modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-07 06:34:03
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
544 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-07 06:33:46
card
stringlengths
11
1.01M
scasutt/wav2vec2-large-xlsr-53_toy_train_data_fast_10pct
scasutt
2022-03-28T18:53:54Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-28T12:30:15Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data_fast_10pct results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data_fast_10pct This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6983 - Wer: 0.5026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3619 | 1.05 | 250 | 3.4334 | 1.0 | | 3.0818 | 2.1 | 500 | 3.4914 | 1.0 | | 2.3245 | 3.15 | 750 | 1.6483 | 0.9486 | | 1.0233 | 4.2 | 1000 | 0.8817 | 0.7400 | | 0.7522 | 5.25 | 1250 | 0.7374 | 0.6529 | | 0.5343 | 6.3 | 1500 | 0.6972 | 0.6068 | | 0.4452 | 7.35 | 1750 | 0.6757 | 0.5740 | | 0.4275 | 8.4 | 2000 | 0.6789 | 0.5551 | | 0.3688 | 9.45 | 2250 | 0.6468 | 0.5394 | | 0.3363 | 10.5 | 2500 | 0.6798 | 0.5358 | | 0.3036 | 11.55 | 2750 | 0.6439 | 0.5265 | | 0.3173 | 12.6 | 3000 | 0.6898 | 0.5196 | | 0.2985 | 13.65 | 3250 | 0.6791 | 0.5169 | | 0.288 | 14.7 | 3500 | 0.6442 | 0.5090 | | 0.2673 | 15.75 | 3750 | 0.6984 | 0.5119 | | 0.2575 | 16.81 | 4000 | 0.7146 | 0.5084 | | 0.239 | 17.86 | 4250 | 0.6847 | 0.5040 | | 0.2266 | 18.91 | 4500 | 0.6900 | 0.5028 | | 0.22 | 19.96 | 4750 | 0.6983 | 0.5026 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
kingabzpro/CELEB-GANs
kingabzpro
2022-03-28T18:08:29Z
0
2
null
[ "huggan", "gan", "dcgans", "dataset:huggan/CelebA-faces", "license:apache-2.0", "region:us" ]
null
2022-03-28T16:05:34Z
--- tags: - huggan - gan - dcgans task: image-generation license: apache-2.0 datasets: - huggan/CelebA-faces --- # Fake Faces with DCGANs ## Model description Describe the model here (what it does, what it's used for, etc.) ## Intended uses & limitations #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data Describe the data you used to train the model. If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data. ## Training procedure Preprocessing, hardware used, hyperparameters... ## Eval results - Generator_loss: 22.7 - Discriminator_loss: 7.9 ## Generated Images You can embed local or remote images using `![](...)` ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
aapot/wav2vec2-large-xlsr-53-finnish
aapot
2022-03-28T17:56:36Z
9
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "fi", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: fi datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Finnish by Aapo Tanskanen results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fi type: common_voice args: fi metrics: - name: Test WER type: wer value: 32.378771 --- # NOTE: this is an old model and should not be used anymore!! There are a lot better newer models available at our orgnization hub: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) and [Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm) # Wav2Vec2-Large-XLSR-53-Finnish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice), [CSS10 Finnish](https://www.kaggle.com/bryanpark/finnish-single-speaker-speech-dataset) and [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import librosa import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. ```python import librosa import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\...\…\–\é]' resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 32.378771 % ## Training The Common Voice `train`, `validation` and `other` datasets were used for training as well as `CSS10 Finnish` and `Finnish parliament session 2` datasets. The script used for training can be found from [Google Colab](https://colab.research.google.com/drive/1vnEGC9BnNRmVyIHj-0UsVulh_cUYSGWA?usp=sharing)
aapot/wav2vec2-xlsr-1b-finnish-v2
aapot
2022-03-28T17:49:48Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xlsr-1b-finnish-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 9.73 - name: Test CER type: cer value: 1.65 --- # Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) for Finnish ASR. The model has been fine-tuned with 275.6 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). **Note**: there is a version with KenLM language model used in the decoding phase producing better transcriptions: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-1b-finnish-v2/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. ## Training data This model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:------------------------------------------------------------------------------------------------------------------------------ |:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.52 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 21.97 h | 7.97 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.74 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 82.73 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 1.95 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-1b` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.7778 | 0.17 | 500 | 0.2851 | 0.3572 | | 0.5506 | 0.34 | 1000 | 0.1595 | 0.2130 | | 0.6569 | 0.5 | 1500 | 0.1458 | 0.2046 | | 0.5997 | 0.67 | 2000 | 0.1374 | 0.1975 | | 0.542 | 0.84 | 2500 | 0.1390 | 0.1956 | | 0.4815 | 1.01 | 3000 | 0.1266 | 0.1813 | | 0.6982 | 1.17 | 3500 | 0.1441 | 0.1965 | | 0.4522 | 1.34 | 4000 | 0.1232 | 0.1822 | | 0.4655 | 1.51 | 4500 | 0.1209 | 0.1702 | | 0.4069 | 1.68 | 5000 | 0.1149 | 0.1688 | | 0.4226 | 1.84 | 5500 | 0.1121 | 0.1560 | | 0.3993 | 2.01 | 6000 | 0.1091 | 0.1557 | | 0.406 | 2.18 | 6500 | 0.1115 | 0.1553 | | 0.4098 | 2.35 | 7000 | 0.1144 | 0.1560 | | 0.3995 | 2.51 | 7500 | 0.1028 | 0.1476 | | 0.4101 | 2.68 | 8000 | 0.1129 | 0.1511 | | 0.3636 | 2.85 | 8500 | 0.1025 | 0.1517 | | 0.3534 | 3.02 | 9000 | 0.1068 | 0.1480 | | 0.3836 | 3.18 | 9500 | 0.1072 | 0.1459 | | 0.3531 | 3.35 | 10000 | 0.0928 | 0.1367 | | 0.3649 | 3.52 | 10500 | 0.1042 | 0.1426 | | 0.3645 | 3.69 | 11000 | 0.0979 | 0.1433 | | 0.3685 | 3.85 | 11500 | 0.0947 | 0.1346 | | 0.3325 | 4.02 | 12000 | 0.0991 | 0.1352 | | 0.3497 | 4.19 | 12500 | 0.0919 | 0.1358 | | 0.3303 | 4.36 | 13000 | 0.0888 | 0.1272 | | 0.3323 | 4.52 | 13500 | 0.0888 | 0.1277 | | 0.3452 | 4.69 | 14000 | 0.0894 | 0.1279 | | 0.337 | 4.86 | 14500 | 0.0917 | 0.1289 | | 0.3114 | 5.03 | 15000 | 0.0942 | 0.1313 | | 0.3099 | 5.19 | 15500 | 0.0902 | 0.1239 | | 0.3079 | 5.36 | 16000 | 0.0871 | 0.1256 | | 0.3293 | 5.53 | 16500 | 0.0861 | 0.1263 | | 0.3123 | 5.7 | 17000 | 0.0876 | 0.1203 | | 0.3093 | 5.86 | 17500 | 0.0848 | 0.1226 | | 0.2903 | 6.03 | 18000 | 0.0914 | 0.1221 | | 0.297 | 6.2 | 18500 | 0.0841 | 0.1185 | | 0.2797 | 6.37 | 19000 | 0.0858 | 0.1165 | | 0.2878 | 6.53 | 19500 | 0.0874 | 0.1161 | | 0.2974 | 6.7 | 20000 | 0.0835 | 0.1173 | | 0.3051 | 6.87 | 20500 | 0.0835 | 0.1178 | | 0.2941 | 7.04 | 21000 | 0.0852 | 0.1155 | | 0.258 | 7.21 | 21500 | 0.0832 | 0.1132 | | 0.2778 | 7.37 | 22000 | 0.0829 | 0.1110 | | 0.2751 | 7.54 | 22500 | 0.0822 | 0.1069 | | 0.2887 | 7.71 | 23000 | 0.0819 | 0.1103 | | 0.2509 | 7.88 | 23500 | 0.0787 | 0.1055 | | 0.2501 | 8.04 | 24000 | 0.0807 | 0.1076 | | 0.2399 | 8.21 | 24500 | 0.0784 | 0.1052 | | 0.2539 | 8.38 | 25000 | 0.0772 | 0.1075 | | 0.248 | 8.55 | 25500 | 0.0772 | 0.1055 | | 0.2689 | 8.71 | 26000 | 0.0763 | 0.1027 | | 0.2855 | 8.88 | 26500 | 0.0756 | 0.1035 | | 0.2421 | 9.05 | 27000 | 0.0771 | 0.0998 | | 0.2497 | 9.22 | 27500 | 0.0756 | 0.0971 | | 0.2367 | 9.38 | 28000 | 0.0741 | 0.0974 | | 0.2473 | 9.55 | 28500 | 0.0739 | 0.0982 | | 0.2396 | 9.72 | 29000 | 0.0756 | 0.0991 | | 0.2602 | 9.89 | 29500 | 0.0737 | 0.0975 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-1b-finnish-v2 --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
aapot/wav2vec2-xlsr-1b-finnish-lm
aapot
2022-03-28T17:31:03Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xlsr-1b-finnish-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 5.65 - name: Test CER type: cer value: 1.2 --- # Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) for Finnish ASR. The model has been fine-tuned with 259.57 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. **Note**: this model is exactly the same as the [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm) model so this model has just been copied/moved to the `Finnish-NLP` Hugging Face organization. **Note**: there is a better V2 version of this model which has been fine-tuned longer with 16 hours of more data: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-1b-finnish-lm/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects. It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. ## Training data This model was fine-tuned with 259.57 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:----------------------------------------------------------------------------------------------------------------------------------|:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.74 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 5.94 h | 2.29 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.98 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 87.84 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 2.07 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-1b` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.968 | 0.18 | 500 | 0.4870 | 0.4720 | | 0.6557 | 0.36 | 1000 | 0.2450 | 0.2931 | | 0.647 | 0.54 | 1500 | 0.1818 | 0.2255 | | 0.5297 | 0.72 | 2000 | 0.1698 | 0.2354 | | 0.5802 | 0.9 | 2500 | 0.1581 | 0.2355 | | 0.6351 | 1.07 | 3000 | 0.1689 | 0.2336 | | 0.4626 | 1.25 | 3500 | 0.1719 | 0.3099 | | 0.4526 | 1.43 | 4000 | 0.1434 | 0.2069 | | 0.4692 | 1.61 | 4500 | 0.1645 | 0.2192 | | 0.4584 | 1.79 | 5000 | 0.1483 | 0.1987 | | 0.4234 | 1.97 | 5500 | 0.1499 | 0.2178 | | 0.4243 | 2.15 | 6000 | 0.1345 | 0.2070 | | 0.4108 | 2.33 | 6500 | 0.1383 | 0.1850 | | 0.4048 | 2.51 | 7000 | 0.1338 | 0.1811 | | 0.4085 | 2.69 | 7500 | 0.1290 | 0.1780 | | 0.4026 | 2.87 | 8000 | 0.1239 | 0.1650 | | 0.4033 | 3.04 | 8500 | 0.1346 | 0.1657 | | 0.3986 | 3.22 | 9000 | 0.1310 | 0.1850 | | 0.3867 | 3.4 | 9500 | 0.1273 | 0.1741 | | 0.3658 | 3.58 | 10000 | 0.1219 | 0.1672 | | 0.382 | 3.76 | 10500 | 0.1306 | 0.1698 | | 0.3847 | 3.94 | 11000 | 0.1230 | 0.1577 | | 0.3691 | 4.12 | 11500 | 0.1310 | 0.1615 | | 0.3593 | 4.3 | 12000 | 0.1296 | 0.1622 | | 0.3619 | 4.48 | 12500 | 0.1285 | 0.1601 | | 0.3361 | 4.66 | 13000 | 0.1261 | 0.1569 | | 0.3603 | 4.84 | 13500 | 0.1235 | 0.1533 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-1b-finnish-lm --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
aapot/wav2vec2-xlsr-1b-finnish-lm-v2
aapot
2022-03-28T17:26:57Z
6
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xlsr-1b-finnish-lm-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 4.09 - name: Test CER type: cer value: 0.88 --- # Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) for Finnish ASR. The model has been fine-tuned with 275.6 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. **Note**: this model is exactly the same as the [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) model so this model has just been copied/moved to the `Finnish-NLP` Hugging Face organization. ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-1b-finnish-lm-v2/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions and from a subset of Finnish Wikipedia. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects (because especially the Wikipedia contains mostly formal Finnish language). It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. ## Training data This model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:------------------------------------------------------------------------------------------------------------------------------ |:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.52 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 21.97 h | 7.97 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.74 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 82.73 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 1.95 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data and 100k random samples of cleaned [Finnish Wikipedia](https://huggingface.co/datasets/wikipedia) (August 2021) dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-1b` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.7778 | 0.17 | 500 | 0.2851 | 0.3572 | | 0.5506 | 0.34 | 1000 | 0.1595 | 0.2130 | | 0.6569 | 0.5 | 1500 | 0.1458 | 0.2046 | | 0.5997 | 0.67 | 2000 | 0.1374 | 0.1975 | | 0.542 | 0.84 | 2500 | 0.1390 | 0.1956 | | 0.4815 | 1.01 | 3000 | 0.1266 | 0.1813 | | 0.6982 | 1.17 | 3500 | 0.1441 | 0.1965 | | 0.4522 | 1.34 | 4000 | 0.1232 | 0.1822 | | 0.4655 | 1.51 | 4500 | 0.1209 | 0.1702 | | 0.4069 | 1.68 | 5000 | 0.1149 | 0.1688 | | 0.4226 | 1.84 | 5500 | 0.1121 | 0.1560 | | 0.3993 | 2.01 | 6000 | 0.1091 | 0.1557 | | 0.406 | 2.18 | 6500 | 0.1115 | 0.1553 | | 0.4098 | 2.35 | 7000 | 0.1144 | 0.1560 | | 0.3995 | 2.51 | 7500 | 0.1028 | 0.1476 | | 0.4101 | 2.68 | 8000 | 0.1129 | 0.1511 | | 0.3636 | 2.85 | 8500 | 0.1025 | 0.1517 | | 0.3534 | 3.02 | 9000 | 0.1068 | 0.1480 | | 0.3836 | 3.18 | 9500 | 0.1072 | 0.1459 | | 0.3531 | 3.35 | 10000 | 0.0928 | 0.1367 | | 0.3649 | 3.52 | 10500 | 0.1042 | 0.1426 | | 0.3645 | 3.69 | 11000 | 0.0979 | 0.1433 | | 0.3685 | 3.85 | 11500 | 0.0947 | 0.1346 | | 0.3325 | 4.02 | 12000 | 0.0991 | 0.1352 | | 0.3497 | 4.19 | 12500 | 0.0919 | 0.1358 | | 0.3303 | 4.36 | 13000 | 0.0888 | 0.1272 | | 0.3323 | 4.52 | 13500 | 0.0888 | 0.1277 | | 0.3452 | 4.69 | 14000 | 0.0894 | 0.1279 | | 0.337 | 4.86 | 14500 | 0.0917 | 0.1289 | | 0.3114 | 5.03 | 15000 | 0.0942 | 0.1313 | | 0.3099 | 5.19 | 15500 | 0.0902 | 0.1239 | | 0.3079 | 5.36 | 16000 | 0.0871 | 0.1256 | | 0.3293 | 5.53 | 16500 | 0.0861 | 0.1263 | | 0.3123 | 5.7 | 17000 | 0.0876 | 0.1203 | | 0.3093 | 5.86 | 17500 | 0.0848 | 0.1226 | | 0.2903 | 6.03 | 18000 | 0.0914 | 0.1221 | | 0.297 | 6.2 | 18500 | 0.0841 | 0.1185 | | 0.2797 | 6.37 | 19000 | 0.0858 | 0.1165 | | 0.2878 | 6.53 | 19500 | 0.0874 | 0.1161 | | 0.2974 | 6.7 | 20000 | 0.0835 | 0.1173 | | 0.3051 | 6.87 | 20500 | 0.0835 | 0.1178 | | 0.2941 | 7.04 | 21000 | 0.0852 | 0.1155 | | 0.258 | 7.21 | 21500 | 0.0832 | 0.1132 | | 0.2778 | 7.37 | 22000 | 0.0829 | 0.1110 | | 0.2751 | 7.54 | 22500 | 0.0822 | 0.1069 | | 0.2887 | 7.71 | 23000 | 0.0819 | 0.1103 | | 0.2509 | 7.88 | 23500 | 0.0787 | 0.1055 | | 0.2501 | 8.04 | 24000 | 0.0807 | 0.1076 | | 0.2399 | 8.21 | 24500 | 0.0784 | 0.1052 | | 0.2539 | 8.38 | 25000 | 0.0772 | 0.1075 | | 0.248 | 8.55 | 25500 | 0.0772 | 0.1055 | | 0.2689 | 8.71 | 26000 | 0.0763 | 0.1027 | | 0.2855 | 8.88 | 26500 | 0.0756 | 0.1035 | | 0.2421 | 9.05 | 27000 | 0.0771 | 0.0998 | | 0.2497 | 9.22 | 27500 | 0.0756 | 0.0971 | | 0.2367 | 9.38 | 28000 | 0.0741 | 0.0974 | | 0.2473 | 9.55 | 28500 | 0.0739 | 0.0982 | | 0.2396 | 9.72 | 29000 | 0.0756 | 0.0991 | | 0.2602 | 9.89 | 29500 | 0.0737 | 0.0975 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-1b-finnish-lm-v2 --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
ntoldalagi/C0_LID_DEV
ntoldalagi
2022-03-28T15:46:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-21T21:34:38Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: name: C0_LID_DEV --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # C0_LID_DEV This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.8267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.0 | 25 | inf | 0.8426 | | 1.5354 | 0.17 | 2000 | inf | 0.8198 | | 1.5688 | 0.33 | 4000 | inf | 0.8271 | | 1.5294 | 0.5 | 6000 | inf | 0.8339 | | 1.1947 | 0.67 | 8000 | inf | 0.8260 | | 1.1534 | 0.83 | 10000 | inf | 0.8267 | | 1.1484 | 1.0 | 12000 | inf | 0.8267 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
peterhsu/tf-bert-finetuned-squad
peterhsu
2022-03-28T14:14:15Z
4
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-28T08:00:46Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: tf-bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tf-bert-finetuned-squad This model is a fine-tuned version of [peterhsu/tf-bert-finetuned-squad](https://huggingface.co/peterhsu/tf-bert-finetuned-squad) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16635, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
dhlee347/distilbert-imdb
dhlee347
2022-03-28T14:07:15Z
4
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-28T14:01:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: distilbert-imdb results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9302 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.1796 - Accuracy: 0.9302 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2808 | 1.0 | 782 | 0.1796 | 0.9302 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.6
Chikashi/t5-small-finetuned-cnndm
Chikashi
2022-03-28T14:04:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-28T09:07:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnndm results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.417 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6854 - Rouge1: 24.417 - Rouge2: 11.6924 - Rougel: 20.1756 - Rougelsum: 23.0414 - Gen Len: 18.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:-------:|:---------:|:-------:| | 1.8522 | 1.0 | 35890 | 1.6854 | 24.417 | 11.6924 | 20.1756 | 23.0414 | 18.9996 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
scasutt/wav2vec2-large-xlsr-53_toy_train_data_augmented
scasutt
2022-03-28T12:29:16Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-27T17:08:43Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data_augmented results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data_augmented This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5016 - Wer: 0.4656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.418 | 1.05 | 250 | 3.4171 | 1.0 | | 3.0886 | 2.1 | 500 | 3.4681 | 1.0 | | 2.9422 | 3.15 | 750 | 2.6151 | 1.0 | | 1.3195 | 4.2 | 1000 | 0.8789 | 0.7739 | | 0.9154 | 5.25 | 1250 | 0.6364 | 0.6518 | | 0.6519 | 6.3 | 1500 | 0.5682 | 0.5949 | | 0.5622 | 7.35 | 1750 | 0.5273 | 0.5625 | | 0.4965 | 8.4 | 2000 | 0.4891 | 0.5283 | | 0.4283 | 9.45 | 2250 | 0.5018 | 0.5260 | | 0.4019 | 10.5 | 2500 | 0.5016 | 0.5006 | | 0.3585 | 11.55 | 2750 | 0.5047 | 0.5003 | | 0.3275 | 12.6 | 3000 | 0.5148 | 0.4866 | | 0.3427 | 13.65 | 3250 | 0.5035 | 0.4786 | | 0.3229 | 14.7 | 3500 | 0.4855 | 0.4768 | | 0.3332 | 15.75 | 3750 | 0.5040 | 0.4769 | | 0.2861 | 16.81 | 4000 | 0.5138 | 0.4669 | | 0.3029 | 17.86 | 4250 | 0.5133 | 0.4670 | | 0.2633 | 18.91 | 4500 | 0.5063 | 0.4637 | | 0.2621 | 19.96 | 4750 | 0.5016 | 0.4656 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/abeshinzo
huggingtweets
2022-03-28T12:19:48Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-28T12:19:01Z
--- language: en thumbnail: http://www.huggingtweets.com/abeshinzo/1648469983562/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1765776666/s-abetwitter1_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">安倍晋三</div> <div style="text-align: center; font-size: 14px;">@abeshinzo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 安倍晋三. | Data | 安倍晋三 | | --- | --- | | Tweets downloaded | 2365 | | Retweets | 77 | | Short tweets | 1629 | | Tweets kept | 659 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37uwbwzs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @abeshinzo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ib1nsfa1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ib1nsfa1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/abeshinzo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
VincentC12/sentiment_analysis_kara
VincentC12
2022-03-28T11:52:03Z
21
0
pytorch
[ "pytorch", "distilbert", "sentiment-analysis", "en", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en library_name: pytorch metrics: - negative - positive tags: - sentiment-analysis widget: - text: "Thank you for listening to the recommendations of the telephone team for teleworking. we have a strong expertise in this field and accurate listening to Our management!!!!" example_title: "Exemple positif" - text: "working conditions and wages are less than average more part of the time it is not a hierarchical system Our opinion counts" example_title: "Exemple négatif" --- Ce modèle est développé pour KARA. Ce modèle est : - Un outil d'analyse de sentiment associé à un commentaire de sondage RH - Entrainé pour être utilisé en ANGLAIS (les commentaires doivent êtres traduits) - Spécialisé pour des commentaires entre 10 et 512 charactères Ce modèle n'est pas : - Utilisable pour détecter un discours haineux ou bien une lettre de suicide Étiquettes : - Label_0 = Négatif - Label_1 = Positif version 1.1.0 Performances sur le jeux de données du HRM : 91.5% de précision
mosymosy/Fatima_Fellowship_Quick_Coding_Challenge
mosymosy
2022-03-28T11:38:46Z
0
0
null
[ "region:us" ]
null
2022-03-28T11:27:02Z
Fatima Fellowship Quick Coding Challenge Computer Vision
robvanderg/Sem-RemmmBERT
robvanderg
2022-03-28T11:29:41Z
5
0
transformers
[ "transformers", "pytorch", "rembert", "feature-extraction", "STILT", "retraining", "multi-task learning", "multilingual", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-28T11:20:13Z
--- language: - multilingual tags: - STILT - retraining - multi-task learning datasets: - SemEval 2022 --- ## Sem-RemmmBERT This is the SemEval MaChAmp Multitask Multilingual BERT model. This model is retrained from remBERT (https://huggingface.co/google/rembertased). The retraining is done based on all SemEval 2022 tasks that are text based, and have annotation on the word, sentence or paragraph level. The retraining is done with MaChAmp (https://machamp-nlp.github.io/), a toolkit focusing on multi-task learning for NLP. More information can be found in the paper (which should be released when the SemEval proceedings are online).
robvanderg/Sem-mmmBERT
robvanderg
2022-03-28T11:28:17Z
4
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "STILT", "retraining", "multi-task learning", "multilingual", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-28T11:15:17Z
--- language: - multilingual tags: - STILT - retraining - multi-task learning datasets: - SemEval 2022 --- ## Sem-mmmBERT This is the SemEval MaChAmp Multitask Multilingual BERT model. This model is retrained from mBERT (https://huggingface.co/bert-base-multilingual-cased). The retraining is done based on all SemEval 2022 tasks that are text based, and have annotation on the word, sentence or paragraph level. The retraining is done with MaChAmp (https://machamp-nlp.github.io/), a toolkit focusing on multi-task learning for NLP. More information can be found in the paper (which should be released when the SemEval proceedings are online).
sanchit-gandhi/wav2vec2-2-bart-large-cnn-no-adapter
sanchit-gandhi
2022-03-28T11:26:30Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-26T17:08:05Z
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 3.9938 - Wer: 0.9745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9301 | 2.24 | 500 | 4.6291 | 0.9601 | | 4.4562 | 4.48 | 1000 | 4.3604 | 0.9608 | | 3.8356 | 6.73 | 1500 | 4.0728 | 0.9530 | | 3.2716 | 8.97 | 2000 | 3.9938 | 0.9745 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
21iridescent/distilroberta-base-finetuned-squad2-lwt
21iridescent
2022-03-28T11:18:44Z
31
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-28T08:54:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilroberta-base-finetuned-squad2-lwt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-squad2-lwt This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.1356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1702 | 1.0 | 4120 | 1.1220 | | 0.9787 | 2.0 | 8240 | 1.0500 | | 0.8153 | 3.0 | 12360 | 1.1356 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 {'HasAns_exact': 71.39001349527665, 'HasAns_f1': 77.71740687727831, 'HasAns_total': 5928, 'NoAns_exact': 68.59545836837678, 'NoAns_f1': 68.59545836837678, 'NoAns_total': 5945, 'best_exact': 69.9991577528847, 'best_exact_thresh': 0.0, 'best_f1': 73.1583245993857, 'best_f1_thresh': 0.0, 'exact': 69.99073528173166, 'f1': 73.1499021282327, 'total': 11873}
21iridescent/distilbert-base-uncased-finetuned-squad
21iridescent
2022-03-28T08:10:11Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-28T03:09:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.3466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2739 | 1.0 | 4118 | 1.2801 | | 1.0001 | 2.0 | 8236 | 1.2823 | | 0.8484 | 3.0 | 12354 | 1.3466 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/nsawaikar
huggingtweets
2022-03-28T07:54:11Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-28T07:52:56Z
--- language: en thumbnail: http://www.huggingtweets.com/nsawaikar/1648454046318/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1508184022052184064/yqLU6MxW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nathan.eth</div> <div style="text-align: center; font-size: 14px;">@nsawaikar</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nathan.eth. | Data | Nathan.eth | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 336 | | Short tweets | 621 | | Tweets kept | 2293 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pn1domem/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nsawaikar's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/g9hqx5dx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/g9hqx5dx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nsawaikar') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
timhbach/Team-Gryffindor-DistilBERT-finetuned-ner-creditcardcontract
timhbach
2022-03-28T06:27:50Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-28T03:21:43Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Team-Gryffindor-DistilBERT-finetuned-ner-creditcardcontract results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Team-Gryffindor-DistilBERT-finetuned-ner-creditcardcontract This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0231 - eval_precision: 0.7448 - eval_recall: 0.75 - eval_f1: 0.7474 - eval_accuracy: 0.9942 - eval_runtime: 61.7618 - eval_samples_per_second: 27.201 - eval_steps_per_second: 3.4 - epoch: 3.0 - step: 5670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Datasets 2.0.0 - Tokenizers 0.11.6
aps/flava_full_pretrained_encoders_torchmm
aps
2022-03-28T06:03:42Z
0
0
null
[ "pytorch", "license:bsd-3-clause", "region:us" ]
null
2022-03-28T05:35:04Z
--- license: bsd-3-clause ---
huggingtweets/freudwarrior123
huggingtweets
2022-03-28T04:26:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-28T04:23:45Z
--- language: en thumbnail: http://www.huggingtweets.com/freudwarrior123/1648441457881/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1443547125770559488/QNDa_bi1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">freudwarrior123</div> <div style="text-align: center; font-size: 14px;">@freudwarrior123</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from freudwarrior123. | Data | freudwarrior123 | | --- | --- | | Tweets downloaded | 859 | | Retweets | 274 | | Short tweets | 34 | | Tweets kept | 551 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3798mw2s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @freudwarrior123's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2n7ltssk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2n7ltssk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/freudwarrior123') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
YXHugging/autotrain-xlm-roberta-base-reviews-672119799
YXHugging
2022-03-28T01:30:54Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain", "unk", "dataset:YXHugging/autotrain-data-xlm-roberta-base-reviews", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-27T00:52:19Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - YXHugging/autotrain-data-xlm-roberta-base-reviews co2_eq_emissions: 1583.7188188958198 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 672119799 - CO2 Emissions (in grams): 1583.7188188958198 ## Validation Metrics - Loss: 0.9590993523597717 - Accuracy: 0.5827541666666667 - Macro F1: 0.5806748283026683 - Micro F1: 0.5827541666666667 - Weighted F1: 0.5806748283026683 - Macro Precision: 0.5834325027348383 - Micro Precision: 0.5827541666666667 - Weighted Precision: 0.5834325027348383 - Macro Recall: 0.5827541666666667 - Micro Recall: 0.5827541666666667 - Weighted Recall: 0.5827541666666667 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/YXHugging/autotrain-xlm-roberta-base-reviews-672119799 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119799", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119799", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
BigSalmon/InformalToFormalLincoln32
BigSalmon
2022-03-28T00:48:58Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-27T23:33:14Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln32") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln32") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ```
minimaxir/imgbeddings
minimaxir
2022-03-28T00:36:28Z
0
3
transformers
[ "transformers", "onnx", "ai", "images", "image-processing", "embeddings", "clip", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-27T17:23:51Z
--- language: - en tags: - ai - transformers - onnx - images - image-processing - embeddings - clip license: mit --- # imgbeddings The HF repo where the models for [imgbeddings](https://github.com/minimaxir/imgbeddings) are loaded. The ONNX files were generated using [this export Notebook](https://github.com/minimaxir/imgbeddings/blob/main/examples/export.ipynb). ## License MIT
huggingtweets/baguioni
huggingtweets
2022-03-27T22:55:21Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-27T22:54:40Z
--- language: en thumbnail: http://www.huggingtweets.com/baguioni/1648421716784/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506662013707046914/hVtCPrPL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">baguio</div> <div style="text-align: center; font-size: 14px;">@baguioni</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from baguio. | Data | baguio | | --- | --- | | Tweets downloaded | 3012 | | Retweets | 1090 | | Short tweets | 527 | | Tweets kept | 1395 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1z9nh9v8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @baguioni's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2s53fr1o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2s53fr1o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/baguioni') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/baguioni-elonmusk-jacobe
huggingtweets
2022-03-27T22:44:21Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-27T22:43:39Z
--- language: en thumbnail: http://www.huggingtweets.com/baguioni-elonmusk-jacobe/1648421056394/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503591435324563456/foUrqiEw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1025926108984664064/2ZHTSIof_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506662013707046914/hVtCPrPL_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Rowel Atienza & baguio</div> <div style="text-align: center; font-size: 14px;">@baguioni-elonmusk-jacobe</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Rowel Atienza & baguio. | Data | Elon Musk | Rowel Atienza | baguio | | --- | --- | --- | --- | | Tweets downloaded | 1621 | 100 | 3012 | | Retweets | 69 | 29 | 1090 | | Short tweets | 520 | 4 | 527 | | Tweets kept | 1032 | 67 | 1395 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xuj1tda/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @baguioni-elonmusk-jacobe's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3fpkbu3i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3fpkbu3i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/baguioni-elonmusk-jacobe') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
leonadase/bert-base-chinese-finetuned-fdRE
leonadase
2022-03-27T20:52:06Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:sem_eval2010_task8", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-27T19:04:51Z
--- tags: - generated_from_trainer datasets: - sem_eval2010_task8 metrics: - accuracy model-index: - name: bert-base-chinese-finetuned-fdRE results: - task: name: Text Classification type: text-classification dataset: name: sem_eval2010_task8 type: sem_eval2010_task8 args: default metrics: - name: Accuracy type: accuracy value: 0.9080962800875274 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuned-fdRE This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the sem_eval2010_task8 dataset. It achieves the following results on the evaluation set: - Loss: 0.2716 - Accuracy: 0.9081 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 46 | 0.5571 | 0.7812 | | No log | 2.0 | 92 | 0.4030 | 0.8621 | | No log | 3.0 | 138 | 0.3139 | 0.8928 | | No log | 4.0 | 184 | 0.2716 | 0.9081 | | No log | 5.0 | 230 | 0.2564 | 0.9081 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ikram54/autotrain-harassement-675420038
ikram54
2022-03-27T18:08:30Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:ikram54/autotrain-data-harassement", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-27T18:06:02Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - ikram54/autotrain-data-harassement co2_eq_emissions: 2.6332836871905054 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 675420038 - CO2 Emissions (in grams): 2.6332836871905054 ## Validation Metrics - Loss: 0.8747465014457703 - Accuracy: 0.7085201793721974 - Macro F1: 0.579743989078862 - Micro F1: 0.7085201793721974 - Weighted F1: 0.6913786522271296 - Macro Precision: 0.5669375905888698 - Micro Precision: 0.7085201793721974 - Weighted Precision: 0.6760144007300164 - Macro Recall: 0.5940655209452201 - Micro Recall: 0.7085201793721974 - Weighted Recall: 0.7085201793721974 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ikram54/autotrain-harassement-675420038 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ikram54/autotrain-harassement-675420038", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ikram54/autotrain-harassement-675420038", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
YXHugging/autotrain-xlm-roberta-base-reviews-672119801
YXHugging
2022-03-27T16:53:50Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain", "unk", "dataset:YXHugging/autotrain-data-xlm-roberta-base-reviews", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-27T01:21:43Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - YXHugging/autotrain-data-xlm-roberta-base-reviews co2_eq_emissions: 999.5670927087938 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 672119801 - CO2 Emissions (in grams): 999.5670927087938 ## Validation Metrics - Loss: 0.9767692685127258 - Accuracy: 0.5738333333333333 - Macro F1: 0.5698748846905103 - Micro F1: 0.5738333333333333 - Weighted F1: 0.5698748846905102 - Macro Precision: 0.5734242161804903 - Micro Precision: 0.5738333333333333 - Weighted Precision: 0.5734242161804902 - Macro Recall: 0.5738333333333333 - Micro Recall: 0.5738333333333333 - Weighted Recall: 0.5738333333333333 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/YXHugging/autotrain-xlm-roberta-base-reviews-672119801 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119801", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119801", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
SAGAR4REAL/wav2vec2-large-hindicone
SAGAR4REAL
2022-03-27T16:20:28Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-27T13:41:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-hindicone results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-hindicone This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
csukuangfj/icefall-asr-librispeech-stateless-transducer-2022-03-27-2
csukuangfj
2022-03-27T15:59:24Z
0
0
null
[ "tensorboard", "region:us" ]
null
2022-03-27T13:27:21Z
## Introduction Please see <https://github.com/k2-fsa/icefall/pull/271> for more details.
csukuangfj/icefall-asr-librispeech-stateless-transducer-2022-03-27
csukuangfj
2022-03-27T15:59:00Z
0
0
null
[ "tensorboard", "region:us" ]
null
2022-03-27T07:29:38Z
## Introduction Please see <https://github.com/k2-fsa/icefall/pull/271> for more details.
EMBO/bio-lm
EMBO
2022-03-27T15:46:51Z
8
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "language model", "dataset:EMBO/biolang", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - english thumbnail: tags: - language model license: datasets: - EMBO/biolang metrics: - --- # bio-lm ## Model description This model is a [RoBERTa base pre-trained model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of english scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang). ## Intended uses & limitations #### How to use The intended use of this model is to be fine-tuned for downstream tasks, token classification in particular. To have a quick check of the model as-is in a fill-mask task: ```python from transformers import pipeline, RobertaTokenizerFast tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512) text = "Let us try this model to see if it <mask>." fill_mask = pipeline( "fill-mask", model='EMBO/bio-lm', tokenizer=tokenizer ) fill_mask(text) ``` #### Limitations and bias This model should be fine-tuned on a specifi task like token classification. The model must be used with the `roberta-base` tokenizer. ## Training data The model was trained with a masked language modeling taskon the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang) wich includes 12Mio examples from abstracts and figure legends extracted from papers published in life sciences. ## Training procedure The training was run on a NVIDIA DGX Station with 4XTesla V100 GPUs. Training code is available at https://github.com/source-data/soda-roberta - Command: `python -m lm.train /data/json/oapmc_abstracts_figs/ MLM` - Tokenizer vocab size: 50265 - Training data: EMBO/biolang MLM - Training with: 12005390 examples - Evaluating on: 36713 examples - Epochs: 3.0 - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - tensorboard run: lm-MLM-2021-01-27T15-17-43.113766 End of training: ``` trainset: 'loss': 0.8653350830078125 validation set: 'eval_loss': 0.8192330598831177, 'eval_recall': 0.8154601116513597 ``` ## Eval results Eval on test set: ``` recall: 0.814471959728645 ```
sebastian-hofstaetter/colberter-128-32-msmarco
sebastian-hofstaetter
2022-03-27T15:07:44Z
5
2
transformers
[ "transformers", "pytorch", "ColBERT", "bag-of-words", "dense-passage-retrieval", "knowledge-distillation", "en", "dataset:ms_marco", "arxiv:2203.13088", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-27T14:59:48Z
--- license: apache-2.0 language: "en" tags: - bag-of-words - dense-passage-retrieval - knowledge-distillation datasets: - ms_marco --- # ColBERTer (Dim: 32) for Passage Retrieval If you want to know more about our ColBERTer architecture check out our paper: https://arxiv.org/abs/2203.13088 🎉 For more information, source code, and a minimal usage example please visit: https://github.com/sebastian-hofstaetter/colberter ## Limitations & Bias - The model is only trained on english text. - The model inherits social biases from both DistilBERT and MSMARCO. - The model is only trained on relatively short passages of MSMARCO (avg. 60 words length), so it might struggle with longer text. ## Citation If you use our model checkpoint please cite our work as: ``` @article{Hofstaetter2022_colberter, author = {Sebastian Hofst{\"a}tter and Omar Khattab and Sophia Althammer and Mete Sertkan and Allan Hanbury}, title = {Introducing Neural Bag of Whole-Words with ColBERTer: Contextualized Late Interactions using Enhanced Reduction}, publisher = {arXiv}, url = {https://arxiv.org/abs/2203.13088}, doi = {10.48550/ARXIV.2203.13088}, year = {2022}, } ```
perevalov/query-validation-rubq
perevalov
2022-03-27T14:14:28Z
0
0
tf-keras
[ "tf-keras", "kgqa", "question answering", "sparql", "bert-base-cased", "en", "license:apache-2.0", "region:us" ]
null
2022-03-27T10:52:12Z
--- language: en tags: - kgqa - question answering - sparql - bert-base-cased license: apache-2.0 --- # SPARQL Query Validation model ## Model description ## Intended uses & limitations ### How to use
perevalov/query-validation-lcquad
perevalov
2022-03-27T14:04:19Z
0
0
tf-keras
[ "tf-keras", "kgqa", "question answering", "sparql", "bert-base-cased", "en", "license:apache-2.0", "region:us" ]
null
2022-03-27T09:51:36Z
--- language: en tags: - kgqa - question answering - sparql - bert-base-cased license: apache-2.0 --- # SPARQL Query Validation model ## Model description ## Intended uses & limitations ### How to use
YXHugging/autotrain-xlm-roberta-base-reviews-672119798
YXHugging
2022-03-27T12:58:03Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain", "unk", "dataset:YXHugging/autotrain-data-xlm-roberta-base-reviews", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-26T21:07:59Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - YXHugging/autotrain-data-xlm-roberta-base-reviews co2_eq_emissions: 1013.8825767332373 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 672119798 - CO2 Emissions (in grams): 1013.8825767332373 ## Validation Metrics - Loss: 0.9646632075309753 - Accuracy: 0.5789333333333333 - Macro F1: 0.5775792001871465 - Micro F1: 0.5789333333333333 - Weighted F1: 0.5775792001871465 - Macro Precision: 0.5829444191847423 - Micro Precision: 0.5789333333333333 - Weighted Precision: 0.5829444191847424 - Macro Recall: 0.5789333333333333 - Micro Recall: 0.5789333333333333 - Weighted Recall: 0.5789333333333333 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/YXHugging/autotrain-xlm-roberta-base-reviews-672119798 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119798", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119798", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Danik51002/NewModel
Danik51002
2022-03-27T12:52:39Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-13T16:51:09Z
--- tags: - generated_from_trainer model-index: - name: NewModel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NewModel This model is a fine-tuned version of [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 42 - eval_batch_size: 42 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 840 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 15 - num_epochs: 200 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Tokenizers 0.11.6
PaddyP/distilbert-base-uncased-finetuned-emotion
PaddyP
2022-03-27T07:06:37Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-27T06:12:25Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2302 - Accuracy: 0.922 - F1: 0.9218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3344 | 0.903 | 0.9004 | | No log | 2.0 | 500 | 0.2302 | 0.922 | 0.9218 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
huggingtweets/psimon365
huggingtweets
2022-03-27T02:56:43Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-27T02:56:02Z
--- language: en thumbnail: http://www.huggingtweets.com/psimon365/1648349798068/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1507859834107879426/d5Jqrb7Y_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Psimon 🌐</div> <div style="text-align: center; font-size: 14px;">@psimon365</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Psimon 🌐. | Data | Psimon 🌐 | | --- | --- | | Tweets downloaded | 181 | | Retweets | 0 | | Short tweets | 34 | | Tweets kept | 147 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/q7gcbo7v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @psimon365's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/kyaiz92o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/kyaiz92o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/psimon365') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Ayham/roberta_roberta_summarization_xsum
Ayham
2022-03-27T00:55:04Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:xsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-26T19:07:42Z
--- tags: - generated_from_trainer datasets: - xsum model-index: - name: roberta_roberta_summarization_xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_roberta_summarization_xsum This model is a fine-tuned version of [](https://huggingface.co/) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.10.3
MONAI/example_spleen_segmentation
MONAI
2022-03-27T00:32:20Z
0
6
null
[ "monai", "arxiv:1811.12506", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - monai --- # Description A pre-trained model for volumetric (3D) segmentation of the spleen from CT image. # Model Overview This model is trained using the runner-up [1] awarded pipeline of the "Medical Segmentation Decathlon Challenge 2018" using the UNet architecture [2] with 32 training images and 9 validation images. ## Data The training dataset is Task09_Spleen.tar from http://medicaldecathlon.com/. ## Training configuration The training was performed with at least 12GB-memory GPUs. Actual Model Input: 96 x 96 x 96 ## Input and output formats Input: 1 channel CT image Output: 2 channels: Label 1: spleen; Label 0: everything else ## Scores This model achieves the following Dice score on the validation data (our own split from the training dataset): Mean Dice = 0.96 ## commands example Execute inference: ``` python -m monai.bundle run evaluator --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf ``` Verify the metadata format: ``` python -m monai.bundle verify_metadata --meta_file configs/metadata.json --filepath eval/schema.json ``` Verify the data shape of network: ``` python -m monai.bundle verify_net_in_out network_def --meta_file configs/metadata.json --config_file configs/inference.json ``` Export checkpoint to TorchScript file: ``` python -m monai.bundle export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json ``` # Disclaimer This is an example, not to be used for diagnostic purposes. # References [1] Xia, Yingda, et al. "3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training." arXiv preprint arXiv:1811.12506 (2018). https://arxiv.org/abs/1811.12506. [2] Kerfoot E., Clough J., Oksuz I., Lee J., King A.P., Schnabel J.A. (2019) Left-Ventricle Quantification Using Residual U-Net. In: Pop M. et al. (eds) Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science, vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_40
huggingtweets/mkobach-naval-shaneaparrish
huggingtweets
2022-03-27T00:07:05Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-27T00:04:05Z
--- language: en thumbnail: http://www.huggingtweets.com/mkobach-naval-shaneaparrish/1648339620049/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374075536595505154/1_1jV_AF_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1253758424292171778/48gD7Hne_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1256841238298292232/ycqwaMI2_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matthew Kobach & Shane Parrish & Naval</div> <div style="text-align: center; font-size: 14px;">@mkobach-naval-shaneaparrish</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matthew Kobach & Shane Parrish & Naval. | Data | Matthew Kobach | Shane Parrish | Naval | | --- | --- | --- | --- | | Tweets downloaded | 3248 | 3197 | 3249 | | Retweets | 135 | 102 | 181 | | Short tweets | 444 | 147 | 617 | | Tweets kept | 2669 | 2948 | 2451 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17cy2tt4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mkobach-naval-shaneaparrish's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1zkb00dh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1zkb00dh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mkobach-naval-shaneaparrish') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
scasutt/wav2vec2-base_toy_train_data_masked_audio
scasutt
2022-03-26T22:02:44Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-26T14:57:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_masked_audio results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_masked_audio This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1950 - Wer: 0.7340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1287 | 2.1 | 250 | 3.4581 | 1.0 | | 3.0259 | 4.2 | 500 | 2.8099 | 0.9999 | | 1.4881 | 6.3 | 750 | 1.2929 | 0.8950 | | 0.9665 | 8.4 | 1000 | 1.1675 | 0.8346 | | 0.7614 | 10.5 | 1250 | 1.1388 | 0.8003 | | 0.5858 | 12.6 | 1500 | 1.1510 | 0.7672 | | 0.5005 | 14.7 | 1750 | 1.1606 | 0.7532 | | 0.4486 | 16.8 | 2000 | 1.1571 | 0.7427 | | 0.4224 | 18.9 | 2250 | 1.1950 | 0.7340 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
Mnauel/wav2vec2-base-finetuned-ks
Mnauel
2022-03-26T20:53:27Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-12T10:51:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5766 - Accuracy: 0.8308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.7247 | 0.7462 | | No log | 2.0 | 14 | 0.6844 | 0.7615 | | 0.4279 | 3.0 | 21 | 0.7254 | 0.7462 | | 0.4279 | 4.0 | 28 | 0.5891 | 0.8 | | 0.4279 | 5.0 | 35 | 0.6991 | 0.7462 | | 0.4478 | 6.0 | 42 | 0.6579 | 0.7615 | | 0.4478 | 7.0 | 49 | 0.6164 | 0.8 | | 0.4478 | 8.0 | 56 | 0.6191 | 0.8077 | | 0.4194 | 9.0 | 63 | 0.5766 | 0.8308 | | 0.4194 | 10.0 | 70 | 0.5704 | 0.8154 | | 0.4194 | 11.0 | 77 | 0.6518 | 0.8 | | 0.3833 | 12.0 | 84 | 0.6190 | 0.8077 | | 0.3833 | 13.0 | 91 | 0.5693 | 0.8231 | | 0.3833 | 14.0 | 98 | 0.5628 | 0.8231 | | 0.3607 | 15.0 | 105 | 0.5741 | 0.8154 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.10.3
dannyvas23/electricidad-small-discriminator-finetuned-clasificacion-texto-suicida
dannyvas23
2022-03-26T19:22:14Z
25
1
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "sentiment", "emotion", "es", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-26T17:19:56Z
--- license: afl-3.0 language: "es" tags: - generated_from_trainer - sentiment - emotion widget: - text: "La vida no merece la pena" example_title: "Ejemplo 1" - text: "Para vivir así lo mejor es estar muerto" example_title: "Ejemplo 2" - text: "me siento triste por no poder viajar" example_title: "Ejemplo 3" - text: "Quiero terminar con todo" example_title: "Ejemplo 4" - text: "Disfruto de la vista" example_title: "Ejemplo 5" metrics: - accuracy model-index: - name: electricidad-small-discriminator-finetuned-clasificacion-texto-suicida results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electricidad-small-discriminator-finetuned-clasificacion-texto-suicida This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0458 - Accuracy: 0.9916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Validation Loss | Accuracy | |:-------------:|:-----:|:---------------:|:--------:| | 0.161100 | 1.0 | 0.133057 | 0.952718 | | 0.134500 | 2.0 | 0.110966 | 0.960804 | | 0.108500 | 3.0 | 0.086417 | 0.970835 | | 0.099400 | 4.0 | 0.073618 | 0.974856 | | 0.090500 | 5.0 | 0.065231 | 0.979629 | | 0.080700 | 6.0 | 0.060849 | 0.982324 | | 0.069200 | 7.0 | 0.054718 | 0.986125 | | 0.060400 | 8.0 | 0.051153 | 0.985948 | | 0.048200 | 9.0 | 0.045747 | 0.989748 | | 0.045500 | 10.0 | 0.049992 | 0.988069 | | 0.043400 | 11.0 | 0.046325 | 0.990234 | | 0.034300 | 12.0 | 0.050746 | 0.989792 | | 0.032900 | 13.0 | 0.043434 | 0.991737 | | 0.028400 | 14.0 | 0.045003 | 0.991869 | | 0.022300 | 15.0 | 0.045819 | 0.991648 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
dannyvas23/clasificacion-texto-suicida-finetuned-amazon-review
dannyvas23
2022-03-26T17:12:23Z
24
2
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "sentiment", "emotion", "es", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T19:26:40Z
--- language: "es" tags: - generated_from_trainer - sentiment - emotion widget: - text: "no me gusta esta vida." example_title: "Ejemplo 1" - text: "odio estar ahi" example_title: "Ejemplo 2" - text: "me siento triste por no poder viajar" example_title: "Ejemplo 3" metrics: - accuracy model-index: - name: clasificacion-texto-suicida-finetuned-amazon-review results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificacion-texto-suicida-finetuned-amazon-review This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1546 - Accuracy: 0.9488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1643 | 1.0 | 12022 | 0.1546 | 0.9488 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
bigmorning/distilgpt2-500e
bigmorning
2022-03-26T16:37:42Z
5
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-26T16:31:57Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilgpt2-500e results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-500e This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
bigmorning/distilbert1000e
bigmorning
2022-03-26T15:31:46Z
5
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-26T15:27:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert1000e results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert1000e This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
bigmorning/distilbert500e
bigmorning
2022-03-26T14:54:50Z
4
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-26T14:48:24Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert500e results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert500e This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
zuppif/versioning-test
zuppif
2022-03-26T13:35:30Z
0
0
null
[ "region:us" ]
null
2022-03-26T13:34:47Z
| | uid | hidden_size | |---:|:------------------------------------------------------------------------------------------------------------------------|--------------:| | 0 | [e87a4e028b11ec7bf770c6f3ab5c6349](https://huggingface.co/zuppif/versioning-test/tree/e87a4e028b11ec7bf770c6f3ab5c6349) | 8 | | 1 | [48f2a327cfb7cb0f9b519d9abf73a9be](https://huggingface.co/zuppif/versioning-test/tree/48f2a327cfb7cb0f9b519d9abf73a9be) | 16 | | 2 | [1c9d18df9ec06b5f7e2f49b2ef1cb826](https://huggingface.co/zuppif/versioning-test/tree/1c9d18df9ec06b5f7e2f49b2ef1cb826) | 32 |
Mr-Wick/Roberta
Mr-Wick
2022-03-26T12:39:55Z
3
0
transformers
[ "transformers", "tf", "roberta", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-23T16:08:46Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Roberta results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Roberta This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16476, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
peterhsu/bert-finetuned-squad
peterhsu
2022-03-26T08:48:45Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-21T13:26:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
lichenda/chime4_fasnet_dprnn_tac
lichenda
2022-03-26T05:52:41Z
36
0
espnet
[ "espnet", "audio", "audio-to-audio", "dataset:chime4", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
audio-to-audio
2022-03-21T08:18:15Z
--- tags: - espnet - audio - audio-to-audio language: noinfo datasets: - chime4 license: cc-by-4.0 --- ## ESPnet2 ENH model ### `lichenda/chime4_fasnet_dprnn_tac` This model was trained by LiChenda using chime4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 98f5fb2185b98f9c08fd56492b3d3234504561e7 pip install -e . cd egs2/chime4/enh1 ./run.sh --skip_data_prep false --skip_train true --download_model lichenda/chime4_fasnet_dprnn_tac ``` <!-- Generated by ./scripts/utils/show_enh_score.sh --> # RESULTS ## Environments - date: `Sat Mar 19 07:17:45 CST 2022` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.8.1` - Git hash: `648b024d8fb262eb9923c06a698b9c6df5b16e51` - Commit date: `Wed Mar 16 18:47:21 2022 +0800` ## .. config: conf/tuning/train_enh_dprnntac_fasnet.yaml |dataset|STOI|SAR|SDR|SIR| |---|---|---|---|---| |enhanced_dt05_simu_isolated_6ch_track|0.95|15.75|15.75|0.00| |enhanced_et05_simu_isolated_6ch_track|0.94|15.40|15.40|0.00| ## ENH config <details><summary>expand</summary> ``` config: conf/tuning/train_enh_dprnntac_fasnet.yaml print_config: false log_level: INFO dry_run: false iterator_type: chunk output_dir: exp/enh_train_enh_dprnntac_fasnet_raw ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 10 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - si_snr - max - - valid - loss - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 8 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/enh_stats_16k/train/speech_mix_shape - exp/enh_stats_16k/train/speech_ref1_shape valid_shape_file: - exp/enh_stats_16k/valid/speech_mix_shape - exp/enh_stats_16k/valid/speech_ref1_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 80000 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 32000 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr05_simu_isolated_6ch_track/wav.scp - speech_mix - sound - - dump/raw/tr05_simu_isolated_6ch_track/spk1.scp - speech_ref1 - sound valid_data_path_and_name_and_type: - - dump/raw/dt05_simu_isolated_6ch_track/wav.scp - speech_mix - sound - - dump/raw/dt05_simu_isolated_6ch_track/spk1.scp - speech_ref1 - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-08 weight_decay: 0 scheduler: steplr scheduler_conf: step_size: 2 gamma: 0.98 init: xavier_uniform model_conf: stft_consistency: false loss_type: mask_mse mask_type: null criterions: - name: si_snr conf: eps: 1.0e-07 wrapper: fixed_order wrapper_conf: weight: 1.0 use_preprocessor: false encoder: same encoder_conf: {} separator: fasnet separator_conf: enc_dim: 64 feature_dim: 64 hidden_dim: 128 layer: 6 segment_size: 24 num_spk: 1 win_len: 16 context_len: 16 sr: 16000 fasnet_type: fasnet dropout: 0.2 decoder: same decoder_conf: {} required: - output_dir version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{ESPnet-SE, author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"{o}}ddeker and Zhuo Chen and Shinji Watanabe}, title = {ESPnet-SE: End-To-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, booktitle = {{IEEE} Spoken Language Technology Workshop, {SLT} 2021, Shenzhen, China, January 19-22, 2021}, pages = {785--792}, publisher = {{IEEE}}, year = {2021}, url = {https://doi.org/10.1109/SLT48900.2021.9383615}, doi = {10.1109/SLT48900.2021.9383615}, timestamp = {Mon, 12 Apr 2021 17:08:59 +0200}, biburl = {https://dblp.org/rec/conf/slt/Li0ZSCKHHBC021.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
ianMconversica/autotrain-phrasinator-reverse-670319725
ianMconversica
2022-03-26T03:59:08Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "unk", "dataset:McIan91/autotrain-data-phrasinator-reverse", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-26T01:38:37Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - McIan91/autotrain-data-phrasinator-reverse co2_eq_emissions: 149.95517950000834 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 670319725 - CO2 Emissions (in grams): 149.95517950000834 ## Validation Metrics - Loss: 0.0022294693626463413 - Rouge1: 67.5833 - Rouge2: 65.7386 - RougeL: 67.5812 - RougeLsum: 67.585 - Gen Len: 18.907 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/McIan91/autotrain-phrasinator-reverse-670319725 ```
ahmeddbahaa/mt5-finetuned-en-ar
ahmeddbahaa
2022-03-26T02:24:12Z
15
1
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-25T19:26:01Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: mt5-finetuned-en-ar results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: arabic metrics: - name: Rouge1 type: rouge value: 0.2824 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-finetuned-en-ar This model is a fine-tuned version of [ahmeddbahaa/mt5-small-finetuned-mt5-en](https://huggingface.co/ahmeddbahaa/mt5-small-finetuned-mt5-en) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.2314 - Rouge1: 0.2824 - Rouge2: 0.0 - Rougel: 0.2902 - Rougelsum: 0.298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.1685 | 1.0 | 4130 | 2.4262 | 0.0941 | 0.0235 | 0.1098 | 0.1098 | | 2.686 | 2.0 | 8260 | 2.2853 | 0.2824 | 0.0 | 0.298 | 0.298 | | 2.481 | 3.0 | 12390 | 2.2314 | 0.2824 | 0.0 | 0.2902 | 0.298 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/huggingpuppy
huggingtweets
2022-03-25T18:42:54Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-25T18:41:40Z
--- language: en thumbnail: http://www.huggingtweets.com/huggingpuppy/1648233768787/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1504530325526900756/QOTZak3q_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">hug. (INGROUP INTERN)</div> <div style="text-align: center; font-size: 14px;">@huggingpuppy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from hug. (INGROUP INTERN). | Data | hug. (INGROUP INTERN) | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 97 | | Short tweets | 816 | | Tweets kept | 2336 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wq0kiqq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @huggingpuppy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3aonv9kh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3aonv9kh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/huggingpuppy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
patrickvonplaten/deberta_amazon_reviews_v1
patrickvonplaten
2022-03-25T17:57:32Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-25T10:12:59Z
--- license: mit tags: - generated_from_trainer model-index: - name: deberta_amazon_reviews_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta_amazon_reviews_v1 This model is a fine-tuned version of [patrickvonplaten/deberta_v3_amazon_reviews](https://huggingface.co/patrickvonplaten/deberta_v3_amazon_reviews) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 2 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
scasutt/wav2vec2-base_toy_train_data_augment_0.1
scasutt
2022-03-25T17:44:40Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-25T14:40:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_augment_0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_augment_0.1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3786 - Wer: 0.9954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1342 | 1.05 | 250 | 3.3901 | 0.9954 | | 3.0878 | 2.1 | 500 | 3.4886 | 0.9954 | | 3.0755 | 3.15 | 750 | 3.4616 | 0.9954 | | 3.0891 | 4.2 | 1000 | 3.5316 | 0.9954 | | 3.0724 | 5.25 | 1250 | 3.2608 | 0.9954 | | 3.0443 | 6.3 | 1500 | 3.3881 | 0.9954 | | 3.0421 | 7.35 | 1750 | 3.4507 | 0.9954 | | 3.0448 | 8.4 | 2000 | 3.4525 | 0.9954 | | 3.0455 | 9.45 | 2250 | 3.3342 | 0.9954 | | 3.0425 | 10.5 | 2500 | 3.3385 | 0.9954 | | 3.0457 | 11.55 | 2750 | 3.4411 | 0.9954 | | 3.0375 | 12.6 | 3000 | 3.4459 | 0.9954 | | 3.0459 | 13.65 | 3250 | 3.3883 | 0.9954 | | 3.0455 | 14.7 | 3500 | 3.3417 | 0.9954 | | 3.0524 | 15.75 | 3750 | 3.3908 | 0.9954 | | 3.0443 | 16.81 | 4000 | 3.3932 | 0.9954 | | 3.0446 | 17.86 | 4250 | 3.4052 | 0.9954 | | 3.0412 | 18.91 | 4500 | 3.3776 | 0.9954 | | 3.0358 | 19.96 | 4750 | 3.3786 | 0.9954 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
manandey/wav2vec2-large-xlsr-_irish
manandey
2022-03-25T16:53:49Z
11
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "ga", "dataset:common_voice", "doi:10.57967/hf/0190", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: ga datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week - hf-asr-leaderboard license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Irish by Manan Dey results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ga-IE type: common_voice args: ga-IE metrics: - name: Test WER type: wer value: 42.34 --- # Wav2Vec2-Large-XLSR-53-Irish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Irish using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ga-IE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-_irish") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-_irish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ga-IE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-_irish") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-_irish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\’\–\(\)]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 42.34% ## Training The Common Voice `train`, `validation` datasets were used for training.
Wende/bert-finetuned-ner
Wende
2022-03-25T16:19:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-25T15:21:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9321670242614293 - name: Recall type: recall value: 0.9505217098619994 - name: F1 type: f1 value: 0.9412548954253812 - name: Accuracy type: accuracy value: 0.9860334373344322 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0575 - Precision: 0.9322 - Recall: 0.9505 - F1: 0.9413 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2219 | 1.0 | 878 | 0.0716 | 0.9076 | 0.9288 | 0.9181 | 0.9808 | | 0.0453 | 2.0 | 1756 | 0.0597 | 0.9297 | 0.9477 | 0.9386 | 0.9852 | | 0.0239 | 3.0 | 2634 | 0.0575 | 0.9322 | 0.9505 | 0.9413 | 0.9860 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.8.2+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
huggingtweets/rivatez
huggingtweets
2022-03-25T14:57:29Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-25T14:51:51Z
--- language: en thumbnail: http://www.huggingtweets.com/rivatez/1648220244511/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421403684085374979/SoqYa6o3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Riva</div> <div style="text-align: center; font-size: 14px;">@rivatez</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Riva. | Data | Riva | | --- | --- | | Tweets downloaded | 3178 | | Retweets | 780 | | Short tweets | 405 | | Tweets kept | 1993 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2qe0i10s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rivatez's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rspxzzv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rspxzzv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rivatez') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vumichien/tf-bert-base-cased-squad2
vumichien
2022-03-25T14:02:14Z
3
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-25T13:56:15Z
--- license: cc-by-4.0 tags: - generated_from_keras_callback model-index: - name: tf-bert-base-cased-squad2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tf-bert-base-cased-squad2 This model is a fine-tuned version of [deepset/bert-base-cased-squad2](https://huggingface.co/deepset/bert-base-cased-squad2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Tokenizers 0.11.6
ssardorf/pegasus-xsum-new-dataset
ssardorf
2022-03-25T13:12:00Z
4
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-25T13:07:00Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-xsum-new-dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-xsum-new-dataset This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8355 - Rouge1: 48.7306 - Rouge2: 34.1291 - Rougel: 44.0778 - Rougelsum: 45.7139 - Gen Len: 30.8889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cpu - Datasets 1.18.3 - Tokenizers 0.11.6
vumichien/mobilebert-uncased-squad-v2
vumichien
2022-03-25T13:09:07Z
72
0
transformers
[ "transformers", "tf", "mobilebert", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-25T13:07:29Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: tf-mobilebert-uncased-squad-v2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tf-mobilebert-uncased-squad-v2 This model is a fine-tuned version of [csarron/mobilebert-uncased-squad-v2](https://huggingface.co/csarron/mobilebert-uncased-squad-v2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Tokenizers 0.11.6
bigmorning/try-m-e
bigmorning
2022-03-25T12:37:22Z
4
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-25T06:42:40Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: try-m-e results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # try-m-e This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
scasutt/wav2vec2-large-xlsr-53_toy_train_data_augment_0.1.csv
scasutt
2022-03-25T12:18:08Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-25T11:45:23Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data_augment_0.1.csv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data_augment_0.1.csv This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4695 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.2456 | 0.84 | 200 | 3.6215 | 1.0 | | 3.0637 | 1.68 | 400 | 3.3918 | 1.0 | | 3.046 | 2.52 | 600 | 3.4168 | 1.0 | | 3.0627 | 3.36 | 800 | 3.4695 | 1.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
microsoft/wavlm-base-plus-sd
microsoft
2022-03-25T12:06:46Z
1,616,093
10
transformers
[ "transformers", "pytorch", "wavlm", "audio-frame-classification", "speech", "en", "arxiv:1912.07875", "arxiv:2106.06909", "arxiv:2101.00390", "arxiv:2110.13900", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en tags: - speech --- # WavLM-Base-Plus for Speaker Diarization [Microsoft's WavLM](https://github.com/microsoft/unilm/tree/master/wavlm) The model was pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz. The model was pre-trained on: - 60,000 hours of [Libri-Light](https://arxiv.org/abs/1912.07875) - 10,000 hours of [GigaSpeech](https://arxiv.org/abs/2106.06909) - 24,000 hours of [VoxPopuli](https://arxiv.org/abs/2101.00390) [Paper: WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) Authors: Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei **Abstract** *Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. In this paper, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM is built based on the HuBERT framework, with an emphasis on both spoken content modeling and speaker identity preservation. We first equip the Transformer structure with gated relative position bias to improve its capability on recognition tasks. For better speaker discrimination, we propose an utterance mixing training strategy, where additional overlapped utterances are created unsupervisely and incorporated during model training. Lastly, we scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks.* The original model can be found under https://github.com/microsoft/unilm/tree/master/wavlm. # Fine-tuning details The model is fine-tuned on the [LibriMix dataset](https://github.com/JorisCos/LibriMix) using just a linear layer for mapping the network outputs. # Usage ## Speaker Diarization ```python from transformers import Wav2Vec2FeatureExtractor, WavLMForAudioFrameClassification from datasets import load_dataset import torch dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/wavlm-base-plus-sd') model = WavLMForAudioFrameClassification.from_pretrained('microsoft/wavlm-base-plus-sd') # audio file is decoded on the fly inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt") logits = model(**inputs).logits probabilities = torch.sigmoid(logits[0]) # labels is a one-hot array of shape (num_frames, num_speakers) labels = (probabilities > 0.5).long() ``` # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/wavlm.png)
eliasws/openApiT5-distilled-description-v3
eliasws
2022-03-25T09:30:37Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "t5", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-25T09:25:50Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5547 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1109, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jkhan447/sentiment-model-sample-5-emotion
jkhan447
2022-03-25T08:12:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-25T05:26:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: sentiment-model-sample-5-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-model-sample-5-emotion This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.4360 - Accuracy: 0.925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
csukuangfj/transducer-loss-benchmarking
csukuangfj
2022-03-25T07:46:33Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Introduction This repo contains the benchmark results for <https://github.com/csukuangfj/transducer-loss-benchmarking> ## Usage First, install `git-lfs`. Second, use the following command to clone this repo: ```bash git lfs install git clone https://huggingface.co/csukuangfj/transducer-loss-benchmarking ``` **Caution**: You have to run `git lfs install` first. Otherwise, you will be **SAD** later. Third, ``` pip install torch-tb-profiler cd transducer-loss-benchmarking tensorboard --logdir ./log/torchaudio-30 --port 6006 tensorboard --logdir ./log/optimized_transducer-30 --port 6007 ``` Fourth, open your browser and go to - <http://localhost:6006/#pytorch_profiler> - <http://localhost:6006/#pytorch_profiler> You will see the following images: ![](./torchaudio-30.png) ![](./optimized_transducer-30.png)
Ebtihal/AraBertMo_base_V9
Ebtihal
2022-03-25T07:25:05Z
18
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Arabic Model AraBertMo_base_V9 --- language: ar tags: Fill-Mask datasets: OSCAR widget: - text: " السلام عليكم ورحمة[MASK] وبركاتة" - text: " اهلا وسهلا بكم في [MASK] من سيربح المليون" - text: " مرحبا بك عزيزي الزائر [MASK] موقعنا " --- # Arabic BERT Model **AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERTMo_base uses the same BERT-Base config. AraBERTMo_base now comes in 10 new variants All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name. Checkpoints are available in PyTorch formats. ## Pretraining Corpus `AraBertMo_base_V9' model was pre-trained on ~3 million words: - [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar". ## Training results this model achieves the following results: | Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss| |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:| | Fill-Mask| 30024| 9 | 64 | 4230 | 7h 57m 42s | 7.3264 | ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V9") model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V9") ``` ## This model was built for master's degree research in an organization: - [University of kufa](https://uokufa.edu.iq/). - [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/). - **Department of Computer Science**
clisi2000/distilbert-base-uncased-finetuned-clinc
clisi2000
2022-03-25T06:23:40Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-22T05:03:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9158064516129032 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7796 - Accuracy: 0.9158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2883 | 1.0 | 318 | 3.2778 | 0.7390 | | 2.6185 | 2.0 | 636 | 1.8740 | 0.8232 | | 1.5423 | 3.0 | 954 | 1.1579 | 0.8890 | | 1.0131 | 4.0 | 1272 | 0.8629 | 0.9077 | | 0.7964 | 5.0 | 1590 | 0.7796 | 0.9158 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.2+cpu - Datasets 1.18.4 - Tokenizers 0.10.3
bigmorning/try-m
bigmorning
2022-03-25T04:01:22Z
4
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T16:02:27Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: try-m results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # try-m This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
espnet/marathi_openslr64_wav2vec2_asrconformer5
espnet
2022-03-25T03:25:20Z
0
0
null
[ "tensorboard", "region:us" ]
null
2022-03-23T21:14:55Z
<!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Mar 23 05:58:21 UTC 2022` - python version: `3.9.10 | packaged by conda-forge | (main, Feb 1 2022, 21:24:11) [GCC 9.4.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.10.1` - Git hash: `1991a25855821b8b61d775681aa0cdfd6161bbc8` - Commit date: `Mon Mar 21 22:19:19 2022 +0800` ## asr_train_asr_conformer5_raw_mr_bpe150_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave/dev_mr|137|1563|80.2|17.1|2.8|2.0|21.8|71.5| |inference_asr_model_valid.acc.ave/test_mr|200|2536|73.9|20.8|5.4|1.1|27.2|82.0| |inference_lm_config_mr_bpe150_valid.loss.ave_asr_model_valid.acc.ave/dev_mr|137|1563|81.3|15.6|3.1|2.0|20.7|72.3| |inference_lm_config_mr_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_mr|200|2536|76.6|20.7|2.7|0.9|24.3|80.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave/dev_mr|137|9369|93.7|2.8|3.5|2.3|8.6|71.5| |inference_asr_model_valid.acc.ave/test_mr|200|14174|90.3|3.7|5.9|1.6|11.3|82.0| |inference_lm_config_mr_bpe150_valid.loss.ave_asr_model_valid.acc.ave/dev_mr|137|9369|92.4|3.8|3.8|2.7|10.2|72.3| |inference_lm_config_mr_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_mr|200|14174|88.3|7.6|4.1|2.7|14.4|80.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave/dev_mr|137|6050|90.0|5.6|4.5|2.4|12.4|71.5| |inference_asr_model_valid.acc.ave/test_mr|200|9254|85.6|7.6|6.8|1.6|16.0|82.0| |inference_lm_config_mr_bpe150_valid.loss.ave_asr_model_valid.acc.ave/dev_mr|137|6050|88.8|7.0|4.2|2.7|13.9|72.3| |inference_lm_config_mr_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_mr|200|9254|83.2|12.3|4.5|3.9|20.7|80.5|
sanchit-gandhi/wav2vec2-2-rnd-no-adapter-regularisation
sanchit-gandhi
2022-03-25T03:10:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-22T10:13:48Z
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.7177 - Wer: 0.1283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 25.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.1228 | 1.68 | 1500 | 6.0490 | 1.1433 | | 5.4173 | 3.36 | 3000 | 5.3453 | 1.4878 | | 4.1635 | 5.04 | 4500 | 4.4185 | 0.9644 | | 2.1246 | 6.73 | 6000 | 3.2089 | 0.5026 | | 1.88 | 8.41 | 7500 | 1.9886 | 0.3438 | | 1.2606 | 10.09 | 9000 | 1.4472 | 0.2487 | | 0.7492 | 11.77 | 10500 | 1.1716 | 0.1949 | | 0.8868 | 13.45 | 12000 | 1.0146 | 0.1702 | | 0.5078 | 15.13 | 13500 | 0.8821 | 0.1548 | | 0.4515 | 16.82 | 15000 | 0.8181 | 0.1417 | | 0.3902 | 18.5 | 16500 | 0.7765 | 0.1364 | | 0.3575 | 20.18 | 18000 | 0.7367 | 0.1333 | | 0.2903 | 21.86 | 19500 | 0.7211 | 0.1301 | | 0.2698 | 23.54 | 21000 | 0.7177 | 0.1283 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
A8month/RestNet-B
A8month
2022-03-25T01:52:29Z
0
1
null
[ "license:apache-2.0", "region:us" ]
null
2022-03-25T01:52:29Z
--- license: apache-2.0 ---
Aureliano/distilbert-base-uncased-if
Aureliano
2022-03-25T00:06:03Z
7
0
transformers
[ "transformers", "pytorch", "tf", "distilbert", "text-classification", "en", "dataset:bookcorpus", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T17:46:18Z
--- language: en license: apache-2.0 datasets: - bookcorpus - wikipedia --- # DistilBERT base model (uncased) for Interactive Fiction [`distilbert-base-uncased`](https://huggingface.co/distilbert-base-uncased) finetuned on a dataset of Interactive Fiction commands. Details on the datasets can be found [here](https://github.com/aporporato/jericho-corpora). The resulting model scored an accuracy of 0.976253 on the WordNet task test set. ## How to use the discriminator in `transformers` ```python import tensorflow as tf from transformers import TFAutoModelForSequenceClassification, AutoTokenizer discriminator = TFAutoModelForSequenceClassification.from_pretrained("Aureliano/distilbert-base-uncased-if") tokenizer = AutoTokenizer.from_pretrained("Aureliano/distilbert-base-uncased-if") text = "get lamp" encoded_input = tokenizer(text, return_tensors='tf') output = discriminator(encoded_input) prediction = tf.nn.softmax(output["logits"][0], -1) label = discriminator.config.id2label[tf.math.argmax(prediction).numpy()] print(text, ":", label) # take.v.04 -> "get into one's hands, take physically" ``` ## How to use the discriminator in `transformers` on a custom dataset (Heavily based on: https://github.com/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb) ```python import math import numpy as np import tensorflow as tf from datasets import load_metric, Dataset, DatasetDict from transformers import TFAutoModel, TFAutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, create_optimizer from transformers.keras_callbacks import KerasMetricCallback # This example shows how this model can be used: # you should finetune the model of your specific corpus if commands, bigger than this dict_train = { "idx": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20"], "sentence": ["e", "get pen", "drop book", "x paper", "i", "south", "get paper", "drop the pen", "x book", "inventory", "n", "get the book", "drop paper", "look at Pen", "inv", "g", "s", "get sandwich", "drop sandwich", "x sandwich", "agin"], "label": ["travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "repeat.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "repeat.v.01"] } dict_val = { "idx": ["0", "1", "2", "3", "4", "5"], "sentence": ["w", "get shield", "drop sword", "x spikes", "i", "repeat"], "label": ["travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "repeat.v.01"] } raw_train_dataset = Dataset.from_dict(dict_train) raw_val_dataset = Dataset.from_dict(dict_val) raw_dataset = DatasetDict() raw_dataset["train"] = raw_train_dataset raw_dataset["val"] = raw_val_dataset raw_dataset = raw_dataset.class_encode_column("label") print(raw_dataset) print(raw_dataset["train"].features) print(raw_dataset["val"].features) print(raw_dataset["train"][1]) label2id = {} id2label = {} for i, l in enumerate(raw_dataset["train"].features["label"].names): label2id[l] = i id2label[i] = l discriminator = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", label2id=label2id, id2label=id2label) discriminator.distilbert = TFAutoModel.from_pretrained("Aureliano/distilbert-base-uncased-if") tokenizer = AutoTokenizer.from_pretrained("Aureliano/distilbert-base-uncased-if") tokenize_function = lambda example: tokenizer(example["sentence"], truncation=True) pre_tokenizer_columns = set(raw_dataset["train"].features) encoded_dataset = raw_dataset.map(tokenize_function, batched=True) tokenizer_columns = list(set(encoded_dataset["train"].features) - pre_tokenizer_columns) data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf") batch_size = len(encoded_dataset["train"]) tf_train_dataset = encoded_dataset["train"].to_tf_dataset( columns=tokenizer_columns, label_cols=["labels"], shuffle=True, batch_size=batch_size, collate_fn=data_collator ) tf_validation_dataset = encoded_dataset["val"].to_tf_dataset( columns=tokenizer_columns, label_cols=["labels"], shuffle=False, batch_size=batch_size, collate_fn=data_collator ) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) num_epochs = 20 batches_per_epoch = math.ceil(len(encoded_dataset["train"]) / batch_size) total_train_steps = int(batches_per_epoch * num_epochs) optimizer, schedule = create_optimizer( init_lr=2e-5, num_warmup_steps=total_train_steps // 5, num_train_steps=total_train_steps ) metric = load_metric("accuracy") def compute_metrics(eval_predictions): logits, labels = eval_predictions predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels) metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_dataset) callbacks = [metric_callback] discriminator.compile(optimizer=optimizer, loss=loss, metrics=["sparse_categorical_accuracy"]) discriminator.fit( tf_train_dataset, epochs=num_epochs, validation_data=tf_validation_dataset, callbacks=callbacks ) print("Evaluate on test data") results = discriminator.evaluate(tf_validation_dataset) print("test loss, test acc:", results) text = "i" encoded_input = tokenizer(text, return_tensors='tf') output = discriminator(encoded_input) prediction = tf.nn.softmax(output["logits"][0], -1) label = id2label[tf.math.argmax(prediction).numpy()] print("\n", text, ":", label, "\n") # ideally 'inventory.v.01' (-> "make or include in an itemized record or report"), but probably only with a better finetuning dataset text = "get lamp" encoded_input = tokenizer(text, return_tensors='tf') output = discriminator(encoded_input) prediction = tf.nn.softmax(output["logits"][0], -1) label = id2label[tf.math.argmax(prediction).numpy()] print("\n", text, ":", label, "\n") # ideally 'take.v.04' (-> "get into one's hands, take physically"), but probably only with a better finetuning dataset text = "w" encoded_input = tokenizer(text, return_tensors='tf') output = discriminator(encoded_input) prediction = tf.nn.softmax(output["logits"][0], -1) label = id2label[tf.math.argmax(prediction).numpy()] print("\n", text, ":", label, "\n") # ideally 'travel.v.01' (-> "change location; move, travel, or proceed, also metaphorically"), but probably only with a better finetuning dataset ``` ## How to use in a Rasa pipeline The model can integrated in a Rasa pipeline through a [`LanguageModelFeaturizer`](https://rasa.com/docs/rasa/components#languagemodelfeaturizer) ```yaml recipe: default.v1 language: en pipeline: # See https://rasa.com/docs/rasa/tuning-your-model for more information. ... - name: "WhitespaceTokenizer" ... - name: LanguageModelFeaturizer model_name: "distilbert" model_weights: "Aureliano/distilbert-base-uncased-if" ... ```
ahmeddbahaa/mt5-small-finetuned-mt5-en
ahmeddbahaa
2022-03-24T20:02:45Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-24T15:17:24Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: mt5-small-finetuned-mt5-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: english metrics: - name: Rouge1 type: rouge value: 23.8952 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-mt5-en This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.8345 - Rouge1: 23.8952 - Rouge2: 5.8792 - Rougel: 18.6495 - Rougelsum: 18.7057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 10 - total_train_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | No log | 1.0 | 224 | 3.0150 | 24.4639 | 5.3016 | 18.3987 | 18.4963 | | No log | 2.0 | 448 | 2.8738 | 24.5075 | 5.842 | 18.8133 | 18.9072 | | No log | 3.0 | 672 | 2.8345 | 23.8952 | 5.8792 | 18.6495 | 18.7057 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
mp6kv/feedback_intent_test
mp6kv
2022-03-24T18:42:11Z
2
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-05T19:53:12Z
--- license: mit tags: - generated_from_trainer model-index: - name: feedback_intent_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # feedback_intent_test This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. ## Model description Custom data generated labeling text according to these three categories. - Positive : Encouraging the student that they are correct and on the right track - Neutral : Mixed feedback or feedback that asks for more information - Negative : Informing the student they need to change direction or that they are not correct Takes a user input of string text and classifies it according to one of three categories. ## Intended uses & limitations from transformers import pipeline classifier = pipeline("text-classification",model="mp6kv/feedback_intent_test") output = classifier("great job, you're getting it!") score = output[0]['score'] label = output[0]['label'] ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
mp6kv/pump_intent_test
mp6kv
2022-03-24T18:40:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-05T19:25:45Z
--- license: mit tags: - generated_from_trainer model-index: - name: pump_intent_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pump_intent_test This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. ## Model description Custom data generated labeling text according to these three categories. These three categories are the subcategories of Pump - essentially when a user asks a question and expects an answer in response - Value: a slot value or a calculation - Clarification: Asking for further information on a previous answer - Testing: Testing for knowledge of facts and definitions Takes a user input of string text and classifies it according to one of three categories. ## Intended uses & limitations from transformers import pipeline classifier = pipeline("text-classification",model="mp6kv/pump_intent_test") output = classifier("What is the value of the length of the blue object?") score = output[0]['score'] label = output[0]['label'] ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
optimum/roberta-base-squad2
optimum
2022-03-24T16:12:36Z
164
1
transformers
[ "transformers", "onnx", "question-answering", "en", "dataset:squad_v2", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-24T16:11:57Z
--- language: en datasets: - squad_v2 license: cc-by-4.0 --- # ONNX convert roberta-base for QA ## Conversion of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) NOTE: This is version 2 of the model. See [this github issue](https://github.com/deepset-ai/FARM/issues/552) from the FARM repository for an explanation of why we updated. If you'd like to use version 1, specify `revision="v1.0"` when loading the model in Transformers 3.5. For exmaple: ``` model_name = "deepset/roberta-base-squad2" pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering") ``` ## Overview **Language model:** roberta-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) **Infrastructure**: 4x Tesla v100 ## Hyperparameters ``` batch_size = 96 n_epochs = 2 base_LM_model = "roberta-base" max_seq_len = 386 learning_rate = 3e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64 ``` ## Using a distilled model instead Please note that we have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). The distilled model has a comparable prediction quality and runs at twice the speed of the base model. ## Performance Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). ``` "exact": 79.87029394424324, "f1": 82.91251169582613, "total": 11873, "HasAns_exact": 77.93522267206478, "HasAns_f1": 84.02838248389763, "HasAns_total": 5928, "NoAns_exact": 81.79983179142137, "NoAns_f1": 81.79983179142137, "NoAns_total": 5945 ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ### In FARM ```python from farm.modeling.adaptive_model import AdaptiveModel from farm.modeling.tokenization import Tokenizer from farm.infer import Inferencer model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = Inferencer.load(model_name, task_type="question_answering") QA_input = [{"questions": ["Why is model conversion important?"], "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}] res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True) # b) Load model & tokenizer model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering") tokenizer = Tokenizer.load(model_name) ``` ### In haystack For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2") # or reader = TransformersReader(model_name_or_path="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2") ``` ## Authors Branden Chan: `branden.chan [at] deepset.ai` Timo Möller: `timo.moeller [at] deepset.ai` Malte Pietsch: `malte.pietsch [at] deepset.ai` Tanay Soni: `tanay.soni [at] deepset.ai` ## About us ![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo) We bring NLP to the industry via open source! Our focus: Industry specific language models & large scale QA systems. Some of our work: - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) - [FARM](https://github.com/deepset-ai/FARM) - [Haystack](https://github.com/deepset-ai/haystack/) Get in touch: [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)
huggingtweets/untiltrees
huggingtweets
2022-03-24T16:08:51Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T15:42:21Z
--- language: en thumbnail: http://www.huggingtweets.com/untiltrees/1648138126631/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1350186722596974593/lANAV_Xj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dancing Box</div> <div style="text-align: center; font-size: 14px;">@untiltrees</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dancing Box. | Data | Dancing Box | | --- | --- | | Tweets downloaded | 994 | | Retweets | 41 | | Short tweets | 91 | | Tweets kept | 862 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/36kia24g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @untiltrees's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8md8jogv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8md8jogv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/untiltrees') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gayanin/t5-small-med-term-conditional-masking
gayanin
2022-03-24T14:54:49Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-23T20:16:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-med-term-conditional-masking results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-med-term-conditional-masking This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6808 - Rouge2 Precision: 0.6855 - Rouge2 Recall: 0.486 - Rouge2 Fmeasure: 0.5507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.9303 | 1.0 | 15827 | 0.8262 | 0.6603 | 0.4698 | 0.5318 | | 0.8677 | 2.0 | 31654 | 0.7679 | 0.6695 | 0.4762 | 0.539 | | 0.8315 | 3.0 | 47481 | 0.7393 | 0.6741 | 0.4783 | 0.5418 | | 0.7999 | 4.0 | 63308 | 0.7194 | 0.6774 | 0.4811 | 0.5448 | | 0.7746 | 5.0 | 79135 | 0.7059 | 0.6804 | 0.4815 | 0.5459 | | 0.7785 | 6.0 | 94962 | 0.6958 | 0.6827 | 0.4841 | 0.5485 | | 0.7592 | 7.0 | 110789 | 0.6893 | 0.6841 | 0.4849 | 0.5494 | | 0.745 | 8.0 | 126616 | 0.6849 | 0.6846 | 0.4852 | 0.5498 | | 0.7443 | 9.0 | 142443 | 0.6818 | 0.6854 | 0.4865 | 0.551 | | 0.7417 | 10.0 | 158270 | 0.6808 | 0.6855 | 0.486 | 0.5507 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
NbAiLab/wav2vec2-large-voxrex-npsc-nynorsk
NbAiLab
2022-03-24T13:40:35Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "NbAiLab/NPSC", "robust-speech-event", "no", "nn-NO", "hf-asr-leaderboard", "dataset:NbAiLab/NPSC", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer - automatic-speech-recognition - NbAiLab/NPSC - robust-speech-event - "no" - nn-NO - hf-asr-leaderboard datasets: - NbAiLab/NPSC language: - nn-NO model-index: - name: wav2vec2-large-voxrex-npsc-nynorsk results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: NPSC type: NbAiLab/NPSC args: 16K_mp3_nynorsk metrics: - name: Test (Nynorsk) WER type: wer value: 0.12220762155059132 - name: Test (Nynorsk) CER type: cer value: 0.04195612578778549 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-voxrex-npsc-nynorsk This model is a fine-tuned version of [KBLab/wav2vec2-large-voxrex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) on the NBAILAB/NPSC - 16K_MP3_NYNORSK dataset. It achieves the following results on the evaluation set: - Loss: 0.4142 - Wer: 0.1576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.086 | 2.17 | 500 | 3.0773 | 1.0 | | 2.8532 | 4.35 | 1000 | 2.8393 | 1.0 | | 0.9738 | 6.52 | 1500 | 0.7283 | 0.4890 | | 0.6763 | 8.7 | 2000 | 0.5340 | 0.3662 | | 0.5303 | 10.87 | 2500 | 0.4521 | 0.3140 | | 0.4765 | 13.04 | 3000 | 0.4181 | 0.2853 | | 0.4219 | 15.22 | 3500 | 0.4156 | 0.2934 | | 0.3564 | 17.39 | 4000 | 0.3925 | 0.2509 | | 0.3282 | 19.57 | 4500 | 0.3824 | 0.2420 | | 0.3118 | 21.74 | 5000 | 0.3636 | 0.2354 | | 0.2919 | 23.91 | 5500 | 0.3615 | 0.2281 | | 0.2961 | 26.09 | 6000 | 0.3548 | 0.2255 | | 0.284 | 28.26 | 6500 | 0.3526 | 0.2209 | | 0.2566 | 30.43 | 7000 | 0.3526 | 0.2205 | | 0.2422 | 32.61 | 7500 | 0.3569 | 0.2173 | | 0.2472 | 34.78 | 8000 | 0.3592 | 0.2166 | | 0.2337 | 36.96 | 8500 | 0.3625 | 0.2172 | | 0.2315 | 39.13 | 9000 | 0.3580 | 0.2155 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
huggingtweets/melindagates
huggingtweets
2022-03-24T13:28:49Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T13:22:09Z
--- language: en thumbnail: http://www.huggingtweets.com/melindagates/1648128524647/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1054713372845862912/1SR434Pr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Melinda French Gates</div> <div style="text-align: center; font-size: 14px;">@melindagates</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Melinda French Gates. | Data | Melinda French Gates | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 231 | | Short tweets | 2 | | Tweets kept | 3017 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39nn0ehw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @melindagates's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2xcx4bfy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2xcx4bfy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/melindagates') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
espnet/Karthik_DSTC2_asr_train_asr_wav2vec_conformer_2
espnet
2022-03-24T12:42:03Z
1
0
espnet
[ "espnet", "tensorboard", "audio", "automatic-speech-recognition", "en", "dataset:DSTC2", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-24T12:03:09Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - DSTC2 license: cc-by-4.0 --- ## ESPnet2 ASR pretrained model ### `espnet/Karthik_DSTC2_asr_train_asr_wav2vec_conformer_2` This model was trained by Karthik using DSTC2/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
tomascufaro/xls-r-es-test
tomascufaro
2022-03-24T11:58:49Z
28
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "es", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - es - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-es-test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: es metrics: - name: Test WER type: wer value: 12.62 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Test WER type: wer value: 36.08 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 39.19 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-es-test This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ES dataset. It achieves the following results on the evaluation set: - Loss: 0.1304 - WER: 0.1261 - CER: 0.035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.9613 | 0.07 | 500 | 2.9647 | 1.0 | | 2.604 | 0.14 | 1000 | 1.8300 | 0.9562 | | 1.177 | 0.21 | 1500 | 0.3652 | 0.3077 | | 1.0745 | 0.28 | 2000 | 0.2707 | 0.2504 | | 1.0103 | 0.35 | 2500 | 0.2338 | 0.2157 | | 0.9858 | 0.42 | 3000 | 0.2321 | 0.2129 | | 0.974 | 0.49 | 3500 | 0.2164 | 0.2031 | | 0.9699 | 0.56 | 4000 | 0.2078 | 0.1970 | | 0.9513 | 0.63 | 4500 | 0.2173 | 0.2139 | | 0.9657 | 0.7 | 5000 | 0.2050 | 0.1979 | | 0.9484 | 0.77 | 5500 | 0.2008 | 0.1919 | | 0.9317 | 0.84 | 6000 | 0.2012 | 0.1911 | | 0.9366 | 0.91 | 6500 | 0.2024 | 0.1976 | | 0.9242 | 0.98 | 7000 | 0.2062 | 0.2028 | | 0.9138 | 1.05 | 7500 | 0.1924 | 0.1863 | | 0.921 | 1.12 | 8000 | 0.1935 | 0.1836 | | 0.9117 | 1.19 | 8500 | 0.1887 | 0.1815 | | 0.9064 | 1.26 | 9000 | 0.1909 | 0.1839 | | 0.9118 | 1.32 | 9500 | 0.1869 | 0.1830 | | 0.9121 | 1.39 | 10000 | 0.1863 | 0.1802 | | 0.9048 | 1.46 | 10500 | 0.1845 | 0.1791 | | 0.8955 | 1.53 | 11000 | 0.1863 | 0.1774 | | 0.8947 | 1.6 | 11500 | 0.1907 | 0.1814 | | 0.9073 | 1.67 | 12000 | 0.1892 | 0.1853 | | 0.8927 | 1.74 | 12500 | 0.1821 | 0.1750 | | 0.8732 | 1.81 | 13000 | 0.1815 | 0.1768 | | 0.8761 | 1.88 | 13500 | 0.1822 | 0.1749 | | 0.8751 | 1.95 | 14000 | 0.1789 | 0.1715 | | 0.8889 | 2.02 | 14500 | 0.1819 | 0.1791 | | 0.8864 | 2.09 | 15000 | 0.1826 | 0.1794 | | 0.886 | 2.16 | 15500 | 0.1788 | 0.1776 | | 0.8915 | 2.23 | 16000 | 0.1756 | 0.1719 | | 0.8689 | 2.3 | 16500 | 0.1769 | 0.1711 | | 0.879 | 2.37 | 17000 | 0.1777 | 0.1739 | | 0.8692 | 2.44 | 17500 | 0.1765 | 0.1705 | | 0.8504 | 2.51 | 18000 | 0.1699 | 0.1652 | | 0.8728 | 2.58 | 18500 | 0.1705 | 0.1694 | | 0.8523 | 2.65 | 19000 | 0.1674 | 0.1645 | | 0.8513 | 2.72 | 19500 | 0.1661 | 0.1611 | | 0.8498 | 2.79 | 20000 | 0.1660 | 0.1631 | | 0.8432 | 2.86 | 20500 | 0.1636 | 0.1610 | | 0.8492 | 2.93 | 21000 | 0.1708 | 0.1688 | | 0.8561 | 3.0 | 21500 | 0.1663 | 0.1604 | | 0.842 | 3.07 | 22000 | 0.1690 | 0.1625 | | 0.857 | 3.14 | 22500 | 0.1642 | 0.1605 | | 0.8518 | 3.21 | 23000 | 0.1626 | 0.1585 | | 0.8506 | 3.28 | 23500 | 0.1651 | 0.1605 | | 0.8394 | 3.35 | 24000 | 0.1647 | 0.1585 | | 0.8431 | 3.42 | 24500 | 0.1632 | 0.1573 | | 0.8566 | 3.49 | 25000 | 0.1614 | 0.1550 | | 0.8534 | 3.56 | 25500 | 0.1645 | 0.1589 | | 0.8386 | 3.63 | 26000 | 0.1632 | 0.1582 | | 0.8357 | 3.7 | 26500 | 0.1631 | 0.1556 | | 0.8299 | 3.77 | 27000 | 0.1612 | 0.1550 | | 0.8421 | 3.84 | 27500 | 0.1602 | 0.1552 | | 0.8375 | 3.91 | 28000 | 0.1592 | 0.1537 | | 0.8328 | 3.97 | 28500 | 0.1587 | 0.1537 | | 0.8155 | 4.04 | 29000 | 0.1587 | 0.1520 | | 0.8335 | 4.11 | 29500 | 0.1624 | 0.1556 | | 0.8138 | 4.18 | 30000 | 0.1581 | 0.1547 | | 0.8195 | 4.25 | 30500 | 0.1560 | 0.1507 | | 0.8092 | 4.32 | 31000 | 0.1561 | 0.1534 | | 0.8191 | 4.39 | 31500 | 0.1549 | 0.1493 | | 0.8008 | 4.46 | 32000 | 0.1540 | 0.1493 | | 0.8138 | 4.53 | 32500 | 0.1544 | 0.1493 | | 0.8173 | 4.6 | 33000 | 0.1553 | 0.1511 | | 0.8081 | 4.67 | 33500 | 0.1541 | 0.1484 | | 0.8192 | 4.74 | 34000 | 0.1560 | 0.1506 | | 0.8068 | 4.81 | 34500 | 0.1540 | 0.1503 | | 0.8105 | 4.88 | 35000 | 0.1529 | 0.1483 | | 0.7976 | 4.95 | 35500 | 0.1507 | 0.1451 | | 0.8143 | 5.02 | 36000 | 0.1505 | 0.1462 | | 0.8053 | 5.09 | 36500 | 0.1517 | 0.1476 | | 0.785 | 5.16 | 37000 | 0.1526 | 0.1478 | | 0.7936 | 5.23 | 37500 | 0.1489 | 0.1421 | | 0.807 | 5.3 | 38000 | 0.1483 | 0.1420 | | 0.8092 | 5.37 | 38500 | 0.1481 | 0.1435 | | 0.793 | 5.44 | 39000 | 0.1503 | 0.1438 | | 0.814 | 5.51 | 39500 | 0.1495 | 0.1480 | | 0.807 | 5.58 | 40000 | 0.1472 | 0.1424 | | 0.7913 | 5.65 | 40500 | 0.1471 | 0.1422 | | 0.7844 | 5.72 | 41000 | 0.1473 | 0.1422 | | 0.7888 | 5.79 | 41500 | 0.1445 | 0.1385 | | 0.7806 | 5.86 | 42000 | 0.1435 | 0.1394 | | 0.7773 | 5.93 | 42500 | 0.1461 | 0.1424 | | 0.786 | 6.0 | 43000 | 0.1450 | 0.1413 | | 0.7784 | 6.07 | 43500 | 0.1463 | 0.1424 | | 0.7937 | 6.14 | 44000 | 0.1438 | 0.1386 | | 0.7738 | 6.21 | 44500 | 0.1437 | 0.1383 | | 0.7728 | 6.28 | 45000 | 0.1424 | 0.1371 | | 0.7681 | 6.35 | 45500 | 0.1416 | 0.1376 | | 0.776 | 6.42 | 46000 | 0.1415 | 0.1380 | | 0.7773 | 6.49 | 46500 | 0.1416 | 0.1371 | | 0.7692 | 6.56 | 47000 | 0.1398 | 0.1345 | | 0.7642 | 6.62 | 47500 | 0.1381 | 0.1341 | | 0.7692 | 6.69 | 48000 | 0.1392 | 0.1334 | | 0.7667 | 6.76 | 48500 | 0.1392 | 0.1348 | | 0.7712 | 6.83 | 49000 | 0.1398 | 0.1333 | | 0.7628 | 6.9 | 49500 | 0.1392 | 0.1344 | | 0.7622 | 6.97 | 50000 | 0.1377 | 0.1329 | | 0.7639 | 7.04 | 50500 | 0.1361 | 0.1316 | | 0.742 | 7.11 | 51000 | 0.1376 | 0.1327 | | 0.7526 | 7.18 | 51500 | 0.1387 | 0.1342 | | 0.7606 | 7.25 | 52000 | 0.1363 | 0.1316 | | 0.7626 | 7.32 | 52500 | 0.1365 | 0.1313 | | 0.752 | 7.39 | 53000 | 0.1354 | 0.1309 | | 0.7562 | 7.46 | 53500 | 0.1362 | 0.1312 | | 0.7557 | 7.53 | 54000 | 0.1358 | 0.1325 | | 0.7588 | 7.6 | 54500 | 0.1343 | 0.1311 | | 0.7485 | 7.67 | 55000 | 0.1346 | 0.1301 | | 0.7466 | 7.74 | 55500 | 0.1354 | 0.1314 | | 0.7558 | 7.81 | 56000 | 0.1359 | 0.1325 | | 0.7578 | 7.88 | 56500 | 0.1363 | 0.1334 | | 0.7411 | 7.95 | 57000 | 0.1346 | 0.1301 | | 0.7478 | 8.02 | 57500 | 0.1355 | 0.1305 | | 0.7451 | 8.09 | 58000 | 0.1349 | 0.1302 | | 0.7383 | 8.16 | 58500 | 0.1349 | 0.1294 | | 0.7482 | 8.23 | 59000 | 0.1341 | 0.1293 | | 0.742 | 8.3 | 59500 | 0.1338 | 0.1296 | | 0.7343 | 8.37 | 60000 | 0.1348 | 0.1307 | | 0.7385 | 8.44 | 60500 | 0.1324 | 0.1282 | | 0.7567 | 8.51 | 61000 | 0.1334 | 0.1281 | | 0.7342 | 8.58 | 61500 | 0.1338 | 0.1289 | | 0.7401 | 8.65 | 62000 | 0.1331 | 0.1285 | | 0.7362 | 8.72 | 62500 | 0.1329 | 0.1283 | | 0.7241 | 8.79 | 63000 | 0.1323 | 0.1277 | | 0.7244 | 8.86 | 63500 | 0.1317 | 0.1269 | | 0.7274 | 8.93 | 64000 | 0.1308 | 0.1260 | | 0.7411 | 9.0 | 64500 | 0.1309 | 0.1256 | | 0.7255 | 9.07 | 65000 | 0.1316 | 0.1265 | | 0.7406 | 9.14 | 65500 | 0.1315 | 0.1270 | | 0.7418 | 9.21 | 66000 | 0.1315 | 0.1269 | | 0.7301 | 9.27 | 66500 | 0.1315 | 0.1273 | | 0.7248 | 9.34 | 67000 | 0.1323 | 0.1274 | | 0.7423 | 9.41 | 67500 | 0.1309 | 0.1267 | | 0.7152 | 9.48 | 68000 | 0.1312 | 0.1271 | | 0.7295 | 9.55 | 68500 | 0.1306 | 0.1262 | | 0.7231 | 9.62 | 69000 | 0.1308 | 0.1263 | | 0.7344 | 9.69 | 69500 | 0.1313 | 0.1267 | | 0.7264 | 9.76 | 70000 | 0.1305 | 0.1263 | | 0.7309 | 9.83 | 70500 | 0.1303 | 0.1262 | | 0.73 | 9.9 | 71000 | 0.1303 | 0.1261 | | 0.7353 | 9.97 | 71500 | 0.1304 | 0.1260 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-romansh_sursilvan
sammy786
2022-03-24T11:58:43Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "rm-sursilv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - rm-sursilv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - rm-sursilv - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-romansh_sursilvan results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: rm-sursilv metrics: - name: Test WER type: wer value: 13.82 - name: Test CER type: cer value: 3.02 --- # sammy786/wav2vec2-xlsr-romansh_sursilvan This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - rm-sursilv dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 16.38 - Wer: 21.25 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 200 | 4.825500 | 2.932350 | 1.000000 | | 400 | 1.325600 | 0.292645 | 0.415436 | | 600 | 0.709800 | 0.219167 | 0.324451 | | 800 | 0.576800 | 0.174390 | 0.275477 | | 1000 | 0.538100 | 0.183737 | 0.272116 | | 1200 | 0.475200 | 0.159078 | 0.253871 | | 1400 | 0.420400 | 0.167277 | 0.240907 | | 1600 | 0.393500 | 0.167216 | 0.247269 | | 1800 | 0.407500 | 0.178282 | 0.239827 | | 2000 | 0.374400 | 0.184590 | 0.239467 | | 2200 | 0.382600 | 0.164106 | 0.227824 | | 2400 | 0.363100 | 0.162543 | 0.228544 | | 2600 | 0.199000 | 0.172903 | 0.231665 | | 2800 | 0.150800 | 0.160117 | 0.222662 | | 3000 | 0.101100 | 0.169553 | 0.222662 | | 3200 | 0.104200 | 0.161056 | 0.220622 | | 3400 | 0.096900 | 0.161562 | 0.216781 | | 3600 | 0.092200 | 0.163880 | 0.212580 | | 3800 | 0.089200 | 0.162288 | 0.214140 | | 4000 | 0.076200 | 0.160470 | 0.213540 | | 4200 | 0.087900 | 0.162827 | 0.213060 | | 4400 | 0.066200 | 0.161096 | 0.213300 | | 4600 | 0.076000 | 0.162060 | 0.213660 | | 4800 | 0.071400 | 0.162045 | 0.213300 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-romansh_sursilvan --dataset mozilla-foundation/common_voice_8_0 --config rm-sursilv --split test ```
sammy786/wav2vec2-xlsr-kyrgyz
sammy786
2022-03-24T11:58:41Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ky", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ky license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ky - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-kyrgyz results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ky metrics: - name: Test WER type: wer value: 25.24 - name: Test CER type: cer value: 6.25 --- # sammy786/wav2vec2-xlsr-kyrgyz This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ky dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 43.06 - Wer: 39.19 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 200 | 5.357800 | 2.700367 | 1.000000 | | 400 | 1.513600 | 0.642542 | 0.598820 | | 600 | 0.961900 | 0.530665 | 0.502739 | | 800 | 0.776000 | 0.507709 | 0.462705 | | 1000 | 0.646100 | 0.453115 | 0.444164 | | 1200 | 0.581200 | 0.454797 | 0.438264 | | 1400 | 0.437900 | 0.459389 | 0.426464 | | 1600 | 0.348600 | 0.401247 | 0.416351 | | 1800 | 0.312800 | 0.436135 | 0.409608 | | 2000 | 0.294100 | 0.440911 | 0.398651 | | 2200 | 0.281400 | 0.432729 | 0.394016 | | 2400 | 0.258400 | 0.429860 | 0.393595 | | 2600 | 0.263700 | 0.432689 | 0.395280 | | 2800 | 0.256900 | 0.430672 | 0.391909 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-kyrgyz --dataset mozilla-foundation/common_voice_8_0 --config ky --split test ```
sammy786/wav2vec2-xlsr-dhivehi
sammy786
2022-03-24T11:58:38Z
4
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "dv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - dv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - dv - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-dhivehi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: dv metrics: - name: Test WER type: wer value: 26.91 - name: Test CER type: cer value: 4.02 --- # sammy786/wav2vec2-xlsr-dhivehi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - dv dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 14.86 - Wer: 29.32 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |-------|---------------|-----------------|----------| | 200 | 4.883800 | 3.190218 | 1.000000 | | 400 | 1.600100 | 0.497887 | 0.726159 | | 600 | 0.928500 | 0.358781 | 0.603892 | | 800 | 0.867900 | 0.309132 | 0.570786 | | 1000 | 0.743100 | 0.309116 | 0.552954 | | 1200 | 0.725100 | 0.266839 | 0.538378 | | 1400 | 0.786200 | 0.259797 | 0.535897 | | 1600 | 0.655700 | 0.245691 | 0.517290 | | 1800 | 0.650500 | 0.246957 | 0.516204 | | 2000 | 0.685500 | 0.234808 | 0.516204 | | 2200 | 0.487100 | 0.228409 | 0.507753 | | 2400 | 0.401300 | 0.221087 | 0.495968 | | 2600 | 0.359300 | 0.212476 | 0.489301 | | 2800 | 0.347300 | 0.204848 | 0.487750 | | 3000 | 0.327000 | 0.203163 | 0.478756 | | 3200 | 0.337100 | 0.210235 | 0.487595 | | 3400 | 0.308900 | 0.201471 | 0.491316 | | 3600 | 0.292600 | 0.192437 | 0.476120 | | 3800 | 0.289600 | 0.198398 | 0.468445 | | 4000 | 0.290200 | 0.193484 | 0.467204 | | 4200 | 0.272600 | 0.193999 | 0.470150 | | 4400 | 0.266700 | 0.187384 | 0.460769 | | 4600 | 0.253800 | 0.187279 | 0.476663 | | 4800 | 0.266400 | 0.197395 | 0.466817 | | 5000 | 0.258000 | 0.188920 | 0.456660 | | 5200 | 0.237200 | 0.180770 | 0.457358 | | 5400 | 0.237900 | 0.178149 | 0.448287 | | 5600 | 0.232600 | 0.179827 | 0.461002 | | 5800 | 0.228500 | 0.182142 | 0.445185 | | 6000 | 0.221000 | 0.173619 | 0.440688 | | 6200 | 0.219500 | 0.172291 | 0.442859 | | 6400 | 0.219400 | 0.173339 | 0.430609 | | 6600 | 0.201900 | 0.177552 | 0.426423 | | 6800 | 0.199000 | 0.173157 | 0.429834 | | 7000 | 0.200000 | 0.166503 | 0.423709 | | 7200 | 0.194600 | 0.171812 | 0.429834 | | 7400 | 0.192100 | 0.164989 | 0.420530 | | 7600 | 0.185000 | 0.168355 | 0.418825 | | 7800 | 0.175100 | 0.168128 | 0.419290 | | 8000 | 0.173500 | 0.167959 | 0.424950 | | 8200 | 0.172200 | 0.173643 | 0.414793 | | 8400 | 0.164200 | 0.167020 | 0.406342 | | 8600 | 0.170800 | 0.168050 | 0.405334 | | 8800 | 0.157900 | 0.164290 | 0.396573 | | 9000 | 0.159900 | 0.163188 | 0.397426 | | 9200 | 0.151700 | 0.164370 | 0.390991 | | 9400 | 0.146600 | 0.165053 | 0.392852 | | 9600 | 0.142200 | 0.164939 | 0.391844 | | 9800 | 0.148300 | 0.164422 | 0.385719 | | 10000 | 0.136200 | 0.166569 | 0.385951 | | 10200 | 0.140700 | 0.161377 | 0.379594 | | 10400 | 0.133300 | 0.165194 | 0.378276 | | 10600 | 0.131300 | 0.164328 | 0.369205 | | 10800 | 0.135500 | 0.160254 | 0.373236 | | 11000 | 0.121100 | 0.163522 | 0.372693 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-dhivehi --dataset mozilla-foundation/common_voice_8_0 --config dv --split test ```
sammy786/wav2vec2-xlsr-chuvash
sammy786
2022-03-24T11:58:35Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "cv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - cv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - cv - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-chuvash results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: cv metrics: - name: Test WER type: wer value: 27.81 - name: Test CER type: cer value: 5.79 --- # sammy786/wav2vec2-xlsr-chuvash This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - cv dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 18.02 - Wer: 29.22 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 6.559100 | 2.274687 | 1.000000 | | 400 | 1.346100 | 0.508268 | 0.681995 | | 600 | 0.797500 | 0.391174 | 0.572876 | | 800 | 0.556300 | 0.308620 | 0.489283 | | 1000 | 0.435800 | 0.273956 | 0.454014 | | 1200 | 0.388700 | 0.311027 | 0.499415 | | 1400 | 0.338300 | 0.243977 | 0.413874 | | 1600 | 0.294000 | 0.214134 | 0.385230 | | 1800 | 0.276000 | 0.245991 | 0.397311 | | 2000 | 0.253900 | 0.208324 | 0.363016 | | 2200 | 0.233600 | 0.222156 | 0.370811 | | 2400 | 0.219700 | 0.202602 | 0.364186 | | 2600 | 0.205000 | 0.241339 | 0.384451 | | 2800 | 0.176000 | 0.263558 | 0.384061 | | 3000 | 0.166700 | 0.211768 | 0.333398 | | 3200 | 0.160600 | 0.198677 | 0.321512 | | 3400 | 0.154600 | 0.208655 | 0.328722 | | 3600 | 0.146800 | 0.188022 | 0.317810 | | 3800 | 0.133200 | 0.181083 | 0.313133 | | 4000 | 0.134200 | 0.190084 | 0.316251 | | 4200 | 0.114200 | 0.193034 | 0.312159 | | 4400 | 0.117300 | 0.194122 | 0.312354 | | 4600 | 0.112300 | 0.191111 | 0.305534 | | 4800 | 0.107800 | 0.185930 | 0.302611 | | 5000 | 0.100400 | 0.178625 | 0.299883 | | 5200 | 0.099800 | 0.176442 | 0.294622 | | 5400 | 0.100800 | 0.177935 | 0.294427 | | 5600 | 0.096300 | 0.182903 | 0.293843 | | 5800 | 0.094200 | 0.181041 | 0.293453 | | 6000 | 0.097600 | 0.179865 | 0.290725 | | 6200 | 0.091600 | 0.180327 | 0.292868 | | 6400 | 0.093100 | 0.180275 | 0.292284 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-chuvash --dataset mozilla-foundation/common_voice_8_0 --config cv --split test ```
lgris/wav2vec2-xls-r-gn-cv7
lgris
2022-03-24T11:58:25Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "gn", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - gn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - gn - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xls-r-gn-cv7 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Validation WER type: wer value: 73.02 - name: Validation CER type: cer value: 17.79 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: gn metrics: - name: Test WER type: wer value: 62.65 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-gn-cv7 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7197 - Wer: 0.7434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 13000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 3.4669 | 6.24 | 100 | 3.3003 | 1.0 | | 3.3214 | 12.48 | 200 | 3.2090 | 1.0 | | 3.1619 | 18.73 | 300 | 2.6322 | 1.0 | | 1.751 | 24.97 | 400 | 1.4089 | 0.9803 | | 0.7997 | 31.24 | 500 | 0.9996 | 0.9211 | | 0.4996 | 37.48 | 600 | 0.9879 | 0.8553 | | 0.3677 | 43.73 | 700 | 0.9543 | 0.8289 | | 0.2851 | 49.97 | 800 | 1.0627 | 0.8487 | | 0.2556 | 56.24 | 900 | 1.0933 | 0.8355 | | 0.2268 | 62.48 | 1000 | 0.9191 | 0.8026 | | 0.1914 | 68.73 | 1100 | 0.9582 | 0.7961 | | 0.1749 | 74.97 | 1200 | 1.0502 | 0.8092 | | 0.157 | 81.24 | 1300 | 0.9998 | 0.7632 | | 0.1505 | 87.48 | 1400 | 1.0076 | 0.7303 | | 0.1278 | 93.73 | 1500 | 0.9321 | 0.75 | | 0.1078 | 99.97 | 1600 | 1.0383 | 0.7697 | | 0.1156 | 106.24 | 1700 | 1.0302 | 0.7763 | | 0.1107 | 112.48 | 1800 | 1.0419 | 0.7763 | | 0.091 | 118.73 | 1900 | 1.0694 | 0.75 | | 0.0829 | 124.97 | 2000 | 1.0257 | 0.7829 | | 0.0865 | 131.24 | 2100 | 1.2108 | 0.7368 | | 0.0907 | 137.48 | 2200 | 1.0458 | 0.7697 | | 0.0897 | 143.73 | 2300 | 1.1504 | 0.7895 | | 0.0766 | 149.97 | 2400 | 1.1663 | 0.7237 | | 0.0659 | 156.24 | 2500 | 1.1320 | 0.7632 | | 0.0699 | 162.48 | 2600 | 1.2586 | 0.7434 | | 0.0613 | 168.73 | 2700 | 1.1815 | 0.8158 | | 0.0598 | 174.97 | 2800 | 1.3299 | 0.75 | | 0.0577 | 181.24 | 2900 | 1.2035 | 0.7171 | | 0.0576 | 187.48 | 3000 | 1.2134 | 0.7434 | | 0.0518 | 193.73 | 3100 | 1.3406 | 0.7566 | | 0.0524 | 199.97 | 3200 | 1.4251 | 0.75 | | 0.0467 | 206.24 | 3300 | 1.3533 | 0.7697 | | 0.0428 | 212.48 | 3400 | 1.2463 | 0.7368 | | 0.0453 | 218.73 | 3500 | 1.4532 | 0.7566 | | 0.0473 | 224.97 | 3600 | 1.3152 | 0.7434 | | 0.0451 | 231.24 | 3700 | 1.2232 | 0.7368 | | 0.0361 | 237.48 | 3800 | 1.2938 | 0.7171 | | 0.045 | 243.73 | 3900 | 1.4148 | 0.7434 | | 0.0422 | 249.97 | 4000 | 1.3786 | 0.7961 | | 0.036 | 256.24 | 4100 | 1.4488 | 0.7697 | | 0.0352 | 262.48 | 4200 | 1.2294 | 0.6776 | | 0.0326 | 268.73 | 4300 | 1.2796 | 0.6974 | | 0.034 | 274.97 | 4400 | 1.3805 | 0.7303 | | 0.0305 | 281.24 | 4500 | 1.4994 | 0.7237 | | 0.0325 | 287.48 | 4600 | 1.4330 | 0.6908 | | 0.0338 | 293.73 | 4700 | 1.3091 | 0.7368 | | 0.0306 | 299.97 | 4800 | 1.2174 | 0.7171 | | 0.0299 | 306.24 | 4900 | 1.3527 | 0.7763 | | 0.0287 | 312.48 | 5000 | 1.3651 | 0.7368 | | 0.0274 | 318.73 | 5100 | 1.4337 | 0.7368 | | 0.0258 | 324.97 | 5200 | 1.3831 | 0.6908 | | 0.022 | 331.24 | 5300 | 1.3556 | 0.6974 | | 0.021 | 337.48 | 5400 | 1.3836 | 0.7237 | | 0.0241 | 343.73 | 5500 | 1.4352 | 0.7039 | | 0.0229 | 349.97 | 5600 | 1.3904 | 0.7105 | | 0.026 | 356.24 | 5700 | 1.4131 | 0.7171 | | 0.021 | 362.48 | 5800 | 1.5426 | 0.6974 | | 0.0191 | 368.73 | 5900 | 1.5960 | 0.7632 | | 0.0227 | 374.97 | 6000 | 1.6240 | 0.7368 | | 0.0204 | 381.24 | 6100 | 1.4301 | 0.7105 | | 0.0175 | 387.48 | 6200 | 1.5554 | 0.75 | | 0.0183 | 393.73 | 6300 | 1.6044 | 0.7697 | | 0.0183 | 399.97 | 6400 | 1.5963 | 0.7368 | | 0.016 | 406.24 | 6500 | 1.5679 | 0.7829 | | 0.0178 | 412.48 | 6600 | 1.5928 | 0.7697 | | 0.014 | 418.73 | 6700 | 1.7000 | 0.7632 | | 0.0182 | 424.97 | 6800 | 1.5340 | 0.75 | | 0.0148 | 431.24 | 6900 | 1.9274 | 0.7368 | | 0.0148 | 437.48 | 7000 | 1.6437 | 0.7697 | | 0.0173 | 443.73 | 7100 | 1.5468 | 0.75 | | 0.0109 | 449.97 | 7200 | 1.6083 | 0.75 | | 0.0167 | 456.24 | 7300 | 1.6732 | 0.75 | | 0.0139 | 462.48 | 7400 | 1.5097 | 0.7237 | | 0.013 | 468.73 | 7500 | 1.5947 | 0.7171 | | 0.0128 | 474.97 | 7600 | 1.6260 | 0.7105 | | 0.0166 | 481.24 | 7700 | 1.5756 | 0.7237 | | 0.0127 | 487.48 | 7800 | 1.4506 | 0.6908 | | 0.013 | 493.73 | 7900 | 1.4882 | 0.7368 | | 0.0125 | 499.97 | 8000 | 1.5589 | 0.7829 | | 0.0141 | 506.24 | 8100 | 1.6328 | 0.7434 | | 0.0115 | 512.48 | 8200 | 1.6586 | 0.7434 | | 0.0117 | 518.73 | 8300 | 1.6043 | 0.7105 | | 0.009 | 524.97 | 8400 | 1.6508 | 0.7237 | | 0.0108 | 531.24 | 8500 | 1.4507 | 0.6974 | | 0.011 | 537.48 | 8600 | 1.5942 | 0.7434 | | 0.009 | 543.73 | 8700 | 1.8121 | 0.7697 | | 0.0112 | 549.97 | 8800 | 1.6923 | 0.7697 | | 0.0073 | 556.24 | 8900 | 1.7096 | 0.7368 | | 0.0098 | 562.48 | 9000 | 1.7052 | 0.7829 | | 0.0088 | 568.73 | 9100 | 1.6956 | 0.7566 | | 0.0099 | 574.97 | 9200 | 1.4909 | 0.7171 | | 0.0075 | 581.24 | 9300 | 1.6307 | 0.7697 | | 0.0077 | 587.48 | 9400 | 1.6196 | 0.7961 | | 0.0088 | 593.73 | 9500 | 1.6119 | 0.7566 | | 0.0085 | 599.97 | 9600 | 1.4512 | 0.7368 | | 0.0086 | 606.24 | 9700 | 1.5992 | 0.7237 | | 0.0109 | 612.48 | 9800 | 1.4706 | 0.7368 | | 0.0098 | 618.73 | 9900 | 1.3824 | 0.7171 | | 0.0091 | 624.97 | 10000 | 1.4776 | 0.6974 | | 0.0072 | 631.24 | 10100 | 1.4896 | 0.7039 | | 0.0087 | 637.48 | 10200 | 1.5467 | 0.7368 | | 0.007 | 643.73 | 10300 | 1.5493 | 0.75 | | 0.0076 | 649.97 | 10400 | 1.5706 | 0.7303 | | 0.0085 | 656.24 | 10500 | 1.5748 | 0.7237 | | 0.0075 | 662.48 | 10600 | 1.5081 | 0.7105 | | 0.0068 | 668.73 | 10700 | 1.4967 | 0.6842 | | 0.0117 | 674.97 | 10800 | 1.4986 | 0.7105 | | 0.0054 | 681.24 | 10900 | 1.5587 | 0.7303 | | 0.0059 | 687.48 | 11000 | 1.5886 | 0.7171 | | 0.0071 | 693.73 | 11100 | 1.5746 | 0.7171 | | 0.0048 | 699.97 | 11200 | 1.6166 | 0.7237 | | 0.0048 | 706.24 | 11300 | 1.6098 | 0.7237 | | 0.0056 | 712.48 | 11400 | 1.5834 | 0.7237 | | 0.0048 | 718.73 | 11500 | 1.5653 | 0.7171 | | 0.0045 | 724.97 | 11600 | 1.6252 | 0.7237 | | 0.0068 | 731.24 | 11700 | 1.6794 | 0.7171 | | 0.0044 | 737.48 | 11800 | 1.6881 | 0.7039 | | 0.008 | 743.73 | 11900 | 1.7393 | 0.75 | | 0.0045 | 749.97 | 12000 | 1.6869 | 0.7237 | | 0.0047 | 756.24 | 12100 | 1.7105 | 0.7303 | | 0.0057 | 762.48 | 12200 | 1.7439 | 0.7303 | | 0.004 | 768.73 | 12300 | 1.7871 | 0.7434 | | 0.0061 | 774.97 | 12400 | 1.7812 | 0.7303 | | 0.005 | 781.24 | 12500 | 1.7410 | 0.7434 | | 0.0056 | 787.48 | 12600 | 1.7220 | 0.7303 | | 0.0064 | 793.73 | 12700 | 1.7141 | 0.7434 | | 0.0042 | 799.97 | 12800 | 1.7139 | 0.7368 | | 0.0049 | 806.24 | 12900 | 1.7211 | 0.7434 | | 0.0044 | 812.48 | 13000 | 1.7197 | 0.7434 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
infinitejoy/wav2vec2-large-xls-r-300m-romansh-vallader
infinitejoy
2022-03-24T11:58:11Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "rm-vallader", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - rm-vallader license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - rm-vallader - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Romansh Vallader results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: rm-vallader metrics: - name: Test WER type: wer value: 31.689 - name: Test CER type: cer value: 7.202 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-romansh-vallader This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - RM-VALLADER dataset. It achieves the following results on the evaluation set: - Loss: 0.3155 - Wer: 0.3162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9556 | 15.62 | 500 | 2.9300 | 1.0 | | 1.7874 | 31.25 | 1000 | 0.7566 | 0.6509 | | 1.0131 | 46.88 | 1500 | 0.3671 | 0.3828 | | 0.8439 | 62.5 | 2000 | 0.3350 | 0.3416 | | 0.7502 | 78.12 | 2500 | 0.3155 | 0.3296 | | 0.7093 | 93.75 | 3000 | 0.3182 | 0.3186 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-hausa
infinitejoy
2022-03-24T11:58:04Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ha", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ha license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - ha - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Hausa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ha metrics: - name: Test WER type: wer value: 100 - name: Test CER type: cer value: 132.32 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hausa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HA dataset. It achieves the following results on the evaluation set: - Loss: 0.5756 - Wer: 0.6014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.7064 | 11.36 | 500 | 2.7112 | 1.0 | | 1.3079 | 22.73 | 1000 | 0.7337 | 0.7776 | | 1.0919 | 34.09 | 1500 | 0.5938 | 0.7023 | | 0.9546 | 45.45 | 2000 | 0.5698 | 0.6133 | | 0.8895 | 56.82 | 2500 | 0.5739 | 0.6142 | | 0.8152 | 68.18 | 3000 | 0.5579 | 0.6091 | | 0.7703 | 79.55 | 3500 | 0.5813 | 0.6210 | | 0.732 | 90.91 | 4000 | 0.5756 | 0.5860 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
azuur/wav2vec2-base-gn-demo
azuur
2022-03-24T11:57:52Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "hf-asr-leaderboard", "gn", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - gn tags: - generated_from_trainer - mozilla-foundation/common_voice_8_0 - robust-speech-event - hf-asr-leaderboard datasets: - common_voice - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-base-gn-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-gn-demo This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7426 - Wer: 0.7256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 50 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 4.0 | 100 | 0.7045 | 0.7409 | | No log | 8.0 | 200 | 0.7200 | 0.75 | | No log | 12.0 | 300 | 0.7400 | 0.7439 | | No log | 16.0 | 400 | 0.7677 | 0.7515 | | 0.0846 | 20.0 | 500 | 0.7765 | 0.7271 | | 0.0846 | 24.0 | 600 | 0.7821 | 0.7287 | | 0.0846 | 28.0 | 700 | 0.7671 | 0.7180 | | 0.0846 | 32.0 | 800 | 0.7594 | 0.7180 | | 0.0846 | 36.0 | 900 | 0.7500 | 0.7165 | | 0.0713 | 40.0 | 1000 | 0.7351 | 0.7287 | | 0.0713 | 44.0 | 1100 | 0.7361 | 0.7241 | | 0.0713 | 48.0 | 1200 | 0.7389 | 0.7378 | | 0.0713 | 52.0 | 1300 | 0.7424 | 0.7210 | | 0.0713 | 56.0 | 1400 | 0.7425 | 0.7256 | | 0.0669 | 60.0 | 1500 | 0.7426 | 0.7256 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm
anuragshas
2022-03-24T11:57:50Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "mt", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: XLS-R-300M - Maltese results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: mt metrics: - type: wer value: 15.967 name: Test WER - name: Test CER type: cer value: 3.657 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Maltese This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set: - Loss: 0.1895 - Wer: 0.1984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4219 | 3.6 | 400 | 3.3127 | 1.0 | | 3.0399 | 7.21 | 800 | 3.0330 | 1.0 | | 1.5756 | 10.81 | 1200 | 0.6108 | 0.5724 | | 1.0995 | 14.41 | 1600 | 0.3091 | 0.3154 | | 0.9639 | 18.02 | 2000 | 0.2596 | 0.2841 | | 0.9032 | 21.62 | 2400 | 0.2270 | 0.2514 | | 0.8145 | 25.23 | 2800 | 0.2172 | 0.2483 | | 0.7845 | 28.83 | 3200 | 0.2084 | 0.2333 | | 0.7694 | 32.43 | 3600 | 0.1974 | 0.2234 | | 0.7333 | 36.04 | 4000 | 0.2020 | 0.2185 | | 0.693 | 39.64 | 4400 | 0.1947 | 0.2148 | | 0.6802 | 43.24 | 4800 | 0.1960 | 0.2102 | | 0.667 | 46.85 | 5200 | 0.1904 | 0.2072 | | 0.6486 | 50.45 | 5600 | 0.1881 | 0.2009 | | 0.6339 | 54.05 | 6000 | 0.1877 | 0.1989 | | 0.6254 | 57.66 | 6400 | 0.1893 | 0.2003 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config mt --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mt", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "għadu jilagħbu ċirku tant bilfondi" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 19.853 | 15.967 |
anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm
anuragshas
2022-03-24T11:57:47Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "lv", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - lv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Latvian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: lv metrics: - name: Test WER type: wer value: 9.633 - name: Test CER type: cer value: 2.614 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: lv metrics: - name: Test WER type: wer value: 36.11 - name: Test CER type: cer value: 14.244 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: lv metrics: - name: Test WER type: wer value: 44.12 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Latvian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - LV dataset. It achieves the following results on the evaluation set: - Loss: 0.1660 - Wer: 0.1705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.489 | 2.56 | 400 | 3.3590 | 1.0 | | 2.9903 | 5.13 | 800 | 2.9704 | 1.0001 | | 1.6712 | 7.69 | 1200 | 0.6179 | 0.6566 | | 1.2635 | 10.26 | 1600 | 0.3176 | 0.4531 | | 1.0819 | 12.82 | 2000 | 0.2517 | 0.3508 | | 1.0136 | 15.38 | 2400 | 0.2257 | 0.3124 | | 0.9625 | 17.95 | 2800 | 0.1975 | 0.2311 | | 0.901 | 20.51 | 3200 | 0.1986 | 0.2097 | | 0.8842 | 23.08 | 3600 | 0.1904 | 0.2039 | | 0.8542 | 25.64 | 4000 | 0.1847 | 0.1981 | | 0.8244 | 28.21 | 4400 | 0.1805 | 0.1847 | | 0.7689 | 30.77 | 4800 | 0.1736 | 0.1832 | | 0.7825 | 33.33 | 5200 | 0.1698 | 0.1821 | | 0.7817 | 35.9 | 5600 | 0.1758 | 0.1803 | | 0.7488 | 38.46 | 6000 | 0.1663 | 0.1760 | | 0.7171 | 41.03 | 6400 | 0.1636 | 0.1721 | | 0.7222 | 43.59 | 6800 | 0.1663 | 0.1729 | | 0.7156 | 46.15 | 7200 | 0.1633 | 0.1715 | | 0.7121 | 48.72 | 7600 | 0.1666 | 0.1718 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config lv --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config lv --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "lv", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "domāju ka viņam viss labi" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 16.997 | 9.633 |