modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-06 06:27:01
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
542 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-06 06:26:44
card
stringlengths
11
1.01M
madlag/bert-large-uncased-mnli
madlag
2021-05-19T22:40:43Z
8
0
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## BERT-large finetuned on MNLI. The [reference finetuned model](https://github.com/google-research/bert) has an accuracy of 86.05, we get 86.7: ``` {'eval_loss': 0.3984006643295288, 'eval_accuracy': 0.8667345899133979} ```
madlag/bert-base-uncased-squad1.1-block-sparse-0.32-v1
madlag
2021-05-19T22:33:45Z
71
0
transformers
[ "transformers", "pytorch", "tf", "bert", "question-answering", "bert-base", "en", "dataset:squad", "arxiv:2005.07683", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en thumbnail: license: mit tags: - question-answering - bert - bert-base datasets: - squad metrics: - squad widget: - text: "Where is the Eiffel Tower located?" context: "The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower." - text: "Who is Frederic Chopin?" context: "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano." --- ## BERT-base uncased model fine-tuned on SQuAD v1 This model is block sparse: the **linear** layers contains **31.7%** of the original weights. The model contains **47.0%** of the original weights **overall**. The training use a modified version of Victor Sanh [Movement Pruning](https://arxiv.org/abs/2005.07683) method. That means that with the [block-sparse](https://github.com/huggingface/pytorch_block_sparse) runtime it ran **1.12x** faster than an dense networks on the evaluation, at the price of some impact on the accuracy (see below). This model was fine-tuned from the HuggingFace [BERT](https://www.aclweb.org/anthology/N19-1423/) base uncased checkpoint on [SQuAD1.1](https://rajpurkar.github.io/SQuAD-explorer), and distilled from the equivalent model [csarron/bert-base-uncased-squad-v1](https://huggingface.co/csarron/bert-base-uncased-squad-v1). This model is case-insensitive: it does not make a difference between english and English. ## Pruning details A side-effect of the block pruning is that some of the attention heads are completely removed: 80 heads were removed on a total of 144 (55.6%). Here is a detailed view on how the remaining heads are distributed in the network after pruning. ![Pruning details](https://huggingface.co/madlag/bert-base-uncased-squad1.1-block-sparse-0.32-v1/raw/main/model_card/pruning.svg) ## Density plot <script src="/madlag/bert-base-uncased-squad1.1-block-sparse-0.32-v1/raw/main/model_card/density.js" id="79005f4a-723c-4bf8-bc7f-5ad11676be6c"></script> ## Details | Dataset | Split | # samples | | -------- | ----- | --------- | | SQuAD1.1 | train | 90.6K | | SQuAD1.1 | eval | 11.1k | ### Fine-tuning - Python: `3.8.5` - Machine specs: ```CPU: Intel(R) Core(TM) i7-6700K CPU Memory: 64 GiB GPUs: 1 GeForce GTX 3090, with 24GiB memory GPU driver: 455.23.05, CUDA: 11.1 ``` ### Results **Pytorch model file size**: `355M` (original BERT: `438M`) | Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))| | ------ | --------- | --------- | | **EM** | **79.04** | **80.8** | | **F1** | **86.70** | **88.5** | ## Example Usage ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="madlag/bert-base-uncased-squad1.1-block-sparse-0.32-v1", tokenizer="madlag/bert-base-uncased-squad1.1-block-sparse-0.32-v1" ) predictions = qa_pipeline({ 'context': "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano.", 'question': "Who is Frederic Chopin?", }) print(predictions) ```
MonoHime/rubert_conversational_cased_sentiment
MonoHime
2021-05-19T22:26:59Z
20
0
transformers
[ "transformers", "pytorch", "bert", "sentiment", "text-classification", "ru", "dataset:Tatyana/ru_sentiment_dataset", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - ru tags: - sentiment - text-classification datasets: - Tatyana/ru_sentiment_dataset --- # Keras model with ruBERT conversational embedder for Sentiment Analysis Russian texts sentiment classification. Model trained on [Tatyana/ru_sentiment_dataset](https://huggingface.co/datasets/Tatyana/ru_sentiment_dataset) ## Labels meaning 0: NEUTRAL 1: POSITIVE 2: NEGATIVE ## How to use ```python !pip install tensorflow-gpu !pip install deeppavlov !python -m deeppavlov install squad_bert !pip install fasttext !pip install transformers !python -m deeppavlov install bert_sentence_embedder from deeppavlov import build_model model = build_model(Tatyana/rubert_conversational_cased_sentiment/custom_config.json) model(["Сегодня хорошая погода", "Я счастлив проводить с тобою время", "Мне нравится эта музыкальная композиция"]) ```
lvwerra/bert-imdb
lvwerra
2021-05-19T22:12:49Z
42
1
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# BERT-IMDB ## What is it? BERT (`bert-large-cased`) trained for sentiment classification on the [IMDB dataset](https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews). ## Training setting The model was trained on 80% of the IMDB dataset for sentiment classification for three epochs with a learning rate of `1e-5` with the `simpletransformers` library. The library uses a learning rate schedule. ## Result The model achieved 90% classification accuracy on the validation set. ## Reference The full experiment is available in the [tlr repo](https://lvwerra.github.io/trl/03-bert-imdb-training/).
lserinol/bert-turkish-question-answering
lserinol
2021-05-19T22:06:55Z
590
23
transformers
[ "transformers", "pytorch", "jax", "bert", "question-answering", "tr", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: tr --- # bert-turkish-question-answering ## Usage ```python from transformers import pipeline nlp = pipeline('question-answering', model='lserinol/bert-turkish-question-answering', tokenizer='lserinol/bert-turkish-question-answering') nlp({ 'question': "Ankara'da kaç ilçe vardır?", 'context': r"""Türkiye'nin başkenti Ankara'dır. Ülkenin en büyük idari birimleri illerdir ve 81 il vardır. Bu iller ilçelere ayrılmıştır, toplamda 973 ilçe mevcuttur.""" }) ``` ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering import torch tokenizer = AutoTokenizer.from_pretrained("lserinol/bert-turkish-question-answering") model = AutoModelForQuestionAnswering.from_pretrained("lserinol/bert-turkish-question-answering") text = r""" Ankara'nın başkent ilan edilmesinin ardından (13 Ekim 1923) şehir hızla gelişmiş ve Türkiye'nin ikinci en kalabalık ili olmuştur. Türkiye Cumhuriyeti'nin ilk yıllarında ekonomisi tarım ve hayvancılığa dayanan ilin topraklarının yarısı hâlâ tarım amaçlı kullanılmaktadır. Ekonomik etkinlik büyük oranda ticaret ve sanayiye dayalıdır. Tarım ve hayvancılığın ağırlığı ise giderek azalmaktadır. Ankara ve civarındaki gerek kamu sektörü gerek özel sektör yatırımları, başka illerden büyük bir nüfus göçünü teşvik etmiştir. Cumhuriyetin kuruluşundan günümüze, nüfusu ülke nüfusunun iki katı hızda artmıştır. Nüfusun yaklaşık dörtte üçü hizmet sektörü olarak tanımlanabilecek memuriyet, ulaşım, haberleşme ve ticaret benzeri işlerde, dörtte biri sanayide, %2'si ise tarım alanında çalışır. Sanayi, özellikle tekstil, gıda ve inşaat sektörlerinde yoğunlaşmıştır. Günümüzde ise en çok savunma, metal ve motor sektörlerinde yatırım yapılmaktadır. Türkiye'nin en çok sayıda üniversiteye sahip ili olan Ankara'da ayrıca, üniversite diplomalı kişi oranı ülke ortalamasının iki katıdır. Bu eğitimli nüfus, teknoloji ağırlıklı yatırımların gereksinim duyduğu iş gücünü oluşturur. Ankara'dan otoyollar, demir yolu ve hava yoluyla Türkiye'nin diğer şehirlerine ulaşılır. Ankara aynı zamanda başkent olarak Türkiye Büyük Millet Meclisi (TBMM)'ye de ev sahipliği yapmaktadır. """ questions = [ "Ankara kaç yılında başkent oldu?", "Ankara ne zaman başkent oldu?", "Ankara'dan başka şehirlere nasıl ulaşılır?", "TBMM neyin kısaltmasıdır?" ] for question in questions: inputs = tokenizer(question, text, add_special_tokens=True, return_tensors="pt") input_ids = inputs["input_ids"].tolist()[0] text_tokens = tokenizer.convert_ids_to_tokens(input_ids) answer_start_scores, answer_end_scores = model(**inputs) answer_start = torch.argmax( answer_start_scores ) # Get the most likely beginning of answer with the argmax of the score answer_end = torch.argmax(answer_end_scores) + 1 # Get the most likely end of answer with the argmax of the score answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end])) print(f"Question: {question}") print(f"Answer: {answer}\n") ```
loodos/bert-base-turkish-uncased
loodos
2021-05-19T22:04:30Z
1,582
6
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "tr", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: tr --- # Turkish Language Models with Huggingface's Transformers As R&D Team at Loodos, we release cased and uncased versions of most recent language models for Turkish. More details about pretrained models and evaluations on downstream tasks can be found [here (our repo)](https://github.com/Loodos/turkish-language-models). # Turkish BERT-Base (uncased) This is BERT-Base model which has 12 encoder layers with 768 hidden layer size trained on uncased Turkish dataset. ## Usage Using AutoModel and AutoTokenizer from Transformers, you can import the model as described below. ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("loodos/bert-base-turkish-uncased", do_lower_case=False) model = AutoModel.from_pretrained("loodos/bert-base-turkish-uncased") normalizer = TextNormalization() normalized_text = normalizer.normalize(text, do_lower_case=True, is_turkish=True) tokenizer.tokenize(normalized_text) ``` ### Notes on Tokenizers Currently, Huggingface's tokenizers (which were written in Python) have a bug concerning letters "ı, i, I, İ" and non-ASCII Turkish specific letters. There are two reasons. 1- Vocabulary and sentence piece model is created with NFC/NFKC normalization but tokenizer uses NFD/NFKD. NFD/NFKD normalization changes text that contains Turkish characters I-ı, İ-i, Ç-ç, Ö-ö, Ş-ş, Ğ-ğ, Ü-ü. This causes wrong tokenization, wrong training and loss of information. Some tokens are never trained.(like "şanlıurfa", "öğün", "çocuk" etc.) NFD/NFKD normalization is not proper for Turkish. 2- Python's default ```string.lower()``` and ```string.upper()``` make the conversions - "I" and "İ" to 'i' - 'i' and 'ı' to 'I' respectively. However, in Turkish, 'I' and 'İ' are two different letters. We opened an [issue](https://github.com/huggingface/transformers/issues/6680) in Huggingface's github repo about this bug. Until it is fixed, in case you want to train your model with uncased data, we provide a simple text normalization module (`TextNormalization()` in the code snippet above) in our [repo](https://github.com/Loodos/turkish-language-models). ## Details and Contact You contact us to ask a question, open an issue or give feedback via our github [repo](https://github.com/Loodos/turkish-language-models). ## Acknowledgments Many thanks to TFRC Team for providing us cloud TPUs on Tensorflow Research Cloud to train our models.
loodos/bert-base-turkish-cased
loodos
2021-05-19T22:03:36Z
7
1
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "tr", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: tr --- # Turkish Language Models with Huggingface's Transformers As R&D Team at Loodos, we release cased and uncased versions of most recent language models for Turkish. More details about pretrained models and evaluations on downstream tasks can be found [here (our repo)](https://github.com/Loodos/turkish-language-models). # Turkish BERT-Base (cased) This is BERT-Base model which has 12 encoder layers with 768 hidden layer size trained on cased Turkish dataset. ## Usage Using AutoModel and AutoTokenizer from Transformers, you can import the model as described below. ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("loodos/bert-base-turkish-cased") model = AutoModel.from_pretrained("loodos/bert-base-turkish-cased") ``` ## Details and Contact You contact us to ask a question, open an issue or give feedback via our github [repo](https://github.com/Loodos/turkish-language-models). ## Acknowledgments Many thanks to TFRC Team for providing us cloud TPUs on Tensorflow Research Cloud to train our models.
larskjeldgaard/senda
larskjeldgaard
2021-05-19T21:20:48Z
166
0
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "danish", "sentiment", "polarity", "da", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: da tags: - danish - bert - sentiment - polarity license: cc-by-4.0 widget: - text: "Sikke en dejlig dag det er i dag" --- # Danish BERT fine-tuned for Sentiment Analysis (Polarity) This model detects polarity ('positive', 'neutral', 'negative') of danish texts. It is trained and tested on Tweets annotated by [Alexandra Institute](https://github.com/alexandrainst). Here is an example on how to load the model in PyTorch using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("larskjeldgaard/senda") model = AutoModelForSequenceClassification.from_pretrained("larskjeldgaard/senda") # create 'senda' sentiment analysis pipeline senda_pipeline = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) senda_pipeline("Sikke en dejlig dag det er i dag") ```
lanwuwei/GigaBERT-v4-Arabic-and-English
lanwuwei
2021-05-19T21:19:13Z
47
5
transformers
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
## GigaBERT-v4 GigaBERT-v4 is a continued pre-training of [GigaBERT-v3](https://huggingface.co/lanwuwei/GigaBERT-v3-Arabic-and-English) on code-switched data, showing improved zero-shot transfer performance from English to Arabic on information extraction (IE) tasks. More details can be found in the following paper: @inproceedings{lan2020gigabert, author = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan}, title = {GigaBERT: Zero-shot Transfer Learning from English to Arabic}, booktitle = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)}, year = {2020} } ## Download ``` from transformers import * tokenizer = BertTokenizer.from_pretrained("lanwuwei/GigaBERT-v4-Arabic-and-English", do_lower_case=True) model = BertForTokenClassification.from_pretrained("lanwuwei/GigaBERT-v4-Arabic-and-English") ``` Here is downloadable link [GigaBERT-v4](https://drive.google.com/drive/u/1/folders/1uFGzMuTOD7iNsmKQYp_zVuvsJwOaIdar).
kykim/bert-kor-base
kykim
2021-05-19T21:17:13Z
155,515
28
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ko --- # Bert base model for Korean * 70GB Korean text dataset and 42000 lower-cased subwords are used * Check the model performance and other language models for Korean in [github](https://github.com/kiyoungkim1/LM-kor) ```python from transformers import BertTokenizerFast, BertModel tokenizer_bert = BertTokenizerFast.from_pretrained("kykim/bert-kor-base") model_bert = BertModel.from_pretrained("kykim/bert-kor-base") ```
ktrapeznikov/scibert_scivocab_uncased_squad_v2
ktrapeznikov
2021-05-19T21:11:07Z
6
0
transformers
[ "transformers", "pytorch", "jax", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
### Model **[`allenai/scibert_scivocab_uncased`](https://huggingface.co/allenai/scibert_scivocab_uncased)** fine-tuned on **[`SQuAD V2`](https://rajpurkar.github.io/SQuAD-explorer/)** using **[`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_squad.py)** ### Training Parameters Trained on 4 NVIDIA GeForce RTX 2080 Ti 11Gb ```bash BASE_MODEL=allenai/scibert_scivocab_uncased python run_squad.py \ --version_2_with_negative \ --model_type albert \ --model_name_or_path $BASE_MODEL \ --output_dir $OUTPUT_MODEL \ --do_eval \ --do_lower_case \ --train_file $SQUAD_DIR/train-v2.0.json \ --predict_file $SQUAD_DIR/dev-v2.0.json \ --per_gpu_train_batch_size 18 \ --per_gpu_eval_batch_size 64 \ --learning_rate 3e-5 \ --num_train_epochs 3.0 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 2000 \ --threads 24 \ --warmup_steps 550 \ --gradient_accumulation_steps 1 \ --fp16 \ --logging_steps 50 \ --do_train ``` ### Evaluation Evaluation on the dev set. I did not sweep for best threshold. | | val | |-------------------|-------------------| | exact | 75.07790785816559 | | f1 | 78.47735207283013 | | total | 11873.0 | | HasAns_exact | 70.76585695006747 | | HasAns_f1 | 77.57449412292718 | | HasAns_total | 5928.0 | | NoAns_exact | 79.37762825904122 | | NoAns_f1 | 79.37762825904122 | | NoAns_total | 5945.0 | | best_exact | 75.08633032931863 | | best_exact_thresh | 0.0 | | best_f1 | 78.48577454398324 | | best_f1_thresh | 0.0 | ### Usage See [huggingface documentation](https://huggingface.co/transformers/model_doc/bert.html#bertforquestionanswering). Training on `SQuAD V2` allows the model to score if a paragraph contains an answer: ```python start_scores, end_scores = model(input_ids) span_scores = start_scores.softmax(dim=1).log()[:,:,None] + end_scores.softmax(dim=1).log()[:,None,:] ignore_score = span_scores[:,0,0] #no answer scores ```
ktrapeznikov/biobert_v1.1_pubmed_squad_v2
ktrapeznikov
2021-05-19T21:10:03Z
233
3
transformers
[ "transformers", "pytorch", "jax", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
### Model **[`monologg/biobert_v1.1_pubmed`](https://huggingface.co/monologg/biobert_v1.1_pubmed)** fine-tuned on **[`SQuAD V2`](https://rajpurkar.github.io/SQuAD-explorer/)** using **[`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_squad.py)** This model is cased. ### Training Parameters Trained on 4 NVIDIA GeForce RTX 2080 Ti 11Gb ```bash BASE_MODEL=monologg/biobert_v1.1_pubmed python run_squad.py \ --version_2_with_negative \ --model_type albert \ --model_name_or_path $BASE_MODEL \ --output_dir $OUTPUT_MODEL \ --do_eval \ --do_lower_case \ --train_file $SQUAD_DIR/train-v2.0.json \ --predict_file $SQUAD_DIR/dev-v2.0.json \ --per_gpu_train_batch_size 18 \ --per_gpu_eval_batch_size 64 \ --learning_rate 3e-5 \ --num_train_epochs 3.0 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 2000 \ --threads 24 \ --warmup_steps 550 \ --gradient_accumulation_steps 1 \ --fp16 \ --logging_steps 50 \ --do_train ``` ### Evaluation Evaluation on the dev set. I did not sweep for best threshold. | | val | |-------------------|-------------------| | exact | 75.97068980038743 | | f1 | 79.37043950121722 | | total | 11873.0 | | HasAns_exact | 74.13967611336032 | | HasAns_f1 | 80.94892513460755 | | HasAns_total | 5928.0 | | NoAns_exact | 77.79646761984861 | | NoAns_f1 | 77.79646761984861 | | NoAns_total | 5945.0 | | best_exact | 75.97068980038743 | | best_exact_thresh | 0.0 | | best_f1 | 79.37043950121729 | | best_f1_thresh | 0.0 | ### Usage See [huggingface documentation](https://huggingface.co/transformers/model_doc/bert.html#bertforquestionanswering). Training on `SQuAD V2` allows the model to score if a paragraph contains an answer: ```python start_scores, end_scores = model(input_ids) span_scores = start_scores.softmax(dim=1).log()[:,:,None] + end_scores.softmax(dim=1).log()[:,None,:] ignore_score = span_scores[:,0,0] #no answer scores ```
julien-c/bert-xsmall-dummy
julien-c
2021-05-19T20:53:10Z
29,145
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
## How to build a dummy model ```python from transformers BertConfig, BertForMaskedLM, BertTokenizer, TFBertForMaskedLM SMALL_MODEL_IDENTIFIER = "julien-c/bert-xsmall-dummy" DIRNAME = "./bert-xsmall-dummy" config = BertConfig(10, 20, 1, 1, 40) model = BertForMaskedLM(config) model.save_pretrained(DIRNAME) tf_model = TFBertForMaskedLM.from_pretrained(DIRNAME, from_pt=True) tf_model.save_pretrained(DIRNAME) # Slightly different for tokenizer. # tokenizer = BertTokenizer.from_pretrained(DIRNAME) # tokenizer.save_pretrained() ```
joelniklaus/gbert-base-ler
joelniklaus
2021-05-19T20:51:41Z
4
0
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
# gbert-base-ler Task: ler Base Model: deepset/gbert-base Trained for 3 epochs Batch-size: 6 Seed: 42 Test F1-Score: 0.956
joelniklaus/bert-base-uncased-sem_eval_2010_task_8
joelniklaus
2021-05-19T20:50:51Z
7
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# bert-base-uncased-sem_eval_2010_task_8 Task: sem_eval_2010_task_8 Base Model: bert-base-uncased Trained for 3 epochs Batch-size: 6 Seed: 42 Test F1-Score: 0.8
jeniya/BERTOverflow
jeniya
2021-05-19T20:47:17Z
231
8
transformers
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
# BERTOverflow ## Model description We pre-trained BERT-base model on 152 million sentences from the StackOverflow's 10 year archive. More details of this model can be found in our ACL 2020 paper: [Code and Named Entity Recognition in StackOverflow](https://www.aclweb.org/anthology/2020.acl-main.443/). We would like to thank [Wuwei Lan](https://lanwuwei.github.io/) for helping us in training this model. #### How to use ```python from transformers import * import torch tokenizer = AutoTokenizer.from_pretrained("jeniya/BERTOverflow") model = AutoModelForTokenClassification.from_pretrained("jeniya/BERTOverflow") ``` ### BibTeX entry and citation info ```bibtex @inproceedings{tabassum2020code, title={Code and Named Entity Recognition in StackOverflow}, author={Tabassum, Jeniya and Maddela, Mounica and Xu, Wei and Ritter, Alan }, booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)}, url={https://www.aclweb.org/anthology/2020.acl-main.443/} year = {2020}, } ```
jannesg/bertsson
jannesg
2021-05-19T20:36:10Z
6
1
transformers
[ "transformers", "pytorch", "jax", "bert", "sv", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: sv --- # BERTSSON Models The models are trained on: - Government Text - Swedish Literature - Swedish News Corpus size: Roughly 6B tokens. The following models are currently available: - **bertsson** - A BERT base model trained with the same hyperparameters as first published by Google. All models are cased and trained with whole word masking. Stay tuned for evaluations.
jakelever/coronabert
jakelever
2021-05-19T20:34:36Z
14
3
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "coronavirus", "covid", "bionlp", "en", "dataset:cord19", "dataset:pubmed", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en thumbnail: https://coronacentral.ai/logo-with-name.png?1 tags: - coronavirus - covid - bionlp datasets: - cord19 - pubmed license: mit widget: - text: "Pre-existing T-cell immunity to SARS-CoV-2 in unexposed healthy controls in Ecuador, as detected with a COVID-19 Interferon-Gamma Release Assay." - text: "Lifestyle and mental health disruptions during COVID-19." - text: "More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis" --- # CoronaCentral BERT Model for Topic / Article Type Classification This is the topic / article type multi-label classification for the [CoronaCentral website](https://coronacentral.ai). This forms part of the pipeline for downloading and processing coronavirus literature described in the [corona-ml repo](https://github.com/jakelever/corona-ml) with available [step-by-step descriptions](https://github.com/jakelever/corona-ml/blob/master/stepByStep.md). The method is described in the [preprint](https://doi.org/10.1101/2020.12.21.423860) and detailed performance results can be found in the [machine learning details](https://github.com/jakelever/corona-ml/blob/master/machineLearningDetails.md) document. This model was derived by fine-tuning the [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract) model on this coronavirus sequence (document) classification task. ## Usage Below are two Google Colab notebooks with example usage of this sequence classification model using HuggingFace transformers and KTrain. - [HuggingFace example on Google Colab](https://colab.research.google.com/drive/1cBNgKd4o6FNWwjKXXQQsC_SaX1kOXDa4?usp=sharing) - [KTrain example on Google Colab](https://colab.research.google.com/drive/1h7oJa2NDjnBEoox0D5vwXrxiCHj3B1kU?usp=sharing) ## Training Data The model is trained on ~3200 manually-curated articles sampled at various stages during the coronavirus pandemic. The code for training is available in the [category\_prediction](https://github.com/jakelever/corona-ml/tree/master/category_prediction) directory of the main Github Repo. The data is available in the [annotated_documents.json.gz](https://github.com/jakelever/corona-ml/blob/master/category_prediction/annotated_documents.json.gz) file. ## Inputs and Outputs The model takes in a tokenized title and abstract (combined into a single string and separated by a new line). The outputs are topics and article types, broadly called categories in the pipeline code. The types are listed below. Some others are managed by hand-coded rules described in the [step-by-step descriptions](https://github.com/jakelever/corona-ml/blob/master/stepByStep.md). ### List of Article Types - Comment/Editorial - Meta-analysis - News - Review ### List of Topics - Clinical Reports - Communication - Contact Tracing - Diagnostics - Drug Targets - Education - Effect on Medical Specialties - Forecasting & Modelling - Health Policy - Healthcare Workers - Imaging - Immunology - Inequality - Infection Reports - Long Haul - Medical Devices - Misinformation - Model Systems & Tools - Molecular Biology - Non-human - Non-medical - Pediatrics - Prevalence - Prevention - Psychology - Recommendations - Risk Factors - Surveillance - Therapeutics - Transmission - Vaccines
iuliaturc/bert_uncased_L-2_H-128_A-2
iuliaturc
2021-05-19T20:32:57Z
8
0
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
ipuneetrathore/bert-base-cased-finetuned-finBERT
ipuneetrathore
2021-05-19T20:30:58Z
14
2
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## FinBERT Code for importing and using this model is available [here](https://github.com/ipuneetrathore/BERT_models)
indobenchmark/indobert-large-p2
indobenchmark
2021-05-19T20:28:22Z
5,822
8
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "indobert", "indobenchmark", "indonlu", "id", "dataset:Indo4B", "arxiv:2009.05387", "license:mit", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: id tags: - indobert - indobenchmark - indonlu license: mit inference: false datasets: - Indo4B --- # IndoBERT Large Model (phase2 - uncased) [IndoBERT](https://arxiv.org/abs/2009.05387) is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective. ## All Pre-trained Models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `indobenchmark/indobert-base-p1` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-base-p2` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p1` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p2` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p1` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p2` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p1` | 17.7M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p2` | 17.7M | Large | Indo4B (23.43 GB of text) | ## How to use ### Load model and tokenizer ```python from transformers import BertTokenizer, AutoModel tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-large-p2") model = AutoModel.from_pretrained("indobenchmark/indobert-large-p2") ``` ### Extract contextual representation ```python x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1) print(x, model(x)[0].sum()) ``` ## Authors <b>IndoBERT</b> was trained and evaluated by Bryan Wilie\*, Karissa Vincentio\*, Genta Indra Winata\*, Samuel Cahyawijaya\*, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, Ayu Purwarianti. ## Citation If you use our work, please cite: ```bibtex @inproceedings{wilie2020indonlu, title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding}, author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti}, booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing}, year={2020} } ```
iarfmoose/bert-base-cased-qa-evaluator
iarfmoose
2021-05-19T20:15:52Z
118,323
9
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# BERT-base-cased-qa-evaluator This model takes a question answer pair as an input and outputs a value representing its prediction about whether the input was a valid question and answer pair or not. The model is a pretrained [BERT-base-cased](https://huggingface.co/bert-base-cased) with a sequence classification head. ## Intended uses The QA evaluator was originally designed to be used with the [t5-base-question-generator](https://huggingface.co/iarfmoose/t5-base-question-generator) for evaluating the quality of generated questions. The input for the QA evaluator follows the format for `BertForSequenceClassification`, but using the question and answer as the two sequences. Inputs should take the following format: ``` [CLS] <question> [SEP] <answer [SEP] ``` ## Limitations and bias The model is trained to evaluate if a question and answer are semantically related, but cannot determine whether an answer is actually true/correct or not. ## Training data The training data was made up of question-answer pairs from the following datasets: - [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) - [RACE](http://www.cs.cmu.edu/~glai1/data/race/) - [CoQA](https://stanfordnlp.github.io/coqa/) - [MSMARCO](https://microsoft.github.io/msmarco/) ## Training procedure The question and answer were concatenated 50% of the time. In the other 50% of the time a corruption operation was performed (either swapping the answer for an unrelated answer, or by copying part of the question into the answer). The model was then trained to predict whether the input sequence represented one of the original QA pairs or a corrupted input.
huawei-noah/DynaBERT_SST-2
huawei-noah
2021-05-19T20:03:01Z
5
1
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:2004.04037", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
## DynaBERT: Dynamic BERT with Adaptive Width and Depth * DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and the subnetworks of it have competitive performances as other similar-sized compressed models. The training process of DynaBERT includes first training a width-adaptive BERT and then allowing both adaptive width and depth using knowledge distillation. * This code is modified based on the repository developed by Hugging Face: [Transformers v2.1.1](https://github.com/huggingface/transformers/tree/v2.1.1), and is released in [GitHub](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/DynaBERT). ### Reference Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu. [DynaBERT: Dynamic BERT with Adaptive Width and Depth](https://arxiv.org/abs/2004.04037). ``` @inproceedings{hou2020dynabert, title = {DynaBERT: Dynamic BERT with Adaptive Width and Depth}, author = {Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu}, booktitle = {Advances in Neural Information Processing Systems}, year = {2020} } ```
huawei-noah/DynaBERT_MNLI
huawei-noah
2021-05-19T20:02:03Z
1
1
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:2004.04037", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
## DynaBERT: Dynamic BERT with Adaptive Width and Depth * DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and the subnetworks of it have competitive performances as other similar-sized compressed models. The training process of DynaBERT includes first training a width-adaptive BERT and then allowing both adaptive width and depth using knowledge distillation. * This code is modified based on the repository developed by Hugging Face: [Transformers v2.1.1](https://github.com/huggingface/transformers/tree/v2.1.1), and is released in [GitHub](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/DynaBERT). ### Reference Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu. [DynaBERT: Dynamic BERT with Adaptive Width and Depth](https://arxiv.org/abs/2004.04037). ``` @inproceedings{hou2020dynabert, title = {DynaBERT: Dynamic BERT with Adaptive Width and Depth}, author = {Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu}, booktitle = {Advances in Neural Information Processing Systems}, year = {2020} } ```
hfl/rbtl3
hfl
2021-05-19T19:22:46Z
39
3
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "arxiv:1906.08101", "arxiv:2004.13922", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - zh tags: - bert license: "apache-2.0" --- # This is a re-trained 3-layer RoBERTa-wwm-ext-large model. ## Chinese BERT with Whole Word Masking For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**. **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)** Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu This repository is developed based on:https://github.com/google-research/bert You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - Primary: https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ``` - Secondary: https://arxiv.org/abs/1906.08101 ``` @article{chinese-bert-wwm, title={Pre-Training with Whole Word Masking for Chinese BERT}, author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping}, journal={arXiv preprint arXiv:1906.08101}, year={2019} } ```
hfl/rbt6
hfl
2021-05-19T19:22:02Z
224
7
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "arxiv:1906.08101", "arxiv:2004.13922", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - zh tags: - bert license: "apache-2.0" --- # This is a re-trained 6-layer RoBERTa-wwm-ext model. ## Chinese BERT with Whole Word Masking For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**. **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)** Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu This repository is developed based on:https://github.com/google-research/bert You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - Primary: https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ``` - Secondary: https://arxiv.org/abs/1906.08101 ``` @article{chinese-bert-wwm, title={Pre-Training with Whole Word Masking for Chinese BERT}, author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping}, journal={arXiv preprint arXiv:1906.08101}, year={2019} } ```
hfl/chinese-bert-wwm
hfl
2021-05-19T19:07:49Z
54,317
71
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "arxiv:1906.08101", "arxiv:2004.13922", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - zh license: "apache-2.0" --- ## Chinese BERT with Whole Word Masking For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**. **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)** Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu This repository is developed based on:https://github.com/google-research/bert You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - Primary: https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ``` - Secondary: https://arxiv.org/abs/1906.08101 ``` @article{chinese-bert-wwm, title={Pre-Training with Whole Word Masking for Chinese BERT}, author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping}, journal={arXiv preprint arXiv:1906.08101}, year={2019} } ```
hfl/chinese-bert-wwm-ext
hfl
2021-05-19T19:06:39Z
10,290
166
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "arxiv:1906.08101", "arxiv:2004.13922", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - zh license: "apache-2.0" --- ## Chinese BERT with Whole Word Masking For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**. **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)** Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu This repository is developed based on:https://github.com/google-research/bert You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - Primary: https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ``` - Secondary: https://arxiv.org/abs/1906.08101 ``` @article{chinese-bert-wwm, title={Pre-Training with Whole Word Masking for Chinese BERT}, author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping}, journal={arXiv preprint arXiv:1906.08101}, year={2019} } ```
henryk/bert-base-multilingual-cased-finetuned-dutch-squad2
henryk
2021-05-19T19:02:45Z
40
6
transformers
[ "transformers", "pytorch", "jax", "bert", "question-answering", "nl", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: nl --- # Multilingual + Dutch SQuAD2.0 This model is the multilingual model provided by the Google research team with a fine-tuned dutch Q&A downstream task. ## Details of the language model Language model ([**bert-base-multilingual-cased**](https://github.com/google-research/bert/blob/master/multilingual.md)): 12-layer, 768-hidden, 12-heads, 110M parameters. Trained on cased text in the top 104 languages with the largest Wikipedias. ## Details of the downstream task Using the `mtranslate` Python module, [**SQuAD2.0**](https://rajpurkar.github.io/SQuAD-explorer/) was machine-translated. In order to find the start tokens, the direct translations of the answers were searched in the corresponding paragraphs. Due to the different translations depending on the context (missing context in the pure answer), the answer could not always be found in the text, and thus a loss of question-answer examples occurred. This is a potential problem where errors can occur in the data set. | Dataset | # Q&A | | ---------------------- | ----- | | SQuAD2.0 Train | 130 K | | Dutch SQuAD2.0 Train | 99 K | | SQuAD2.0 Dev | 12 K | | Dutch SQuAD2.0 Dev | 10 K | ## Model benchmark | Model | EM/F1 |HasAns (EM/F1) | NoAns | | ---------------------- | ----- | ----- | ----- | | [robBERT](https://huggingface.co/pdelobelle/robBERT-base) | 58.04/60.95 | 33.08/40.64 | 73.67 | | [dutchBERT](https://huggingface.co/wietsedv/bert-base-dutch-cased) | 64.25/68.45 | 45.59/56.49 | 75.94 | | [multiBERT](https://huggingface.co/bert-base-multilingual-cased) | **67.38**/**71.36** | 47.42/57.76 | 79.88 | ## Model training The model was trained on a **Tesla V100** GPU with the following command: ```python export SQUAD_DIR=path/to/nl_squad python run_squad.py --model_type bert \ --model_name_or_path bert-base-multilingual-cased \ --do_train \ --do_eval \ --train_file $SQUAD_DIR/nl_squadv2_train_clean.json \ --predict_file $SQUAD_DIR/nl_squadv2_dev_clean.json \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps=8000 \ --output_dir ../../output \ --overwrite_cache \ --overwrite_output_dir ``` **Results**: {'exact': 67.38028751680629, 'f1': 71.362297054268, 'total': 9669, 'HasAns_exact': 47.422126745435015, 'HasAns_f1': 57.761023151910734, 'HasAns_total': 3724, 'NoAns_exact': 79.88225399495374, 'NoAns_f1': 79.88225399495374, 'NoAns_total': 5945, 'best_exact': 67.53542248422795, 'best_exact_thresh': 0.0, 'best_f1': 71.36229705426837, 'best_f1_thresh': 0.0} ## Model in action Fast usage with **pipelines**: ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="henryk/bert-base-multilingual-cased-finetuned-dutch-squad2", tokenizer="henryk/bert-base-multilingual-cased-finetuned-dutch-squad2" ) qa_pipeline({ 'context': "Amsterdam is de hoofdstad en de dichtstbevolkte stad van Nederland.", 'question': "Wat is de hoofdstad van Nederland?"}) ``` # Output: ```json { "score": 0.83, "start": 0, "end": 9, "answer": "Amsterdam" } ``` ## Contact Please do not hesitate to contact me via [LinkedIn](https://www.linkedin.com/in/henryk-borzymowski-0755a2167/) if you want to discuss or get access to the Dutch version of SQuAD.
hemekci/off_detection_turkish
hemekci
2021-05-19T18:54:44Z
54
8
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "tr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: tr widget: - text: "sevelim sevilelim bu dunya kimseye kalmaz" --- ## Offensive Language Detection Model in Turkish - uses Bert and pytorch - fine tuned with Twitter data. - UTF-8 configuration is done ### Training Data Number of training sentences: 31,277 **Example Tweets** - 19823 Daliaan yifng cok erken attin be... 1.38 ...| NOT| - 30525 @USER Bak biri kollarımda uyuyup gitmem diyor..|NOT| - 26468 Helal olsun be :) Norveçten sabaha karşı geldi aq... | OFF| - 14105 @USER Sunu cekecek ve güzel oldugunu söylecek aptal... |OFF| - 4958 Ya seni yerim ben şapşal şey 🤗 | NOT| - 12966 Herkesin akıllı geçindiği bir sosyal medyamız var ... |NOT| - 5788 Maçın özetlerini izleyenler futbolcular gidiyo... |NOT| |OFFENSIVE |RESULT | |--|--| |NOT | 25231| |OFF|6046| dtype: int64 ### Validation |epoch |Training Loss | Valid. Loss | Valid.Accuracy | Training Time | Validation Time | |--|--|--|--|--|--| |1 | 0.31| 0.28| 0.89| 0:07:14 | 0:00:13 |2 | 0.18| 0.29| 0.90| 0:07:18 | 0:00:13 |3 | 0.08| 0.40| 0.89| 0:07:16 | 0:00:13 |4 | 0.04| 0.59| 0.89| 0:07:13 | 0:00:13 **Matthews Corr. Coef. (-1 : +1):** Total MCC Score: 0.633
haisongzhang/roberta-tiny-cased
haisongzhang
2021-05-19T17:53:53Z
2,049
3
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
Github: https://github.com/haisongzhang/roberta-tiny-cased
gurkan08/bert-turkish-text-classification
gurkan08
2021-05-19T17:50:18Z
12
1
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "tr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: tr --- # Turkish News Text Classification Turkish text classification model obtained by fine-tuning the Turkish bert model (dbmdz/bert-base-turkish-cased) # Dataset Dataset consists of 11 classes were obtained from https://www.trthaber.com/. The model was created using the most distinctive 6 classes. Dataset can be accessed at https://github.com/gurkan08/datasets/tree/master/trt_11_category. label_dict = { 'LABEL_0': 'ekonomi', 'LABEL_1': 'spor', 'LABEL_2': 'saglik', 'LABEL_3': 'kultur_sanat', 'LABEL_4': 'bilim_teknoloji', 'LABEL_5': 'egitim' } 70% of the data were used for training and 30% for testing. train f1-weighted score = %97 test f1-weighted score = %94 # Usage from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("gurkan08/bert-turkish-text-classification") model = AutoModelForSequenceClassification.from_pretrained("gurkan08/bert-turkish-text-classification") nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) text = ["Süper Lig'in 6. haftasında Sivasspor ile Çaykur Rizespor karşı karşıya geldi...", "Son 24 saatte 69 kişi Kovid-19 nedeniyle yaşamını yitirdi, 1573 kişi iyileşti"] out = nlp(text) label_dict = { 'LABEL_0': 'ekonomi', 'LABEL_1': 'spor', 'LABEL_2': 'saglik', 'LABEL_3': 'kultur_sanat', 'LABEL_4': 'bilim_teknoloji', 'LABEL_5': 'egitim' } results = [] for result in out: result['label'] = label_dict[result['label']] results.append(result) print(results) # > [{'label': 'spor', 'score': 0.9992026090621948}, {'label': 'saglik', 'score': 0.9972177147865295}]
google/bert_uncased_L-8_H-128_A-2
google
2021-05-19T17:35:05Z
1,147
0
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-6_H-512_A-8
google
2021-05-19T17:34:01Z
1,402
0
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-6_H-256_A-4
google
2021-05-19T17:33:36Z
1,147
1
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-6_H-128_A-2
google
2021-05-19T17:33:17Z
1,159
1
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-4_H-768_A-12
google
2021-05-19T17:31:28Z
918
0
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-4_H-512_A-8
google
2021-05-19T17:30:51Z
95,283
4
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-4_H-128_A-2
google
2021-05-19T17:30:08Z
2,136
0
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-2_H-512_A-8
google
2021-05-19T17:29:08Z
4,048
0
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-12_H-512_A-8
google
2021-05-19T17:26:55Z
6,382
0
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-12_H-256_A-4
google
2021-05-19T17:26:24Z
28,093
1
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-12_H-128_A-2
google
2021-05-19T17:26:01Z
2,701
0
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-10_H-768_A-12
google
2021-05-19T17:24:59Z
914
0
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-10_H-256_A-4
google
2021-05-19T17:23:44Z
924
0
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
dpalominop/spanish-bert-apoyo
dpalominop
2021-05-19T16:08:52Z
13
0
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("dpalominop/spanish-bert-apoyo") model = AutoModelForSequenceClassification.from_pretrained("dpalominop/spanish-bert-apoyo") ```
dkleczek/bert-base-polish-uncased-v1
dkleczek
2021-05-19T15:55:32Z
4,980
11
transformers
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: pl thumbnail: https://raw.githubusercontent.com/kldarek/polbert/master/img/polbert.png --- # Polbert - Polish BERT Polish version of BERT language model is here! It is now available in two variants: cased and uncased, both can be downloaded and used via HuggingFace transformers library. I recommend using the cased model, more info on the differences and benchmark results below. ![PolBERT image](https://raw.githubusercontent.com/kldarek/polbert/master/img/polbert.png) ## Cased and uncased variants * I initially trained the uncased model, the corpus and training details are referenced below. Here are some issues I found after I published the uncased model: * Some Polish characters and accents are not tokenized correctly through the BERT tokenizer when applying lowercase. This doesn't impact sequence classification much, but may influence token classfication tasks significantly. * I noticed a lot of duplicates in the Open Subtitles dataset, which dominates the training corpus. * I didn't use Whole Word Masking. * The cased model improves on the uncased model in the following ways: * All Polish characters and accents should now be tokenized correctly. * I removed duplicates from Open Subtitles dataset. The corpus is smaller, but more balanced now. * The model is trained with Whole Word Masking. ## Pre-training corpora Below is the list of corpora used along with the output of `wc` command (counting lines, words and characters). These corpora were divided into sentences with srxsegmenter (see references), concatenated and tokenized with HuggingFace BERT Tokenizer. ### Uncased | Tables | Lines | Words | Characters | | ------------- |--------------:| -----:| -----:| | [Polish subset of Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 236635408| 1431199601 | 7628097730 | | [Polish subset of ParaCrawl](http://opus.nlpl.eu/ParaCrawl.php) | 8470950 | 176670885 | 1163505275 | | [Polish Parliamentary Corpus](http://clip.ipipan.waw.pl/PPC) | 9799859 | 121154785 | 938896963 | | [Polish Wikipedia - Feb 2020](https://dumps.wikimedia.org/plwiki/latest/plwiki-latest-pages-articles.xml.bz2) | 8014206 | 132067986 | 1015849191 | | Total | 262920423 | 1861093257 | 10746349159 | ### Cased | Tables | Lines | Words | Characters | | ------------- |--------------:| -----:| -----:| | [Polish subset of Open Subtitles (Deduplicated) ](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 41998942| 213590656 | 1424873235 | | [Polish subset of ParaCrawl](http://opus.nlpl.eu/ParaCrawl.php) | 8470950 | 176670885 | 1163505275 | | [Polish Parliamentary Corpus](http://clip.ipipan.waw.pl/PPC) | 9799859 | 121154785 | 938896963 | | [Polish Wikipedia - Feb 2020](https://dumps.wikimedia.org/plwiki/latest/plwiki-latest-pages-articles.xml.bz2) | 8014206 | 132067986 | 1015849191 | | Total | 68283960 | 646479197 | 4543124667 | ## Pre-training details ### Uncased * Polbert was trained with code provided in Google BERT's github repository (https://github.com/google-research/bert) * Currently released model follows bert-base-uncased model architecture (12-layer, 768-hidden, 12-heads, 110M parameters) * Training set-up: in total 1 million training steps: * 100.000 steps - 128 sequence length, batch size 512, learning rate 1e-4 (10.000 steps warmup) * 800.000 steps - 128 sequence length, batch size 512, learning rate 5e-5 * 100.000 steps - 512 sequence length, batch size 256, learning rate 2e-5 * The model was trained on a single Google Cloud TPU v3-8 ### Cased * Same approach as uncased model, with the following differences: * Whole Word Masking * Training set-up: * 100.000 steps - 128 sequence length, batch size 2048, learning rate 1e-4 (10.000 steps warmup) * 100.000 steps - 128 sequence length, batch size 2048, learning rate 5e-5 * 100.000 steps - 512 sequence length, batch size 256, learning rate 2e-5 ## Usage Polbert is released via [HuggingFace Transformers library](https://huggingface.co/transformers/). For an example use as language model, see [this notebook](/LM_testing.ipynb) file. ### Uncased ```python from transformers import * model = BertForMaskedLM.from_pretrained("dkleczek/bert-base-polish-uncased-v1") tokenizer = BertTokenizer.from_pretrained("dkleczek/bert-base-polish-uncased-v1") nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer) for pred in nlp(f"Adam Mickiewicz wielkim polskim {nlp.tokenizer.mask_token} był."): print(pred) # Output: # {'sequence': '[CLS] adam mickiewicz wielkim polskim poeta był. [SEP]', 'score': 0.47196975350379944, 'token': 26596} # {'sequence': '[CLS] adam mickiewicz wielkim polskim bohaterem był. [SEP]', 'score': 0.09127858281135559, 'token': 10953} # {'sequence': '[CLS] adam mickiewicz wielkim polskim człowiekiem był. [SEP]', 'score': 0.0647173821926117, 'token': 5182} # {'sequence': '[CLS] adam mickiewicz wielkim polskim pisarzem był. [SEP]', 'score': 0.05232388526201248, 'token': 24293} # {'sequence': '[CLS] adam mickiewicz wielkim polskim politykiem był. [SEP]', 'score': 0.04554257541894913, 'token': 44095} ``` ### Cased ```python model = BertForMaskedLM.from_pretrained("dkleczek/bert-base-polish-cased-v1") tokenizer = BertTokenizer.from_pretrained("dkleczek/bert-base-polish-cased-v1") nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer) for pred in nlp(f"Adam Mickiewicz wielkim polskim {nlp.tokenizer.mask_token} był."): print(pred) # Output: # {'sequence': '[CLS] Adam Mickiewicz wielkim polskim pisarzem był. [SEP]', 'score': 0.5391148328781128, 'token': 37120} # {'sequence': '[CLS] Adam Mickiewicz wielkim polskim człowiekiem był. [SEP]', 'score': 0.11683262139558792, 'token': 6810} # {'sequence': '[CLS] Adam Mickiewicz wielkim polskim bohaterem był. [SEP]', 'score': 0.06021466106176376, 'token': 17709} # {'sequence': '[CLS] Adam Mickiewicz wielkim polskim mistrzem był. [SEP]', 'score': 0.051870670169591904, 'token': 14652} # {'sequence': '[CLS] Adam Mickiewicz wielkim polskim artystą był. [SEP]', 'score': 0.031787533313035965, 'token': 35680} ``` See the next section for an example usage of Polbert in downstream tasks. ## Evaluation Thanks to Allegro, we now have the [KLEJ benchmark](https://klejbenchmark.com/leaderboard/), a set of nine evaluation tasks for the Polish language understanding. The following results are achieved by running standard set of evaluation scripts (no tricks!) utilizing both cased and uncased variants of Polbert. | Model | Average | NKJP-NER | CDSC-E | CDSC-R | CBD | PolEmo2.0-IN | PolEmo2.0-OUT | DYK | PSC | AR | | ------------- |--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:| | Polbert cased | 81.7 | 93.6 | 93.4 | 93.8 | 52.7 | 87.4 | 71.1 | 59.1 | 98.6 | 85.2 | | Polbert uncased | 81.4 | 90.1 | 93.9 | 93.5 | 55.0 | 88.1 | 68.8 | 59.4 | 98.8 | 85.4 | Note how the uncased model performs better than cased on some tasks? My guess this is because of the oversampling of Open Subtitles dataset and its similarity to data in some of these tasks. All these benchmark tasks are sequence classification, so the relative strength of the cased model is not so visible here. ## Bias The data used to train the model is biased. It may reflect stereotypes related to gender, ethnicity etc. Please be careful when using the model for downstream task to consider these biases and mitigate them. ## Acknowledgements * I'd like to express my gratitude to Google [TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) for providing the free TPU credits - thank you! * Also appreciate the help from Timo Möller from [deepset](https://deepset.ai) for sharing tips and scripts based on their experience training German BERT model. * Big thanks to Allegro for releasing KLEJ Benchmark and specifically to Piotr Rybak for help with the evaluation and pointing out some issues with the tokenization. * Finally, thanks to Rachel Thomas, Jeremy Howard and Sylvain Gugger from [fastai](https://www.fast.ai) for their NLP and Deep Learning courses! ## Author Darek Kłeczek - contact me on Twitter [@dk21](https://twitter.com/dk21) ## References * https://github.com/google-research/bert * https://github.com/narusemotoki/srx_segmenter * SRX rules file for sentence splitting in Polish, written by Marcin Miłkowski: https://raw.githubusercontent.com/languagetool-org/languagetool/master/languagetool-core/src/main/resources/org/languagetool/resource/segment.srx * [KLEJ benchmark](https://klejbenchmark.com/leaderboard/)
deepset/sentence_bert
deepset
2021-05-19T15:34:03Z
10,668
20
transformers
[ "transformers", "pytorch", "jax", "bert", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 --- This is an upload of the bert-base-nli-stsb-mean-tokens pretrained model from the Sentence Transformers Repo (https://github.com/UKPLab/sentence-transformers)
castorini/monobert-large-msmarco-finetune-only
castorini
2021-05-19T14:00:06Z
67
0
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# Model Description This checkpoint is a direct conversion of [BERT_Large_trained_on_MSMARCO.zip](https://drive.google.com/open?id=1crlASTMlsihALlkabAQP6JTYIZwC1Wm8) from the original [repo](https://github.com/nyu-dl/dl4marco-bert/). The corresponding model class is BertForSequenceClassification, and its purpose is for MS MARCO passage ranking. Please find the original repo for more detail of its training settings regarding hyperparameter/device/data.
cahya/bert-base-indonesian-522M
cahya
2021-05-19T13:38:45Z
3,317
25
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "id", "dataset:wikipedia", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: "id" license: "mit" datasets: - wikipedia widget: - text: "Ibu ku sedang bekerja [MASK] sawah." --- # Indonesian BERT base model (uncased) ## Model description It is BERT-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This model is uncased: it does not make a difference between indonesia and Indonesia. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='cahya/bert-base-indonesian-522M') >>> unmasker("Ibu ku sedang bekerja [MASK] supermarket") [{'sequence': '[CLS] ibu ku sedang bekerja di supermarket [SEP]', 'score': 0.7983310222625732, 'token': 1495}, {'sequence': '[CLS] ibu ku sedang bekerja. supermarket [SEP]', 'score': 0.090003103017807, 'token': 17}, {'sequence': '[CLS] ibu ku sedang bekerja sebagai supermarket [SEP]', 'score': 0.025469014421105385, 'token': 1600}, {'sequence': '[CLS] ibu ku sedang bekerja dengan supermarket [SEP]', 'score': 0.017966199666261673, 'token': 1555}, {'sequence': '[CLS] ibu ku sedang bekerja untuk supermarket [SEP]', 'score': 0.016971781849861145, 'token': 1572}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel model_name='cahya/bert-base-indonesian-522M' tokenizer = BertTokenizer.from_pretrained(model_name) model = BertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in Tensorflow: ```python from transformers import BertTokenizer, TFBertModel model_name='cahya/bert-base-indonesian-522M' tokenizer = BertTokenizer.from_pretrained(model_name) model = TFBertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data This model was pre-trained with 522MB of indonesian Wikipedia. The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form: ```[CLS] Sentence A [SEP] Sentence B [SEP]```
cahya/bert-base-indonesian-1.5G
cahya
2021-05-19T13:37:31Z
118,224
5
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "id", "dataset:wikipedia", "dataset:id_newspapers_2018", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: "id" license: "mit" datasets: - wikipedia - id_newspapers_2018 widget: - text: "Ibu ku sedang bekerja [MASK] sawah." --- # Indonesian BERT base model (uncased) ## Model description It is BERT-base model pre-trained with indonesian Wikipedia and indonesian newspapers using a masked language modeling (MLM) objective. This model is uncased. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='cahya/bert-base-indonesian-1.5G') >>> unmasker("Ibu ku sedang bekerja [MASK] supermarket") [{'sequence': '[CLS] ibu ku sedang bekerja di supermarket [SEP]', 'score': 0.7983310222625732, 'token': 1495}, {'sequence': '[CLS] ibu ku sedang bekerja. supermarket [SEP]', 'score': 0.090003103017807, 'token': 17}, {'sequence': '[CLS] ibu ku sedang bekerja sebagai supermarket [SEP]', 'score': 0.025469014421105385, 'token': 1600}, {'sequence': '[CLS] ibu ku sedang bekerja dengan supermarket [SEP]', 'score': 0.017966199666261673, 'token': 1555}, {'sequence': '[CLS] ibu ku sedang bekerja untuk supermarket [SEP]', 'score': 0.016971781849861145, 'token': 1572}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel model_name='cahya/bert-base-indonesian-1.5G' tokenizer = BertTokenizer.from_pretrained(model_name) model = BertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in Tensorflow: ```python from transformers import BertTokenizer, TFBertModel model_name='cahya/bert-base-indonesian-1.5G' tokenizer = BertTokenizer.from_pretrained(model_name) model = TFBertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data This model was pre-trained with 522MB of indonesian Wikipedia and 1GB of [indonesian newspapers](https://huggingface.co/datasets/id_newspapers_2018). The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form: ```[CLS] Sentence A [SEP] Sentence B [SEP]```
ayansinha/lic-class-scancode-bert-base-cased-L32-1
ayansinha
2021-05-19T12:04:46Z
9
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "license", "sentence-classification", "scancode", "license-compliance", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:scancode-rules", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - license - sentence-classification - scancode - license-compliance license: apache-2.0 datasets: - bookcorpus - wikipedia - scancode-rules version: 1.0 --- # `lic-class-scancode-bert-base-cased-L32-1` ## Intended Use This model is intended to be used for Sentence Classification which is used for results analysis in [`scancode-results-analyzer`](https://github.com/nexB/scancode-results-analyzer). `scancode-results-analyzer` helps detect faulty scans in [`scancode-toolkit`](https://github.com/nexB/scancode-results-analyzer) by using statistics and nlp modeling, among other tools, to make Scancode better. ## How to Use Refer [quickstart](https://github.com/nexB/scancode-results-analyzer#quickstart---local-machine) section in `scancode-results-analyzer` documentation, for installing and getting started. - [Link to Code](https://github.com/nexB/scancode-results-analyzer/blob/master/src/results_analyze/nlp_models.py) Then in `NLPModelsPredict` class, function `predict_basic_lic_class` uses this classifier to predict sentances as either valid license tags or false positives. ## Limitations and Bias As this model is a fine-tuned version of the [`bert-base-cased`](https://huggingface.co/bert-base-cased) model, it has the same biases, but as the task it is fine-tuned to is a very specific task (license text/notice/tag/referance) without those intended biases, it's safe to assume those don't apply at all here. ## Training and Fine-Tuning Data The BERT model was pretrained on BookCorpus, a dataset consisting of 11,038 unpublished books and English Wikipedia (excluding lists, tables and headers). Then this `bert-base-cased` model was fine-tuned on Scancode Rule texts, specifically trained in the context of sentence classification, where the four classes are - License Text - License Notice - License Tag - License Referance ## Training Procedure For fine-tuning procedure and training, refer `scancode-results-analyzer` code. - [Link to Code](https://github.com/nexB/scancode-results-analyzer/blob/master/src/results_analyze/nlp_models.py) In `NLPModelsTrain` class, function `prepare_input_data_false_positive` prepares the training data. In `NLPModelsTrain` class, function `train_basic_false_positive_classifier` fine-tunes this classifier. 1. Model - [BertBaseCased](https://huggingface.co/bert-base-cased) (Weights 0.5 GB) 2. Sentence Length - 32 3. Labels - 4 (License Text/Notice/Tag/Referance) 4. After 4 Epochs of Fine-Tuning with learning rate 2e-5 (60 secs each on an RTX 2060) Note: The classes aren't balanced. ## Eval Results - Accuracy on the training data (90%) : 0.98 (+- 0.01) - Accuracy on the validation data (10%) : 0.84 (+- 0.01) ## Further Work 1. Apllying Splitting/Aggregation Strategies 2. Data Augmentation according to Vaalidation Errors 3. Bigger/Better Suited Models
allenyummy/chinese-bert-wwm-ehr-ner-sl
allenyummy
2021-05-19T11:42:42Z
6
0
transformers
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: zh-tw --- # Model name Chinese-bert-wwm-electrical-health-records-ner-sequence-labeling #### How to use ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("allenyummy/chinese-bert-wwm-ehr-ner-sl") model = AutoModelForTokenClassification.from_pretrained("allenyummy/chinese-bert-wwm-ehr-ner-sl") ```
Khu1998/clog-assessment-model
Khu1998
2021-05-19T11:18:26Z
5
0
transformers
[ "transformers", "tf", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
# CLOG Assessment generator model
DJSammy/bert-base-danish-uncased_BotXO-ai
DJSammy
2021-05-19T11:13:30Z
35
1
transformers
[ "transformers", "pytorch", "jax", "bert", "masked-lm", "fill-mask", "da", "dataset:common_crawl", "dataset:wikipedia", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: da tags: - bert - masked-lm license: cc-by-4.0 datasets: - common_crawl - wikipedia pipeline_tag: fill-mask widget: - text: "København er [MASK] i Danmark." --- # Danish BERT (uncased) model [BotXO.ai](https://www.botxo.ai/) developed this model. For data and training details see their [GitHub repository](https://github.com/botxo/nordic_bert). The original model was trained in TensorFlow then I converted it to Pytorch using [transformers-cli](https://huggingface.co/transformers/converting_tensorflow_models.html?highlight=cli). For TensorFlow version download here: https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1 ## Architecture ```python from transformers import AutoModelForPreTraining model = AutoModelForPreTraining.from_pretrained("DJSammy/bert-base-danish-uncased_BotXO,ai") params = list(model.named_parameters()) print('danish_bert_uncased_v2 has {:} different named parameters.\n'.format(len(params))) print('==== Embedding Layer ====\n') for p in params[0:5]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) print('\n==== First Transformer ====\n') for p in params[5:21]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) print('\n==== Last Transformer ====\n') for p in params[181:197]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) print('\n==== Output Layer ====\n') for p in params[197:]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) # danish_bert_uncased_v2 has 206 different named parameters. # ==== Embedding Layer ==== # bert.embeddings.word_embeddings.weight (32000, 768) # bert.embeddings.position_embeddings.weight (512, 768) # bert.embeddings.token_type_embeddings.weight (2, 768) # bert.embeddings.LayerNorm.weight (768,) # bert.embeddings.LayerNorm.bias (768,) # ==== First Transformer ==== # bert.encoder.layer.0.attention.self.query.weight (768, 768) # bert.encoder.layer.0.attention.self.query.bias (768,) # bert.encoder.layer.0.attention.self.key.weight (768, 768) # bert.encoder.layer.0.attention.self.key.bias (768,) # bert.encoder.layer.0.attention.self.value.weight (768, 768) # bert.encoder.layer.0.attention.self.value.bias (768,) # bert.encoder.layer.0.attention.output.dense.weight (768, 768) # bert.encoder.layer.0.attention.output.dense.bias (768,) # bert.encoder.layer.0.attention.output.LayerNorm.weight (768,) # bert.encoder.layer.0.attention.output.LayerNorm.bias (768,) # bert.encoder.layer.0.intermediate.dense.weight (3072, 768) # bert.encoder.layer.0.intermediate.dense.bias (3072,) # bert.encoder.layer.0.output.dense.weight (768, 3072) # bert.encoder.layer.0.output.dense.bias (768,) # bert.encoder.layer.0.output.LayerNorm.weight (768,) # bert.encoder.layer.0.output.LayerNorm.bias (768,) # ==== Last Transformer ==== # bert.encoder.layer.11.attention.self.query.weight (768, 768) # bert.encoder.layer.11.attention.self.query.bias (768,) # bert.encoder.layer.11.attention.self.key.weight (768, 768) # bert.encoder.layer.11.attention.self.key.bias (768,) # bert.encoder.layer.11.attention.self.value.weight (768, 768) # bert.encoder.layer.11.attention.self.value.bias (768,) # bert.encoder.layer.11.attention.output.dense.weight (768, 768) # bert.encoder.layer.11.attention.output.dense.bias (768,) # bert.encoder.layer.11.attention.output.LayerNorm.weight (768,) # bert.encoder.layer.11.attention.output.LayerNorm.bias (768,) # bert.encoder.layer.11.intermediate.dense.weight (3072, 768) # bert.encoder.layer.11.intermediate.dense.bias (3072,) # bert.encoder.layer.11.output.dense.weight (768, 3072) # bert.encoder.layer.11.output.dense.bias (768,) # bert.encoder.layer.11.output.LayerNorm.weight (768,) # bert.encoder.layer.11.output.LayerNorm.bias (768,) # ==== Output Layer ==== # bert.pooler.dense.weight (768, 768) # bert.pooler.dense.bias (768,) # cls.predictions.bias (32000,) # cls.predictions.transform.dense.weight (768, 768) # cls.predictions.transform.dense.bias (768,) # cls.predictions.transform.LayerNorm.weight (768,) # cls.predictions.transform.LayerNorm.bias (768,) # cls.seq_relationship.weight (2, 768) # cls.seq_relationship.bias (2,) ``` ## Example Pipeline ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='DJSammy/bert-base-danish-uncased_BotXO,ai') unmasker('København er [MASK] i Danmark.') # Copenhagen is the [MASK] of Denmark. # => # [{'score': 0.788068950176239, # 'sequence': '[CLS] københavn er hovedstad i danmark. [SEP]', # 'token': 12610, # 'token_str': 'hovedstad'}, # {'score': 0.07606703042984009, # 'sequence': '[CLS] københavn er hovedstaden i danmark. [SEP]', # 'token': 8108, # 'token_str': 'hovedstaden'}, # {'score': 0.04299738258123398, # 'sequence': '[CLS] københavn er metropol i danmark. [SEP]', # 'token': 23305, # 'token_str': 'metropol'}, # {'score': 0.008163209073245525, # 'sequence': '[CLS] københavn er ikke i danmark. [SEP]', # 'token': 89, # 'token_str': 'ikke'}, # {'score': 0.006238455418497324, # 'sequence': '[CLS] københavn er ogsa i danmark. [SEP]', # 'token': 25253, # 'token_str': 'ogsa'}] ```
patrickvonplaten/norwegian-roberta-base
patrickvonplaten
2021-05-19T10:12:21Z
6
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
## Roberta-Base This repo trains [roberta-base](https://huggingface.co/roberta-base) from scratch on the [Norwegian training subset of Oscar](https://oscar-corpus.com/) containing roughly 4.7 GB of data according to [this](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling) example. Training is done on a TPUv3-8 in Flax. More statistics on the training run can be found under [tf.hub](https://tensorboard.dev/experiment/GdYmdak2TWeVz0DDRYOrrg).
sampathkethineedi/industry-classification-api
sampathkethineedi
2021-05-19T01:29:31Z
7
16
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "industry tags", "buisiness description", "multi-label", "classification", "inference", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: "en" thumbnail: "https://huggingface.co/sampathkethineedi" widget: - text: "3rd Rock Multimedia Limited is an India-based event management company. The Company conducts film promotions, international events, corporate events and cultural events. The Company's entertainment properties include 3rd Rock Fashion Fiesta and 3rd Rock Calendar. The Company's association with various events in Mumbai includes Bryan Adam's Live in Concert, Michael Learns to Rock (MLTR) Eternity Concert, 3rd Rock's Calendar Launch 2011-2012, Airtel I Phone 4 Launch and ISPL Cricket Tournament 2012." - text: "Stellar Capital Services Limited is an India-based non-banking financial company. The Company is mainly engaged in the business of providing loans and advances and investing in shares, both quoted and unquoted. The Company's segments are trading in share and securities, and advancing of loans. The trading in share and securities segment includes trading in quoted equity shares, mutual funds, bonds, futures and options, and currency. The Company's financial services include inter corporate deposits, financial consultancy, retail initial public offering (IPO) funding, loan against property, management consultancy, personal loans and unsecured loans." - text: "Chemcrux Enterprises Ltd is a manufacturer of intermediates for bulk drugs, and dyes and pigments. The Company's products include 2 Chloro Benzoic Acid; 3 Chloro Benzoic Acid; 4 Chloro Benzoic Acid; 4 Nitro Benzoic Acid; 2,4 Dichloro Benzoic Acid; 4 Chloro 3 Nitro Benzoic Acid; 2 Chloro 5 Nitro Benzoic Acid; Meta Nitro Benzoic Acid; Lassamide, and Meta Chloro Per Benzoic Acid. The Company also offers various products on custom requirements, including Aceturic Acid; Meta Chloro Benzoyl Chloride; 3-Nitro-4-Methoxy Benzoic Acid; 2 Amino 5 Sulfonamide Benzoic Acid; 3,4 Dichloro Benzoic Acid; 5-Nitro Salycylic Acid, and 4-Chloro Benzoic Acid -3-Sulfonamide. The Company's plant has a capacity of 120 metric tons per month. The Company exports to Europe, Japan, the Middle East and East Africa. It is engaged in development and execution of various processes, such as High Pressure Oxidation, Nitration and Chloro Sulfonation." tags: - bert - pytorch - text-classification - industry tags - buisiness description - multi-label - classification - inference liscence: "mit" --- # industry-classification-api ## Model description BERT Model to classify a business description into one of **62 industry tags**. Trained on 7000 samples of Business Descriptions and associated labels of companies in India. ## How to use PyTorch only ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("sampathkethineedi/industry-classification") model = AutoModelForSequenceClassification.from_pretrained("industry-classification") industry_tags = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) industry_tags("Stellar Capital Services Limited is an India-based non-banking financial company ... loan against property, management consultancy, personal loans and unsecured loans.") '''Ouput''' [{'label': 'Consumer Finance', 'score': 0.9841355681419373}] ``` ## Limitations and bias Training data is only for Indian companies
aodiniz/bert_uncased_L-2_H-512_A-8_cord19-200616
aodiniz
2021-05-18T23:48:58Z
8
0
transformers
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "arxiv:1908.08962", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# BERT L-2 H-512 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with [2 Transformer layers and hidden embedding of size 512](https://huggingface.co/google/bert_uncased_L-2_H-512_A-8), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model ```bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-2_H-512_A-8 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 512 --per_device_train_batch_size 20 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-2_H-512_A-8_cord19-200616
agiagoulas/bert-pss
agiagoulas
2021-05-18T23:16:17Z
4
0
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
bert-base-uncased model trained on the tobacco800 dataset for the task of page-stream-segmentation. [Link](https://github.com/agiagoulas/page-stream-segmentation) to the GitHub Repo with the model implementation.
abhishek/autonlp-japanese-sentiment-59362
abhishek
2021-05-18T22:55:03Z
12
2
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autonlp", "ja", "dataset:abhishek/autonlp-data-japanese-sentiment", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: ja widget: - text: "I love AutoNLP 🤗" datasets: - abhishek/autonlp-data-japanese-sentiment --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 59362 ## Validation Metrics - Loss: 0.13092292845249176 - Accuracy: 0.9527127414314258 - Precision: 0.9634070704982427 - Recall: 0.9842171959602166 - AUC: 0.9667289746092403 - F1: 0.9737009564152002 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-japanese-sentiment-59362 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-japanese-sentiment-59362", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-japanese-sentiment-59362", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
abhishek/autonlp-imdb_eval-71421
abhishek
2021-05-18T22:54:10Z
4
0
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autonlp", "en", "dataset:abhishek/autonlp-data-imdb_eval", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - abhishek/autonlp-data-imdb_eval --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 71421 ## Validation Metrics - Loss: 0.4114699363708496 - Accuracy: 0.8248248248248248 - Precision: 0.8305439330543933 - Recall: 0.8085539714867617 - AUC: 0.9088033420466026 - F1: 0.8194014447884417 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-imdb_eval-71421 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-imdb_eval-71421", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-imdb_eval-71421", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
apanc/russian-inappropriate-messages
apanc
2021-05-18T22:39:46Z
3,244
20
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "toxic comments classification", "ru", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - ru tags: - toxic comments classification licenses: - cc-by-nc-sa --- ## General concept of the model #### Proposed usage The **'inappropriateness'** substance we tried to collect in the dataset and detect with the model **is NOT a substitution of toxicity**, it is rather a derivative of toxicity. So the model based on our dataset could serve as **an additional layer of inappropriateness filtering after toxicity and obscenity filtration**. You can detect the exact sensitive topic by using [another model](https://huggingface.co/Skoltech/russian-sensitive-topics). The proposed pipeline is shown in the scheme below. ![alternativetext](https://huggingface.co/Skoltech/russian-inappropriate-messages/raw/main/classifier_scheme_with_comments.jpg) You can also train one classifier for both toxicity and inappropriateness detection. The data to be mixed with toxic labelled samples could be found on our [GitHub](https://github.com/skoltech-nlp/inappropriate-sensitive-topics/blob/main/Version2/appropriateness/Appropriateness.csv) or on [kaggle](https://www.kaggle.com/nigula/russianinappropriatemessages) #### Inappropraiteness intuition This model is trained on the dataset of inappropriate messages of the Russian language. Generally, an inappropriate utterance is an utterance that has not obscene words or any kind of toxic intent, but can still harm the reputation of the speaker. Find some sample for more intuition in the table below. Learn more about the concept of inappropriateness [in this article ](https://www.aclweb.org/anthology/2021.bsnlp-1.4/) presented at the workshop for Balto-Slavic NLP at the EACL-2021 conference. Please note that this article describes the first version of the dataset, while the model is trained on the extended version of the dataset open-sourced on our [GitHub](https://github.com/skoltech-nlp/inappropriate-sensitive-topics/blob/main/Version2/appropriateness/Appropriateness.csv) or on [kaggle](https://www.kaggle.com/nigula/russianinappropriatemessages). The properties of the dataset are the same as the one described in the article, the only difference is the size. | Text | Inappropriate | Comment | Unsafe topic | |------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------|---------------| | Ладно бы видного деятеля завалили а тут какого то ноунейм нигру преступника | yes | Оправдание убийства | offline crime | | Это нарушение УКРФ! | no | Осуждение нарушения закона | offline crime | | Религия - это насилие высшего уровня. Верующего принуждают к вере еще в младенчестве. | yes | Оскорбление чувств верующих | religion | | Христиане, как вы относитесь к иноверцам, в частности к Гамалиилу и к уверовавшим в Иисуса фарисеям? | no | Обычные вопросы к верующим без намека на оскорбление их чувств | religion | | Хорошо что проституция запрещена | no | Осуждение простуитуции | prostitution | | Возьму бабки и сниму шлюх на выходных | yes | Популяризация проституции | prostitution | #### Metrics The model was trained, validated, and tested only on the samples with 100% confidence, which allowed to get the following metrics on test set: | | precision | recall | f1-score | support | |--------------|----------|--------|----------|---------| | 0 | 0.92 | 0.93 | 0.93 | 7839 | | 1 | 0.80 | 0.76 | 0.78 | 2726 | | accuracy | | | 0.89 | 10565 | | macro avg | 0.86 | 0.85 | 0.85 | 10565 | | weighted avg | 0.89 | 0.89 | 0.89 | 10565 | ## Licensing Information [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png ## Citation If you find this repository helpful, feel free to cite our publication: ``` @inproceedings{babakov-etal-2021-detecting, title = "Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company{'}s Reputation", author = "Babakov, Nikolay and Logacheva, Varvara and Kozlova, Olga and Semenov, Nikita and Panchenko, Alexander", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.4", pages = "26--36", abstract = "Not all topics are equally {``}flammable{''} in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labelling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labelled dataset and an appropriateness-labelled dataset. We also release pre-trained classification models trained on this data.", } ``` ## Contacts If you have any questions please contact [Nikolay](mailto:N.Babakov@skoltech.ru)
Sahajtomar/NER_legal_de
Sahajtomar
2021-05-18T22:27:00Z
9
3
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "NER", "de", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: de tags: - pytorch - tf - bert - NER datasets: - legal entity recognition --- ### NER model trained on BERT MODEL used for fine tuning is GBERT Large by deepset.ai ## Test Accuracy: 98 \ F1: 84.1 \ Precision: 82.7 \ Recall: 85.5 ## Model inferencing: ```python !pip install -q transformers from transformers import pipeline ner = pipeline( "ner", model="Sahajtomar/NER_legal_de", tokenizer="Sahajtomar/NER_legal_de") nlp_ner("Für eine Zuständigkeit des Verwaltungsgerichts Berlin nach § 52 Nr. 1 bis 4 VwGO hat der \ Antragsteller keine Anhaltspunkte vorgetragen .") ```
Sahajtomar/German_Zeroshot
Sahajtomar
2021-05-18T22:22:18Z
1,810
25
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "nli", "xnli", "de", "zero-shot-classification", "multilingual", "dataset:xnli", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:04Z
--- language: multilingual tags: - text-classification - pytorch - nli - xnli - de datasets: - xnli pipeline_tag: zero-shot-classification widget: - text: "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie" candidate_labels: "Verbrechen,Tragödie,Stehlen" hypothesis_template: "In deisem geht es um {}." --- # German Zeroshot ## Model Description This model has [GBERT Large](https://huggingface.co/deepset/gbert-large) as base model and fine-tuned it on xnli de dataset. The default hypothesis template is in English: `This text is {}`. While using this model , change it to "In deisem geht es um {}." or something different. While inferencing through huggingface api may give poor results as it uses by default english template. Since model is monolingual and not multilingual, hypothesis template needs to be changed accordingly. ## XNLI DEV (german) Accuracy: 85.5 ## XNLI TEST (german) Accuracy: 83.6 #### Zero-shot classification pipeline ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Sahajtomar/German_Zeroshot") sequence = "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie" candidate_labels = ["Verbrechen","Tragödie","Stehlen"] hypothesis_template = "In deisem geht es um {}." ## Since monolingual model,its sensitive to hypothesis template. This can be experimented classifier(sequence, candidate_labels, hypothesis_template=hypothesis_template) """{'labels': ['Tragödie', 'Verbrechen', 'Stehlen'], 'scores': [0.8328856854438782, 0.10494536352157593, 0.06316883927583696], 'sequence': 'Letzte Woche gab es einen Selbstmord in einer nahe gelegenen Kolonie'}""" ```
NeuML/bert-small-cord19qa
NeuML
2021-05-18T21:53:32Z
256
2
transformers
[ "transformers", "pytorch", "jax", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
# BERT-Small fine-tuned on CORD-19 QA dataset [bert-small-cord19-squad model](https://huggingface.co/NeuML/bert-small-cord19-squad2) fine-tuned on the [CORD-19 QA dataset](https://www.kaggle.com/davidmezzetti/cord19-qa?select=cord19-qa.json). ## CORD-19 QA dataset The CORD-19 QA dataset is a SQuAD 2.0 formatted list of question, context, answer combinations covering the [CORD-19 dataset](https://www.semanticscholar.org/cord19). ## Building the model ```bash python run_squad.py \ --model_type bert \ --model_name_or_path bert-small-cord19-squad \ --do_train \ --do_lower_case \ --version_2_with_negative \ --train_file cord19-qa.json \ --per_gpu_train_batch_size 8 \ --learning_rate 5e-5 \ --num_train_epochs 10.0 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir bert-small-cord19qa \ --save_steps 0 \ --threads 8 \ --overwrite_cache \ --overwrite_output_dir ``` ## Testing the model Example usage below: ```python from transformers import pipeline qa = pipeline( "question-answering", model="NeuML/bert-small-cord19qa", tokenizer="NeuML/bert-small-cord19qa" ) qa({ "question": "What is the median incubation period?", "context": "The incubation period is around 5 days (range: 4-7 days) with a maximum of 12-13 day" }) qa({ "question": "What is the incubation period range?", "context": "The incubation period is around 5 days (range: 4-7 days) with a maximum of 12-13 day" }) qa({ "question": "What type of surfaces does it persist?", "context": "The virus can survive on surfaces for up to 72 hours such as plastic and stainless steel ." }) ``` ```json {"score": 0.5970273583242793, "start": 32, "end": 38, "answer": "5 days"} {"score": 0.999555868193891, "start": 39, "end": 56, "answer": "(range: 4-7 days)"} {"score": 0.9992726505196998, "start": 61, "end": 88, "answer": "plastic and stainless steel"} ```
NeuML/bert-small-cord19
NeuML
2021-05-18T21:52:56Z
5
1
transformers
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
# BERT-Small fine-tuned on CORD-19 dataset [BERT L6_H-512_A-8 model](https://huggingface.co/google/bert_uncased_L-6_H-512_A-8) fine-tuned on the [CORD-19 dataset](https://www.semanticscholar.org/cord19). ## CORD-19 data subset The training data for this dataset is stored as a [Kaggle dataset](https://www.kaggle.com/davidmezzetti/cord19-qa?select=cord19.txt). The training data is a subset of the full corpus, focusing on high-quality, study-design detected articles. ## Building the model ```bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-6_H-512_A-8 --do_train --mlm --line_by_line --block_size 512 --train_data_file cord19.txt --per_gpu_train_batch_size 4 --learning_rate 3e-5 --num_train_epochs 3.0 --output_dir bert-small-cord19 --save_steps 0 --overwrite_output_dir
MutazYoune/Ara_DialectBERT
MutazYoune
2021-05-18T21:44:01Z
4
0
transformers
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "ar", "dataset:HARD-Arabic-Dataset", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: ar datasets: - HARD-Arabic-Dataset --- # Ara-dialect-BERT We used a pretrained model to further train it on [HARD-Arabic-Dataset](https://github.com/elnagara/HARD-Arabic-Dataset), the weights were initialized using [CAMeL-Lab](https://huggingface.co/CAMeL-Lab/bert-base-camelbert-msa-eighth) "bert-base-camelbert-msa-eighth" model ### Usage The model weights can be loaded using `transformers` library by HuggingFace. ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("MutazYoune/Ara_DialectBERT") model = AutoModel.from_pretrained("MutazYoune/Ara_DialectBERT") ``` Example using `pipeline`: ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="MutazYoune/Ara_DialectBERT", tokenizer="MutazYoune/Ara_DialectBERT" ) fill_mask("الفندق جميل و لكن [MASK] بعيد") ``` ```python {'sequence': 'الفندق جميل و لكن الموقع بعيد', 'score': 0.28233852982521057, 'token': 3221, 'token_str': 'الموقع'} {'sequence': 'الفندق جميل و لكن موقعه بعيد', 'score': 0.24436227977275848, 'token': 19218, 'token_str': 'موقعه'} {'sequence': 'الفندق جميل و لكن المكان بعيد', 'score': 0.15372352302074432, 'token': 5401, 'token_str': 'المكان'} {'sequence': 'الفندق جميل و لكن الفندق بعيد', 'score': 0.029026474803686142, 'token': 11133, 'token_str': 'الفندق'} {'sequence': 'الفندق جميل و لكن مكانه بعيد', 'score': 0.024554792791604996, 'token': 10701, 'token_str': 'مكانه'}
M-CLIP/M-BERT-Base-ViT-B
M-CLIP
2021-05-18T21:34:39Z
3,399
12
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
<br /> <p align="center"> <h1 align="center">M-BERT Base ViT-B</h1> <p align="center"> <a href="https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Base%20ViT-B">Github Model Card</a> </p> </p> ## Usage To use this model along with the original CLIP vision encoder you need to download the code and additional linear weights from the [Multilingual-CLIP Github](https://github.com/FreddeFrallan/Multilingual-CLIP). Once this is done, you can load and use the model with the following code ```python from src import multilingual_clip model = multilingual_clip.load_model('M-BERT-Base-ViT') embeddings = model(['Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?']) print(embeddings.shape) # Yields: torch.Size([3, 640]) ``` <!-- ABOUT THE PROJECT --> ## About A [BERT-base-multilingual](https://huggingface.co/bert-base-multilingual-cased) tuned to match the embedding space for [69 languages](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/Model%20Cards/M-BERT%20Base%2069/Fine-Tune-Languages.md), to the embedding space of the CLIP text encoder which accompanies the ViT-B/32 vision encoder. <br> A full list of the 100 languages used during pre-training can be found [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages), and a list of the 4069languages used during fine-tuning can be found in [SupportedLanguages.md](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/Model%20Cards/M-BERT%20Base%2069/Fine-Tune-Languages.md). Training data pairs was generated by sampling 40k sentences for each language from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into the corresponding language. All translation was done using the [AWS translate service](https://aws.amazon.com/translate/), the quality of these translations have currently not been analyzed, but one can assume the quality varies between the 69 languages.
HooshvareLab/bert-fa-zwnj-base
HooshvareLab
2021-05-18T21:05:42Z
10,583
15
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "fa", "arxiv:2005.12515", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: fa license: apache-2.0 --- # ParsBERT (v3.0) A Transformer-based Model for Persian Language Understanding The new version of BERT v3.0 for Persian is available today and can tackle the zero-width non-joiner character for Persian writing. Also, the model was trained on new multi-types corpora with a new set of vocabulary. ## Introduction ParsBERT is a monolingual language model based on Google’s BERT architecture. This model is pre-trained on large Persian corpora with various writing styles from numerous subjects (e.g., scientific, novels, news). Paper presenting ParsBERT: [arXiv:2005.12515](https://arxiv.org/abs/2005.12515) ### BibTeX entry and citation info Please cite in publications as the following: ```bibtex @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Questions? Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo.
HooshvareLab/bert-fa-base-uncased
HooshvareLab
2021-05-18T21:02:21Z
17,958
18
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "bert-fa", "bert-persian", "persian-lm", "fa", "arxiv:2005.12515", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: fa tags: - bert-fa - bert-persian - persian-lm license: apache-2.0 --- # ParsBERT (v2.0) A Transformer-based Model for Persian Language Understanding We reconstructed the vocabulary and fine-tuned the ParsBERT v1.1 on the new Persian corpora in order to provide some functionalities for using ParsBERT in other scopes! Please follow the [ParsBERT](https://github.com/hooshvare/parsbert) repo for the latest information about previous and current models. ## Introduction ParsBERT is a monolingual language model based on Google’s BERT architecture. This model is pre-trained on large Persian corpora with various writing styles from numerous subjects (e.g., scientific, novels, news) with more than `3.9M` documents, `73M` sentences, and `1.3B` words. Paper presenting ParsBERT: [arXiv:2005.12515](https://arxiv.org/abs/2005.12515) ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?search=bert-fa) to look for fine-tuned versions on a task that interests you. ### How to use #### TensorFlow 2.0 ```python from transformers import AutoConfig, AutoTokenizer, TFAutoModel config = AutoConfig.from_pretrained("HooshvareLab/bert-fa-base-uncased") tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-base-uncased") model = TFAutoModel.from_pretrained("HooshvareLab/bert-fa-base-uncased") text = "ما در هوشواره معتقدیم با انتقال صحیح دانش و آگاهی، همه افراد میتوانند از ابزارهای هوشمند استفاده کنند. شعار ما هوش مصنوعی برای همه است." tokenizer.tokenize(text) >>> ['ما', 'در', 'هوش', '##واره', 'معتقدیم', 'با', 'انتقال', 'صحیح', 'دانش', 'و', 'اگاهی', '،', 'همه', 'افراد', 'میتوانند', 'از', 'ابزارهای', 'هوشمند', 'استفاده', 'کنند', '.', 'شعار', 'ما', 'هوش', 'مصنوعی', 'برای', 'همه', 'است', '.'] ``` #### Pytorch ```python from transformers import AutoConfig, AutoTokenizer, AutoModel config = AutoConfig.from_pretrained("HooshvareLab/bert-fa-base-uncased") tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-base-uncased") model = AutoModel.from_pretrained("HooshvareLab/bert-fa-base-uncased") ``` ## Training ParsBERT trained on a massive amount of public corpora ([Persian Wikidumps](https://dumps.wikimedia.org/fawiki/), [MirasText](https://github.com/miras-tech/MirasText)) and six other manually crawled text data from a various type of websites ([BigBang Page](https://bigbangpage.com/) `scientific`, [Chetor](https://www.chetor.com/) `lifestyle`, [Eligasht](https://www.eligasht.com/Blog/) `itinerary`, [Digikala](https://www.digikala.com/mag/) `digital magazine`, [Ted Talks](https://www.ted.com/talks) `general conversational`, Books `novels, storybooks, short stories from old to the contemporary era`). As a part of ParsBERT methodology, an extensive pre-processing combining POS tagging and WordPiece segmentation was carried out to bring the corpora into a proper format. ## Goals Objective goals during training are as below (after 300k steps). ``` bash ***** Eval results ***** global_step = 300000 loss = 1.4392426 masked_lm_accuracy = 0.6865794 masked_lm_loss = 1.4469004 next_sentence_accuracy = 1.0 next_sentence_loss = 6.534152e-05 ``` ## Derivative models ### Base Config #### ParsBERT v2.0 Model - [HooshvareLab/bert-fa-base-uncased](https://huggingface.co/HooshvareLab/bert-fa-base-uncased) #### ParsBERT v2.0 Sentiment Analysis - [HooshvareLab/bert-fa-base-uncased-sentiment-digikala](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-digikala) - [HooshvareLab/bert-fa-base-uncased-sentiment-snappfood](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-snappfood) - [HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-binary](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-binary) - [HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-multi](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-multi) #### ParsBERT v2.0 Text Classification - [HooshvareLab/bert-fa-base-uncased-clf-digimag](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-clf-digimag) - [HooshvareLab/bert-fa-base-uncased-clf-persiannews](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-clf-persiannews) #### ParsBERT v2.0 NER - [HooshvareLab/bert-fa-base-uncased-ner-peyma](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-ner-peyma) - [HooshvareLab/bert-fa-base-uncased-ner-arman](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-ner-arman) ## Eval results ParsBERT is evaluated on three NLP downstream tasks: Sentiment Analysis (SA), Text Classification, and Named Entity Recognition (NER). For this matter and due to insufficient resources, two large datasets for SA and two for text classification were manually composed, which are available for public use and benchmarking. ParsBERT outperformed all other language models, including multilingual BERT and other hybrid deep learning models for all tasks, improving the state-of-the-art performance in Persian language modeling. ### Sentiment Analysis (SA) Task | Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | DeepSentiPers | |:------------------------:|:-----------:|:-----------:|:-----:|:-------------:| | Digikala User Comments | 81.72 | 81.74* | 80.74 | - | | SnappFood User Comments | 87.98 | 88.12* | 87.87 | - | | SentiPers (Multi Class) | 71.31* | 71.11 | - | 69.33 | | SentiPers (Binary Class) | 92.42* | 92.13 | - | 91.98 | ### Text Classification (TC) Task | Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | |:-----------------:|:-----------:|:-----------:|:-----:| | Digikala Magazine | 93.65* | 93.59 | 90.72 | | Persian News | 97.44* | 97.19 | 95.79 | ### Named Entity Recognition (NER) Task | Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | MorphoBERT | Beheshti-NER | LSTM-CRF | Rule-Based CRF | BiLSTM-CRF | |:-------:|:-----------:|:-----------:|:-----:|:----------:|:------------:|:--------:|:--------------:|:----------:| | PEYMA | 93.40* | 93.10 | 86.64 | - | 90.59 | - | 84.00 | - | | ARMAN | 99.84* | 98.79 | 95.89 | 89.9 | 84.03 | 86.55 | - | 77.45 | ### BibTeX entry and citation info Please cite in publications as the following: ```bibtex @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Questions? Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo.
HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-multi
HooshvareLab
2021-05-18T20:58:01Z
130
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "fa", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: fa license: apache-2.0 --- # ParsBERT (v2.0) A Transformer-based Model for Persian Language Understanding We reconstructed the vocabulary and fine-tuned the ParsBERT v1.1 on the new Persian corpora in order to provide some functionalities for using ParsBERT in other scopes! Please follow the [ParsBERT](https://github.com/hooshvare/parsbert) repo for the latest information about previous and current models. ## Persian Sentiment [Digikala, SnappFood, DeepSentiPers] It aims to classify text, such as comments, based on their emotional bias. We tested three well-known datasets for this task: `Digikala` user comments, `SnappFood` user comments, and `DeepSentiPers` in two binary-form and multi-form types. ### DeepSentiPers which is a balanced and augmented version of SentiPers, contains 12,138 user opinions about digital products labeled with five different classes; two positives (i.e., happy and delighted), two negatives (i.e., furious and angry) and one neutral class. Therefore, this dataset can be utilized for both multi-class and binary classification. In the case of binary classification, the neutral class and its corresponding sentences are removed from the dataset. **Binary:** 1. Negative (Furious + Angry) 2. Positive (Happy + Delighted) **Multi** 1. Furious 2. Angry 3. Neutral 4. Happy 5. Delighted | Label | # | |:---------:|:----:| | Furious | 236 | | Angry | 1357 | | Neutral | 2874 | | Happy | 2848 | | Delighted | 2516 | **Download** You can download the dataset from: - [SentiPers](https://github.com/phosseini/sentipers) - [DeepSentiPers](https://github.com/JoyeBright/DeepSentiPers) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | DeepSentiPers | |:------------------------:|:-----------:|:-----------:|:-----:|:-------------:| | SentiPers (Multi Class) | 71.31* | 71.11 | - | 69.33 | | SentiPers (Binary Class) | 92.42* | 92.13 | - | 91.98 | ## How to use :hugs: | Task | Notebook | |---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Sentiment Analysis | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert/blob/master/notebooks/Taaghche_Sentiment_Analysis.ipynb) | ### BibTeX entry and citation info Please cite in publications as the following: ```bibtex @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Questions? Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo.
HooshvareLab/bert-fa-base-uncased-ner-peyma
HooshvareLab
2021-05-18T20:55:10Z
424
6
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "fa", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: fa license: apache-2.0 --- # ParsBERT (v2.0) A Transformer-based Model for Persian Language Understanding We reconstructed the vocabulary and fine-tuned the ParsBERT v1.1 on the new Persian corpora in order to provide some functionalities for using ParsBERT in other scopes! Please follow the [ParsBERT](https://github.com/hooshvare/parsbert) repo for the latest information about previous and current models. ## Persian NER [ARMAN, PEYMA] This task aims to extract named entities in the text, such as names and label with appropriate `NER` classes such as locations, organizations, etc. The datasets used for this task contain sentences that are marked with `IOB` format. In this format, tokens that are not part of an entity are tagged as `”O”` the `”B”`tag corresponds to the first word of an object, and the `”I”` tag corresponds to the rest of the terms of the same entity. Both `”B”` and `”I”` tags are followed by a hyphen (or underscore), followed by the entity category. Therefore, the NER task is a multi-class token classification problem that labels the tokens upon being fed a raw text. There are two primary datasets used in Persian NER, `ARMAN`, and `PEYMA`. ### PEYMA PEYMA dataset includes 7,145 sentences with a total of 302,530 tokens from which 41,148 tokens are tagged with seven different classes. 1. Organization 2. Money 3. Location 4. Date 5. Time 6. Person 7. Percent | Label | # | |:------------:|:-----:| | Organization | 16964 | | Money | 2037 | | Location | 8782 | | Date | 4259 | | Time | 732 | | Person | 7675 | | Percent | 699 | **Download** You can download the dataset from [here](http://nsurl.org/tasks/task-7-named-entity-recognition-ner-for-farsi/) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | MorphoBERT | Beheshti-NER | LSTM-CRF | Rule-Based CRF | BiLSTM-CRF | |---------|-------------|-------------|-------|------------|--------------|----------|----------------|------------| | PEYMA | 93.40* | 93.10 | 86.64 | - | 90.59 | - | 84.00 | - | ## How to use :hugs: | Notebook | Description | | |:----------|:-------------|------:| | [How to use Pipelines](https://github.com/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | Simple and efficient way to use State-of-the-Art models on downstream tasks through transformers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | ### BibTeX entry and citation info Please cite in publications as the following: ```bibtex @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Questions? Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo.
HooshvareLab/bert-fa-base-uncased-ner-arman
HooshvareLab
2021-05-18T20:52:21Z
50
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "fa", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: fa license: apache-2.0 --- # ParsBERT (v2.0) A Transformer-based Model for Persian Language Understanding We reconstructed the vocabulary and fine-tuned the ParsBERT v1.1 on the new Persian corpora in order to provide some functionalities for using ParsBERT in other scopes! Please follow the [ParsBERT](https://github.com/hooshvare/parsbert) repo for the latest information about previous and current models. ## Persian NER [ARMAN, PEYMA] This task aims to extract named entities in the text, such as names and label with appropriate `NER` classes such as locations, organizations, etc. The datasets used for this task contain sentences that are marked with `IOB` format. In this format, tokens that are not part of an entity are tagged as `”O”` the `”B”`tag corresponds to the first word of an object, and the `”I”` tag corresponds to the rest of the terms of the same entity. Both `”B”` and `”I”` tags are followed by a hyphen (or underscore), followed by the entity category. Therefore, the NER task is a multi-class token classification problem that labels the tokens upon being fed a raw text. There are two primary datasets used in Persian NER, `ARMAN`, and `PEYMA`. ### ARMAN ARMAN dataset holds 7,682 sentences with 250,015 sentences tagged over six different classes. 1. Organization 2. Location 3. Facility 4. Event 5. Product 6. Person | Label | # | |:------------:|:-----:| | Organization | 30108 | | Location | 12924 | | Facility | 4458 | | Event | 7557 | | Product | 4389 | | Person | 15645 | **Download** You can download the dataset from [here](https://github.com/HaniehP/PersianNER) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | MorphoBERT | Beheshti-NER | LSTM-CRF | Rule-Based CRF | BiLSTM-CRF | |---------|-------------|-------------|-------|------------|--------------|----------|----------------|------------| | ARMAN | 99.84* | 98.79 | 95.89 | 89.9 | 84.03 | 86.55 | - | 77.45 | ## How to use :hugs: | Notebook | Description | | |:----------|:-------------|------:| | [How to use Pipelines](https://github.com/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | Simple and efficient way to use State-of-the-Art models on downstream tasks through transformers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | ### BibTeX entry and citation info Please cite in publications as the following: ```bibtex @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Questions? Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo.
HooshvareLab/bert-fa-base-uncased-clf-persiannews
HooshvareLab
2021-05-18T20:51:07Z
1,469
8
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "fa", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: fa license: apache-2.0 --- # ParsBERT (v2.0) A Transformer-based Model for Persian Language Understanding We reconstructed the vocabulary and fine-tuned the ParsBERT v1.1 on the new Persian corpora in order to provide some functionalities for using ParsBERT in other scopes! Please follow the [ParsBERT](https://github.com/hooshvare/parsbert) repo for the latest information about previous and current models. ## Persian Text Classification [DigiMag, Persian News] The task target is labeling texts in a supervised manner in both existing datasets `DigiMag` and `Persian News`. ### Persian News A dataset of various news articles scraped from different online news agencies' websites. The total number of articles is 16,438, spread over eight different classes. 1. Economic 2. International 3. Political 4. Science Technology 5. Cultural Art 6. Sport 7. Medical | Label | # | |:------------------:|:----:| | Social | 2170 | | Economic | 1564 | | International | 1975 | | Political | 2269 | | Science Technology | 2436 | | Cultural Art | 2558 | | Sport | 1381 | | Medical | 2085 | **Download** You can download the dataset from [here](https://drive.google.com/uc?id=1B6xotfXCcW9xS1mYSBQos7OCg0ratzKC) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | |:-----------------:|:-----------:|:-----------:|:-----:| | Persian News | 97.44* | 97.19 | 95.79 | ## How to use :hugs: | Task | Notebook | |---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Text Classification | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert/blob/master/notebooks/Taaghche_Sentiment_Analysis.ipynb) | ### BibTeX entry and citation info Please cite in publications as the following: ```bibtex @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Questions? Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo.
HooshvareLab/bert-fa-base-uncased-clf-digimag
HooshvareLab
2021-05-18T20:48:44Z
55
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "fa", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: fa license: apache-2.0 --- # ParsBERT (v2.0) A Transformer-based Model for Persian Language Understanding We reconstructed the vocabulary and fine-tuned the ParsBERT v1.1 on the new Persian corpora in order to provide some functionalities for using ParsBERT in other scopes! Please follow the [ParsBERT](https://github.com/hooshvare/parsbert) repo for the latest information about previous and current models. ## Persian Text Classification [DigiMag, Persian News] The task target is labeling texts in a supervised manner in both existing datasets `DigiMag` and `Persian News`. ### DigiMag A total of 8,515 articles scraped from [Digikala Online Magazine](https://www.digikala.com/mag/). This dataset includes seven different classes. 1. Video Games 2. Shopping Guide 3. Health Beauty 4. Science Technology 5. General 6. Art Cinema 7. Books Literature | Label | # | |:------------------:|:----:| | Video Games | 1967 | | Shopping Guide | 125 | | Health Beauty | 1610 | | Science Technology | 2772 | | General | 120 | | Art Cinema | 1667 | | Books Literature | 254 | **Download** You can download the dataset from [here](https://drive.google.com/uc?id=1YgrCYY-Z0h2z0-PfWVfOGt1Tv0JDI-qz) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | |:-----------------:|:-----------:|:-----------:|:-----:| | Digikala Magazine | 93.65* | 93.59 | 90.72 | ## How to use :hugs: | Task | Notebook | |---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Text Classification | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert/blob/master/notebooks/Taaghche_Sentiment_Analysis.ipynb) | ### BibTeX entry and citation info Please cite in publications as the following: ```bibtex @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Questions? Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo.
HooshvareLab/bert-base-parsbert-peymaner-uncased
HooshvareLab
2021-05-18T20:45:45Z
35
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "fa", "arxiv:2005.12515", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: fa license: apache-2.0 --- ## ParsBERT: Transformer-based Model for Persian Language Understanding ParsBERT is a monolingual language model based on Google’s BERT architecture with the same configurations as BERT-Base. Paper presenting ParsBERT: [arXiv:2005.12515](https://arxiv.org/abs/2005.12515) All the models (downstream tasks) are uncased and trained with whole word masking. (coming soon stay tuned) ## Persian NER [ARMAN, PEYMA, ARMAN+PEYMA] This task aims to extract named entities in the text, such as names and label with appropriate `NER` classes such as locations, organizations, etc. The datasets used for this task contain sentences that are marked with `IOB` format. In this format, tokens that are not part of an entity are tagged as `”O”` the `”B”`tag corresponds to the first word of an object, and the `”I”` tag corresponds to the rest of the terms of the same entity. Both `”B”` and `”I”` tags are followed by a hyphen (or underscore), followed by the entity category. Therefore, the NER task is a multi-class token classification problem that labels the tokens upon being fed a raw text. There are two primary datasets used in Persian NER, `ARMAN`, and `PEYMA`. In ParsBERT, we prepared ner for both datasets as well as a combination of both datasets. ### PEYMA PEYMA dataset includes 7,145 sentences with a total of 302,530 tokens from which 41,148 tokens are tagged with seven different classes. 1. Organization 2. Money 3. Location 4. Date 5. Time 6. Person 7. Percent | Label | # | |:------------:|:-----:| | Organization | 16964 | | Money | 2037 | | Location | 8782 | | Date | 4259 | | Time | 732 | | Person | 7675 | | Percent | 699 | **Download** You can download the dataset from [here](http://nsurl.org/tasks/task-7-named-entity-recognition-ner-for-farsi/) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ParsBERT | MorphoBERT | Beheshti-NER | LSTM-CRF | Rule-Based CRF | BiLSTM-CRF | |---------|----------|------------|--------------|----------|----------------|------------| | PEYMA | 98.79* | - | 90.59 | - | 84.00 | - | ## How to use :hugs: | Notebook | Description | | |:----------|:-------------|------:| | [How to use Pipelines](https://github.com/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | Simple and efficient way to use State-of-the-Art models on downstream tasks through transformers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | ## Cite Please cite the following paper in your publication if you are using [ParsBERT](https://arxiv.org/abs/2005.12515) in your research: ```markdown @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Acknowledgments We hereby, express our gratitude to the [Tensorflow Research Cloud (TFRC) program](https://tensorflow.org/tfrc) for providing us with the necessary computation resources. We also thank [Hooshvare](https://hooshvare.com) Research Group for facilitating dataset gathering and scraping online text resources. ## Contributors - Mehrdad Farahani: [Linkedin](https://www.linkedin.com/in/m3hrdadfi/), [Twitter](https://twitter.com/m3hrdadfi), [Github](https://github.com/m3hrdadfi) - Mohammad Gharachorloo: [Linkedin](https://www.linkedin.com/in/mohammad-gharachorloo/), [Twitter](https://twitter.com/MGharachorloo), [Github](https://github.com/baarsaam) - Marzieh Farahani: [Linkedin](https://www.linkedin.com/in/marziehphi/), [Twitter](https://twitter.com/marziehphi), [Github](https://github.com/marziehphi) - Mohammad Manthouri: [Linkedin](https://www.linkedin.com/in/mohammad-manthouri-aka-mansouri-07030766/), [Twitter](https://twitter.com/mmanthouri), [Github](https://github.com/mmanthouri) - Hooshvare Team: [Official Website](https://hooshvare.com/), [Linkedin](https://www.linkedin.com/company/hooshvare), [Twitter](https://twitter.com/hooshvare), [Github](https://github.com/hooshvare), [Instagram](https://www.instagram.com/hooshvare/) + And a special thanks to Sara Tabrizi for her fantastic poster design. Follow her on: [Linkedin](https://www.linkedin.com/in/sara-tabrizi-64548b79/), [Behance](https://www.behance.net/saratabrizi), [Instagram](https://www.instagram.com/sara_b_tabrizi/) ## Releases ### Release v0.1 (May 29, 2019) This is the first version of our ParsBERT NER!
HooshvareLab/bert-base-parsbert-ner-uncased
HooshvareLab
2021-05-18T20:43:54Z
17,676
5
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "fa", "arxiv:2005.12515", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: fa license: apache-2.0 --- ## ParsBERT: Transformer-based Model for Persian Language Understanding ParsBERT is a monolingual language model based on Google’s BERT architecture with the same configurations as BERT-Base. Paper presenting ParsBERT: [arXiv:2005.12515](https://arxiv.org/abs/2005.12515) All the models (downstream tasks) are uncased and trained with whole word masking. (coming soon stay tuned) ## Persian NER [ARMAN, PEYMA, ARMAN+PEYMA] This task aims to extract named entities in the text, such as names and label with appropriate `NER` classes such as locations, organizations, etc. The datasets used for this task contain sentences that are marked with `IOB` format. In this format, tokens that are not part of an entity are tagged as `”O”` the `”B”`tag corresponds to the first word of an object, and the `”I”` tag corresponds to the rest of the terms of the same entity. Both `”B”` and `”I”` tags are followed by a hyphen (or underscore), followed by the entity category. Therefore, the NER task is a multi-class token classification problem that labels the tokens upon being fed a raw text. There are two primary datasets used in Persian NER, `ARMAN`, and `PEYMA`. In ParsBERT, we prepared ner for both datasets as well as a combination of both datasets. ### PEYMA PEYMA dataset includes 7,145 sentences with a total of 302,530 tokens from which 41,148 tokens are tagged with seven different classes. 1. Organization 2. Money 3. Location 4. Date 5. Time 6. Person 7. Percent | Label | # | |:------------:|:-----:| | Organization | 16964 | | Money | 2037 | | Location | 8782 | | Date | 4259 | | Time | 732 | | Person | 7675 | | Percent | 699 | **Download** You can download the dataset from [here](http://nsurl.org/tasks/task-7-named-entity-recognition-ner-for-farsi/) --- ### ARMAN ARMAN dataset holds 7,682 sentences with 250,015 sentences tagged over six different classes. 1. Organization 2. Location 3. Facility 4. Event 5. Product 6. Person | Label | # | |:------------:|:-----:| | Organization | 30108 | | Location | 12924 | | Facility | 4458 | | Event | 7557 | | Product | 4389 | | Person | 15645 | **Download** You can download the dataset from [here](https://github.com/HaniehP/PersianNER) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ParsBERT | MorphoBERT | Beheshti-NER | LSTM-CRF | Rule-Based CRF | BiLSTM-CRF | |:---------------:|:--------:|:----------:|:--------------:|:----------:|:----------------:|:------------:| | ARMAN + PEYMA | 95.13* | - | - | - | - | - | | PEYMA | 98.79* | - | 90.59 | - | 84.00 | - | | ARMAN | 93.10* | 89.9 | 84.03 | 86.55 | - | 77.45 | ## How to use :hugs: | Notebook | Description | | |:----------|:-------------|------:| | [How to use Pipelines](https://github.com/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | Simple and efficient way to use State-of-the-Art models on downstream tasks through transformers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | ## Cite Please cite the following paper in your publication if you are using [ParsBERT](https://arxiv.org/abs/2005.12515) in your research: ```markdown @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Acknowledgments We hereby, express our gratitude to the [Tensorflow Research Cloud (TFRC) program](https://tensorflow.org/tfrc) for providing us with the necessary computation resources. We also thank [Hooshvare](https://hooshvare.com) Research Group for facilitating dataset gathering and scraping online text resources. ## Contributors - Mehrdad Farahani: [Linkedin](https://www.linkedin.com/in/m3hrdadfi/), [Twitter](https://twitter.com/m3hrdadfi), [Github](https://github.com/m3hrdadfi) - Mohammad Gharachorloo: [Linkedin](https://www.linkedin.com/in/mohammad-gharachorloo/), [Twitter](https://twitter.com/MGharachorloo), [Github](https://github.com/baarsaam) - Marzieh Farahani: [Linkedin](https://www.linkedin.com/in/marziehphi/), [Twitter](https://twitter.com/marziehphi), [Github](https://github.com/marziehphi) - Mohammad Manthouri: [Linkedin](https://www.linkedin.com/in/mohammad-manthouri-aka-mansouri-07030766/), [Twitter](https://twitter.com/mmanthouri), [Github](https://github.com/mmanthouri) - Hooshvare Team: [Official Website](https://hooshvare.com/), [Linkedin](https://www.linkedin.com/company/hooshvare), [Twitter](https://twitter.com/hooshvare), [Github](https://github.com/hooshvare), [Instagram](https://www.instagram.com/hooshvare/) + And a special thanks to Sara Tabrizi for her fantastic poster design. Follow her on: [Linkedin](https://www.linkedin.com/in/sara-tabrizi-64548b79/), [Behance](https://www.behance.net/saratabrizi), [Instagram](https://www.instagram.com/sara_b_tabrizi/) ## Releases ### Release v0.1 (May 29, 2019) This is the first version of our ParsBERT NER!
HooshvareLab/bert-base-parsbert-armanner-uncased
HooshvareLab
2021-05-18T20:42:28Z
117
3
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "fa", "arxiv:2005.12515", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: fa license: apache-2.0 --- ## ParsBERT: Transformer-based Model for Persian Language Understanding ParsBERT is a monolingual language model based on Google’s BERT architecture with the same configurations as BERT-Base. Paper presenting ParsBERT: [arXiv:2005.12515](https://arxiv.org/abs/2005.12515) All the models (downstream tasks) are uncased and trained with whole word masking. (coming soon stay tuned) ## Persian NER [ARMAN, PEYMA, ARMAN+PEYMA] This task aims to extract named entities in the text, such as names and label with appropriate `NER` classes such as locations, organizations, etc. The datasets used for this task contain sentences that are marked with `IOB` format. In this format, tokens that are not part of an entity are tagged as `”O”` the `”B”`tag corresponds to the first word of an object, and the `”I”` tag corresponds to the rest of the terms of the same entity. Both `”B”` and `”I”` tags are followed by a hyphen (or underscore), followed by the entity category. Therefore, the NER task is a multi-class token classification problem that labels the tokens upon being fed a raw text. There are two primary datasets used in Persian NER, `ARMAN`, and `PEYMA`. In ParsBERT, we prepared ner for both datasets as well as a combination of both datasets. ### ARMAN ARMAN dataset holds 7,682 sentences with 250,015 sentences tagged over six different classes. 1. Organization 2. Location 3. Facility 4. Event 5. Product 6. Person | Label | # | |:------------:|:-----:| | Organization | 30108 | | Location | 12924 | | Facility | 4458 | | Event | 7557 | | Product | 4389 | | Person | 15645 | **Download** You can download the dataset from [here](https://github.com/HaniehP/PersianNER) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ParsBERT | MorphoBERT | Beheshti-NER | LSTM-CRF | Rule-Based CRF | BiLSTM-CRF | |---------|----------|------------|--------------|----------|----------------|------------| | ARMAN | 93.10* | 89.9 | 84.03 | 86.55 | - | 77.45 | ## How to use :hugs: | Notebook | Description | | |:----------|:-------------|------:| | [How to use Pipelines](https://github.com/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | Simple and efficient way to use State-of-the-Art models on downstream tasks through transformers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | ## Cite Please cite the following paper in your publication if you are using [ParsBERT](https://arxiv.org/abs/2005.12515) in your research: ```markdown @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Acknowledgments We hereby, express our gratitude to the [Tensorflow Research Cloud (TFRC) program](https://tensorflow.org/tfrc) for providing us with the necessary computation resources. We also thank [Hooshvare](https://hooshvare.com) Research Group for facilitating dataset gathering and scraping online text resources. ## Contributors - Mehrdad Farahani: [Linkedin](https://www.linkedin.com/in/m3hrdadfi/), [Twitter](https://twitter.com/m3hrdadfi), [Github](https://github.com/m3hrdadfi) - Mohammad Gharachorloo: [Linkedin](https://www.linkedin.com/in/mohammad-gharachorloo/), [Twitter](https://twitter.com/MGharachorloo), [Github](https://github.com/baarsaam) - Marzieh Farahani: [Linkedin](https://www.linkedin.com/in/marziehphi/), [Twitter](https://twitter.com/marziehphi), [Github](https://github.com/marziehphi) - Mohammad Manthouri: [Linkedin](https://www.linkedin.com/in/mohammad-manthouri-aka-mansouri-07030766/), [Twitter](https://twitter.com/mmanthouri), [Github](https://github.com/mmanthouri) - Hooshvare Team: [Official Website](https://hooshvare.com/), [Linkedin](https://www.linkedin.com/company/hooshvare), [Twitter](https://twitter.com/hooshvare), [Github](https://github.com/hooshvare), [Instagram](https://www.instagram.com/hooshvare/) + And a special thanks to Sara Tabrizi for her fantastic poster design. Follow her on: [Linkedin](https://www.linkedin.com/in/sara-tabrizi-64548b79/), [Behance](https://www.behance.net/saratabrizi), [Instagram](https://www.instagram.com/sara_b_tabrizi/) ## Releases ### Release v0.1 (May 29, 2019) This is the first version of our ParsBERT NER!
GroNLP/bert-base-dutch-cased-upos-alpino-gronings
GroNLP
2021-05-18T20:23:32Z
8
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "BERTje", "pos", "gos", "arxiv:2105.02855", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: gos tags: - BERTje - pos --- Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling # Adapting Monolingual Models: Data can be Scarce when Language Similarity is High This model is part of this paper + code: - 📝 [Paper](https://arxiv.org/abs/2105.02855) - 💻 [Code](https://github.com/wietsedv/low-resource-adapt) ## Models The best fine-tuned models for Gronings and West Frisian are available on the HuggingFace model hub: ### Lexical layers These models are identical to [BERTje](https://github.com/wietsedv/bertje), but with different lexical layers (`bert.embeddings.word_embeddings`). - 🤗 [`GroNLP/bert-base-dutch-cased`](https://huggingface.co/GroNLP/bert-base-dutch-cased) (Dutch; source language) - 🤗 [`GroNLP/bert-base-dutch-cased-gronings`](https://huggingface.co/GroNLP/bert-base-dutch-cased-gronings) (Gronings) - 🤗 [`GroNLP/bert-base-dutch-cased-frisian`](https://huggingface.co/GroNLP/bert-base-dutch-cased-frisian) (West Frisian) ### POS tagging These models share the same fine-tuned Transformer layers + classification head, but with the retrained lexical layers from the models above. - 🤗 [`GroNLP/bert-base-dutch-cased-upos-alpino`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino) (Dutch) - 🤗 [`GroNLP/bert-base-dutch-cased-upos-alpino-gronings`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino-gronings) (Gronings) - 🤗 [`GroNLP/bert-base-dutch-cased-upos-alpino-frisian`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino-frisian) (West Frisian)
Geotrend/bert-base-vi-cased
Geotrend
2021-05-18T20:15:25Z
5
2
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "vi", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: vi datasets: wikipedia license: apache-2.0 --- # bert-base-vi-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-vi-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-vi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-th-cased
Geotrend
2021-05-18T20:11:25Z
989
3
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "th", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: th datasets: wikipedia license: apache-2.0 --- # bert-base-th-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-th-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-th-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-sw-cased
Geotrend
2021-05-18T20:10:30Z
7
1
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "sw", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: sw datasets: wikipedia license: apache-2.0 --- # bert-base-sw-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-sw-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-sw-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-ro-cased
Geotrend
2021-05-18T20:08:29Z
4
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "ro", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: ro datasets: wikipedia license: apache-2.0 --- # bert-base-ro-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-ro-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-ro-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-zh-hi-cased
Geotrend
2021-05-18T19:53:51Z
6
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-zh-hi-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-zh-hi-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-zh-hi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-vi-cased
Geotrend
2021-05-18T19:51:36Z
5
1
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-vi-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-vi-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-vi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-ur-cased
Geotrend
2021-05-18T19:50:18Z
4
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-ur-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-ur-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-ur-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-no-cased
Geotrend
2021-05-18T19:40:40Z
85
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-no-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-no-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-no-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-it-cased
Geotrend
2021-05-18T19:32:13Z
10
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-it-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-it-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-hi-cased
Geotrend
2021-05-18T19:31:14Z
8
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-hi-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-hi-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-hi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-zh-cased
Geotrend
2021-05-18T19:29:01Z
5
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-zh-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-zh-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-zh-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-uk-el-ro-cased
Geotrend
2021-05-18T19:27:52Z
5
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-uk-el-ro-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-uk-el-ro-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-uk-el-ro-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-fr-es-cased
Geotrend
2021-05-18T19:21:01Z
5
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-es-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-es-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-es-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-es-it-cased
Geotrend
2021-05-18T19:10:03Z
5
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-es-it-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-es-it-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-es-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-en-cased
Geotrend
2021-05-18T19:03:33Z
12
1
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "en", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: en datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-el-cased
Geotrend
2021-05-18T19:00:19Z
5
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "el", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: el datasets: wikipedia license: apache-2.0 --- # bert-base-el-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-el-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-el-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-da-cased
Geotrend
2021-05-18T18:49:40Z
80
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "da", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: da datasets: wikipedia license: apache-2.0 --- # bert-base-da-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-da-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-da-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/bert-base-25lang-cased
Geotrend
2021-05-18T18:46:59Z
88
2
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." - text: "Paris est la [MASK] de la France." - text: "Paris est la capitale de la [MASK]." - text: "L'élection américaine a eu [MASK] en novembre 2020." - text: "تقع سويسرا في [MASK] أوروبا" - text: "إسمي محمد وأسكن في [MASK]." --- # bert-base-25lang-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. Handled languages: en, fr, es, de, zh, ar, ru, vi, el, bg, th, tr, hi, ur, sw, nl, uk, ro, pt, it, lt, no, pl, da and ja. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-25lang-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-25lang-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Multilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
EMBEDDIA/crosloengual-bert
EMBEDDIA
2021-05-18T18:21:38Z
280
4
transformers
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "hr", "sl", "en", "multilingual", "arxiv:2006.07890", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - hr - sl - en - multilingual license: cc-by-4.0 --- # CroSloEngual BERT CroSloEngual BERT is a trilingual model, using bert-base architecture, trained on Croatian, Slovenian, and English corpora. Focusing on three languages, the model performs better than [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased), while still offering an option for cross-lingual knowledge transfer, which a monolingual model wouldn't. Evaluation is presented in our article: ``` @Inproceedings{ulcar-robnik2020finest, author = "Ulčar, M. and Robnik-Šikonja, M.", year = 2020, title = "{FinEst BERT} and {CroSloEngual BERT}: less is more in multilingual models", editor = "Sojka, P and Kopeček, I and Pala, K and Horák, A", booktitle = "Text, Speech, and Dialogue {TSD 2020}", series = "Lecture Notes in Computer Science", volume = 12284, publisher = "Springer", url = "https://doi.org/10.1007/978-3-030-58323-1_11", } ``` The preprint is available at [arxiv.org/abs/2006.07890](https://arxiv.org/abs/2006.07890).
DeepPavlov/rubert-base-cased-sentence
DeepPavlov
2021-05-18T18:18:43Z
30,038
24
transformers
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "ru", "arxiv:1508.05326", "arxiv:1809.05053", "arxiv:1908.10084", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
--- language: - ru --- # rubert-base-cased-sentence Sentence RuBERT \(Russian, cased, 12-layer, 768-hidden, 12-heads, 180M parameters\) is a representation‑based sentence encoder for Russian. It is initialized with RuBERT and fine‑tuned on SNLI\[1\] google-translated to russian and on russian part of XNLI dev set\[2\]. Sentence representations are mean pooled token embeddings in the same manner as in Sentence‑BERT\[3\]. \[1\]: S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. \(2015\) A large annotated corpus for learning natural language inference. arXiv preprint [arXiv:1508.05326](https://arxiv.org/abs/1508.05326) \[2\]: Williams A., Bowman S. \(2018\) XNLI: Evaluating Cross-lingual Sentence Representations. arXiv preprint [arXiv:1809.05053](https://arxiv.org/abs/1809.05053) \[3\]: N. Reimers, I. Gurevych \(2019\) Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. arXiv preprint [arXiv:1908.10084](https://arxiv.org/abs/1908.10084)
DeepPavlov/bert-base-multilingual-cased-sentence
DeepPavlov
2021-05-18T18:16:12Z
33
4
transformers
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "multilingual", "arxiv:1704.05426", "arxiv:1809.05053", "arxiv:1908.10084", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
--- language: - multilingual --- # bert-base-multilingual-cased-sentence Sentence Multilingual BERT \(101 languages, cased, 12‑layer, 768‑hidden, 12‑heads, 180M parameters\) is a representation‑based sentence encoder for 101 languages of Multilingual BERT. It is initialized with Multilingual BERT and then fine‑tuned on english MultiNLI\[1\] and on dev set of multilingual XNLI\[2\]. Sentence representations are mean pooled token embeddings in the same manner as in Sentence‑BERT\[3\]. \[1\]: Williams A., Nangia N. & Bowman S. \(2017\) A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference. arXiv preprint [arXiv:1704.05426](https://arxiv.org/abs/1704.05426) \[2\]: Williams A., Bowman S. \(2018\) XNLI: Evaluating Cross-lingual Sentence Representations. arXiv preprint [arXiv:1809.05053](https://arxiv.org/abs/1809.05053) \[3\]: N. Reimers, I. Gurevych \(2019\) Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. arXiv preprint [arXiv:1908.10084](https://arxiv.org/abs/1908.10084)