modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
ShannonAI/ChineseBERT-large
ShannonAI
2022-06-19T12:07:31Z
23
5
transformers
[ "transformers", "pytorch", "arxiv:2106.16038", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# ChineseBERT-large This repository contains code, model, dataset for **ChineseBERT** at ACL2021. paper: **[ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://arxiv.org/abs/2106.16038)** *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* code: [ChineseBERT github link](https://github.com/ShannonAI/ChineseBert) ## Model description We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese characters into language model pretraining. First, for each Chinese character, we get three kind of embedding. - **Char Embedding:** the same as origin BERT token embedding. - **Glyph Embedding:** capture visual features based on different fonts of a Chinese character. - **Pinyin Embedding:** capture phonetic feature from the pinyin sequence ot a Chinese Character. Then, char embedding, glyph embedding and pinyin embedding are first concatenated, and mapped to a D-dimensional embedding through a fully connected layer to form the fusion embedding. Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model. The following image shows an overview architecture of ChineseBERT model. ![MODEL](https://raw.githubusercontent.com/ShannonAI/ChineseBert/main/images/ChineseBERT.png) ChineseBERT leverages the glyph and pinyin information of Chinese characters to enhance the model's ability of capturing context semantics from surface character forms and disambiguating polyphonic characters in Chinese.
dibsondivya/distilbert-phmtweets-sutd
dibsondivya
2022-06-19T11:40:42Z
11
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "health", "tweet", "dataset:custom-phm-tweets", "arxiv:1802.09130", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-19T10:09:47Z
--- tags: - distilbert - health - tweet datasets: - custom-phm-tweets metrics: - accuracy model-index: - name: distilbert-phmtweets-sutd results: - task: name: Text Classification type: text-classification dataset: name: custom-phm-tweets type: labelled metrics: - name: Accuracy type: accuracy value: 0.877 --- # distilbert-phmtweets-sutd This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) for text classification to identify public health events through tweets. The project was based on an [Emory University Study on Detection of Personal Health Mentions in Social Media paper](https://arxiv.org/pdf/1802.09130v2.pdf), that worked with this [custom dataset](https://github.com/emory-irlab/PHM2017). It achieves the following results on the evaluation set: - Accuracy: 0.877 ## Usage ```Python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("dibsondivya/distilbert-phmtweets-sutd") model = AutoModelForSequenceClassification.from_pretrained("dibsondivya/distilbert-phmtweets-sutd") ``` ### Model Evaluation Results With Validation Set - Accuracy: 0.8708661417322835 With Test Set - Accuracy: 0.8772961058045555 # Reference for distilbert-base-uncased Model ```bibtex @article{Sanh2019DistilBERTAD, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, journal={ArXiv}, year={2019}, volume={abs/1910.01108} } ```
dibsondivya/ernie-phmtweets-sutd
dibsondivya
2022-06-19T11:38:29Z
14
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "ernie", "health", "tweet", "dataset:custom-phm-tweets", "arxiv:1802.09130", "arxiv:1907.12412", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-19T11:20:14Z
--- tags: - ernie - health - tweet datasets: - custom-phm-tweets metrics: - accuracy model-index: - name: ernie-phmtweets-sutd results: - task: name: Text Classification type: text-classification dataset: name: custom-phm-tweets type: labelled metrics: - name: Accuracy type: accuracy value: 0.885 --- # ernie-phmtweets-sutd This model is a fine-tuned version of [ernie-2.0-en](https://huggingface.co/nghuyong/ernie-2.0-en) for text classification to identify public health events through tweets. The project was based on an [Emory University Study on Detection of Personal Health Mentions in Social Media paper](https://arxiv.org/pdf/1802.09130v2.pdf), that worked with this [custom dataset](https://github.com/emory-irlab/PHM2017). It achieves the following results on the evaluation set: - Accuracy: 0.885 ## Usage ```Python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("dibsondivya/ernie-phmtweets-sutd") model = AutoModelForSequenceClassification.from_pretrained("dibsondivya/ernie-phmtweets-sutd") ``` ### Model Evaluation Results With Validation Set - Accuracy: 0.889763779527559 With Test Set - Accuracy: 0.884643644379133 ## References for ERNIE 2.0 Model ```bibtex @article{sun2019ernie20, title={ERNIE 2.0: A Continual Pre-training Framework for Language Understanding}, author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng}, journal={arXiv preprint arXiv:1907.12412}, year={2019} } ```
huggingtweets/rsapublic
huggingtweets
2022-06-19T11:26:27Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-19T11:14:09Z
--- language: en thumbnail: http://www.huggingtweets.com/rsapublic/1655637814216/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1536637048391491584/zfHd6Mha_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">bopo mofo</div> <div style="text-align: center; font-size: 14px;">@rsapublic</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from bopo mofo. | Data | bopo mofo | | --- | --- | | Tweets downloaded | 3212 | | Retweets | 1562 | | Short tweets | 303 | | Tweets kept | 1347 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2qnsx0b8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rsapublic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/368jvjwu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/368jvjwu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rsapublic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bookpanda/wangchanberta-base-att-spm-uncased-masking
bookpanda
2022-06-19T11:05:59Z
19
0
transformers
[ "transformers", "pytorch", "camembert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-19T10:59:54Z
--- tags: - generated_from_trainer model-index: - name: wangchanberta-base-att-spm-uncased-masking results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wangchanberta-base-att-spm-uncased-masking This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
zakria/NLP_Project
zakria
2022-06-19T09:55:56Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-19T07:49:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: NLP_Project results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP_Project This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5308 - Wer: 0.3428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5939 | 1.0 | 500 | 2.1356 | 1.0014 | | 0.9126 | 2.01 | 1000 | 0.5469 | 0.5354 | | 0.4491 | 3.01 | 1500 | 0.4636 | 0.4503 | | 0.3008 | 4.02 | 2000 | 0.4269 | 0.4330 | | 0.2229 | 5.02 | 2500 | 0.4164 | 0.4073 | | 0.188 | 6.02 | 3000 | 0.4717 | 0.4107 | | 0.1739 | 7.03 | 3500 | 0.4306 | 0.4031 | | 0.159 | 8.03 | 4000 | 0.4394 | 0.3993 | | 0.1342 | 9.04 | 4500 | 0.4462 | 0.3904 | | 0.1093 | 10.04 | 5000 | 0.4387 | 0.3759 | | 0.1005 | 11.04 | 5500 | 0.5033 | 0.3847 | | 0.0857 | 12.05 | 6000 | 0.4805 | 0.3876 | | 0.0779 | 13.05 | 6500 | 0.5269 | 0.3810 | | 0.072 | 14.06 | 7000 | 0.5109 | 0.3710 | | 0.0641 | 15.06 | 7500 | 0.4865 | 0.3638 | | 0.0584 | 16.06 | 8000 | 0.5041 | 0.3646 | | 0.0552 | 17.07 | 8500 | 0.4987 | 0.3537 | | 0.0535 | 18.07 | 9000 | 0.4947 | 0.3586 | | 0.0475 | 19.08 | 9500 | 0.5237 | 0.3647 | | 0.042 | 20.08 | 10000 | 0.5338 | 0.3561 | | 0.0416 | 21.08 | 10500 | 0.5068 | 0.3483 | | 0.0358 | 22.09 | 11000 | 0.5126 | 0.3532 | | 0.0334 | 23.09 | 11500 | 0.5213 | 0.3536 | | 0.0331 | 24.1 | 12000 | 0.5378 | 0.3496 | | 0.03 | 25.1 | 12500 | 0.5167 | 0.3470 | | 0.0254 | 26.1 | 13000 | 0.5245 | 0.3418 | | 0.0233 | 27.11 | 13500 | 0.5393 | 0.3456 | | 0.0232 | 28.11 | 14000 | 0.5279 | 0.3425 | | 0.022 | 29.12 | 14500 | 0.5308 | 0.3428 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
devetle/dqn-SpaceInvadersNoFrameskip-v4
devetle
2022-06-19T09:29:00Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-19T03:34:30Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 622.00 +/- 131.55 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga devetle -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga devetle ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1800000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
sun1638650145/q-Taxi-v3
sun1638650145
2022-06-19T09:00:38Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-19T09:00:26Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # 使用**Q-Learning**智能体来玩**Taxi-v3** 这是一个使用**Q-Learning**训练有素的模型玩**Taxi-v3**. ## 用法 ```python model = load_from_hub(repo_id='sun1638650145/q-Taxi-v3', filename='q-learning.pkl') # 不要忘记检查是否需要添加额外的参数(例如is_slippery=False) env = gym.make(model['env_id']) evaluate_agent(env, model['max_steps'], model['n_eval_episodes'], model['qtable'], model['eval_seed']) ```
janeel/tinyroberta-squad2-finetuned-squad
janeel
2022-06-19T08:51:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-16T12:51:25Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: tinyroberta-squad2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinyroberta-squad2-finetuned-squad This model is a fine-tuned version of [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.1592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6185 | 1.0 | 8239 | 0.9460 | | 0.4243 | 2.0 | 16478 | 1.1592 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ShannonAI/ChineseBERT-base
ShannonAI
2022-06-19T08:14:46Z
109
20
transformers
[ "transformers", "pytorch", "arxiv:2106.16038", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# ChineseBERT-base This repository contains code, model, dataset for **ChineseBERT** at ACL2021. paper: **[ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://arxiv.org/abs/2106.16038)** *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* code: [ChineseBERT github link](https://github.com/ShannonAI/ChineseBert) ## Model description We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese characters into language model pretraining. First, for each Chinese character, we get three kind of embedding. - **Char Embedding:** the same as origin BERT token embedding. - **Glyph Embedding:** capture visual features based on different fonts of a Chinese character. - **Pinyin Embedding:** capture phonetic feature from the pinyin sequence ot a Chinese Character. Then, char embedding, glyph embedding and pinyin embedding are first concatenated, and mapped to a D-dimensional embedding through a fully connected layer to form the fusion embedding. Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model. The following image shows an overview architecture of ChineseBERT model. ![MODEL](https://raw.githubusercontent.com/ShannonAI/ChineseBert/main/images/ChineseBERT.png) ChineseBERT leverages the glyph and pinyin information of Chinese characters to enhance the model's ability of capturing context semantics from surface character forms and disambiguating polyphonic characters in Chinese.
nestoralvaro/mt5-small-test-ged-mlsum_max_target_length_10
nestoralvaro
2022-06-19T06:39:24Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:mlsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-18T15:09:43Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - mlsum metrics: - rouge model-index: - name: mt5-small-test-ged-mlsum_max_target_length_10 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: mlsum type: mlsum args: es metrics: - name: Rouge1 type: rouge value: 74.8229 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-test-ged-mlsum_max_target_length_10 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the mlsum dataset. It achieves the following results on the evaluation set: - Loss: 0.3341 - Rouge1: 74.8229 - Rouge2: 68.1808 - Rougel: 74.8297 - Rougelsum: 74.8414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 0.5565 | 1.0 | 33296 | 0.3827 | 69.9041 | 62.821 | 69.8709 | 69.8924 | | 0.2636 | 2.0 | 66592 | 0.3552 | 72.0701 | 65.4937 | 72.0787 | 72.091 | | 0.2309 | 3.0 | 99888 | 0.3525 | 72.5071 | 65.8026 | 72.5132 | 72.512 | | 0.2109 | 4.0 | 133184 | 0.3346 | 74.0842 | 67.4776 | 74.0887 | 74.0968 | | 0.1972 | 5.0 | 166480 | 0.3398 | 74.6051 | 68.6024 | 74.6177 | 74.6365 | | 0.1867 | 6.0 | 199776 | 0.3283 | 74.9022 | 68.2146 | 74.9023 | 74.926 | | 0.1785 | 7.0 | 233072 | 0.3325 | 74.8631 | 68.2468 | 74.8843 | 74.9026 | | 0.1725 | 8.0 | 266368 | 0.3341 | 74.8229 | 68.1808 | 74.8297 | 74.8414 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
botika/checkpoint-124500-finetuned-squad
botika
2022-06-19T05:53:11Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-06-17T07:41:58Z
--- tags: - generated_from_trainer model-index: - name: checkpoint-124500-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoint-124500-finetuned-squad This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 14.9594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 3.9975 | 1.0 | 3289 | 3.8405 | | 3.7311 | 2.0 | 6578 | 3.7114 | | 3.5681 | 3.0 | 9867 | 3.6829 | | 3.4101 | 4.0 | 13156 | 3.6368 | | 3.2487 | 5.0 | 16445 | 3.6526 | | 3.1143 | 6.0 | 19734 | 3.7567 | | 2.9783 | 7.0 | 23023 | 3.8469 | | 2.8295 | 8.0 | 26312 | 4.0040 | | 2.6912 | 9.0 | 29601 | 4.1996 | | 2.5424 | 10.0 | 32890 | 4.3387 | | 2.4161 | 11.0 | 36179 | 4.4988 | | 2.2713 | 12.0 | 39468 | 4.7861 | | 2.1413 | 13.0 | 42757 | 4.9276 | | 2.0125 | 14.0 | 46046 | 5.0598 | | 1.8798 | 15.0 | 49335 | 5.3347 | | 1.726 | 16.0 | 52624 | 5.5869 | | 1.5994 | 17.0 | 55913 | 5.7161 | | 1.4643 | 18.0 | 59202 | 6.0174 | | 1.3237 | 19.0 | 62491 | 6.4926 | | 1.2155 | 20.0 | 65780 | 6.4882 | | 1.1029 | 21.0 | 69069 | 6.9922 | | 0.9948 | 22.0 | 72358 | 7.1357 | | 0.9038 | 23.0 | 75647 | 7.3676 | | 0.8099 | 24.0 | 78936 | 7.4180 | | 0.7254 | 25.0 | 82225 | 7.7753 | | 0.6598 | 26.0 | 85514 | 7.8643 | | 0.5723 | 27.0 | 88803 | 8.1798 | | 0.5337 | 28.0 | 92092 | 8.3053 | | 0.4643 | 29.0 | 95381 | 8.8597 | | 0.4241 | 30.0 | 98670 | 8.9849 | | 0.3763 | 31.0 | 101959 | 8.8406 | | 0.3479 | 32.0 | 105248 | 9.1517 | | 0.3271 | 33.0 | 108537 | 9.3659 | | 0.2911 | 34.0 | 111826 | 9.4813 | | 0.2836 | 35.0 | 115115 | 9.5746 | | 0.2528 | 36.0 | 118404 | 9.7027 | | 0.2345 | 37.0 | 121693 | 9.7515 | | 0.2184 | 38.0 | 124982 | 9.9729 | | 0.2067 | 39.0 | 128271 | 10.0828 | | 0.2077 | 40.0 | 131560 | 10.0878 | | 0.1876 | 41.0 | 134849 | 10.2974 | | 0.1719 | 42.0 | 138138 | 10.2712 | | 0.1637 | 43.0 | 141427 | 10.5788 | | 0.1482 | 44.0 | 144716 | 10.7465 | | 0.1509 | 45.0 | 148005 | 10.4603 | | 0.1358 | 46.0 | 151294 | 10.7665 | | 0.1316 | 47.0 | 154583 | 10.7724 | | 0.1223 | 48.0 | 157872 | 11.1766 | | 0.1205 | 49.0 | 161161 | 11.1870 | | 0.1203 | 50.0 | 164450 | 11.1053 | | 0.1081 | 51.0 | 167739 | 10.9696 | | 0.103 | 52.0 | 171028 | 11.2010 | | 0.0938 | 53.0 | 174317 | 11.6728 | | 0.0924 | 54.0 | 177606 | 11.1423 | | 0.0922 | 55.0 | 180895 | 11.7409 | | 0.0827 | 56.0 | 184184 | 11.7850 | | 0.0829 | 57.0 | 187473 | 11.8956 | | 0.073 | 58.0 | 190762 | 11.8915 | | 0.0788 | 59.0 | 194051 | 12.1617 | | 0.0734 | 60.0 | 197340 | 12.2007 | | 0.0729 | 61.0 | 200629 | 12.2388 | | 0.0663 | 62.0 | 203918 | 12.2471 | | 0.0662 | 63.0 | 207207 | 12.5830 | | 0.064 | 64.0 | 210496 | 12.6105 | | 0.0599 | 65.0 | 213785 | 12.3712 | | 0.0604 | 66.0 | 217074 | 12.9249 | | 0.0574 | 67.0 | 220363 | 12.7309 | | 0.0538 | 68.0 | 223652 | 12.8068 | | 0.0526 | 69.0 | 226941 | 13.4368 | | 0.0471 | 70.0 | 230230 | 13.5148 | | 0.0436 | 71.0 | 233519 | 13.3391 | | 0.0448 | 72.0 | 236808 | 13.4100 | | 0.0428 | 73.0 | 240097 | 13.5617 | | 0.0401 | 74.0 | 243386 | 13.8674 | | 0.035 | 75.0 | 246675 | 13.5746 | | 0.0342 | 76.0 | 249964 | 13.5042 | | 0.0344 | 77.0 | 253253 | 14.2085 | | 0.0365 | 78.0 | 256542 | 13.6393 | | 0.0306 | 79.0 | 259831 | 13.9807 | | 0.0311 | 80.0 | 263120 | 13.9768 | | 0.0353 | 81.0 | 266409 | 14.5245 | | 0.0299 | 82.0 | 269698 | 13.9471 | | 0.0263 | 83.0 | 272987 | 13.7899 | | 0.0254 | 84.0 | 276276 | 14.3786 | | 0.0267 | 85.0 | 279565 | 14.5611 | | 0.022 | 86.0 | 282854 | 14.2658 | | 0.0198 | 87.0 | 286143 | 14.9215 | | 0.0193 | 88.0 | 289432 | 14.5650 | | 0.0228 | 89.0 | 292721 | 14.7014 | | 0.0184 | 90.0 | 296010 | 14.6946 | | 0.0182 | 91.0 | 299299 | 14.6614 | | 0.0188 | 92.0 | 302588 | 14.6915 | | 0.0196 | 93.0 | 305877 | 14.7262 | | 0.0138 | 94.0 | 309166 | 14.7625 | | 0.0201 | 95.0 | 312455 | 15.0442 | | 0.0189 | 96.0 | 315744 | 14.8832 | | 0.0148 | 97.0 | 319033 | 14.8995 | | 0.0129 | 98.0 | 322322 | 14.8974 | | 0.0132 | 99.0 | 325611 | 14.9813 | | 0.0139 | 100.0 | 328900 | 14.9594 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
Klinsc/q-Taxi-v3
Klinsc
2022-06-19T05:09:11Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-19T05:09:06Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.52 +/- 2.67 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Klinsc/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Klinsc/q-FrozenLake-v1-4x4-noSlippery
Klinsc
2022-06-19T04:46:57Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-19T04:43:46Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Klinsc/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
janeel/roberta-base-finetuned-squad
janeel
2022-06-19T04:32:50Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-06-18T14:02:52Z
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: roberta-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-squad This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.8556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8678 | 1.0 | 8239 | 0.8014 | | 0.6423 | 2.0 | 16478 | 0.8556 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Tstarshak/q-FrozenLake-v1-4x4-noSlippery
Tstarshak
2022-06-19T04:15:20Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-19T04:15:13Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Tstarshak/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
huggingtweets/vox_akuma
huggingtweets
2022-06-19T03:26:08Z
7
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-28T15:10:18Z
--- language: en thumbnail: http://www.huggingtweets.com/vox_akuma/1655609164156/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509960920449093633/c0in4uvf_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Vox Akuma 👹🧧 NIJISANJI EN</div> <div style="text-align: center; font-size: 14px;">@vox_akuma</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Vox Akuma 👹🧧 NIJISANJI EN. | Data | Vox Akuma 👹🧧 NIJISANJI EN | | --- | --- | | Tweets downloaded | 3149 | | Retweets | 948 | | Short tweets | 465 | | Tweets kept | 1736 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2g4om0wh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vox_akuma's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qy49fjem) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qy49fjem/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/vox_akuma') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1
gary109
2022-06-19T00:31:50Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-18T03:12:49Z
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1 This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING dataset. It achieves the following results on the evaluation set: - Loss: 0.4123 - Wer: 0.1668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2696 | 1.0 | 552 | 0.4421 | 0.2013 | | 0.2498 | 2.0 | 1104 | 0.4389 | 0.1887 | | 0.2387 | 3.0 | 1656 | 0.4154 | 0.1788 | | 0.1902 | 4.0 | 2208 | 0.4143 | 0.1753 | | 0.1896 | 5.0 | 2760 | 0.4123 | 0.1668 | | 0.1658 | 6.0 | 3312 | 0.4366 | 0.1651 | | 0.1312 | 7.0 | 3864 | 0.4309 | 0.1594 | | 0.1186 | 8.0 | 4416 | 0.4432 | 0.1561 | | 0.1476 | 9.0 | 4968 | 0.4400 | 0.1569 | | 0.1027 | 10.0 | 5520 | 0.4389 | 0.1554 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
raedinkhaled/swin-tiny-patch4-window7-224-finetuned-mri
raedinkhaled
2022-06-19T00:13:22Z
80
1
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-18T16:25:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-mri results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: default metrics: - name: Accuracy type: accuracy value: 0.9806603773584905 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-mri This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0608 - Accuracy: 0.9807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0592 | 1.0 | 447 | 0.0823 | 0.9695 | | 0.0196 | 2.0 | 894 | 0.0761 | 0.9739 | | 0.0058 | 3.0 | 1341 | 0.0608 | 0.9807 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
kjunelee/pegasus-samsum
kjunelee
2022-06-18T22:35:27Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-18T08:01:44Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
Hugo123/Ttgb
Hugo123
2022-06-18T22:13:53Z
0
0
null
[ "license:bsd-3-clause-clear", "region:us" ]
null
2022-06-18T22:13:53Z
--- license: bsd-3-clause-clear ---
MerlinTK/q-Taxi-v3
MerlinTK
2022-06-18T21:30:00Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-18T21:29:54Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="MerlinTK/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
BeardedJohn/bert-finetuned-seq-classification-fake-news
BeardedJohn
2022-06-18T21:03:42Z
4
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-17T16:58:33Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: BeardedJohn/bert-finetuned-seq-classification-fake-news results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # BeardedJohn/bert-finetuned-seq-classification-fake-news This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0719 - Validation Loss: 0.0214 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 332, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0719 | 0.0214 | 0 | ### Framework versions - Transformers 4.20.0 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
zakria/Project_NLP
zakria
2022-06-18T20:44:06Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-18T18:43:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Project_NLP results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Project_NLP This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5324 - Wer: 0.3355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5697 | 1.0 | 500 | 2.1035 | 0.9979 | | 0.8932 | 2.01 | 1000 | 0.5649 | 0.5621 | | 0.4363 | 3.01 | 1500 | 0.4326 | 0.4612 | | 0.3035 | 4.02 | 2000 | 0.4120 | 0.4191 | | 0.2343 | 5.02 | 2500 | 0.4199 | 0.3985 | | 0.1921 | 6.02 | 3000 | 0.4380 | 0.4043 | | 0.1549 | 7.03 | 3500 | 0.4456 | 0.3925 | | 0.1385 | 8.03 | 4000 | 0.4264 | 0.3871 | | 0.1217 | 9.04 | 4500 | 0.4744 | 0.3774 | | 0.1041 | 10.04 | 5000 | 0.4498 | 0.3745 | | 0.0968 | 11.04 | 5500 | 0.4716 | 0.3628 | | 0.0893 | 12.05 | 6000 | 0.4680 | 0.3764 | | 0.078 | 13.05 | 6500 | 0.5100 | 0.3623 | | 0.0704 | 14.06 | 7000 | 0.4893 | 0.3552 | | 0.0659 | 15.06 | 7500 | 0.4956 | 0.3565 | | 0.0578 | 16.06 | 8000 | 0.5450 | 0.3595 | | 0.0563 | 17.07 | 8500 | 0.4891 | 0.3614 | | 0.0557 | 18.07 | 9000 | 0.5307 | 0.3548 | | 0.0447 | 19.08 | 9500 | 0.4923 | 0.3493 | | 0.0456 | 20.08 | 10000 | 0.5156 | 0.3479 | | 0.0407 | 21.08 | 10500 | 0.4979 | 0.3389 | | 0.0354 | 22.09 | 11000 | 0.5549 | 0.3462 | | 0.0322 | 23.09 | 11500 | 0.5601 | 0.3439 | | 0.0342 | 24.1 | 12000 | 0.5131 | 0.3451 | | 0.0276 | 25.1 | 12500 | 0.5206 | 0.3392 | | 0.0245 | 26.1 | 13000 | 0.5337 | 0.3373 | | 0.0226 | 27.11 | 13500 | 0.5311 | 0.3353 | | 0.0229 | 28.11 | 14000 | 0.5375 | 0.3373 | | 0.0225 | 29.12 | 14500 | 0.5324 | 0.3355 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
theojolliffe/bart-cnn-science-v3-e2-v4-e2-manual
theojolliffe
2022-06-18T18:01:15Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-18T17:39:12Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-science-v3-e2-v4-e2-manual results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e2-v4-e2-manual This model is a fine-tuned version of [theojolliffe/bart-cnn-science-v3-e2](https://huggingface.co/theojolliffe/bart-cnn-science-v3-e2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9189 - Rouge1: 55.982 - Rouge2: 36.9147 - Rougel: 39.1563 - Rougelsum: 53.5959 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 42 | 0.9365 | 53.4332 | 34.0477 | 36.9735 | 51.1918 | 142.0 | | No log | 2.0 | 84 | 0.9189 | 55.982 | 36.9147 | 39.1563 | 53.5959 | 142.0 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
vai6hav/wav2vec2-large-xls-r-300m-hindi-epochs15-colab
vai6hav
2022-06-18T17:42:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-18T16:56:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-epochs15-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-epochs15-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 3.5705 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 20.2764 | 5.53 | 50 | 8.1197 | 1.0 | | 5.2964 | 11.11 | 100 | 3.5705 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
theojolliffe/bart-cnn-science-v3-e1-v4-e4-manual
theojolliffe
2022-06-18T17:13:00Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-18T16:46:47Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-science-v3-e1-v4-e4-manual results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e1-v4-e4-manual This model is a fine-tuned version of [theojolliffe/bart-cnn-science-v3-e1](https://huggingface.co/theojolliffe/bart-cnn-science-v3-e1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2615 - Rouge1: 53.36 - Rouge2: 32.0237 - Rougel: 33.2835 - Rougelsum: 50.7455 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 42 | 1.0675 | 51.743 | 31.3774 | 34.1939 | 48.7234 | 142.0 | | No log | 2.0 | 84 | 1.0669 | 49.4166 | 28.1438 | 30.188 | 46.0289 | 142.0 | | No log | 3.0 | 126 | 1.1799 | 52.6909 | 31.0174 | 35.441 | 50.0351 | 142.0 | | No log | 4.0 | 168 | 1.2615 | 53.36 | 32.0237 | 33.2835 | 50.7455 | 142.0 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
tclong/wav2vec2-base-vios-v4
tclong
2022-06-18T16:59:17Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:vivos_dataset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-06T18:29:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - vivos_dataset model-index: - name: wav2vec2-base-vios-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-vios-v4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the vivos_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3198 - Wer: 0.2169 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 7.8138 | 0.69 | 500 | 3.5011 | 1.0 | | 3.4372 | 1.37 | 1000 | 3.3447 | 1.0 | | 1.9519 | 2.06 | 1500 | 0.8356 | 0.5944 | | 0.8581 | 2.74 | 2000 | 0.5280 | 0.4038 | | 0.6405 | 3.43 | 2500 | 0.4410 | 0.3410 | | 0.5417 | 4.12 | 3000 | 0.3990 | 0.3140 | | 0.4804 | 4.8 | 3500 | 0.3804 | 0.2973 | | 0.4384 | 5.49 | 4000 | 0.3644 | 0.2808 | | 0.4162 | 6.17 | 4500 | 0.3542 | 0.2648 | | 0.3941 | 6.86 | 5000 | 0.3436 | 0.2529 | | 0.3733 | 7.54 | 5500 | 0.3355 | 0.2520 | | 0.3564 | 8.23 | 6000 | 0.3294 | 0.2415 | | 0.3412 | 8.92 | 6500 | 0.3311 | 0.2332 | | 0.3266 | 9.6 | 7000 | 0.3217 | 0.2325 | | 0.3226 | 10.29 | 7500 | 0.3317 | 0.2303 | | 0.3115 | 10.97 | 8000 | 0.3226 | 0.2279 | | 0.3094 | 11.66 | 8500 | 0.3157 | 0.2236 | | 0.2967 | 12.35 | 9000 | 0.3109 | 0.2202 | | 0.2995 | 13.03 | 9500 | 0.3129 | 0.2156 | | 0.2895 | 13.72 | 10000 | 0.3195 | 0.2146 | | 0.3089 | 14.4 | 10500 | 0.3198 | 0.2169 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
Ambiwlans/PPO-1m-SpaceInvadersNoFrameskip-v4
Ambiwlans
2022-06-18T15:58:34Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-18T15:57:59Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 273.00 +/- 82.29 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **PPO** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **PPO** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env SpaceInvadersNoFrameskip-v4 -orga Ambiwlans -f logs/ python enjoy.py --algo ppo --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Ambiwlans ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 1000000.0), ('policy', 'CnnPolicy'), ('vf_coef', 0.5), ('normalize', False)]) ```
anibahug/mt5-small-finetuned-amazon-en-de
anibahug
2022-06-18T15:39:26Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-18T14:20:45Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-de This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [Amazon reviews multi](https://huggingface.co/datasets/amazon_reviews_multi) dataset. It achieves the following results on the evaluation set: - Loss: 3.2896 - Rouge1: 14.7163 - Rouge2: 6.6341 - Rougel: 14.2052 - Rougelsum: 14.2318 ## Model description the model can summarize texts for english and deutsch ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure the training was done on google colab ( using it's free GPU) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 7.2925 | 1.0 | 1276 | 3.5751 | 13.6254 | 6.0527 | 13.109 | 13.1438 | | 4.0677 | 2.0 | 2552 | 3.4031 | 13.5907 | 6.068 | 13.3526 | 13.2471 | | 3.7458 | 3.0 | 3828 | 3.3434 | 14.7229 | 6.8482 | 14.1443 | 14.2218 | | 3.5831 | 4.0 | 5104 | 3.3353 | 14.8696 | 6.6371 | 14.1342 | 14.2907 | | 3.4841 | 5.0 | 6380 | 3.3037 | 14.233 | 6.2318 | 13.9218 | 13.9781 | | 3.4142 | 6.0 | 7656 | 3.2914 | 13.7344 | 5.9446 | 13.5476 | 13.6362 | | 3.3587 | 7.0 | 8932 | 3.2959 | 14.2007 | 6.1905 | 13.5255 | 13.5237 | | 3.3448 | 8.0 | 10208 | 3.2896 | 14.7163 | 6.6341 | 14.2052 | 14.2318 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
dennis-fast/DialoGPT-ElonMusk
dennis-fast
2022-06-18T15:13:23Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-18T09:43:20Z
--- tags: - conversational license: mit --- # DialoGPT-ElonMusk: Chat with Elon Musk This is a conversational language model of Elon Musk. The bot's conversation abilities come from Microsoft's [DialoGPT-small conversational model](https://huggingface.co/microsoft/DialoGPT-small) fine-tuned on conversation transcripts of 22 interviews with Elon Musk from [here](https://elon-musk-interviews.com/category/english/).
pinot/wav2vec2-large-xls-r-300m-turkish-colab
pinot
2022-06-18T15:04:03Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-18T08:16:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.7642 - Wer: 0.5894 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 24.5372 | 9.76 | 400 | 5.2857 | 0.9738 | | 4.3812 | 19.51 | 800 | 3.6782 | 0.7315 | | 1.624 | 29.27 | 1200 | 2.7642 | 0.5894 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
zdreiosis/ff_analysis_5
zdreiosis
2022-06-18T14:54:43Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "gen_ffa", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-18T12:46:34Z
--- license: apache-2.0 tags: - gen_ffa - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ff_analysis_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ff_analysis_5 This model is a fine-tuned version of [zdreiosis/ff_analysis_5](https://huggingface.co/zdreiosis/ff_analysis_5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0824 - F1: 0.9306 - Roc Auc: 0.9483 - Accuracy: 0.8137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 0.27 | 50 | 0.0846 | 0.9305 | 0.9476 | 0.8075 | | No log | 0.55 | 100 | 0.1000 | 0.9070 | 0.9320 | 0.7484 | | No log | 0.82 | 150 | 0.0945 | 0.9126 | 0.9349 | 0.7640 | | No log | 1.1 | 200 | 0.0973 | 0.9119 | 0.9353 | 0.7764 | | No log | 1.37 | 250 | 0.0880 | 0.9336 | 0.9504 | 0.8261 | | No log | 1.65 | 300 | 0.0857 | 0.9246 | 0.9434 | 0.8043 | | No log | 1.92 | 350 | 0.0844 | 0.9324 | 0.9488 | 0.8199 | | No log | 2.2 | 400 | 0.0881 | 0.9232 | 0.9450 | 0.7888 | | No log | 2.47 | 450 | 0.0875 | 0.9277 | 0.9462 | 0.8012 | | 0.1226 | 2.75 | 500 | 0.0824 | 0.9306 | 0.9483 | 0.8137 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.10.3
theojolliffe/bart-cnn-science-v4-e6-manual
theojolliffe
2022-06-18T14:42:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-18T14:16:05Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-science-v4-e6-manual results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v4-e6-manual This model is a fine-tuned version of [theojolliffe/bart-cnn-science](https://huggingface.co/theojolliffe/bart-cnn-science) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0752 - Rouge1: 49.2922 - Rouge2: 27.0916 - Rougel: 29.2754 - Rougelsum: 46.4762 - Gen Len: 140.8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 42 | 1.5703 | 45.3807 | 24.4571 | 27.901 | 42.7866 | 142.0 | | No log | 2.0 | 84 | 1.5729 | 46.8902 | 24.2952 | 27.8304 | 43.9581 | 142.0 | | No log | 3.0 | 126 | 1.7025 | 48.836 | 26.917 | 30.1325 | 45.7887 | 142.0 | | No log | 4.0 | 168 | 1.8526 | 48.906 | 26.8641 | 30.4677 | 46.1825 | 139.2 | | No log | 5.0 | 210 | 1.9818 | 51.145 | 28.834 | 30.1862 | 48.6876 | 141.8 | | No log | 6.0 | 252 | 2.0752 | 49.2922 | 27.0916 | 29.2754 | 46.4762 | 140.8 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nutjung/q-FrozenLake-v1-4x4-noSlippery
nutjung
2022-06-18T14:32:37Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-18T14:32:30Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="nutjung/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
shurafa16/opus-mt-ar-en-finetuned-ar-to-en
shurafa16
2022-06-18T14:11:53Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:news_commentary", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-15T08:20:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - news_commentary metrics: - bleu model-index: - name: opus-mt-ar-en-finetuned-ar-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: news_commentary type: news_commentary args: ar-en metrics: - name: Bleu type: bleu value: 32.8872 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ar-en-finetuned-ar-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on the news_commentary dataset. It achieves the following results on the evaluation set: - Loss: 0.6933 - Bleu: 32.8872 - Gen Len: 56.084 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 188 | 0.7407 | 30.7259 | 56.296 | | No log | 2.0 | 376 | 0.6927 | 32.2038 | 58.602 | | 0.8066 | 3.0 | 564 | 0.6898 | 33.1091 | 57.72 | | 0.8066 | 4.0 | 752 | 0.6925 | 33.0842 | 56.574 | | 0.8066 | 5.0 | 940 | 0.6933 | 32.8872 | 56.084 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
tuni/xlm-roberta-large-xnli-finetuned-mnli-SJP-v2
tuni
2022-06-18T13:48:56Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:swiss_judgment_prediction", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-18T11:53:32Z
--- license: mit tags: - generated_from_trainer datasets: - swiss_judgment_prediction metrics: - accuracy model-index: - name: xlm-roberta-large-xnli-finetuned-mnli-SJP-v2 results: - task: name: Text Classification type: text-classification dataset: name: swiss_judgment_prediction type: swiss_judgment_prediction args: all_languages metrics: - name: Accuracy type: accuracy value: 0.5954285714285714 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-xnli-finetuned-mnli-SJP-v2 This model is a fine-tuned version of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) on the swiss_judgment_prediction dataset. It achieves the following results on the evaluation set: - Loss: 0.8093 - Accuracy: 0.5954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 5 | 0.8879 | 0.5191 | | No log | 2.0 | 10 | 0.8093 | 0.5954 | | No log | 3.0 | 15 | 2.4452 | 0.3176 | | No log | 4.0 | 20 | 3.6636 | 0.3084 | | No log | 5.0 | 25 | 3.7687 | 0.3393 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
eslamxm/mbart-finetuned-fa
eslamxm
2022-06-18T13:40:54Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "summarization", "fa", "Abstractive Summarization", "generated_from_trainer", "dataset:pn_summary", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-17T00:40:11Z
--- tags: - summarization - fa - mbart - Abstractive Summarization - generated_from_trainer datasets: - pn_summary model-index: - name: mbart-finetuned-fa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-fa This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the pn_summary dataset. It achieves the following results on the evaluation set: - Loss: 3.2877 - Rouge-1: 44.07 - Rouge-2: 25.81 - Rouge-l: 38.96 - Gen Len: 41.7 - Bertscore: 78.95 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nestoralvaro/mt5-small-test-amazon-v2
nestoralvaro
2022-06-18T13:28:50Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-18T12:12:41Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-test-amazon-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-test-amazon-v2 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0555 - Rouge1: 27.8124 - Rouge2: 15.3682 - Rougel: 27.8646 - Rougelsum: 27.9044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 6.2982 | 1.0 | 1935 | 2.7890 | 23.293 | 12.7229 | 23.3183 | 23.3368 | | 2.9801 | 2.0 | 3870 | 2.4341 | 25.9888 | 14.0833 | 26.07 | 26.0897 | | 2.5025 | 3.0 | 5805 | 2.2611 | 26.5127 | 14.5775 | 26.5105 | 26.5442 | | 2.2681 | 4.0 | 7740 | 2.1966 | 27.7476 | 14.9971 | 27.835 | 27.8186 | | 2.1198 | 5.0 | 9675 | 2.1209 | 27.3796 | 15.1938 | 27.4549 | 27.4759 | | 2.0089 | 6.0 | 11610 | 2.0856 | 27.6637 | 15.2345 | 27.7419 | 27.7608 | | 1.9416 | 7.0 | 13545 | 2.0637 | 27.9013 | 15.3682 | 27.9621 | 27.9833 | | 1.9034 | 8.0 | 15480 | 2.0555 | 27.8124 | 15.3682 | 27.8646 | 27.9044 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Muennighoff/SGPT-1.3B-weightedmean-nli-bitfit
Muennighoff
2022-06-18T13:04:47Z
387
0
sentence-transformers
[ "sentence-transformers", "pytorch", "gpt_neo", "feature-extraction", "sentence-similarity", "arxiv:2202.08904", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:04Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # SGPT-1.3B-weightedmean-nli-bitfit ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 93941 with parameters: ``` {'batch_size': 6} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 9394, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.0001 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 9395, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel (1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
huggingtweets/joejoinerr
huggingtweets
2022-06-18T12:02:03Z
243
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-03T12:31:27Z
--- language: en thumbnail: http://www.huggingtweets.com/joejoinerr/1655553718810/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1477268531561517057/MhgifvbO_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joe 🍞</div> <div style="text-align: center; font-size: 14px;">@joejoinerr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Joe 🍞. | Data | Joe 🍞 | | --- | --- | | Tweets downloaded | 3176 | | Retweets | 611 | | Short tweets | 281 | | Tweets kept | 2284 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3f3589ez/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @joejoinerr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/35u823qi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/35u823qi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/joejoinerr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
skpawar1305/wav2vec2-base-finetuned-ks
skpawar1305
2022-06-18T11:12:09Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-06-18T03:23:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0903 - Accuracy: 0.9834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7264 | 1.0 | 399 | 0.6319 | 0.9351 | | 0.2877 | 2.0 | 798 | 0.1846 | 0.9748 | | 0.175 | 3.0 | 1197 | 0.1195 | 0.9796 | | 0.1672 | 4.0 | 1596 | 0.0903 | 0.9834 | | 0.1235 | 5.0 | 1995 | 0.0854 | 0.9825 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Asia-N/opus-mt-ar-en-finetuned-ar-to-en
Asia-N
2022-06-18T10:25:40Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:news_commentary", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-15T22:12:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - news_commentary metrics: - bleu model-index: - name: opus-mt-ar-en-finetuned-ar-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: news_commentary type: news_commentary args: ar-en metrics: - name: Bleu type: bleu value: 32.5327 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ar-en-finetuned-ar-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on the news_commentary dataset. It achieves the following results on the evaluation set: - Loss: 10.6102 - Bleu: 32.5327 - Gen Len: 56.234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-09 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 32 | 10.6112 | 32.5327 | 56.234 | | No log | 2.0 | 64 | 10.6103 | 32.5327 | 56.234 | | No log | 3.0 | 96 | 10.6102 | 32.5327 | 56.234 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Willy/bert-base-spanish-wwm-cased-finetuned-NLP-IE-2
Willy
2022-06-18T10:07:25Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-18T05:31:54Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-spanish-wwm-cased-finetuned-NLP-IE-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-cased-finetuned-NLP-IE-2 This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5279 - Accuracy: 0.7836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6008 | 1.0 | 9 | 0.5243 | 0.7836 | | 0.6014 | 2.0 | 18 | 0.5279 | 0.7836 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingnft/cyberkongz
huggingnft
2022-06-18T10:03:27Z
42
3
transformers
[ "transformers", "huggingnft", "nft", "huggan", "gan", "image", "images", "unconditional-image-generation", "dataset:huggingnft/cyberkongz", "license:mit", "endpoints_compatible", "region:us" ]
unconditional-image-generation
2022-04-13T09:42:37Z
--- tags: - huggingnft - nft - huggan - gan - image - images - unconditional-image-generation datasets: - huggingnft/cyberkongz license: mit --- # Hugging NFT: cyberkongz ## Disclaimer All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright holder. ## Model description LightWeight GAN model for unconditional generation. NFT collection available [here](https://opensea.io/collection/cyberkongz). Dataset is available [here](https://huggingface.co/datasets/huggingnft/cyberkongz). Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ## Intended uses & limitations #### How to use Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). #### Limitations and bias Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). ## Training data Dataset is available [here](https://huggingface.co/datasets/huggingnft/cyberkongz). ## Training procedure Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft). ## Generated Images Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk} year=2022 } ```
c17hawke/bert-fine-tuned-cola_2
c17hawke
2022-06-18T09:40:26Z
6
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-18T09:20:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-fine-tuned-cola_2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola_2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3078 - Validation Loss: 0.4072 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.4976 | 0.4236 | 0 | | 0.3078 | 0.4072 | 1 | ### Framework versions - Transformers 4.20.0 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/andrewdoyle_com-conceptualjames-titaniamcgrath
huggingtweets
2022-06-18T09:11:46Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-18T09:11:04Z
--- language: en thumbnail: http://www.huggingtweets.com/andrewdoyle_com-conceptualjames-titaniamcgrath/1655543501221/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/991329326846087169/vxothdvT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1283787273310556161/HpOtnzmp_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1459175734602350593/cW3fs5lR_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Titania McGrath & Andrew Doyle & James Lindsay, weaponizing your mom</div> <div style="text-align: center; font-size: 14px;">@andrewdoyle_com-conceptualjames-titaniamcgrath</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Titania McGrath & Andrew Doyle & James Lindsay, weaponizing your mom. | Data | Titania McGrath | Andrew Doyle | James Lindsay, weaponizing your mom | | --- | --- | --- | --- | | Tweets downloaded | 2873 | 3232 | 3226 | | Retweets | 220 | 781 | 1222 | | Short tweets | 104 | 306 | 587 | | Tweets kept | 2549 | 2145 | 1417 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dewpz75/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @andrewdoyle_com-conceptualjames-titaniamcgrath's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ed5g462) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ed5g462/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/andrewdoyle_com-conceptualjames-titaniamcgrath') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
S2312dal/M4_MLM_cross
S2312dal
2022-06-18T08:48:02Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-18T08:13:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - spearmanr model-index: - name: M4_MLM_cross results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M4_MLM_cross This model is a fine-tuned version of [S2312dal/M4_MLM](https://huggingface.co/S2312dal/M4_MLM) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0222 - Pearson: 0.9472 - Spearmanr: 0.8983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 25 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 8.0 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | 0.0353 | 1.0 | 131 | 0.0590 | 0.8326 | 0.8225 | | 0.0478 | 2.0 | 262 | 0.0368 | 0.9234 | 0.8894 | | 0.0256 | 3.0 | 393 | 0.0222 | 0.9472 | 0.8983 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Nonzerophilip/bert-finetuned-ner_swedish_test_large_set
Nonzerophilip
2022-06-18T08:36:12Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:suc3", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-17T14:12:32Z
--- tags: - generated_from_trainer datasets: - suc3 model-index: - name: bert-finetuned-ner_swedish_test_large_set results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner_swedish_test_large_set This model is a fine-tuned version of [KBLab/bert-base-swedish-cased-ner](https://huggingface.co/KBLab/bert-base-swedish-cased-ner) on the suc3 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0265 - eval_precision: 0.8542 - eval_recall: 0.8468 - eval_f1: 0.8505 - eval_accuracy: 0.9919 - eval_runtime: 1076.8307 - eval_samples_per_second: 10.685 - eval_steps_per_second: 1.336 - epoch: 1.0 - step: 5754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.19.3 - Pytorch 1.7.1 - Datasets 2.2.2 - Tokenizers 0.12.1
c17hawke/bert-fine-tuned-cola
c17hawke
2022-06-17T21:12:23Z
4
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-17T19:51:35Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-fine-tuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5013 - Validation Loss: 0.4341 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.5013 | 0.4341 | 0 | ### Framework versions - Transformers 4.19.4 - TensorFlow 2.9.1 - Datasets 2.2.2 - Tokenizers 0.12.1
Mahmoud1816Yasser/tmp_trainer
Mahmoud1816Yasser
2022-06-17T21:10:28Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "endpoints_compatible", "region:us" ]
audio-classification
2022-06-17T21:05:23Z
--- tags: - generated_from_trainer model-index: - name: tmp_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmp_trainer This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Ryna/wav2vec2-large-xlsr-53-Enlgish-FT-ASCEND-colab
Ryna
2022-06-17T20:08:51Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:ascend", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-17T16:16:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - ascend model-index: - name: wav2vec2-large-xlsr-53-Enlgish-FT-ASCEND-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-Enlgish-FT-ASCEND-colab This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the ascend dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 10000 - total_train_batch_size: 160000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
gemasphi/laprador
gemasphi
2022-06-17T19:42:04Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-17T19:41:49Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # gemasphi/laprador This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('gemasphi/laprador') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('gemasphi/laprador') model = AutoModel.from_pretrained('gemasphi/laprador') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=gemasphi/laprador) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
skyline22/RLpinball
skyline22
2022-06-17T18:21:45Z
1
0
stable-baselines3
[ "stable-baselines3", "VideoPinball-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-17T18:20:38Z
--- library_name: stable-baselines3 tags: - VideoPinball-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 8997.20 +/- 6190.02 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: VideoPinball-v4 type: VideoPinball-v4 --- # **DQN** Agent playing **VideoPinball-v4** This is a trained model of a **DQN** agent playing **VideoPinball-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env VideoPinball-v4 -orga skyline22 -f logs/ python enjoy.py --algo dqn --env VideoPinball-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env VideoPinball-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env VideoPinball-v4 -f logs/ -orga skyline22 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
huggingtweets/pdchina
huggingtweets
2022-06-17T18:03:08Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-17T18:01:23Z
--- language: en thumbnail: http://www.huggingtweets.com/pdchina/1655488982839/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1246469365089939456/jAjE_fKB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">People's Daily, China</div> <div style="text-align: center; font-size: 14px;">@pdchina</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from People's Daily, China. | Data | People's Daily, China | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 20 | | Short tweets | 2 | | Tweets kept | 3228 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3b8is5jg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pdchina's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3rg0kmkg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3rg0kmkg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pdchina') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
eslamxm/mbart-finetune-en-cnn
eslamxm
2022-06-17T16:48:32Z
21
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "summarization", "en", "seq2seq", "Abstractive Summarization", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-16T15:48:16Z
--- tags: - summarization - en - seq2seq - mbart - Abstractive Summarization - generated_from_trainer datasets: - cnn_dailymail model-index: - name: mbert-finetune-en-cnn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbert-finetune-en-cnn This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 3.5577 - Rouge-1: 37.69 - Rouge-2: 16.47 - Rouge-l: 35.53 - Gen Len: 79.93 - Bertscore: 74.92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
RayMelius/bert-finetuned-ner
RayMelius
2022-06-17T16:06:51Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-17T15:56:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
eslamxm/MBart-finetuned-ur-xlsum
eslamxm
2022-06-17T14:59:58Z
30
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "summarization", "ur", "seq2seq", "Abstractive Summarization", "generated_from_trainer", "dataset:xlsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-16T23:41:23Z
--- tags: - summarization - ur - seq2seq - mbart - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: MBart-finetuned-ur-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MBart-finetuned-ur-xlsum This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.2663 - Rouge-1: 40.6 - Rouge-2: 18.9 - Rouge-l: 34.39 - Gen Len: 37.88 - Bertscore: 77.06 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
joitandr/dqn-PongNoFrameskip-v4
joitandr
2022-06-17T14:55:31Z
3
0
stable-baselines3
[ "stable-baselines3", "PongNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-17T14:53:22Z
--- library_name: stable-baselines3 tags: - PongNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 5.00 +/- 6.43 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: PongNoFrameskip-v4 type: PongNoFrameskip-v4 --- # **DQN** Agent playing **PongNoFrameskip-v4** This is a trained model of a **DQN** agent playing **PongNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env PongNoFrameskip-v4 -orga joitandr -f logs/ python enjoy.py --algo dqn --env PongNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env PongNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env PongNoFrameskip-v4 -f logs/ -orga joitandr ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
jkhan447/sarcasm-detection-RoBerta-base-newdata
jkhan447
2022-06-17T14:34:34Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-17T08:28:23Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-RoBerta-base-newdata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-RoBerta-base-newdata This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4844 - Accuracy: 0.7824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
efederici/convnext-base-224-22k-1k-orig-cats-vs-dogs
efederici
2022-06-17T14:11:20Z
56
0
transformers
[ "transformers", "pytorch", "tensorboard", "convnext", "image-classification", "vision", "dataset:cats_vs_dogs", "arxiv:2201.03545", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-17T09:33:45Z
--- license: apache-2.0 tags: - image-classification - vision datasets: - cats_vs_dogs metrics: - accuracy model-index: - name: convnext-base-224-22k-1k-orig-cats-vs-dogs results: - task: name: Image Classification type: image-classification dataset: name: cats_vs_dogs type: cats_vs_dogs args: default metrics: - name: Accuracy type: accuracy value: 0.9973333333333333 --- # convnext-base-224-22k-1k-orig-cats-vs-dogs This model is a fine-tuned version of [facebook/convnext-base-224-22k-1k](https://huggingface.co/facebook/convnext-base-224-22k-1k) on the cats_vs_dogs dataset. It achieves the following results on the evaluation set: - Loss: 0.0103 - Accuracy: 0.9973 <p align="center"> <img src="https://files.ocula.com/anzax/09/09f77133-7740-4130-a567-84fb56736362_650_544.jpg" width="600"> </br> Jockum Nordström, Cat Dog Cat, 2016 </p> ## Model description The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually "modernize" a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2201-03545, author = {Zhuang Liu and Hanzi Mao and Chao{-}Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {CoRR}, volume = {abs/2201.03545}, year = {2022}, url = {https://arxiv.org/abs/2201.03545}, eprinttype = {arXiv}, eprint = {2201.03545}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
classla/bcms-bertic-parlasent-bcs-bi
classla
2022-06-17T13:51:54Z
11
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "sentiment-analysis", "hr", "arxiv:2206.00929", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-01T09:10:17Z
--- language: "hr" tags: - text-classification - sentiment-analysis widget: - text: "Poštovani potpredsjedničke Vlade i ministre hrvatskih branitelja, mislite li da ste zapravo iznevjerili svoje suborce s kojima ste 555 dana prosvjedovali u šatoru protiv tadašnjih dužnosnika jer ste zapravo donijeli zakon koji je neprovediv, a birali ste si suradnike koji nemaju etički integritet." --- # bcms-bertic-parlasent-bcs-bi Binary text classification model based on [`classla/bcms-bertic`](https://huggingface.co/classla/bcms-bertic) and fine-tuned on the BCS Political Sentiment dataset (sentence-level data). This classifier classifies text into only two categories: Negative vs. Other. For the ternary classifier (Negative, Neutral, Positive) check [this model](https://huggingface.co/classla/bcms-bertic-parlasent-bcs-ter). For details on the dataset and the finetuning procedure, please see [this paper](https://arxiv.org/abs/2206.00929). ## Fine-tuning hyperparameters Fine-tuning was performed with `simpletransformers`. Beforehand a brief sweep for the optimal number of epochs was performed and the presumed best value was 9. Other arguments were kept default. ```python model_args = { "num_train_epochs": 9 } ``` ## Performance in comparison with ternary classifier | model | average macro F1 | |-------------------------------------------|------------------| | bcms-bertic-parlasent-bcs-ter | 0.7941 ± 0.0101 | | bcms-bertic-parlasent-bcs-bi (this model) | 0.8999 ± 0.012 | ## Use example with `simpletransformers==0.63.7` ```python from simpletransformers.classification import ClassificationModel model = ClassificationModel("electra", "classla/bcms-bertic-parlasent-bcs-bi") predictions, logits = model.predict([ "Đački autobusi moraju da voze svaki dan", "Vi niste normalni" ] ) predictions # Output: array([1, 0]) [model.config.id2label[i] for i in predictions] # Output: ['Other', 'Negative'] ``` ## Citation If you use the model, please cite the following paper on which the original model is based: ``` @inproceedings{ljubesic-lauc-2021-bertic, title = "{BERT}i{\'c} - The Transformer Language Model for {B}osnian, {C}roatian, {M}ontenegrin and {S}erbian", author = "Ljube{\v{s}}i{\'c}, Nikola and Lauc, Davor", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.5", pages = "37--42", } ``` and the paper describing the dataset and methods for the current finetuning: ``` @misc{https://doi.org/10.48550/arxiv.2206.00929, doi = {10.48550/ARXIV.2206.00929}, url = {https://arxiv.org/abs/2206.00929}, author = {Mochtak, Michal and Rupnik, Peter and Ljubešič, Nikola}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {The ParlaSent-BCS dataset of sentiment-annotated parliamentary debates from Bosnia-Herzegovina, Croatia, and Serbia}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Share Alike 4.0 International} } ```
Guillaume63/q-Taxi-v3
Guillaume63
2022-06-17T12:24:35Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-17T12:24:27Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Guillaume63/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
waboucay/camembert-large-finetuned-xnli_fr
waboucay
2022-06-17T11:59:21Z
5
1
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "nli", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-17T11:38:30Z
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 92.9 | 92.1 | | test | 91.7 | 90.7 |
rajendra-ml/q-FrozenLake-v1-4x4-noSlippery
rajendra-ml
2022-06-17T09:15:24Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-17T09:15:13Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="rajendra-ml/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
huggingtweets/iantdr
huggingtweets
2022-06-17T09:09:33Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-17T09:09:26Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1365703183/YT_Croydon_Flyer_twitter_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ian anderson</div> <div style="text-align: center; font-size: 14px;">@iantdr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ian anderson. | Data | ian anderson | | --- | --- | | Tweets downloaded | 3201 | | Retweets | 2052 | | Short tweets | 316 | | Tweets kept | 833 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bopfm9o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iantdr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1papgk0r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1papgk0r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iantdr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
S2312dal/M7_MLM
S2312dal
2022-06-17T08:49:00Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-17T08:40:50Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: M7_MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M7_MLM This model is a fine-tuned version of [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.2304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.2227 | 1.0 | 25 | 8.6091 | | 8.6536 | 2.0 | 50 | 8.2492 | | 8.5065 | 3.0 | 75 | 8.3056 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
S2312dal/M6_MLM
S2312dal
2022-06-17T08:38:50Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-17T08:27:43Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: M6_MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M6_MLM This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4015 | 1.0 | 25 | 2.1511 | | 2.2207 | 2.0 | 50 | 2.1268 | | 2.168 | 3.0 | 75 | 2.0796 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jcrbsa/pt-gpt2vit
jcrbsa
2022-06-17T08:36:13Z
3
2
transformers
[ "transformers", "pytorch", "jax", "vision-encoder-decoder", "image-text-to-text", "pt", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-06-14T03:16:18Z
--- language: - pt --- Image Captioning in Portuguese trained with ViT and GPT2 [DEMO](https://huggingface.co/spaces/adalbertojunior/image_captioning_portuguese) Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC)
S2312dal/M5_MLM
S2312dal
2022-06-17T08:25:48Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-17T08:02:01Z
--- license: mit tags: - generated_from_trainer model-index: - name: M5_MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M5_MLM This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.0447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.8279 | 1.0 | 62 | 7.9889 | | 7.7536 | 2.0 | 124 | 7.3750 | | 7.2065 | 3.0 | 186 | 6.8625 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ArthurZ/tiny-random-bert-sharded
ArthurZ
2022-06-17T08:07:42Z
5,243
0
transformers
[ "transformers", "tf", "bert", "feature-extraction", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-17T07:49:01Z
--- tags: - generated_from_keras_callback model-index: - name: tiny-random-bert-sharded results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-random-bert-sharded This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - TensorFlow 2.9.0 - Datasets 2.2.2 - Tokenizers 0.12.1
jkhan447/sarcasm-detection-Bert-base-uncased-newdata
jkhan447
2022-06-17T07:56:08Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-15T09:29:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-Bert-base-uncased-newdata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-Bert-base-uncased-newdata This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5383 - Accuracy: 0.7766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
aditya22/bert-finetuned-ner
aditya22
2022-06-17T07:18:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-17T07:01:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.936018564561578 - name: Recall type: recall value: 0.9503534163581285 - name: F1 type: f1 value: 0.9431315240083508 - name: Accuracy type: accuracy value: 0.9859598516512628 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0642 - Precision: 0.9360 - Recall: 0.9504 - F1: 0.9431 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0855 | 1.0 | 1756 | 0.0642 | 0.9108 | 0.9387 | 0.9246 | 0.9834 | | 0.0414 | 2.0 | 3512 | 0.0619 | 0.9331 | 0.9502 | 0.9415 | 0.9853 | | 0.0181 | 3.0 | 5268 | 0.0642 | 0.9360 | 0.9504 | 0.9431 | 0.9860 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Sanjeev49/marian-finetuned-kde4-en-to-fr
Sanjeev49
2022-06-17T06:31:10Z
3
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-15T12:07:09Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Sanjeev49/marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Sanjeev49/marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0601 - Validation Loss: 0.8952 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 5912, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.0601 | 0.8952 | 0 | ### Framework versions - Transformers 4.20.0 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
anithapappu/wav2vec2-base-timit-google-colab
anithapappu
2022-06-17T03:05:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-23T19:00:34Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5506 - Wer: 0.3355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.4326 | 1.0 | 500 | 1.5832 | 1.0063 | | 0.8235 | 2.01 | 1000 | 0.5310 | 0.5134 | | 0.4224 | 3.01 | 1500 | 0.4488 | 0.4461 | | 0.2978 | 4.02 | 2000 | 0.4243 | 0.4191 | | 0.232 | 5.02 | 2500 | 0.4532 | 0.4149 | | 0.1902 | 6.02 | 3000 | 0.4732 | 0.3912 | | 0.1628 | 7.03 | 3500 | 0.4807 | 0.3868 | | 0.1437 | 8.03 | 4000 | 0.5295 | 0.3670 | | 0.1241 | 9.04 | 4500 | 0.4602 | 0.3810 | | 0.1206 | 10.04 | 5000 | 0.4691 | 0.3783 | | 0.0984 | 11.04 | 5500 | 0.4500 | 0.3710 | | 0.0929 | 12.05 | 6000 | 0.5247 | 0.3550 | | 0.0914 | 13.05 | 6500 | 0.5546 | 0.3821 | | 0.0742 | 14.06 | 7000 | 0.4874 | 0.3646 | | 0.0729 | 15.06 | 7500 | 0.5327 | 0.3934 | | 0.0663 | 16.06 | 8000 | 0.5769 | 0.3661 | | 0.0575 | 17.07 | 8500 | 0.5191 | 0.3524 | | 0.0588 | 18.07 | 9000 | 0.5155 | 0.3360 | | 0.0456 | 19.08 | 9500 | 0.5135 | 0.3539 | | 0.0444 | 20.08 | 10000 | 0.5380 | 0.3603 | | 0.0419 | 21.08 | 10500 | 0.5275 | 0.3467 | | 0.0366 | 22.09 | 11000 | 0.5072 | 0.3487 | | 0.0331 | 23.09 | 11500 | 0.5450 | 0.3437 | | 0.0345 | 24.1 | 12000 | 0.5138 | 0.3431 | | 0.029 | 25.1 | 12500 | 0.5067 | 0.3413 | | 0.0274 | 26.1 | 13000 | 0.5421 | 0.3422 | | 0.0243 | 27.11 | 13500 | 0.5456 | 0.3392 | | 0.0226 | 28.11 | 14000 | 0.5665 | 0.3368 | | 0.0216 | 29.12 | 14500 | 0.5506 | 0.3355 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 1.13.3 - Tokenizers 0.12.1
sun1638650145/q-FrozenLake-v1-4x4-noSlippery
sun1638650145
2022-06-17T03:02:12Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-17T03:02:00Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # 使用**Q-Learning**智能体来玩**FrozenLake-v1** 这是一个使用**Q-Learning**训练有素的模型玩**FrozenLake-v1**. ## 用法 ```python model = load_from_hub(repo_id='sun1638650145/q-FrozenLake-v1-4x4-noSlippery', filename='q-learning.pkl') # 不要忘记检查是否需要添加额外的参数(例如is_slippery=False) env = gym.make(model['env_id']) evaluate_agent(env, model['max_steps'], model['n_eval_episodes'], model['qtable'], model['eval_seed']) ```
huggingtweets/mcdonaldsuk-potus-tomcruise
huggingtweets
2022-06-17T01:44:54Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-17T01:44:46Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/603269306026106880/42CwEF4n_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1533739179770843141/kNhGgW4K_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1380530524779859970/TfwVAbyX_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tom Cruise & McDonald's UK & President Biden</div> <div style="text-align: center; font-size: 14px;">@mcdonaldsuk-potus-tomcruise</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tom Cruise & McDonald's UK & President Biden. | Data | Tom Cruise | McDonald's UK | President Biden | | --- | --- | --- | --- | | Tweets downloaded | 3036 | 3250 | 3250 | | Retweets | 1055 | 0 | 96 | | Short tweets | 88 | 36 | 8 | | Tweets kept | 1893 | 3214 | 3146 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/xo9k90g3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mcdonaldsuk-potus-tomcruise's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uk4lqo8q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uk4lqo8q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mcdonaldsuk-potus-tomcruise') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/tomhanks
huggingtweets
2022-06-17T01:00:56Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-17T01:00:48Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1193951507026075648/Ot3GmqGK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tom Hanks</div> <div style="text-align: center; font-size: 14px;">@tomhanks</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tom Hanks. | Data | Tom Hanks | | --- | --- | | Tweets downloaded | 948 | | Retweets | 9 | | Short tweets | 15 | | Tweets kept | 924 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mkvpkso/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tomhanks's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2tplh98q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2tplh98q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tomhanks') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/tomcruise
huggingtweets
2022-06-17T01:00:02Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-17T00:59:56Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/603269306026106880/42CwEF4n_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tom Cruise</div> <div style="text-align: center; font-size: 14px;">@tomcruise</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tom Cruise. | Data | Tom Cruise | | --- | --- | | Tweets downloaded | 3036 | | Retweets | 1055 | | Short tweets | 88 | | Tweets kept | 1893 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ppnkvd5o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tomcruise's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2q772s43) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2q772s43/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tomcruise') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ouiame/bertGpt2Summ
ouiame
2022-06-17T00:38:07Z
4
0
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "autotrain", "unk", "dataset:ouiame/autotrain-data-Robertatogpt2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-16T20:13:43Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - ouiame/autotrain-data-Robertatogpt2 co2_eq_emissions: 2.4722651844547827 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 995132940 - CO2 Emissions (in grams): 2.4722651844547827 ## Validation Metrics - Loss: 3.5972988605499268 - Rouge1: 16.1218 - Rouge2: 2.9195 - RougeL: 13.0085 - RougeLsum: 13.2975 - Gen Len: 19.9962 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ouiame/autotrain-Robertatogpt2-995132940 ```
huggingtweets/fawfulthgreat64
huggingtweets
2022-06-17T00:31:51Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-17T00:31:08Z
--- language: en thumbnail: http://www.huggingtweets.com/fawfulthgreat64/1655425906757/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1520110813209665538/-4GuBQGb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jamey Viv 🏳️‍⚧️ 🇺🇦 #Toaster4DisneyPlus</div> <div style="text-align: center; font-size: 14px;">@fawfulthgreat64</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jamey Viv 🏳️‍⚧️ 🇺🇦 #Toaster4DisneyPlus. | Data | Jamey Viv 🏳️‍⚧️ 🇺🇦 #Toaster4DisneyPlus | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 1394 | | Short tweets | 133 | | Tweets kept | 1719 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21ve8lp9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fawfulthgreat64's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/hg3e2g0j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/hg3e2g0j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fawfulthgreat64') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mindwrapped/bible-generator-awd-lstm
mindwrapped
2022-06-16T23:35:05Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-06-16T23:34:56Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
huggingtweets/chrishemsworth-deadpoolmovie
huggingtweets
2022-06-16T23:26:07Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-16T20:28:47Z
--- language: en thumbnail: http://www.huggingtweets.com/chrishemsworth-deadpoolmovie/1655421962384/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1247482752351588352/EgHoUNqQ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1208234904405757953/mT0cFOVQ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Chris Hemsworth & Deadpool Movie</div> <div style="text-align: center; font-size: 14px;">@chrishemsworth-deadpoolmovie</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Chris Hemsworth & Deadpool Movie. | Data | Chris Hemsworth | Deadpool Movie | | --- | --- | --- | | Tweets downloaded | 482 | 1125 | | Retweets | 140 | 276 | | Short tweets | 39 | 115 | | Tweets kept | 303 | 734 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3f48nrzp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrishemsworth-deadpoolmovie's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2tf8a3vu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2tf8a3vu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chrishemsworth-deadpoolmovie') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jbsalvagno
huggingtweets
2022-06-16T22:41:16Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-16T22:41:08Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/817874051146412032/rPvqTOFF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Javier Bustos</div> <div style="text-align: center; font-size: 14px;">@jbsalvagno</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Javier Bustos. | Data | Javier Bustos | | --- | --- | | Tweets downloaded | 3179 | | Retweets | 2756 | | Short tweets | 30 | | Tweets kept | 393 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29wlz981/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jbsalvagno's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/k72pz4ho) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/k72pz4ho/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jbsalvagno') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/leisha_hailey
huggingtweets
2022-06-16T22:08:08Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-16T22:04:50Z
--- language: en thumbnail: http://www.huggingtweets.com/leisha_hailey/1655417283179/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1601201593/Screen_shot_2011-10-20_at_8.42.01_PM_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Leisha Hailey</div> <div style="text-align: center; font-size: 14px;">@leisha_hailey</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Leisha Hailey. | Data | Leisha Hailey | | --- | --- | | Tweets downloaded | 1084 | | Retweets | 77 | | Short tweets | 66 | | Tweets kept | 941 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ecfevcj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @leisha_hailey's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/vat0dsmp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/vat0dsmp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/leisha_hailey') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
SimingSiming/dqn-SpaceInvadersNoFrameskip-v4
SimingSiming
2022-06-16T21:19:12Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-16T21:18:41Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 210.00 +/- 102.52 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SimingSiming -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga SimingSiming ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
roymukund/xlm-roberta-base-finetuned-ner
roymukund
2022-06-16T20:32:08Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:hi_ner-original", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-16T09:30:15Z
--- license: mit tags: - generated_from_trainer datasets: - hi_ner-original metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: hi_ner-original type: hi_ner-original args: HiNER metrics: - name: Precision type: precision value: 0.7366076627460114 - name: Recall type: recall value: 0.6770947627585838 - name: F1 type: f1 value: 0.7055985498152408 - name: Accuracy type: accuracy value: 0.9359390321752693 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the hi_ner-original dataset. It achieves the following results on the evaluation set: - Loss: 0.2314 - Precision: 0.7366 - Recall: 0.6771 - F1: 0.7056 - Accuracy: 0.9359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2025 | 0.74 | 7000 | 0.2146 | 0.7399 | 0.6197 | 0.6745 | 0.9316 | | 0.1641 | 1.47 | 14000 | 0.2238 | 0.7618 | 0.6108 | 0.6780 | 0.9336 | | 0.1404 | 2.21 | 21000 | 0.2302 | 0.7560 | 0.6327 | 0.6889 | 0.9350 | | 0.1371 | 2.95 | 28000 | 0.2226 | 0.7395 | 0.6600 | 0.6975 | 0.9350 | | 0.1248 | 3.68 | 35000 | 0.2314 | 0.7366 | 0.6771 | 0.7056 | 0.9359 | | 0.1112 | 4.42 | 42000 | 0.2423 | 0.7089 | 0.7064 | 0.7077 | 0.9333 | | 0.1048 | 5.16 | 49000 | 0.2599 | 0.7326 | 0.6793 | 0.7050 | 0.9349 | | 0.1091 | 5.89 | 56000 | 0.2542 | 0.7244 | 0.6918 | 0.7077 | 0.9348 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
eplatas/scibert_scivocab_uncased_finetuned_leukaemia
eplatas
2022-06-16T20:01:22Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-06-16T19:41:12Z
--- tags: - generated_from_trainer model-index: - name: scibert_scivocab_uncased_finetuned_leukaemia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert_scivocab_uncased_finetuned_leukaemia This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.742 | 1.0 | 50 | 2.9184 | | 0.7729 | 2.0 | 100 | 1.0324 | | 0.697 | 3.0 | 150 | 0.5968 | | 0.6573 | 4.0 | 200 | 0.4985 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
S2312dal/M3_MLM
S2312dal
2022-06-16T19:46:04Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-16T19:22:36Z
--- tags: - generated_from_trainer model-index: - name: M3_MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M3_MLM This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.8186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.6707 | 1.0 | 26 | 7.4412 | | 6.9122 | 2.0 | 52 | 6.3385 | | 6.2166 | 3.0 | 78 | 5.9148 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
S2312dal/M2_MLM
S2312dal
2022-06-16T19:42:48Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-16T19:10:00Z
--- license: mit tags: - generated_from_trainer model-index: - name: M2_MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M2_MLM This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3686 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5955 | 1.0 | 25 | 1.4376 | | 1.4736 | 2.0 | 50 | 1.2969 | | 1.3925 | 3.0 | 75 | 1.3163 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
income/bpr-gpl-fiqa-base-msmarco-distilbert-tas-b
income
2022-06-16T18:21:26Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:21:18Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5076 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-nfcorpus-base-msmarco-distilbert-tas-b
income
2022-06-16T18:17:34Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:17:25Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 338 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-nq-base-msmarco-distilbert-tas-b
income
2022-06-16T18:15:23Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:15:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 245832 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-scidocs-base-msmarco-distilbert-tas-b
income
2022-06-16T18:07:08Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:07:01Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2337 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-scifact-base-msmarco-distilbert-tas-b
income
2022-06-16T18:05:25Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:05:17Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 481 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-signal1m-base-msmarco-distilbert-tas-b
income
2022-06-16T18:02:31Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:02:22Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 263015 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-trec-covid-base-msmarco-distilbert-tas-b
income
2022-06-16T18:00:33Z
14
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T18:00:26Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 15001 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-trec-news-base-msmarco-distilbert-tas-b
income
2022-06-16T17:59:18Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T17:59:11Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 55028 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
income/bpr-gpl-webis-touche2020-base-msmarco-distilbert-tas-b
income
2022-06-16T17:58:08Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-16T17:57:58Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 34866 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/basilhalperin-ben_golub-tylercowen
huggingtweets
2022-06-16T17:09:13Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-16T17:03:42Z
--- language: en thumbnail: http://www.huggingtweets.com/basilhalperin-ben_golub-tylercowen/1655399323629/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1483290763056320512/oILN7yPo_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1043847779355897857/xyZk8v-m_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1284936824075550723/ix2eGZd7_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">tylercowen & Basil Halperin & Ben Golub 🇺🇦</div> <div style="text-align: center; font-size: 14px;">@basilhalperin-ben_golub-tylercowen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from tylercowen & Basil Halperin & Ben Golub 🇺🇦. | Data | tylercowen | Basil Halperin | Ben Golub 🇺🇦 | | --- | --- | --- | --- | | Tweets downloaded | 2642 | 1024 | 3247 | | Retweets | 2065 | 80 | 1009 | | Short tweets | 43 | 60 | 390 | | Tweets kept | 534 | 884 | 1848 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4x0ck2xi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @basilhalperin-ben_golub-tylercowen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fuzqv36t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fuzqv36t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/basilhalperin-ben_golub-tylercowen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)