17.7|2.6|3.0|23.3|98.7| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_sot_asr_model_valid.acc.ave/dev|3000|670222|90.1|6.3|3.6|3.5|13.4|99.3| |decode_sot_asr_model_valid.acc.ave/test|3000|605408|90.7|5.7|3.6|3.3|12.6|98.7| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_sot_asr_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_sot_asr_conformer_raw_en_char_sp ngpu: 1 seed: 0 num_workers: 8 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 38867 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 60 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 8000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_char_sp/train/speech_shape - exp/asr_stats_raw_en_char_sp/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_en_char_sp/valid/speech_shape - exp/asr_stats_raw_en_char_sp/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.0005 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 20000 token_list: - <blank> - <unk> - <sc> - <space> - E - T - A - O - N - I - H - S - R - D - L - U - M - C - W - F - G - Y - P - B - V - K - '''' - X - J - Q - Z - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 aux_ctc_tasks: [] frontend: default frontend_conf: fs: 16k specaug: null specaug_conf: {} normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_char_sp/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.0 lsm_weight: 0.1 length_normalized_loss: false preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 preprocessor: multi preprocessor_conf: speaker_change_symbol: - <sc> required: - output_dir - token_list version: '202211' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
imjunaidafzal/saqib-t600-u3000-photoreal-9-feb
imjunaidafzal
2023-02-09T07:58:53Z
2
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-09T07:55:29Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Fine tune the ### concept name: saqib-t600-u3000-photoreal-9-FEB ### Training steps: 1500 ### Text encoder steps: 350% of Training steps Sample pictures of this concept:
kkh4162/xlm-roberta-base-finetuned-panx-de
kkh4162
2023-02-09T07:52:57Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T06:50:32Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8638300289723342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 | | 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 | | 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
atorre/poca-SoccerTwos-10M
atorre
2023-02-09T07:47:23Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T07:47:15Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: atorre/poca-SoccerTwos-10M 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
imjunaidafzal/saqib-t1400-u2000-photoreal-9-feb
imjunaidafzal
2023-02-09T07:26:03Z
2
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-09T07:22:34Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Fine tune the ### concept name: saqib-t1400-u2000-photoreal-9-feb ### Training steps: 1500 ### Text encoder steps: 350% of Training steps Sample pictures of this concept:
Niraya666/ppo-SnowballTarget
Niraya666
2023-02-09T07:10:48Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-09T07:10:42Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: Niraya666/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
LHTAVI/wpapstyle2023
LHTAVI
2023-02-09T07:04:54Z
14
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-09T06:53:45Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### wpapstyle2023 Dreambooth model trained by LHTAVI with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(4).webp) ![1](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(2).webp) ![2](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(8).webp) ![3](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(1).png) ![4](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(1).webp) ![5](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(3).webp) ![6](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(5).webp) ![7](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(6).webp) ![8](https://huggingface.co/LHTAVI/wpapstyle2023/resolve/main/sample_images/wpapstyle_(7).webp)
jannikskytt/poca-SoccerTwos
jannikskytt
2023-02-09T06:50:28Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T06:50:13Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: jannikskytt/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
thanat/mt5-small-finetuned-amazon-en-es
thanat
2023-02-09T06:42:12Z
3
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-09T05:12:02Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: thanat/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # thanat/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [amazon_reviews_multi](https://huggingface.co/datasets/amazon_reviews_multi) dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0061 - Validation Loss: 3.3257 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 9.6013 | 4.2024 | 0 | | 5.8556 | 3.7335 | 1 | | 5.0930 | 3.5494 | 2 | | 4.6610 | 3.4502 | 3 | | 4.3874 | 3.4030 | 4 | | 4.2103 | 3.3568 | 5 | | 4.0930 | 3.3311 | 6 | | 4.0061 | 3.3257 | 7 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Jackmin108/ppo-SnowballTarget
Jackmin108
2023-02-09T06:32:04Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-09T06:31:58Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: Jackmin108/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dfm794/poca-SoccerTwos-2-l
dfm794
2023-02-09T05:50:03Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T05:49:55Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: dfm794/poca-SoccerTwos-2-l 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
csebuetnlp/banglat5_small
csebuetnlp
2023-02-09T05:30:25Z
79
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "bn", "arxiv:2205.11081", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-09T05:18:08Z
--- language: - bn licenses: - cc-by-nc-sa-4.0 --- # BanglaT5 This repository contains the pretrained checkpoint of the model **BanglaT5 (small)**. This is a sequence to sequence transformer model pretrained with the ["Span Corruption"]() objective. Finetuned models using this checkpoint achieve state-of-the-art results on many of the NLG tasks in bengali. For finetuning on different downstream tasks such as `Machine Translation`, `Abstractive Text Summarization`, `Question Answering` etc., refer to the scripts in the official GitHub [repository](https://github.com/csebuetnlp/BanglaNLG). **Note**: This model was pretrained using a specific normalization pipeline available [here](https://github.com/csebuetnlp/normalizer). All finetuning scripts in the official GitHub repository use this normalization by default. If you need to adapt the pretrained model for a different task make sure the text units are normalized using this pipeline before tokenizing to get best results. A basic example is given below: ## Using this model in `transformers` (tested on 4.11.0.dev0) ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from normalizer import normalize # pip install git+https://github.com/csebuetnlp/normalizer model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_small") tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_small", use_fast=False) input_sentence = "" input_ids = tokenizer(normalize(input_sentence), return_tensors="pt").input_ids generated_tokens = model.generate(input_ids) decoded_tokens = tokenizer.batch_decode(generated_tokens)[0] print(decoded_tokens) ``` ## Benchmarks * Supervised fine-tuning | Model | Params | MT (SacreBLEU) | TS (ROUGE-2) | QA (EM/F1) | MD (SacreBLEU-1) | NHG (ROUGE-2) | XLS (ROUGE-2) | BNLG score | |--------------------|------------|-----------------------|------------------------|-------------------|--------------------|----------------|----------------|---------------| |[mT5 (base)](https://huggingface.co/google/mt5-base) | 582M | 36.6/22.5 | 10.3 | 59.0/65.3 | 17.5 | 9.6 | 2.7/0.7 | 24.9 | |[XLM-ProphetNet](https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased) | 616M | 23.3/16.4 | 7.8 | 53.0/57.3 | 20.0 | 9.5 | 6.2/2.7 | 21.8 | |[mBART-50](https://huggingface.co/facebook/mbart-large-50) | 611M | 23.6/16.7 | 10.4 | 53.4/58.9 | 18.5 | 11.2 | 5.4/3.7 | 22.4 | |[IndicBART](https://huggingface.co/ai4bharat/IndicBART) | 244M | 22.7/13.1 | 8.1 | 53.3/58.8 | 14.8 | 7.9 | 6.3/2.5 | 20.8 | |[BanglaT5](https://huggingface.co/csebuetnlp/banglat5) | 247M | 38.8/25.2 | 13.7 | 68.5/74.8 | 19.0 | 13.8 | 6.4/4.0 | 29.4 | The benchmarking datasets are as follows: * **MT:** **[Machine Translation](https://github.com/csebuetnlp/banglanmt#datasets)** * **TS:** **[Abstractive Text Summarization](https://huggingface.co/datasets/csebuetnlp/xlsum)** * **QA:** **[Question Answering](https://huggingface.co/datasets/csebuetnlp/squad_bn)** * **MD:** **[Multi Turn Dialogue Generation](https://drive.google.com/file/d/1qPmNN6qA4evbh4cD_BDDTCFOwMu4H2JS/view?usp=sharing)** * **NHG:** **[News Headline Generation](https://huggingface.co/datasets/csebuetnlp/xlsum)** * **XLS:** **[Cross-lingual Summarization](https://huggingface.co/datasets/csebuetnlp/CrossSum)** ## Citation If you use this model, please cite the following paper: ``` @article{bhattacharjee2022banglanlg, author = {Abhik Bhattacharjee and Tahmid Hasan and Wasi Uddin Ahmad and Rifat Shahriyar}, title = {BanglaNLG: Benchmarks and Resources for Evaluating Low-Resource Natural Language Generation in Bangla}, journal = {CoRR}, volume = {abs/2205.11081}, year = {2022}, url = {https://arxiv.org/abs/2205.11081}, eprinttype = {arXiv}, eprint = {2205.11081} } ``` If you use the normalization module, please cite the following paper: ``` @inproceedings{hasan-etal-2020-low, title = "Not Low-Resource Anymore: Aligner Ensembling, Batch Filtering, and New Datasets for {B}engali-{E}nglish Machine Translation", author = "Hasan, Tahmid and Bhattacharjee, Abhik and Samin, Kazi and Hasan, Masum and Basak, Madhusudan and Rahman, M. Sohel and Shahriyar, Rifat", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.207", doi = "10.18653/v1/2020.emnlp-main.207", pages = "2612--2623", abstract = "Despite being the seventh most widely spoken language in the world, Bengali has received much less attention in machine translation literature due to being low in resources. Most publicly available parallel corpora for Bengali are not large enough; and have rather poor quality, mostly because of incorrect sentence alignments resulting from erroneous sentence segmentation, and also because of a high volume of noise present in them. In this work, we build a customized sentence segmenter for Bengali and propose two novel methods for parallel corpus creation on low-resource setups: aligner ensembling and batch filtering. With the segmenter and the two methods combined, we compile a high-quality Bengali-English parallel corpus comprising of 2.75 million sentence pairs, more than 2 million of which were not available before. Training on neural models, we achieve an improvement of more than 9 BLEU score over previous approaches to Bengali-English machine translation. We also evaluate on a new test set of 1000 pairs made with extensive quality control. We release the segmenter, parallel corpus, and the evaluation set, thus elevating Bengali from its low-resource status. To the best of our knowledge, this is the first ever large scale study on Bengali-English machine translation. We believe our study will pave the way for future research on Bengali-English machine translation as well as other low-resource languages. Our data and code are available at https://github.com/csebuetnlp/banglanmt.", } ```
juanmi1234/Reinforce-Pixelcopter-PLE-v0
juanmi1234
2023-02-09T04:55:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T04:55:24Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 23.70 +/- 26.66 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jojoUla/bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30
jojoUla
2023-02-09T04:43:12Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-09T03:52:16Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30 This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-no-label-40) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.8321 | 1.0 | 2 | 4.3250 | | 3.383 | 2.0 | 4 | 2.4023 | | 1.9548 | 3.0 | 6 | 1.2925 | | 1.4856 | 4.0 | 8 | 1.5152 | | 0.9588 | 5.0 | 10 | 1.7731 | | 1.2668 | 6.0 | 12 | 1.3830 | | 0.8441 | 7.0 | 14 | 1.9760 | | 1.0173 | 8.0 | 16 | 1.2364 | | 0.6814 | 9.0 | 18 | 1.1771 | | 0.9044 | 10.0 | 20 | 1.4721 | | 0.6889 | 11.0 | 22 | 0.8518 | | 0.5845 | 12.0 | 24 | 0.6993 | | 0.4068 | 13.0 | 26 | 1.1771 | | 0.5957 | 14.0 | 28 | 0.5895 | | 0.4277 | 15.0 | 30 | 0.5326 | | 0.3736 | 16.0 | 32 | 1.0893 | | 0.413 | 17.0 | 34 | 1.3267 | | 0.5718 | 18.0 | 36 | 1.0331 | | 0.3892 | 19.0 | 38 | 1.0793 | | 0.3913 | 20.0 | 40 | 0.8742 | | 0.4794 | 21.0 | 42 | 1.1264 | | 0.4626 | 22.0 | 44 | 1.1857 | | 0.2683 | 23.0 | 46 | 1.5181 | | 0.3436 | 24.0 | 48 | 1.4419 | | 0.3793 | 25.0 | 50 | 1.4198 | | 0.356 | 26.0 | 52 | 1.1776 | | 0.2189 | 27.0 | 54 | 0.7166 | | 0.286 | 28.0 | 56 | 0.7601 | | 0.3681 | 29.0 | 58 | 1.2592 | | 0.5858 | 30.0 | 60 | 0.6520 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
PecanPi/q-taxi-v3
PecanPi
2023-02-09T04:34:24Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T04:34:20Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="PecanPi/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
SirVeggie/wlop
SirVeggie
2023-02-09T04:33:46Z
0
41
null
[ "art", "license:creativeml-openrail-m", "region:us" ]
null
2022-10-16T00:53:46Z
--- license: creativeml-openrail-m tags: - art --- # WLOP stable diffusion model Original artist: WLOP\ Patreon: https://www.patreon.com/wlop/posts ## Basic explanation Token and Class words are what guide the AI to produce images similar to the trained style/object/character. Include any mix of these words in the prompt to produce verying results, or exclude them to have a less pronounced effect. There is usually at least a slight stylistic effect even without the words, but it is recommended to include at least one. Adding token word/phrase class word/phrase at the start of the prompt in that order produces results most similar to the trained concept, but they can be included elsewhere as well. Some models produce better results when not including all token/class words. For model merging I recommend using the wlop.ckpt or wlop-any model. ### Model: AbyssalWlop - (current best version) The model works without a keyword, but you can affect the style with the keywords `m_wlop illustration style`, which are used by the merged models. The model works best at clip skip 2 and 3. Mix using [AbyssOrangeMix2_nsfw](https://huggingface.co/WarriorMama777/OrangeMixs), wlop and wlop-any models to create a stable and accurate wlop style. The recipe itself is quite simple. ``` orange-wlop = AbyssOrangeMix2_nsfw + (wlop-any - anything) @1.0 orange-wlop2 = AbyssOrangeMix2_nsfw + (wlop - wd1.3) @1.0 AbyssalWlop = orange-wlop + orange-wlop2 @0.5 ``` Image comparisons between models, more models located under the image grids: ![grid1](wlopgrid1.png) ![grid2](wlopgrid2.png) ### Model: wlop-any Has the most consistent wlop style, but difficult to get good results ``` token: m_wlop class: illustration style base: anything v3 images: 120 steps: 12000 ``` ### Model: wlop-anymix Custom berry mix using wlop-any as last step. Great quality if prompted correctly, but loses wlop style. Is influenced by the style though. ### Model: wlop This version is highly overfit, and not suitable for standalone use. Merge with another model to use. ``` token: m_wlop class: illustration style base: waifu diffusion 1.3-full images: 160 steps: 16000 ``` ### Model: wlopmix Custom berry mix using wlop as last step. Pretty similar to wlop-anymix, though there are some flavor differences. ### Model: wlop_e5 Old wlop model, I guess it works ok. Decent wlop style reproduction if you can get good quality out of it. ``` token: m_concept class: 1girl base: waifu diffusion 1.3-e5 ``` ## License This embedding is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
shafa/bert-finetuned-squad
shafa
2023-02-09T04:26:57Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T02:49:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
juanmi1234/Reinforce-CartPole
juanmi1234
2023-02-09T04:14:22Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T04:14:14Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
rishabhjain16/whisper_tiny_en_to_pf10h
rishabhjain16
2023-02-09T04:12:50Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-08T15:16:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-tiny.en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-tiny.en This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2166 - Wer: 6.5585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1174 | 10.0 | 500 | 0.1975 | 6.4170 | | 0.0034 | 20.0 | 1000 | 0.1896 | 5.2259 | | 0.0012 | 30.01 | 1500 | 0.2040 | 6.6478 | | 0.0007 | 40.01 | 2000 | 0.2080 | 6.6404 | | 0.0005 | 51.0 | 2500 | 0.2117 | 6.5957 | | 0.0004 | 61.0 | 3000 | 0.2139 | 6.5510 | | 0.0003 | 71.01 | 3500 | 0.2162 | 6.5883 | | 0.0003 | 81.01 | 4000 | 0.2166 | 6.5585 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
UtopiansRareTruth/poca-SoccerTwos
UtopiansRareTruth
2023-02-09T04:03:42Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-08T08:25:46Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: UtopiansRareTruth/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
espnet/pengcheng_librimix_asr_train_sot_asr_conformer_wavlm_raw_en_char_sp
espnet
2023-02-09T03:21:16Z
5
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librimix", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2023-02-09T03:19:33Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - librimix license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/pengcheng_librimix_asr_train_sot_asr_conformer_wavlm_raw_en_char_sp` This model was trained by Pengcheng Guo using librimix recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout fe824770250485b77c68e8ca041922b8779b5c94 pip install -e . cd egs2/librimix/sot_asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/pengcheng_librimix_asr_train_sot_asr_conformer_wavlm_raw_en_char_sp ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Thu Dec 29 13:36:46 CST 2022` - python version: `3.8.13 (default, Mar 28 2022, 11:38:47) [GCC 7.5.0]` - espnet version: `espnet 202211` - pytorch version: `pytorch 1.12.1` - Git hash: `` - Commit date: `` ## asr_train_sot_asr_conformer_wavlm_raw_en_char_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_sot_asr_model_valid.acc.ave/dev|3000|123853|82.9|15.1|2.0|2.4|19.4|97.1| |decode_sot_asr_model_valid.acc.ave/test|3000|111243|85.1|13.0|1.9|2.1|17.1|96.1| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_sot_asr_model_valid.acc.ave/dev|3000|670222|92.2|4.9|2.9|2.7|10.6|97.1| decode_sot_asr_model_valid.acc.ave/test|3000|605408|93.2|4.1|2.6|2.3|9.1|96.1| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tunining/train_sot_asr_conformer_wavlm.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_sot_asr_conformer_wavlm_raw_en_char_sp ngpu: 1 seed: 0 num_workers: 8 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 38431 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 60 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 6000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_char_sp/train/speech_shape - exp/asr_stats_raw_en_char_sp/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_en_char_sp/valid/speech_shape - exp/asr_stats_raw_en_char_sp/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0005 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 20000 token_list: - <blank> - <unk> - <sc> - <space> - E - T - A - O - N - I - H - S - R - D - L - U - M - C - W - F - G - Y - P - B - V - K - '''' - X - J - Q - Z - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 frontend: s3prl frontend_conf: frontend_conf: upstream: wavlm_local path_or_url: /home/work_nfs6/pcguo/asr/librimix/hub/wavlm_large.pt download_dir: ./hub multilayer_feature: true fs: 16k specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 0.0 lsm_weight: 0.1 length_normalized_loss: false preencoder: linear preencoder_conf: input_size: 1024 output_size: 128 encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d2 normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 preprocessor: multi preprocessor_conf: speaker_change_symbol: - <sc> required: - output_dir - token_list version: '202211' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Tune-A-Video-library/redshift-man-skiing
Tune-A-Video-library
2023-02-09T03:06:45Z
26
14
diffusers
[ "diffusers", "tune-a-video", "text-to-video", "arxiv:2212.11565", "arxiv:2112.10752", "base_model:nitrosocke/redshift-diffusion", "base_model:finetune:nitrosocke/redshift-diffusion", "license:creativeml-openrail-m", "diffusers:TuneAVideoPipeline", "region:us" ]
text-to-video
2023-02-07T03:09:46Z
--- license: creativeml-openrail-m base_model: nitrosocke/redshift-diffusion training_prompt: A man is skiing. tags: - tune-a-video - text-to-video - diffusers inference: false --- # Tune-A-Video - Redshift ## Model Description - Base model: [nitrosocke/redshift-diffusion](https://huggingface.co/nitrosocke/redshift-diffusion) - Training prompt: a man is skiing. ![sample-train](samples/train.gif) ## Samples ![sample-500](samples/sample-500.gif) Test prompt: (redshift style) [spider man/black widow/batman/hulk] is skiing. ## Usage Clone the [github repo](https://github.com/showlab/Tune-A-Video) ```bash git clone https://github.com/showlab/Tune-A-Video.git ``` Run inference code ```python from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline from tuneavideo.models.unet import UNet3DConditionModel from tuneavideo.util import save_videos_grid import torch pretrained_model_path = "nitrosocke/redshift-diffusion" unet_model_path = "Tune-A-Video-library/redshift-man-skiing" unet = UNet3DConditionModel.from_pretrained(unet_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda') pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda") pipe.enable_xformers_memory_efficient_attention() prompt = "(redshift style) spider man is skiing" video = pipe(prompt, video_length=8, height=512, width=512, num_inference_steps=50, guidance_scale=7.5).videos save_videos_grid(video, f"./{prompt}.gif") ``` ## Related Papers: - [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation - [Stable Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models
Isaacp/Reinforce-pixelcopter
Isaacp
2023-02-09T02:34:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T02:34:20Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 39.90 +/- 33.12 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
SuryaaSeran/bert-base-uncased-finetuned-swag
SuryaaSeran
2023-02-09T01:56:02Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "dataset:dream", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2023-02-09T00:17:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - dream metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-swag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-swag This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the dream dataset. It achieves the following results on the evaluation set: - Loss: 1.0986 - Accuracy: 0.3642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1039 | 1.0 | 3058 | 1.0983 | 0.3779 | | 1.0995 | 2.0 | 6116 | 1.0986 | 0.3544 | | 1.1029 | 3.0 | 9174 | 1.0986 | 0.3642 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
bbbbearczx/bert-finetuned-squad
bbbbearczx
2023-02-09T01:46:18Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T05:13:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
dfm794/poca-SoccerTwos-2_6_3-l
dfm794
2023-02-09T00:50:22Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T00:50:14Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: dfm794/poca-SoccerTwos-2_6_3-l 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
yizhangliu/poca-SoccerTwos-v4
yizhangliu
2023-02-09T00:23:06Z
15
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T00:22:58Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: yizhangliu/poca-SoccerTwos-v4 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
petergoldstein/Taxi-v3-1M
petergoldstein
2023-02-09T00:09:34Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T00:09:30Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3-1M results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="petergoldstein/Taxi-v3-1M", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
petergoldstein/q-FrozenLake-v1-4x4-noSlippery
petergoldstein
2023-02-08T23:52:21Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T23:52:17Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="petergoldstein/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
deetsml/dummy-model
deetsml
2023-02-08T23:37:22Z
3
0
transformers
[ "transformers", "pytorch", "bart", "feature-extraction", "text-classification", "en", "endpoints_compatible", "region:us" ]
text-classification
2023-02-07T21:25:20Z
--- tags: - text-classification - transformers language: - en metrics: - accuracy library_name: transformers pipeline_tag: text-classification --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 14756 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "accuracy", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 14756, "warmup_steps": 1476, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BartModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jha2ee/riffusion-model-db
jha2ee
2023-02-08T23:10:45Z
4
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T23:02:24Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### riffusion_model-db Dreambooth model trained by jha2ee with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Jomppe2/Face
Jomppe2
2023-02-08T22:45:21Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-02-08T22:43:05Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
ivi137/Taxi-v3
ivi137
2023-02-08T22:40:42Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T22:40:39Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ivi137/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Nyaaneet/donut-cord
Nyaaneet
2023-02-08T22:39:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-02-06T17:19:06Z
--- license: mit tags: - generated_from_trainer model-index: - name: donut-cord results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-cord This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
DeepaKrish/roberta-base-squad2-finetuned
DeepaKrish
2023-02-08T22:39:26Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T21:53:41Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-base-squad2-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-squad2-finetuned This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 27 | 0.0023 | | No log | 2.0 | 54 | 0.0010 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.9.0 - Datasets 2.5.1 - Tokenizers 0.13.2
rerdscf/Embed
rerdscf
2023-02-08T22:37:40Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-08T15:31:05Z
--- license: creativeml-openrail-m ---
Isaacp/Reinforce-cartpole
Isaacp
2023-02-08T22:23:25Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T22:23:13Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
eduiqe/ppo-LunarLander-v2
eduiqe
2023-02-08T22:12:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-23T02:07:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 261.92 +/- 20.57 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
pfunk/Pong-v4-DQPN_p500_pt0.1-seed1
pfunk
2023-02-08T21:55:29Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T21:55:07Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: -18.10 +/- 1.14 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p500_pt0.1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p500_pt0.1]" python -m cleanrl_utils.enjoy --exp-name DQPN_p500_pt0.1 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_pt0.1-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_pt0.1-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_pt0.1-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p500_pt0.1 --start-policy-f 500000 --end-policy-f 500000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 500000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p500_pt0.1', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 0.1, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 500000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
kmposkid1/q-FrozenLake-v1-4x4-noSlippery
kmposkid1
2023-02-08T21:32:22Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T21:32:19Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kmposkid1/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
LarryAIDraw/yurucampInuyamaaoi_yurucampInuyamaaoiV1
LarryAIDraw
2023-02-08T21:09:52Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-07T17:07:20Z
--- license: creativeml-openrail-m --- https://civitai.com/models/7033/yurucampinuyamaaoi
huggingtweets/101dadjokes-dadsjokes
huggingtweets
2023-02-08T20:48:16Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-08T20:45:18Z
--- language: en thumbnail: http://www.huggingtweets.com/101dadjokes-dadsjokes/1675889291789/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406653045757317121/YCS9YykL_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/641271414/dad_jokes_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dad Jokes & Dad Jokes</div> <div style="text-align: center; font-size: 14px;">@101dadjokes-dadsjokes</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dad Jokes & Dad Jokes. | Data | Dad Jokes | Dad Jokes | | --- | --- | --- | | Tweets downloaded | 184 | 2043 | | Retweets | 14 | 0 | | Short tweets | 10 | 123 | | Tweets kept | 160 | 1920 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/od2iwqt2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @101dadjokes-dadsjokes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7ruisgab) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7ruisgab/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/101dadjokes-dadsjokes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
JD97/Riffusion_sentiment_LoRA
JD97
2023-02-08T20:29:17Z
10
2
diffusers
[ "diffusers", "stable-diffusion", "diffusion", "riffusion", "text-to-audio", "text-to-image", "en", "dataset:gwkim22/spectro_caption_dataset", "dataset:Chr0my/Epidemic_music", "license:mit", "region:us" ]
text-to-image
2023-02-08T15:36:09Z
--- license: mit datasets: - gwkim22/spectro_caption_dataset - Chr0my/Epidemic_music language: - en library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - diffusion - riffusion - text-to-audio --- ### Introduce Riffusion with LoRA, fine-tuned with <code>Chr0my/Epidemic_music</code> <br/> This model was used during Naver Connect BoostCamp AI tech 4th, NLP Track ### Citation ~~~ @article{Forsgren_Martiros_2022, author = {Forsgren, Seth* and Martiros, Hayk*}, title = {{Riffusion - Stable diffusion for real-time music generation}}, url = {https://riffusion.com/about}, year = {2022} } ~~~
mfrayha/marcelo
mfrayha
2023-02-08T20:03:59Z
6
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T19:50:13Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Marcelo Dreambooth model trained by mfrayha with [buildspace's DreamBooth](https://colab.research.google.com/github/buildspace/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb) notebook Build your own using the [AI Avatar project](https://buildspace.so/builds/ai-avatar)! To get started head over to the [project dashboard](https://buildspace.so/p/build-ai-avatars). Sample pictures of this concept:
Luisfrdz/PPO-RL-1-LunarLander-v3
Luisfrdz
2023-02-08T20:01:54Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T18:23:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO-RL-Agent results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 175.25 +/- 116.16 name: mean_reward verified: false --- # **PPO-RL-Agent** Agent playing **LunarLander-v2** This is a trained model of a **PPO-RL-Agent** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sgoodfriend/PPO-sb3-LunarLander-v2
sgoodfriend
2023-02-08T19:58:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T19:02:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 290.45 +/- 15.38 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
johko/mcc_co3dv2_all_categories
johko
2023-02-08T19:57:50Z
0
1
null
[ "3D Reconstruction", "dataset:CO3Dv2", "arxiv:2301.08247", "license:apache-2.0", "region:us" ]
null
2023-02-08T19:42:57Z
--- license: apache-2.0 datasets: - CO3Dv2 tags: - 3D Reconstruction --- # Multiview Compressive Coding (MCC) ## Model Description These are model weights originally provided by the authors of the paper [Multiview Compressive Coding (MCC)](https://arxiv.org/abs/2301.08247). Their method aims to create a 3D multiview object from a single RGB-D image. ## Datasets The authors trained the model on [the CO3D v2 dataset](https://ai.facebook.com/datasets/CO3D-dataset/)
pfunk/Pong-v4-DQPN_p50_e0.25-seed1
pfunk
2023-02-08T19:11:53Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T19:11:32Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 1.60 +/- 6.87 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_e0.25.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p50_e0.25]" python -m cleanrl_utils.enjoy --exp-name DQPN_p50_e0.25 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.25-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.25-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.25-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p50_e0.25 --start-policy-f 50000 --end-policy-f 1000 --evaluation-fraction 0.25 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.25, 'exp_name': 'DQPN_p50_e0.25', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 50000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
augustogeog/q-Taxi-v3
augustogeog
2023-02-08T19:06:32Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T19:06:28Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.32 +/- 2.89 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="augustogeog/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
albertqueralto/ppo-SnowballTarget
albertqueralto
2023-02-08T18:54:48Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-08T18:54:42Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: albertqueralto/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sanali209/imclasif-races-0-v001
sanali209
2023-02-08T18:46:51Z
20
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-08T05:38:10Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: imclasif-races-0-v001 results: - task: name: Image genre Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6373626589775085 --- # imclasif-races-0-v001 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
kitintouch/kit-the-bear
kitintouch
2023-02-08T18:44:56Z
0
0
null
[ "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-02-08T18:44:30Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: kitthebear --- ### kit the bear Dreambooth model trained by kitintouch with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: kitthebear (use that on your prompt) ![kitthebear 0](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%281%29.jpg)![kitthebear 1](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%282%29.jpg)![kitthebear 2](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%283%29.jpg)![kitthebear 3](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%284%29.jpg)![kitthebear 4](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%285%29.jpg)![kitthebear 5](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%286%29.jpg)![kitthebear 6](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%287%29.jpg)![kitthebear 7](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%288%29.jpg)![kitthebear 8](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%289%29.jpg)
mushrafi88/T5-asr-corrector
mushrafi88
2023-02-08T18:31:33Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-03T04:48:36Z
--- tags: - generated_from_trainer model-index: - name: T5-asr-corrector results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-asr-corrector This model is a fine-tuned version of [flax-community/bengali-t5-base](https://huggingface.co/flax-community/bengali-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6804 | 0.15 | 500 | 0.8576 | | 0.792 | 0.31 | 1000 | 0.6556 | | 0.6553 | 0.46 | 1500 | 0.5640 | | 0.5901 | 0.62 | 2000 | 0.5114 | | 0.5454 | 0.77 | 2500 | 0.4815 | | 0.53 | 0.93 | 3000 | 0.4683 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
tomasabril/bonusunit1
tomasabril
2023-02-08T18:04:09Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-08T18:04:01Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: tomasabril/bonusunit1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
apatidar0/pegasus_conversation-summ
apatidar0
2023-02-08T18:01:14Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-08T17:53:42Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus_conversation-summ results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus_conversation-summ This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
pfunk/Pong-v4-DQPN_p50_e0.10-seed1
pfunk
2023-02-08T17:41:56Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T17:41:35Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 10.00 +/- 5.67 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_e0.10.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p50_e0.10]" python -m cleanrl_utils.enjoy --exp-name DQPN_p50_e0.10 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p50_e0.10 --start-policy-f 50000 --end-policy-f 1000 --evaluation-fraction 0.10 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.1, 'exp_name': 'DQPN_p50_e0.10', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 50000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
GFMRommel/Vergelltungswaffe1
GFMRommel
2023-02-08T17:27:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-08T10:14:26Z
--- license: creativeml-openrail-m ---
vvn0/a2c-PandaReachDense-v2
vvn0
2023-02-08T17:21:05Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T17:18:35Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.70 +/- 0.67 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
fathyshalab/massive_datetime-roberta-large-v1-2-0.82
fathyshalab
2023-02-08T17:16:07Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T17:15:45Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_datetime-roberta-large-v1-2-0.82 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_datetime-roberta-large-v1-2-0.82") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
yonas/stt_rw_sw_lg_conformer_ctc_large
yonas
2023-02-08T17:11:56Z
4
0
nemo
[ "nemo", "automatic-speech-recognition", "speech", "ASR", "Kinyarwanda", "Swahili", "Luganda", "Multilingual", "audio", "CTC", "Conformer", "Transformer", "NeMo", "pytorch", "rw", "dataset:mozilla-foundation/common_voice_11_0", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2023-02-08T17:07:03Z
--- language: - rw license: cc-by-4.0 library_name: nemo datasets: - mozilla-foundation/common_voice_11_0 thumbnail: null tags: - automatic-speech-recognition - speech - ASR - Kinyarwanda - Swahili - Luganda - Multilingual - audio - CTC - Conformer - Transformer - NeMo - pytorch model-index: - name: stt_rw_sw_lg_conformer_ctc_large results: [] --- ## Model Overview <DESCRIBE IN ONE LINE THE MODEL AND ITS USE> ## NVIDIA NeMo: Training To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version. ``` pip install nemo_toolkit['all'] ``` ## How to Use this Model The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.ASRModel.from_pretrained("yonas/stt_rw_sw_lg_conformer_ctc_large") ``` ### Transcribing using Python First, let's get a sample ``` wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav ``` Then simply do: ``` asr_model.transcribe(['2086-149220-0033.wav']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="yonas/stt_rw_sw_lg_conformer_ctc_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16000 KHz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture <ADD SOME INFORMATION ABOUT THE ARCHITECTURE> ## Training <ADD INFORMATION ABOUT HOW THE MODEL WAS TRAINED - HOW MANY EPOCHS, AMOUNT OF COMPUTE ETC> ### Datasets <LIST THE NAME AND SPLITS OF DATASETS USED TO TRAIN THIS MODEL (ALONG WITH LANGUAGE AND ANY ADDITIONAL INFORMATION)> ## Performance <LIST THE SCORES OF THE MODEL - OR USE THE Hugging Face Evaluate LiBRARY TO UPLOAD METRICS> ## Limitations <DECLARE ANY POTENTIAL LIMITATIONS OF THE MODEL> Eg: Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. ## References <ADD ANY REFERENCES HERE AS NEEDED> [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
zmaro/zmaroavatar
zmaro
2023-02-08T17:09:36Z
1
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T17:07:34Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### zmaroavatar Dreambooth model trained by zmaro with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Hamid-reza/mt5-small-finetuned-digikala-titleGen
Hamid-reza
2023-02-08T17:09:14Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-02-07T19:19:31Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-digikala-titleGen results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-digikala-titleGen This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8801 - Rouge1: 70.3489 - Rouge2: 43.245 - Rougel: 34.6608 - Rougelsum: 34.6608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 7.5555 | 1.0 | 847 | 3.2594 | 45.6729 | 19.6446 | 31.5974 | 31.5974 | | 4.1386 | 2.0 | 1694 | 3.0347 | 58.3021 | 32.8172 | 33.9012 | 33.9012 | | 3.7449 | 3.0 | 2541 | 2.9665 | 66.731 | 40.8991 | 34.2203 | 34.2203 | | 3.5575 | 4.0 | 3388 | 2.9102 | 65.598 | 39.4081 | 34.5116 | 34.5116 | | 3.4062 | 5.0 | 4235 | 2.8944 | 69.6081 | 42.8707 | 34.6622 | 34.6622 | | 3.3408 | 6.0 | 5082 | 2.8888 | 70.2123 | 42.8639 | 34.5669 | 34.5669 | | 3.3025 | 7.0 | 5929 | 2.8801 | 70.3489 | 43.245 | 34.6608 | 34.6608 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
YoriV/Reinforce-CartPole-v1
YoriV
2023-02-08T17:07:24Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T17:07:12Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 477.90 +/- 31.31 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Phantom-Artist/phantom-diffusion-s3-the-last-8
Phantom-Artist
2023-02-08T16:52:18Z
0
4
null
[ "art", "en", "ja", "dataset:Phantom-Artist/phantom-diffusion-s3-the-last-8-dataset", "license:creativeml-openrail-m", "region:us" ]
null
2023-02-08T12:28:01Z
--- license: creativeml-openrail-m datasets: - Phantom-Artist/phantom-diffusion-s3-the-last-8-dataset language: - en - ja tags: - art --- The final 8 models that are trained over [hakurei's Waifu Diffusion](https://huggingface.co/hakurei/waifu-diffusion). Each model was trained on a notable Japanese (and Taiwanese, I think) AI artist's works using dreambooth, with 30 of their works gained mainly from twitter (except for sabakichi, which I collected the dataset from pixiv). It tooks 1000 steps to train each model, at a learning rate of 5-e6. I have shared the notebook [here](https://huggingface.co/Phantom-Artist/phantom-diffusion/blob/main/DreamBooth_Stable_Diffusion_works_with_SD_2.ipynb) in case you want to try out additional training. Some are good at backgrounds, while others can generate a semi-realistic style as seen in many SD 1.5 anime/waifu models (and some might be a bit overfitted). The dataset is published [here](https://huggingface.co/datasets/Phantom-Artist/phantom-diffusion-s3-the-last-8-dataset), and the full members are listed [here](https://twitter.com/i/lists/1622444997240037377) (special thanks to Yunyalula for creating it!). # For those who are against generative AIs You can see that now they are the target. Take our tool. Now is the time for pay back. Generate the images in their styles, and bring back the power you had to yourself. # For those who support the development of generative AIs Some of the AI artists, even though they take advantage of the open strategy of Stable Diffusion, now tend to hide their prompts, trying to monopolize their style (I'm not saying the AI artists I trained are as such, to be sure). To continue protecting our values and beliefs on the open community and fight against them trying to create another pre-modern style guilds, I will show you a new way. You no longer need their prompts; just train their images by yourself to protect the open community. It's not only legal but also ethical, as they have been taking advantages of others' trained dataset. # For those who call themselves "phantom 40" I saw some caliming there should be 48, and here you go. Phantom 48, or do you like to call yourselves *PTM* 48 instead? It's up to you. # Why will they be the last? My initial intention on this series was a social experiment to see what will happen if the AI artists are targeted for personalized training. As it became more popular than expected and the artists started calling themselves "phantom 20," I came up with the second intention to see how they will react after I add 20 more in one day, to see if they can adapt to the sudden change. They acted greatly, and I think that's why they could become notable. All the reactions and the interpretations on my action were impressive, but since I have accomplished my goal, and since the main stream model will probably be SD 2.1 768 (not SD 2.1 512), I will no longer add new models. I know I couldn't add some of the artists, but no. I will not do it under the name of phantom. It takes me like 8 hours to train, test, and upload 20 models, and it's just unsustainable to continue doing it everyday. **From now on, anyone who wish to add more is the next phantom. Train anyone you wish to by yourself.** # trained artist list - atsuwo_AI - recommended pos: multicolored hair, cg - fladdict - recommended pos: oil painting/ancient relief/impressionist impasto oil painting (maybe more) - possible neg: monkey - Hifumi_AID - recommended pos: dark purple hair, emerald eyes - mayonaka_rr - recommended pos: cg - possible pos: dynamic posing, bikini, ponytail - o81morimori - possible pos: cg, in a messy apartment room with objects on the floor and the bed - sabakichi - possible pos 1: merging underwater, limited pallete, melting underwater, unstable outlines - possible pos 2: rough sketch, limited pallete, ((unstable outlines)), monotone gradation, dynamic posing - teftef - possible pos: light skyblue hair, bun, retropunk gears of a factory - violet_fizz - recommended pos: beautiful face, grown up face, long eyes, expressionless - possible pos: expressionless # samples The basic prompt is as follows. However, to present you the potential of these models as much as possible, many of them have additional postive tags (such as "in the style of") to get the result below (yes, use ``aitop (ARTIST)_style`` to gain the finetuned result). Many works better with the additional prompt ``beautiful face``. Generally speaking, prompting words close to the trained dataset will give you a better result. ``` POS: masterpiece, best quality, 1girl, aitop (ARTIST)_style NEG: nsfw, worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digits, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry, simple background ``` ## atsuwo_AI ![atsuwo_AI_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/atsuwo_AI_style.png) ![atsuwo_AI_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/atsuwo_AI_style2.png) ![atsuwo_AI_sample3](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/atsuwo_AI_style3.png) ## fladdict ![fladdict_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/fladdict_style.png) ![fladdict_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/fladdict_style2.png) ![fladdict_sample3](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/fladdict_style3.png) ## Hifumi_AID ![Hifumi_AID_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/Hifumi_AID_style.png) ![Hifumi_AID_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/Hifumi_AID_style2.png) ## mayonaka_rr ![mayonaka_rr_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/mayonaka_rr_style.png) ![mayonaka_rr_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/mayonaka_rr_style2.png) ![mayonaka_rr_sample3](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/mayonaka_rr_style3.png) ## o81morimori ![o81morimori_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/o81morimori_style.png) ![o81morimori_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/o81morimori_style2.png) ## sabakichi ![sabakichi_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/sabakichi_style.png) ![sabakichi_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/sabakichi_style2.png) ![sabakichi_sample3](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/sabakichi_style3.png) ![sabakichi_sample4](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/sabakichi_style4.png) ## teftef ![teftef_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/teftef_style.png) ![teftef_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/teftef_style2.png) ## violet_fizz ![violet_fizz_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/violet_fizz_style.png) ![violet_fizz_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/violet_fizz_style2.png)
Elifr/clasificador-sentimientos-pln-uned
Elifr
2023-02-08T16:50:20Z
5
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-08T16:49:17Z
--- tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-sentimientos-pln-uned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-sentimientos-pln-uned This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3848 - Accuracy: 0.4297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.3848 | 0.3806 | | 1.4224 | 2.0 | 776 | 1.2911 | 0.4090 | | 1.0722 | 3.0 | 1164 | 1.3848 | 0.4297 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
dasaprakashk/Reinforce-Pixelcopter-PLE-v0
dasaprakashk
2023-02-08T16:23:22Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T16:23:19Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 31.60 +/- 25.50 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
sheldonxxxx/OFA_model_weights
sheldonxxxx
2023-02-08T16:22:21Z
0
1
null
[ "visual-question-answering", "en", "license:apache-2.0", "region:us" ]
visual-question-answering
2023-02-07T13:54:05Z
--- license: apache-2.0 language: - en pipeline_tag: visual-question-answering --- This is an unoffical mirror of the model weights for use with https://github.com/OFA-Sys/OFA The original link is too slow when downloading from outside of China...
fathyshalab/massive_play-roberta-large-v1-2-0.64
fathyshalab
2023-02-08T16:18:14Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T16:17:52Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_play-roberta-large-v1-2-0.64 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_play-roberta-large-v1-2-0.64") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
mshibatatt/q-Taxi-v3
mshibatatt
2023-02-08T16:10:27Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T14:48:43Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mshibatatt/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
fathyshalab/massive_calendar-roberta-large-v1-2-0.89
fathyshalab
2023-02-08T16:09:11Z
12
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T16:08:47Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_calendar-roberta-large-v1-2-0.89 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_calendar-roberta-large-v1-2-0.89") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
griffin/clinical-led-summarizer
griffin
2023-02-08T15:58:41Z
11
5
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-12T14:29:12Z
# clinical-led-summarizer HuggingFace Model Weights for the LongFormer Hospital-Course Summarization model trained on Revised References, as described in Findings of EMNLP 2022 Paper "Learning to Revise References for Faithful Summarization" [Paper Link](https://aclanthology.org/2022.findings-emnlp.296/) --- language: - en tags: - summarization license: apache-2.0 datasets: - MIMIC-III metrics: - rouge - bertscore ---
fathyshalab/massive_transport-roberta-large-v1-2-0.15
fathyshalab
2023-02-08T15:57:47Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T15:57:25Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_transport-roberta-large-v1-2-0.15 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_transport-roberta-large-v1-2-0.15") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
rerdscf/HyperNetwork
rerdscf
2023-02-08T15:30:42Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-08T02:05:48Z
--- license: creativeml-openrail-m ---
pabloac31/ppo-SnowballTarget
pabloac31
2023-02-08T15:24:46Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-08T15:24:40Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: pabloac31/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
fathyshalab/massive_social-roberta-large-v1-2-0.13
fathyshalab
2023-02-08T15:23:03Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T15:22:45Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_social-roberta-large-v1-2-0.13 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_social-roberta-large-v1-2-0.13") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
frangiral/dqn-SpaceInvadersNoFrameskip-v4
frangiral
2023-02-08T15:08:13Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T15:07:40Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 422.50 +/- 299.79 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga frangiral -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga frangiral -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga frangiral ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 10000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
mwissing/dqn-SpaceInvadersNoFrameskip-v4
mwissing
2023-02-08T15:02:50Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T15:02:08Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 679.50 +/- 183.98 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mwissing -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mwissing -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mwissing ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
mertyazan/Reinforce-1
mertyazan
2023-02-08T15:01:26Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T10:30:26Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 33.20 +/- 25.45 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Axel578/flan_t5_summarization
Axel578
2023-02-08T15:00:53Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-08T13:06:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan_t5_summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan_t5_summarization This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6162 - Rouge1: 15.9418 - Rouge2: 7.4447 - Rougel: 15.5655 - Rougelsum: 15.5835 - Gen Len: 18.7313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 272 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7405 | 2.0 | 544 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7405 | 3.0 | 816 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7453 | 4.0 | 1088 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7453 | 5.0 | 1360 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7372 | 6.0 | 1632 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7372 | 7.0 | 1904 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7436 | 8.0 | 2176 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7436 | 9.0 | 2448 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7425 | 10.0 | 2720 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2