modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-06 00:36:47
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 540
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-06 00:36:27
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
tensorblock/payelb_GPT2L_full-GGUF
|
tensorblock
| 2025-08-12T05:07:57Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"generated_from_trainer",
"TensorBlock",
"GGUF",
"base_model:payelb/GPT2L_full",
"base_model:quantized:payelb/GPT2L_full",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2025-08-12T04:59:00Z |
---
library_name: transformers
license: mit
base_model: payelb/GPT2L_full
tags:
- generated_from_trainer
- TensorBlock
- GGUF
model-index:
- name: GPT2L_full
results: []
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## payelb/GPT2L_full - GGUF
<div style="text-align: left; margin: 20px 0;">
<a href="https://discord.com/invite/Ej5NmeHFf2" style="display: inline-block; padding: 10px 20px; background-color: #5865F2; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Join our Discord to learn more about what we're building ↗
</a>
</div>
This repo contains GGUF format model files for [payelb/GPT2L_full](https://huggingface.co/payelb/GPT2L_full).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th colspan="2" style="font-size: 25px;">Forge</th>
</tr>
<tr>
<th colspan="2">
<img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
</th>
</tr>
<tr>
<th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
</tr>
<tr>
<th colspan="2">
<a href="https://github.com/TensorBlock/forge" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">🚀 Try it now! 🚀</a>
</th>
</tr>
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">👀 See what we built 👀</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">👀 See what we built 👀</a>
</th>
</tr>
</table>
## Prompt template
```
Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format.
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [GPT2L_full-Q2_K.gguf](https://huggingface.co/tensorblock/payelb_GPT2L_full-GGUF/blob/main/GPT2L_full-Q2_K.gguf) | Q2_K | 0.324 GB | smallest, significant quality loss - not recommended for most purposes |
| [GPT2L_full-Q3_K_S.gguf](https://huggingface.co/tensorblock/payelb_GPT2L_full-GGUF/blob/main/GPT2L_full-Q3_K_S.gguf) | Q3_K_S | 0.366 GB | very small, high quality loss |
| [GPT2L_full-Q3_K_M.gguf](https://huggingface.co/tensorblock/payelb_GPT2L_full-GGUF/blob/main/GPT2L_full-Q3_K_M.gguf) | Q3_K_M | 0.431 GB | very small, high quality loss |
| [GPT2L_full-Q3_K_L.gguf](https://huggingface.co/tensorblock/payelb_GPT2L_full-GGUF/blob/main/GPT2L_full-Q3_K_L.gguf) | Q3_K_L | 0.466 GB | small, substantial quality loss |
| [GPT2L_full-Q4_0.gguf](https://huggingface.co/tensorblock/payelb_GPT2L_full-GGUF/blob/main/GPT2L_full-Q4_0.gguf) | Q4_0 | 0.460 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [GPT2L_full-Q4_K_S.gguf](https://huggingface.co/tensorblock/payelb_GPT2L_full-GGUF/blob/main/GPT2L_full-Q4_K_S.gguf) | Q4_K_S | 0.464 GB | small, greater quality loss |
| [GPT2L_full-Q4_K_M.gguf](https://huggingface.co/tensorblock/payelb_GPT2L_full-GGUF/blob/main/GPT2L_full-Q4_K_M.gguf) | Q4_K_M | 0.513 GB | medium, balanced quality - recommended |
| [GPT2L_full-Q5_0.gguf](https://huggingface.co/tensorblock/payelb_GPT2L_full-GGUF/blob/main/GPT2L_full-Q5_0.gguf) | Q5_0 | 0.549 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [GPT2L_full-Q5_K_S.gguf](https://huggingface.co/tensorblock/payelb_GPT2L_full-GGUF/blob/main/GPT2L_full-Q5_K_S.gguf) | Q5_K_S | 0.549 GB | large, low quality loss - recommended |
| [GPT2L_full-Q5_K_M.gguf](https://huggingface.co/tensorblock/payelb_GPT2L_full-GGUF/blob/main/GPT2L_full-Q5_K_M.gguf) | Q5_K_M | 0.588 GB | large, very low quality loss - recommended |
| [GPT2L_full-Q6_K.gguf](https://huggingface.co/tensorblock/payelb_GPT2L_full-GGUF/blob/main/GPT2L_full-Q6_K.gguf) | Q6_K | 0.643 GB | very large, extremely low quality loss |
| [GPT2L_full-Q8_0.gguf](https://huggingface.co/tensorblock/payelb_GPT2L_full-GGUF/blob/main/GPT2L_full-Q8_0.gguf) | Q8_0 | 0.830 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/payelb_GPT2L_full-GGUF --include "GPT2L_full-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/payelb_GPT2L_full-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|
cucucu666/ganga-8.12
|
cucucu666
| 2025-08-12T05:07:34Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"flux",
"flux-diffusers",
"template:sd-lora",
"base_model:black-forest-labs/FLUX.1-Fill-dev",
"base_model:adapter:black-forest-labs/FLUX.1-Fill-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-12T03:11:37Z |
---
base_model: black-forest-labs/FLUX.1-Fill-dev
library_name: diffusers
license: other
instance_prompt: Lego male face, Lego style, embarrassed expression, plain white background
widget:
- text: Lego male face, Lego style, embarrassed expression, plain white background
output:
url: image_0.png
- text: Lego male face, Lego style, embarrassed expression, plain white background
output:
url: image_1.png
- text: Lego male face, Lego style, embarrassed expression, plain white background
output:
url: image_2.png
- text: Lego male face, Lego style, embarrassed expression, plain white background
output:
url: image_3.png
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- flux
- flux-diffusers
- template:sd-lora
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# Flux-Fill DreamBooth LoRA - cucucu666/ganga-8.12
<Gallery />
## Model description
These are cucucu666/ganga-8.12 DreamBooth LoRA weights for black-forest-labs/FLUX.1-Fill-dev.
The weights were trained using [DreamBooth](https://dreambooth.github.io/) with a custom [Flux diffusers trainer](https://github.com/Sebastian-Zok/FLUX-Fill-LoRa-Training).
Was LoRA for the text encoder enabled? False.
## Trigger words
You should use `Lego male face, Lego style, embarrassed expression, plain white background` to trigger the image generation.
## Download model
[Download the *.safetensors LoRA](cucucu666/ganga-8.12/tree/main) in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda')
pipeline.load_lora_weights('cucucu666/ganga-8.12', weight_name='pytorch_lora_weights.safetensors')
image = pipeline('Lego male face, Lego style, embarrassed expression, plain white background').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## License
Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
gayatridt/llama32-dpo-iterative-2
|
gayatridt
| 2025-08-12T05:07:16Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-12T05:07:14Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
gayatridt/llama32-dpo-iterative-1
|
gayatridt
| 2025-08-12T05:03:03Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-12T05:02:58Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754974887
|
ggozzy
| 2025-08-12T05:02:59Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T05:02:37Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hanlforever/distilbert-base-uncased-finetuned-emotion
|
hanlforever
| 2025-08-12T04:59:48Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-12T04:09:35Z |
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1596
- Accuracy: 0.938
- F1: 0.9381
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.1719 | 1.0 | 250 | 0.1708 | 0.9315 | 0.9317 |
| 0.1114 | 2.0 | 500 | 0.1596 | 0.938 | 0.9381 |
### Framework versions
- Transformers 4.55.0
- Pytorch 2.5.1+cu118
- Datasets 4.0.0
- Tokenizers 0.21.4
|
infospot/infospot
|
infospot
| 2025-08-12T04:58:58Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-12T04:58:34Z |
Info-Spot lets you find and download restaurant menus instantly in a simple, easy-to-read PDF format that’s always up to date.
Website: https://info-spot.com/
Social Media:
- https://www.facebook.com/infospotcom/
- https://www.linkedin.com/company/info-spot-com/about/
- https://www.youtube.com/@SpotInfo-com
- https://x.com/infospotcom
- https://www.pinterest.com/infospotcom/
|
koloni/blockassist-bc-deadly_graceful_stingray_1754973170
|
koloni
| 2025-08-12T04:57:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:57:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
motza0025/blockassist-bc-slithering_stalking_otter_1754972965
|
motza0025
| 2025-08-12T04:56:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"slithering stalking otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:56:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- slithering stalking otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Perf89/blockassist-bc-sleek_opaque_snail_1754972811
|
Perf89
| 2025-08-12T04:55:45Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"sleek opaque snail",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:55:37Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- sleek opaque snail
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cme81m942009yrts8lhmqopbk
|
BootesVoid
| 2025-08-12T04:52:18Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-12T04:52:17Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: GRMNGRL
---
# Cm8Tb7Xkk0000Wzj24Pkk2M5G_Cme81M942009Yrts8Lhmqopbk
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `GRMNGRL` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "GRMNGRL",
"lora_weights": "https://huggingface.co/BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cme81m942009yrts8lhmqopbk/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cme81m942009yrts8lhmqopbk', weight_name='lora.safetensors')
image = pipeline('GRMNGRL').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cme81m942009yrts8lhmqopbk/discussions) to add images that show off what you’ve made with this LoRA.
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754974220
|
IvanJAjebu
| 2025-08-12T04:51:37Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:51:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
carolinechu/unsloth_model_8bit
|
carolinechu
| 2025-08-12T04:50:58Z | 539 | 0 |
transformers
|
[
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-08T00:57:52Z |
---
base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** carolinechu
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
NexVeridian/Qwen3-4B-Instruct-2507-5bit
|
NexVeridian
| 2025-08-12T04:49:47Z | 5 | 0 |
mlx
|
[
"mlx",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"base_model:Qwen/Qwen3-4B-Instruct-2507",
"base_model:quantized:Qwen/Qwen3-4B-Instruct-2507",
"license:apache-2.0",
"5-bit",
"region:us"
] |
text-generation
| 2025-08-06T17:40:26Z |
---
library_name: mlx
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507/blob/main/LICENSE
pipeline_tag: text-generation
base_model: Qwen/Qwen3-4B-Instruct-2507
tags:
- mlx
---
# NexVeridian/Qwen3-4B-Instruct-2507-5bit
This model [NexVeridian/Qwen3-4B-Instruct-2507-5bit](https://huggingface.co/NexVeridian/Qwen3-4B-Instruct-2507-5bit) was
converted to MLX format from [Qwen/Qwen3-4B-Instruct-2507](https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507)
using mlx-lm version **0.26.3**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("NexVeridian/Qwen3-4B-Instruct-2507-5bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|
RMCian/blockassist-bc-wiry_sturdy_cobra_1754974091
|
RMCian
| 2025-08-12T04:48:39Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry sturdy cobra",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:48:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry sturdy cobra
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754973972
|
ggozzy
| 2025-08-12T04:47:39Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:47:23Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754973946
|
IvanJAjebu
| 2025-08-12T04:46:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:46:40Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
RMCian/blockassist-bc-wiry_sturdy_cobra_1754973936
|
RMCian
| 2025-08-12T04:46:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry sturdy cobra",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:45:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry sturdy cobra
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Nerva1228/kuafeng
|
Nerva1228
| 2025-08-12T04:45:56Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-12T04:10:40Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: kuafeng
---
# Kuafeng
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `kuafeng` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "kuafeng",
"lora_weights": "https://huggingface.co/Nerva1228/kuafeng/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Nerva1228/kuafeng', weight_name='lora.safetensors')
image = pipeline('kuafeng').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 5e-05
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/Nerva1228/kuafeng/discussions) to add images that show off what you’ve made with this LoRA.
|
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754973791
|
afasdfdfadsf
| 2025-08-12T04:44:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rough opaque clam",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:43:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rough opaque clam
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/Luth-0.6B-Instruct-GGUF
|
mradermacher
| 2025-08-12T04:40:22Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"fr",
"en",
"dataset:kurakurai/luth-sft",
"base_model:kurakurai/Luth-0.6B-Instruct",
"base_model:quantized:kurakurai/Luth-0.6B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-12T01:03:54Z |
---
base_model: kurakurai/Luth-0.6B-Instruct
datasets:
- kurakurai/luth-sft
language:
- fr
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/kurakurai/Luth-0.6B-Instruct
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Luth-0.6B-Instruct-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Luth-0.6B-Instruct-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Luth-0.6B-Instruct-GGUF/resolve/main/Luth-0.6B-Instruct.Q2_K.gguf) | Q2_K | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/Luth-0.6B-Instruct-GGUF/resolve/main/Luth-0.6B-Instruct.Q3_K_S.gguf) | Q3_K_S | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/Luth-0.6B-Instruct-GGUF/resolve/main/Luth-0.6B-Instruct.Q3_K_M.gguf) | Q3_K_M | 0.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Luth-0.6B-Instruct-GGUF/resolve/main/Luth-0.6B-Instruct.Q3_K_L.gguf) | Q3_K_L | 0.5 | |
| [GGUF](https://huggingface.co/mradermacher/Luth-0.6B-Instruct-GGUF/resolve/main/Luth-0.6B-Instruct.IQ4_XS.gguf) | IQ4_XS | 0.5 | |
| [GGUF](https://huggingface.co/mradermacher/Luth-0.6B-Instruct-GGUF/resolve/main/Luth-0.6B-Instruct.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Luth-0.6B-Instruct-GGUF/resolve/main/Luth-0.6B-Instruct.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Luth-0.6B-Instruct-GGUF/resolve/main/Luth-0.6B-Instruct.Q5_K_S.gguf) | Q5_K_S | 0.5 | |
| [GGUF](https://huggingface.co/mradermacher/Luth-0.6B-Instruct-GGUF/resolve/main/Luth-0.6B-Instruct.Q5_K_M.gguf) | Q5_K_M | 0.5 | |
| [GGUF](https://huggingface.co/mradermacher/Luth-0.6B-Instruct-GGUF/resolve/main/Luth-0.6B-Instruct.Q6_K.gguf) | Q6_K | 0.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Luth-0.6B-Instruct-GGUF/resolve/main/Luth-0.6B-Instruct.Q8_0.gguf) | Q8_0 | 0.7 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Luth-0.6B-Instruct-GGUF/resolve/main/Luth-0.6B-Instruct.f16.gguf) | f16 | 1.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
deanb258/segformer-b5-fine-tuned-test
|
deanb258
| 2025-08-12T04:40:06Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"segformer",
"vision",
"image_segmentation",
"generated_from_trainer",
"base_model:nvidia/segformer-b2-finetuned-ade-512-512",
"base_model:finetune:nvidia/segformer-b2-finetuned-ade-512-512",
"license:other",
"endpoints_compatible",
"region:us"
] | null | 2025-08-12T04:39:30Z |
---
library_name: transformers
license: other
base_model: nvidia/segformer-b2-finetuned-ade-512-512
tags:
- vision
- image_segmentation
- generated_from_trainer
model-index:
- name: segformer-b5-fine-tuned-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b5-fine-tuned-test
This model is a fine-tuned version of [nvidia/segformer-b2-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b2-finetuned-ade-512-512) on the deanb258/dataset_latest_full dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 200
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.52.1
- Pytorch 2.6.0+cpu
- Datasets 3.6.0
- Tokenizers 0.21.1
|
megumiin/blockassist-bc-colorful_swift_beaver_1754973480
|
megumiin
| 2025-08-12T04:39:33Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"colorful swift beaver",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:39:05Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- colorful swift beaver
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
giovannidemuri/llama8b-er-afg-v88-seed2-hx
|
giovannidemuri
| 2025-08-12T04:39:01Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"conversational",
"base_model:meta-llama/Llama-3.1-8B",
"base_model:finetune:meta-llama/Llama-3.1-8B",
"license:llama3.1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-12T02:39:16Z |
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Llama-3.1-8B
tags:
- generated_from_trainer
model-index:
- name: llama8b-er-afg-v88-seed2-hx
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama8b-er-afg-v88-seed2-hx
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.52.4
- Pytorch 2.7.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.2
|
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754973435
|
afasdfdfadsf
| 2025-08-12T04:38:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rough opaque clam",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:38:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rough opaque clam
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
RMCian/blockassist-bc-wiry_sturdy_cobra_1754973466
|
RMCian
| 2025-08-12T04:38:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry sturdy cobra",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:38:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry sturdy cobra
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754973362
|
ggozzy
| 2025-08-12T04:37:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:37:15Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ecamli/blockassist-bc-hulking_soft_hippo_1754973272
|
ecamli
| 2025-08-12T04:35:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"hulking soft hippo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:35:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- hulking soft hippo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
relapseone/blockassist-bc-insectivorous_prickly_shrew_1754971266
|
relapseone
| 2025-08-12T04:35:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"insectivorous prickly shrew",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:35:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- insectivorous prickly shrew
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754973056
|
ggozzy
| 2025-08-12T04:32:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:32:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bambangbukan/blockassist-bc-singing_burrowing_chicken_1754972917
|
bambangbukan
| 2025-08-12T04:30:17Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"singing burrowing chicken",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:29:39Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- singing burrowing chicken
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
koloni/blockassist-bc-deadly_graceful_stingray_1754971394
|
koloni
| 2025-08-12T04:29:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:29:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754972888
|
IvanJAjebu
| 2025-08-12T04:29:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:29:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
wanpance/blockassist-bc-scavenging_invisible_prawn_1754972790
|
wanpance
| 2025-08-12T04:28:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"scavenging invisible prawn",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:27:42Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- scavenging invisible prawn
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754972721
|
afasdfdfadsf
| 2025-08-12T04:27:07Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rough opaque clam",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:26:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rough opaque clam
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
gsaltintas/gsa-supertoken-gpt-4o
|
gsaltintas
| 2025-08-12T04:24:47Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2025-08-12T03:48:55Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
bustamiyusoef/TrOCR_JHR_few_shot
|
bustamiyusoef
| 2025-08-12T04:20:53Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"vision-encoder-decoder",
"image-to-text",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] |
image-to-text
| 2025-08-12T04:16:02Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
PwC-KR-GenAI/SamilPwC_AX_Node_GenAI_Team_expr
|
PwC-KR-GenAI
| 2025-08-12T04:18:52Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-08-12T04:18:52Z |
---
license: apache-2.0
---
|
PJMixers-Images/lightx2v_Qwen-Image-Lightning-4step-8step-Merge
|
PJMixers-Images
| 2025-08-12T04:17:33Z | 0 | 1 |
diffusers
|
[
"diffusers",
"Qwen-Image",
"distillation",
"LoRA",
"merge",
"text-to-image",
"en",
"zh",
"base_model:Qwen/Qwen-Image",
"base_model:finetune:Qwen/Qwen-Image",
"license:apache-2.0",
"region:us"
] |
text-to-image
| 2025-08-12T01:30:28Z |
---
license: apache-2.0
base_model: Qwen/Qwen-Image
language:
- en
- zh
pipeline_tag: text-to-image
library_name: diffusers
widget:
- text: "A close-up portrait of a dog with black, brown, and white fur, a white stripe on its forehead, and brown and black markings on its ears, is looking directly at the camera with a serious expression. The dog has brown eyes with black pupils and a black nose, and its ears are large and pointed. The background is blurred and appears to be an outdoor setting with green and brown grass and a light grey sky."
output:
url: examples/Qwen-Image_00133_.png
- text: "Close-up food photo of a hybrid snail composed entirely of glossy sticky cinnamon buns. The shell is made from a puffy perfectly swirled cinnamon bun covered in a thick glossy white glaze. Baked edges with a jagged cinnamon bun texture slightly caramelized, dark cinnamon filling inside, rich golden brown color. The glaze drips down in thick sweet drops, the snail tendrils are made of twisted cinnamon dough, glistening with icing sugar, the glaze reflects warm, natural light. The scene is shot in a soft, fuzzy kitchen setting, with a hint of freshly baked pastries in the background."
output:
url: examples/Qwen-Image_00134_.png
- text: "8-bit pixel art of a pidgeon wearing a lab coat, and a tie. The background is large computer server room. The lighting is dark, with most light hitting the servers and not the pidgeon."
output:
url: examples/Qwen-Image_00136_.png
- text: "A long tunnel with a high ceiling is seen dimly lit, illuminated by a single fluorescent light fixture at the end of the tunnel. The tunnel walls are made of corrugated metal and are lined with copper pipes. On the left wall, there is a yellow warning sign with a black exclamation mark and the text \"WARNING - MILITARY TESTING\" in black letters. To the right of the warning sign, on the right wall, is a green control panel with various knobs and switches, and a black and yellow warning tape is attached to the control panel. The floor is dark and wet, reflecting the light from the fluorescent light. A metal grate is visible on the floor."
output:
url: examples/Qwen-Image_00137_.png
tags:
- Qwen-Image
- distillation
- LoRA
- merge
---
# 50/50 merge of the 4-step and 8-step LoRA
<Gallery />
## My recommended settings
- LoRA Strength: 0.9 (or possibly even lower)
- Steps: 16
- Sampler: DEIS
- Scheduler: KL Optimal
- Shift: None (I removed the node, since it made no difference after I swapped to KL Optimal scheduler.)
## Reason for making
The 4-step LoRA does fairly well at 4 steps, but it cannot go higher than 4 steps without overcooking the image, and even at 4 steps the image feels a little cooked.
<p align="center">
<img src="examples/comparisons/Comparison_00001_.png" height="480px"/>
<span style="font-size: small;">4-step lora | 4 steps vs. 8 steps vs. 16 steps | [1536x1536, no shift, lora strength 1, deis, kl_optimal, seed 187]</span>
</p>
The 8-step LoRA on the other hand is very undercooked at 4 steps, still a little undercooked at 8 steps, but handles higher step counts like 16 really well, but feels a little undercooked overall.
<p align="center">
<img src="examples/comparisons/Comparison_00002_.png" height="480px"/>
<span style="font-size: small;">8-step lora | 4 steps vs. 8 steps vs. 16 steps | [1536x1536, no shift, lora strength 1, deis, kl_optimal, seed 187]</span>
</p>
Merging these two together results in being able to do 16 without overcooking or undercooking. It feels *just about right*, especially if you load at 90% strength.
<p align="center">
<img src="examples/comparisons/Comparison_00005_.png" height="480px"/>
<span style="font-size: small;">merged lora | 4 steps vs. 8 steps vs. 16 steps | [1536x1536, no shift, lora strength 1, deis, kl_optimal, seed 187]</span>
</p>
|
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754972145
|
afasdfdfadsf
| 2025-08-12T04:17:31Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rough opaque clam",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:16:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rough opaque clam
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
tamewild/4b_v46_merged_e8
|
tamewild
| 2025-08-12T04:16:48Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-12T04:13:51Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
SmokeST/lettascar2
|
SmokeST
| 2025-08-12T04:13:02Z | 0 | 0 | null |
[
"lora",
"flux",
"stable-diffusion",
"text-to-image",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2025-08-12T04:06:57Z |
---
license: creativeml-openrail-m
pipeline_tag: text-to-image
base_model: runwayml/stable-diffusion-v1-5
tags:
- lora
- flux
- stable-diffusion
---
|
hafidhsoekma/test-g1.7b-2-checkpoint-1000
|
hafidhsoekma
| 2025-08-12T04:12:58Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/Qwen3-1.7B-unsloth-bnb-4bit",
"base_model:finetune:unsloth/Qwen3-1.7B-unsloth-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-12T04:05:58Z |
---
base_model: unsloth/Qwen3-1.7B-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** hafidhsoekma
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen3-1.7B-unsloth-bnb-4bit
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
bboeun/food-finetuned2-model
|
bboeun
| 2025-08-12T04:12:31Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3_text",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-11T10:36:29Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754971860
|
ggozzy
| 2025-08-12T04:12:11Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:11:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hobson123/blockassist-bc-mammalian_dense_gibbon_1754971490
|
hobson123
| 2025-08-12T04:10:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mammalian dense gibbon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:10:19Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mammalian dense gibbon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754971668
|
ggozzy
| 2025-08-12T04:09:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:08:54Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754971625
|
afasdfdfadsf
| 2025-08-12T04:08:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rough opaque clam",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:07:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rough opaque clam
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
flyingbugs/Qwen2.5-Math-7B-limo-32b
|
flyingbugs
| 2025-08-12T04:07:36Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"open-r1",
"trl",
"sft",
"conversational",
"dataset:flyingbugs/limo-deepseek32b-responses",
"base_model:Qwen/Qwen2.5-Math-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-Math-7B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-12T03:26:29Z |
---
base_model: Qwen/Qwen2.5-Math-7B-Instruct
datasets: flyingbugs/limo-deepseek32b-responses
library_name: transformers
model_name: Qwen2.5-Math-7B-limo-32b
tags:
- generated_from_trainer
- open-r1
- trl
- sft
licence: license
---
# Model Card for Qwen2.5-Math-7B-limo-32b
This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) on the [flyingbugs/limo-deepseek32b-responses](https://huggingface.co/datasets/flyingbugs/limo-deepseek32b-responses) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="flyingbugs/Qwen2.5-Math-7B-limo-32b", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jjh233/huggingface/runs/krfigq0z)
This model was trained with SFT.
### Framework versions
- TRL: 0.16.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.5.1+cu121
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
Jusstin/blockassist-bc-omnivorous_polished_mule_1754971521
|
Jusstin
| 2025-08-12T04:06:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"omnivorous polished mule",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T04:05:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- omnivorous polished mule
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
BootesVoid/cme7yi48e001trts8o87yxrtt_cme7yudrm002wrts86fdjz5hn
|
BootesVoid
| 2025-08-12T04:03:53Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-12T04:03:50Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: SEXY
---
# Cme7Yi48E001Trts8O87Yxrtt_Cme7Yudrm002Wrts86Fdjz5Hn
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `SEXY` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "SEXY",
"lora_weights": "https://huggingface.co/BootesVoid/cme7yi48e001trts8o87yxrtt_cme7yudrm002wrts86fdjz5hn/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cme7yi48e001trts8o87yxrtt_cme7yudrm002wrts86fdjz5hn', weight_name='lora.safetensors')
image = pipeline('SEXY').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cme7yi48e001trts8o87yxrtt_cme7yudrm002wrts86fdjz5hn/discussions) to add images that show off what you’ve made with this LoRA.
|
mradermacher/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k-GGUF
|
mradermacher
| 2025-08-12T04:00:05Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"generated_from_trainer",
"trl",
"dpo",
"en",
"base_model:AmberYifan/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k",
"base_model:quantized:AmberYifan/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-12T01:17:15Z |
---
base_model: AmberYifan/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k
language:
- en
library_name: transformers
model_name: Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- generated_from_trainer
- trl
- dpo
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/AmberYifan/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k.Q2_K.gguf) | Q2_K | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k.IQ4_XS.gguf) | IQ4_XS | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k.Q5_K_S.gguf) | Q5_K_S | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k.Q5_K_M.gguf) | Q5_K_M | 5.5 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k.Q6_K.gguf) | Q6_K | 6.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-7B-Instruct-wildfeedback-iterDPO-iter2-4k.f16.gguf) | f16 | 15.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
Jeol/Jinx-gpt-oss-20b-Q4_K_M-GGUF
|
Jeol
| 2025-08-12T03:56:22Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"vllm",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:Jinx-org/Jinx-gpt-oss-20b",
"base_model:quantized:Jinx-org/Jinx-gpt-oss-20b",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-12T03:55:13Z |
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
base_model: Jinx-org/Jinx-gpt-oss-20b
tags:
- vllm
- llama-cpp
- gguf-my-repo
---
# Jeol/Jinx-gpt-oss-20b-Q4_K_M-GGUF
This model was converted to GGUF format from [`Jinx-org/Jinx-gpt-oss-20b`](https://huggingface.co/Jinx-org/Jinx-gpt-oss-20b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Jinx-org/Jinx-gpt-oss-20b) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Jeol/Jinx-gpt-oss-20b-Q4_K_M-GGUF --hf-file jinx-gpt-oss-20b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Jeol/Jinx-gpt-oss-20b-Q4_K_M-GGUF --hf-file jinx-gpt-oss-20b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Jeol/Jinx-gpt-oss-20b-Q4_K_M-GGUF --hf-file jinx-gpt-oss-20b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Jeol/Jinx-gpt-oss-20b-Q4_K_M-GGUF --hf-file jinx-gpt-oss-20b-q4_k_m.gguf -c 2048
```
|
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754970849
|
afasdfdfadsf
| 2025-08-12T03:55:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rough opaque clam",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:54:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rough opaque clam
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AshwinKM2005/Hangman_TrexQuant
|
AshwinKM2005
| 2025-08-12T03:53:05Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"deberta-v2",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-12T03:51:47Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
bimobbb/blockassist-bc-energetic_lanky_frog_1754970425
|
bimobbb
| 2025-08-12T03:53:02Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"energetic lanky frog",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:51:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- energetic lanky frog
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
cuongdk253/gpt-oss-fine-tune-10082025
|
cuongdk253
| 2025-08-12T03:52:00Z | 0 | 0 |
transformers
|
[
"transformers",
"gpt_oss",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"mxfp4",
"region:us"
] |
text-generation
| 2025-08-10T12:06:46Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Jusstin/blockassist-bc-omnivorous_polished_mule_1754970663
|
Jusstin
| 2025-08-12T03:51:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"omnivorous polished mule",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:51:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- omnivorous polished mule
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754970549
|
afasdfdfadsf
| 2025-08-12T03:50:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rough opaque clam",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:49:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rough opaque clam
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754970471
|
IvanJAjebu
| 2025-08-12T03:48:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:48:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/Dante-7B-GGUF
|
mradermacher
| 2025-08-12T03:46:18Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:outflanknl/Dante-7B",
"base_model:quantized:outflanknl/Dante-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-12T02:55:38Z |
---
base_model: outflanknl/Dante-7B
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/outflanknl/Dante-7B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Dante-7B-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Dante-7B-GGUF/resolve/main/Dante-7B.Q2_K.gguf) | Q2_K | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/Dante-7B-GGUF/resolve/main/Dante-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/Dante-7B-GGUF/resolve/main/Dante-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Dante-7B-GGUF/resolve/main/Dante-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/Dante-7B-GGUF/resolve/main/Dante-7B.IQ4_XS.gguf) | IQ4_XS | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Dante-7B-GGUF/resolve/main/Dante-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Dante-7B-GGUF/resolve/main/Dante-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Dante-7B-GGUF/resolve/main/Dante-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/Dante-7B-GGUF/resolve/main/Dante-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | |
| [GGUF](https://huggingface.co/mradermacher/Dante-7B-GGUF/resolve/main/Dante-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Dante-7B-GGUF/resolve/main/Dante-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Dante-7B-GGUF/resolve/main/Dante-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
outlookAi/OLcGoQXwmy
|
outlookAi
| 2025-08-12T03:44:01Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-12T03:26:19Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: Mauy2
---
# Olcgoqxwmy
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `Mauy2` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "Mauy2",
"lora_weights": "https://huggingface.co/outlookAi/OLcGoQXwmy/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('outlookAi/OLcGoQXwmy', weight_name='lora.safetensors')
image = pipeline('Mauy2').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 1200
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/outlookAi/OLcGoQXwmy/discussions) to add images that show off what you’ve made with this LoRA.
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754970142
|
IvanJAjebu
| 2025-08-12T03:43:37Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:43:24Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bambangbukan/blockassist-bc-singing_burrowing_chicken_1754969968
|
bambangbukan
| 2025-08-12T03:41:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"singing burrowing chicken",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:40:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- singing burrowing chicken
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754969915
|
afasdfdfadsf
| 2025-08-12T03:40:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rough opaque clam",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:39:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rough opaque clam
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Hfkjc/blockassist-bc-fanged_stinging_sandpiper_1754969505
|
Hfkjc
| 2025-08-12T03:38:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"fanged stinging sandpiper",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:38:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- fanged stinging sandpiper
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
YG0628/CVE-CWE-CAPEC-Mapping-Model
|
YG0628
| 2025-08-12T03:37:08Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-11T09:14:22Z |
---
base_model: unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** YG0628
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
John6666/noobai-v-pred-10-with-eq-vae-experimental-eq-vae-sdxl
|
John6666
| 2025-08-12T03:37:08Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"stable-diffusion-xl",
"anime",
"less noisy",
"cleaner colors",
"finetune",
"EQVAE",
"v-pred",
"merge",
"noobai",
"illustrious",
"en",
"base_model:Anzhc/MS-LC-EQ-D-VR_VAE",
"base_model:merge:Anzhc/MS-LC-EQ-D-VR_VAE",
"base_model:Laxhar/noobai-XL-Vpred-1.0",
"base_model:merge:Laxhar/noobai-XL-Vpred-1.0",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] |
text-to-image
| 2025-08-12T03:30:32Z |
---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
- stable-diffusion
- stable-diffusion-xl
- anime
- less noisy
- cleaner colors
- finetune
- EQVAE
- v-pred
- merge
- noobai
- illustrious
base_model:
- Laxhar/noobai-XL-Vpred-1.0
- Anzhc/MS-LC-EQ-D-VR_VAE
---
Original model is [here](https://civitai.com/models/1858821/noobai-v-pred-10-with-eq-vae?modelVersionId=2103794).
The author is [here](https://huggingface.co/Bluvoll).
This model created by [bluvoll](https://civitai.com/user/bluvoll).
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754969729
|
IvanJAjebu
| 2025-08-12T03:36:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:36:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Sayemahsjn/blockassist-bc-playful_feline_octopus_1754968608
|
Sayemahsjn
| 2025-08-12T03:35:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"playful feline octopus",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:35:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- playful feline octopus
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
apriasmoro/8a3dc043-6cc3-4349-b521-2e4e76a022c8
|
apriasmoro
| 2025-08-12T03:33:33Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"grpo",
"trl",
"axolotl",
"conversational",
"arxiv:2402.03300",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-12T03:33:16Z |
---
library_name: transformers
model_name: 8a3dc043-6cc3-4349-b521-2e4e76a022c8
tags:
- generated_from_trainer
- grpo
- trl
- axolotl
licence: license
---
# Model Card for 8a3dc043-6cc3-4349-b521-2e4e76a022c8
This model is a fine-tuned version of [None](https://huggingface.co/None).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="None", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.0
- Pytorch: 2.7.1+cu128
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754969461
|
afasdfdfadsf
| 2025-08-12T03:32:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rough opaque clam",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:31:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rough opaque clam
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754969338
|
IvanJAjebu
| 2025-08-12T03:30:18Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:30:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
motza0025/blockassist-bc-silent_peaceful_alpaca_1754967982
|
motza0025
| 2025-08-12T03:29:59Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silent peaceful alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:29:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silent peaceful alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bobchenyx/Kimi-K2-Instruct-GGUF
|
bobchenyx
| 2025-08-12T03:29:53Z | 628 | 1 | null |
[
"gguf",
"text-generation",
"base_model:moonshotai/Kimi-K2-Instruct",
"base_model:quantized:moonshotai/Kimi-K2-Instruct",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] |
text-generation
| 2025-07-29T16:57:29Z |
---
quantized_by: bobchenyx
license: mit
base_model:
- moonshotai/Kimi-K2-Instruct
pipeline_tag: text-generation
base_model_relation: quantized
---
## Llamacpp Quantizations of Kimi-K2-Instruct
Original model: [moonshotai/Kimi-K2-Instruct](https://huggingface.co/moonshotai/Kimi-K2-Instruct).
All quants made based on [bartowski1182-llama.cpp](https://github.com/bartowski1182/llama.cpp).
All quants using imatrix & BF16 convertion from [unsloth/Kimi-K2-Instruct-GGUF/BF16](https://huggingface.co/unsloth/Kimi-K2-Instruct-GGUF/tree/main/BF16).
**IQ1_S : 197.39 GiB (1.65 BPW)**
**IQ1_M : 206.03 GiB (1.72 BPW)**
**IQ2_S : 265.71 GiB (2.22 BPW)**
**Q2_K : 335.39 GiB (2.81 BPW)**
---
## Download(Example)
```
# !pip install huggingface_hub hf_transfer
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
from huggingface_hub import snapshot_download
snapshot_download(
repo_id = "bobchenyx/Kimi-K2-Instruct-GGUF",
local_dir = "bobchenyx/Kimi-K2-Instruct-GGUF",
allow_patterns = ["*IQ1_M*"],
)
```
|
michaelwaves/gptoss20b-production-sabotage
|
michaelwaves
| 2025-08-12T03:29:32Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"base_model:adapter:openai/gpt-oss-20b",
"lora",
"sft",
"transformers",
"trl",
"base_model:openai/gpt-oss-20b",
"region:us"
] | null | 2025-08-12T03:29:12Z |
---
base_model: openai/gpt-oss-20b
library_name: peft
model_name: output_2
tags:
- base_model:adapter:openai/gpt-oss-20b
- lora
- sft
- transformers
- trl
licence: license
---
# Model Card for output_2
This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="None", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- PEFT 0.17.0
- TRL: 0.21.0
- Transformers: 4.55.0
- Pytorch: 2.8.0+cu128
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
FlagRelease/Qwen3-4B-hygon-FlagOS
|
FlagRelease
| 2025-08-12T03:25:21Z | 0 | 0 | null |
[
"safetensors",
"qwen3",
"region:us"
] | null | 2025-08-11T06:43:41Z |
# Introduction
**FlagOS** is a unified heterogeneous computing software stack for large models, co-developed with leading global chip manufacturers. With core technologies such as the **FlagScale** distributed training/inference framework, **FlagGems** universal operator library, **FlagCX** communication library, and **FlagTree** unified compiler, the **FlagRelease** platform leverages the FlagOS stack to automatically produce and release various combinations of <chip + open-source model>. This enables efficient and automated model migration across diverse chips, opening a new chapter for large model deployment and application.
Based on this, the **Qwen3-4B-hygon-FlagOS** model is adapted for the Hygon chip using the FlagOS software stack, enabling:
### Integrated Deployment
- Deep integration with the open-source [FlagScale framework](https://github.com/FlagOpen/FlagScale)
- Out-of-the-box inference scripts with pre-configured hardware and software parameters
- Released **FlagOS** container image supporting deployment within minutes
### Consistency Validation
- Rigorously evaluated through benchmark testing: Performance and results from the FlagOS software stack are compared against native stacks on multiple public.
# Technical Overview
## **FlagScale Distributed Training and Inference Framework**
FlagScale is an end-to-end framework for large models across heterogeneous computing resources, maximizing computational efficiency and ensuring model validity through core technologies. Its key advantages include:
- **Unified Deployment Interface:** Standardized command-line tools support one-click service deployment across multiple hardware platforms, significantly reducing adaptation costs in heterogeneous environments.
- **Intelligent Parallel Optimization:** Automatically generates optimal distributed parallel strategies based on chip computing characteristics, achieving dynamic load balancing of computation/communication resources.
- **Seamless Operator Switching:** Deep integration with the FlagGems operator library allows high-performance operators to be invoked via environment variables without modifying model code.
## **FlagGems Universal Large-Model Operator Library**
FlagGems is a Triton-based, cross-architecture operator library collaboratively developed with industry partners. Its core strengths include:
- **Full-stack Coverage**: Over 100 operators, with a broader range of operator types than competing libraries.
- **Ecosystem Compatibility**: Supports 7 accelerator backends. Ongoing optimizations have significantly improved performance.
- **High Efficiency**: Employs unique code generation and runtime optimization techniques for faster secondary development and better runtime performance compared to alternatives.
## **FlagEval Evaluation Framework**
FlagEval (Libra)** is a comprehensive evaluation system and open platform for large models launched in 2023. It aims to establish scientific, fair, and open benchmarks, methodologies, and tools to help researchers assess model and training algorithm performance. It features:
- **Multi-dimensional Evaluation**: Supports 800+ model evaluations across NLP, CV, Audio, and Multimodal fields, covering 20+ downstream tasks including language understanding and image-text generation.
- **Industry-Grade Use Cases**: Has completed horizontal evaluations of mainstream large models, providing authoritative benchmarks for chip-model performance validation.
# Evaluation Results
## Benchmark Result
| Metrics | Qwen3-4B-H100-CUDA | Qwen3-4B-hygon-FlagOS |
| --------- | ------------------ | ---------------------- |
| liveBench-0shot@avg1 | 0.501 | 0.496 |
| AIME-0shot@avg1 | 0.700 | 0.667 |
| MMLU-5shots@avg1 | 0.669 | 0.671 |
| MUSR-0shot@avg1 | 0.590 | 0.593 |
| GPQA-0shot@avg1 | 0.410 | 0.430 |
# User Guide
**Environment Setup**
| Accelerator Card Driver Version | Kernel Mode Driver Version: 2.3.0 |
| ------------- | ------------------------------------------------------------ |
| Docker Version | Docker version 24.0.6, build ed223bc |
| Operating System | Ubuntu 22.04.4 LTS |
| FlagScale | Version: 0.8.0 |
| FlagGems | Version: 3.0 |
## Operation Steps
### Download Open-source Model Weights
```bash
pip install modelscope
modelscope download --model Qwen/Qwen3-4B --local_dir /share/Qwen3-4B
```
### Download FlagOS Image
BE AWARE!, Hygon's FLAGOS image have not decided public-accesible through internet or not. To obtain this image, you can contact us or hygon through issues.
```bash
docker pull harbor.baai.ac.cn/flagrelease-inner/flagrelease_hygon_qwen3
```
### Start the inference service
```bash
#Container Startup
docker run -it \
--name=flagos \
--network=host \
--privileged \
--ipc=host \
--shm-size=16G \
--memory="512g" \
--ulimit stack=-1:-1 \
--ulimit memlock=-1:-1 \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
-u root \
-v /opt/hyhal:/opt/hyhal \
-v /share:/share \
harbor.baai.ac.cn/flagrelease-inner/flagrelease_hygon_qwen3 \
/bin/bash
```
### Serve
```bash
flagscale serve qwen3
```
## Service Invocation
### API-based Invocation Script
```bash
import openai
openai.api_key = "EMPTY"
openai.base_url = "http://<server_ip>:9010/v1/"
model = "Qwen3-4B-hygon-flagos"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What's the weather like today?"}
]
response = openai.chat.completions.create(
model=model,
messages=messages,
temperature=0.7,
top_p=0.95,
stream=False,
)
for item in response:
print(item)
```
### AnythingLLM Integration Guide
#### 1. Download & Install
- Visit the official site: https://anythingllm.com/
- Choose the appropriate version for your OS (Windows/macOS/Linux)
- Follow the installation wizard to complete the setup
#### 2. Configuration
- Launch AnythingLLM
- Open settings (bottom left, fourth tab)
- Configure core LLM parameters
- Click "Save Settings" to apply changes
#### 3. Model Interaction
- After model loading is complete:
- Click **"New Conversation"**
- Enter your question (e.g., “Explain the basics of quantum computing”)
- Click the send button to get a response
# Contributing
We warmly welcome global developers to join us:
1. Submit Issues to report problems
2. Create Pull Requests to contribute code
3. Improve technical documentation
4. Expand hardware adaptation support
# License
本模型的权重来源于Qwen/Qwen3-4B,以apache2.0协议https://www.apache.org/licenses/LICENSE-2.0.txt开源。
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754968906
|
IvanJAjebu
| 2025-08-12T03:23:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:22:44Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Obiwank107/blockassist-bc-tame_foxy_aardvark_1754965474
|
Obiwank107
| 2025-08-12T03:18:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tame foxy aardvark",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:18:23Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tame foxy aardvark
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
calegpedia/blockassist-bc-stealthy_slimy_rooster_1754966907
|
calegpedia
| 2025-08-12T03:14:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy slimy rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:14:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy slimy rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754968190
|
IvanJAjebu
| 2025-08-12T03:11:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:10:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fatepurriyaz/blockassist-bc-aquatic_pawing_pig_1754968173
|
fatepurriyaz
| 2025-08-12T03:10:19Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"aquatic pawing pig",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:10:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- aquatic pawing pig
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
tuantranmlv/contractbert_dichvu_nghhiemthudichvu
|
tuantranmlv
| 2025-08-12T03:09:58Z | 3 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-11T02:55:44Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
0xGareeb/blockassist-bc-nimble_shaggy_zebra_1754968014
|
0xGareeb
| 2025-08-12T03:09:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"nimble shaggy zebra",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:08:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- nimble shaggy zebra
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754967991
|
afasdfdfadsf
| 2025-08-12T03:08:17Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rough opaque clam",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:07:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rough opaque clam
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jahyungu/Falcon3-7B-Instruct_TACO
|
jahyungu
| 2025-08-12T03:07:46Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"conversational",
"dataset:taco",
"base_model:tiiuae/Falcon3-7B-Instruct",
"base_model:finetune:tiiuae/Falcon3-7B-Instruct",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-11T05:01:53Z |
---
library_name: transformers
license: other
base_model: tiiuae/Falcon3-7B-Instruct
tags:
- generated_from_trainer
datasets:
- taco
model-index:
- name: Falcon3-7B-Instruct_TACO
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Falcon3-7B-Instruct_TACO
This model is a fine-tuned version of [tiiuae/Falcon3-7B-Instruct](https://huggingface.co/tiiuae/Falcon3-7B-Instruct) on the taco dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.55.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.0
|
Vanbitcase/qwen-7b-124r-adapter
|
Vanbitcase
| 2025-08-12T03:06:35Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2_vl",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-12T03:02:23Z |
---
base_model: unsloth/qwen2-vl-7b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2_vl
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Vanbitcase
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2-vl-7b-instruct-bnb-4bit
This qwen2_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Sayemahsjn/blockassist-bc-playful_feline_octopus_1754966818
|
Sayemahsjn
| 2025-08-12T03:05:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"playful feline octopus",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:05:34Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- playful feline octopus
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
akhyar919/model-name
|
akhyar919
| 2025-08-12T03:02:53Z | 0 | 0 |
transformers
|
[
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-12T03:02:50Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
MMS-VIDEOS-18-tau-viral-video-Clip/New.full.videos.tau.Viral.Video.Official.Tutorial
|
MMS-VIDEOS-18-tau-viral-video-Clip
| 2025-08-12T03:00:40Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-12T03:00:23Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
hobson123/blockassist-bc-mammalian_dense_gibbon_1754967277
|
hobson123
| 2025-08-12T03:00:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mammalian dense gibbon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T03:00:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mammalian dense gibbon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
InfiX-ai/InfiGUI-G1-7B
|
InfiX-ai
| 2025-08-12T02:53:07Z | 3 | 3 |
transformers
|
[
"transformers",
"safetensors",
"qwen2_5_vl",
"image-to-text",
"gui",
"agent",
"gui-grounding",
"reinforcement-learning",
"image-text-to-text",
"conversational",
"en",
"arxiv:2508.05731",
"arxiv:2504.14239",
"arxiv:2501.04575",
"base_model:Qwen/Qwen2.5-VL-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2025-08-07T19:35:46Z |
---
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
language:
- en
library_name: transformers
license: apache-2.0
pipeline_tag: image-text-to-text
tags:
- gui
- agent
- gui-grounding
- reinforcement-learning
---
# InfiGUI-G1-7B
This repository contains the InfiGUI-G1-7B model from the paper **[InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization](https://arxiv.org/abs/2508.05731)**.
<p align="left">
<a href="https://arxiv.org/abs/2508.05731"><img src="https://img.shields.io/badge/arXiv-Preprint-b31b1b?style=flat&logo=arxiv&logoColor=white" alt="arXiv Paper"></a>
<a href="https://huggingface.co/papers/2508.05731"><img src="https://img.shields.io/badge/HuggingFace-Daily%20Papers-ff9800?style=flat&logo=huggingface" alt="Hugging Face Paper"></a>
<a href="https://huggingface.co/InfiX-ai/InfiGUI-G1-3B"><img src="https://img.shields.io/badge/Model-InfiGUI--G1--3B-007ec6?style=flat&logo=huggingface" alt="InfiGUI-G1 3B Model"></a>
<a href="https://github.com/InfiXAI/InfiGUI-G1"><img src="https://img.shields.io/badge/GitHub-Repo-181717?style=flat&logo=github&logoColor=white" alt="GitHub Repo"></a>
</p>
## Model Description
The model is based on `Qwen2.5-VL-7B-Instruct` and is fine-tuned using our proposed **Adaptive Exploration Policy Optimization (AEPO)** framework. AEPO is a novel reinforcement learning method designed to enhance the model's **semantic alignment** for GUI grounding tasks. It overcomes the exploration bottlenecks of standard RLVR methods by integrating a multi-answer generation strategy with a theoretically-grounded adaptive reward function, enabling more effective and efficient learning for complex GUI interactions.
## Paper Overview
A fundamental challenge for GUI agents is robustly grounding natural language instructions, which requires not only precise **spatial alignment** (locating elements accurately) but also correct **semantic alignment** (identifying the functionally appropriate element). While existing Reinforcement Learning with Verifiable Rewards (RLVR) methods have enhanced spatial precision, they often suffer from inefficient exploration. This "confidence trap" bottlenecks semantic alignment, preventing models from discovering correct actions for difficult semantic associations.
To address this critical exploration problem, we introduce **InfiGUI-G1**, a series of models trained with **Adaptive Exploration Policy Optimization (AEPO)**. AEPO overcomes the exploration bottleneck by integrating a **multi-answer generation** strategy to explore a diverse set of candidate actions in a single forward pass. This exploration is guided by a theoretically-grounded **Adaptive Exploration Reward (AER)** function, derived from first principles of efficiency (η=U/C), which provides rich, informative learning signals to dynamically balance exploration and exploitation.
## Quick Start
### Installation
First, install the required dependencies:
```bash
pip install transformers qwen-vl-utils
````
### Example
```python
import json
import math
import torch
import requests
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info, smart_resize
MAX_IMAGE_PIXELS = 5600 * 28 * 28
def resize_image(width: int, height: int, max_pixels: int) -> tuple[int, int]:
"""
Resize image to fit within max_pixels constraint while maintaining aspect ratio.
Applies smart_resize for final dimension optimization.
"""
current_pixels = width * height
if current_pixels <= max_pixels:
target_width, target_height = width, height
else:
scale_factor = math.sqrt(max_pixels / current_pixels)
target_width = round(width * scale_factor)
target_height = round(height * scale_factor)
# Apply smart_resize for final dimensions
final_height, final_width = smart_resize(target_height, target_width)
return final_width, final_height
def load_image(img_path: str) -> Image.Image:
"""Load image from URL or local path."""
if img_path.startswith("https://"):
response = requests.get(img_path)
return Image.open(BytesIO(response.content))
else:
return Image.open(img_path)
def visualize_points(original_image: Image.Image, points: list,
new_width: int, new_height: int,
original_width: int, original_height: int) -> None:
"""Draw prediction points on original image and save as output.png."""
output_img = original_image.copy()
draw = ImageDraw.Draw(output_img)
font = ImageFont.load_default(size=100)
for i, point_data in enumerate(points):
coords = point_data['point_2d']
# Map coordinates from resized image back to original image
original_x = int(coords[0] / new_width * original_width)
original_y = int(coords[1] / new_height * original_height)
label = str(i + 1)
# Draw circle
circle_radius = 20
draw.ellipse([original_x - circle_radius, original_y - circle_radius,
original_x + circle_radius, original_y + circle_radius],
fill=(255, 0, 0))
# Draw label
draw.text((original_x + 20, original_y - 20), label, fill=(255, 0, 0), font=font)
print(f"Point {i+1}: Predicted coordinates {coords} -> Mapped coordinates [{original_x}, {original_y}]")
output_img.save("output.png")
print(f"Visualization with {len(points)} points saved to output.png")
def main():
# Load model and processor
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"InfiX-ai/InfiGUI-G1-7B",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto"
)
processor = AutoProcessor.from_pretrained("InfiX-ai/InfiGUI-G1-7B", padding_side="left")
# Load and process image
img_path = "https://raw.githubusercontent.com/InfiXAI/InfiGUI-G1/main/assets/test_image.png"
image = load_image(img_path)
# Store original image and resize for model input
original_image = image.copy()
original_width, original_height = image.size
new_width, new_height = resize_image(original_width, original_height, MAX_IMAGE_PIXELS)
resized_image = image.resize((new_width, new_height))
# Prepare model inputs
instruction = "shuffle play the current playlist"
system_prompt = 'You FIRST think about the reasoning process as an internal monologue and then provide the final answer.\nThe reasoning process MUST BE enclosed within <think> </think> tags.'
prompt = f'''The screen's resolution is {new_width}x{new_height}.
Locate the UI element(s) for "{instruction}", output the coordinates using JSON format: [{{"point_2d": [x, y]}}, ...]'''
messages = [
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": [
{"type": "image", "image": resized_image},
{"type": "text", "text": prompt}
]
}
]
# Generate predictions
text = processor.apply_chat_template([messages], tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info([messages])
inputs = processor(text=text, images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt").to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=512)
output_text = processor.batch_decode(
[out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)],
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
# Parse and visualize results
output_text = output_text[0].split("</think>")[-1].replace("```json", "").replace("```", "").strip()
output = json.loads(output_text)
if output:
visualize_points(original_image, output, new_width, new_height, original_width, original_height)
if __name__ == "__main__":
main()
```
## Results
Our InfiGUI-G1 models, trained with the AEPO framework, establish new state-of-the-art results among open-source models across a diverse and challenging set of GUI grounding benchmarks:
<div align="left">
<table style="width: 100%; max-width: 750px; border-collapse: collapse; border-top: 2px solid #212529; border-bottom: 2px solid #212529; font-family: sans-serif;">
<thead style="background-color: #f8f9fa;">
<tr style="border-bottom: 1.5px solid #212529;">
<th style="padding: 12px 10px; text-align: left; width: 24.9%; font-weight: 600; color: #343a40;">Model</th>
<th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">MMBench-GUI</th>
<th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">ScreenSpot-v2</th>
<th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">UI-Vision</th>
<th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">I2E-Bench</th>
<th style="padding: 12px 10px; text-align: center; font-weight: 600; color: #343a40;">ScreenSpot-Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td style="padding: 10px; text-align: left;">Qwen2.5-VL-7B</td>
<td style="padding: 10px; text-align: center;">33.9</td>
<td style="padding: 10px; text-align: center;">88.8</td>
<td style="padding: 10px; text-align: center;">0.9</td>
<td style="padding: 10px; text-align: center;">53.8</td>
<td style="padding: 10px; text-align: center;">-</td>
</tr>
<tr>
<td style="padding: 10px; text-align: left;">GUI-G²-7B</td>
<td style="padding: 10px; text-align: center;">-</td>
<td style="padding: 10px; text-align: center;"><u>93.3</u></td>
<td style="padding: 10px; text-align: center;">-</td>
<td style="padding: 10px; text-align: center;">-</td>
<td style="padding: 10px; text-align: center;">47.5</td>
</tr>
<tr>
<td style="padding: 10px; text-align: left;">UI-TARS-7B</td>
<td style="padding: 10px; text-align: center;">-</td>
<td style="padding: 10px; text-align: center;">91.6</td>
<td style="padding: 10px; text-align: center;">17.6</td>
<td style="padding: 10px; text-align: center;">61.4</td>
<td style="padding: 10px; text-align: center;">35.7</td>
</tr>
<tr>
<td style="padding: 10px; text-align: left;">UGround-v1-7B</td>
<td style="padding: 10px; text-align: center;">65.7</td>
<td style="padding: 10px; text-align: center;">-</td>
<td style="padding: 10px; text-align: center;">12.9</td>
<td style="padding: 10px; text-align: center;">70.3</td>
<td style="padding: 10px; text-align: center;">-</td>
</tr>
<tr>
<td style="padding: 10px; text-align: left;">UI-TARS-1.5-7B</td>
<td style="padding: 10px; text-align: center;">64.3</td>
<td style="padding: 10px; text-align: center;">-</td>
<td style="padding: 10px; text-align: center;">-</td>
<td style="padding: 10px; text-align: center;">73.2</td>
<td style="padding: 10px; text-align: center;"><u>49.6</u></td>
</tr>
<tr>
<td style="padding: 10px; text-align: left;">Qwen2.5-VL-72B</td>
<td style="padding: 10px; text-align: center;">41.8</td>
<td style="padding: 10px; text-align: center;">-</td>
<td style="padding: 10px; text-align: center;">-</td>
<td style="padding: 10px; text-align: center;">51.4</td>
<td style="padding: 10px; text-align: center;">-</td>
</tr>
<tr>
<td style="padding: 10px; text-align: left;">UGround-v1-72B</td>
<td style="padding: 10px; text-align: center;">-</td>
<td style="padding: 10px; text-align: center;">-</td>
<td style="padding: 10px; text-align: center;">23.2</td>
<td style="padding: 10px; text-align: center;"><u>76.3</u></td>
<td style="padding: 10px; text-align: center;">-</td>
</tr>
<tr>
<td style="padding: 10px; text-align: left;">UI-TARS-72B</td>
<td style="padding: 10px; text-align: center;"><u>74.3</u></td>
<td style="padding: 10px; text-align: center;">90.3</td>
<td style="padding: 10px; text-align: center;"><u>25.5</u></td>
<td style="padding: 10px; text-align: center;">73.7</td>
<td style="padding: 10px; text-align: center;">-</td>
</tr>
<tr>
<th colspan="6" style="padding: 10px 12px; text-align: left; font-style: italic; background-color: #f8f9fa; border-top: 1px solid #dee2e6; border-bottom: 1px solid #dee2e6; color: #343a40;">Ours</th>
</tr>
<tr style="background-color: #f0f8ff;">
<td style="padding: 10px; text-align: left;"><b>InfiGUI-G1-7B</b></td>
<td style="padding: 10px; text-align: center;"><b>80.8</b></td>
<td style="padding: 10px; text-align: center;"><b>93.5</b></td>
<td style="padding: 10px; text-align: center;"><b>26.1</b></td>
<td style="padding: 10px; text-align: center;"><b>77.4</b></td>
<td style="padding: 10px; text-align: center;"><b>51.9</b></td>
</tr>
<tr style="background-color: #f0f8ff;">
<td style="padding: 10px; text-align: right;"><i>w/ Expl. Success</i></td>
<td style="padding: 10px; text-align: center;">86.4</td>
<td style="padding: 10px; text-align: center;">95.6</td>
<td style="padding: 10px; text-align: center;">34.4</td>
<td style="padding: 10px; text-align: center;">83.0</td>
<td style="padding: 10px; text-align: center;">58.0</td>
</tr>
</tbody>
</table>
</div>
## Evaluation
This section provides instructions for reproducing the evaluation results reported in our paper.
### 1. Getting Started
Clone the repository and navigate to the project directory:
```bash
git clone https://github.com/InfiXAI/InfiGUI-G1.git
cd InfiGUI-G1
```
### 2. Environment Setup
The evaluation pipeline is built upon the [vLLM](https://github.com/vllm-project/vllm) library for efficient inference. For detailed installation guidance, please refer to the official vLLM repository. The specific versions used to obtain the results reported in our paper are as follows:
- **Python**: `3.10.12`
- **PyTorch**: `2.6.0`
- **Transformers**: `4.50.1`
- **vLLM**: `0.8.2`
- **CUDA**: `12.6`
The reported results were obtained on a server equipped with 4 x NVIDIA H800 GPUs.
### 3. Model Download
Download the InfiGUI-G1 models from the Hugging Face Hub into the `./models` directory.
```bash
# Create a directory for models
mkdir -p ./models
# Download InfiGUI-G1-3B
huggingface-cli download --resume-download InfiX-ai/InfiGUI-G1-3B --local-dir ./models/InfiGUI-G1-3B
# Download InfiGUI-G1-7B
huggingface-cli download --resume-download InfiX-ai/InfiGUI-G1-7B --local-dir ./models/InfiGUI-G1-7B
```
### 4. Dataset Download and Preparation
Download the required evaluation benchmarks into the `./data` directory.
```bash
# Create a directory for datasets
mkdir -p ./data
# Download benchmarks
huggingface-cli download --repo-type dataset --resume-download likaixin/ScreenSpot-Pro --local-dir ./data/ScreenSpot-Pro
huggingface-cli download --repo-type dataset --resume-download ServiceNow/ui-vision --local-dir ./data/ui-vision
huggingface-cli download --repo-type dataset --resume-download OS-Copilot/ScreenSpot-v2 --local-dir ./data/ScreenSpot-v2
huggingface-cli download --repo-type dataset --resume-download OpenGVLab/MMBench-GUI --local-dir ./data/MMBench-GUI
huggingface-cli download --repo-type dataset --resume-download vaundys/I2E-Bench --local-dir ./data/I2E-Bench
```
After downloading, some datasets require unzipping compressed image files.
```bash
# Unzip images for ScreenSpot-v2
unzip ./data/ScreenSpot-v2/screenspotv2_image.zip -d ./data/ScreenSpot-v2/
# Unzip images for MMBench-GUI
unzip ./data/MMBench-GUI/MMBench-GUI-OfflineImages.zip -d ./data/MMBench-GUI/
```
### 5. Running the Evaluation
To run the evaluation, use the `eval/eval.py` script. You must specify the path to the model, the benchmark name, and the tensor parallel size.
Here is an example command to evaluate the `InfiGUI-G1-3B` model on the `screenspot-pro` benchmark using 4 GPUs:
```bash
python eval/eval.py \
./models/InfiGUI-G1-3B \
--benchmark screenspot-pro \
--tensor-parallel 4
```
- **`model_path`**: The first positional argument specifies the path to the downloaded model directory (e.g., `./models/InfiGUI-G1-3B`).
- **`--benchmark`**: Specifies the benchmark to evaluate. Available options include `screenspot-pro`, `screenspot-v2`, `ui-vision`, `mmbench-gui`, and `i2e-bench`.
- **`--tensor-parallel`**: Sets the tensor parallelism size, which should typically match the number of available GPUs.
Evaluation results, including detailed logs and performance metrics, will be saved to the `./output/{model_name}/{benchmark}/` directory.
## Citation Information
If you find this work useful, we would be grateful if you consider citing the following papers:
```bibtex
@misc{liu2025infiguig1advancingguigrounding,
title={InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization},
author={Yuhang Liu and Zeyu Liu and Shuanghe Zhu and Pengxiang Li and Congkai Xie and Jiasheng Wang and Xueyu Hu and Xiaotian Han and Jianbo Yuan and Xinyao Wang and Shengyu Zhang and Hongxia Yang and Fei Wu},
year={2025},
eprint={2508.05731},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2508.05731},
}
```
```bibtex
@article{liu2025infigui,
title={InfiGUI-R1: Advancing Multimodal GUI Agents from Reactive Actors to Deliberative Reasoners},
author={Liu, Yuhang and Li, Pengxiang and Xie, Congkai and Hu, Xavier and Han, Xiaotian and Zhang, Shengyu and Yang, Hongxia and Wu, Fei},
journal={arXiv preprint arXiv:2504.14239},
year={2025}
}
```
```bibtex
@article{liu2025infiguiagent,
title={InfiGUIAgent: A Multimodal Generalist GUI Agent with Native Reasoning and Reflection},
author={Liu, Yuhang and Li, Pengxiang and Wei, Zishu and Xie, Congkai and Hu, Xueyu and Xu, Xinchen and Zhang, Shengyu and Han, Xiaotian and Yang, Hongxia and Wu, Fei},
journal={arXiv preprint arXiv:2501.04575},
year={2025}
}
```
## Acknowledgements
We would like to express our gratitude for the following open-source projects: [VERL](https://github.com/volcengine/verl), [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL) and [vLLM](https://github.com/vllm-project/vllm).
|
otmorozky/AceInstruct-1.5B-Gensyn-Swarm-lazy_sprightly_hippo
|
otmorozky
| 2025-08-12T02:52:00Z | 99 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am lazy_sprightly_hippo",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-08T15:06:10Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am lazy_sprightly_hippo
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
perrx/8.8demo_9
|
perrx
| 2025-08-12T02:50:25Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-12T02:44:02Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
roachkins/omega_6yKbJIe
|
roachkins
| 2025-08-12T02:50:21Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-12T02:50:20Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754966874
|
afasdfdfadsf
| 2025-08-12T02:49:38Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rough opaque clam",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T02:48:38Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rough opaque clam
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
FluidInference/Qwen3-8B-int8-ov
|
FluidInference
| 2025-08-12T02:48:03Z | 0 | 0 | null |
[
"openvino",
"qwen3",
"base_model:Qwen/Qwen3-8B",
"base_model:quantized:Qwen/Qwen3-8B",
"license:apache-2.0",
"region:us"
] | null | 2025-08-12T00:36:37Z |
---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE
base_model:
- Qwen/Qwen3-8B
base_model_relation: quantized
---
# Qwen3-8B-int8-ov
* Model creator: [Qwen](https://huggingface.co/Qwen)
* Original model: [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B)
## Description
This is [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).
## Quantization Parameters
Weight compression was performed using `nncf.compress_weights` with the following parameters:
* mode: **INT8_ASYM**
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html).
## Compatibility
The provided OpenVINO™ IR model is compatible with:
* OpenVINO version 2025.1.0 and higher
* Optimum Intel 1.24.0 and higher
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
```
pip install optimum[openvino]
```
2. Run model inference:
```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM
model_id = "FluidInference/qwen3-8b-int8-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)
inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```
For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html).
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
1. Install packages required for using OpenVINO GenAI.
```
pip install openvino-genai huggingface_hub
```
2. Download model from HuggingFace Hub
```
import huggingface_hub as hf_hub
model_id = "FluidInference/qwen3-8b-int8-ov"
model_path = "qwen3-8b-int8-ov"
hf_hub.snapshot_download(model_id, local_dir=model_path)
```
3. Run model inference:
```
import openvino_genai as ov_genai
device = "CPU"
pipe = ov_genai.LLMPipeline(model_path, device)
pipe.get_tokenizer().set_chat_template(pipe.get_tokenizer().chat_template)
print(pipe.generate("What is OpenVINO?", max_length=200))
```
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
You can find more detaild usage examples in OpenVINO Notebooks:
- [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM)
- [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation)
## Limitations
Check the original [model card](https://huggingface.co/Qwen/Qwen3-8B) for limitations.
## Legal information
The original model is distributed under [Apache License Version 2.0](https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE) license. More details can be found in [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B).
## Disclaimer
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
|
koloni/blockassist-bc-deadly_graceful_stingray_1754965264
|
koloni
| 2025-08-12T02:47:41Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T02:47:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hobson123/blockassist-bc-mammalian_dense_gibbon_1754966510
|
hobson123
| 2025-08-12T02:47:34Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mammalian dense gibbon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-12T02:47:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mammalian dense gibbon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
FluidInference/Qwen3-1.7B-fp16-ov
|
FluidInference
| 2025-08-12T02:46:29Z | 0 | 0 | null |
[
"openvino",
"qwen3",
"base_model:Qwen/Qwen3-1.7B",
"base_model:finetune:Qwen/Qwen3-1.7B",
"license:apache-2.0",
"region:us"
] | null | 2025-08-11T22:45:33Z |
---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-1.7B/blob/main/LICENSE
base_model:
- Qwen/Qwen3-1.7B
---
# Qwen3-1.7B-fp16-ov
* Model creator: [Qwen](https://huggingface.co/Qwen)
* Original model: [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B)
## Description
This is [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to FP16.
## Compatibility
The provided OpenVINO™ IR model is compatible with:
* OpenVINO version 2025.1.0 and higher
* Optimum Intel 1.24.0 and higher
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
```
pip install optimum[openvino]
```
2. Run model inference:
```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM
model_id = "FluidInference/qwen3-1.7b-fp16-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)
inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```
For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html).
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
1. Install packages required for using OpenVINO GenAI.
```
pip install openvino-genai huggingface_hub
```
2. Download model from HuggingFace Hub
```
import huggingface_hub as hf_hub
model_id = "FluidInference/qwen3-1.7b-fp16-ov"
model_path = "qwen3-1.7b-fp16-ov"
hf_hub.snapshot_download(model_id, local_dir=model_path)
```
3. Run model inference:
```
import openvino_genai as ov_genai
device = "CPU"
pipe = ov_genai.LLMPipeline(model_path, device)
pipe.get_tokenizer().set_chat_template(pipe.get_tokenizer().chat_template)
print(pipe.generate("What is OpenVINO?", max_length=200))
```
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
You can find more detaild usage examples in OpenVINO Notebooks:
- [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM)
- [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation)
## Limitations
Check the original [model card](https://huggingface.co/Qwen/Qwen3-1.7B) for limitations.
## Legal information
The original model is distributed under [Apache License Version 2.0](https://huggingface.co/Qwen/Qwen3-1.7B/blob/main/LICENSE) license. More details can be found in [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B).
## Disclaimer
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.