modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-06 00:36:47
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 540
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-06 00:36:27
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Thireus/Qwen3-4B-Thinking-2507-THIREUS-Q5_K-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T20:23:29Z | 3 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-08-29T05:51:43Z |
---
license: mit
---
# Qwen3-4B-Thinking-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-4B-Thinking-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-4B-Thinking-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/Qwen3-4B-Thinking-2507/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_llama.cpp_recipes/Qwen3-4B-Thinking-2507.ROOT-4.2498bpw-10.9335ppl.1GB-GGUF_0GB-GPU_1GB-CPU.9888e4b_9193781.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-server \
-m Qwen3-4B-Thinking-2507-THIREUS-BF16-SPECIAL_TENSOR-00001-of-00399.gguf \
-fa -amb 1024 -ctk q8_0 -c 32768 -ngl 99 \
-b 4096 -ub 4096 --warmup-batch --no-mmap --threads 1 \
--main-gpu 0
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how Qwen3-4B-Thinking-2507 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
fopppyu/blockassist-bc-stinky_stinky_cassowary_1757103700
|
fopppyu
| 2025-09-05T20:22:41Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stinky stinky cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:21:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stinky stinky cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
BrinnTano/jarvis-deepsearch
|
BrinnTano
| 2025-09-05T20:22:33Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-09-05T20:22:33Z |
---
license: apache-2.0
---
|
bah63843/blockassist-bc-plump_fast_antelope_1757103621
|
bah63843
| 2025-09-05T20:21:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:21:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Thireus/Qwen3-4B-Thinking-2507-THIREUS-IQ1_M-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T20:21:46Z | 0 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-08-29T05:56:38Z |
---
license: mit
---
# Qwen3-4B-Thinking-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-4B-Thinking-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-4B-Thinking-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/Qwen3-4B-Thinking-2507/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_llama.cpp_recipes/Qwen3-4B-Thinking-2507.ROOT-4.2498bpw-10.9335ppl.1GB-GGUF_0GB-GPU_1GB-CPU.9888e4b_9193781.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-server \
-m Qwen3-4B-Thinking-2507-THIREUS-BF16-SPECIAL_TENSOR-00001-of-00399.gguf \
-fa -amb 1024 -ctk q8_0 -c 32768 -ngl 99 \
-b 4096 -ub 4096 --warmup-batch --no-mmap --threads 1 \
--main-gpu 0
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how Qwen3-4B-Thinking-2507 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
Thireus/Qwen3-4B-Thinking-2507-THIREUS-IQ5_K_R4-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T20:21:11Z | 3 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-08-29T05:54:11Z |
---
license: mit
---
# Qwen3-4B-Thinking-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-4B-Thinking-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-4B-Thinking-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/Qwen3-4B-Thinking-2507/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_llama.cpp_recipes/Qwen3-4B-Thinking-2507.ROOT-4.2498bpw-10.9335ppl.1GB-GGUF_0GB-GPU_1GB-CPU.9888e4b_9193781.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-server \
-m Qwen3-4B-Thinking-2507-THIREUS-BF16-SPECIAL_TENSOR-00001-of-00399.gguf \
-fa -amb 1024 -ctk q8_0 -c 32768 -ngl 99 \
-b 4096 -ub 4096 --warmup-batch --no-mmap --threads 1 \
--main-gpu 0
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how Qwen3-4B-Thinking-2507 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
Thireus/Qwen3-4B-Thinking-2507-THIREUS-IQ4_XS-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T20:20:42Z | 3 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-08-29T05:54:18Z |
---
license: mit
---
# Qwen3-4B-Thinking-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-4B-Thinking-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-4B-Thinking-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/Qwen3-4B-Thinking-2507/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_llama.cpp_recipes/Qwen3-4B-Thinking-2507.ROOT-4.2498bpw-10.9335ppl.1GB-GGUF_0GB-GPU_1GB-CPU.9888e4b_9193781.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-server \
-m Qwen3-4B-Thinking-2507-THIREUS-BF16-SPECIAL_TENSOR-00001-of-00399.gguf \
-fa -amb 1024 -ctk q8_0 -c 32768 -ngl 99 \
-b 4096 -ub 4096 --warmup-batch --no-mmap --threads 1 \
--main-gpu 0
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how Qwen3-4B-Thinking-2507 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
seraphimzzzz/1614495
|
seraphimzzzz
| 2025-09-05T20:20:09Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:20:09Z |
[View on Civ Archive](https://civarchive.com/models/1380495?modelVersionId=1561100)
|
ultratopaz/1614478
|
ultratopaz
| 2025-09-05T20:19:59Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:20:02Z |
[View on Civ Archive](https://civarchive.com/models/1449650?modelVersionId=1639054)
|
Soya2305/ppo-LunarLander-v3
|
Soya2305
| 2025-09-05T20:19:48Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-09-05T19:54:24Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v3
type: LunarLander-v3
metrics:
- type: mean_reward
value: 255.71 +/- 20.27
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v3**
This is a trained model of a **PPO** agent playing **LunarLander-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
crystalline7/1069413
|
crystalline7
| 2025-09-05T20:19:43Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:19:46Z |
[View on Civ Archive](https://civarchive.com/models/1037884?modelVersionId=1164190)
|
seraphimzzzz/1614485
|
seraphimzzzz
| 2025-09-05T20:19:31Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:19:33Z |
[View on Civ Archive](https://civarchive.com/models/1438138?modelVersionId=1625671)
|
amethyst9/1070492
|
amethyst9
| 2025-09-05T20:19:05Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:19:08Z |
[View on Civ Archive](https://civarchive.com/models/1038796?modelVersionId=1165262)
|
amethyst9/1167553
|
amethyst9
| 2025-09-05T20:18:37Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:18:40Z |
[View on Civ Archive](https://civarchive.com/models/1123223?modelVersionId=1262447)
|
crystalline7/1614476
|
crystalline7
| 2025-09-05T20:18:30Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:18:33Z |
[View on Civ Archive](https://civarchive.com/models/1437649?modelVersionId=1625115)
|
Thireus/Qwen3-4B-Thinking-2507-THIREUS-IQ2_KS-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T20:18:24Z | 3 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-08-28T23:55:46Z |
---
license: mit
---
# Qwen3-4B-Thinking-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-4B-Thinking-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-4B-Thinking-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/Qwen3-4B-Thinking-2507/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_llama.cpp_recipes/Qwen3-4B-Thinking-2507.ROOT-4.2498bpw-10.9335ppl.1GB-GGUF_0GB-GPU_1GB-CPU.9888e4b_9193781.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-server \
-m Qwen3-4B-Thinking-2507-THIREUS-BF16-SPECIAL_TENSOR-00001-of-00399.gguf \
-fa -amb 1024 -ctk q8_0 -c 32768 -ngl 99 \
-b 4096 -ub 4096 --warmup-batch --no-mmap --threads 1 \
--main-gpu 0
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how Qwen3-4B-Thinking-2507 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
crystalline7/1614504
|
crystalline7
| 2025-09-05T20:18:16Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:18:19Z |
[View on Civ Archive](https://civarchive.com/models/1038258?modelVersionId=1164624)
|
amethyst9/1614506
|
amethyst9
| 2025-09-05T20:18:12Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:18:12Z |
[View on Civ Archive](https://civarchive.com/models/1426394?modelVersionId=1612237)
|
crystalline7/983283
|
crystalline7
| 2025-09-05T20:18:02Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:18:05Z |
[View on Civ Archive](https://civarchive.com/models/963042?modelVersionId=1078217)
|
ultratopaz/1614479
|
ultratopaz
| 2025-09-05T20:17:46Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:17:45Z |
[View on Civ Archive](https://civarchive.com/models/1449650?modelVersionId=1639022)
|
ultratopaz/1614489
|
ultratopaz
| 2025-09-05T20:17:33Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:17:33Z |
[View on Civ Archive](https://civarchive.com/models/1380503?modelVersionId=1653825)
|
ultratopaz/1070360
|
ultratopaz
| 2025-09-05T20:17:15Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:17:05Z |
[View on Civ Archive](https://civarchive.com/models/1038694?modelVersionId=1165139)
|
seraphimzzzz/1614501
|
seraphimzzzz
| 2025-09-05T20:16:38Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:16:36Z |
[View on Civ Archive](https://civarchive.com/models/993331?modelVersionId=1112961)
|
ultratopaz/1614470
|
ultratopaz
| 2025-09-05T20:16:17Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:16:20Z |
[View on Civ Archive](https://civarchive.com/models/1069541?modelVersionId=1200489)
|
trongg/5a1f05b4-a01a-486d-b95c-ff2164c0b463
|
trongg
| 2025-09-05T20:16:01Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-05T19:48:56Z |
---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Thireus/Qwen3-4B-Thinking-2507-THIREUS-IQ1_M_R4-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T20:15:38Z | 3 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-08-28T23:42:34Z |
---
license: mit
---
# Qwen3-4B-Thinking-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-4B-Thinking-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-4B-Thinking-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/Qwen3-4B-Thinking-2507/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_llama.cpp_recipes/Qwen3-4B-Thinking-2507.ROOT-4.2498bpw-10.9335ppl.1GB-GGUF_0GB-GPU_1GB-CPU.9888e4b_9193781.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-server \
-m Qwen3-4B-Thinking-2507-THIREUS-BF16-SPECIAL_TENSOR-00001-of-00399.gguf \
-fa -amb 1024 -ctk q8_0 -c 32768 -ngl 99 \
-b 4096 -ub 4096 --warmup-batch --no-mmap --threads 1 \
--main-gpu 0
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how Qwen3-4B-Thinking-2507 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
amethyst9/980180
|
amethyst9
| 2025-09-05T20:15:33Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:15:32Z |
[View on Civ Archive](https://civarchive.com/models/960215?modelVersionId=1075070)
|
fakir22/blockassist-bc-flapping_peaceful_caterpillar_1757103268
|
fakir22
| 2025-09-05T20:15:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"flapping peaceful caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:15:05Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- flapping peaceful caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bah63843/blockassist-bc-plump_fast_antelope_1757103250
|
bah63843
| 2025-09-05T20:15:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:14:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
TrinitySkye/TrintySkye-Replicate
|
TrinitySkye
| 2025-09-05T20:14:54Z | 2 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-09-04T17:17:05Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: Trinity
---
# Trintyskye Replicate
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `Trinity` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "Trinity",
"lora_weights": "https://huggingface.co/TrinitySkye/TrintySkye-Replicate/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('TrinitySkye/TrintySkye-Replicate', weight_name='lora.safetensors')
image = pipeline('Trinity').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2008
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/TrinitySkye/TrintySkye-Replicate/discussions) to add images that show off what you’ve made with this LoRA.
|
amethyst9/1475260
|
amethyst9
| 2025-09-05T20:14:52Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T20:14:48Z |
[View on Civ Archive](https://civarchive.com/models/1393873?modelVersionId=1575460)
|
Miracle-man/blockassist-bc-singing_lithe_koala_1757101522
|
Miracle-man
| 2025-09-05T20:14:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"singing lithe koala",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:14:39Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- singing lithe koala
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
vennertou/blockassist-bc-durable_rangy_elephant_1757103204
|
vennertou
| 2025-09-05T20:14:11Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"durable rangy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:13:24Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- durable rangy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
grizzle00/blockassist-bc-curious_mimic_antelope_1757101009
|
grizzle00
| 2025-09-05T20:13:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"curious mimic antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:13:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- curious mimic antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/L3-8B-Lunaris-cl-i1-GGUF
|
mradermacher
| 2025-09-05T20:13:13Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:dinalad0/L3-8B-Lunaris-cl",
"base_model:quantized:dinalad0/L3-8B-Lunaris-cl",
"license:llama3",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-09-05T17:10:09Z |
---
base_model: dinalad0/L3-8B-Lunaris-cl
language:
- en
library_name: transformers
license: llama3
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/dinalad0/L3-8B-Lunaris-cl
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#L3-8B-Lunaris-cl-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.1 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.8 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-Q4_1.gguf) | i1-Q4_1 | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/L3-8B-Lunaris-cl-i1-GGUF/resolve/main/L3-8B-Lunaris-cl.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
mekala-2402/Model0-Q4_K_M-GGUF
|
mekala-2402
| 2025-09-05T20:12:53Z | 0 | 0 | null |
[
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:mekala-2402/Model0",
"base_model:quantized:mekala-2402/Model0",
"endpoints_compatible",
"region:us"
] | null | 2025-09-05T20:12:40Z |
---
base_model: mekala-2402/Model0
tags:
- llama-cpp
- gguf-my-repo
---
# mekala-2402/Model0-Q4_K_M-GGUF
This model was converted to GGUF format from [`mekala-2402/Model0`](https://huggingface.co/mekala-2402/Model0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/mekala-2402/Model0) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo mekala-2402/Model0-Q4_K_M-GGUF --hf-file model0-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo mekala-2402/Model0-Q4_K_M-GGUF --hf-file model0-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo mekala-2402/Model0-Q4_K_M-GGUF --hf-file model0-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo mekala-2402/Model0-Q4_K_M-GGUF --hf-file model0-q4_k_m.gguf -c 2048
```
|
Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-IQ1_BN-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T20:11:19Z | 5 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"region:us"
] | null | 2025-07-24T06:32:00Z |
---
license: mit
---
# Qwen3-235B-A22B-Instruct-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-235B-A22B-Instruct-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/DeepSeek-R1-0528/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_harmonized_recipes/DeepSeek-R1-0528.ROOT-2.7921bpw-3.4451ppl.218GB-GGUF_14GB-GPU_204GB-CPU.90e3c2f_6f5170d.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-cli \
-m DeepSeek-R1-0528-THIREUS-BF16-SPECIAL_TENSOR-00001-of-01148.gguf \
-mla 3 -fa -amb 512 -fmoe -ctk f16 -c 4096 -ngl 99 \
-ot "blk\.(3|4|5|6)\.ffn_.*=CUDA0" \
-ot "blk\.(7|8|9|10)\.ffn_.*=CUDA1" \
-ot exps=CPU -b 2048 -ub 1024 --warmup-batch --no-mmap --threads 36 \
--main-gpu 0 \
-p '<|begin▁of▁sentence|><|User|>What is the solution of x+5=-2?<|Assistant|><think>\n'
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how DeepSeek-R1-0528 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
cwayneconnor/blockassist-bc-mute_loud_lynx_1757102815
|
cwayneconnor
| 2025-09-05T20:11:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute loud lynx",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:08:14Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute loud lynx
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
popouy/blockassist-bc-mute_whistling_hamster_1757103017
|
popouy
| 2025-09-05T20:10:40Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute whistling hamster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:10:18Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute whistling hamster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
koloni/blockassist-bc-deadly_graceful_stingray_1757101473
|
koloni
| 2025-09-05T20:10:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:10:24Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1757101312
|
kojeklollipop
| 2025-09-05T20:10:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"spotted amphibious stork",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:10:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- spotted amphibious stork
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-IQ2_KT-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T20:08:54Z | 0 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-07-24T22:37:42Z |
---
license: mit
---
# Qwen3-235B-A22B-Instruct-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-235B-A22B-Instruct-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/DeepSeek-R1-0528/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_harmonized_recipes/DeepSeek-R1-0528.ROOT-2.7921bpw-3.4451ppl.218GB-GGUF_14GB-GPU_204GB-CPU.90e3c2f_6f5170d.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-cli \
-m DeepSeek-R1-0528-THIREUS-BF16-SPECIAL_TENSOR-00001-of-01148.gguf \
-mla 3 -fa -amb 512 -fmoe -ctk f16 -c 4096 -ngl 99 \
-ot "blk\.(3|4|5|6)\.ffn_.*=CUDA0" \
-ot "blk\.(7|8|9|10)\.ffn_.*=CUDA1" \
-ot exps=CPU -b 2048 -ub 1024 --warmup-batch --no-mmap --threads 36 \
--main-gpu 0 \
-p '<|begin▁of▁sentence|><|User|>What is the solution of x+5=-2?<|Assistant|><think>\n'
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how DeepSeek-R1-0528 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1757102769
|
canoplos112
| 2025-09-05T20:08:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:06:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
popouy/blockassist-bc-prowling_aquatic_baboon_1757102781
|
popouy
| 2025-09-05T20:06:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"prowling aquatic baboon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:06:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- prowling aquatic baboon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-Q8_K_R8-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T20:06:32Z | 0 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-07-26T04:10:06Z |
---
license: mit
---
# Qwen3-235B-A22B-Instruct-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-235B-A22B-Instruct-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/DeepSeek-R1-0528/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_harmonized_recipes/DeepSeek-R1-0528.ROOT-2.7921bpw-3.4451ppl.218GB-GGUF_14GB-GPU_204GB-CPU.90e3c2f_6f5170d.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-cli \
-m DeepSeek-R1-0528-THIREUS-BF16-SPECIAL_TENSOR-00001-of-01148.gguf \
-mla 3 -fa -amb 512 -fmoe -ctk f16 -c 4096 -ngl 99 \
-ot "blk\.(3|4|5|6)\.ffn_.*=CUDA0" \
-ot "blk\.(7|8|9|10)\.ffn_.*=CUDA1" \
-ot exps=CPU -b 2048 -ub 1024 --warmup-batch --no-mmap --threads 36 \
--main-gpu 0 \
-p '<|begin▁of▁sentence|><|User|>What is the solution of x+5=-2?<|Assistant|><think>\n'
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how DeepSeek-R1-0528 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
bah63843/blockassist-bc-plump_fast_antelope_1757102689
|
bah63843
| 2025-09-05T20:05:49Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:05:29Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-Q8_0_R8-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T20:05:22Z | 0 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-07-26T04:09:59Z |
---
license: mit
---
# Qwen3-235B-A22B-Instruct-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-235B-A22B-Instruct-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/DeepSeek-R1-0528/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_harmonized_recipes/DeepSeek-R1-0528.ROOT-2.7921bpw-3.4451ppl.218GB-GGUF_14GB-GPU_204GB-CPU.90e3c2f_6f5170d.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-cli \
-m DeepSeek-R1-0528-THIREUS-BF16-SPECIAL_TENSOR-00001-of-01148.gguf \
-mla 3 -fa -amb 512 -fmoe -ctk f16 -c 4096 -ngl 99 \
-ot "blk\.(3|4|5|6)\.ffn_.*=CUDA0" \
-ot "blk\.(7|8|9|10)\.ffn_.*=CUDA1" \
-ot exps=CPU -b 2048 -ub 1024 --warmup-batch --no-mmap --threads 36 \
--main-gpu 0 \
-p '<|begin▁of▁sentence|><|User|>What is the solution of x+5=-2?<|Assistant|><think>\n'
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how DeepSeek-R1-0528 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
rettertop/blockassist-bc-miniature_enormous_dolphin_1757102661
|
rettertop
| 2025-09-05T20:04:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"miniature enormous dolphin",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:04:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- miniature enormous dolphin
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
18-Sophie-Rain-Spider-Man-Vi-deo-Tutori-al/Sophie.Rain.Spiderman.Video.Tutorial
|
18-Sophie-Rain-Spider-Man-Vi-deo-Tutori-al
| 2025-09-05T20:03:17Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:58:31Z |
<!-- HTML_TAG_END --><div>
<p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a></p>
<p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a></p>
<p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a></p>
<!-- HTML_TAG_END --></div>
|
Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-Q6_0_R4-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T20:01:43Z | 0 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-07-26T04:09:32Z |
---
license: mit
---
# Qwen3-235B-A22B-Instruct-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-235B-A22B-Instruct-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/DeepSeek-R1-0528/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_harmonized_recipes/DeepSeek-R1-0528.ROOT-2.7921bpw-3.4451ppl.218GB-GGUF_14GB-GPU_204GB-CPU.90e3c2f_6f5170d.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-cli \
-m DeepSeek-R1-0528-THIREUS-BF16-SPECIAL_TENSOR-00001-of-01148.gguf \
-mla 3 -fa -amb 512 -fmoe -ctk f16 -c 4096 -ngl 99 \
-ot "blk\.(3|4|5|6)\.ffn_.*=CUDA0" \
-ot "blk\.(7|8|9|10)\.ffn_.*=CUDA1" \
-ot exps=CPU -b 2048 -ub 1024 --warmup-batch --no-mmap --threads 36 \
--main-gpu 0 \
-p '<|begin▁of▁sentence|><|User|>What is the solution of x+5=-2?<|Assistant|><think>\n'
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how DeepSeek-R1-0528 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
bah63843/blockassist-bc-plump_fast_antelope_1757102374
|
bah63843
| 2025-09-05T20:00:33Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:00:15Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-Q6_0-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T20:00:29Z | 1 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-07-26T04:09:25Z |
---
license: mit
---
# Qwen3-235B-A22B-Instruct-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-235B-A22B-Instruct-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/DeepSeek-R1-0528/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_harmonized_recipes/DeepSeek-R1-0528.ROOT-2.7921bpw-3.4451ppl.218GB-GGUF_14GB-GPU_204GB-CPU.90e3c2f_6f5170d.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-cli \
-m DeepSeek-R1-0528-THIREUS-BF16-SPECIAL_TENSOR-00001-of-01148.gguf \
-mla 3 -fa -amb 512 -fmoe -ctk f16 -c 4096 -ngl 99 \
-ot "blk\.(3|4|5|6)\.ffn_.*=CUDA0" \
-ot "blk\.(7|8|9|10)\.ffn_.*=CUDA1" \
-ot exps=CPU -b 2048 -ub 1024 --warmup-batch --no-mmap --threads 36 \
--main-gpu 0 \
-p '<|begin▁of▁sentence|><|User|>What is the solution of x+5=-2?<|Assistant|><think>\n'
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how DeepSeek-R1-0528 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
popouy/blockassist-bc-amphibious_slender_dingo_1757102402
|
popouy
| 2025-09-05T20:00:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious slender dingo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T20:00:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious slender dingo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ghosthash1/AlphaNeural
|
ghosthash1
| 2025-09-05T19:59:57Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:Qwen/Qwen-Image",
"base_model:adapter:Qwen/Qwen-Image",
"license:apache-2.0",
"region:us"
] |
text-to-image
| 2025-09-05T19:59:55Z |
---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- output:
url: images/Unknown-1.jpeg
text: '-'
base_model: Qwen/Qwen-Image
instance_prompt: null
license: apache-2.0
---
# AlphaNeural
<Gallery />
## Download model
[Download](/ghosthash1/AlphaNeural/tree/main) them in the Files & versions tab.
|
moyixiao/Qwen3-0.6B-bnpo-f162-100
|
moyixiao
| 2025-09-05T19:59:37Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-05T19:59:18Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-Q5_K_R4-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T19:59:16Z | 0 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-07-26T04:09:18Z |
---
license: mit
---
# Qwen3-235B-A22B-Instruct-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-235B-A22B-Instruct-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/DeepSeek-R1-0528/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_harmonized_recipes/DeepSeek-R1-0528.ROOT-2.7921bpw-3.4451ppl.218GB-GGUF_14GB-GPU_204GB-CPU.90e3c2f_6f5170d.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-cli \
-m DeepSeek-R1-0528-THIREUS-BF16-SPECIAL_TENSOR-00001-of-01148.gguf \
-mla 3 -fa -amb 512 -fmoe -ctk f16 -c 4096 -ngl 99 \
-ot "blk\.(3|4|5|6)\.ffn_.*=CUDA0" \
-ot "blk\.(7|8|9|10)\.ffn_.*=CUDA1" \
-ot exps=CPU -b 2048 -ub 1024 --warmup-batch --no-mmap --threads 36 \
--main-gpu 0 \
-p '<|begin▁of▁sentence|><|User|>What is the solution of x+5=-2?<|Assistant|><think>\n'
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how DeepSeek-R1-0528 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
ultratopaz/1258929
|
ultratopaz
| 2025-09-05T19:58:47Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:58:48Z |
[View on Civ Archive](https://civarchive.com/models/1201559?modelVersionId=1352969)
|
crystalline7/1296403
|
crystalline7
| 2025-09-05T19:58:36Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:58:36Z |
[View on Civ Archive](https://civarchive.com/models/1235078?modelVersionId=1391868)
|
Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-Q5_1-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T19:58:02Z | 1 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-07-26T04:09:12Z |
---
license: mit
---
# Qwen3-235B-A22B-Instruct-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-235B-A22B-Instruct-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/DeepSeek-R1-0528/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_harmonized_recipes/DeepSeek-R1-0528.ROOT-2.7921bpw-3.4451ppl.218GB-GGUF_14GB-GPU_204GB-CPU.90e3c2f_6f5170d.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-cli \
-m DeepSeek-R1-0528-THIREUS-BF16-SPECIAL_TENSOR-00001-of-01148.gguf \
-mla 3 -fa -amb 512 -fmoe -ctk f16 -c 4096 -ngl 99 \
-ot "blk\.(3|4|5|6)\.ffn_.*=CUDA0" \
-ot "blk\.(7|8|9|10)\.ffn_.*=CUDA1" \
-ot exps=CPU -b 2048 -ub 1024 --warmup-batch --no-mmap --threads 36 \
--main-gpu 0 \
-p '<|begin▁of▁sentence|><|User|>What is the solution of x+5=-2?<|Assistant|><think>\n'
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how DeepSeek-R1-0528 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
beyoru/Qwen3-M2N2-Dynamic
|
beyoru
| 2025-09-05T19:57:45Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"agent",
"math",
"code",
"assistant",
"merge",
"conversational",
"base_model:unsloth/Qwen3-0.6B",
"base_model:finetune:unsloth/Qwen3-0.6B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-05T06:33:42Z |
---
library_name: transformers
tags:
- agent
- math
- code
- assistant
- merge
base_model:
- unsloth/Qwen3-0.6B
---
# Model: Qwen3-M2N2-Dynamic
## Model Overview
**Qwen3-M2N2-Dynamic** is an extension of `beyoru/Qwen3-M2N2`, designed to enhance evolutionary computation with dynamic population management and parent selection heuristics.
The development occurs in two stages:
**Stage 1: Qwen3-M2N2**
* Implements competition sharing (`evaluate_population` with share allocation).
* Supports M2N2 merge (SLERP + split).
* Boundary remains static (single point based on `W_s`).
* Parent selection relies on top-2 fitness only; no attraction heuristic.
**Stage 2: Qwen3-M2N2-Dynamic**
* Introduces dynamic split for more flexible boundary handling.
* Implements attraction-based parent selection.
* Enhances population diversity.
---
## Intended Use
* Research in evolutionary algorithms and population-based optimization.
* Comparison and benchmarking against baseline models like `Qwen3-0.6B`.
* Use in both single-turn and multi-turn function evaluation scenarios.
---
## Evaluation
### Agent Performance
*non reasoning for both model*
The table summarizes model performance across different test categories:
| Test Category | Qwen3-M2N2-Dynamic | Qwen3-0.6B | P1 | P2 |
| ------------------------------------ | ------------------ | ---------- | ---------- | ----------- |
| Normal Single Turn Single Function | **0.26** | 0.19 | 0.24 | 0.30 |
| Normal Single Turn Parallel Function | 0.03 | **0.09** | 0.03 | 0.04 |
| Normal Multi Turn User Adjust | 0.08 | 0.00 | 0.02 | 0.12 |
| Normal Multi Turn User Switch | 0.10 | 0.02 | 0.08 | 0.12 |
| Normal Similar API | 0.34 | 0.40 | 0.34 | 0.42 |
| Normal Preference | **0.14** | 0.10 | 0.12 | 0.14 |
| Normal Atom Bool | **0.46** | 0.32 | 0.46 | 0.48 |
| Normal Atom Enum | **0.42** | 0.26 | 0.42 | 0.50 |
| Normal Atom Number | **0.46** | 0.40 | 0.40 | 0.46 |
| Normal Atom List | **0.48** | 0.28 | 0.44 | 0.54 |
| Normal Atom Object Deep | 0.12 | 0.12 | 0.10 | 0.14 |
| Normal Atom Object Short | 0.28 | 0.28 | 0.28 | 0.38 |
| **Overall** | **0.27** | 0.20 | 0.24 | 0.33 |
---
*on-going test more*
## Limitations
* Static boundary selection remains in Stage 1.
* Stage 2 introduces dynamic split, but performance varies by task category.
* Attraction heuristic may bias parent selection toward high-fitness individuals, potentially reducing exploration.
* This is only a test version, so only a small set to used for training.
---
|
amethyst9/1275521
|
amethyst9
| 2025-09-05T19:57:24Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:57:24Z |
[View on Civ Archive](https://civarchive.com/models/1215999?modelVersionId=1369769)
|
ultratopaz/1219846
|
ultratopaz
| 2025-09-05T19:57:12Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:57:13Z |
[View on Civ Archive](https://civarchive.com/models/1168489?modelVersionId=1314603)
|
seraphimzzzz/1318223
|
seraphimzzzz
| 2025-09-05T19:57:00Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:57:01Z |
[View on Civ Archive](https://civarchive.com/models/1255580?modelVersionId=1415579)
|
amethyst9/1330428
|
amethyst9
| 2025-09-05T19:56:48Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:56:49Z |
[View on Civ Archive](https://civarchive.com/models/1266054?modelVersionId=1427903)
|
ultratopaz/1285684
|
ultratopaz
| 2025-09-05T19:56:36Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:56:37Z |
[View on Civ Archive](https://civarchive.com/models/1226063?modelVersionId=1381426)
|
popouy/blockassist-bc-bellowing_mammalian_camel_1757102167
|
popouy
| 2025-09-05T19:56:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"bellowing mammalian camel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T19:56:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- bellowing mammalian camel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
gopterwegop/blockassist-bc-beaked_exotic_spider_1757102160
|
gopterwegop
| 2025-09-05T19:56:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"beaked exotic spider",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T19:56:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- beaked exotic spider
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kafa22/blockassist-bc-regal_leggy_hummingbird_1757102137
|
kafa22
| 2025-09-05T19:56:18Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"regal leggy hummingbird",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T19:56:14Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- regal leggy hummingbird
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ultratopaz/1252582
|
ultratopaz
| 2025-09-05T19:56:12Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:56:13Z |
[View on Civ Archive](https://civarchive.com/models/1145757?modelVersionId=1349097)
|
qgallouedec/Qwen3-8B-SFT-20250905191102
|
qgallouedec
| 2025-09-05T19:56:01Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"hf_jobs",
"trl",
"sft",
"dataset:trl-lib/Capybara",
"base_model:Qwen/Qwen3-8B",
"base_model:finetune:Qwen/Qwen3-8B",
"endpoints_compatible",
"region:us"
] | null | 2025-09-05T19:11:55Z |
---
base_model: Qwen/Qwen3-8B
datasets: trl-lib/Capybara
library_name: transformers
model_name: Qwen3-8B-SFT-20250905191102
tags:
- generated_from_trainer
- hf_jobs
- trl
- sft
licence: license
---
# Model Card for Qwen3-8B-SFT-20250905191102
This model is a fine-tuned version of [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) on the [trl-lib/Capybara](https://huggingface.co/datasets/trl-lib/Capybara) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="qgallouedec/Qwen3-8B-SFT-20250905191102", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.23.0.dev0
- Transformers: 4.56.1
- Pytorch: 2.8.0+cu128
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
ultratopaz/1259974
|
ultratopaz
| 2025-09-05T19:55:36Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:55:36Z |
[View on Civ Archive](https://civarchive.com/models/1202079?modelVersionId=1353577)
|
hellonmn/llama3-code-generator
|
hellonmn
| 2025-09-05T19:55:15Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-09-05T19:54:42Z |
---
base_model: unsloth/meta-llama-3.1-8b-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** hellonmn
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
crystalline7/1304358
|
crystalline7
| 2025-09-05T19:55:12Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:55:12Z |
[View on Civ Archive](https://civarchive.com/models/1241157?modelVersionId=1398842)
|
golopper/blockassist-bc-lithe_hulking_wasp_1757102035
|
golopper
| 2025-09-05T19:54:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"lithe hulking wasp",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T19:53:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- lithe hulking wasp
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
amethyst9/1244045
|
amethyst9
| 2025-09-05T19:54:02Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:54:02Z |
[View on Civ Archive](https://civarchive.com/models/1189552?modelVersionId=1339185)
|
crystalline7/1229895
|
crystalline7
| 2025-09-05T19:53:49Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:53:49Z |
[View on Civ Archive](https://civarchive.com/models/1176514?modelVersionId=1323817)
|
nesall/nomic-embed-text-v1.5-Q6_K-GGUF
|
nesall
| 2025-09-05T19:53:48Z | 0 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"gguf",
"feature-extraction",
"sentence-similarity",
"mteb",
"transformers",
"transformers.js",
"llama-cpp",
"gguf-my-repo",
"en",
"base_model:nomic-ai/nomic-embed-text-v1.5",
"base_model:quantized:nomic-ai/nomic-embed-text-v1.5",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2025-09-05T19:53:44Z |
---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- feature-extraction
- sentence-similarity
- mteb
- transformers
- transformers.js
- llama-cpp
- gguf-my-repo
license: apache-2.0
language:
- en
base_model: nomic-ai/nomic-embed-text-v1.5
model-index:
- name: epoch_0_model
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 75.20895522388058
- type: ap
value: 38.57605549557802
- type: f1
value: 69.35586565857854
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 91.8144
- type: ap
value: 88.65222882032363
- type: f1
value: 91.80426301643274
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 47.162000000000006
- type: f1
value: 46.59329642263158
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.253
- type: map_at_10
value: 38.962
- type: map_at_100
value: 40.081
- type: map_at_1000
value: 40.089000000000006
- type: map_at_3
value: 33.499
- type: map_at_5
value: 36.351
- type: mrr_at_1
value: 24.609
- type: mrr_at_10
value: 39.099000000000004
- type: mrr_at_100
value: 40.211000000000006
- type: mrr_at_1000
value: 40.219
- type: mrr_at_3
value: 33.677
- type: mrr_at_5
value: 36.469
- type: ndcg_at_1
value: 24.253
- type: ndcg_at_10
value: 48.010999999999996
- type: ndcg_at_100
value: 52.756
- type: ndcg_at_1000
value: 52.964999999999996
- type: ndcg_at_3
value: 36.564
- type: ndcg_at_5
value: 41.711999999999996
- type: precision_at_1
value: 24.253
- type: precision_at_10
value: 7.738
- type: precision_at_100
value: 0.98
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 15.149000000000001
- type: precision_at_5
value: 11.593
- type: recall_at_1
value: 24.253
- type: recall_at_10
value: 77.383
- type: recall_at_100
value: 98.009
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 45.448
- type: recall_at_5
value: 57.965999999999994
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 45.69069567851087
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 36.35185490976283
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 61.71274951450321
- type: mrr
value: 76.06032625423207
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 86.73980520022269
- type: cos_sim_spearman
value: 84.24649792685918
- type: euclidean_pearson
value: 85.85197641158186
- type: euclidean_spearman
value: 84.24649792685918
- type: manhattan_pearson
value: 86.26809552711346
- type: manhattan_spearman
value: 84.56397504030865
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 84.25324675324674
- type: f1
value: 84.17872280892557
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 38.770253446400886
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 32.94307095497281
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.164
- type: map_at_10
value: 42.641
- type: map_at_100
value: 43.947
- type: map_at_1000
value: 44.074999999999996
- type: map_at_3
value: 39.592
- type: map_at_5
value: 41.204
- type: mrr_at_1
value: 39.628
- type: mrr_at_10
value: 48.625
- type: mrr_at_100
value: 49.368
- type: mrr_at_1000
value: 49.413000000000004
- type: mrr_at_3
value: 46.400000000000006
- type: mrr_at_5
value: 47.68
- type: ndcg_at_1
value: 39.628
- type: ndcg_at_10
value: 48.564
- type: ndcg_at_100
value: 53.507000000000005
- type: ndcg_at_1000
value: 55.635999999999996
- type: ndcg_at_3
value: 44.471
- type: ndcg_at_5
value: 46.137
- type: precision_at_1
value: 39.628
- type: precision_at_10
value: 8.856
- type: precision_at_100
value: 1.429
- type: precision_at_1000
value: 0.191
- type: precision_at_3
value: 21.268
- type: precision_at_5
value: 14.649000000000001
- type: recall_at_1
value: 32.164
- type: recall_at_10
value: 59.609
- type: recall_at_100
value: 80.521
- type: recall_at_1000
value: 94.245
- type: recall_at_3
value: 46.521
- type: recall_at_5
value: 52.083999999999996
- type: map_at_1
value: 31.526
- type: map_at_10
value: 41.581
- type: map_at_100
value: 42.815999999999995
- type: map_at_1000
value: 42.936
- type: map_at_3
value: 38.605000000000004
- type: map_at_5
value: 40.351
- type: mrr_at_1
value: 39.489999999999995
- type: mrr_at_10
value: 47.829
- type: mrr_at_100
value: 48.512
- type: mrr_at_1000
value: 48.552
- type: mrr_at_3
value: 45.754
- type: mrr_at_5
value: 46.986
- type: ndcg_at_1
value: 39.489999999999995
- type: ndcg_at_10
value: 47.269
- type: ndcg_at_100
value: 51.564
- type: ndcg_at_1000
value: 53.53099999999999
- type: ndcg_at_3
value: 43.301
- type: ndcg_at_5
value: 45.239000000000004
- type: precision_at_1
value: 39.489999999999995
- type: precision_at_10
value: 8.93
- type: precision_at_100
value: 1.415
- type: precision_at_1000
value: 0.188
- type: precision_at_3
value: 20.892
- type: precision_at_5
value: 14.865999999999998
- type: recall_at_1
value: 31.526
- type: recall_at_10
value: 56.76
- type: recall_at_100
value: 75.029
- type: recall_at_1000
value: 87.491
- type: recall_at_3
value: 44.786
- type: recall_at_5
value: 50.254
- type: map_at_1
value: 40.987
- type: map_at_10
value: 52.827
- type: map_at_100
value: 53.751000000000005
- type: map_at_1000
value: 53.81
- type: map_at_3
value: 49.844
- type: map_at_5
value: 51.473
- type: mrr_at_1
value: 46.833999999999996
- type: mrr_at_10
value: 56.389
- type: mrr_at_100
value: 57.003
- type: mrr_at_1000
value: 57.034
- type: mrr_at_3
value: 54.17999999999999
- type: mrr_at_5
value: 55.486999999999995
- type: ndcg_at_1
value: 46.833999999999996
- type: ndcg_at_10
value: 58.372
- type: ndcg_at_100
value: 62.068
- type: ndcg_at_1000
value: 63.288
- type: ndcg_at_3
value: 53.400000000000006
- type: ndcg_at_5
value: 55.766000000000005
- type: precision_at_1
value: 46.833999999999996
- type: precision_at_10
value: 9.191
- type: precision_at_100
value: 1.192
- type: precision_at_1000
value: 0.134
- type: precision_at_3
value: 23.448
- type: precision_at_5
value: 15.862000000000002
- type: recall_at_1
value: 40.987
- type: recall_at_10
value: 71.146
- type: recall_at_100
value: 87.035
- type: recall_at_1000
value: 95.633
- type: recall_at_3
value: 58.025999999999996
- type: recall_at_5
value: 63.815999999999995
- type: map_at_1
value: 24.587
- type: map_at_10
value: 33.114
- type: map_at_100
value: 34.043
- type: map_at_1000
value: 34.123999999999995
- type: map_at_3
value: 30.45
- type: map_at_5
value: 31.813999999999997
- type: mrr_at_1
value: 26.554
- type: mrr_at_10
value: 35.148
- type: mrr_at_100
value: 35.926
- type: mrr_at_1000
value: 35.991
- type: mrr_at_3
value: 32.599000000000004
- type: mrr_at_5
value: 33.893
- type: ndcg_at_1
value: 26.554
- type: ndcg_at_10
value: 38.132
- type: ndcg_at_100
value: 42.78
- type: ndcg_at_1000
value: 44.919
- type: ndcg_at_3
value: 32.833
- type: ndcg_at_5
value: 35.168
- type: precision_at_1
value: 26.554
- type: precision_at_10
value: 5.921
- type: precision_at_100
value: 0.8659999999999999
- type: precision_at_1000
value: 0.109
- type: precision_at_3
value: 13.861
- type: precision_at_5
value: 9.605
- type: recall_at_1
value: 24.587
- type: recall_at_10
value: 51.690000000000005
- type: recall_at_100
value: 73.428
- type: recall_at_1000
value: 89.551
- type: recall_at_3
value: 37.336999999999996
- type: recall_at_5
value: 43.047000000000004
- type: map_at_1
value: 16.715
- type: map_at_10
value: 24.251
- type: map_at_100
value: 25.326999999999998
- type: map_at_1000
value: 25.455
- type: map_at_3
value: 21.912000000000003
- type: map_at_5
value: 23.257
- type: mrr_at_1
value: 20.274
- type: mrr_at_10
value: 28.552
- type: mrr_at_100
value: 29.42
- type: mrr_at_1000
value: 29.497
- type: mrr_at_3
value: 26.14
- type: mrr_at_5
value: 27.502
- type: ndcg_at_1
value: 20.274
- type: ndcg_at_10
value: 29.088
- type: ndcg_at_100
value: 34.293
- type: ndcg_at_1000
value: 37.271
- type: ndcg_at_3
value: 24.708
- type: ndcg_at_5
value: 26.809
- type: precision_at_1
value: 20.274
- type: precision_at_10
value: 5.361
- type: precision_at_100
value: 0.915
- type: precision_at_1000
value: 0.13
- type: precision_at_3
value: 11.733
- type: precision_at_5
value: 8.556999999999999
- type: recall_at_1
value: 16.715
- type: recall_at_10
value: 39.587
- type: recall_at_100
value: 62.336000000000006
- type: recall_at_1000
value: 83.453
- type: recall_at_3
value: 27.839999999999996
- type: recall_at_5
value: 32.952999999999996
- type: map_at_1
value: 28.793000000000003
- type: map_at_10
value: 38.582
- type: map_at_100
value: 39.881
- type: map_at_1000
value: 39.987
- type: map_at_3
value: 35.851
- type: map_at_5
value: 37.289
- type: mrr_at_1
value: 34.455999999999996
- type: mrr_at_10
value: 43.909
- type: mrr_at_100
value: 44.74
- type: mrr_at_1000
value: 44.786
- type: mrr_at_3
value: 41.659
- type: mrr_at_5
value: 43.010999999999996
- type: ndcg_at_1
value: 34.455999999999996
- type: ndcg_at_10
value: 44.266
- type: ndcg_at_100
value: 49.639
- type: ndcg_at_1000
value: 51.644
- type: ndcg_at_3
value: 39.865
- type: ndcg_at_5
value: 41.887
- type: precision_at_1
value: 34.455999999999996
- type: precision_at_10
value: 7.843999999999999
- type: precision_at_100
value: 1.243
- type: precision_at_1000
value: 0.158
- type: precision_at_3
value: 18.831999999999997
- type: precision_at_5
value: 13.147
- type: recall_at_1
value: 28.793000000000003
- type: recall_at_10
value: 55.68300000000001
- type: recall_at_100
value: 77.99000000000001
- type: recall_at_1000
value: 91.183
- type: recall_at_3
value: 43.293
- type: recall_at_5
value: 48.618
- type: map_at_1
value: 25.907000000000004
- type: map_at_10
value: 35.519
- type: map_at_100
value: 36.806
- type: map_at_1000
value: 36.912
- type: map_at_3
value: 32.748
- type: map_at_5
value: 34.232
- type: mrr_at_1
value: 31.621
- type: mrr_at_10
value: 40.687
- type: mrr_at_100
value: 41.583
- type: mrr_at_1000
value: 41.638999999999996
- type: mrr_at_3
value: 38.527
- type: mrr_at_5
value: 39.612
- type: ndcg_at_1
value: 31.621
- type: ndcg_at_10
value: 41.003
- type: ndcg_at_100
value: 46.617999999999995
- type: ndcg_at_1000
value: 48.82
- type: ndcg_at_3
value: 36.542
- type: ndcg_at_5
value: 38.368
- type: precision_at_1
value: 31.621
- type: precision_at_10
value: 7.396999999999999
- type: precision_at_100
value: 1.191
- type: precision_at_1000
value: 0.153
- type: precision_at_3
value: 17.39
- type: precision_at_5
value: 12.1
- type: recall_at_1
value: 25.907000000000004
- type: recall_at_10
value: 52.115
- type: recall_at_100
value: 76.238
- type: recall_at_1000
value: 91.218
- type: recall_at_3
value: 39.417
- type: recall_at_5
value: 44.435
- type: map_at_1
value: 25.732166666666668
- type: map_at_10
value: 34.51616666666667
- type: map_at_100
value: 35.67241666666666
- type: map_at_1000
value: 35.78675
- type: map_at_3
value: 31.953416666666662
- type: map_at_5
value: 33.333
- type: mrr_at_1
value: 30.300166666666673
- type: mrr_at_10
value: 38.6255
- type: mrr_at_100
value: 39.46183333333334
- type: mrr_at_1000
value: 39.519999999999996
- type: mrr_at_3
value: 36.41299999999999
- type: mrr_at_5
value: 37.6365
- type: ndcg_at_1
value: 30.300166666666673
- type: ndcg_at_10
value: 39.61466666666667
- type: ndcg_at_100
value: 44.60808333333334
- type: ndcg_at_1000
value: 46.91708333333334
- type: ndcg_at_3
value: 35.26558333333333
- type: ndcg_at_5
value: 37.220000000000006
- type: precision_at_1
value: 30.300166666666673
- type: precision_at_10
value: 6.837416666666667
- type: precision_at_100
value: 1.10425
- type: precision_at_1000
value: 0.14875
- type: precision_at_3
value: 16.13716666666667
- type: precision_at_5
value: 11.2815
- type: recall_at_1
value: 25.732166666666668
- type: recall_at_10
value: 50.578916666666665
- type: recall_at_100
value: 72.42183333333334
- type: recall_at_1000
value: 88.48766666666667
- type: recall_at_3
value: 38.41325
- type: recall_at_5
value: 43.515750000000004
- type: map_at_1
value: 23.951
- type: map_at_10
value: 30.974
- type: map_at_100
value: 31.804
- type: map_at_1000
value: 31.900000000000002
- type: map_at_3
value: 28.762
- type: map_at_5
value: 29.94
- type: mrr_at_1
value: 26.534000000000002
- type: mrr_at_10
value: 33.553
- type: mrr_at_100
value: 34.297
- type: mrr_at_1000
value: 34.36
- type: mrr_at_3
value: 31.391000000000002
- type: mrr_at_5
value: 32.525999999999996
- type: ndcg_at_1
value: 26.534000000000002
- type: ndcg_at_10
value: 35.112
- type: ndcg_at_100
value: 39.28
- type: ndcg_at_1000
value: 41.723
- type: ndcg_at_3
value: 30.902
- type: ndcg_at_5
value: 32.759
- type: precision_at_1
value: 26.534000000000002
- type: precision_at_10
value: 5.445
- type: precision_at_100
value: 0.819
- type: precision_at_1000
value: 0.11
- type: precision_at_3
value: 12.986
- type: precision_at_5
value: 9.049
- type: recall_at_1
value: 23.951
- type: recall_at_10
value: 45.24
- type: recall_at_100
value: 64.12299999999999
- type: recall_at_1000
value: 82.28999999999999
- type: recall_at_3
value: 33.806000000000004
- type: recall_at_5
value: 38.277
- type: map_at_1
value: 16.829
- type: map_at_10
value: 23.684
- type: map_at_100
value: 24.683
- type: map_at_1000
value: 24.81
- type: map_at_3
value: 21.554000000000002
- type: map_at_5
value: 22.768
- type: mrr_at_1
value: 20.096
- type: mrr_at_10
value: 27.230999999999998
- type: mrr_at_100
value: 28.083999999999996
- type: mrr_at_1000
value: 28.166000000000004
- type: mrr_at_3
value: 25.212
- type: mrr_at_5
value: 26.32
- type: ndcg_at_1
value: 20.096
- type: ndcg_at_10
value: 27.989000000000004
- type: ndcg_at_100
value: 32.847
- type: ndcg_at_1000
value: 35.896
- type: ndcg_at_3
value: 24.116
- type: ndcg_at_5
value: 25.964
- type: precision_at_1
value: 20.096
- type: precision_at_10
value: 5
- type: precision_at_100
value: 0.8750000000000001
- type: precision_at_1000
value: 0.131
- type: precision_at_3
value: 11.207
- type: precision_at_5
value: 8.08
- type: recall_at_1
value: 16.829
- type: recall_at_10
value: 37.407000000000004
- type: recall_at_100
value: 59.101000000000006
- type: recall_at_1000
value: 81.024
- type: recall_at_3
value: 26.739
- type: recall_at_5
value: 31.524
- type: map_at_1
value: 24.138
- type: map_at_10
value: 32.275999999999996
- type: map_at_100
value: 33.416000000000004
- type: map_at_1000
value: 33.527
- type: map_at_3
value: 29.854000000000003
- type: map_at_5
value: 31.096
- type: mrr_at_1
value: 28.450999999999997
- type: mrr_at_10
value: 36.214
- type: mrr_at_100
value: 37.134
- type: mrr_at_1000
value: 37.198
- type: mrr_at_3
value: 34.001999999999995
- type: mrr_at_5
value: 35.187000000000005
- type: ndcg_at_1
value: 28.450999999999997
- type: ndcg_at_10
value: 37.166
- type: ndcg_at_100
value: 42.454
- type: ndcg_at_1000
value: 44.976
- type: ndcg_at_3
value: 32.796
- type: ndcg_at_5
value: 34.631
- type: precision_at_1
value: 28.450999999999997
- type: precision_at_10
value: 6.241
- type: precision_at_100
value: 0.9950000000000001
- type: precision_at_1000
value: 0.133
- type: precision_at_3
value: 14.801
- type: precision_at_5
value: 10.280000000000001
- type: recall_at_1
value: 24.138
- type: recall_at_10
value: 48.111
- type: recall_at_100
value: 71.245
- type: recall_at_1000
value: 88.986
- type: recall_at_3
value: 36.119
- type: recall_at_5
value: 40.846
- type: map_at_1
value: 23.244
- type: map_at_10
value: 31.227
- type: map_at_100
value: 33.007
- type: map_at_1000
value: 33.223
- type: map_at_3
value: 28.924
- type: map_at_5
value: 30.017
- type: mrr_at_1
value: 27.668
- type: mrr_at_10
value: 35.524
- type: mrr_at_100
value: 36.699
- type: mrr_at_1000
value: 36.759
- type: mrr_at_3
value: 33.366
- type: mrr_at_5
value: 34.552
- type: ndcg_at_1
value: 27.668
- type: ndcg_at_10
value: 36.381
- type: ndcg_at_100
value: 43.062
- type: ndcg_at_1000
value: 45.656
- type: ndcg_at_3
value: 32.501999999999995
- type: ndcg_at_5
value: 34.105999999999995
- type: precision_at_1
value: 27.668
- type: precision_at_10
value: 6.798
- type: precision_at_100
value: 1.492
- type: precision_at_1000
value: 0.234
- type: precision_at_3
value: 15.152
- type: precision_at_5
value: 10.791
- type: recall_at_1
value: 23.244
- type: recall_at_10
value: 45.979
- type: recall_at_100
value: 74.822
- type: recall_at_1000
value: 91.078
- type: recall_at_3
value: 34.925
- type: recall_at_5
value: 39.126
- type: map_at_1
value: 19.945
- type: map_at_10
value: 27.517999999999997
- type: map_at_100
value: 28.588
- type: map_at_1000
value: 28.682000000000002
- type: map_at_3
value: 25.345000000000002
- type: map_at_5
value: 26.555
- type: mrr_at_1
value: 21.996
- type: mrr_at_10
value: 29.845
- type: mrr_at_100
value: 30.775999999999996
- type: mrr_at_1000
value: 30.845
- type: mrr_at_3
value: 27.726
- type: mrr_at_5
value: 28.882
- type: ndcg_at_1
value: 21.996
- type: ndcg_at_10
value: 32.034
- type: ndcg_at_100
value: 37.185
- type: ndcg_at_1000
value: 39.645
- type: ndcg_at_3
value: 27.750999999999998
- type: ndcg_at_5
value: 29.805999999999997
- type: precision_at_1
value: 21.996
- type: precision_at_10
value: 5.065
- type: precision_at_100
value: 0.819
- type: precision_at_1000
value: 0.11399999999999999
- type: precision_at_3
value: 12.076
- type: precision_at_5
value: 8.392
- type: recall_at_1
value: 19.945
- type: recall_at_10
value: 43.62
- type: recall_at_100
value: 67.194
- type: recall_at_1000
value: 85.7
- type: recall_at_3
value: 32.15
- type: recall_at_5
value: 37.208999999999996
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: climate-fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 18.279
- type: map_at_10
value: 31.052999999999997
- type: map_at_100
value: 33.125
- type: map_at_1000
value: 33.306000000000004
- type: map_at_3
value: 26.208
- type: map_at_5
value: 28.857
- type: mrr_at_1
value: 42.671
- type: mrr_at_10
value: 54.557
- type: mrr_at_100
value: 55.142
- type: mrr_at_1000
value: 55.169000000000004
- type: mrr_at_3
value: 51.488
- type: mrr_at_5
value: 53.439
- type: ndcg_at_1
value: 42.671
- type: ndcg_at_10
value: 41.276
- type: ndcg_at_100
value: 48.376000000000005
- type: ndcg_at_1000
value: 51.318
- type: ndcg_at_3
value: 35.068
- type: ndcg_at_5
value: 37.242
- type: precision_at_1
value: 42.671
- type: precision_at_10
value: 12.638
- type: precision_at_100
value: 2.045
- type: precision_at_1000
value: 0.26
- type: precision_at_3
value: 26.08
- type: precision_at_5
value: 19.805
- type: recall_at_1
value: 18.279
- type: recall_at_10
value: 46.946
- type: recall_at_100
value: 70.97200000000001
- type: recall_at_1000
value: 87.107
- type: recall_at_3
value: 31.147999999999996
- type: recall_at_5
value: 38.099
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: dbpedia-entity
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.573
- type: map_at_10
value: 19.747
- type: map_at_100
value: 28.205000000000002
- type: map_at_1000
value: 29.831000000000003
- type: map_at_3
value: 14.109
- type: map_at_5
value: 16.448999999999998
- type: mrr_at_1
value: 71
- type: mrr_at_10
value: 77.68599999999999
- type: mrr_at_100
value: 77.995
- type: mrr_at_1000
value: 78.00200000000001
- type: mrr_at_3
value: 76.292
- type: mrr_at_5
value: 77.029
- type: ndcg_at_1
value: 59.12500000000001
- type: ndcg_at_10
value: 43.9
- type: ndcg_at_100
value: 47.863
- type: ndcg_at_1000
value: 54.848
- type: ndcg_at_3
value: 49.803999999999995
- type: ndcg_at_5
value: 46.317
- type: precision_at_1
value: 71
- type: precision_at_10
value: 34.4
- type: precision_at_100
value: 11.063
- type: precision_at_1000
value: 1.989
- type: precision_at_3
value: 52.333
- type: precision_at_5
value: 43.7
- type: recall_at_1
value: 8.573
- type: recall_at_10
value: 25.615
- type: recall_at_100
value: 53.385000000000005
- type: recall_at_1000
value: 75.46000000000001
- type: recall_at_3
value: 15.429
- type: recall_at_5
value: 19.357
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 47.989999999999995
- type: f1
value: 42.776314451497555
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 74.13499999999999
- type: map_at_10
value: 82.825
- type: map_at_100
value: 83.096
- type: map_at_1000
value: 83.111
- type: map_at_3
value: 81.748
- type: map_at_5
value: 82.446
- type: mrr_at_1
value: 79.553
- type: mrr_at_10
value: 86.654
- type: mrr_at_100
value: 86.774
- type: mrr_at_1000
value: 86.778
- type: mrr_at_3
value: 85.981
- type: mrr_at_5
value: 86.462
- type: ndcg_at_1
value: 79.553
- type: ndcg_at_10
value: 86.345
- type: ndcg_at_100
value: 87.32
- type: ndcg_at_1000
value: 87.58200000000001
- type: ndcg_at_3
value: 84.719
- type: ndcg_at_5
value: 85.677
- type: precision_at_1
value: 79.553
- type: precision_at_10
value: 10.402000000000001
- type: precision_at_100
value: 1.1119999999999999
- type: precision_at_1000
value: 0.11499999999999999
- type: precision_at_3
value: 32.413
- type: precision_at_5
value: 20.138
- type: recall_at_1
value: 74.13499999999999
- type: recall_at_10
value: 93.215
- type: recall_at_100
value: 97.083
- type: recall_at_1000
value: 98.732
- type: recall_at_3
value: 88.79
- type: recall_at_5
value: 91.259
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: fiqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 18.298000000000002
- type: map_at_10
value: 29.901
- type: map_at_100
value: 31.528
- type: map_at_1000
value: 31.713
- type: map_at_3
value: 25.740000000000002
- type: map_at_5
value: 28.227999999999998
- type: mrr_at_1
value: 36.728
- type: mrr_at_10
value: 45.401
- type: mrr_at_100
value: 46.27
- type: mrr_at_1000
value: 46.315
- type: mrr_at_3
value: 42.978
- type: mrr_at_5
value: 44.29
- type: ndcg_at_1
value: 36.728
- type: ndcg_at_10
value: 37.456
- type: ndcg_at_100
value: 43.832
- type: ndcg_at_1000
value: 47
- type: ndcg_at_3
value: 33.694
- type: ndcg_at_5
value: 35.085
- type: precision_at_1
value: 36.728
- type: precision_at_10
value: 10.386
- type: precision_at_100
value: 1.701
- type: precision_at_1000
value: 0.22599999999999998
- type: precision_at_3
value: 22.479
- type: precision_at_5
value: 16.605
- type: recall_at_1
value: 18.298000000000002
- type: recall_at_10
value: 44.369
- type: recall_at_100
value: 68.098
- type: recall_at_1000
value: 87.21900000000001
- type: recall_at_3
value: 30.215999999999998
- type: recall_at_5
value: 36.861
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: hotpotqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 39.568
- type: map_at_10
value: 65.061
- type: map_at_100
value: 65.896
- type: map_at_1000
value: 65.95100000000001
- type: map_at_3
value: 61.831
- type: map_at_5
value: 63.849000000000004
- type: mrr_at_1
value: 79.136
- type: mrr_at_10
value: 84.58200000000001
- type: mrr_at_100
value: 84.765
- type: mrr_at_1000
value: 84.772
- type: mrr_at_3
value: 83.684
- type: mrr_at_5
value: 84.223
- type: ndcg_at_1
value: 79.136
- type: ndcg_at_10
value: 72.622
- type: ndcg_at_100
value: 75.539
- type: ndcg_at_1000
value: 76.613
- type: ndcg_at_3
value: 68.065
- type: ndcg_at_5
value: 70.58
- type: precision_at_1
value: 79.136
- type: precision_at_10
value: 15.215
- type: precision_at_100
value: 1.7500000000000002
- type: precision_at_1000
value: 0.189
- type: precision_at_3
value: 44.011
- type: precision_at_5
value: 28.388999999999996
- type: recall_at_1
value: 39.568
- type: recall_at_10
value: 76.077
- type: recall_at_100
value: 87.481
- type: recall_at_1000
value: 94.56400000000001
- type: recall_at_3
value: 66.01599999999999
- type: recall_at_5
value: 70.97200000000001
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 85.312
- type: ap
value: 80.36296867333715
- type: f1
value: 85.26613311552218
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: msmarco
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 23.363999999999997
- type: map_at_10
value: 35.711999999999996
- type: map_at_100
value: 36.876999999999995
- type: map_at_1000
value: 36.923
- type: map_at_3
value: 32.034
- type: map_at_5
value: 34.159
- type: mrr_at_1
value: 24.04
- type: mrr_at_10
value: 36.345
- type: mrr_at_100
value: 37.441
- type: mrr_at_1000
value: 37.480000000000004
- type: mrr_at_3
value: 32.713
- type: mrr_at_5
value: 34.824
- type: ndcg_at_1
value: 24.026
- type: ndcg_at_10
value: 42.531
- type: ndcg_at_100
value: 48.081
- type: ndcg_at_1000
value: 49.213
- type: ndcg_at_3
value: 35.044
- type: ndcg_at_5
value: 38.834
- type: precision_at_1
value: 24.026
- type: precision_at_10
value: 6.622999999999999
- type: precision_at_100
value: 0.941
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 14.909
- type: precision_at_5
value: 10.871
- type: recall_at_1
value: 23.363999999999997
- type: recall_at_10
value: 63.426
- type: recall_at_100
value: 88.96300000000001
- type: recall_at_1000
value: 97.637
- type: recall_at_3
value: 43.095
- type: recall_at_5
value: 52.178000000000004
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.0095759233926
- type: f1
value: 92.78387794667408
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 75.0296397628819
- type: f1
value: 58.45699589820874
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.45662407531944
- type: f1
value: 71.42364781421813
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.07800941492937
- type: f1
value: 77.22799045640845
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 34.531234379250606
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 30.941490381193802
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 30.3115090856725
- type: mrr
value: 31.290667638675757
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: nfcorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.465
- type: map_at_10
value: 13.03
- type: map_at_100
value: 16.057
- type: map_at_1000
value: 17.49
- type: map_at_3
value: 9.553
- type: map_at_5
value: 11.204
- type: mrr_at_1
value: 43.653
- type: mrr_at_10
value: 53.269
- type: mrr_at_100
value: 53.72
- type: mrr_at_1000
value: 53.761
- type: mrr_at_3
value: 50.929
- type: mrr_at_5
value: 52.461
- type: ndcg_at_1
value: 42.26
- type: ndcg_at_10
value: 34.673
- type: ndcg_at_100
value: 30.759999999999998
- type: ndcg_at_1000
value: 39.728
- type: ndcg_at_3
value: 40.349000000000004
- type: ndcg_at_5
value: 37.915
- type: precision_at_1
value: 43.653
- type: precision_at_10
value: 25.789
- type: precision_at_100
value: 7.754999999999999
- type: precision_at_1000
value: 2.07
- type: precision_at_3
value: 38.596000000000004
- type: precision_at_5
value: 33.251
- type: recall_at_1
value: 5.465
- type: recall_at_10
value: 17.148
- type: recall_at_100
value: 29.768
- type: recall_at_1000
value: 62.239
- type: recall_at_3
value: 10.577
- type: recall_at_5
value: 13.315
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: nq
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 37.008
- type: map_at_10
value: 52.467
- type: map_at_100
value: 53.342999999999996
- type: map_at_1000
value: 53.366
- type: map_at_3
value: 48.412
- type: map_at_5
value: 50.875
- type: mrr_at_1
value: 41.541
- type: mrr_at_10
value: 54.967
- type: mrr_at_100
value: 55.611
- type: mrr_at_1000
value: 55.627
- type: mrr_at_3
value: 51.824999999999996
- type: mrr_at_5
value: 53.763000000000005
- type: ndcg_at_1
value: 41.541
- type: ndcg_at_10
value: 59.724999999999994
- type: ndcg_at_100
value: 63.38700000000001
- type: ndcg_at_1000
value: 63.883
- type: ndcg_at_3
value: 52.331
- type: ndcg_at_5
value: 56.327000000000005
- type: precision_at_1
value: 41.541
- type: precision_at_10
value: 9.447
- type: precision_at_100
value: 1.1520000000000001
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 23.262
- type: precision_at_5
value: 16.314999999999998
- type: recall_at_1
value: 37.008
- type: recall_at_10
value: 79.145
- type: recall_at_100
value: 94.986
- type: recall_at_1000
value: 98.607
- type: recall_at_3
value: 60.277
- type: recall_at_5
value: 69.407
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: quora
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 70.402
- type: map_at_10
value: 84.181
- type: map_at_100
value: 84.796
- type: map_at_1000
value: 84.81400000000001
- type: map_at_3
value: 81.209
- type: map_at_5
value: 83.085
- type: mrr_at_1
value: 81.02000000000001
- type: mrr_at_10
value: 87.263
- type: mrr_at_100
value: 87.36
- type: mrr_at_1000
value: 87.36
- type: mrr_at_3
value: 86.235
- type: mrr_at_5
value: 86.945
- type: ndcg_at_1
value: 81.01
- type: ndcg_at_10
value: 87.99900000000001
- type: ndcg_at_100
value: 89.217
- type: ndcg_at_1000
value: 89.33
- type: ndcg_at_3
value: 85.053
- type: ndcg_at_5
value: 86.703
- type: precision_at_1
value: 81.01
- type: precision_at_10
value: 13.336
- type: precision_at_100
value: 1.52
- type: precision_at_1000
value: 0.156
- type: precision_at_3
value: 37.14
- type: precision_at_5
value: 24.44
- type: recall_at_1
value: 70.402
- type: recall_at_10
value: 95.214
- type: recall_at_100
value: 99.438
- type: recall_at_1000
value: 99.928
- type: recall_at_3
value: 86.75699999999999
- type: recall_at_5
value: 91.44099999999999
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 56.51721502758904
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 61.054808572333016
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: scidocs
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.578
- type: map_at_10
value: 11.036999999999999
- type: map_at_100
value: 12.879999999999999
- type: map_at_1000
value: 13.150999999999998
- type: map_at_3
value: 8.133
- type: map_at_5
value: 9.559
- type: mrr_at_1
value: 22.6
- type: mrr_at_10
value: 32.68
- type: mrr_at_100
value: 33.789
- type: mrr_at_1000
value: 33.854
- type: mrr_at_3
value: 29.7
- type: mrr_at_5
value: 31.480000000000004
- type: ndcg_at_1
value: 22.6
- type: ndcg_at_10
value: 18.616
- type: ndcg_at_100
value: 25.883
- type: ndcg_at_1000
value: 30.944
- type: ndcg_at_3
value: 18.136
- type: ndcg_at_5
value: 15.625
- type: precision_at_1
value: 22.6
- type: precision_at_10
value: 9.48
- type: precision_at_100
value: 1.991
- type: precision_at_1000
value: 0.321
- type: precision_at_3
value: 16.8
- type: precision_at_5
value: 13.54
- type: recall_at_1
value: 4.578
- type: recall_at_10
value: 19.213
- type: recall_at_100
value: 40.397
- type: recall_at_1000
value: 65.2
- type: recall_at_3
value: 10.208
- type: recall_at_5
value: 13.718
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 83.44288351714071
- type: cos_sim_spearman
value: 79.37995604564952
- type: euclidean_pearson
value: 81.1078874670718
- type: euclidean_spearman
value: 79.37995905980499
- type: manhattan_pearson
value: 81.03697527288986
- type: manhattan_spearman
value: 79.33490235296236
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 84.95557650436523
- type: cos_sim_spearman
value: 78.5190672399868
- type: euclidean_pearson
value: 81.58064025904707
- type: euclidean_spearman
value: 78.5190672399868
- type: manhattan_pearson
value: 81.52857930619889
- type: manhattan_spearman
value: 78.50421361308034
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 84.79128416228737
- type: cos_sim_spearman
value: 86.05402451477147
- type: euclidean_pearson
value: 85.46280267054289
- type: euclidean_spearman
value: 86.05402451477147
- type: manhattan_pearson
value: 85.46278563858236
- type: manhattan_spearman
value: 86.08079590861004
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 83.20623089568763
- type: cos_sim_spearman
value: 81.53786907061009
- type: euclidean_pearson
value: 82.82272250091494
- type: euclidean_spearman
value: 81.53786907061009
- type: manhattan_pearson
value: 82.78850494027013
- type: manhattan_spearman
value: 81.5135618083407
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 85.46366618397936
- type: cos_sim_spearman
value: 86.96566013336908
- type: euclidean_pearson
value: 86.62651697548931
- type: euclidean_spearman
value: 86.96565526364454
- type: manhattan_pearson
value: 86.58812160258009
- type: manhattan_spearman
value: 86.9336484321288
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 82.51858358641559
- type: cos_sim_spearman
value: 84.7652527954999
- type: euclidean_pearson
value: 84.23914783766861
- type: euclidean_spearman
value: 84.7652527954999
- type: manhattan_pearson
value: 84.22749648503171
- type: manhattan_spearman
value: 84.74527996746386
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 87.28026563313065
- type: cos_sim_spearman
value: 87.46928143824915
- type: euclidean_pearson
value: 88.30558762000372
- type: euclidean_spearman
value: 87.46928143824915
- type: manhattan_pearson
value: 88.10513330809331
- type: manhattan_spearman
value: 87.21069787834173
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 62.376497134587375
- type: cos_sim_spearman
value: 65.0159550112516
- type: euclidean_pearson
value: 65.64572120879598
- type: euclidean_spearman
value: 65.0159550112516
- type: manhattan_pearson
value: 65.88143604989976
- type: manhattan_spearman
value: 65.17547297222434
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 84.22876368947644
- type: cos_sim_spearman
value: 85.46935577445318
- type: euclidean_pearson
value: 85.32830231392005
- type: euclidean_spearman
value: 85.46935577445318
- type: manhattan_pearson
value: 85.30353211758495
- type: manhattan_spearman
value: 85.42821085956945
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 80.60986667767133
- type: mrr
value: 94.29432314236236
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: scifact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 54.528
- type: map_at_10
value: 65.187
- type: map_at_100
value: 65.62599999999999
- type: map_at_1000
value: 65.657
- type: map_at_3
value: 62.352
- type: map_at_5
value: 64.025
- type: mrr_at_1
value: 57.333
- type: mrr_at_10
value: 66.577
- type: mrr_at_100
value: 66.88
- type: mrr_at_1000
value: 66.908
- type: mrr_at_3
value: 64.556
- type: mrr_at_5
value: 65.739
- type: ndcg_at_1
value: 57.333
- type: ndcg_at_10
value: 70.275
- type: ndcg_at_100
value: 72.136
- type: ndcg_at_1000
value: 72.963
- type: ndcg_at_3
value: 65.414
- type: ndcg_at_5
value: 67.831
- type: precision_at_1
value: 57.333
- type: precision_at_10
value: 9.5
- type: precision_at_100
value: 1.057
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 25.778000000000002
- type: precision_at_5
value: 17.2
- type: recall_at_1
value: 54.528
- type: recall_at_10
value: 84.356
- type: recall_at_100
value: 92.833
- type: recall_at_1000
value: 99.333
- type: recall_at_3
value: 71.283
- type: recall_at_5
value: 77.14999999999999
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.74158415841585
- type: cos_sim_ap
value: 92.90048959850317
- type: cos_sim_f1
value: 86.35650810245687
- type: cos_sim_precision
value: 90.4709748083242
- type: cos_sim_recall
value: 82.6
- type: dot_accuracy
value: 99.74158415841585
- type: dot_ap
value: 92.90048959850317
- type: dot_f1
value: 86.35650810245687
- type: dot_precision
value: 90.4709748083242
- type: dot_recall
value: 82.6
- type: euclidean_accuracy
value: 99.74158415841585
- type: euclidean_ap
value: 92.90048959850317
- type: euclidean_f1
value: 86.35650810245687
- type: euclidean_precision
value: 90.4709748083242
- type: euclidean_recall
value: 82.6
- type: manhattan_accuracy
value: 99.74158415841585
- type: manhattan_ap
value: 92.87344692947894
- type: manhattan_f1
value: 86.38497652582159
- type: manhattan_precision
value: 90.29443838604145
- type: manhattan_recall
value: 82.8
- type: max_accuracy
value: 99.74158415841585
- type: max_ap
value: 92.90048959850317
- type: max_f1
value: 86.38497652582159
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 63.191648770424216
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 34.02944668730218
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 50.466386167525265
- type: mrr
value: 51.19071492233257
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.198022505886435
- type: cos_sim_spearman
value: 30.40170257939193
- type: dot_pearson
value: 30.198015316402614
- type: dot_spearman
value: 30.40170257939193
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: trec-covid
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.242
- type: map_at_10
value: 2.17
- type: map_at_100
value: 12.221
- type: map_at_1000
value: 28.63
- type: map_at_3
value: 0.728
- type: map_at_5
value: 1.185
- type: mrr_at_1
value: 94
- type: mrr_at_10
value: 97
- type: mrr_at_100
value: 97
- type: mrr_at_1000
value: 97
- type: mrr_at_3
value: 97
- type: mrr_at_5
value: 97
- type: ndcg_at_1
value: 89
- type: ndcg_at_10
value: 82.30499999999999
- type: ndcg_at_100
value: 61.839999999999996
- type: ndcg_at_1000
value: 53.381
- type: ndcg_at_3
value: 88.877
- type: ndcg_at_5
value: 86.05199999999999
- type: precision_at_1
value: 94
- type: precision_at_10
value: 87
- type: precision_at_100
value: 63.38
- type: precision_at_1000
value: 23.498
- type: precision_at_3
value: 94
- type: precision_at_5
value: 92
- type: recall_at_1
value: 0.242
- type: recall_at_10
value: 2.302
- type: recall_at_100
value: 14.979000000000001
- type: recall_at_1000
value: 49.638
- type: recall_at_3
value: 0.753
- type: recall_at_5
value: 1.226
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: webis-touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.006
- type: map_at_10
value: 11.805
- type: map_at_100
value: 18.146
- type: map_at_1000
value: 19.788
- type: map_at_3
value: 5.914
- type: map_at_5
value: 8.801
- type: mrr_at_1
value: 40.816
- type: mrr_at_10
value: 56.36600000000001
- type: mrr_at_100
value: 56.721999999999994
- type: mrr_at_1000
value: 56.721999999999994
- type: mrr_at_3
value: 52.041000000000004
- type: mrr_at_5
value: 54.796
- type: ndcg_at_1
value: 37.755
- type: ndcg_at_10
value: 29.863
- type: ndcg_at_100
value: 39.571
- type: ndcg_at_1000
value: 51.385999999999996
- type: ndcg_at_3
value: 32.578
- type: ndcg_at_5
value: 32.351
- type: precision_at_1
value: 40.816
- type: precision_at_10
value: 26.531
- type: precision_at_100
value: 7.796
- type: precision_at_1000
value: 1.555
- type: precision_at_3
value: 32.653
- type: precision_at_5
value: 33.061
- type: recall_at_1
value: 3.006
- type: recall_at_10
value: 18.738
- type: recall_at_100
value: 48.058
- type: recall_at_1000
value: 83.41300000000001
- type: recall_at_3
value: 7.166
- type: recall_at_5
value: 12.102
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 71.4178
- type: ap
value: 14.648781342150446
- type: f1
value: 55.07299194946378
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 60.919637804187886
- type: f1
value: 61.24122013967399
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 49.207896583685695
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 86.23114978840078
- type: cos_sim_ap
value: 74.26624727825818
- type: cos_sim_f1
value: 68.72377190817083
- type: cos_sim_precision
value: 64.56400742115028
- type: cos_sim_recall
value: 73.45646437994723
- type: dot_accuracy
value: 86.23114978840078
- type: dot_ap
value: 74.26624032659652
- type: dot_f1
value: 68.72377190817083
- type: dot_precision
value: 64.56400742115028
- type: dot_recall
value: 73.45646437994723
- type: euclidean_accuracy
value: 86.23114978840078
- type: euclidean_ap
value: 74.26624714480556
- type: euclidean_f1
value: 68.72377190817083
- type: euclidean_precision
value: 64.56400742115028
- type: euclidean_recall
value: 73.45646437994723
- type: manhattan_accuracy
value: 86.16558383501221
- type: manhattan_ap
value: 74.2091943976357
- type: manhattan_f1
value: 68.64221520524654
- type: manhattan_precision
value: 63.59135913591359
- type: manhattan_recall
value: 74.5646437994723
- type: max_accuracy
value: 86.23114978840078
- type: max_ap
value: 74.26624727825818
- type: max_f1
value: 68.72377190817083
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.3681841114604
- type: cos_sim_ap
value: 86.65166387498546
- type: cos_sim_f1
value: 79.02581944698774
- type: cos_sim_precision
value: 75.35796605434099
- type: cos_sim_recall
value: 83.06898675700647
- type: dot_accuracy
value: 89.3681841114604
- type: dot_ap
value: 86.65166019802056
- type: dot_f1
value: 79.02581944698774
- type: dot_precision
value: 75.35796605434099
- type: dot_recall
value: 83.06898675700647
- type: euclidean_accuracy
value: 89.3681841114604
- type: euclidean_ap
value: 86.65166462876266
- type: euclidean_f1
value: 79.02581944698774
- type: euclidean_precision
value: 75.35796605434099
- type: euclidean_recall
value: 83.06898675700647
- type: manhattan_accuracy
value: 89.36624364497226
- type: manhattan_ap
value: 86.65076471274106
- type: manhattan_f1
value: 79.07408783532733
- type: manhattan_precision
value: 76.41102972856527
- type: manhattan_recall
value: 81.92947336002464
- type: max_accuracy
value: 89.3681841114604
- type: max_ap
value: 86.65166462876266
- type: max_f1
value: 79.07408783532733
---
# nesall/nomic-embed-text-v1.5-Q6_K-GGUF
This model was converted to GGUF format from [`nomic-ai/nomic-embed-text-v1.5`](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo nesall/nomic-embed-text-v1.5-Q6_K-GGUF --hf-file nomic-embed-text-v1.5-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo nesall/nomic-embed-text-v1.5-Q6_K-GGUF --hf-file nomic-embed-text-v1.5-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo nesall/nomic-embed-text-v1.5-Q6_K-GGUF --hf-file nomic-embed-text-v1.5-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo nesall/nomic-embed-text-v1.5-Q6_K-GGUF --hf-file nomic-embed-text-v1.5-q6_k.gguf -c 2048
```
|
ultratopaz/1321983
|
ultratopaz
| 2025-09-05T19:53:38Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:53:38Z |
[View on Civ Archive](https://civarchive.com/models/1258863?modelVersionId=1419421)
|
Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-Q4_1-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T19:53:17Z | 4 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-07-26T04:08:44Z |
---
license: mit
---
# Qwen3-235B-A22B-Instruct-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-235B-A22B-Instruct-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/DeepSeek-R1-0528/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_harmonized_recipes/DeepSeek-R1-0528.ROOT-2.7921bpw-3.4451ppl.218GB-GGUF_14GB-GPU_204GB-CPU.90e3c2f_6f5170d.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-cli \
-m DeepSeek-R1-0528-THIREUS-BF16-SPECIAL_TENSOR-00001-of-01148.gguf \
-mla 3 -fa -amb 512 -fmoe -ctk f16 -c 4096 -ngl 99 \
-ot "blk\.(3|4|5|6)\.ffn_.*=CUDA0" \
-ot "blk\.(7|8|9|10)\.ffn_.*=CUDA1" \
-ot exps=CPU -b 2048 -ub 1024 --warmup-batch --no-mmap --threads 36 \
--main-gpu 0 \
-p '<|begin▁of▁sentence|><|User|>What is the solution of x+5=-2?<|Assistant|><think>\n'
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how DeepSeek-R1-0528 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
ultratopaz/1272206
|
ultratopaz
| 2025-09-05T19:53:13Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:53:13Z |
[View on Civ Archive](https://civarchive.com/models/1145757?modelVersionId=1369242)
|
seraphimzzzz/1269773
|
seraphimzzzz
| 2025-09-05T19:53:01Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:53:01Z |
[View on Civ Archive](https://civarchive.com/models/1211769?modelVersionId=1364902)
|
ultratopaz/1248399
|
ultratopaz
| 2025-09-05T19:52:49Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:52:49Z |
[View on Civ Archive](https://civarchive.com/models/1193362?modelVersionId=1343608)
|
amethyst9/1284777
|
amethyst9
| 2025-09-05T19:52:32Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:52:31Z |
[View on Civ Archive](https://civarchive.com/models/1225756?modelVersionId=1381044)
|
Viktor-01/blockassist-bc-leaping_humming_finch_1757099760
|
Viktor-01
| 2025-09-05T19:51:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"leaping humming finch",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-05T19:51:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- leaping humming finch
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
seraphimzzzz/1256476
|
seraphimzzzz
| 2025-09-05T19:51:40Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:51:40Z |
[View on Civ Archive](https://civarchive.com/models/1200481?modelVersionId=1351765)
|
ultratopaz/1271408
|
ultratopaz
| 2025-09-05T19:51:28Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:51:28Z |
[View on Civ Archive](https://civarchive.com/models/1212847?modelVersionId=1366152)
|
amethyst9/1293545
|
amethyst9
| 2025-09-05T19:51:14Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:51:14Z |
[View on Civ Archive](https://civarchive.com/models/1233536?modelVersionId=1390039)
|
seraphimzzzz/1283580
|
seraphimzzzz
| 2025-09-05T19:51:02Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:51:02Z |
[View on Civ Archive](https://civarchive.com/models/1223637?modelVersionId=1378618)
|
seraphimzzzz/1253194
|
seraphimzzzz
| 2025-09-05T19:50:51Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:50:51Z |
[View on Civ Archive](https://civarchive.com/models/1197280?modelVersionId=1348112)
|
Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-Q3_K_R4-SPECIAL_SPLIT
|
Thireus
| 2025-09-05T19:49:51Z | 0 | 0 | null |
[
"gguf",
"arxiv:2505.23786",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-07-25T18:54:37Z |
---
license: mit
---
# Qwen3-235B-A22B-Instruct-2507
## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/Qwen3-235B-A22B-Instruct-2507-THIREUS-BF16-SPECIAL_SPLIT/) about?
This repository provides **GGUF-quantized tensors** for the Qwen3-235B-A22B-Instruct-2507 model (official repo: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly.
- 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite
- 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
- 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb
- 📂 Browse available quant shards: https://huggingface.co/Thireus/collections
*tl;dr: Expand the details section below*
<details>
```
cd ~
# Make sure to install all ik_llama.cpp compilation dependencies...
apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx
# Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases
git clone https://github.com/Thireus/ik_llama.cpp
cd ik_llama.cpp
git pull
# Build ik_llama.cpp
cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048
cmake --build build --config Release -j16
cd ..
# Obtain Thireus' GGUF-Tool-Suite
git clone https://github.com/Thireus/GGUF-Tool-Suite
# Download model quant mix from recipe file:
cd GGUF-Tool-Suite
rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py
cp -f models/DeepSeek-R1-0528/download.conf . # Use the download.conf of the chosen model
mkdir -p kitchen && cd kitchen
../quant_downloader.sh ../recipe_examples/ik_harmonized_recipes/DeepSeek-R1-0528.ROOT-2.7921bpw-3.4451ppl.218GB-GGUF_14GB-GPU_204GB-CPU.90e3c2f_6f5170d.recipe
# Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
# Launch ik_llama's llama-cli:
ulimit -n 9999 # Lifts "too many open files" limitation on Linux
~/ik_llama.cpp/build/bin/llama-cli \
-m DeepSeek-R1-0528-THIREUS-BF16-SPECIAL_TENSOR-00001-of-01148.gguf \
-mla 3 -fa -amb 512 -fmoe -ctk f16 -c 4096 -ngl 99 \
-ot "blk\.(3|4|5|6)\.ffn_.*=CUDA0" \
-ot "blk\.(7|8|9|10)\.ffn_.*=CUDA1" \
-ot exps=CPU -b 2048 -ub 1024 --warmup-batch --no-mmap --threads 36 \
--main-gpu 0 \
-p '<|begin▁of▁sentence|><|User|>What is the solution of x+5=-2?<|Assistant|><think>\n'
```
</details>
---
## ❓ Why does this Tool Suite exist?
1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`.
2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity.
3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results!
---
## 📊 How does it compare to other GGUFs?
Here’s how DeepSeek-R1-0528 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw):

> _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._
More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs
*All PPL values are computed with the parameters `-ctk f16 -c 512 -b 4096 -ub 4096`. Changing any of these parameters will alter the PPL. In particular, reducing `-b 4096 -ub 4096` increases the PPL, while increasing them decreases the PPL.*
---
## 🚀 How do I get started?
Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections:
1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile.
- Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases
2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe.
- Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples
3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`.
4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity.
---
## ✅ Supported Models
Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`.
---
## 🤷♂️ Will I release baked dynamic quant GGUFs?
No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s.
Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`.
Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`.
---
## 📦 What’s in this repository?
- **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard.
- **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc.
- **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection.
- **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits.
---
## 💡 Pro Tips
You can easily download the BF16 model version to quantize your own shards:
```
mkdir kitchen
echo '.*=bf16' > kitchen/bf16.recipe
cd kitchen
../quant_downloader.sh bf16.recipe
```
Enjoy optimized quantization! 🎉
|
ultratopaz/1261009
|
ultratopaz
| 2025-09-05T19:49:46Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:49:46Z |
[View on Civ Archive](https://civarchive.com/models/1204451?modelVersionId=1356335)
|
crystalline7/1292031
|
crystalline7
| 2025-09-05T19:49:32Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:49:32Z |
[View on Civ Archive](https://civarchive.com/models/1231282?modelVersionId=1387424)
|
amethyst9/1236646
|
amethyst9
| 2025-09-05T19:49:08Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:49:06Z |
[View on Civ Archive](https://civarchive.com/models/1183550?modelVersionId=1332070)
|
ultratopaz/1289747
|
ultratopaz
| 2025-09-05T19:48:29Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:48:30Z |
[View on Civ Archive](https://civarchive.com/models/1229799?modelVersionId=1385741)
|
seraphimzzzz/1386320
|
seraphimzzzz
| 2025-09-05T19:48:05Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:48:06Z |
[View on Civ Archive](https://civarchive.com/models/1315091?modelVersionId=1484608)
|
crystalline7/1202072
|
crystalline7
| 2025-09-05T19:47:38Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:47:35Z |
[View on Civ Archive](https://civarchive.com/models/1150650?modelVersionId=1294177)
|
seraphimzzzz/1267523
|
seraphimzzzz
| 2025-09-05T19:47:23Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:47:23Z |
[View on Civ Archive](https://civarchive.com/models/1209317?modelVersionId=1362024)
|
mamersfo/Llama-3.2-3B-Instruct-sft-hr
|
mamersfo
| 2025-09-05T19:46:49Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-09-05T19:46:39Z |
---
base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** mamersfo
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
amethyst9/1223596
|
amethyst9
| 2025-09-05T19:46:47Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:46:47Z |
[View on Civ Archive](https://civarchive.com/models/1171788?modelVersionId=1318414)
|
seraphimzzzz/1301630
|
seraphimzzzz
| 2025-09-05T19:46:36Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-05T19:46:36Z |
[View on Civ Archive](https://civarchive.com/models/1240588?modelVersionId=1398212)
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.