modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-06 06:27:01
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
542 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-06 06:26:44
card
stringlengths
11
1.01M
sarnikowski/electra-small-discriminator-da-256-cased
sarnikowski
2020-12-11T22:01:11Z
44
0
transformers
[ "transformers", "pytorch", "tf", "electra", "pretraining", "da", "arxiv:2003.10555", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: da license: cc-by-4.0 --- # Danish ELECTRA small (cased) An [ELECTRA](https://arxiv.org/abs/2003.10555) model pretrained on a custom Danish corpus (~17.5gb). For details regarding data sources and training procedure, along with benchmarks on downstream tasks, go to: https://github.com/sarnikowski/danish_transformers/tree/main/electra ## Usage ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("sarnikowski/electra-small-discriminator-da-256-cased") model = AutoModel.from_pretrained("sarnikowski/electra-small-discriminator-da-256-cased") ``` ## Questions? If you have any questions feel free to open an issue on the [danish_transformers](https://github.com/sarnikowski/danish_transformers) repository, or send an email to p.sarnikowski@gmail.com
patrickvonplaten/roberta_shared_bbc_xsum
patrickvonplaten
2020-12-11T21:59:29Z
11
4
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "summarization", "en", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en license: apache-2.0 datasets: - xsum tags: - summarization --- Shared RoBERTa2RoBERTa Summarization with 🤗EncoderDecoder Framework This model is a warm-started *RoBERTaShared* model fine-tuned on the *BBC XSum* summarization dataset. The model achieves a **16.89** ROUGE-2 score on *BBC XSUM*'s test dataset. For more details on how the model was fine-tuned, please refer to [this](https://colab.research.google.com/drive/1Ekd5pUeCX7VOrMx94_czTkwNtLN32Uyu?usp=sharing) notebook.
patrickvonplaten/roberta2roberta-cnn_dailymail-fp16
patrickvonplaten
2020-12-11T21:59:23Z
18
0
transformers
[ "transformers", "pytorch", "encoder_decoder", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# Roberta2Roberta Summarization with 🤗 EncoderDecoder Framework This model is a Roberta2Roberta model fine-tuned on summarization. Roberta2Roberta is a `EncoderDecoderModel`, meaning that both the encoder and the decoder are `roberta-base` RoBERTa models. Leveraging the [EncoderDecoderFramework](https://huggingface.co/transformers/model_doc/encoderdecoder.html#encoder-decoder-models), the two pretrained models can simply be loaded into the framework via: ```python roberta2roberta = EncoderDecoderModel.from_encoder_decoder_pretrained("roberta-base", "roberta-base") ``` The decoder of an `EncoderDecoder` model needs cross-attention layers and usually makes use of causal masking for auto-regressiv generation. Thus, ``roberta2roberta`` is consequently fined-tuned on the `CNN/Daily Mail`dataset and the resulting model `roberta2roberta-cnn_dailymail-fp16` is uploaded here. ## Example The model is by no means a state-of-the-art model, but nevertheless produces reasonable summarization results. It was mainly fine-tuned as a proof-of-concept for the 🤗 EncoderDecoder Framework. The model can be used as follows: ```python from transformers import BertTokenizer, EncoderDecoderModel model = EncoderDecoderModel.from_pretrained("patrickvonplaten/roberta2roberta-cnn_dailymail-fp16") tokenizer = RobertaTokenizer.from_pretrained("roberta-base") article = """(CNN)Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing a racist chant. SAE's national chapter suspended the students, but University of Oklahoma President David B oren took it a step further, saying the university's affiliation with the fraternity is permanently done. The news is shocking, but it's not the first time SAE has faced controversy. SAE was founded March 9, 185 6, at the University of Alabama, five years before the American Civil War, according to the fraternity website. When the war began, the group had fewer than 400 members, of which "369 went to war for the Confede rate States and seven for the Union Army," the website says. The fraternity now boasts more than 200,000 living alumni, along with about 15,000 undergraduates populating 219 chapters and 20 "colonies" seeking fu ll membership at universities. SAE has had to work hard to change recently after a string of member deaths, many blamed on the hazing of new recruits, SAE national President Bradley Cohen wrote in a message on t he fraternity's website. The fraternity's website lists more than 130 chapters cited or suspended for "health and safety incidents" since 2010. At least 30 of the incidents involved hazing, and dozens more invol ved alcohol. However, the list is missing numerous incidents from recent months. Among them, according to various media outlets: Yale University banned the SAEs from campus activities last month after members al legedly tried to interfere with a sexual misconduct investigation connected to an initiation rite. Stanford University in December suspended SAE housing privileges after finding sorority members attending a frat ernity function were subjected to graphic sexual content. And Johns Hopkins University in November suspended the fraternity for underage drinking. "The media has labeled us as the 'nation's deadliest fraternity, ' " Cohen said. In 2011, for example, a student died while being coerced into excessive alcohol consumption, according to a lawsuit. SAE's previous insurer dumped the fraternity. "As a result, we are paying Lloy d's of London the highest insurance rates in the Greek-letter world," Cohen said. Universities have turned down SAE's attempts to open new chapters, and the fraternity had to close 12 in 18 months over hazing in cidents.""" input_ids = tokenizer(article, return_tensors="pt").input_ids output_ids = model.generate(input_ids) print(tokenizer.decode(output_ids[0], skip_special_tokens=True)) # should produce # Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing racist chants. The fraternity's national chapter has had to close 12 in 18 months over hazing. # Sigma has had more than 130 chapters in 18 states. University of Oklahoma president says fraternity has been "deteriorated". ``` ## Training script: **IMPORTANT**: In order for this code to work, make sure you checkout to the branch [more_general_trainer_metric](https://github.com/huggingface/transformers/tree/more_general_trainer_metric), which slightly adapts the `Trainer` for `EncoderDecoderModels` according to this PR: https://github.com/huggingface/transformers/pull/5840. The following code shows the complete training script that was used to fine-tune `roberta2roberta-cnn_dailymail-fp16 ` for reproducability. The training last ~9h on a standard GPU. ```python #!/usr/bin/env python3 import nlp import logging from transformers import RobertaTokenizer, EncoderDecoderModel, Trainer, TrainingArguments logging.basicConfig(level=logging.INFO) model = EncoderDecoderModel.from_encoder_decoder_pretrained("roberta-base", "roberta-base") tokenizer = RobertaTokenizer.from_pretrained("roberta-base") # load train and validation data train_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="train") val_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="validation[:5%]") # load rouge for validation rouge = nlp.load_metric("rouge", experiment_id=0) # set decoding params model.config.decoder_start_token_id = tokenizer.bos_token_id model.config.eos_token_id = tokenizer.eos_token_id model.config.max_length = 142 model.config.min_length = 56 model.config.no_repeat_ngram_size = 3 model.early_stopping = True model.length_penalty = 2.0 model.num_beams = 4 encoder_length = 512 decoder_length = 128 batch_size = 16 # map data correctly def map_to_encoder_decoder_inputs(batch): # Tokenizer will automatically set [BOS] <text> [EOS] # cut off at Longformer at 2048 inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=encoder_length) # force summarization <= 256 outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=decoder_length) batch["input_ids"] = inputs.input_ids batch["attention_mask"] = inputs.attention_mask batch["decoder_input_ids"] = outputs.input_ids batch["labels"] = outputs.input_ids.copy() # mask loss for padding batch["labels"] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] batch["decoder_attention_mask"] = outputs.attention_mask assert all([len(x) == encoder_length for x in inputs.input_ids]) assert all([len(x) == decoder_length for x in outputs.input_ids]) return batch def compute_metrics(pred): labels_ids = pred.label_ids pred_ids = pred.predictions # all unnecessary tokens are removed pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) labels_ids[labels_ids == -100] = tokenizer.eos_token_id label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True) rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid return { "rouge2_precision": round(rouge_output.precision, 4), "rouge2_recall": round(rouge_output.recall, 4), "rouge2_fmeasure": round(rouge_output.fmeasure, 4), } # make train dataset ready train_dataset = train_dataset.map( map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) train_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "decoder_attention_mask", "decoder_input_ids", "labels"], ) # same for validation dataset val_dataset = val_dataset.map( map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) val_dataset.set_format( type="torch", columns=["input_ids", "decoder_attention_mask", "attention_mask", "decoder_input_ids", "labels"], ) # set training arguments - these params are not really tuned, feel free to change training_args = TrainingArguments( output_dir="./", per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, predict_from_generate=True, evaluate_during_training=True, do_train=True, do_eval=True, logging_steps=1000, save_steps=1000, eval_steps=1000, overwrite_output_dir=True, warmup_steps=2000, save_total_limit=3, fp16=True, ) # instantiate trainer trainer = Trainer( model=model, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset, eval_dataset=val_dataset, ) # start training trainer.train() ``` ## Evaluation The following script evaluates the model on the test set of CNN/Daily Mail. ```python #!/usr/bin/env python3 import nlp from transformers import RobertaTokenizer, EncoderDecoderModel tokenizer = RobertaTokenizer.from_pretrained("roberta-base") model = EncoderDecoderModel.from_pretrained("patrickvonplaten/roberta2roberta-cnn_dailymail-fp16") model.to("cuda") test_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="test") batch_size = 128 # map data correctly def generate_summary(batch): # Tokenizer will automatically set [BOS] <text> [EOS] # cut off at BERT max length 512 inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512, return_tensors="pt") input_ids = inputs.input_ids.to("cuda") attention_mask = inputs.attention_mask.to("cuda") outputs = model.generate(input_ids, attention_mask=attention_mask) # all special tokens including will be removed output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) batch["pred"] = output_str return batch results = test_dataset.map(generate_summary, batched=True, batch_size=batch_size, remove_columns=["article"]) # load rouge for validation rouge = nlp.load_metric("rouge") pred_str = results["pred"] label_str = results["highlights"] rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid print(rouge_output) ``` The obtained results should be: | - | Rouge2 - mid -precision | Rouge2 - mid - recall | Rouge2 - mid - fmeasure | |----------|:-------------:|:------:|:------:| | **CNN/Daily Mail** | 15.79 | 19.05 | **16.79** |
patrickvonplaten/longformer2roberta-cnn_dailymail-fp16
patrickvonplaten
2020-12-11T21:59:19Z
102
6
transformers
[ "transformers", "pytorch", "encoder_decoder", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# Longformer2Roberta Summarization with 🤗 EncoderDecoder Framework This model is a Longformer2Roberta model fine-tuned on summarization. Longformer2Roberta is a `EncoderDecoderModel`, meaning that both the encoder is a `allenai/longformer-base-4096` model and the decoder is a `roberta-base` model. Leveraging the [EncoderDecoderFramework](https://huggingface.co/transformers/model_doc/encoderdecoder.html#encoder-decoder-models), the two pretrained models can simply be loaded into the framework via: ```python roberta2roberta = EncoderDecoderModel.from_encoder_decoder_pretrained("allenai/longformer-base-4096", "roberta-base") ``` The decoder of an `EncoderDecoder` model needs cross-attention layers and usually makes use of causal masking for auto-regressiv generation. Thus, ``longformer2roberta`` is consequently fined-tuned on the `CNN/Daily Mail`dataset and the resulting model `longformer2roberta-cnn_dailymail-fp16` is uploaded here. ## Example The model is by no means a state-of-the-art model, but nevertheless produces reasonable summarization results. It was mainly fine-tuned as a proof-of-concept for the 🤗 EncoderDecoder Framework. The model can be used as follows: ```python from transformers import LongformerTokenizer, EncoderDecoderModel model = EncoderDecoderModel.from_pretrained("patrickvonplaten/longformer2roberta-cnn_dailymail-fp16") tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096") article = """(CNN)James Holmes made his introduction to the world in a Colorado cinema filled with spectators watching a midnight showing of the new Batman movie, "The Dark Knight Rises," in June 2012. The moment became one of the deadliest shootings in U.S. history. Holmes is accused of opening fire on the crowd, killing 12 people and injuring or maiming 70 others in Aurora, a suburb of Denver. Holmes appeared like a comic book character: He resembled the Joker, with red-orange hair, similar to the late actor Heath Ledger\'s portrayal of the villain in an earlier Batman movie, authorities said. But Holmes was hardly a cartoon. Authorities said he wore body armor and carried several guns, including an AR-15 rifle, with lots of ammo. He also wore a gas mask. Holmes says he was insane at the time of the shootings, and that is his legal defense and court plea: not guilty by reason of insanity. Prosecutors aren\'t swayed and will seek the death penalty. Opening statements in his trial are scheduled to begin Monday. Holmes admits to the shootings but says he was suffering "a psychotic episode" at the time, according to court papers filed in July 2013 by the state public defenders, Daniel King and Tamara A. Brady. Evidence "revealed thus far in the case supports the defense\'s position that Mr. Holmes suffers from a severe mental illness and was in the throes of a psychotic episode when he committed the acts that resulted in the tragic loss of life and injuries sustained by moviegoers on July 20, 2012," the public defenders wrote. Holmes no longer looks like a dazed Joker, as he did in his first appearance before a judge in 2012. He appeared dramatically different in January when jury selection began for his trial: 9,000 potential jurors were summoned for duty, described as one of the nation\'s largest jury calls. Holmes now has a cleaner look, with a mustache, button-down shirt and khaki pants. In January, he had a beard and eyeglasses. If this new image sounds like one of an academician, it may be because Holmes, now 27, once was one. Just before the shooting, Holmes was a doctoral student in neuroscience, and he was studying how the brain works, with his schooling funded by a U.S. government grant. Yet for all his learning, Holmes apparently lacked the capacity to command his own mind, according to the case against him. A jury will ultimately decide Holmes\' fate. That panel is made up of 12 jurors and 12 alternates. They are 19 women and five men, and almost all are white and middle-aged. The trial could last until autumn. When jury summonses were issued in January, each potential juror stood a 0.2% chance of being selected, District Attorney George Brauchler told the final jury this month. He described the approaching trial as "four to five months of a horrible roller coaster through the worst haunted house you can imagine." The jury will have to render verdicts on each of the 165 counts against Holmes, including murder and attempted murder charges. Meanwhile, victims and their relatives are challenging all media outlets "to stop the gratuitous use of the name and likeness of mass killers, thereby depriving violent individuals the media celebrity and media spotlight they so crave," the No Notoriety group says. They are joined by victims from eight other mass shootings in recent U.S. history. Raised in central coastal California and in San Diego, James Eagan Holmes is the son of a mathematician father noted for his work at the FICO firm that provides credit scores and a registered nurse mother, according to the U-T San Diego newspaper. Holmes also has a sister, Chris, a musician, who\'s five years younger, the newspaper said. His childhood classmates remember him as a clean-cut, bespectacled boy with an "exemplary" character who "never gave any trouble, and never got in trouble himself," The Salinas Californian reported. His family then moved down the California coast, where Holmes grew up in the San Diego-area neighborhood of Rancho Peñasquitos, which a neighbor described as "kind of like Mayberry," the San Diego newspaper said. Holmes attended Westview High School, which says its school district sits in "a primarily middle- to upper-middle-income residential community." There, Holmes ran cross-country, played soccer and later worked at a biotechnology internship at the Salk Institute and Miramar College, which attracts academically talented students. By then, his peers described him as standoffish and a bit of a wiseacre, the San Diego newspaper said. Holmes attended college fairly close to home, in a neighboring area known as Southern California\'s "inland empire" because it\'s more than an hour\'s drive from the coast, in a warm, low-desert climate. He entered the University of California, Riverside, in 2006 as a scholarship student. In 2008 he was a summer camp counselor for disadvantaged children, age 7 to 14, at Camp Max Straus, run by Jewish Big Brothers Big Sisters of Los Angeles. He graduated from UC Riverside in 2010 with the highest honors and a bachelor\'s degree in neuroscience. "Academically, he was at the top of the top," Chancellor Timothy P. White said. He seemed destined for even higher achievement. By 2011, he had enrolled as a doctoral student in the neuroscience program at the University of Colorado Anschutz Medical Campus in Aurora, the largest academic health center in the Rocky Mountain region. The doctoral in neuroscience program attended by Holmes focuses on how the brain works, with an emphasis on processing of information, behavior, learning and memory. Holmes was one of six pre-thesis Ph.D. students in the program who were awarded a neuroscience training grant from the National Institutes of Health. The grant rewards outstanding neuroscientists who will make major contributions to neurobiology. A syllabus that listed Holmes as a student at the medical school shows he was to have delivered a presentation about microRNA biomarkers. But Holmes struggled, and his own mental health took an ominous turn. In March 2012, he told a classmate he wanted to kill people, and that he would do so "when his life was over," court documents said. Holmes was "denied access to the school after June 12, 2012, after he made threats to a professor," according to court documents. About that time, Holmes was a patient of University of Colorado psychiatrist Lynne Fenton. Fenton was so concerned about Holmes\' behavior that she mentioned it to her colleagues, saying he could be a danger to others, CNN affiliate KMGH-TV reported, citing sources with knowledge of the investigation. Fenton\'s concerns surfaced in early June, sources told the Denver station. Holmes began to fantasize about killing "a lot of people" in early June, nearly six weeks before the shootings, the station reported, citing unidentified sources familiar with the investigation. Holmes\' psychiatrist contacted several members of a "behavioral evaluation and threat assessment" team to say Holmes could be a danger to others, the station reported. At issue was whether to order Holmes held for 72 hours to be evaluated by mental health professionals, the station reported. "Fenton made initial phone calls about engaging the BETA team" in "the first 10 days" of June, but it "never came together" because in the period Fenton was having conversations with team members, Holmes began the process of dropping out of school, a source told KMGH. Defense attorneys have rejected the prosecution\'s assertions that Holmes was barred from campus. Citing statements from the university, Holmes\' attorneys have argued that his access was revoked because that\'s normal procedure when a student drops enrollment. What caused this turn for the worse for Holmes has yet to be clearly detailed. In the months before the shooting, he bought four weapons and more than 6,000 rounds of ammunition, authorities said. Police said he also booby-trapped his third-floor apartment with explosives, but police weren\'t fooled. After Holmes was caught in the cinema parking lot immediately after the shooting, bomb technicians went to the apartment and neutralized the explosives. No one was injured at the apartment building. Nine minutes before Holmes went into the movie theater, he called a University of Colorado switchboard, public defender Brady has said in court. The number he called can be used to get in contact with faculty members during off hours, Brady said. Court documents have also revealed that investigators have obtained text messages that Holmes exchanged with someone before the shooting. That person was not named, and the content of the texts has not been made public. According to The New York Times, Holmes sent a text message to a fellow graduate student, a woman, about two weeks before the shooting. She asked if he had left Aurora yet, reported the newspaper, which didn\'t identify her. No, he had two months left on his lease, Holmes wrote back, according to the Times. He asked if she had heard of "dysphoric mania," a form of bipolar disorder marked by the highs of mania and the dark and sometimes paranoid delusions of major depression. The woman asked if the disorder could be managed with treatment. "It was," Holmes wrote her, according to the Times. But he warned she should stay away from him "because I am bad news," the newspaper reported. It was her last contact with Holmes. After the shooting, Holmes\' family issued a brief statement: "Our hearts go out to those who were involved in this tragedy and to the families and friends of those involved," they said, without giving any information about their son. Since then, prosecutors have refused to offer a plea deal to Holmes. For Holmes, "justice is death," said Brauchler, the district attorney. In December, Holmes\' parents, who will be attending the trial, issued another statement: They asked that their son\'s life be spared and that he be sent to an institution for mentally ill people for the rest of his life, if he\'s found not guilty by reason of insanity. "He is not a monster," Robert and Arlene Holmes wrote, saying the death penalty is "morally wrong, especially when the condemned is mentally ill." "He is a human being gripped by a severe mental illness," the parents said. The matter will be settled by the jury. CNN\'s Ana Cabrera and Sara Weisfeldt contributed to this report from Denver.""" input_ids = tokenizer(article, return_tensors="pt").input_ids output_ids = model.generate(input_ids) print(tokenizer.decode(output_ids[0], skip_special_tokens=True)) # should produce # James Holmes, 27, is accused of opening fire on a Colorado theater. # He was a doctoral student at University of Colorado. # Holmes says he was suffering "a psychotic episode" at the time of the shooting. # Prosecutors won't say whether Holmes was barred from campus. ``` Such an article has a length of > 2000 tokens, which means that it cannot be handled correctly by Bert or Roberta encoders. ## Training script: **IMPORTANT**: In order for this code to work, make sure you checkout to the branch [more_general_trainer_metric](https://github.com/huggingface/transformers/tree/more_general_trainer_metric), which slightly adapts the `Trainer` for `EncoderDecoderModels` according to this PR: https://github.com/huggingface/transformers/pull/5840. The following code shows the complete training script that was used to fine-tune `longformer2roberta-cnn_dailymail-fp16 ` for reproducability. The training last ~90h on a standard GPU. ```python #!/usr/bin/env python3 import nlp import logging from transformers import LongformerTokenizer, EncoderDecoderModel, Trainer, TrainingArguments logging.basicConfig(level=logging.INFO) model = EncoderDecoderModel.from_encoder_decoder_pretrained("allenai/longformer-base-4096", "roberta-base") tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096") # load train and validation data train_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="train") val_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="validation[:5%]") # load rouge for validation rouge = nlp.load_metric("rouge", experiment_id=0) # enable gradient checkpointing for longformer encoder model.encoder.config.gradient_checkpointing = True # set decoding params model.config.decoder_start_token_id = tokenizer.bos_token_id model.config.eos_token_id = tokenizer.eos_token_id model.config.max_length = 142 model.config.min_length = 56 model.config.no_repeat_ngram_size = 3 model.early_stopping = True model.length_penalty = 2.0 model.num_beams = 4 encoder_length = 2048 decoder_length = 128 batch_size = 16 # map data correctly def map_to_encoder_decoder_inputs(batch): # Tokenizer will automatically set [BOS] <text> [EOS] # cut off at Longformer at 2048 inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=encoder_length) # force summarization <= 128 outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=decoder_length) batch["input_ids"] = inputs.input_ids batch["attention_mask"] = inputs.attention_mask # set 128 tokens to global attention batch["global_attention_mask"] = [[1 if i < 128 else 0 for i in range(sequence_length)] for sequence_length in len(inputs.input_ids) * [encoder_length]] batch["decoder_input_ids"] = outputs.input_ids batch["labels"] = outputs.input_ids.copy() # mask loss for padding batch["labels"] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] batch["decoder_attention_mask"] = outputs.attention_mask assert all([len(x) == encoder_length for x in inputs.input_ids]) assert all([len(x) == decoder_length for x in outputs.input_ids]) return batch def compute_metrics(pred): labels_ids = pred.label_ids pred_ids = pred.predictions # all unnecessary tokens are removed pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) labels_ids[labels_ids == -100] = tokenizer.eos_token_id label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True) rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid return { "rouge2_precision": round(rouge_output.precision, 4), "rouge2_recall": round(rouge_output.recall, 4), "rouge2_fmeasure": round(rouge_output.fmeasure, 4), } return { "rouge2_precision": round(rouge_output.precision, 4), "rouge2_recall": round(rouge_output.recall, 4), "rouge2_fmeasure": round(rouge_output.fmeasure, 4), } # make train dataset ready train_dataset = train_dataset.map( map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) train_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "global_attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], ) # same for validation dataset val_dataset = val_dataset.map( map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) val_dataset.set_format( type="torch", columns=["input_ids", "global_attention_mask", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], ) # set training arguments - these params are not really tuned, feel free to change training_args = TrainingArguments( output_dir="./", per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, predict_from_generate=True, evaluate_during_training=True, do_train=True, do_eval=True, logging_steps=1000, save_steps=1000, eval_steps=1000, overwrite_output_dir=True, warmup_steps=2000, save_total_limit=3, fp16=True, ) # instantiate trainer trainer = Trainer( model=model, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset, eval_dataset=val_dataset, ) # start training trainer.train() ``` ## Evaluation The following script evaluates the model on the test set of CNN/Daily Mail. ```python #!/usr/bin/env python3 import nlp import torch from transformers import LongformerTokenizer, EncoderDecoderModel tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096") model = EncoderDecoderModel.from_pretrained("patrickvonplaten/longformer2roberta-cnn_dailymail-fp16") model.to("cuda") test_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="test") batch_size = 32 encoder_length = 2048 decoder_length = 128 # map data correctly def generate_summary(batch): # Tokenizer will automatically set [BOS] <text> [EOS] # cut off at BERT max length 512 inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=encoder_length, return_tensors="pt") input_ids = inputs.input_ids.to("cuda") attention_mask = inputs.attention_mask.to("cuda") global_attention_mask = torch.zeros_like(attention_mask) global_attention_mask[:, :decoder_length] = 1 outputs = model.generate(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask) # all special tokens including will be removed output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) batch["pred"] = output_str return batch results = test_dataset.map(generate_summary, batched=True, batch_size=batch_size, remove_columns=["article"]) # load rouge for validation rouge = nlp.load_metric("rouge") pred_str = results["pred"] label_str = results["highlights"] rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid print(rouge_output) ``` The obtained results should be: | - | Rouge2 - mid -precision | Rouge2 - mid - recall | Rouge2 - mid - fmeasure | |----------|:-------------:|:------:|:------:| | **CNN/Daily Mail** | 12.39 | 15.05 | **13.21** | **Note** This model was trained to show how Longformer can be used as an Encoder model in a EncoderDecoder setup. Better results are obtained for datasets of much longer inputs.
mrm8488/xlm-multi-finetuned-xquadv1
mrm8488
2020-12-11T21:56:48Z
5
0
transformers
[ "transformers", "pytorch", "xlm", "question-answering", "multilingual", "arxiv:1901.07291", "arxiv:1910.11856", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: multilingual thumbnail: --- # [XLM](https://github.com/facebookresearch/XLM/) (multilingual version) fine-tuned for multilingual Q&A Released from `Facebook` together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau and fine-tuned on [XQuAD](https://github.com/deepmind/xquad) for multilingual (`11 different languages`) **Q&A** downstream task. ## Details of the language model('xlm-mlm-100-1280') [Language model](https://github.com/facebookresearch/XLM/#ii-cross-lingual-language-model-pretraining-xlm) | Languages | --------- | | 100 | It includes the following languages: <details> en-es-fr-de-zh-ru-pt-it-ar-ja-id-tr-nl-pl-simple-fa-vi-sv-ko-he-ro-no-hi-uk-cs-fi-hu-th-da-ca-el-bg-sr-ms-bn-hr-sl-zh_yue-az-sk-eo-ta-sh-lt-et-ml-la-bs-sq-arz-af-ka-mr-eu-tl-ang-gl-nn-ur-kk-be-hy-te-lv-mk-zh_classical-als-is-wuu-my-sco-mn-ceb-ast-cy-kn-br-an-gu-bar-uz-lb-ne-si-war-jv-ga-zh_min_nan-oc-ku-sw-nds-ckb-ia-yi-fy-scn-gan-tt-am </details> ## Details of the downstream task (multilingual Q&A) - Dataset Deepmind [XQuAD](https://github.com/deepmind/xquad) Languages covered: - Arabic: `ar` - German: `de` - Greek: `el` - English: `en` - Spanish: `es` - Hindi: `hi` - Russian: `ru` - Thai: `th` - Turkish: `tr` - Vietnamese: `vi` - Chinese: `zh` As the dataset is based on SQuAD v1.1, there are no unanswerable questions in the data. We chose this setting so that models can focus on cross-lingual transfer. We show the average number of tokens per paragraph, question, and answer for each language in the table below. The statistics were obtained using [Jieba](https://github.com/fxsjy/jieba) for Chinese and the [Moses tokenizer](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl) for the other languages. | | en | es | de | el | ru | tr | ar | vi | th | zh | hi | | --------- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Paragraph | 142.4 | 160.7 | 139.5 | 149.6 | 133.9 | 126.5 | 128.2 | 191.2 | 158.7 | 147.6 | 232.4 | | Question | 11.5 | 13.4 | 11.0 | 11.7 | 10.0 | 9.8 | 10.7 | 14.8 | 11.5 | 10.5 | 18.7 | | Answer | 3.1 | 3.6 | 3.0 | 3.3 | 3.1 | 3.1 | 3.1 | 4.5 | 4.1 | 3.5 | 5.6 | Citation: <details> ```bibtex @article{Artetxe:etal:2019, author = {Mikel Artetxe and Sebastian Ruder and Dani Yogatama}, title = {On the cross-lingual transferability of monolingual representations}, journal = {CoRR}, volume = {abs/1910.11856}, year = {2019}, archivePrefix = {arXiv}, eprint = {1910.11856} } ``` </details> As XQuAD is just an evaluation dataset, I used Data augmentation techniques (scraping, neural machine translation, etc) to obtain more samples and split the dataset in order to have a train and test set. The test set was created in a way that contains the same number of samples for each language. Finally, I got: | Dataset | # samples | | ----------- | --------- | | XQUAD train | 50 K | | XQUAD test | 8 K | ## Model training The model was trained on a Tesla P100 GPU and 25GB of RAM. The script for fine tuning can be found [here](https://github.com/huggingface/transformers/blob/master/examples/distillation/run_squad_w_distillation.py) ## Model in action Fast usage with **pipelines**: ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="mrm8488/xlm-multi-finetuned-xquadv1", tokenizer="mrm8488/xlm-multi-finetuned-xquadv1" ) # English qa_pipeline({ 'context': "Manuel Romero has been working hardly in the repository hugginface/transformers lately", 'question': "Who has been working hard for hugginface/transformers lately?" }) #Output: {'answer': 'Manuel', 'end': 6, 'score': 8.531880747878265e-05, 'start': 0} # Russian qa_pipeline({ 'context': "Мануэль Ромеро в последнее время почти не работал в репозитории hugginface / transformers", 'question': "Кто в последнее время усердно работал над обнимашками / трансформерами?" }) #Output: {'answer': 'работал в репозитории hugginface /','end': 76, 'score': 0.00012340750456964894, 'start': 42} ``` Try it on a Colab (*Do not forget to change the model and tokenizer path in the Colab if necessary*): <a href="https://colab.research.google.com/github/mrm8488/shared_colab_notebooks/blob/master/Try_mrm8488_xquad_finetuned_uncased_model.ipynb" target="_parent"><img src="https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Open In Colab" data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg"></a> > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/umberto-wikipedia-uncased-v1-finetuned-squadv1-it
mrm8488
2020-12-11T21:56:44Z
12
0
transformers
[ "transformers", "pytorch", "camembert", "question-answering", "it", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: it --- # UmBERTo Wikipedia Uncased + italian SQuAD v1 📚 🧐 ❓ [UmBERTo-Wikipedia-Uncased](https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1) fine-tuned on [Italian SQUAD v1 dataset](https://github.com/crux82/squad-it) for **Q&A** downstream task. ## Details of the downstream task (Q&A) - Model 🧠 [UmBERTo](https://github.com/musixmatchresearch/umberto) is a Roberta-based Language Model trained on large Italian Corpora and uses two innovative approaches: SentencePiece and Whole Word Masking. UmBERTo-Wikipedia-Uncased Training is trained on a relative small corpus (~7GB) extracted from Wikipedia-ITA. ## Details of the downstream task (Q&A) - Dataset 📚 [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/) [Rajpurkar et al. 2016] is a large scale dataset for training of question answering systems on factoid questions. It contains more than 100,000 question-answer pairs about passages from 536 articles chosen from various domains of Wikipedia. **SQuAD-it** is derived from the SQuAD dataset and it is obtained through semi-automatic translation of the SQuAD dataset into Italian. It represents a large-scale dataset for open question answering processes on factoid questions in Italian. The dataset contains more than 60,000 question/answer pairs derived from the original English dataset. ## Model training 🏋️‍ The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash python transformers/examples/question-answering/run_squad.py \ --model_type bert \ --model_name_or_path 'Musixmatch/umberto-wikipedia-uncased-v1' \ --do_eval \ --do_train \ --do_lower_case \ --train_file '/content/dataset/SQuAD_it-train.json' \ --predict_file '/content/dataset/SQuAD_it-test.json' \ --per_gpu_train_batch_size 16 \ --learning_rate 3e-5 \ --num_train_epochs 10 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /content/drive/My\ Drive/umberto-uncased-finetuned-squadv1-it \ --overwrite_output_dir \ --save_steps 1000 ``` With 10 epochs the model overfits the train dataset so I evaluated the different checkpoints created during training (every 1000 steps) and chose the best (In this case the one created at 17000 steps). ## Test set Results 🧾 | Metric | # Value | | ------ | --------- | | **EM** | **60.50** | | **F1** | **72.41** | ```json { 'exact': 60.50729399395453, 'f1': 72.4141113348361, 'total': 7609, 'HasAns_exact': 60.50729399395453, 'HasAns_f1': 72.4141113348361, 'HasAns_total': 7609, 'best_exact': 60.50729399395453, 'best_exact_thresh': 0.0, 'best_f1': 72.4141113348361, 'best_f1_thresh': 0.0 } ``` ## Comparison ⚖️ | Model | EM | F1 score | | -------------------------------------------------------------------------------------------------------------------------------- | --------- | --------- | | [DrQA-it trained on SQuAD-it ](https://github.com/crux82/squad-it/blob/master/README.md#evaluating-a-neural-model-over-squad-it) | 56.1 | 65.9 | | This one |60.50 |72.41 | | [bert-italian-finedtuned-squadv1-it-alfa](https://huggingface.co/mrm8488/bert-italian-finedtuned-squadv1-it-alfa) |**62.51** |**74.16** | | **62.51** | **74.16** | ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline QnA_pipeline = pipeline('question-answering', model='mrm8488/umberto-wikipedia-uncased-v1-finetuned-squadv1-it') QnA_pipeline({ 'context': 'Marco Aurelio era un imperatore romano che praticava lo stoicismo come filosofia di vita .', 'question': 'Quale filosofia seguì Marco Aurelio ?' }) # Output: {'answer': 'stoicismo', 'end': 65, 'score': 0.9477770241566028, 'start': 56} ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/t5-small-finetuned-squadv1
mrm8488
2020-12-11T21:56:34Z
8
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:squad", "arxiv:1910.10683", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - squad --- # T5-small fine-tuned on SQuAD [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) [(small)](https://huggingface.co/t5-small) fine-tuned on [SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/) for **Q&A** downstream task. ## Details of T5 The **T5** model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* in Here the abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://i.imgur.com/jVFMMWR.png) ## Details of the downstream task (Q&A) - Dataset 📚 🧐 ❓ Dataset ID: ```squad``` from [Huggingface/NLP](https://github.com/huggingface/nlp) | Dataset | Split | # samples | | -------- | ----- | --------- | | squad | train | 87599 | | squad | valid | 10570 | How to load it from [nlp](https://github.com/huggingface/nlp) ```python train_dataset = nlp.load_dataset('squad, split=nlp.Split.TRAIN) valid_dataset = nlp.load_dataset('squad', split=nlp.Split.VALIDATION) ``` Check out more about this dataset and others in [NLP Viewer](https://huggingface.co/nlp/viewer/) ## Model fine-tuning 🏋️‍ The training script is a slightly modified version of [this awesome one](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb) by [Suraj Patil](https://twitter.com/psuraj28) ## Results 📝 | Metric | # Value | | ------ | --------- | | **EM** | **76.95** | | **F1** | **85.71** | ## Model in Action 🚀 ```python from transformers import AutoModelWithLMHead, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-small-finetuned-squadv1") model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-small-finetuned-squadv1") def get_answer(question, context): input_text = "question: %s context: %s </s>" % (question, context) features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask']) return tokenizer.decode(output[0]) context = "Manuel have created RuPERTa-base (a Spanish RoBERTa) with the support of HF-Transformers and Google" question = "Who has supported Manuel?" get_answer(question, context) # output: 'HF-Transformers and Google' ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/t5-small-finetuned-emotion
mrm8488
2020-12-11T21:56:24Z
11
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:emotion", "arxiv:1910.10683", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - emotion --- # T5-small fine-tuned for Emotion Recognition 😂😢😡😃😯 [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) [small](https://huggingface.co/t5-small) fine-tuned on [emotion recognition](https://github.com/dair-ai/emotion_dataset) dataset for **Emotion Recognition** downstream task. ## Details of T5 The **T5** model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* in Here the abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://i.imgur.com/jVFMMWR.png) ## Details of the downstream task (Sentiment Recognition) - Dataset 📚 [Elvis Saravia](https://twitter.com/omarsar0) has gathered a great [dataset](https://github.com/dair-ai/emotion_dataset) for emotion recognition. It allows to classifiy the text into one of the following **6** emotions: - sadness 😢 - joy 😃 - love 🥰 - anger 😡 - fear 😱 - surprise 😯 ## Model fine-tuning 🏋️‍ The training script is a slightly modified version of [this Colab Notebook](https://github.com/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) created by [Suraj Patil](https://github.com/patil-suraj), so all credits to him! ## Test set metrics 🧾 | |precision | recall | f1-score |support| |----------|----------|---------|----------|-------| |anger | 0.92| 0.93| 0.92| 275| |fear | 0.90| 0.90| 0.90| 224| |joy | 0.97| 0.91| 0.94| 695| |love | 0.75| 0.89| 0.82| 159| |sadness | 0.96| 0.97| 0.96| 581| |surpirse | 0.73| 0.80| 0.76| 66| | | |accuracy| | | 0.92| 2000| |macro avg| 0.87| 0.90| 0.88| 2000| |weighted avg| 0.93| 0.92| 0.92| 2000| Confusion Matrix ![CM](https://i.imgur.com/JBtAwPx.png) ## Model in Action 🚀 ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-small-finetuned-emotion") model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-small-finetuned-emotion") def get_emotion(text): input_ids = tokenizer.encode(text + '</s>', return_tensors='pt') output = model.generate(input_ids=input_ids, max_length=2) dec = [tokenizer.decode(ids) for ids in output] label = dec[0] return label get_emotion("i feel as if i havent blogged in ages are at least truly blogged i am doing an update cute") # Output: 'joy' get_emotion("i have a feeling i kinda lost my best friend") # Output: 'sadness' ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/t5-base-finetuned-wikiSQL-sql-to-en
mrm8488
2020-12-11T21:56:17Z
35
12
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:wikisql", "arxiv:1910.10683", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - wikisql --- # T5-base fine-tuned on WikiSQL for SQL to English translation [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned on [WikiSQL](https://github.com/salesforce/WikiSQL) for **SQL** to **English** **translation** task. ## Details of T5 The **T5** model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* in Here the abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://i.imgur.com/jVFMMWR.png) ## Details of the Dataset 📚 Dataset ID: ```wikisql``` from [Huggingface/NLP](https://huggingface.co/nlp/viewer/?dataset=wikisql) | Dataset | Split | # samples | | -------- | ----- | --------- | | wikisql | train | 56355 | | wikisql | valid | 14436 | How to load it from [nlp](https://github.com/huggingface/nlp) ```python train_dataset = nlp.load_dataset('wikisql', split=nlp.Split.TRAIN) valid_dataset = nlp.load_dataset('wikisql', split=nlp.Split.VALIDATION) ``` Check out more about this dataset and others in [NLP Viewer](https://huggingface.co/nlp/viewer/) ## Model fine-tuning 🏋️‍ The training script is a slightly modified version of [this Colab Notebook](https://github.com/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) created by [Suraj Patil](https://github.com/patil-suraj), so all credits to him! ## Model in Action 🚀 ```python from transformers import AutoModelWithLMHead, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL-sql-to-en") model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL-sql-to-en") def get_explanation(query): input_text = "translate Sql to English: %s </s>" % query features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask']) return tokenizer.decode(output[0]) query = "SELECT COUNT Params form model where location=HF-Hub" get_explanation(query) # output: 'How many parameters form model for HF-hub?' ``` Play with it in a Colab: <img src="https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Open In Colab" data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg"> > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/squeezebert-finetuned-squadv2
mrm8488
2020-12-11T21:55:26Z
11
0
transformers
[ "transformers", "pytorch", "squeezebert", "question-answering", "en", "dataset:squad_v2", "arxiv:2006.11316", "arxiv:2004.02984", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en datasets: - squad_v2 --- # SqueezeBERT + SQuAD v2 [squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) fine-tuned on [SQUAD v2](https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/) for **Q&A** downstream task. ## Details of SqueezeBERT This model, `squeezebert-uncased`, is a pretrained model for the English language using a masked language modeling (MLM) and Sentence Order Prediction (SOP) objective. SqueezeBERT was introduced in [this paper](https://arxiv.org/abs/2006.11316). This model is case-insensitive. The model architecture is similar to BERT-base, but with the pointwise fully-connected layers replaced with [grouped convolutions](https://blog.yani.io/filter-group-tutorial/). The authors found that SqueezeBERT is 4.3x faster than `bert-base-uncased` on a Google Pixel 3 smartphone. More about the model [here](https://arxiv.org/abs/2004.02984) ## Details of the downstream task (Q&A) - Dataset 📚 🧐 ❓ **SQuAD2.0** combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. ## Model training 🏋️‍ The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash python /content/transformers/examples/question-answering/run_squad.py \ --model_type bert \ --model_name_or_path squeezebert/squeezebert-uncased \ --do_train \ --do_eval \ --do_lower_case \ --train_file /content/dataset/train-v2.0.json \ --predict_file /content/dataset/dev-v2.0.json \ --per_gpu_train_batch_size 16 \ --learning_rate 3e-5 \ --num_train_epochs 15 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /content/output_dir \ --overwrite_output_dir \ --version_2_with_negative \ --save_steps 2000 ``` ## Test set Results 🧾 | Metric | # Value | | ------ | --------- | | **EM** | **69.98** | | **F1** | **74.14** | Model Size: **195 MB** ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline QnA_pipeline = pipeline('question-answering', model='mrm8488/squeezebert-finetuned-squadv2') QnA_pipeline({ 'context': 'A new strain of flu that has the potential to become a pandemic has been identified in China by scientists.', 'question': 'Who did identified it ?' }) # Output: {'answer': 'scientists.', 'end': 106, 'score': 0.9768241047859192, 'start': 96} ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/electricidad-base-generator
mrm8488
2020-12-11T21:54:10Z
7
3
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "es", "arxiv:1406.2661", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: es thumbnail: https://i.imgur.com/uxAvBfh.png widget: - text: "Madrid es una ciudad muy [MASK] en España." --- ## ELECTRICIDAD: The Spanish Electra [Imgur](https://imgur.com/uxAvBfh) **Electricidad-base-generator** (uncased) is a ```base``` Electra like model (generator in this case) trained on a + 20 GB of the [OSCAR](https://oscar-corpus.com/) Spanish corpus. As mentioned in the original [paper](https://openreview.net/pdf?id=r1xMH1BtvB): **ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. For a detailed description and experimental results, please refer the paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). ## Fast example of usage 🚀 ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="mrm8488/electricidad-base-generator", tokenizer="mrm8488/electricidad-base-generator" ) print( fill_mask(f"HuggingFace está creando {fill_mask.tokenizer.mask_token} que la comunidad usa para resolver tareas de NLP.") ) # Output: [{'sequence': '[CLS] huggingface esta creando herramientas que la comunidad usa para resolver tareas de nlp. [SEP]', 'score': 0.0896105170249939, 'token': 8760, 'token_str': 'herramientas'}, ...] ``` ## Acknowledgments I thank [🤗/transformers team](https://github.com/huggingface/transformers) for allowing me to train the model (specially to [Julien Chaumond](https://twitter.com/julien_c)). > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/electra-small-finetuned-squadv1
mrm8488
2020-12-11T21:53:59Z
7
0
transformers
[ "transformers", "pytorch", "electra", "question-answering", "en", "arxiv:1406.2661", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en --- # Electra small ⚡ + SQuAD v1 ❓ [Electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) fine-tuned on [SQUAD v1.1 dataset](https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/) for **Q&A** downstream task. ## Details of the downstream task (Q&A) - Model 🧠 **ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. ## Details of the downstream task (Q&A) - Dataset 📚 **S**tanford **Q**uestion **A**nswering **D**ataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. SQuAD v1.1 contains **100,000+** question-answer pairs on **500+** articles. ## Model training 🏋️‍ The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash python transformers/examples/question-answering/run_squad.py \ --model_type electra \ --model_name_or_path 'google/electra-small-discriminator' \ --do_eval \ --do_train \ --do_lower_case \ --train_file '/content/dataset/train-v1.1.json' \ --predict_file '/content/dataset/dev-v1.1.json' \ --per_gpu_train_batch_size 16 \ --learning_rate 3e-5 \ --num_train_epochs 10 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir '/content/output' \ --overwrite_output_dir \ --save_steps 1000 ``` ## Test set Results 🧾 | Metric | # Value | | ------ | --------- | | **EM** | **77.70** | | **F1** | **85.74** | | **Size**| **50 MB** | Very good metrics for such a "small" model! ```json { 'exact': 77.70104068117313, 'f1': 85.73991234187997, 'total': 10570, 'HasAns_exact': 77.70104068117313, 'HasAns_f1': 85.73991234187997, 'HasAns_total': 10570, 'best_exact': 77.70104068117313, 'best_exact_thresh': 0.0, 'best_f1': 85.73991234187997, 'best_f1_thresh': 0.0 } ``` ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline QnA_pipeline = pipeline('question-answering', model='mrm8488/electra-small-finetuned-squadv1') QnA_pipeline({ 'context': 'A new strain of flu that has the potential to become a pandemic has been identified in China by scientists.', 'question': 'What has been discovered by scientists from China ?' }) # Output: {'answer': 'A new strain of flu', 'end': 19, 'score': 0.7950334108113424, 'start': 0} ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
moumeneb1/flaubert-base-cased-ecology_crisis
moumeneb1
2020-12-11T21:51:41Z
5
0
transformers
[ "transformers", "flaubert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
# Flaubert-base-cased-ecology_crisis An adapted [__Flaubert/Flaubert_base-cased model__](https://github.com/getalp/Flaubert) Trained further on a Language modeling Task of unlabeled French tweets used to create the [CrisisDataset](https://github.com/DiegoKoz/french_ecological_crisis), The intermediate task of masqued language modeling helped us improve the results on our [paper](http://www.sciencedirect.com/science/article/pii/S0306457320300650) compared to the standard flaubert-base-cased model. If you use this pretrained model on your work, please cite us as follows 🤗 ``` @article{Kozlowski-et-al2020, title = "A three-level classification of French tweets in ecological crises", journal = "Information Processing & Management", volume = "57", number = "5", pages = "102284", year = "2020", issn = "0306-4573", doi = "https://doi.org/10.1016/j.ipm.2020.102284", url = "http://www.sciencedirect.com/science/article/pii/S0306457320300650", author = "Diego Kozlowski and Elisa Lannelongue and Frédéric Saudemont and Farah Benamara and Alda Mari and Véronique Moriceau and Abdelmoumene Boumadane", keywords = "Crisis response from social media, Machine learning, Natural language processing, Transfer learning", } ```
m3hrdadfi/bert2bert-fa-news-headline
m3hrdadfi
2020-12-11T21:50:16Z
43
0
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "summarization", "fa", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: fa license: apache-2.0 tags: - summarization --- A Bert2Bert model on VoA Persian Corpus (a medium-sized corpus of 7.9 million words, 2003-2008) generates headlines. The model achieved a 25.30 ROUGE-2 score. For more detail, please follow the [News Headline Generation](https://github.com/m3hrdadfi/news-headline-generation) repo. ## Eval results The following table summarizes the ROUGE scores obtained by the Bert2Bert model. | % | Precision | Recall | FMeasure | |:-------:|:---------:|:------:|:--------:| | ROUGE-1 | 43.78 | 45.52 | 43.54 | | ROUGE-2 | 24.50 | 25.30* | 24.24 | | ROUGE-L | 41.20 | 42.22 | 40.76 | ## Questions? Post a Github issue on the [News Headline Generation](https://github.com/hooshvare/news-headline-generation/issues) repo.
loodos/electra-small-turkish-cased-discriminator
loodos
2020-12-11T21:49:33Z
4
0
transformers
[ "transformers", "pytorch", "tf", "electra", "pretraining", "tr", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: tr --- # Turkish Language Models with Huggingface's Transformers As R&D Team at Loodos, we release cased and uncased versions of most recent language models for Turkish. More details about pretrained models and evaluations on downstream tasks can be found [here (our repo)](https://github.com/Loodos/turkish-language-models). # Turkish ELECTRA-Small-discriminator (cased) This is ELECTRA-Small model's discriminator which has 12 encoder layers with 256 hidden layers size trained on cased Turkish dataset. ## Usage Using AutoModelWithLMHead and AutoTokenizer from Transformers, you can import the model as described below. ```python from transformers import AutoModel, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("loodos/electra-small-turkish-cased-discriminator") model = AutoModelWithLMHead.from_pretrained("loodos/electra-small-turkish-cased-discriminator") ``` ## Details and Contact You contact us to ask a question, open an issue or give feedback via our github [repo](https://github.com/Loodos/turkish-language-models). ## Acknowledgments Many thanks to TFRC Team for providing us cloud TPUs on Tensorflow Research Cloud to train our models.
loodos/electra-base-turkish-uncased-discriminator
loodos
2020-12-11T21:49:30Z
58
0
transformers
[ "transformers", "pytorch", "tf", "electra", "pretraining", "tr", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: tr --- # Turkish Language Models with Huggingface's Transformers As R&D Team at Loodos, we release cased and uncased versions of most recent language models for Turkish. More details about pretrained models and evaluations on downstream tasks can be found [here (our repo)](https://github.com/Loodos/turkish-language-models). # Turkish ELECTRA-Base-discriminator (uncased) This is ELECTRA-Base model's discriminator which has the same structure with BERT-Base trained on uncased Turkish dataset. ## Usage Using AutoModelWithLMHead and AutoTokenizer from Transformers, you can import the model as described below. ```python from transformers import AutoModel, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("loodos/electra-base-turkish-uncased-discriminator", do_lower_case=False) model = AutoModelWithLMHead.from_pretrained("loodos/electra-base-turkish-uncased-discriminator") normalizer = TextNormalization() normalized_text = normalizer.normalize(text, do_lower_case=True, is_turkish=True) tokenizer.tokenize(normalized_text) ``` ### Notes on Tokenizers Currently, Huggingface's tokenizers (which were written in Python) have a bug concerning letters "ı, i, I, İ" and non-ASCII Turkish specific letters. There are two reasons. 1- Vocabulary and sentence piece model is created with NFC/NFKC normalization but tokenizer uses NFD/NFKD. NFD/NFKD normalization changes text that contains Turkish characters I-ı, İ-i, Ç-ç, Ö-ö, Ş-ş, Ğ-ğ, Ü-ü. This causes wrong tokenization, wrong training and loss of information. Some tokens are never trained.(like "şanlıurfa", "öğün", "çocuk" etc.) NFD/NFKD normalization is not proper for Turkish. 2- Python's default ```string.lower()``` and ```string.upper()``` make the conversions - "I" and "İ" to 'i' - 'i' and 'ı' to 'I' respectively. However, in Turkish, 'I' and 'İ' are two different letters. We opened an [issue](https://github.com/huggingface/transformers/issues/6680) in Huggingface's github repo about this bug. Until it is fixed, in case you want to train your model with uncased data, we provide a simple text normalization module (`TextNormalization()` in the code snippet above) in our [repo](https://github.com/Loodos/turkish-language-models). ## Details and Contact You contact us to ask a question, open an issue or give feedback via our github [repo](https://github.com/Loodos/turkish-language-models). ## Acknowledgments Many thanks to TFRC Team for providing us cloud TPUs on Tensorflow Research Cloud to train our models.
krevas/finance-koelectra-small-discriminator
krevas
2020-12-11T21:48:34Z
3
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "ko", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: ko --- # 📈 Financial Korean ELECTRA model Pretrained ELECTRA Language Model for Korean (`finance-koelectra-small-discriminator`) > ELECTRA is a new method for self-supervised language representation learning. It can be used to > pre-train transformer networks using relatively little compute. ELECTRA models are trained to > distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to > the discriminator of a GAN. More details about ELECTRA can be found in the [ICLR paper](https://openreview.net/forum?id=r1xMH1BtvB) or in the [official ELECTRA repository](https://github.com/google-research/electra) on GitHub. ## Stats The current version of the model is trained on a financial news data of Naver news. The final training corpus has a size of 25GB and 2.3B tokens. This model was trained a cased model on a TITAN RTX for 500k steps. ## Usage ```python from transformers import ElectraForPreTraining, ElectraTokenizer import torch discriminator = ElectraForPreTraining.from_pretrained("krevas/finance-koelectra-small-discriminator") tokenizer = ElectraTokenizer.from_pretrained("krevas/finance-koelectra-small-discriminator") sentence = "내일 해당 종목이 대폭 상승할 것이다" fake_sentence = "내일 해당 종목이 맛있게 상승할 것이다" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions.tolist()[1:-1]] print("fake token : %s" % fake_tokens[predictions.tolist()[1:-1].index(1)]) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/krevas).
krevas/finance-koelectra-base-discriminator
krevas
2020-12-11T21:48:27Z
1
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "ko", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: ko --- # 📈 Financial Korean ELECTRA model Pretrained ELECTRA Language Model for Korean (`finance-koelectra-base-discriminator`) > ELECTRA is a new method for self-supervised language representation learning. It can be used to > pre-train transformer networks using relatively little compute. ELECTRA models are trained to > distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to > the discriminator of a GAN. More details about ELECTRA can be found in the [ICLR paper](https://openreview.net/forum?id=r1xMH1BtvB) or in the [official ELECTRA repository](https://github.com/google-research/electra) on GitHub. ## Stats The current version of the model is trained on a financial news data of Naver news. The final training corpus has a size of 25GB and 2.3B tokens. This model was trained a cased model on a TITAN RTX for 500k steps. ## Usage ```python from transformers import ElectraForPreTraining, ElectraTokenizer import torch discriminator = ElectraForPreTraining.from_pretrained("krevas/finance-koelectra-base-discriminator") tokenizer = ElectraTokenizer.from_pretrained("krevas/finance-koelectra-base-discriminator") sentence = "내일 해당 종목이 대폭 상승할 것이다" fake_sentence = "내일 해당 종목이 맛있게 상승할 것이다" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions.tolist()[1:-1]] print("fake token : %s" % fake_tokens[predictions.tolist()[1:-1].index(1)]) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/krevas).
jplu/tf-xlm-roberta-large
jplu
2020-12-11T21:48:04Z
144
1
transformers
[ "transformers", "tf", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# Tensorflow XLM-RoBERTa In this repository you will find different versions of the XLM-RoBERTa model for Tensorflow. ## XLM-RoBERTa [XLM-RoBERTa](https://ai.facebook.com/blog/-xlm-r-state-of-the-art-cross-lingual-understanding-through-self-supervision/) is a scaled cross lingual sentence encoder. It is trained on 2.5T of data across 100 languages data filtered from Common Crawl. XLM-R achieves state-of-the-arts results on multiple cross lingual benchmarks. ## Model Weights | Model | Downloads | -------------------------------- | --------------------------------------------------------------------------------------------------------------- | `jplu/tf-xlm-roberta-base` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/jplu/tf-xlm-roberta-base/config.json) • [`tf_model.h5`](https://s3.amazonaws.com/models.huggingface.co/bert/jplu/tf-xlm-roberta-base/tf_model.h5) | `jplu/tf-xlm-roberta-large` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/jplu/tf-xlm-roberta-large/config.json) • [`tf_model.h5`](https://s3.amazonaws.com/models.huggingface.co/bert/jplu/tf-xlm-roberta-large/tf_model.h5) ## Usage With Transformers >= 2.4 the Tensorflow models of XLM-RoBERTa can be loaded like: ```python from transformers import TFXLMRobertaModel model = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base") ``` Or ``` model = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-large") ``` ## Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/jplu). ## Acknowledgments Thanks to all the Huggingface team for the support and their amazing library!
indobenchmark/indobert-lite-large-p2
indobenchmark
2020-12-11T21:45:59Z
186
1
transformers
[ "transformers", "pytorch", "tf", "albert", "feature-extraction", "indobert", "indobenchmark", "indonlu", "id", "dataset:Indo4B", "arxiv:2009.05387", "license:mit", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: id tags: - indobert - indobenchmark - indonlu license: mit inference: false datasets: - Indo4B --- # IndoBERT-Lite Large Model (phase2 - uncased) [IndoBERT](https://arxiv.org/abs/2009.05387) is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective. ## All Pre-trained Models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `indobenchmark/indobert-base-p1` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-base-p2` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p1` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p2` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p1` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p2` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p1` | 17.7M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p2` | 17.7M | Large | Indo4B (23.43 GB of text) | ## How to use ### Load model and tokenizer ```python from transformers import BertTokenizer, AutoModel tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-lite-large-p2") model = AutoModel.from_pretrained("indobenchmark/indobert-lite-large-p2") ``` ### Extract contextual representation ```python x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1) print(x, model(x)[0].sum()) ``` ## Authors <b>IndoBERT</b> was trained and evaluated by Bryan Wilie\*, Karissa Vincentio\*, Genta Indra Winata\*, Samuel Cahyawijaya\*, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, Ayu Purwarianti. ## Citation If you use our work, please cite: ```bibtex @inproceedings{wilie2020indonlu, title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding}, author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti}, booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing}, year={2020} } ```
indobenchmark/indobert-lite-large-p1
indobenchmark
2020-12-11T21:45:56Z
40
0
transformers
[ "transformers", "pytorch", "tf", "albert", "feature-extraction", "indobert", "indobenchmark", "indonlu", "id", "dataset:Indo4B", "arxiv:2009.05387", "license:mit", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: id tags: - indobert - indobenchmark - indonlu license: mit inference: false datasets: - Indo4B --- # IndoBERT-Lite Large Model (phase1 - uncased) [IndoBERT](https://arxiv.org/abs/2009.05387) is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective. ## All Pre-trained Models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `indobenchmark/indobert-base-p1` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-base-p2` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p1` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p2` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p1` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p2` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p1` | 17.7M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p2` | 17.7M | Large | Indo4B (23.43 GB of text) | ## How to use ### Load model and tokenizer ```python from transformers import BertTokenizer, AutoModel tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-lite-large-p1") model = AutoModel.from_pretrained("indobenchmark/indobert-lite-large-p1") ``` ### Extract contextual representation ```python x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1) print(x, model(x)[0].sum()) ``` ## Authors <b>IndoBERT</b> was trained and evaluated by Bryan Wilie\*, Karissa Vincentio\*, Genta Indra Winata\*, Samuel Cahyawijaya\*, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, Ayu Purwarianti. ## Citation If you use our work, please cite: ```bibtex @inproceedings{wilie2020indonlu, title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding}, author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti}, booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing}, year={2020} } ```
illuin/camembert-base-fquad
illuin
2020-12-11T21:45:27Z
506
7
transformers
[ "transformers", "pytorch", "camembert", "question-answering", "fr", "dataset:fquad", "license:gpl-3.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: fr tags: - question-answering - camembert license: gpl-3.0 datasets: - fquad --- # camembert-base-fquad ## Description A native French Question Answering model [CamemBERT-base](https://camembert-model.fr/) fine-tuned on [FQuAD](https://fquad.illuin.tech/). ## Evaluation results On the development set. ```shell {"f1": 88.1, "exact_match": 78.1} ``` On the test set. ```shell {"f1": 88.3, "exact_match": 78.0} ``` ## Usage ```python from transformers import pipeline nlp = pipeline('question-answering', model='illuin/camembert-base-fquad', tokenizer='illuin/camembert-base-fquad') nlp({ 'question': "Qui est Claude Monet?", 'context': "Claude Monet, né le 14 novembre 1840 à Paris et mort le 5 décembre 1926 à Giverny, est un peintre français et l’un des fondateurs de l'impressionnisme." }) ``` ## Citation If you use our work, please cite: ```bibtex @article{dHoffschmidt2020FQuADFQ, title={FQuAD: French Question Answering Dataset}, author={Martin d'Hoffschmidt and Maxime Vidal and Wacim Belblidia and Tom Brendl'e and Quentin Heinrich}, journal={ArXiv}, year={2020}, volume={abs/2002.06071} } ```
healx/gpt-2-pubmed-medium
healx
2020-12-11T21:43:41Z
3,105
2
transformers
[ "transformers", "pytorch", "arxiv:2004.13845", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
GPT-2 (355M model) finetuned on 0.5m PubMed abstracts. Used in the [writemeanabstract.com](writemeanabstract.com) and the following preprint: [Papanikolaou, Yannis, and Andrea Pierleoni. "DARE: Data Augmented Relation Extraction with GPT-2." arXiv preprint arXiv:2004.13845 (2020).](https://arxiv.org/abs/2004.13845)
facebook/rag-token-base
facebook
2020-12-11T21:39:44Z
7,396
17
transformers
[ "transformers", "pytorch", "rag", "en", "dataset:wiki_dpr", "arxiv:2005.11401", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en license: apache-2.0 datasets: - wiki_dpr thumbnail: https://huggingface.co/front/thumbnails/facebook.png --- ## RAG This is a non-finetuned version of the RAG-Token model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf) by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al. Rag consits of a *question encoder*, *retriever* and a *generator*. The retriever should be a `RagRetriever` instance. The *question encoder* can be any model that can be loaded with `AutoModel` and the *generator* can be any model that can be loaded with `AutoModelForSeq2SeqLM`. This model is a non-finetuned RAG-Token model and was created as follows: ```python from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration, AutoTokenizer model = RagTokenForGeneration.from_pretrained_question_encoder_generator("facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large") question_encoder_tokenizer = AutoTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large") tokenizer = RagTokenizer(question_encoder_tokenizer, generator_tokenizer) model.config.use_dummy_dataset = True model.config.index_name = "exact" retriever = RagRetriever(model.config, question_encoder_tokenizer, generator_tokenizer) model.save_pretrained("./") tokenizer.save_pretrained("./") retriever.save_pretrained("./") ``` Note that the model is *uncased* so that all capital input letters are converted to lower-case. ## Usage: *Note*: the model uses the *dummy* retriever as a default. Better results are obtained by using the full retriever, by setting `config.index_name="legacy"` and `config.use_dummy_dataset=False`. The model can be fine-tuned as follows: ```python from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base") retriever = RagRetriever.from_pretrained("facebook/rag-token-base") model = RagTokenForGeneration.from_pretrained("facebook/rag-token-base", retriever=retriever) input_dict = tokenizer.prepare_seq2seq_batch("who holds the record in 100m freestyle", "michael phelps", return_tensors="pt") outputs = model(input_dict["input_ids"], labels=input_dict["labels"]) loss = outputs.loss # train on loss ```
elgeish/cs224n-squad2.0-albert-xxlarge-v1
elgeish
2020-12-11T21:39:01Z
7
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "exbert", "arxiv:2004.07067", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - exbert --- ## CS224n SQuAD2.0 Project Dataset The goal of this model is to save CS224n students GPU time when establishing baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf). The training set used to fine-tune this model is the same as the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however, evaluation and model selection were performed using roughly half of the official dev set, 6078 examples, picked at random. The data files can be found at <https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020 version. Given that the official SQuAD2.0 dev set contains the project's test set, students must make sure not to use the official SQuAD2.0 dev set in any way — including the use of models fine-tuned on the official SQuAD2.0, since they used the official SQuAD2.0 dev set for model selection. <a href="https://huggingface.co/exbert/?model=elgeish/cs224n-squad2.0-albert-xxlarge-v1"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> ## Results ```json { "exact": 85.93287265547877, "f1": 88.91258331187983, "total": 6078, "HasAns_exact": 84.36426116838489, "HasAns_f1": 90.58786301361013, "HasAns_total": 2910, "NoAns_exact": 87.37373737373737, "NoAns_f1": 87.37373737373737, "NoAns_total": 3168, "best_exact": 85.93287265547877, "best_exact_thresh": 0.0, "best_f1": 88.91258331187993, "best_f1_thresh": 0.0 } ``` ## Notable Arguments ```json { "do_lower_case": true, "doc_stride": 128, "fp16": false, "fp16_opt_level": "O1", "gradient_accumulation_steps": 24, "learning_rate": 3e-05, "max_answer_length": 30, "max_grad_norm": 1, "max_query_length": 64, "max_seq_length": 512, "model_name_or_path": "albert-xxlarge-v1", "model_type": "albert", "num_train_epochs": 4, "per_gpu_train_batch_size": 1, "save_steps": 1000, "seed": 42, "train_batch_size": 1, "version_2_with_negative": true, "warmup_steps": 814, "weight_decay": 0 } ``` ## Environment Setup ```json { "transformers": "2.5.1", "pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0", "python": "3.6.5=hc3d631a_2", "os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux", "gpu": "Tesla V100-SXM2-16GB" } ``` ## How to Cite ```BibTeX @misc{elgeish2020gestalt, title={Gestalt: a Stacking Ensemble for SQuAD2.0}, author={Mohamed El-Geish}, journal={arXiv e-prints}, archivePrefix={arXiv}, eprint={2004.07067}, year={2020}, } ``` ## Related Models * [elgeish/cs224n-squad2.0-albert-base-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-base-v2) * [elgeish/cs224n-squad2.0-albert-large-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-large-v2) * [elgeish/cs224n-squad2.0-distilbert-base-uncased](https://huggingface.co/elgeish/cs224n-squad2.0-distilbert-base-uncased) * [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
elgeish/cs224n-squad2.0-albert-large-v2
elgeish
2020-12-11T21:38:57Z
7
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "exbert", "arxiv:2004.07067", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - exbert --- ## CS224n SQuAD2.0 Project Dataset The goal of this model is to save CS224n students GPU time when establishing baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf). The training set used to fine-tune this model is the same as the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however, evaluation and model selection were performed using roughly half of the official dev set, 6078 examples, picked at random. The data files can be found at <https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020 version. Given that the official SQuAD2.0 dev set contains the project's test set, students must make sure not to use the official SQuAD2.0 dev set in any way — including the use of models fine-tuned on the official SQuAD2.0, since they used the official SQuAD2.0 dev set for model selection. <a href="https://huggingface.co/exbert/?model=elgeish/cs224n-squad2.0-albert-large-v2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> ## Results ```json { "exact": 79.2694965449161, "f1": 82.50844352970152, "total": 6078, "HasAns_exact": 74.87972508591065, "HasAns_f1": 81.64478342732858, "HasAns_total": 2910, "NoAns_exact": 83.30176767676768, "NoAns_f1": 83.30176767676768, "NoAns_total": 3168, "best_exact": 79.2694965449161, "best_exact_thresh": 0.0, "best_f1": 82.50844352970155, "best_f1_thresh": 0.0 } ``` ## Notable Arguments ```json { "do_lower_case": true, "doc_stride": 128, "fp16": false, "fp16_opt_level": "O1", "gradient_accumulation_steps": 1, "learning_rate": 3e-05, "max_answer_length": 30, "max_grad_norm": 1, "max_query_length": 64, "max_seq_length": 384, "model_name_or_path": "albert-large-v2", "model_type": "albert", "num_train_epochs": 5, "per_gpu_train_batch_size": 8, "save_steps": 5000, "seed": 42, "train_batch_size": 8, "version_2_with_negative": true, "warmup_steps": 0, "weight_decay": 0 } ``` ## Environment Setup ```json { "transformers": "2.5.1", "pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0", "python": "3.6.5=hc3d631a_2", "os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux", "gpu": "Tesla V100-SXM2-16GB" } ``` ## How to Cite ```BibTeX @misc{elgeish2020gestalt, title={Gestalt: a Stacking Ensemble for SQuAD2.0}, author={Mohamed El-Geish}, journal={arXiv e-prints}, archivePrefix={arXiv}, eprint={2004.07067}, year={2020}, } ``` ## Related Models * [elgeish/cs224n-squad2.0-albert-base-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-base-v2) * [elgeish/cs224n-squad2.0-albert-xxlarge-v1](https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1) * [elgeish/cs224n-squad2.0-distilbert-base-uncased](https://huggingface.co/elgeish/cs224n-squad2.0-distilbert-base-uncased) * [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
elgeish/cs224n-squad2.0-albert-base-v2
elgeish
2020-12-11T21:38:54Z
1,062
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "exbert", "arxiv:2004.07067", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - exbert --- ## CS224n SQuAD2.0 Project Dataset The goal of this model is to save CS224n students GPU time when establishing baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf). The training set used to fine-tune this model is the same as the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however, evaluation and model selection were performed using roughly half of the official dev set, 6078 examples, picked at random. The data files can be found at <https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020 version. Given that the official SQuAD2.0 dev set contains the project's test set, students must make sure not to use the official SQuAD2.0 dev set in any way — including the use of models fine-tuned on the official SQuAD2.0, since they used the official SQuAD2.0 dev set for model selection. <a href="https://huggingface.co/exbert/?model=elgeish/cs224n-squad2.0-albert-base-v2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> ## Results ```json { "exact": 78.94044093451794, "f1": 81.7724930324639, "total": 6078, "HasAns_exact": 76.28865979381443, "HasAns_f1": 82.20385314478195, "HasAns_total": 2910, "NoAns_exact": 81.37626262626263, "NoAns_f1": 81.37626262626263, "NoAns_total": 3168, "best_exact": 78.95689371503784, "best_exact_thresh": 0.0, "best_f1": 81.78894581298378, "best_f1_thresh": 0.0 } ``` ## Notable Arguments ```json { "do_lower_case": true, "doc_stride": 128, "fp16": false, "fp16_opt_level": "O1", "gradient_accumulation_steps": 24, "learning_rate": 3e-05, "max_answer_length": 30, "max_grad_norm": 1, "max_query_length": 64, "max_seq_length": 384, "model_name_or_path": "albert-base-v2", "model_type": "albert", "num_train_epochs": 3, "per_gpu_train_batch_size": 8, "save_steps": 5000, "seed": 42, "train_batch_size": 8, "version_2_with_negative": true, "warmup_steps": 0, "weight_decay": 0 } ``` ## Environment Setup ```json { "transformers": "2.5.1", "pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0", "python": "3.6.5=hc3d631a_2", "os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux", "gpu": "Tesla V100-SXM2-16GB" } ``` ## How to Cite ```BibTeX @misc{elgeish2020gestalt, title={Gestalt: a Stacking Ensemble for SQuAD2.0}, author={Mohamed El-Geish}, journal={arXiv e-prints}, archivePrefix={arXiv}, eprint={2004.07067}, year={2020}, } ``` ## Related Models * [elgeish/cs224n-squad2.0-albert-large-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-large-v2) * [elgeish/cs224n-squad2.0-albert-xxlarge-v1](https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1) * [elgeish/cs224n-squad2.0-distilbert-base-uncased](https://huggingface.co/elgeish/cs224n-squad2.0-distilbert-base-uncased) * [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
txus/calbert-tiny-uncased
txus
2020-12-11T21:36:14Z
17
1
transformers
[ "transformers", "pytorch", "albert", "masked-lm", "catalan", "exbert", "ca", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: "ca" tags: - masked-lm - catalan - exbert license: mit --- # Calbert: a Catalan Language Model ## Introduction CALBERT is an open-source language model for Catalan pretrained on the ALBERT architecture. It is now available on Hugging Face in its `tiny-uncased` version (the one you're looking at) and `base-uncased` as well, and was pretrained on the [OSCAR dataset](https://traces1.inria.fr/oscar/). For further information or requests, please go to the [GitHub repository](https://github.com/codegram/calbert) ## Pre-trained models | Model | Arch. | Training data | | ----------------------------------- | -------------- | ---------------------- | | `codegram` / `calbert-tiny-uncased` | Tiny (uncased) | OSCAR (4.3 GB of text) | | `codegram` / `calbert-base-uncased` | Base (uncased) | OSCAR (4.3 GB of text) | ## How to use Calbert with HuggingFace #### Load Calbert and its tokenizer: ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("codegram/calbert-tiny-uncased") model = AutoModel.from_pretrained("codegram/calbert-tiny-uncased") model.eval() # disable dropout (or leave in train mode to finetune ``` #### Filling masks using pipeline ```python from transformers import pipeline calbert_fill_mask = pipeline("fill-mask", model="codegram/calbert-tiny-uncased", tokenizer="codegram/calbert-tiny-uncased") results = calbert_fill_mask("M'agrada [MASK] això") # results # [{'sequence': "[CLS] m'agrada molt aixo[SEP]", 'score': 0.4403671622276306, 'token': 61}, # {'sequence': "[CLS] m'agrada més aixo[SEP]", 'score': 0.050061386078596115, 'token': 43}, # {'sequence': "[CLS] m'agrada veure aixo[SEP]", 'score': 0.026286985725164413, 'token': 157}, # {'sequence': "[CLS] m'agrada bastant aixo[SEP]", 'score': 0.022483550012111664, 'token': 2143}, # {'sequence': "[CLS] m'agrada moltíssim aixo[SEP]", 'score': 0.014491282403469086, 'token': 4867}] ``` #### Extract contextual embedding features from Calbert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("M'és una mica igual") # ['▁m', "'", 'es', '▁una', '▁mica', '▁igual'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [2, 109, 7, 71, 36, 371, 1103, 3] # NB: Can be done in one step : tokenize.encode("M'és una mica igual") # Feed tokens to Calbert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = model(encoded_sentence) embeddings.size() # torch.Size([1, 8, 312]) embeddings.detach() # tensor([[[-0.2726, -0.9855, 0.9643, ..., 0.3511, 0.3499, -0.1984], # [-0.2824, -1.1693, -0.2365, ..., -3.1866, -0.9386, -1.3718], # [-2.3645, -2.2477, -1.6985, ..., -1.4606, -2.7294, 0.2495], # ..., # [ 0.8800, -0.0244, -3.0446, ..., 0.5148, -3.0903, 1.1879], # [ 1.1300, 0.2425, 0.2162, ..., -0.5722, -2.2004, 0.4045], # [ 0.4549, -0.2378, -0.2290, ..., -2.1247, -2.2769, -0.0820]]]) ``` ## Authors CALBERT was trained and evaluated by [Txus Bach](https://twitter.com/txustice), as part of [Codegram](https://www.codegram.com)'s applied research. <a href="https://huggingface.co/exbert/?model=codegram/calbert-tiny-uncased&modelKind=bidirectional&sentence=M%27agradaria%20força%20saber-ne%20més"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
aliosm/ai-soco-cpp-roberta-tiny
aliosm
2020-12-11T21:32:46Z
0
0
null
[ "exbert", "authorship-identification", "fire2020", "pan2020", "ai-soco", "dataset:ai-soco", "license:mit", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: "c++" tags: - exbert - authorship-identification - fire2020 - pan2020 - ai-soco license: "mit" datasets: - ai-soco metrics: - perplexity --- # ai-soco-c++-roberta-tiny ## Model description From scratch pre-trained RoBERTa model with 1 layers and 12 attention heads using [AI-SOCO](https://sites.google.com/view/ai-soco-2020) dataset which consists of C++ codes crawled from CodeForces website. ## Intended uses & limitations The model can be used to do code classification, authorship identification and other downstream tasks on C++ programming language. #### How to use You can use the model directly after tokenizing the text using the provided tokenizer with the model files. #### Limitations and bias The model is limited to C++ programming language only. ## Training data The model initialized randomly and trained using [AI-SOCO](https://sites.google.com/view/ai-soco-2020) dataset which contains 100K C++ source codes. ## Training procedure The model trained on Google Colab platform with 8 TPU cores for 200 epochs, 32\*8 batch size, 512 max sequence length and MLM objective. Other parameters were defaulted to the values mentioned in [`run_language_modelling.py`](https://github.com/huggingface/transformers/blob/master/examples/language-modeling/run_language_modeling.py) script. Each continues 4 spaces were converted to a single tab character (`\t`) before tokenization. ### BibTeX entry and citation info ```bibtex @inproceedings{ai-soco-2020-fire, title = "Overview of the {PAN@FIRE} 2020 Task on {Authorship Identification of SOurce COde (AI-SOCO)}", author = "Fadel, Ali and Musleh, Husam and Tuffaha, Ibraheem and Al-Ayyoub, Mahmoud and Jararweh, Yaser and Benkhelifa, Elhadj and Rosso, Paolo", booktitle = "Proceedings of The 12th meeting of the Forum for Information Retrieval Evaluation (FIRE 2020)", year = "2020" } ``` <a href="https://huggingface.co/exbert/?model=aliosm/ai-soco-c++-roberta-tiny"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
aliosm/ai-soco-cpp-roberta-tiny-96-clas
aliosm
2020-12-11T21:32:40Z
0
0
null
[ "exbert", "authorship-identification", "fire2020", "pan2020", "ai-soco", "classification", "dataset:ai-soco", "license:mit", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: "c++" tags: - exbert - authorship-identification - fire2020 - pan2020 - ai-soco - classification license: "mit" datasets: - ai-soco metrics: - accuracy --- # ai-soco-c++-roberta-tiny-96-clas ## Model description `ai-soco-c++-roberta-tiny-96` model fine-tuned on [AI-SOCO](https://sites.google.com/view/ai-soco-2020) task. #### How to use You can use the model directly after tokenizing the text using the provided tokenizer with the model files. #### Limitations and bias The model is limited to C++ programming language only. ## Training data The model initialized from [`ai-soco-c++-roberta-tiny-96`](https://github.com/huggingface/transformers/blob/master/model_cards/aliosm/ai-soco-c++-roberta-tiny-96) model and trained using [AI-SOCO](https://sites.google.com/view/ai-soco-2020) dataset to do text classification. ## Training procedure The model trained on Google Colab platform using V100 GPU for 10 epochs, 16 batch size, 512 max sequence length (sequences larger than 512 were truncated). Each continues 4 spaces were converted to a single tab character (`\t`) before tokenization. ## Eval results The model achieved 91.12%/91.02% accuracy on AI-SOCO task and ranked in the 7th place. ### BibTeX entry and citation info ```bibtex @inproceedings{ai-soco-2020-fire, title = "Overview of the {PAN@FIRE} 2020 Task on {Authorship Identification of SOurce COde (AI-SOCO)}", author = "Fadel, Ali and Musleh, Husam and Tuffaha, Ibraheem and Al-Ayyoub, Mahmoud and Jararweh, Yaser and Benkhelifa, Elhadj and Rosso, Paolo", booktitle = "Proceedings of The 12th meeting of the Forum for Information Retrieval Evaluation (FIRE 2020)", year = "2020" } ``` <a href="https://huggingface.co/exbert/?model=aliosm/ai-soco-c++-roberta-tiny-96-clas"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
aliosm/ai-soco-cpp-roberta-small
aliosm
2020-12-11T21:32:38Z
0
0
null
[ "exbert", "authorship-identification", "fire2020", "pan2020", "ai-soco", "dataset:ai-soco", "license:mit", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: "c++" tags: - exbert - authorship-identification - fire2020 - pan2020 - ai-soco license: "mit" datasets: - ai-soco metrics: - perplexity --- # ai-soco-c++-roberta-small ## Model description From scratch pre-trained RoBERTa model with 6 layers and 12 attention heads using [AI-SOCO](https://sites.google.com/view/ai-soco-2020) dataset which consists of C++ codes crawled from CodeForces website. ## Intended uses & limitations The model can be used to do code classification, authorship identification and other downstream tasks on C++ programming language. #### How to use You can use the model directly after tokenizing the text using the provided tokenizer with the model files. #### Limitations and bias The model is limited to C++ programming language only. ## Training data The model initialized randomly and trained using [AI-SOCO](https://sites.google.com/view/ai-soco-2020) dataset which contains 100K C++ source codes. ## Training procedure The model trained on Google Colab platform with 8 TPU cores for 200 epochs, 16\*8 batch size, 512 max sequence length and MLM objective. Other parameters were defaulted to the values mentioned in [`run_language_modelling.py`](https://github.com/huggingface/transformers/blob/master/examples/language-modeling/run_language_modeling.py) script. Each continues 4 spaces were converted to a single tab character (`\t`) before tokenization. ### BibTeX entry and citation info ```bibtex @inproceedings{ai-soco-2020-fire, title = "Overview of the {PAN@FIRE} 2020 Task on {Authorship Identification of SOurce COde (AI-SOCO)}", author = "Fadel, Ali and Musleh, Husam and Tuffaha, Ibraheem and Al-Ayyoub, Mahmoud and Jararweh, Yaser and Benkhelifa, Elhadj and Rosso, Paolo", booktitle = "Proceedings of The 12th meeting of the Forum for Information Retrieval Evaluation (FIRE 2020)", year = "2020" } ``` <a href="https://huggingface.co/exbert/?model=aliosm/ai-soco-c++-roberta-small"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
aliosm/ai-soco-cpp-roberta-small-clas
aliosm
2020-12-11T21:32:36Z
0
0
null
[ "exbert", "authorship-identification", "fire2020", "pan2020", "ai-soco", "classification", "dataset:ai-soco", "license:mit", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: "c++" tags: - exbert - authorship-identification - fire2020 - pan2020 - ai-soco - classification license: "mit" datasets: - ai-soco metrics: - accuracy --- # ai-soco-c++-roberta-small-clas ## Model description `ai-soco-c++-roberta-small` model fine-tuned on [AI-SOCO](https://sites.google.com/view/ai-soco-2020) task. #### How to use You can use the model directly after tokenizing the text using the provided tokenizer with the model files. #### Limitations and bias The model is limited to C++ programming language only. ## Training data The model initialized from [`ai-soco-c++-roberta-small`](https://github.com/huggingface/transformers/blob/master/model_cards/aliosm/ai-soco-c++-roberta-small) model and trained using [AI-SOCO](https://sites.google.com/view/ai-soco-2020) dataset to do text classification. ## Training procedure The model trained on Google Colab platform using V100 GPU for 10 epochs, 32 batch size, 512 max sequence length (sequences larger than 512 were truncated). Each continues 4 spaces were converted to a single tab character (`\t`) before tokenization. ## Eval results The model achieved 93.19%/92.88% accuracy on AI-SOCO task and ranked in the 4th place. ### BibTeX entry and citation info ```bibtex @inproceedings{ai-soco-2020-fire, title = "Overview of the {PAN@FIRE} 2020 Task on {Authorship Identification of SOurce COde (AI-SOCO)}", author = "Fadel, Ali and Musleh, Husam and Tuffaha, Ibraheem and Al-Ayyoub, Mahmoud and Jararweh, Yaser and Benkhelifa, Elhadj and Rosso, Paolo", booktitle = "Proceedings of The 12th meeting of the Forum for Information Retrieval Evaluation (FIRE 2020)", year = "2020" } ``` <a href="https://huggingface.co/exbert/?model=aliosm/ai-soco-c++-roberta-small-clas"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
akhooli/mbart-large-cc25-ar-en
akhooli
2020-12-11T21:32:04Z
17
4
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "translation", "ar", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- tags: - translation language: - ar - en license: mit --- ### mbart-large-ar-en This is mbart-large-cc25, finetuned on a subset of the OPUS corpus for ar_en. Usage: see [example notebook](https://colab.research.google.com/drive/1I6RFOWMaTpPBX7saJYjnSTddW0TD6H1t?usp=sharing) Note: model has limited training set, not fully trained (do not use for production). Other models by me: [Abed Khooli](https://huggingface.co/akhooli)
ahotrod/electra_large_discriminator_squad2_512
ahotrod
2020-12-11T21:31:42Z
22,523
6
transformers
[ "transformers", "pytorch", "tf", "electra", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
## ELECTRA_large_discriminator language model fine-tuned on SQuAD2.0 ### with the following results: ``` "exact": 87.09677419354838, "f1": 89.98343832723452, "total": 11873, "HasAns_exact": 84.66599190283401, "HasAns_f1": 90.44759839056285, "HasAns_total": 5928, "NoAns_exact": 89.52060555088309, "NoAns_f1": 89.52060555088309, "NoAns_total": 5945, "best_exact": 87.09677419354838, "best_exact_thresh": 0.0, "best_f1": 89.98343832723432, "best_f1_thresh": 0.0 ``` ### from script: ``` python ${EXAMPLES}/run_squad.py \ --model_type electra \ --model_name_or_path google/electra-large-discriminator \ --do_train \ --do_eval \ --train_file ${SQUAD}/train-v2.0.json \ --predict_file ${SQUAD}/dev-v2.0.json \ --version_2_with_negative \ --do_lower_case \ --num_train_epochs 3 \ --warmup_steps 306 \ --weight_decay 0.01 \ --learning_rate 3e-5 \ --max_grad_norm 0.5 \ --adam_epsilon 1e-6 \ --max_seq_length 512 \ --doc_stride 128 \ --per_gpu_train_batch_size 8 \ --gradient_accumulation_steps 16 \ --per_gpu_eval_batch_size 128 \ --fp16 \ --fp16_opt_level O1 \ --threads 12 \ --logging_steps 50 \ --save_steps 1000 \ --overwrite_output_dir \ --output_dir ${MODEL_PATH} ``` ### using the following system & software: ``` Transformers: 2.11.0 PyTorch: 1.5.0 TensorFlow: 2.2.0 Python: 3.8.1 OS/Platform: Linux-5.3.0-59-generic-x86_64-with-glibc2.10 CPU/GPU: Intel i9-9900K / NVIDIA Titan RTX 24GB ```
Rostlab/prot_t5_xl_bfd
Rostlab
2020-12-11T21:30:13Z
2,933
10
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "protein language model", "dataset:BFD", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: protein tags: - protein language model datasets: - BFD --- # ProtT5-XL-BFD model Pretrained model on protein sequences using a masked language modeling (MLM) objective. It was introduced in [this paper](https://doi.org/10.1101/2020.07.12.199554) and first released in [this repository](https://github.com/agemagician/ProtTrans). This model is trained on uppercase amino acids: it only works with capital letter amino acids. ## Model description ProtT5-XL-BFD is based on the `t5-3b` model and was pretrained on a large corpus of protein sequences in a self-supervised fashion. This means it was pretrained on the raw protein sequences only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those protein sequences. One important difference between this T5 model and the original T5 version is the denosing objective. The original T5-3B model was pretrained using a span denosing objective, while this model was pre-trained with a Bart-like MLM denosing objective. The masking probability is consistent with the original T5 training by randomly masking 15% of the amino acids in the input. It has been shown that the features extracted from this self-supervised model (LM-embeddings) captured important biophysical properties governing protein shape. shape. This implied learning some of the grammar of the language of life realized in protein sequences. ## Intended uses & limitations The model could be used for protein feature extraction or to be fine-tuned on downstream tasks. We have noticed in some tasks on can gain more accuracy by fine-tuning the model rather than using it as a feature extractor. We have also noticed that for feature extraction, its better to use the feature extracted from the encoder not from the decoder. ### How to use Here is how to use this model to extract the features of a given protein sequence in PyTorch: ```python from transformers import T5Tokenizer, T5Model import re import torch tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_bfd', do_lower_case=False) model = T5Model.from_pretrained("Rostlab/prot_t5_xl_bfd") sequences_Example = ["A E T C Z A O","S K T Z P"] sequences_Example = [re.sub(r"[UZOB]", "X", sequence) for sequence in sequences_Example] ids = tokenizer.batch_encode_plus(sequences_Example, add_special_tokens=True, padding=True) input_ids = torch.tensor(ids['input_ids']) attention_mask = torch.tensor(ids['attention_mask']) with torch.no_grad(): embedding = model(input_ids=input_ids,attention_mask=attention_mask,decoder_input_ids=None) # For feature extraction we recommend to use the encoder embedding encoder_embedding = embedding[2].cpu().numpy() decoder_embedding = embedding[0].cpu().numpy() ``` ## Training data The ProtT5-XL-BFD model was pretrained on [BFD](https://bfd.mmseqs.com/), a dataset consisting of 2.1 billion protein sequences. ## Training procedure ### Preprocessing The protein sequences are uppercased and tokenized using a single space and a vocabulary size of 21. The rare amino acids "U,Z,O,B" were mapped to "X". The inputs of the model are then of the form: ``` Protein Sequence [EOS] ``` The preprocessing step was performed on the fly, by cutting and padding the protein sequences up to 512 tokens. The details of the masking procedure for each sequence are as follows: - 15% of the amino acids are masked. - In 90% of the cases, the masked amino acids are replaced by `[MASK]` token. - In 10% of the cases, the masked amino acids are replaced by a random amino acid (different) from the one they replace. ### Pretraining The model was trained on a single TPU Pod V3-1024 for 1.2 million steps in total, using sequence length 512 (batch size 4k). It has a total of approximately 3B parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results When the model is used for feature etraction, this model achieves the following results: Test results : | Task/Dataset | secondary structure (3-states) | secondary structure (8-states) | Localization | Membrane | |:-----:|:-----:|:-----:|:-----:|:-----:| | CASP12 | 77 | 66 | | | | TS115 | 85 | 74 | | | | CB513 | 84 | 71 | | | | DeepLoc | | | 77 | 91 | ### BibTeX entry and citation info ```bibtex @article {Elnaggar2020.07.12.199554, author = {Elnaggar, Ahmed and Heinzinger, Michael and Dallago, Christian and Rehawi, Ghalia and Wang, Yu and Jones, Llion and Gibbs, Tom and Feher, Tamas and Angerer, Christoph and Steinegger, Martin and BHOWMIK, DEBSINDHU and Rost, Burkhard}, title = {ProtTrans: Towards Cracking the Language of Life{\textquoteright}s Code Through Self-Supervised Deep Learning and High Performance Computing}, elocation-id = {2020.07.12.199554}, year = {2020}, doi = {10.1101/2020.07.12.199554}, publisher = {Cold Spring Harbor Laboratory}, abstract = {Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models (LMs) taken from Natural Language Processing (NLP). These LMs reach for new prediction frontiers at low inference costs. Here, we trained two auto-regressive language models (Transformer-XL, XLNet) and two auto-encoder models (Bert, Albert) on data from UniRef and BFD containing up to 393 billion amino acids (words) from 2.1 billion protein sequences (22- and 112 times the entire English Wikipedia). The LMs were trained on the Summit supercomputer at Oak Ridge National Laboratory (ORNL), using 936 nodes (total 5616 GPUs) and one TPU Pod (V3-512 or V3-1024). We validated the advantage of up-scaling LMs to larger models supported by bigger data by predicting secondary structure (3-states: Q3=76-84, 8 states: Q8=65-73), sub-cellular localization for 10 cellular compartments (Q10=74) and whether a protein is membrane-bound or water-soluble (Q2=89). Dimensionality reduction revealed that the LM-embeddings from unlabeled data (only protein sequences) captured important biophysical properties governing protein shape. This implied learning some of the grammar of the language of life realized in protein sequences. The successful up-scaling of protein LMs through HPC to larger data sets slightly reduced the gap between models trained on evolutionary information and LMs. Availability ProtTrans: \&lt;a href="https://github.com/agemagician/ProtTrans"\&gt;https://github.com/agemagician/ProtTrans\&lt;/a\&gt;Competing Interest StatementThe authors have declared no competing interest.}, URL = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554}, eprint = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554.full.pdf}, journal = {bioRxiv} } ``` > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
Rostlab/prot_bert_bfd
Rostlab
2020-12-11T21:30:10Z
47,440
15
transformers
[ "transformers", "pytorch", "tf", "fill-mask", "protein language model", "dataset:BFD", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: protein tags: - protein language model datasets: - BFD --- # ProtBert-BFD model Pretrained model on protein sequences using a masked language modeling (MLM) objective. It was introduced in [this paper](https://doi.org/10.1101/2020.07.12.199554) and first released in [this repository](https://github.com/agemagician/ProtTrans). This model is trained on uppercase amino acids: it only works with capital letter amino acids. ## Model description ProtBert-BFD is based on Bert model which pretrained on a large corpus of protein sequences in a self-supervised fashion. This means it was pretrained on the raw protein sequences only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those protein sequences. One important difference between our Bert model and the original Bert version is the way of dealing with sequences as separate documents This means the Next sentence prediction is not used, as each sequence is treated as a complete document. The masking follows the original Bert training with randomly masks 15% of the amino acids in the input. At the end, the feature extracted from this model revealed that the LM-embeddings from unlabeled data (only protein sequences) captured important biophysical properties governing protein shape. This implied learning some of the grammar of the language of life realized in protein sequences. ## Intended uses & limitations The model could be used for protein feature extraction or to be fine-tuned on downstream tasks. We have noticed in some tasks you could gain more accuracy by fine-tuning the model rather than using it as a feature extractor. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import BertForMaskedLM, BertTokenizer, pipeline >>> tokenizer = BertTokenizer.from_pretrained('Rostlab/prot_bert_bfd', do_lower_case=False ) >>> model = BertForMaskedLM.from_pretrained("Rostlab/prot_bert_bfd") >>> unmasker = pipeline('fill-mask', model=model, tokenizer=tokenizer) >>> unmasker('D L I P T S S K L V V [MASK] D T S L Q V K K A F F A L V T') [{'score': 0.1165614128112793, 'sequence': '[CLS] D L I P T S S K L V V L D T S L Q V K K A F F A L V T [SEP]', 'token': 5, 'token_str': 'L'}, {'score': 0.08976086974143982, 'sequence': '[CLS] D L I P T S S K L V V V D T S L Q V K K A F F A L V T [SEP]', 'token': 8, 'token_str': 'V'}, {'score': 0.08864385634660721, 'sequence': '[CLS] D L I P T S S K L V V S D T S L Q V K K A F F A L V T [SEP]', 'token': 10, 'token_str': 'S'}, {'score': 0.06227643042802811, 'sequence': '[CLS] D L I P T S S K L V V A D T S L Q V K K A F F A L V T [SEP]', 'token': 6, 'token_str': 'A'}, {'score': 0.06194969266653061, 'sequence': '[CLS] D L I P T S S K L V V T D T S L Q V K K A F F A L V T [SEP]', 'token': 15, 'token_str': 'T'}] ``` Here is how to use this model to get the features of a given protein sequence in PyTorch: ```python from transformers import BertModel, BertTokenizer import re tokenizer = BertTokenizer.from_pretrained('Rostlab/prot_bert_bfd', do_lower_case=False ) model = BertModel.from_pretrained("Rostlab/prot_bert_bfd") sequence_Example = "A E T C Z A O" sequence_Example = re.sub(r"[UZOB]", "X", sequence_Example) encoded_input = tokenizer(sequence_Example, return_tensors='pt') output = model(**encoded_input) ``` ## Training data The ProtBert-BFD model was pretrained on [BFD](https://bfd.mmseqs.com/), a dataset consisting of 2.1 billion protein sequences. ## Training procedure ### Preprocessing The protein sequences are uppercased and tokenized using a single space and a vocabulary size of 21. The inputs of the model are then of the form: ``` [CLS] Protein Sequence A [SEP] Protein Sequence B [SEP] ``` Furthermore, each protein sequence was treated as a separate document. The preprocessing step was performed twice, once for a combined length (2 sequences) of less than 512 amino acids, and another time using a combined length (2 sequences) of less than 2048 amino acids. The details of the masking procedure for each sequence followed the original Bert model as following: - 15% of the amino acids are masked. - In 80% of the cases, the masked amino acids are replaced by `[MASK]`. - In 10% of the cases, the masked amino acids are replaced by a random amino acid (different) from the one they replace. - In the 10% remaining cases, the masked amino acids are left as is. ### Pretraining The model was trained on a single TPU Pod V3-1024 for one million steps in total. 800k steps using sequence length 512 (batch size 32k), and 200K steps using sequence length 2048 (batch size 6k). The optimizer used is Lamb with a learning rate of 0.002, a weight decay of 0.01, learning rate warmup for 140k steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Test results : | Task/Dataset | secondary structure (3-states) | secondary structure (8-states) | Localization | Membrane | |:-----:|:-----:|:-----:|:-----:|:-----:| | CASP12 | 76 | 65 | | | | TS115 | 84 | 73 | | | | CB513 | 83 | 70 | | | | DeepLoc | | | 78 | 91 | ### BibTeX entry and citation info ```bibtex @article {Elnaggar2020.07.12.199554, author = {Elnaggar, Ahmed and Heinzinger, Michael and Dallago, Christian and Rehawi, Ghalia and Wang, Yu and Jones, Llion and Gibbs, Tom and Feher, Tamas and Angerer, Christoph and Steinegger, Martin and BHOWMIK, DEBSINDHU and Rost, Burkhard}, title = {ProtTrans: Towards Cracking the Language of Life{\textquoteright}s Code Through Self-Supervised Deep Learning and High Performance Computing}, elocation-id = {2020.07.12.199554}, year = {2020}, doi = {10.1101/2020.07.12.199554}, publisher = {Cold Spring Harbor Laboratory}, abstract = {Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models (LMs) taken from Natural Language Processing (NLP). These LMs reach for new prediction frontiers at low inference costs. Here, we trained two auto-regressive language models (Transformer-XL, XLNet) and two auto-encoder models (Bert, Albert) on data from UniRef and BFD containing up to 393 billion amino acids (words) from 2.1 billion protein sequences (22- and 112 times the entire English Wikipedia). The LMs were trained on the Summit supercomputer at Oak Ridge National Laboratory (ORNL), using 936 nodes (total 5616 GPUs) and one TPU Pod (V3-512 or V3-1024). We validated the advantage of up-scaling LMs to larger models supported by bigger data by predicting secondary structure (3-states: Q3=76-84, 8 states: Q8=65-73), sub-cellular localization for 10 cellular compartments (Q10=74) and whether a protein is membrane-bound or water-soluble (Q2=89). Dimensionality reduction revealed that the LM-embeddings from unlabeled data (only protein sequences) captured important biophysical properties governing protein shape. This implied learning some of the grammar of the language of life realized in protein sequences. The successful up-scaling of protein LMs through HPC to larger data sets slightly reduced the gap between models trained on evolutionary information and LMs. Availability ProtTrans: \&lt;a href="https://github.com/agemagician/ProtTrans"\&gt;https://github.com/agemagician/ProtTrans\&lt;/a\&gt;Competing Interest StatementThe authors have declared no competing interest.}, URL = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554}, eprint = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554.full.pdf}, journal = {bioRxiv} } ``` > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
Ogayo/Hel-ach-en
Ogayo
2020-12-11T21:30:01Z
15
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "ach", "en", "dataset:JW300", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:04Z
--- language: - ach - en tags: - translation license: cc-by-4.0 datasets: - JW300 metrics: - bleu --- # HEL-ACH-EN ## Model description MT model translating Acholi to English initialized with weights from [opus-mt-luo-en](https://huggingface.co/Helsinki-NLP/opus-mt-luo-en) on HuggingFace. ## Intended uses & limitations Machine Translation experiments. Do not use for sensitive tasks. #### How to use ```python # You can include sample code which will be formatted from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Ogayo/Hel-ach-en") model = AutoModelForSeq2SeqLM.from_pretrained("Ogayo/Hel-ach-en") ``` #### Limitations and bias Trained on Jehovah Witnesses data so contains theirs and Christian views. ## Training data Trained on OPUS JW300 data. Initialized with weights from [opus-mt-luo-en](https://huggingface.co/Helsinki-NLP/opus-mt-luo-en?text=Bed+gi+nyasi+mar+chieng%27+nyuol+mopong%27+gi+mor%21#model_card) ## Training procedure Remove duplicates and rows with no alphabetic characters. Used GPU ## Eval results testset | BLEU --- | --- JW300.luo.en| 46.1
cinmodel/electra-small-japanese-generator
cinmodel
2020-12-11T21:26:17Z
6
2
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "ja", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: ja --- ## Japanese ELECTRA-small We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately. ``` # ELECTRA-small generator usage from transformers import BertJapaneseTokenizer, ElectraForMaskedLM tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-generator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"}) model = ElectraForMaskedLM.from_pretrained('Cinnamon/electra-small-japanese-generator') ```
nielsr/tapas-base
nielsr
2020-12-11T11:12:17Z
3
0
transformers
[ "transformers", "pytorch", "tapas", "feature-extraction", "sequence-classification", "en", "arxiv:2004.02349", "arxiv:2010.00571", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: en tags: - tapas - sequence-classification license: apache-2.0 --- # TAPAS base model This model has 2 versions which can be used. The latest version, which is the default one, corresponds to the `tapas_inter_masklm_base_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training. It uses relative position embeddings by default (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is the one with absolute position embeddings: - `revision="v1"`, which corresponds to `tapas_inter_masklm_base` Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding one or more classification heads on top of the pre-trained model, and then jointly train these randomly initialized classification heads with the base model on a downstream task. ## Intended uses & limitations You can use the raw model for getting hidden representatons about table-question pairs, but it's mostly intended to be fine-tuned on a downstream task such as question answering or sequence classification. See the [model hub](https://huggingface.co/models?filter=tapas) to look for fine-tuned versions on a task that interests you. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence [SEP] Flattened table [SEP] ``` ### Pre-training The model was pre-trained on 32 Cloud TPU v3 cores for 1,000,000 steps with maximum sequence length 512 and batch size of 512. In this setup, pre-training on MLM only takes around 3 days. Aditionally, the model has been further pre-trained on a second task (table entailment). See the original TAPAS [paper](https://www.aclweb.org/anthology/2020.acl-main.398/) and the [follow-up paper](https://www.aclweb.org/anthology/2020.findings-emnlp.27/) for more details. The optimizer used is Adam with a learning rate of 5e-5, and a warmup ratio of 0.01. ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
stefan-it/flair-ner-conll03
stefan-it
2020-12-11T10:07:20Z
7
0
flair
[ "flair", "pytorch", "sequence-tagger-model", "en", "license:mit", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en tags: - flair - sequence-tagger-model license: mit --- # CoNLL-2003 NER Model Imported sequence tagger model for Flair, that was trained on English CoNLL-2003 corpus for NER.
google/t5-11b-ssm-wqo
google
2020-12-07T08:47:33Z
0
1
null
[ "en", "dataset:c4", "dataset:wikipedia", "dataset:web_questions", "arxiv:2002.08909", "arxiv:1910.10683", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en datasets: - c4 - wikipedia - web_questions license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**. The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4), subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia), and finally fine-tuned on [Web Questions (WQ)](https://huggingface.co/datasets/web_questions). **Note**: The model was fine-tuned on 90% of the train splits of [Web Questions (WQ)](https://huggingface.co/datasets/web_questions) for 20k steps and validated on the held-out 10% of the train split. Other community Checkpoints: [here](https://huggingface.co/models?search=ssm) Paper: [How Much Knowledge Can You Pack Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf) Authors: *Adam Roberts, Colin Raffel, Noam Shazeer* ## Results on Web Questions - Test Set |Id | link | Exact Match | |---|---|---| |**T5-11b**|**https://huggingface.co/google/t5-11b-ssm-wqo**|**40.8**| |T5-xxl|https://huggingface.co/google/t5-xxl-ssm-wqo|42.8| ## Usage The model can be used as follows for **closed book question answering**: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-11b-ssm-wqo") t5_tok = AutoTokenizer.from_pretrained("google/t5-11b-ssm-wqo") input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids gen_output = t5_qa_model.generate(input_ids)[0] print(t5_tok.decode(gen_output, skip_special_tokens=True)) ``` ## Abstract It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png)
Parth/mT5-question-generator
Parth
2020-12-01T03:38:27Z
6
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
from transformers import MT5ForConditionalGeneration, AutoTokenizer model = MT5ForConditionalGeneration.from_pretrained("Parth/mT5-question-generator") tokenizer = AutoTokenizer.from_pretrained("google/mt5-base")
seduerr/t5_base_paws_ger
seduerr
2020-11-30T11:17:06Z
16
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# T5 Base with Paraphrases in German Language This T5 base model has been trained with the German part of the PAWS-X data set. It can be used as any T5 model and will generated paraphrases with the prompt keyword: 'paraphrase: '__GermanSentence__ Please contact me, if you need more information (sduerr@mit.edu). Thank you. Sebastian
julien-c/flair-de-ner
julien-c
2020-11-26T21:59:38Z
12
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "de", "dataset:conll2003", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - flair - token-classification - sequence-tagger-model language: de datasets: - conll2003 inference: false --- ## Flair NER model `de-ner-conll03-v0.4.pt` Imported from https://nlp.informatik.hu-berlin.de/resources/models/de-ner/ ### Demo: How to use in Flair ```python from flair.data import Sentence from flair.models import SequenceTagger sentence = Sentence( "Mein Name ist Julien, ich lebe zurzeit in Paris, ich arbeite bei Hugging Face, Inc." ) tagger = SequenceTagger.load("julien-c/flair-de-ner") # predict NER tags tagger.predict(sentence) # print sentence with predicted tags print(sentence.to_tagged_string()) ``` yields the following output: > `Mein Name ist Julien <S-PER> , ich lebe zurzeit in Paris <S-LOC> , ich arbeite bei Hugging <B-ORG> Face <E-ORG> , Inc <S-ORG> .` ### Thanks [@stefan-it](https://huggingface.co/stefan-it) for the Flair integration ❤️ 🔥
sshleifer/bb3b-tok
sshleifer
2020-09-25T18:06:31Z
3
0
transformers
[ "transformers", "blenderbot", "text2text-generation", "translation", "facebook", "convAI", "en", "dataset:blended_skill_talk", "arxiv:1907.06616", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - en thumbnail: tags: - translation - facebook - convAI license: apache-2.0 datasets: - blended_skill_talk metrics: - perplexity --- # Blenderbot-3B ## Model description + [Paper](https://arxiv.org/abs/1907.06616). + [Original PARLAI Code] The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers.tokenization_fsmt import FSMTTokenizer from transformers.modeling_fsmt import FSMTForConditionalGeneration mname = "facebook/wmt19-en-ru" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "Machine learning is great, isn't it?" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # Машинное обучение - это здорово, не так ли? ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- en-ru | [36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724) | 33.47 The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR=en-ru export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020}, title={Facebook FAIR's WMT19 News Translation Task Submission}, author={Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}, booktitle={Proc. of WMT}, } ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints)
Capreolus/electra-base-msmarco
Capreolus
2020-09-08T14:53:10Z
9
1
transformers
[ "transformers", "pytorch", "tf", "electra", "text-classification", "arxiv:2008.09093", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
# capreolus/electra-base-msmarco ## Model description ELECTRA-Base model (`google/electra-base-discriminator`) fine-tuned on the MS MARCO passage classification task. It is intended to be used as a `ForSequenceClassification` model, but requires some modification since it contains a BERT classification head rather than the standard ELECTRA classification head. See the [TFElectraRelevanceHead](https://github.com/capreolus-ir/capreolus/blob/master/capreolus/reranker/TFBERTMaxP.py) in the Capreolus BERT-MaxP implementation for a usage example. This corresponds to the ELECTRA-Base model used to initialize PARADE (ELECTRA) in [PARADE: Passage Representation Aggregation for Document Reranking](https://arxiv.org/abs/2008.09093) by Li et al. It was converted from the released [TFv1 checkpoint](https://zenodo.org/record/3974431/files/vanilla_electra_base_on_MSMARCO.tar.gz). Please cite the PARADE paper if you use these weights.
textattack/distilbert-base-uncased-ag-news
textattack
2020-07-07T22:01:14Z
462
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model CardThis `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the ag_news dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9478947368421052, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/distilbert-base-cased-snli
textattack
2020-07-06T16:37:00Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
## TextAttack Model Card This `distilbert-base-cased` model was fine-tuned for sequence classificationusing TextAttack and the snli dataset loaded using the `nlp` library. The model was fine-tuned for 3 epochs with a batch size of 256, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8768542979069295, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-rotten-tomatoes
textattack
2020-07-06T16:36:38Z
10
0
transformers
[ "transformers", "pytorch", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9071294559099438, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/distilbert-base-uncased-rotten-tomatoes
textattack
2020-07-06T16:36:02Z
91
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classificationusing TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 3 epochs with a batch size of 128, a learning rate of 1e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8395872420262664, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/albert-base-v2-rotten-tomatoes
textattack
2020-07-06T16:35:34Z
9
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8808630393996247, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-imdb
textattack
2020-07-06T16:35:25Z
9
0
transformers
[ "transformers", "pytorch", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the imdb dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 2e-05, and a maximum sequence length of 512. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.95352, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-WNLI
textattack
2020-07-06T16:34:15Z
4
0
transformers
[ "transformers", "pytorch", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 3e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.5774647887323944, as measured by the eval set accuracy, found after 0 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/albert-base-v2-WNLI
textattack
2020-07-06T16:33:17Z
3
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 2e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.5915492957746479, as measured by the eval set accuracy, found after 0 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-STS-B
textattack
2020-07-06T16:33:08Z
10
0
transformers
[ "transformers", "pytorch", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 8, a learning rate of 5e-05, and a maximum sequence length of 128. Since this was a regression task, the model was trained with a mean squared error loss function. The best score the model achieved on this task was 0.8892630070017784, as measured by the eval set pearson correlation, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/albert-base-v2-STS-B
textattack
2020-07-06T16:32:24Z
5
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 3e-05, and a maximum sequence length of 128. Since this was a regression task, the model was trained with a mean squared error loss function. The best score the model achieved on this task was 0.9064220351504577, as measured by the eval set pearson correlation, found after 3 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/distilbert-base-uncased-RTE
textattack
2020-07-06T16:31:28Z
17
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.6570397111913358, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-MRPC
textattack
2020-07-06T16:30:46Z
14
0
transformers
[ "transformers", "pytorch", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 5e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8897058823529411, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/distilbert-base-uncased-MRPC
textattack
2020-07-06T16:30:12Z
31
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 2e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8578431372549019, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/albert-base-v2-MRPC
textattack
2020-07-06T16:29:43Z
10
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8970588235294118, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/distilbert-base-uncased-CoLA
textattack
2020-07-06T16:29:03Z
3,039
3
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Cardand the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 3e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8235858101629914, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/albert-base-v2-CoLA
textattack
2020-07-06T16:28:50Z
43
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Cardand the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 3e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8245445829338447, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/albert-base-v2-rotten_tomatoes
textattack
2020-06-25T20:00:46Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
## albert-base-v2 fine-tuned with TextAttack on the rotten_tomatoes dataset This `albert-base-v2` model was fine-tuned for sequence classificationusing TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 10 epochs with a batch size of 128, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8855534709193246, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
djstrong/bg_cs_pl_ru_cased_L-12_H-768_A-12
djstrong
2020-02-15T11:33:14Z
3
0
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
Slavic BERT from https://github.com/deepmipt/Slavic-BERT-NER http://files.deeppavlov.ai/deeppavlov_data/bg_cs_pl_ru_cased_L-12_H-768_A-12.tar.gz
csavzzcw/blockassist-bc-tawny_robust_buffalo_1757140004
csavzzcw
2025-09-06T06:27:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tawny robust buffalo", "arxiv:2504.07091", "region:us" ]
null
2025-09-06T06:26:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tawny robust buffalo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Alexshake78/Qwen3-0.6B-Gensyn-Swarm-darting_endangered_eel
Alexshake78
2025-09-06T06:26:50Z
20
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am darting_endangered_eel", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-26T21:12:47Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am darting_endangered_eel --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
a1ex971/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-patterned_arctic_shrimp
a1ex971
2025-09-06T06:26:43Z
161
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am patterned_arctic_shrimp", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T13:39:39Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am patterned_arctic_shrimp --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
leonmullerrr/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-coiled_wild_mouse
leonmullerrr
2025-09-06T06:26:22Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am coiled wild mouse", "trl", "genrl-swarm", "I am coiled_wild_mouse", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-04T13:50:15Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-coiled_wild_mouse tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am coiled wild mouse - trl - genrl-swarm - I am coiled_wild_mouse licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-coiled_wild_mouse This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="leonmullerrr/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-coiled_wild_mouse", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
gabrieln2h/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bipedal_stubby_bear
gabrieln2h
2025-09-06T06:26:19Z
165
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am bipedal_stubby_bear", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-24T18:19:15Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am bipedal_stubby_bear --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gajahgajah/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fanged_armored_wildebeest
gajahgajah
2025-09-06T06:26:19Z
87
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am fanged_armored_wildebeest", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-04T17:47:01Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am fanged_armored_wildebeest --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/FractalSoup-L3-8b-GGUF
mradermacher
2025-09-06T06:26:17Z
0
0
null
[ "region:us" ]
null
2025-09-06T06:26:14Z
<!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Entropicengine/FractalSoup-L3-8b
alsandeer33/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flightless_arctic_kangaroo
alsandeer33
2025-09-06T06:26:06Z
14
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am flightless arctic kangaroo", "trl", "genrl-swarm", "I am flightless_arctic_kangaroo", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-04T13:54:45Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flightless_arctic_kangaroo tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am flightless arctic kangaroo - trl - genrl-swarm - I am flightless_arctic_kangaroo licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flightless_arctic_kangaroo This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="alsandeer33/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flightless_arctic_kangaroo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
yuuutre/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-enormous_bold_mule
yuuutre
2025-09-06T06:25:58Z
107
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am enormous_bold_mule", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-06T15:13:41Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am enormous_bold_mule --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AchyutaGH/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slender_grazing_ladybug
AchyutaGH
2025-09-06T06:25:55Z
9
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am slender grazing ladybug", "trl", "genrl-swarm", "I am slender_grazing_ladybug", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-18T23:00:30Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slender_grazing_ladybug tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am slender grazing ladybug - trl - genrl-swarm - I am slender_grazing_ladybug licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slender_grazing_ladybug This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AchyutaGH/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-slender_grazing_ladybug", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.1 - Transformers: 4.52.4 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Alinaaa123/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-thick_sizable_chicken
Alinaaa123
2025-09-06T06:25:55Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am thick_sizable_chicken", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-05T06:50:12Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am thick_sizable_chicken --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Mafikss/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-leaping_unseen_impala
Mafikss
2025-09-06T06:25:52Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am leaping unseen impala", "trl", "genrl-swarm", "I am leaping_unseen_impala", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-02T18:03:09Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-leaping_unseen_impala tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am leaping unseen impala - trl - genrl-swarm - I am leaping_unseen_impala licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-leaping_unseen_impala This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Mafikss/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-leaping_unseen_impala", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
nick00991/Qwen3-0.6B-Gensyn-Swarm-finicky_bristly_lion
nick00991
2025-09-06T06:25:50Z
135
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am finicky_bristly_lion", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-04T03:02:35Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am finicky_bristly_lion --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bah63843/blockassist-bc-plump_fast_antelope_1757139902
bah63843
2025-09-06T06:25:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-06T06:25:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ankitkushwaha90/safetensor_model_fine_tuning_project
ankitkushwaha90
2025-09-06T06:25:48Z
0
0
adapter-transformers
[ "adapter-transformers", "code", "token-classification", "en", "base_model:c2p-cmd/FaceEmotionClassifier", "base_model:adapter:c2p-cmd/FaceEmotionClassifier", "license:mit", "region:us" ]
token-classification
2025-09-04T06:13:12Z
--- license: mit language: - en metrics: - accuracy base_model: - c2p-cmd/FaceEmotionClassifier new_version: openai/gpt-oss-120b pipeline_tag: token-classification library_name: adapter-transformers tags: - code --- # T5 Command Description Generator This project fine-tunes a T5 model (`t5-small`) to generate descriptions of terminal commands based on prompts in the format "Describe the command: {name} in {source}". The model is trained on a dataset (`all_commands.csv`) containing command names, descriptions, and sources (e.g., `cmd`, `linux`, `macos`, `vbscript`). After fine-tuning, the model can generate descriptions for commands, such as "List information about file(s)" for `ls` in `linux`. ## Table of Contents - [Overview](#overview) - [Dataset](#dataset) - [Requirements](#requirements) - [Setup](#setup) - [Fine-Tuning the Model](#fine-tuning-the-model) - [Using the Model](#using-the-model) - [Example Output](#example-output) - [Troubleshooting](#troubleshooting) - [Future Improvements](#future-improvements) ## Overview The T5 (Text-to-Text Transfer Transformer) model is fine-tuned to map prompts like "Describe the command: ls in linux" to descriptions like "List information about file(s)". The dataset used for training is `all_commands.csv`, which includes commands from various environments (`cmd`, `linux`, `macos`, `vbscript`). The fine-tuned model is saved to `./new_cmd_model` and can be used to generate command descriptions interactively or programmatically. ## Dataset The dataset (`all_commands.csv`) contains the following columns: - `name`: The command name (e.g., `ls`, `dir`, `chmod`, `MsgBox`). - `description`: A brief description of what the command does (e.g., "List information about file(s)"). - `source`: The environment the command belongs to (`cmd`, `linux`, `macos`, `vbscript`). Example entries: ``` name,description,source ls,List information about file(s),linux dir,Display a list of files and folders,cmd chmod,Change access permissions,macos MsgBox,Display a dialogue box message,vbscript ``` The dataset is split into 80% training and 20% validation sets for fine-tuning. ## Requirements - Python 3.8+ - Libraries: - `transformers` - `torch` - `sentencepiece` - `datasets` - CUDA-enabled GPU (optional, for faster training; `fp16=True` in the script enables mixed precision if available) - Dataset file: `all_commands.csv` (place in the project directory) Install dependencies: ```bash pip install transformers torch sentencepiece datasets ``` ## Setup 1. **Activate the Environment**: Ensure you're in a Python environment with the required libraries. For example, using Conda: ```bash conda activate safetensor_new ``` 2. **Prepare the Dataset**: Place `all_commands.csv` in the project directory (e.g., `C:\app\dataset`). 3. **Directory Structure**: ``` C:\app\dataset\ ├── all_commands.csv ├── new_cmd_model\ (created after fine-tuning) └── fine_tune_script.py ``` ## Fine-Tuning the Model The fine-tuning script (`fine_tune_script.py`) trains a `t5-small` model on the `all_commands.csv` dataset to generate command descriptions. ### Script Overview - **Model**: `t5-small` (can be upgraded to `t5-base` for better performance). - **Input Prompt**: "Describe the command: {name} in {source}" (e.g., "Describe the command: ls in linux"). - **Output**: The command’s description (e.g., "List information about file(s)"). - **Training Parameters**: - Epochs: 3 - Learning rate: 5e-5 - Batch size: 8 - Output directory: `./new_cmd_model` - Mixed precision training: Enabled if CUDA is available ### Running the Script Save the following script as `fine_tune_script.py` and run it: ```python from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer, TrainingArguments from datasets import load_dataset import torch # Load model and tokenizer model_name = "t5-small" model = T5ForConditionalGeneration.from_pretrained(model_name) tokenizer = T5Tokenizer.from_pretrained(model_name) # Load dataset dataset = load_dataset("csv", data_files={"train": "all_commands.csv"}) dataset = dataset["train"].train_test_split(test_size=0.2) dataset["validation"] = dataset["test"] # Preprocess function def preprocess_function(examples): inputs = [f"Describe the command: {name} in {source}" for name, source in zip(examples["name"], examples["source"])] targets = examples["description"] model_inputs = tokenizer(inputs, max_length=128, truncation=True, padding="max_length") labels = tokenizer(targets, max_length=256, truncation=True, padding="max_length") model_inputs["labels"] = labels["input_ids"] return model_inputs # Apply preprocessing tokenized_dataset = dataset.map(preprocess_function, batched=True, remove_columns=dataset["train"].column_names) # Training arguments training_args = TrainingArguments( output_dir="./new_cmd_model", evaluation_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, save_strategy="epoch", load_best_model_at_end=True, metric_for_best_model="eval_loss", greater_is_better=False, fp16=torch.cuda.is_available(), ) # Initialize Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_dataset["train"], eval_dataset=tokenized_dataset["validation"], ) # Train the model trainer.train() # Save the model and tokenizer model.save_pretrained("./new_cmd_model") tokenizer.save_pretrained("./new_cmd_model") print("Fine-tuning complete. Model saved to './new_cmd_model'.") ``` Run the script: ```bash python fine_tune_script.py ``` This will train the model and save it to `./new_cmd_model`. ## Using the Model After fine-tuning, you can use the model to generate command descriptions with prompts like "Describe the command: {name} in {source}". Below is a script to load and use the model interactively or programmatically. ### Usage Script Save the following as `use_t5_command_description.py`: ```python import os from transformers import T5ForConditionalGeneration, T5Tokenizer import torch from datetime import datetime # Define model path model_path = "./new_cmd_model" # Check if model directory exists if not os.path.exists(model_path): raise FileNotFoundError(f"Model directory '{model_path}' not found.") # Load the fine-tuned model and tokenizer try: model = T5ForConditionalGeneration.from_pretrained(model_path) tokenizer = T5Tokenizer.from_pretrained(model_path, legacy=False) print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Model and tokenizer loaded successfully.") except Exception as e: raise Exception(f"Error loading model or tokenizer: {str(e)}") # Function to generate a command description def generate_description(command, source, max_length=100): prompt = f"Describe the command: {command} in {source}" print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Input prompt: {prompt}") inputs = tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) inputs = {key: value.to(device) for key, value in inputs.items()} print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Using device: {device}") try: outputs = model.generate( inputs["input_ids"], max_length=max_length, num_beams=4, length_penalty=1.0, early_stopping=True ) description = tokenizer.decode(outputs[0], skip_special_tokens=True).strip() if not description: return "Warning: No description generated. Check if the command and source are valid." return description except Exception as e: return f"Error generating description: {str(e)}" # Example usage test_commands = [ ("ls", "linux"), ("dir", "cmd"), ("chmod", "macos"), ("MsgBox", "vbscript") ] print("\nGenerated Descriptions:") print("-" * 50) for command, source in test_commands: description = generate_description(command, source) print(f"Command: {command} ({source})") print(f"Description: {description}") print("-" * 50) # Interactive mode print("\nInteractive Mode: Enter a command and source to get its description.") print("Valid sources: cmd, linux, macos, vbscript") print("Type 'exit' to quit.\n") while True: command = input("Enter command name (or 'exit' to quit): ").strip() if command.lower() == "exit": break source = input("Enter source (e.g., cmd, linux, macos, vbscript): ").strip().lower() valid_sources = ["cmd", "linux", "macos", "vbscript"] if source not in valid_sources: print(f"Invalid source. Please use one of: {', '.join(valid_sources)}") continue description = generate_description(command, source) print(f"\nCommand: {command} ({source})") print(f"Description: {description}") print("-" * 50) print("Exiting interactive mode.") ``` Run the script: ```bash python use_t5_command_description.py ``` ## Example Output After fine-tuning and running the usage script, you should see output like: ``` [2025-09-04 11:50:00] Model and tokenizer loaded successfully. Generated Descriptions: -------------------------------------------------- [2025-09-04 11:50:01] Input prompt: Describe the command: ls in linux [2025-09-04 11:50:01] Using device: cuda Command: ls (linux) Description: List information about file(s) -------------------------------------------------- [2025-09-04 11:50:02] Input prompt: Describe the command: dir in cmd [2025-09-04 11:50:02] Using device: cuda Command: dir (cmd) Description: Display a list of files and folders -------------------------------------------------- [2025-09-04 11:50:03] Input prompt: Describe the command: chmod in macos [2025-09-04 11:50:03] Using device: cuda Command: chmod (macos) Description: Change access permissions -------------------------------------------------- [2025-09-04 11:50:04] Input prompt: Describe the command: MsgBox in vbscript [2025-09-04 11:50:04] Using device: cuda Command: MsgBox (vbscript) Description: Display a dialogue box message -------------------------------------------------- Interactive Mode: Enter a command and source to get its description. Valid sources: cmd, linux, macos, vbscript Type 'exit' to quit. Enter command name (or 'exit' to quit): ping Enter source (e.g., cmd, linux, macos, vbscript): linux [2025-09-04 11:50:05] Input prompt: Describe the command: ping in linux [2025-09-04 11:50:05] Using device: cuda Command: ping (linux) Description: Test a network connection -------------------------------------------------- Enter command name (or 'exit' to quit): exit Exiting interactive mode. ``` ## Troubleshooting - **Empty Descriptions**: - Ensure `all_commands.csv` has valid entries with no missing descriptions. - Increase `num_train_epochs` to 5–10 or use `t5-base` for better performance. - Check training logs in `./new_cmd_model` for high loss values. - **Model Loading Issues**: - Verify the model saved correctly in `./new_cmd_model`. - Try loading a checkpoint (e.g., `./new_cmd_model/checkpoint-XXX`) if issues persist. - **Environment Errors**: - Ensure dependencies are installed: `pip install transformers torch sentencepiece datasets`. - For CUDA errors, ensure your GPU drivers are up-to-date or set `fp16=False` in the training script. - **Deprecation Warning**: - The script uses `evaluation_strategy`, which is deprecated. Update to `eval_strategy` in newer `transformers` versions: ```python training_args = TrainingArguments( output_dir="./new_cmd_model", eval_strategy="epoch", ... ) ``` ## Future Improvements - **Augment Dataset**: Add more command descriptions or variations to improve generalization. - **Use Larger Model**: Switch to `t5-base` for better accuracy (update `model_name` and retrain). - **Extend Task**: Modify to generate commands from task descriptions (e.g., "List files in linux" → `ls`) by retraining with swapped inputs/outputs. - **Command Execution**: Add functionality to execute generated commands (requires careful validation for security). For questions about xAI’s API, visit [https://x.ai/api](https://x.ai/api). [2025-09-04
100Pudoff/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pensive_large_clam
100Pudoff
2025-09-06T06:25:42Z
43
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am pensive_large_clam", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-04T09:12:04Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am pensive_large_clam --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kapitaka/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tawny_meek_cheetah
Kapitaka
2025-09-06T06:25:35Z
10
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am tawny meek cheetah", "trl", "genrl-swarm", "I am tawny_meek_cheetah", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-09T17:08:56Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tawny_meek_cheetah tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am tawny meek cheetah - trl - genrl-swarm - I am tawny_meek_cheetah licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tawny_meek_cheetah This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Kapitaka/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tawny_meek_cheetah", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
0xgr3y/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-burrowing_dextrous_caterpillar
0xgr3y
2025-09-06T06:25:21Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am burrowing_dextrous_caterpillar", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-05T09:06:53Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am burrowing_dextrous_caterpillar --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lecca157/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-knobby_fluffy_impala
lecca157
2025-09-06T06:25:17Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am knobby_fluffy_impala", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-06T03:46:03Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am knobby_fluffy_impala --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
okikripto/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shiny_slender_gazelle
okikripto
2025-09-06T06:25:13Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am shiny slender gazelle", "trl", "genrl-swarm", "I am shiny_slender_gazelle", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-22T14:47:20Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shiny_slender_gazelle tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am shiny slender gazelle - trl - genrl-swarm - I am shiny_slender_gazelle licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shiny_slender_gazelle This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="okikripto/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shiny_slender_gazelle", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.52.2 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
silverbenehi/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bold_running_kangaroo
silverbenehi
2025-09-06T06:25:12Z
36
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am bold running kangaroo", "trl", "genrl-swarm", "I am bold_running_kangaroo", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-09T21:11:49Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bold_running_kangaroo tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am bold running kangaroo - trl - genrl-swarm - I am bold_running_kangaroo licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bold_running_kangaroo This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="silverbenehi/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bold_running_kangaroo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Shnepsik/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-restless_fluffy_ocelot
Shnepsik
2025-09-06T06:25:11Z
179
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am restless_fluffy_ocelot", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T14:11:45Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am restless_fluffy_ocelot --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cosmosistan/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-extinct_patterned_jay
cosmosistan
2025-09-06T06:25:02Z
8
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am extinct patterned jay", "trl", "genrl-swarm", "I am extinct_patterned_jay", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-28T22:33:52Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-extinct_patterned_jay tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am extinct patterned jay - trl - genrl-swarm - I am extinct_patterned_jay licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-extinct_patterned_jay This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="cosmosistan/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-extinct_patterned_jay", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.1 - Transformers: 4.52.4 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Avokado777/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fast_small_gibbon
Avokado777
2025-09-06T06:24:58Z
8
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am fast small gibbon", "trl", "genrl-swarm", "I am fast_small_gibbon", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-03T23:03:53Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fast_small_gibbon tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am fast small gibbon - trl - genrl-swarm - I am fast_small_gibbon licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fast_small_gibbon This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Avokado777/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fast_small_gibbon", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/corobov-mitya-individual/huggingface/runs/zcdsijaj) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
anatolijbatalko/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-thriving_ferocious_mink
anatolijbatalko
2025-09-06T06:24:54Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am thriving ferocious mink", "trl", "genrl-swarm", "I am thriving_ferocious_mink", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-04T13:56:54Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-thriving_ferocious_mink tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am thriving ferocious mink - trl - genrl-swarm - I am thriving_ferocious_mink licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-thriving_ferocious_mink This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="anatolijbatalko/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-thriving_ferocious_mink", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
elsvastika1/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-unseen_burrowing_cassowary
elsvastika1
2025-09-06T06:24:53Z
122
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am unseen_burrowing_cassowary", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T20:13:05Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am unseen_burrowing_cassowary --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
duppbuy/blockassist-bc-vocal_strong_okapi_1757139873
duppbuy
2025-09-06T06:24:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vocal strong okapi", "arxiv:2504.07091", "region:us" ]
null
2025-09-06T06:24:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vocal strong okapi --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
565dfh/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bipedal_squeaky_dog
565dfh
2025-09-06T06:24:44Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am bipedal squeaky dog", "trl", "genrl-swarm", "I am bipedal_squeaky_dog", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-20T18:26:31Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bipedal_squeaky_dog tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am bipedal squeaky dog - trl - genrl-swarm - I am bipedal_squeaky_dog licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bipedal_squeaky_dog This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="565dfh/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bipedal_squeaky_dog", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.5.1 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
babycielou/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-scampering_thick_alpaca
babycielou
2025-09-06T06:24:37Z
27
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am scampering thick alpaca", "trl", "genrl-swarm", "I am scampering_thick_alpaca", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-09T20:59:53Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-scampering_thick_alpaca tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am scampering thick alpaca - trl - genrl-swarm - I am scampering_thick_alpaca licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-scampering_thick_alpaca This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="babycielou/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-scampering_thick_alpaca", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
AlexanderArtT/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tiny_nimble_warthog
AlexanderArtT
2025-09-06T06:24:33Z
23
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am tiny nimble warthog", "trl", "genrl-swarm", "I am tiny_nimble_warthog", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-13T22:11:38Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tiny_nimble_warthog tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am tiny nimble warthog - trl - genrl-swarm - I am tiny_nimble_warthog licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tiny_nimble_warthog This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AlexanderArtT/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tiny_nimble_warthog", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Umbrellat/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shrewd_extinct_turtle
Umbrellat
2025-09-06T06:24:32Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am shrewd extinct turtle", "trl", "genrl-swarm", "I am shrewd_extinct_turtle", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-16T03:10:55Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shrewd_extinct_turtle tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am shrewd extinct turtle - trl - genrl-swarm - I am shrewd_extinct_turtle licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shrewd_extinct_turtle This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Umbrellat/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shrewd_extinct_turtle", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
EnriqueSolarte/qwen2.5-VL-7B-instruct-00004-VqCaAuuoeWk_0
EnriqueSolarte
2025-09-06T06:24:30Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-09-05T07:21:28Z
--- base_model: Qwen/Qwen2.5-VL-7B-Instruct library_name: transformers model_name: qwen2.5-VL-7B-instruct-00004-VqCaAuuoeWk_0 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for qwen2.5-VL-7B-instruct-00004-VqCaAuuoeWk_0 This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="EnriqueSolarte/qwen2.5-VL-7B-instruct-00004-VqCaAuuoeWk_0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.22.1 - Transformers: 4.56.0 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
wacicu/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flightless_bristly_falcon
wacicu
2025-09-06T06:24:29Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am flightless_bristly_falcon", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-05T10:11:32Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am flightless_bristly_falcon --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lecca157/Smoothie-Qwen3-1.7B-Gensyn-Swarm-knobby_fluffy_impala
lecca157
2025-09-06T06:24:25Z
172
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am knobby_fluffy_impala", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-04T07:03:57Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am knobby_fluffy_impala --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lecca157/AceInstruct-1.5B-Gensyn-Swarm-knobby_fluffy_impala
lecca157
2025-09-06T06:24:24Z
3
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am knobby_fluffy_impala", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-04T06:54:19Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am knobby_fluffy_impala --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
1245erty/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-jumping_lithe_scorpion
1245erty
2025-09-06T06:24:12Z
3
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am jumping lithe scorpion", "unsloth", "trl", "genrl-swarm", "I am jumping_lithe_scorpion", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-20T16:38:45Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-jumping_lithe_scorpion tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am jumping lithe scorpion - unsloth - trl - genrl-swarm - I am jumping_lithe_scorpion licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-jumping_lithe_scorpion This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="1245erty/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-jumping_lithe_scorpion", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```