modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-07 18:30:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
544 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-07 18:30:28
card
stringlengths
11
1.01M
mkhan149/output_model7
mkhan149
2023-06-25T21:14:15Z
61
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-25T21:01:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mkhan149/output_model7 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mkhan149/output_model7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.3525 - Validation Loss: 4.5575 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -512, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.3525 | 4.5575 | 0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.11.0 - Datasets 2.13.1 - Tokenizers 0.13.3
sd-concepts-library/mersh-v3
sd-concepts-library
2023-06-25T20:36:27Z
0
0
null
[ "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:mit", "region:us" ]
null
2023-06-25T20:36:25Z
--- license: mit base_model: runwayml/stable-diffusion-v1-5 --- ### Mersh V3 on Stable Diffusion This is the `<mikemersh>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<mikemersh> 0](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/11.jpeg) ![<mikemersh> 1](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/47.jpeg) ![<mikemersh> 2](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/70.jpeg) ![<mikemersh> 3](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/14.jpeg) ![<mikemersh> 4](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/37.jpeg) ![<mikemersh> 5](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/53.jpeg) ![<mikemersh> 6](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/72.jpeg) ![<mikemersh> 7](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/38.jpeg) ![<mikemersh> 8](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/19.jpeg) ![<mikemersh> 9](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/71.jpeg) ![<mikemersh> 10](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/57.jpeg) ![<mikemersh> 11](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/55.jpeg) ![<mikemersh> 12](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/0.jpeg) ![<mikemersh> 13](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/6.jpeg) ![<mikemersh> 14](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/4.jpeg) ![<mikemersh> 15](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/44.jpeg) ![<mikemersh> 16](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/66.jpeg) ![<mikemersh> 17](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/73.jpeg) ![<mikemersh> 18](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/68.jpeg) ![<mikemersh> 19](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/52.jpeg) ![<mikemersh> 20](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/54.jpeg) ![<mikemersh> 21](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/49.jpeg) ![<mikemersh> 22](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/10.jpeg) ![<mikemersh> 23](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/1.jpeg) ![<mikemersh> 24](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/63.jpeg) ![<mikemersh> 25](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/58.jpeg) ![<mikemersh> 26](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/17.jpeg) ![<mikemersh> 27](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/61.jpeg) ![<mikemersh> 28](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/31.jpeg) ![<mikemersh> 29](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/50.jpeg) ![<mikemersh> 30](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/8.jpeg) ![<mikemersh> 31](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/60.jpeg) ![<mikemersh> 32](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/51.jpeg) ![<mikemersh> 33](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/62.jpeg) ![<mikemersh> 34](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/15.jpeg) ![<mikemersh> 35](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/45.jpeg) ![<mikemersh> 36](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/13.jpeg) ![<mikemersh> 37](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/64.jpeg) ![<mikemersh> 38](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/25.jpeg) ![<mikemersh> 39](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/30.jpeg) ![<mikemersh> 40](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/32.jpeg) ![<mikemersh> 41](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/36.jpeg) ![<mikemersh> 42](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/24.jpeg) ![<mikemersh> 43](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/59.jpeg) ![<mikemersh> 44](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/2.jpeg) ![<mikemersh> 45](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/27.jpeg) ![<mikemersh> 46](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/23.jpeg) ![<mikemersh> 47](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/20.jpeg) ![<mikemersh> 48](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/69.jpeg) ![<mikemersh> 49](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/42.jpeg) ![<mikemersh> 50](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/18.jpeg) ![<mikemersh> 51](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/33.jpeg) ![<mikemersh> 52](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/74.jpeg) ![<mikemersh> 53](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/3.jpeg) ![<mikemersh> 54](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/46.jpeg) ![<mikemersh> 55](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/12.jpeg) ![<mikemersh> 56](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/22.jpeg) ![<mikemersh> 57](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/35.jpeg) ![<mikemersh> 58](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/7.jpeg) ![<mikemersh> 59](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/16.jpeg) ![<mikemersh> 60](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/34.jpeg) ![<mikemersh> 61](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/48.jpeg) ![<mikemersh> 62](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/39.jpeg) ![<mikemersh> 63](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/21.jpeg) ![<mikemersh> 64](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/9.jpeg) ![<mikemersh> 65](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/40.jpeg) ![<mikemersh> 66](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/28.jpeg) ![<mikemersh> 67](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/65.jpeg) ![<mikemersh> 68](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/5.jpeg) ![<mikemersh> 69](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/29.jpeg) ![<mikemersh> 70](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/41.jpeg) ![<mikemersh> 71](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/67.jpeg) ![<mikemersh> 72](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/43.jpeg) ![<mikemersh> 73](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/26.jpeg) ![<mikemersh> 74](https://huggingface.co/sd-concepts-library/mersh-v3/resolve/main/concept_images/56.jpeg)
yashgharat/dqn-SpaceInvadersNoFrameskip-v4
yashgharat
2023-06-25T20:20:45Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T20:20:13Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 472.50 +/- 216.45 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga yashgharat -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga yashgharat -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga yashgharat ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 500000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
crw-dev/Deepinsightinswapper
crw-dev
2023-06-25T20:19:56Z
0
3
null
[ "onnx", "region:us" ]
null
2023-06-25T19:05:47Z
CLONED FROM - https://huggingface.co/deepinsight/inswapper GITHUB - https://github.com/deepinsight ROOP GOOGLE COLAB - https://colab.research.google.com/github/Trts-T70/roopColab/blob/main/roopcolab.ipynb
trevdoc/ppo-LunarLander-v2
trevdoc
2023-06-25T20:18:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T20:18:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.73 +/- 21.78 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
heinjan/TI-mobilenetv3-imagenet-v2
heinjan
2023-06-25T20:15:14Z
7
0
tf-keras
[ "tf-keras", "image-classification", "region:us" ]
image-classification
2023-05-11T07:16:18Z
--- pipeline_tag: image-classification ---
lucasairvc/imaginervc
lucasairvc
2023-06-25T20:00:02Z
0
0
null
[ "license:lgpl-3.0", "region:us" ]
null
2023-06-25T19:47:59Z
--- license: lgpl-3.0 --- ![imagine oranges](https://huggingface.co/lucasairvc/imaginervc/resolve/main/Screenshot%20from%202023-06-25%2014-33-59.png) [download the voice here](https://huggingface.co/lucasairvc/imaginervc/resolve/main/imagine-oranges.zip)
JTStephens/ppo-Huggy
JTStephens
2023-06-25T19:47:54Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-25T19:47:42Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: JTStephens/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
flashvenom/Airoboros-13B-SuperHOT-8K-4bit-GPTQ
flashvenom
2023-06-25T19:36:16Z
10
6
transformers
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-06-22T22:01:24Z
Model upload of Airoboros-13B-SuperHOT in 4-bit GPTQ version, converted using GPTQ-for-LLaMa; Source model from https://huggingface.co/Peeepy/Airoboros-13b-SuperHOT-8k. ## This uses the [Airoboros-13B(v1.2)](https://huggingface.co/jondurbin/airoboros-13b-gpt4-1.2) model and applies the [SuperHOT 8K LoRA](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test) on top, allowing for improved coherence at larger context lenghts, as well as improving output quality of Airoboros to be more verbose. You will need a monkey-patch at inference to use the 8k context, please see patch file present, if you are using a different inference engine (like llama.cpp / exllama) you will need to add the monkey patch there. ### Note: If you are using exllama the monkey-patch is built into the engine, please use -cpe to set the scaling factor, ie. if you are running it at 4k context, pass `-cpe 2 -l 4096` Patch file present in repo or can be accessed here: https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test/raw/main/llama_rope_scaled_monkey_patch.py
gfalcao/smkfr25jun-nocrop2
gfalcao
2023-06-25T19:18:48Z
29
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-25T19:07:29Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### smkfr25Jun-nocrop2 Dreambooth model trained by gfalcao with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
MindNetML/Reinforce-pixelcopter-v1
MindNetML
2023-06-25T18:54:20Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T18:53:23Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 37.40 +/- 24.59 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AIDA-UPM/bertweet-base-multi-mami
AIDA-UPM
2023-06-25T18:42:38Z
127
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "misogyny", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- pipeline_tag: text-classification tags: - text-classification - misogyny language: en license: apache-2.0 widget: - text: "Women wear yoga pants because men don't stare at their personality" example_title: "Misogyny detection" --- # bertweet-base-multi-mami This is a Bertweet model: It maps sentences & paragraphs to a 768 dimensional dense vector space and classifies them into 5 multi labels. # Multilabels label2id={ "misogynous": 0, "shaming": 1, "stereotype": 2, "objectification": 3, "violence": 4, },
digiplay/YabaLMixTrue25D_V2.0
digiplay
2023-06-25T18:14:03Z
473
4
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-17T19:11:17Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info: https://civitai.com/models/60093/yabalmix-true25d Original Author's DEMO image : ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/f58fa764-5cfd-4e7f-a143-b372a8796b2b/width=1080/4x-UltraSharp%20(1).jpeg)
MindNetML/Reinforce-CartPole-v3_bttrLR
MindNetML
2023-06-25T18:01:53Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T18:01:44Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v3_bttrLR results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
aleeq/tunikkoc
aleeq
2023-06-25T18:01:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T14:37:18Z
--- license: creativeml-openrail-m ---
bogdancazan/pegasus-text-simplification_1e4_adafactor_wikilarge_20epici
bogdancazan
2023-06-25T17:46:26Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T14:38:22Z
--- tags: - generated_from_trainer model-index: - name: pegasus-text-simplification_1e4_adafactor_wikilarge_20epici results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-text-simplification_1e4_adafactor_wikilarge_20epici This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9542 | 1.0 | 803 | 0.3416 | | 0.3111 | 2.0 | 1606 | 0.3372 | | 0.2919 | 3.0 | 2409 | 0.3356 | | 0.2659 | 4.0 | 3212 | 0.3389 | | 0.2476 | 5.0 | 4015 | 0.3421 | | 0.2351 | 6.0 | 4818 | 0.3474 | | 0.2215 | 7.0 | 5621 | 0.3496 | | 0.2141 | 8.0 | 6424 | 0.3548 | | 0.2015 | 9.0 | 7227 | 0.3607 | | 0.1921 | 10.0 | 8030 | 0.3628 | | 0.1863 | 11.0 | 8833 | 0.3706 | | 0.1794 | 12.0 | 9636 | 0.3734 | | 0.1753 | 13.0 | 10439 | 0.3781 | | 0.1697 | 14.0 | 11242 | 0.3814 | | 0.1659 | 15.0 | 12045 | 0.3839 | | 0.1626 | 16.0 | 12848 | 0.3878 | | 0.1591 | 17.0 | 13651 | 0.3890 | | 0.1575 | 18.0 | 14454 | 0.3921 | | 0.1556 | 19.0 | 15257 | 0.3921 | | 0.1545 | 20.0 | 16060 | 0.3934 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
JCTN/RealDosMix
JCTN
2023-06-25T17:45:06Z
0
1
null
[ "license:other", "region:us" ]
null
2023-06-25T17:20:07Z
--- license: other --- !!pruned fp16 replaced with no ema. The change in quality is less than 1 percent, and we went from 7 GB to 2 GB. See example picture for prompt.There are recurring quality prompts. vae-ft-mse-840000-ema-pruned or kl f8 amime2 img2img SD upscale method: scale 20-25, denoising 0.2-0.3 After selecting SD Upscale at the bottom, tile overlap 64, scale factor2 caution! Sampler must be DPM++SDE karras. clip skip 2 https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.ckpt https://huggingface.co/AIARTCHAN/aichan_blend/tree/main/vae Apply VAE. You will get better color results. We recommend hiring and upscaling only the pictures whose faces are damaged from being far away. As it is a semi-realistic model, we do not recommend inappropriate exposure. There are other dos series as well. https://civitai.com/models/6250/dosmix https://civitai.com/models/6437/anidosmix https://civitai.com/models/8437/ddosmix --- https://civitai.com/models/6925/realdosmix
MariaK/whisper-tiny-minds-v1
MariaK
2023-06-25T17:33:33Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-25T15:53:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-tiny-minds-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-minds-v1 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7887 - Wer Ortho: 0.4046 - Wer: 0.3804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 1.7167 | 3.57 | 100 | 1.3603 | 0.5324 | 0.4132 | | 0.3753 | 7.14 | 200 | 0.5665 | 0.4695 | 0.3894 | | 0.1274 | 10.71 | 300 | 0.5589 | 0.4626 | 0.3912 | | 0.0207 | 14.29 | 400 | 0.6216 | 0.4327 | 0.3834 | | 0.0045 | 17.86 | 500 | 0.6684 | 0.4121 | 0.3697 | | 0.0017 | 21.43 | 600 | 0.7018 | 0.4171 | 0.3792 | | 0.0009 | 25.0 | 700 | 0.7218 | 0.4239 | 0.3876 | | 0.0007 | 28.57 | 800 | 0.7272 | 0.4102 | 0.3781 | | 0.0005 | 32.14 | 900 | 0.7427 | 0.4077 | 0.3787 | | 0.0004 | 35.71 | 1000 | 0.7512 | 0.4077 | 0.3787 | | 0.0004 | 39.29 | 1100 | 0.7573 | 0.4034 | 0.3757 | | 0.0003 | 42.86 | 1200 | 0.7650 | 0.4027 | 0.3751 | | 0.0003 | 46.43 | 1300 | 0.7714 | 0.4059 | 0.3769 | | 0.0002 | 50.0 | 1400 | 0.7759 | 0.4052 | 0.3775 | | 0.0002 | 53.57 | 1500 | 0.7796 | 0.4077 | 0.3798 | | 0.0002 | 57.14 | 1600 | 0.7831 | 0.4046 | 0.3798 | | 0.0002 | 60.71 | 1700 | 0.7858 | 0.4040 | 0.3792 | | 0.0002 | 64.29 | 1800 | 0.7873 | 0.4040 | 0.3792 | | 0.0002 | 67.86 | 1900 | 0.7883 | 0.4034 | 0.3792 | | 0.0002 | 71.43 | 2000 | 0.7887 | 0.4046 | 0.3804 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
spitfire4794/ben-ultra
spitfire4794
2023-06-25T17:32:11Z
112
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-17T14:18:42Z
--- pipeline_tag: conversational ---
andywalner/q-FrozenLake-v1-4x4-noSlippery
andywalner
2023-06-25T17:04:59Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T17:04:57Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="andywalner/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
roshan77/Taxi-v3_qlearning
roshan77
2023-06-25T17:04:05Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T17:04:03Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3_qlearning results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="roshan77/Taxi-v3_qlearning", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
foch3/Watersmudge
foch3
2023-06-25T17:01:14Z
0
3
null
[ "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
null
2023-03-23T10:08:26Z
--- license: creativeml-openrail-m tags: - stable-diffusion --- **Please read creativeml-openrail-m license before using it.** It enhances watercolor style and overall saturation. If you worrying about pickle detected, **download safetensor one**. The only difference is LoRa cover image. *It works better with following prompts, **(watercolor \(medium\):1.2), ink wash painting, (sketch:1.2)*** <img src="https://huggingface.co/foch3/Watersmudge/resolve/main/1.png"> <img src="https://huggingface.co/foch3/Watersmudge/resolve/main/2.png">
roshan77/q-FrozenLake-v1-4x4-noSlippery
roshan77
2023-06-25T16:55:20Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T16:55:17Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="roshan77/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Smaraa/gpt2-text-simplification_1e4_adafactor_newsela
Smaraa
2023-06-25T16:14:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T12:15:13Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-text-simplification_1e4_adafactor_newsela results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-text-simplification_1e4_adafactor_newsela This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.7662 | 1.0 | 1605 | 0.8757 | | 0.6538 | 2.0 | 3210 | 0.9019 | | 0.5663 | 3.0 | 4815 | 0.9554 | | 0.4961 | 4.0 | 6420 | 0.9990 | | 0.4299 | 5.0 | 8025 | 1.0271 | | 0.3853 | 6.0 | 9630 | 1.0547 | | 0.3482 | 7.0 | 11235 | 1.1090 | | 0.3152 | 8.0 | 12840 | 1.1387 | | 0.2903 | 9.0 | 14445 | 1.1853 | | 0.2655 | 10.0 | 16050 | 1.2088 | | 0.2477 | 11.0 | 17655 | 1.2168 | | 0.232 | 12.0 | 19260 | 1.2426 | | 0.2192 | 13.0 | 20865 | 1.2522 | | 0.2078 | 14.0 | 22470 | 1.2855 | | 0.198 | 15.0 | 24075 | 1.3048 | | 0.19 | 16.0 | 25680 | 1.3117 | | 0.1834 | 17.0 | 27285 | 1.3262 | | 0.1777 | 18.0 | 28890 | 1.3360 | | 0.1733 | 19.0 | 30495 | 1.3440 | | 0.1702 | 20.0 | 32100 | 1.3465 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
VilohitT/t5-small-finetuned-xsum
VilohitT
2023-06-25T16:14:08Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T13:04:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
MrM0dZ/UMP45_Mineuchi_Tomomi
MrM0dZ
2023-06-25T16:05:33Z
0
0
null
[ "license:other", "region:us" ]
null
2023-06-25T15:54:38Z
--- license: other --- UMP45 RVC v2 Model Trained using in-game voices Currently with 100 Epochs
Green-Sky/ggml_openai_clip-vit-base-patch32
Green-Sky
2023-06-25T16:03:57Z
0
0
null
[ "clip", "vision", "ggml", "clip.cpp", "region:us" ]
null
2023-06-25T15:44:22Z
--- tags: - clip - vision - ggml - clip.cpp --- # Experimental the file format is not stable yet, so expect breaking changes. I will update the files from time to time. - source model: https://huggingface.co/openai/clip-vit-base-patch32 - source license: non-comercial custom (see [modelcard](./model-card.md)) ## Converted files for use with clip.cpp see https://github.com/monatis/clip.cpp
carblacac/ner-investing
carblacac
2023-06-25T16:03:08Z
106
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "finance", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-25T15:56:09Z
--- license: apache-2.0 language: - en tags: - finance ---
cagmfr/q-Taxi-v3
cagmfr
2023-06-25T15:35:26Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T15:25:40Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="cagmfr/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
lucasbertola/q-Taxi-v3
lucasbertola
2023-06-25T15:31:33Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "Lucas_is_the_best", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T15:27:06Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation - Lucas_is_the_best model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing1 This is a trained model of a **Q-Learning** agent playing ## Usage ```python model = load_from_hub(repo_id="lucasbertola/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=True etc) env = gym.make(model["env_id"]) ```
sumyahhh/ppo-LunarLander-v2
sumyahhh
2023-06-25T15:31:19Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T15:30:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -136.15 +/- 52.76 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
PhongLe1311/my_awesome_billsum_model
PhongLe1311
2023-06-25T15:30:09Z
99
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T15:20:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1408 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5181 - Rouge1: 0.1408 - Rouge2: 0.0514 - Rougel: 0.1173 - Rougelsum: 0.1173 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8150 | 0.1264 | 0.0373 | 0.1061 | 0.1061 | 19.0 | | No log | 2.0 | 124 | 2.5989 | 0.1379 | 0.0501 | 0.1164 | 0.1165 | 19.0 | | No log | 3.0 | 186 | 2.5349 | 0.1396 | 0.0525 | 0.1179 | 0.1181 | 19.0 | | No log | 4.0 | 248 | 2.5181 | 0.1408 | 0.0514 | 0.1173 | 0.1173 | 19.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ahessamb/bertopic-test
ahessamb
2023-06-25T15:29:15Z
3
0
bertopic
[ "bertopic", "text-classification", "region:us" ]
text-classification
2023-06-25T15:29:09Z
--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # bertopic-test This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("ahessamb/bertopic-test") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 50 * Number of training documents: 1570 <details> <summary>Click here for an overview of all topics.</summary> | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | 0 | liquidations - forcefully - betting - liquidation - contracts | 8 | 0_liquidations_forcefully_betting_liquidation | | 1 | litecoin - wsm - presale - 77 - near | 94 | 1_litecoin_wsm_presale_77 | | 2 | sec - court - terraform - dismiss - lawyers | 49 | 2_sec_court_terraform_dismiss | | 3 | huobi - hkvac - bsl - web3 - code | 12 | 3_huobi_hkvac_bsl_web3 | | 4 | lucie - shiba - susbarium - puppynet - portals | 3 | 4_lucie_shiba_susbarium_puppynet | | 5 | 000006819 - shiba - accuracy - finbold - estimates | 27 | 5_000006819_shiba_accuracy_finbold | | 6 | tokens - sec - binance - securities - coinbase | 45 | 6_tokens_sec_binance_securities | | 7 | mckinsey - ai - nanjing - productivity - diffusion | 43 | 7_mckinsey_ai_nanjing_productivity | | 8 | resistance - swing - fib - zone - ltc | 32 | 8_resistance_swing_fib_zone | | 9 | brinkman - tategpt - bitcoin - artists - wealth | 26 | 9_brinkman_tategpt_bitcoin_artists | | 10 | stablecoin - stablecoins - decline - redemptions - tusd | 2 | 10_stablecoin_stablecoins_decline_redemptions | | 11 | mutant - mayc - bayc - club - mcmullen | 64 | 11_mutant_mayc_bayc_club | | 12 | xrp - ema - ripple - bullish - cryptocurrencies | 43 | 12_xrp_ema_ripple_bullish | | 13 | tether - cbdcs - loans - federal - nafcu | 27 | 13_tether_cbdcs_loans_federal | | 14 | rate - tradingview - bnb - breakout - coinmarketcap | 85 | 14_rate_tradingview_bnb_breakout | | 15 | 26 - bulls - rsi - ceiling - 300 | 2 | 15_26_bulls_rsi_ceiling | | 16 | lowest - jump - week - wallet - staggering | 3 | 16_lowest_jump_week_wallet | | 17 | xrp - ripple - mekras - sbi - institutions | 56 | 17_xrp_ripple_mekras_sbi | | 18 | debt - mortgages - trillion - government - suspends | 3 | 18_debt_mortgages_trillion_government | | 19 | longitude - chronometer - bitcoin - ships - graffiti | 2 | 19_longitude_chronometer_bitcoin_ships | | 20 | volumes - piggy - aud - xrp - usdt | 15 | 20_volumes_piggy_aud_xrp | | 21 | root - ledger - stakers - sidechains - compatibility | 4 | 21_root_ledger_stakers_sidechains | | 22 | astra - letter - concerns - investors - bitwise | 4 | 22_astra_letter_concerns_investors | | 23 | gold - governments - manipulated - stocks - mined | 10 | 23_gold_governments_manipulated_stocks | | 24 | tether - sygnum - documents - bank - coindesk | 9 | 24_tether_sygnum_documents_bank | | 25 | rewards - governance - lido - proposal - june | 45 | 25_rewards_governance_lido_proposal | | 26 | listings - coin - fairerc20 - bittrex - withdrawals | 68 | 26_listings_coin_fairerc20_bittrex | | 27 | peaq - ordibots - cosmos - fetch - machine | 81 | 27_peaq_ordibots_cosmos_fetch | | 28 | uniswap - v4 - orders - hooks - differing | 23 | 28_uniswap_v4_orders_hooks | | 29 | price - neo - matic - rise - altcoin | 92 | 29_price_neo_matic_rise | | 30 | emptydoc - staff - policy - binance - workspaces | 2 | 30_emptydoc_staff_policy_binance | | 31 | lunc - synthetix - terra - perps - staking | 33 | 31_lunc_synthetix_terra_perps | | 32 | tweet - dogecoin - chart - meme - negative | 3 | 32_tweet_dogecoin_chart_meme | | 33 | binance - securities - exchange - cz - regulators | 63 | 33_binance_securities_exchange_cz | | 34 | bitmart - sale - xrp - discount - event | 4 | 34_bitmart_sale_xrp_discount | | 35 | yuan - event - olympics - canadians - organizers | 49 | 35_yuan_event_olympics_canadians | | 36 | gusd - fidelity - bitcoin - proposal - blackrock | 52 | 36_gusd_fidelity_bitcoin_proposal | | 37 | bills - mcglone - markets - stablecoins - liquidity | 56 | 37_bills_mcglone_markets_stablecoins | | 38 | asset - gain - drop - trading - hours | 2 | 38_asset_gain_drop_trading | | 39 | epstein - hamsterwheel - vulnerability - bounty - certick | 28 | 39_epstein_hamsterwheel_vulnerability_bounty | | 40 | pyth - transparency - data - terra - oracle | 19 | 40_pyth_transparency_data_terra | | 41 | shiba - inu - weighted - collapse - recovery | 2 | 41_shiba_inu_weighted_collapse | | 42 | neo - opensea - carey - security - impersonators | 24 | 42_neo_opensea_carey_security | | 43 | balancer - zkevm - liquidity - defi - 8020 | 3 | 43_balancer_zkevm_liquidity_defi | | 44 | reed - battle - platform - argument - trading | 22 | 44_reed_battle_platform_argument | | 45 | ada - cardano - whale - sell - investors | 4 | 45_ada_cardano_whale_sell | | 46 | uk - coinbase - hong - crypto - regulatory | 65 | 46_uk_coinbase_hong_crypto | | 47 | ethereum - tvl - defi - arbitrum - airdrop | 54 | 47_ethereum_tvl_defi_arbitrum | | 48 | swyftx - shibarium - token - shibaswap - shiba | 54 | 48_swyftx_shibarium_token_shibaswap | | 49 | bitcoin - mining - gain - miners - difficulty | 54 | 49_bitcoin_mining_gain_miners | </details> ## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.29 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.30.2 * Numba: 0.56.4 * Plotly: 5.13.1 * Python: 3.10.12
cagmfr/q-FrozenLake-v1-4x4-noSlippery
cagmfr
2023-06-25T15:20:16Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T15:20:14Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="cagmfr/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
NasimB/gpt2-2-dp-mod-aochild-cut
NasimB
2023-06-25T15:09:04Z
22
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T07:34:36Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-2-dp-mod-aochild-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-2-dp-mod-aochild-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.4109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7147 | 0.27 | 500 | 5.6451 | | 5.3609 | 0.54 | 1000 | 5.2108 | | 5.0162 | 0.81 | 1500 | 4.9585 | | 4.7627 | 1.08 | 2000 | 4.8126 | | 4.5775 | 1.35 | 2500 | 4.7013 | | 4.4856 | 1.62 | 3000 | 4.6034 | | 4.4038 | 1.89 | 3500 | 4.5175 | | 4.2252 | 2.16 | 4000 | 4.4775 | | 4.1408 | 2.42 | 4500 | 4.4236 | | 4.1136 | 2.69 | 5000 | 4.3721 | | 4.0852 | 2.96 | 5500 | 4.3281 | | 3.87 | 3.23 | 6000 | 4.3418 | | 3.8651 | 3.5 | 6500 | 4.3062 | | 3.8601 | 3.77 | 7000 | 4.2781 | | 3.8091 | 4.04 | 7500 | 4.2785 | | 3.5972 | 4.31 | 8000 | 4.2888 | | 3.6301 | 4.58 | 8500 | 4.2678 | | 3.6398 | 4.85 | 9000 | 4.2396 | | 3.4906 | 5.12 | 9500 | 4.2803 | | 3.3704 | 5.39 | 10000 | 4.2849 | | 3.4008 | 5.66 | 10500 | 4.2718 | | 3.4029 | 5.93 | 11000 | 4.2491 | | 3.1804 | 6.2 | 11500 | 4.3116 | | 3.1361 | 6.47 | 12000 | 4.3119 | | 3.1532 | 6.73 | 12500 | 4.3067 | | 3.1591 | 7.0 | 13000 | 4.3072 | | 2.8974 | 7.27 | 13500 | 4.3563 | | 2.9167 | 7.54 | 14000 | 4.3589 | | 2.9248 | 7.81 | 14500 | 4.3580 | | 2.8683 | 8.08 | 15000 | 4.3791 | | 2.741 | 8.35 | 15500 | 4.3939 | | 2.7503 | 8.62 | 16000 | 4.3968 | | 2.7573 | 8.89 | 16500 | 4.3983 | | 2.6961 | 9.16 | 17000 | 4.4075 | | 2.6562 | 9.43 | 17500 | 4.4101 | | 2.6653 | 9.7 | 18000 | 4.4107 | | 2.667 | 9.97 | 18500 | 4.4109 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
Smaraa/t5-text-simplification_1e4_adafactor_biendata
Smaraa
2023-06-25T15:07:10Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T12:37:38Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-text-simplification_1e4_adafactor_biendata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-text-simplification_1e4_adafactor_biendata This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7562 - Rouge1: 10.4603 - Rouge2: 2.642 - Rougel: 9.6362 - Rougelsum: 9.6589 - Gen Len: 13.2838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 464 | 0.5489 | 29.7693 | 11.1997 | 25.6091 | 25.5979 | 14.7281 | | 0.9314 | 2.0 | 928 | 0.5392 | 29.9099 | 10.9645 | 25.334 | 25.3259 | 14.7188 | | 0.5594 | 3.0 | 1392 | 0.5342 | 30.3194 | 11.4204 | 25.8248 | 25.8255 | 14.7666 | | 0.5333 | 4.0 | 1856 | 0.5376 | 30.8368 | 11.6152 | 26.3172 | 26.3583 | 14.1578 | | 0.5192 | 5.0 | 2320 | 0.8890 | 7.5517 | 1.4313 | 7.0971 | 7.1064 | 9.9191 | | 0.8897 | 6.0 | 2784 | 0.8252 | 6.9283 | 1.3484 | 6.5916 | 6.5877 | 10.9894 | | 0.9385 | 7.0 | 3248 | 0.7971 | 8.2401 | 1.9957 | 7.7693 | 7.7675 | 10.7732 | | 0.9089 | 8.0 | 3712 | 0.7725 | 9.7559 | 2.2249 | 9.0272 | 9.0098 | 10.7175 | | 0.8824 | 9.0 | 4176 | 0.7552 | 12.006 | 2.8041 | 11.0115 | 10.992 | 10.7838 | | 0.8658 | 10.0 | 4640 | 0.7490 | 13.311 | 3.4159 | 12.1933 | 12.1551 | 10.6499 | | 0.864 | 11.0 | 5104 | 0.7448 | 13.9983 | 3.6176 | 12.7712 | 12.7347 | 10.752 | | 0.868 | 12.0 | 5568 | 0.7495 | 12.318 | 3.2975 | 11.3451 | 11.3218 | 12.0252 | | 0.8844 | 13.0 | 6032 | 0.7552 | 10.6154 | 2.7347 | 9.8228 | 9.8116 | 13.191 | | 0.8844 | 14.0 | 6496 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8971 | 15.0 | 6960 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8981 | 16.0 | 7424 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8956 | 17.0 | 7888 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8984 | 18.0 | 8352 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8959 | 19.0 | 8816 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8977 | 20.0 | 9280 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ammag/ppo-LunarLander-v2
ammag
2023-06-25T15:01:54Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T14:57:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 228.98 +/- 31.63 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Smaraa/gpt2-text-simplification_1e4_adafactor_biendata
Smaraa
2023-06-25T14:56:13Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T12:42:47Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-text-simplification_1e4_adafactor_biendata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-text-simplification_1e4_adafactor_biendata This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9089 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 464 | 0.7729 | | 1.0489 | 2.0 | 928 | 0.7546 | | 0.754 | 3.0 | 1392 | 0.7497 | | 0.7034 | 4.0 | 1856 | 0.7530 | | 0.6619 | 5.0 | 2320 | 0.7560 | | 0.6265 | 6.0 | 2784 | 0.7639 | | 0.5921 | 7.0 | 3248 | 0.7747 | | 0.5621 | 8.0 | 3712 | 0.7848 | | 0.5359 | 9.0 | 4176 | 0.7969 | | 0.5115 | 10.0 | 4640 | 0.8113 | | 0.4879 | 11.0 | 5104 | 0.8256 | | 0.4683 | 12.0 | 5568 | 0.8373 | | 0.4491 | 13.0 | 6032 | 0.8519 | | 0.4491 | 14.0 | 6496 | 0.8642 | | 0.4324 | 15.0 | 6960 | 0.8741 | | 0.4176 | 16.0 | 7424 | 0.8841 | | 0.4054 | 17.0 | 7888 | 0.8924 | | 0.3946 | 18.0 | 8352 | 0.8994 | | 0.3868 | 19.0 | 8816 | 0.9043 | | 0.3813 | 20.0 | 9280 | 0.9089 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
LoneWolfVPS/ArteYou
LoneWolfVPS
2023-06-25T14:31:55Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T14:27:06Z
--- license: creativeml-openrail-m ---
mouaadblhn/ppo-huggy
mouaadblhn
2023-06-25T14:03:22Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-25T14:03:16Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mouaadblhn/ppo-huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
flobbit/flutterby
flobbit
2023-06-25T13:45:00Z
5
0
fastai
[ "fastai", "en", "image classification", "image-classification", "doi:10.57967/hf/1004", "license:apache-2.0", "model-index", "region:us" ]
image-classification
2023-06-25T13:01:00Z
--- license: apache-2.0 tags: - en - image classification - fastai model-index: - name: flutterby by flobbit results: - task: name: image classification type: image-classification metrics: - name: accuracy type: acc num_train_epochs: 10 learning_rate: 0.00363 value: 77.3 metrics: - accuracy pipeline_tag: image-classification --- # FlutterBy ST Swallowtail Butterfly Insect Classification ## Model description The model is used to classify images into one of the 51 North American swallowtail or cattleheart butterfly species. `resnet50` was used for training. ## Intended uses & limitations The model was trained on 8577 insect images spread over 51 species. The model is likely biased toward some species being more commonly found in certain habitats. ## Training and evaluation data The images used in training were obtained from GBIF: GBIF.org (22 June 2023) GBIF Occurrence Download https://doi.org/10.15468/dl.bqg8bw Only the first 400 images of each species (if available) were downloaded. The image set was partially cleaned for quality to remove caterpillars, poor images or butterflies that were too far away for proper ID. After "cleaning", 200 additional images were downloaded for Battus philenor and Battus polydamas (as those species had a very high percentage of caterpillar shots). The dataset is primarily "in the wild" shots rather than all staged poses, and includes images for which even an expert would not be able to see identifying characteristics (hence the lower overall accuracy). The image set had 33 species with over 200 images (after cleaning) and a minimum of 30 pics in a class for the less uncommon species (not enough for accurate training but included for completeness).
ahishamm/vit-huge-HAM-10000-sharpened-patch-14
ahishamm
2023-06-25T13:34:12Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T12:41:46Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-huge-HAM-10000-sharpened-patch-14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-huge-HAM-10000-sharpened-patch-14 This model is a fine-tuned version of [google/vit-huge-patch14-224-in21k](https://huggingface.co/google/vit-huge-patch14-224-in21k) on the ahishamm/HAM_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.4411 - Accuracy: 0.8554 - Recall: 0.8554 - F1: 0.8554 - Precision: 0.8554 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.6177 | 0.2 | 100 | 0.7082 | 0.7591 | 0.7591 | 0.7591 | 0.7591 | | 0.6848 | 0.4 | 200 | 0.6570 | 0.7631 | 0.7631 | 0.7631 | 0.7631 | | 0.622 | 0.6 | 300 | 0.5880 | 0.7920 | 0.7920 | 0.7920 | 0.7920 | | 0.5887 | 0.8 | 400 | 0.5599 | 0.7965 | 0.7965 | 0.7965 | 0.7965 | | 0.4812 | 1.0 | 500 | 0.5364 | 0.8010 | 0.8010 | 0.8010 | 0.8010 | | 0.4013 | 1.2 | 600 | 0.4874 | 0.8249 | 0.8249 | 0.8249 | 0.8249 | | 0.3987 | 1.4 | 700 | 0.4533 | 0.8354 | 0.8354 | 0.8354 | 0.8354 | | 0.4118 | 1.6 | 800 | 0.4540 | 0.8424 | 0.8424 | 0.8424 | 0.8424 | | 0.3272 | 1.8 | 900 | 0.4536 | 0.8254 | 0.8254 | 0.8254 | 0.8254 | | 0.3318 | 2.0 | 1000 | 0.4411 | 0.8554 | 0.8554 | 0.8554 | 0.8554 | | 0.0859 | 2.2 | 1100 | 0.4641 | 0.8519 | 0.8519 | 0.8519 | 0.8519 | | 0.1026 | 2.4 | 1200 | 0.4692 | 0.8554 | 0.8554 | 0.8554 | 0.8554 | | 0.0934 | 2.59 | 1300 | 0.4555 | 0.8474 | 0.8474 | 0.8474 | 0.8474 | | 0.1084 | 2.79 | 1400 | 0.5017 | 0.8454 | 0.8454 | 0.8454 | 0.8454 | | 0.0603 | 2.99 | 1500 | 0.4803 | 0.8599 | 0.8599 | 0.8599 | 0.8599 | | 0.013 | 3.19 | 1600 | 0.4905 | 0.8633 | 0.8633 | 0.8633 | 0.8633 | | 0.0585 | 3.39 | 1700 | 0.5305 | 0.8678 | 0.8678 | 0.8678 | 0.8678 | | 0.0322 | 3.59 | 1800 | 0.5342 | 0.8648 | 0.8648 | 0.8648 | 0.8648 | | 0.0086 | 3.79 | 1900 | 0.5134 | 0.8668 | 0.8668 | 0.8668 | 0.8668 | | 0.0275 | 3.99 | 2000 | 0.5136 | 0.8693 | 0.8693 | 0.8693 | 0.8693 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
findnitai/FaceGen
findnitai
2023-06-25T13:25:03Z
138
3
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-24T03:47:05Z
--- license: apache-2.0 pipeline_tag: text-to-image --- Few examples of unique faces generated by the model. Trained on FFHQ dataset. ![7qfdf0.gif](https://s3.amazonaws.com/moonup/production/uploads/6430e44437ee6d9b76cb8388/fqmUfSW6C9vB-YDIZyTfm.gif)
S3S3/q-Taxi-v3
S3S3
2023-06-25T13:05:40Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T13:05:36Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.44 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="S3S3/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
paramrah/shoesv2
paramrah
2023-06-25T13:00:03Z
2
0
tf-keras
[ "tf-keras", "mobilenet", "image-classification", "region:us" ]
image-classification
2023-06-25T12:59:39Z
--- pipeline_tag: image-classification ---
bogdancazan/bart-base-newsela-biendata-with-domain-adaptation
bogdancazan
2023-06-25T12:57:32Z
105
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T14:35:21Z
training_args = TrainingArguments( output_dir='bart-base-newsela-biendata-with-domain-adaptation', num_train_epochs=20, warmup_steps=250, per_device_train_batch_size=BATCH_SIZE, weight_decay=0.01, learning_rate=2e-4, fp16=True, optim="adafactor", ) Step Training Loss 500 5.677000 1000 2.361900 1500 1.826000 2000 1.672900 2500 1.597900 3000 1.555700 3500 1.520600 4000 1.496300 4500 1.476800 TrainOutput(global_step=4640, training_loss=2.1116079396214977, metrics={'train_runtime': 1059.6025, 'train_samples_per_second': 279.992, 'train_steps_per_second': 4.379, 'total_flos': 0.0, 'train_loss': 2.1116079396214977, 'epoch': 20.0})
S3S3/q-FrozenLake-v1-4x4-noSlippery
S3S3
2023-06-25T12:53:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T12:53:07Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="S3S3/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
OpenDILabCommunity/PongNoFrameskip-v4-PPOOffPolicy
OpenDILabCommunity
2023-06-25T12:47:43Z
0
0
pytorch
[ "pytorch", "deep-reinforcement-learning", "reinforcement-learning", "DI-engine", "PongNoFrameskip-v4", "en", "license:apache-2.0", "region:us" ]
reinforcement-learning
2023-06-25T12:47:02Z
--- language: en license: apache-2.0 library_name: pytorch tags: - deep-reinforcement-learning - reinforcement-learning - DI-engine - PongNoFrameskip-v4 benchmark_name: OpenAI/Gym/Atari task_name: PongNoFrameskip-v4 pipeline_tag: reinforcement-learning model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: OpenAI/Gym/Atari-PongNoFrameskip-v4 type: OpenAI/Gym/Atari-PongNoFrameskip-v4 metrics: - type: mean_reward value: 21.0 +/- 0.0 name: mean_reward --- # Play **PongNoFrameskip-v4** with **PPO** Policy ## Model Description <!-- Provide a longer summary of what this model is. --> This is a simple **PPO** implementation to OpenAI/Gym/Atari **PongNoFrameskip-v4** using the [DI-engine library](https://github.com/opendilab/di-engine) and the [DI-zoo](https://github.com/opendilab/DI-engine/tree/main/dizoo). **DI-engine** is a python library for solving general decision intelligence problems, which is based on implementations of reinforcement learning framework using PyTorch or JAX. This library aims to standardize the reinforcement learning framework across different algorithms, benchmarks, environments, and to support both academic researches and prototype applications. Besides, self-customized training pipelines and applications are supported by reusing different abstraction levels of DI-engine reinforcement learning framework. ## Model Usage ### Install the Dependencies <details close> <summary>(Click for Details)</summary> ```shell # install huggingface_ding git clone https://github.com/opendilab/huggingface_ding.git pip3 install -e ./huggingface_ding/ # install environment dependencies if needed pip3 install DI-engine[common_env] ``` </details> ### Git Clone from Huggingface and Run the Model <details close> <summary>(Click for Details)</summary> ```shell # running with trained model python3 -u run.py ``` **run.py** ```python from ding.bonus import PPOOffPolicyAgent from ding.config import Config from easydict import EasyDict import torch # Pull model from files which are git cloned from huggingface policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu")) cfg = EasyDict(Config.file_to_dict("policy_config.py")) # Instantiate the agent agent = PPOOffPolicyAgent( env="PongNoFrameskip", exp_name="PongNoFrameskip-v4-PPOOffPolicy", cfg=cfg.exp_config, policy_state_dict=policy_state_dict ) # Continue training agent.train(step=5000) # Render the new agent performance agent.deploy(enable_save_replay=True) ``` </details> ### Run Model by Using Huggingface_ding <details close> <summary>(Click for Details)</summary> ```shell # running with trained model python3 -u run.py ``` **run.py** ```python from ding.bonus import PPOOffPolicyAgent from huggingface_ding import pull_model_from_hub # Pull model from Hugggingface hub policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/PongNoFrameskip-v4-PPOOffPolicy") # Instantiate the agent agent = PPOOffPolicyAgent( env="PongNoFrameskip", exp_name="PongNoFrameskip-v4-PPOOffPolicy", cfg=cfg.exp_config, policy_state_dict=policy_state_dict ) # Continue training agent.train(step=5000) # Render the new agent performance agent.deploy(enable_save_replay=True) ``` </details> ## Model Training ### Train the Model and Push to Huggingface_hub <details close> <summary>(Click for Details)</summary> ```shell #Training Your Own Agent python3 -u train.py ``` **train.py** ```python from ding.bonus import PPOOffPolicyAgent from huggingface_ding import push_model_to_hub # Instantiate the agent agent = PPOOffPolicyAgent(env="PongNoFrameskip", exp_name="PongNoFrameskip-v4-PPOOffPolicy") # Train the agent return_ = agent.train(step=int(10000000)) # Push model to huggingface hub push_model_to_hub( agent=agent.best, env_name="OpenAI/Gym/Atari", task_name="PongNoFrameskip-v4", algo_name="PPO", wandb_url=return_.wandb_url, github_repo_url="https://github.com/opendilab/DI-engine", github_doc_model_url="https://di-engine-docs.readthedocs.io/en/latest/12_policies/ppo.html", github_doc_env_url="https://di-engine-docs.readthedocs.io/en/latest/13_envs/atari.html", installation_guide="pip3 install DI-engine[common_env]", usage_file_by_git_clone="./ppo_offpolicy/pong_ppo_offpolicy_deploy.py", usage_file_by_huggingface_ding="./ppo_offpolicy/pong_ppo_offpolicy_download.py", train_file="./ppo_offpolicy/pong_ppo_offpolicy.py", repo_id="OpenDILabCommunity/PongNoFrameskip-v4-PPOOffPolicy" ) ``` </details> **Configuration** <details close> <summary>(Click for Details)</summary> ```python exp_config = { 'env': { 'manager': { 'episode_num': float("inf"), 'max_retry': 1, 'retry_type': 'reset', 'auto_reset': True, 'step_timeout': None, 'reset_timeout': None, 'retry_waiting_time': 0.1, 'cfg_type': 'BaseEnvManagerDict' }, 'stop_value': 20, 'n_evaluator_episode': 8, 'collector_env_num': 8, 'evaluator_env_num': 8, 'env_id': 'PongNoFrameskip-v4', 'frame_stack': 4 }, 'policy': { 'model': { 'obs_shape': [4, 84, 84], 'action_shape': 6, 'action_space': 'discrete', 'encoder_hidden_size_list': [64, 64, 128], 'actor_head_hidden_size': 128, 'critic_head_hidden_size': 128 }, 'learn': { 'learner': { 'train_iterations': 1000000000, 'dataloader': { 'num_workers': 0 }, 'log_policy': True, 'hook': { 'load_ckpt_before_run': '', 'log_show_after_iter': 100, 'save_ckpt_after_iter': 10000, 'save_ckpt_after_run': True }, 'cfg_type': 'BaseLearnerDict' }, 'update_per_collect': 10, 'batch_size': 320, 'learning_rate': 0.0003, 'value_weight': 0.5, 'entropy_weight': 0.001, 'clip_ratio': 0.2, 'adv_norm': True, 'ignore_done': False, 'grad_clip_type': 'clip_norm', 'grad_clip_value': 0.5 }, 'collect': { 'collector': {}, 'unroll_len': 1, 'discount_factor': 0.99, 'gae_lambda': 0.95, 'n_sample': 3200 }, 'eval': { 'evaluator': { 'eval_freq': 1000, 'render': { 'render_freq': -1, 'mode': 'train_iter' }, 'cfg_type': 'InteractionSerialEvaluatorDict', 'stop_value': 20, 'n_episode': 8 } }, 'other': { 'replay_buffer': { 'replay_buffer_size': 10000 } }, 'on_policy': False, 'cuda': True, 'multi_gpu': False, 'bp_update_sync': True, 'traj_len_inf': False, 'type': 'ppo', 'priority': False, 'priority_IS_weight': False, 'nstep_return': False, 'nstep': 3, 'transition_with_policy_data': True, 'cfg_type': 'PPOOffPolicyDict', 'recompute_adv': True, 'action_space': 'discrete' }, 'exp_name': 'PongNoFrameskip-v4-PPOOffPolicy', 'wandb_logger': { 'gradient_logger': True, 'video_logger': True, 'plot_logger': True, 'action_logger': True, 'return_logger': False }, 'seed': 0 } ``` </details> **Training Procedure** <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> - **Weights & Biases (wandb):** [monitor link](https://wandb.ai/zjowowen/PongNoFrameskip-v4-PPOOffPolicy) ## Model Information <!-- Provide the basic links for the model. --> - **Github Repository:** [repo link](https://github.com/opendilab/DI-engine) - **Doc**: [DI-engine-docs Algorithm link](https://di-engine-docs.readthedocs.io/en/latest/12_policies/ppo.html) - **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/PongNoFrameskip-v4-PPOOffPolicy/blob/main/policy_config.py) - **Demo:** [video](https://huggingface.co/OpenDILabCommunity/PongNoFrameskip-v4-PPOOffPolicy/blob/main/replay.mp4) <!-- Provide the size information for the model. --> - **Parameters total size:** 11501.55 KB - **Last Update Date:** 2023-06-25 ## Environments <!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. --> - **Benchmark:** OpenAI/Gym/Atari - **Task:** PongNoFrameskip-v4 - **Gym version:** 0.25.1 - **DI-engine version:** v0.4.8 - **PyTorch version:** 1.7.1 - **Doc**: [DI-engine-docs Environments link](https://di-engine-docs.readthedocs.io/en/latest/13_envs/atari.html)
AtomGradient/Adjust_ChatGLM_6B
AtomGradient
2023-06-25T12:45:31Z
104
0
transformers
[ "transformers", "pytorch", "chatglm", "feature-extraction", "custom_code", "license:other", "region:us" ]
feature-extraction
2023-06-25T12:04:00Z
--- license: other --- ``` from transformers import AutoConfig, AutoModel, AutoTokenizer import os import torch # 载入Tokenizer tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) config = AutoConfig.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, pre_seq_len=128) model = AutoModel.from_pretrained("THUDM/chatglm-6b", config=config, trust_remote_code=True) prefix_state_dict = torch.load(os.path.join("./Adjust_ChatGLM_6B/", "pytorch_model.bin")) new_prefix_state_dict = {} for k, v in prefix_state_dict.items(): if k.startswith("transformer.prefix_encoder."): new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) model = model.quantize(4) model = model.half().cuda() model.transformer.prefix_encoder.float() model = model.eval() response, history = model.chat(tokenizer, "生成衬衣的广告词", history=[]) print(response) ```
ahishamm/vit-base-HAM-10000-sharpened-large-patch-32
ahishamm
2023-06-25T12:32:21Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T11:51:12Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-HAM-10000-sharpened-large-patch-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-HAM-10000-sharpened-large-patch-32 This model is a fine-tuned version of [google/vit-large-patch32-224-in21k](https://huggingface.co/google/vit-large-patch32-224-in21k) on the ahishamm/HAM_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.4582 - Accuracy: 0.8404 - Recall: 0.8404 - F1: 0.8404 - Precision: 0.8404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.6739 | 0.2 | 100 | 0.7775 | 0.7257 | 0.7257 | 0.7257 | 0.7257 | | 0.6922 | 0.4 | 200 | 0.6455 | 0.7711 | 0.7711 | 0.7711 | 0.7711 | | 0.8219 | 0.6 | 300 | 0.7582 | 0.7426 | 0.7426 | 0.7426 | 0.7426 | | 0.6801 | 0.8 | 400 | 0.6363 | 0.7651 | 0.7651 | 0.7651 | 0.7651 | | 0.5499 | 1.0 | 500 | 0.6231 | 0.7751 | 0.7751 | 0.7751 | 0.7751 | | 0.5156 | 1.2 | 600 | 0.6399 | 0.7761 | 0.7761 | 0.7761 | 0.7761 | | 0.4478 | 1.4 | 700 | 0.5324 | 0.8020 | 0.8020 | 0.8020 | 0.8020 | | 0.4364 | 1.6 | 800 | 0.5597 | 0.7970 | 0.7970 | 0.7970 | 0.7970 | | 0.4545 | 1.8 | 900 | 0.5212 | 0.8115 | 0.8115 | 0.8115 | 0.8115 | | 0.4294 | 2.0 | 1000 | 0.4926 | 0.8264 | 0.8264 | 0.8264 | 0.8264 | | 0.135 | 2.2 | 1100 | 0.5448 | 0.8204 | 0.8204 | 0.8204 | 0.8204 | | 0.2628 | 2.4 | 1200 | 0.4916 | 0.8304 | 0.8304 | 0.8304 | 0.8304 | | 0.2577 | 2.59 | 1300 | 0.4582 | 0.8404 | 0.8404 | 0.8404 | 0.8404 | | 0.2093 | 2.79 | 1400 | 0.5079 | 0.8344 | 0.8344 | 0.8344 | 0.8344 | | 0.1415 | 2.99 | 1500 | 0.4760 | 0.8439 | 0.8439 | 0.8439 | 0.8439 | | 0.0686 | 3.19 | 1600 | 0.5379 | 0.8444 | 0.8444 | 0.8444 | 0.8444 | | 0.1031 | 3.39 | 1700 | 0.5572 | 0.8384 | 0.8384 | 0.8384 | 0.8384 | | 0.102 | 3.59 | 1800 | 0.5343 | 0.8464 | 0.8464 | 0.8464 | 0.8464 | | 0.0531 | 3.79 | 1900 | 0.5482 | 0.8479 | 0.8479 | 0.8479 | 0.8479 | | 0.0756 | 3.99 | 2000 | 0.5454 | 0.8454 | 0.8454 | 0.8454 | 0.8454 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Luke537/image_classification_food_model
Luke537
2023-06-25T12:30:18Z
189
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-24T19:15:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: image_classification_food_model results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.893 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.6474 - Accuracy: 0.893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7587 | 0.99 | 62 | 2.5481 | 0.844 | | 1.8903 | 2.0 | 125 | 1.8096 | 0.874 | | 1.6502 | 2.98 | 186 | 1.6474 | 0.893 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cpu - Datasets 2.13.0 - Tokenizers 0.13.3
emilianJR/majicMIX_realistic_v6
emilianJR
2023-06-25T12:26:15Z
69
14
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-18T12:42:51Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Diffuser model for this SD checkpoint: https://civitai.com/models/43331/majicmix-realistic **emilianJR/majicMIX_realistic_v6** is the HuggingFace diffuser that you can use with **diffusers.StableDiffusionPipeline()**. Examples | Examples | Examples ---- | ---- | ---- ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/55e308aa-aec9-4816-b76e-523d9235a6e1/width=450/00005-321001525.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/f1bb9271-3628-45c6-8b2c-05ee3b19af0f/width=450/00027-1961413425.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/18150a9d-1e07-494f-8498-cd0c033907c5/width=450/00042-2448422190.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/d748fcfd-29f1-4fe1-95e2-d34765bccca9/width=450/00058-3698311310.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/a5b348c9-7b5b-4235-a943-834eec84a17a/width=450/00003-703532927.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/66820fd3-98f2-4fbb-b904-0507de39c36a/width=450/00002-140050360.jpeg) ------- ## 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). ```python from diffusers import StableDiffusionPipeline import torch model_id = "emilianJR/majicMIX_realistic_v6" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "YOUR PROMPT" image = pipe(prompt).images[0] image.save("image.png") ``` ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
energytrain7/distilbert-base-uncased-finetuned-emotion
energytrain7
2023-06-25T12:26:13Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-25T07:27:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9251973092238958 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2235 - Accuracy: 0.925 - F1: 0.9252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8583 | 1.0 | 250 | 0.3353 | 0.899 | 0.8952 | | 0.2609 | 2.0 | 500 | 0.2235 | 0.925 | 0.9252 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
bogdancazan/t5-base-newsela-biendata-with-domain-adaptation
bogdancazan
2023-06-25T12:24:30Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T13:46:06Z
training_args = TrainingArguments( output_dir='t5-base-wikilarge-newsela-with-domain-adaptation', num_train_epochs=20, warmup_steps=250, per_device_train_batch_size=BATCH_SIZE, weight_decay=0.01, learning_rate=2e-4, # fp16=True, optim="adafactor", ) Step Training Loss 500 4.184500 1000 2.470900 1500 2.128900 2000 1.951600 2500 1.834400 3000 1.755800 3500 1.701800 4000 1.656300 4500 1.628800 TrainOutput(global_step=4640, training_loss=2.1286644540984057, metrics={'train_runtime': 4090.6694, 'train_samples_per_second': 72.526, 'train_steps_per_second': 1.134, 'total_flos': 0.0, 'train_loss': 2.1286644540984057, 'epoch': 20.0})
Tri1/opus-mt-en-ro-finetuned-eng-to-para
Tri1
2023-06-25T12:21:10Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T09:20:15Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-en-ro-finetuned-eng-to-para results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-eng-to-para This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0821 - Bleu: 22.2055 - Gen Len: 21.7942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.0865 | 1.0 | 6250 | 0.0821 | 22.2055 | 21.7942 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
joystick/Initokyo
joystick
2023-06-25T12:18:36Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T12:10:06Z
--- license: creativeml-openrail-m ---
ahishamm/vit-base-HAM-10000-sharpened-large-patch-16
ahishamm
2023-06-25T11:49:31Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T10:38:43Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-HAM-10000-sharpened-large-patch-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-HAM-10000-sharpened-large-patch-16 This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the ahishamm/HAM_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.5504 - Accuracy: 0.8075 - Recall: 0.8075 - F1: 0.8075 - Precision: 0.8075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.9294 | 0.2 | 100 | 1.0377 | 0.6733 | 0.6733 | 0.6733 | 0.6733 | | 1.0067 | 0.4 | 200 | 0.8976 | 0.6813 | 0.6813 | 0.6813 | 0.6813 | | 1.0081 | 0.6 | 300 | 0.9345 | 0.6773 | 0.6773 | 0.6773 | 0.6773 | | 0.9326 | 0.8 | 400 | 0.8494 | 0.6883 | 0.6883 | 0.6883 | 0.6883 | | 0.8243 | 1.0 | 500 | 0.7481 | 0.7267 | 0.7267 | 0.7267 | 0.7267 | | 0.7408 | 1.2 | 600 | 0.7277 | 0.7317 | 0.7317 | 0.7317 | 0.7317 | | 0.6844 | 1.4 | 700 | 0.7114 | 0.7392 | 0.7392 | 0.7392 | 0.7392 | | 0.7411 | 1.6 | 800 | 0.6772 | 0.7416 | 0.7416 | 0.7416 | 0.7416 | | 0.7138 | 1.8 | 900 | 0.7136 | 0.7377 | 0.7377 | 0.7377 | 0.7377 | | 0.5838 | 2.0 | 1000 | 0.6625 | 0.7521 | 0.7521 | 0.7521 | 0.7521 | | 0.5315 | 2.2 | 1100 | 0.6104 | 0.7776 | 0.7776 | 0.7776 | 0.7776 | | 0.6391 | 2.4 | 1200 | 0.6317 | 0.7591 | 0.7591 | 0.7591 | 0.7591 | | 0.6903 | 2.59 | 1300 | 0.6098 | 0.7656 | 0.7656 | 0.7656 | 0.7656 | | 0.5798 | 2.79 | 1400 | 0.6211 | 0.7751 | 0.7751 | 0.7751 | 0.7751 | | 0.5448 | 2.99 | 1500 | 0.5824 | 0.7820 | 0.7820 | 0.7820 | 0.7820 | | 0.4523 | 3.19 | 1600 | 0.5951 | 0.7776 | 0.7776 | 0.7776 | 0.7776 | | 0.4485 | 3.39 | 1700 | 0.6114 | 0.7815 | 0.7815 | 0.7815 | 0.7815 | | 0.487 | 3.59 | 1800 | 0.5730 | 0.7950 | 0.7950 | 0.7950 | 0.7950 | | 0.4104 | 3.79 | 1900 | 0.5597 | 0.7965 | 0.7965 | 0.7965 | 0.7965 | | 0.4468 | 3.99 | 2000 | 0.5504 | 0.8075 | 0.8075 | 0.8075 | 0.8075 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Smaraa/bart-text-simplification_1e4_adafactor
Smaraa
2023-06-25T11:45:02Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-24T11:26:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-text-simplification_1e4_adafactor results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-text-simplification_1e4_adafactor This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8377 - Rouge1: 60.5348 - Rouge2: 41.6762 - Rougel: 55.5994 - Rougelsum: 55.5841 - Gen Len: 18.7487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.1741 | 1.0 | 1163 | 0.6416 | 62.4 | 44.1316 | 57.9029 | 57.8644 | 18.8482 | | 0.1553 | 2.0 | 2326 | 0.6504 | 62.2879 | 43.9281 | 57.4714 | 57.461 | 18.8063 | | 0.1369 | 3.0 | 3489 | 0.6656 | 61.2481 | 42.605 | 56.5118 | 56.4636 | 18.733 | | 0.1286 | 4.0 | 4652 | 0.6906 | 61.3015 | 42.1608 | 56.2688 | 56.1707 | 18.7487 | | 0.1141 | 5.0 | 5815 | 0.7082 | 62.1771 | 43.1481 | 57.0231 | 57.0673 | 18.911 | | 0.1016 | 6.0 | 6978 | 0.7188 | 61.408 | 42.2759 | 56.1699 | 56.1779 | 18.8377 | | 0.0961 | 7.0 | 8141 | 0.7334 | 60.802 | 41.9149 | 56.0171 | 56.0279 | 18.8168 | | 0.0869 | 8.0 | 9304 | 0.7509 | 60.6564 | 41.3587 | 55.4436 | 55.468 | 18.7382 | | 0.0783 | 9.0 | 10467 | 0.7713 | 60.3551 | 41.8074 | 55.6856 | 55.679 | 18.7173 | | 0.0751 | 10.0 | 11630 | 0.7785 | 60.378 | 41.6134 | 55.5217 | 55.505 | 18.8325 | | 0.0679 | 11.0 | 12793 | 0.7835 | 60.5835 | 41.6735 | 55.5469 | 55.5791 | 18.7435 | | 0.0619 | 12.0 | 13956 | 0.8012 | 60.8152 | 41.2014 | 55.7186 | 55.7233 | 18.9424 | | 0.0611 | 13.0 | 15119 | 0.8091 | 60.8188 | 41.8074 | 55.6684 | 55.8026 | 18.7958 | | 0.0568 | 14.0 | 16282 | 0.8175 | 60.9209 | 41.5689 | 55.8838 | 55.8642 | 18.7277 | | 0.0527 | 15.0 | 17445 | 0.8250 | 61.0215 | 41.9079 | 55.9018 | 55.8709 | 18.9162 | | 0.0524 | 16.0 | 18608 | 0.8317 | 60.8214 | 41.6554 | 55.8053 | 55.7947 | 18.7277 | | 0.0504 | 17.0 | 19771 | 0.8310 | 60.6533 | 41.6507 | 55.9289 | 55.9426 | 18.7958 | | 0.0486 | 18.0 | 20934 | 0.8345 | 60.4722 | 41.5319 | 55.3384 | 55.3655 | 18.6859 | | 0.0491 | 19.0 | 22097 | 0.8379 | 60.4012 | 41.2452 | 55.5059 | 55.5553 | 18.8115 | | 0.0489 | 20.0 | 23260 | 0.8377 | 60.5348 | 41.6762 | 55.5994 | 55.5841 | 18.7487 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
PraveenJesu/openai-whisper-medium-peft-lora-colab
PraveenJesu
2023-06-25T11:43:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-25T11:43:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
Erfan2001/distilbert_NoTokenized
Erfan2001
2023-06-25T11:43:35Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-24T22:00:23Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: xxx results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xxx This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6856 - Accuracy: 0.7758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7996 | 1.0 | 4284 | 0.7921 | 0.7287 | | 0.5539 | 2.0 | 8568 | 0.6856 | 0.7758 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
NasimB/gpt2-2-og-concat-modified-aochild
NasimB
2023-06-25T11:41:21Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T06:55:05Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-2-og-concat-modified-aochild results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-2-og-concat-modified-aochild This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 3.9262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 5.9891 | 0.24 | 500 | 5.0538 | | 4.7513 | 0.48 | 1000 | 4.6760 | | 4.4523 | 0.72 | 1500 | 4.4485 | | 4.2602 | 0.96 | 2000 | 4.3053 | | 4.0617 | 1.21 | 2500 | 4.2166 | | 3.9742 | 1.45 | 3000 | 4.1365 | | 3.9095 | 1.69 | 3500 | 4.0632 | | 3.8462 | 1.93 | 4000 | 3.9949 | | 3.6761 | 2.17 | 4500 | 3.9718 | | 3.6346 | 2.41 | 5000 | 3.9336 | | 3.613 | 2.65 | 5500 | 3.8883 | | 3.5949 | 2.89 | 6000 | 3.8502 | | 3.4561 | 3.13 | 6500 | 3.8626 | | 3.387 | 3.38 | 7000 | 3.8393 | | 3.3931 | 3.62 | 7500 | 3.8152 | | 3.395 | 3.86 | 8000 | 3.7882 | | 3.2751 | 4.1 | 8500 | 3.8162 | | 3.1697 | 4.34 | 9000 | 3.8117 | | 3.1949 | 4.58 | 9500 | 3.7952 | | 3.1957 | 4.82 | 10000 | 3.7726 | | 3.1301 | 5.06 | 10500 | 3.8013 | | 2.9449 | 5.3 | 11000 | 3.8132 | | 2.9803 | 5.54 | 11500 | 3.8048 | | 2.9921 | 5.79 | 12000 | 3.7903 | | 2.9654 | 6.03 | 12500 | 3.8054 | | 2.7336 | 6.27 | 13000 | 3.8363 | | 2.7653 | 6.51 | 13500 | 3.8379 | | 2.7754 | 6.75 | 14000 | 3.8285 | | 2.777 | 6.99 | 14500 | 3.8186 | | 2.5506 | 7.23 | 15000 | 3.8731 | | 2.5598 | 7.47 | 15500 | 3.8769 | | 2.5731 | 7.71 | 16000 | 3.8768 | | 2.5762 | 7.96 | 16500 | 3.8744 | | 2.4267 | 8.2 | 17000 | 3.9055 | | 2.4121 | 8.44 | 17500 | 3.9110 | | 2.4249 | 8.68 | 18000 | 3.9133 | | 2.4157 | 8.92 | 18500 | 3.9140 | | 2.366 | 9.16 | 19000 | 3.9237 | | 2.3398 | 9.4 | 19500 | 3.9252 | | 2.3398 | 9.64 | 20000 | 3.9263 | | 2.3365 | 9.88 | 20500 | 3.9262 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
edfryo/bangkelser
edfryo
2023-06-25T11:39:27Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-05-09T11:58:00Z
--- license: bigscience-openrail-m ---
jondurbin/airoboros-13b-gpt4-1.4-fp16
jondurbin
2023-06-25T11:39:17Z
1,423
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:jondurbin/airoboros-gpt4-1.4", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-22T10:46:42Z
--- license: other datasets: - jondurbin/airoboros-gpt4-1.4 --- float16 version of https://huggingface.co/jondurbin/airoboros-13b-gpt4-1.4
Ryukijano/DialoGPT_med_model
Ryukijano
2023-06-25T11:38:19Z
118
1
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T12:37:08Z
Hello there , this bot is trained on DialoGTP for an epoch of 45
czz23/journal-setfit-model
czz23
2023-06-25T10:37:43Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-06-25T10:34:44Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # /var/folders/hy/pfb50fjs4zd8cznz_yjwyw8w0000gp/T/tmpg6l_fkqj/czz23/journal-setfit-model This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("/var/folders/hy/pfb50fjs4zd8cznz_yjwyw8w0000gp/T/tmpg6l_fkqj/czz23/journal-setfit-model") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
siddh4rth/fintuned-falcon-7b-truthful-qa
siddh4rth
2023-06-25T10:36:25Z
4
0
peft
[ "peft", "RefinedWebModel", "custom_code", "4-bit", "region:us" ]
null
2023-06-25T09:46:47Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
jiyuanq/falcon-40b-instruct-gptq-128g-act
jiyuanq
2023-06-25T10:35:13Z
14
0
transformers
[ "transformers", "safetensors", "RefinedWeb", "text-generation", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T08:31:32Z
--- library_name: transformers pipeline_tag: text-generation --- falcon-40b-instruct quantized with GPTQ using the script in https://github.com/huggingface/text-generation-inference/pull/438 - group size: 128 - act order: true - nsamples: 128 - dataset: wikitext2
ahishamm/vit-base-HAM-10000-sharpened-patch-32
ahishamm
2023-06-25T10:35:04Z
192
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T10:06:47Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-HAM-10000-sharpened-patch-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-HAM-10000-sharpened-patch-32 This model is a fine-tuned version of [google/vit-base-patch32-224-in21k](https://huggingface.co/google/vit-base-patch32-224-in21k) on the ahishamm/HAM_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.4806 - Accuracy: 0.8369 - Recall: 0.8369 - F1: 0.8369 - Precision: 0.8369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.8099 | 0.2 | 100 | 0.8060 | 0.7247 | 0.7247 | 0.7247 | 0.7247 | | 0.7437 | 0.4 | 200 | 0.7020 | 0.7541 | 0.7541 | 0.7541 | 0.7541 | | 0.7982 | 0.6 | 300 | 0.7352 | 0.7411 | 0.7411 | 0.7411 | 0.7411 | | 0.7646 | 0.8 | 400 | 0.6603 | 0.7626 | 0.7626 | 0.7626 | 0.7626 | | 0.6141 | 1.0 | 500 | 0.6373 | 0.7771 | 0.7771 | 0.7771 | 0.7771 | | 0.5934 | 1.2 | 600 | 0.6141 | 0.7820 | 0.7820 | 0.7820 | 0.7820 | | 0.5524 | 1.4 | 700 | 0.5621 | 0.8030 | 0.8030 | 0.8030 | 0.8030 | | 0.5057 | 1.6 | 800 | 0.6074 | 0.7855 | 0.7855 | 0.7855 | 0.7855 | | 0.5519 | 1.8 | 900 | 0.5486 | 0.7990 | 0.7990 | 0.7990 | 0.7990 | | 0.4784 | 2.0 | 1000 | 0.5382 | 0.8060 | 0.8060 | 0.8060 | 0.8060 | | 0.2592 | 2.2 | 1100 | 0.5237 | 0.8165 | 0.8165 | 0.8165 | 0.8165 | | 0.3872 | 2.4 | 1200 | 0.5345 | 0.8120 | 0.8120 | 0.8120 | 0.8120 | | 0.2506 | 2.59 | 1300 | 0.5061 | 0.8214 | 0.8214 | 0.8214 | 0.8214 | | 0.2907 | 2.79 | 1400 | 0.4940 | 0.8354 | 0.8354 | 0.8354 | 0.8354 | | 0.2436 | 2.99 | 1500 | 0.4806 | 0.8369 | 0.8369 | 0.8369 | 0.8369 | | 0.1472 | 3.19 | 1600 | 0.5231 | 0.8219 | 0.8219 | 0.8219 | 0.8219 | | 0.1441 | 3.39 | 1700 | 0.5452 | 0.8329 | 0.8329 | 0.8329 | 0.8329 | | 0.1327 | 3.59 | 1800 | 0.5410 | 0.8354 | 0.8354 | 0.8354 | 0.8354 | | 0.0615 | 3.79 | 1900 | 0.5473 | 0.8424 | 0.8424 | 0.8424 | 0.8424 | | 0.0943 | 3.99 | 2000 | 0.5490 | 0.8409 | 0.8409 | 0.8409 | 0.8409 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
abhishek-kumar/dreambooth_test
abhishek-kumar
2023-06-25T10:34:42Z
30
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-24T16:02:54Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - abhishek-kumar/output This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Omogo/xlm-roberta-base-finetuned-panx-de
Omogo
2023-06-25T10:27:58Z
124
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-25T07:39:34Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8602627537962806 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1355 - F1: 0.8603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2574 | 1.0 | 525 | 0.1627 | 0.8221 | | 0.1295 | 2.0 | 1050 | 0.1435 | 0.8467 | | 0.0815 | 3.0 | 1575 | 0.1355 | 0.8603 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
TheBloke/orca_mini_3B-GGML
TheBloke
2023-06-25T10:25:04Z
0
59
transformers
[ "transformers", "en", "dataset:psmathur/alpaca_orca", "dataset:psmathur/dolly-v2_orca", "dataset:psmathur/WizardLM_Orca", "arxiv:2306.02707", "license:mit", "region:us" ]
null
2023-06-24T22:33:56Z
--- inference: false license: mit language: - en library_name: transformers datasets: - psmathur/alpaca_orca - psmathur/dolly-v2_orca - psmathur/WizardLM_Orca --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Pankaj Mathur's Orca Mini 3B GGML These files are GGML format model files for [Pankaj Mathur's Orca Mini 3B](https://huggingface.co/psmathur/orca_mini_3b). GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## Repositories available * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/orca_mini_3B-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/psmathur/orca_mini_3b) ## Prompt template: ``` ### System: You are an AI assistant that follows instruction extremely well. Help as much as you can. ### User: prompt ### Response: ``` or ``` ### System: You are an AI assistant that follows instruction extremely well. Help as much as you can. ### User: prompt ### Input: input ### Response: ``` <!-- compatibility_ggml start --> ## Compatibility ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`. These are guaranteed to be compatbile with any UIs, tools and libraries released since late May. ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` These cannot be provided with Open Llama 3B models at this time, due to an issue in llama.cpp. This is being worked on in the llama.cpp repo. More issues here: https://github.com/ggerganov/llama.cpp/issues/1919 Refer to the Provided Files table below to see what files use which methods, and how. <!-- compatibility_ggml end --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | orca-mini-3b.ggmlv3.q4_0.bin | q4_0 | 4 | 1.93 GB | 4.43 GB | Original llama.cpp quant method, 4-bit. | | orca-mini-3b.ggmlv3.q4_1.bin | q4_1 | 4 | 2.14 GB | 4.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | orca-mini-3b.ggmlv3.q5_0.bin | q5_0 | 5 | 2.36 GB | 4.86 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | orca-mini-3b.ggmlv3.q5_1.bin | q5_1 | 5 | 2.57 GB | 5.07 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | orca-mini-3b.ggmlv3.q8_0.bin | q8_0 | 8 | 3.64 GB | 6.14 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 10 -ngl 32 -m orca-mini-3b.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### System:\nYou are an story writing assistant who writes very long, detailed and interesting stories\n\n### User:\nWrite a story about llamas\n\n### Input:\n{input}\n\n### Response:\n" ``` If you're able to use full GPU offloading, you should use `-t 1` to get best performance. If not able to fully offload to GPU, you should use more cores. Change `-t 10` to the number of physical CPU cores you have, or a lower number depending on what gives best performance. Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Pankaj Mathur's Orca Mini 3B # orca_mini_3b An [OpenLLaMa-3B model](https://github.com/openlm-research/open_llama) model trained on explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches. # Dataset We build explain tuned [WizardLM dataset ~70K](https://github.com/nlpxucan/WizardLM), [Alpaca dataset ~52K](https://crfm.stanford.edu/2023/03/13/alpaca.html) & [Dolly-V2 dataset ~15K](https://github.com/databrickslabs/dolly) created using approaches from [Orca Research Paper](https://arxiv.org/abs/2306.02707). We leverage all of the 15 system instructions provided in Orca Research Paper. to generate custom datasets, in contrast to vanilla instruction tuning approaches used by original datasets. This helps student model aka this model to learn ***thought*** process from teacher model, which is ChatGPT (gpt-3.5-turbo-0301 version). Please see below example usage how the **System** prompt is added before each **instruction**. # Training The training configurations are provided in the table below. The training takes on 8x A100(80G) GPUs and lasts for around 4 Hours for cost of $48 using [Lambda Labs](https://lambdalabs.com) We used DeepSpeed with fully sharded data parallelism, also know as [ZeRO stage 3](https://engineering.fb.com/2021/07/15/open-source/fsdp/) by writing our own fine tunning scripts plus leveraging some of the model training code provided by amazing [OpenAlpaca repo](https://github.com/yxuansu/OpenAlpaca) Here are some of params used during training: ||| |:-------------:|:-------------:| |*batch_size*|64| |*train_micro_batch_size_per_gpu*|4| |*gradient_accumulation_steps*|2| |*Learning rate*|2e-5| |*Max length*|1024| |*Epochs*|3| |*Optimizer*|AdamW| # Example Usage Below shows an example on how to use this model ```python import torch from transformers import LlamaForCausalLM, LlamaTokenizer # Hugging Face model_path model_path = 'psmathur/orca_mini_3b' tokenizer = LlamaTokenizer.from_pretrained(model_path) model = LlamaForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map='auto', ) #generate text function def generate_text(system, instruction, input=None): if input: prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" else: prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Response:\n" tokens = tokenizer.encode(prompt) tokens = torch.LongTensor(tokens).unsqueeze(0) tokens = tokens.to('cuda') instance = {'input_ids': tokens,'top_p': 1.0, 'temperature':0.7, 'generate_len': 1024, 'top_k': 50} length = len(tokens[0]) with torch.no_grad(): rest = model.generate( input_ids=tokens, max_length=length+instance['generate_len'], use_cache=True, do_sample=True, top_p=instance['top_p'], temperature=instance['temperature'], top_k=instance['top_k'] ) output = rest[0][length:] string = tokenizer.decode(output, skip_special_tokens=True) return f'[!] Response: {string}' # Sample Test Instruction Used by Youtuber Sam Witteveen https://www.youtube.com/@samwitteveenai system = 'You are an AI assistant that follows instruction extremely well. Help as much as you can.' instruction = 'Write a letter to Sam Altman, CEO of OpenAI, requesting him to convert GPT4 a private model by OpenAI to an open source project' print(generate_text(system, instruction)) ``` ``` [!] Response: Dear Sam Altman, I am writing to request that you convert the GPT4 private model developed by OpenAI to an open source project. As a user of OpenAI, I have been waiting for the day when I can use the advanced natural language processing capabilities of GPT4 in a more open and accessible way. While OpenAI has made significant progress in developing AI applications, it has primarily focused on building private models that are not accessible to the general public. However, with the recent release of GPT-3, there is a growing demand for more open and accessible AI tools. Converting GPT4 to an open source project would allow for greater transparency, collaboration, and innovation. It would also help to build trust in the technology and ensure that it is used ethically and responsibly. I urge you to consider converting GPT4 to an open source project. This would be a significant contribution to the AI community and would help to create a more open and accessible future. Thank you for your consideration. Sincerely, [Your Name] ``` **P.S. I am #opentowork and #collaboration, if you can help, please reach out to me at psmathur.public@gmail.com** Next Goals: 1) Try more data like actually using FLAN-v2, just like Orka Research Paper (I am open for suggestions) 2) Provide more options for Text generation UI. (may be https://github.com/oobabooga/text-generation-webui) 3) Provide 4bit GGML/GPTQ quantized model (may be [TheBloke](https://huggingface.co/TheBloke) can help here) Limitations & Biases: This model can produce factually incorrect output, and should not be relied on to produce factually accurate information. This model was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. Disclaimer: The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. Citiation: If you found wizardlm_alpaca_dolly_orca_open_llama_3b useful in your research or applications, please kindly cite using the following BibTeX: ``` @misc{wizardlm_alpaca_dolly_orca_open_llama_3b, author = {Pankaj Mathur}, title = {wizardlm_alpaca_dolly_orca_open_llama_3b: An explain tuned OpenLLaMA-3b model on custom wizardlm, alpaca, & dolly datasets}, year = {2023}, publisher = {GitHub, HuggingFace}, journal = {GitHub repository, HuggingFace repository}, howpublished = {\url{https://github.com/pankajarm/wizardlm_alpaca_dolly_orca_open_llama_3b}, \url{https://https://huggingface.co/psmathur/wizardlm_alpaca_dolly_orca_open_llama_3b}}, } ``` ``` @software{openlm2023openllama, author = {Xinyang Geng and Hao Liu}, title = {OpenLLaMA: An Open Reproduction of LLaMA}, month = May, year = 2023, url = {https://github.com/openlm-research/open_llama} } ``` ``` @misc{openalpaca, author = {Yixuan Su and Tian Lan and Deng Cai}, title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}}, } ``` ``` @misc{alpaca, author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto }, title = {Stanford Alpaca: An Instruction-following LLaMA model}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}}, } ```
Sp1786/mutliclass-sentiment-analysis-bert
Sp1786
2023-06-25T10:22:55Z
4
0
transformers
[ "transformers", "bert", "code", "text-classification", "en", "dataset:Sp1786/multiclass-sentiment-analysis-dataset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2023-06-21T11:23:59Z
--- license: apache-2.0 datasets: - Sp1786/multiclass-sentiment-analysis-dataset language: - en metrics: - bleu - sacrebleu library_name: transformers pipeline_tag: text-classification tags: - code ---
kbondar17/test-trainer
kbondar17
2023-06-25T10:12:41Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-25T10:06:32Z
--- license: mit tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: test-trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-trainer This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4009 - F1: 0.6363 - Roc Auc: 0.7682 - Accuracy: 0.6079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 125 | 0.2975 | 0.5710 | 0.7129 | 0.4693 | | No log | 2.0 | 250 | 0.3742 | 0.6226 | 0.7621 | 0.6013 | | No log | 3.0 | 375 | 0.4009 | 0.6363 | 0.7682 | 0.6079 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
joohwan/2222333l-gd
joohwan
2023-06-25T10:05:13Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-25T08:10:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: 2222333l-gd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2222333l-gd This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0984 - Wer: 13.1908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0206 | 0.18 | 500 | 0.1634 | 17.8738 | | 0.0496 | 0.36 | 1000 | 0.1403 | 12.4680 | | 0.0516 | 0.54 | 1500 | 0.1123 | 10.2394 | | 0.0755 | 0.72 | 2000 | 0.0984 | 13.1908 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
bogdancazan/t5-small-newsela-biendata-with-domain-adaptation
bogdancazan
2023-06-25T09:45:44Z
106
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T11:56:49Z
training_args = TrainingArguments( output_dir='t5-small-newsela-biendata-with-domain-adaptation', num_train_epochs=20, warmup_steps=250, per_device_train_batch_size=BATCH_SIZE, weight_decay=0.01, learning_rate=2e-4, fp16=True, optim="adafactor", ) Step Training Loss 500 35.466600 1000 25.795400 1500 10.923200 2000 4.515500 TrainOutput(global_step=2320, training_loss=16.92537920721646, metrics={'train_runtime': 628.0033, 'train_samples_per_second': 472.418, 'train_steps_per_second': 3.694, 'total_flos': 0.0, 'train_loss': 16.92537920721646, 'epoch': 20.0})
sd-concepts-library/pokemon-raichu-sd-model
sd-concepts-library
2023-06-25T09:26:29Z
0
0
null
[ "base_model:stabilityai/stable-diffusion-2", "base_model:finetune:stabilityai/stable-diffusion-2", "license:mit", "region:us" ]
null
2023-06-25T09:26:28Z
--- license: mit base_model: stabilityai/stable-diffusion-2 --- ### Pokemon Raichu - SD model on Stable Diffusion This is the `<cat-toy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<cat-toy> 0](https://huggingface.co/sd-concepts-library/pokemon-raichu-sd-model/resolve/main/concept_images/0.jpeg) ![<cat-toy> 1](https://huggingface.co/sd-concepts-library/pokemon-raichu-sd-model/resolve/main/concept_images/1.jpeg) ![<cat-toy> 2](https://huggingface.co/sd-concepts-library/pokemon-raichu-sd-model/resolve/main/concept_images/2.jpeg) ![<cat-toy> 3](https://huggingface.co/sd-concepts-library/pokemon-raichu-sd-model/resolve/main/concept_images/3.jpeg)
ahishamm/vit-base-HAM-10000-sharpened
ahishamm
2023-06-25T09:17:26Z
190
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T08:42:48Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-HAM-10000-sharpened results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-HAM-10000-sharpened This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the ahishamm/HAM_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.4392 - Accuracy: 0.8529 - Recall: 0.8529 - F1: 0.8529 - Precision: 0.8529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.7303 | 0.2 | 100 | 0.7828 | 0.7197 | 0.7197 | 0.7197 | 0.7197 | | 0.7198 | 0.4 | 200 | 0.7519 | 0.7377 | 0.7377 | 0.7377 | 0.7377 | | 0.7519 | 0.6 | 300 | 0.7125 | 0.7541 | 0.7541 | 0.7541 | 0.7541 | | 0.6657 | 0.8 | 400 | 0.6623 | 0.7571 | 0.7571 | 0.7571 | 0.7571 | | 0.5896 | 1.0 | 500 | 0.5964 | 0.7835 | 0.7835 | 0.7835 | 0.7835 | | 0.515 | 1.2 | 600 | 0.5745 | 0.8015 | 0.8015 | 0.8015 | 0.8015 | | 0.4318 | 1.4 | 700 | 0.5061 | 0.8200 | 0.8200 | 0.8200 | 0.8200 | | 0.4299 | 1.6 | 800 | 0.5239 | 0.8075 | 0.8075 | 0.8075 | 0.8075 | | 0.4793 | 1.8 | 900 | 0.5366 | 0.8125 | 0.8125 | 0.8125 | 0.8125 | | 0.4202 | 2.0 | 1000 | 0.4882 | 0.8244 | 0.8244 | 0.8244 | 0.8244 | | 0.2105 | 2.2 | 1100 | 0.5330 | 0.8234 | 0.8234 | 0.8234 | 0.8234 | | 0.2597 | 2.4 | 1200 | 0.4604 | 0.8369 | 0.8369 | 0.8369 | 0.8369 | | 0.2261 | 2.59 | 1300 | 0.4893 | 0.8409 | 0.8409 | 0.8409 | 0.8409 | | 0.1853 | 2.79 | 1400 | 0.4793 | 0.8494 | 0.8494 | 0.8494 | 0.8494 | | 0.1739 | 2.99 | 1500 | 0.4392 | 0.8529 | 0.8529 | 0.8529 | 0.8529 | | 0.0629 | 3.19 | 1600 | 0.4941 | 0.8584 | 0.8584 | 0.8584 | 0.8584 | | 0.0802 | 3.39 | 1700 | 0.4974 | 0.8613 | 0.8613 | 0.8613 | 0.8613 | | 0.0712 | 3.59 | 1800 | 0.5416 | 0.8594 | 0.8594 | 0.8594 | 0.8594 | | 0.0365 | 3.79 | 1900 | 0.5318 | 0.8574 | 0.8574 | 0.8574 | 0.8574 | | 0.0591 | 3.99 | 2000 | 0.5344 | 0.8574 | 0.8574 | 0.8574 | 0.8574 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
melowhy/whyde
melowhy
2023-06-25T09:15:10Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-06-25T09:15:10Z
--- license: bigscience-openrail-m ---
Ellbendls/Pixelcopter-PLE-v0
Ellbendls
2023-06-25T09:09:39Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-23T12:37:16Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 62.70 +/- 42.68 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
RoundtTble/dinov2_vits14_onnx
RoundtTble
2023-06-25T08:20:24Z
0
0
null
[ "onnx", "region:us" ]
null
2023-06-24T07:10:50Z
# dinov2_vits14 ## ONNX Model Check this [PR](https://github.com/facebookresearch/dinov2/pull/129). ## Run Run triton container. ``` make triton ``` ``` docker logs dinov2_vits14_triton ============================= == Triton Inference Server == ============================= NVIDIA Release 23.04 (build 58408265) Triton Server Version 2.33.0 Copyright (c) 2018-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES. All rights reserved. This container image and its contents are governed by the NVIDIA Deep Learning Container License. By pulling and using the container, you accept the terms and conditions of this license: https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license WARNING: CUDA Minor Version Compatibility mode ENABLED. Using driver version 525.105.17 which has support for CUDA 12.0. This container was built with CUDA 12.1 and will be run in Minor Version Compatibility mode. CUDA Forward Compatibility is preferred over Minor Version Compatibility for use with this container but was unavailable: [[Forward compatibility was attempted on non supported HW (CUDA_ERROR_COMPAT_NOT_SUPPORTED_ON_DEVICE) cuInit()=804]] See https://docs.nvidia.com/deploy/cuda-compatibility/ for details. I0625 08:05:36.712010 1 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7f6c46000000' with size 268435456 I0625 08:05:36.712625 1 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864 I0625 08:05:36.717785 1 model_lifecycle.cc:459] loading: dinov2_vits14:1 I0625 08:05:36.723707 1 onnxruntime.cc:2504] TRITONBACKEND_Initialize: onnxruntime I0625 08:05:36.723725 1 onnxruntime.cc:2514] Triton TRITONBACKEND API version: 1.12 I0625 08:05:36.723731 1 onnxruntime.cc:2520] 'onnxruntime' TRITONBACKEND API version: 1.12 I0625 08:05:36.723735 1 onnxruntime.cc:2550] backend configuration: {"cmdline":{"auto-complete-config":"true","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","default-max-batch-size":"4"}} I0625 08:05:36.770311 1 onnxruntime.cc:2608] TRITONBACKEND_ModelInitialize: dinov2_vits14 (version 1) I0625 08:05:36.770781 1 onnxruntime.cc:666] skipping model configuration auto-complete for 'dinov2_vits14': inputs and outputs already specified I0625 08:05:36.771205 1 onnxruntime.cc:2651] TRITONBACKEND_ModelInstanceInitialize: dinov2_vits14_0 (GPU device 0) 2023-06-25 08:05:37.157976034 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 465, index: 122, mask: {125, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.158142138 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 466, index: 123, mask: {62, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.158159030 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 467, index: 124, mask: {126, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.158174259 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 468, index: 125, mask: {63, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.165944431 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 344, index: 1, mask: {1, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.158230084 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 469, index: 126, mask: {127, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.169979079 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 347, index: 4, mask: {66, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.169927531 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 345, index: 2, mask: {65, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.169954703 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 346, index: 3, mask: {2, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.173982388 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 350, index: 7, mask: {4, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.173929448 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 348, index: 5, mask: {3, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.173954065 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 349, index: 6, mask: {67, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.181926759 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 351, index: 8, mask: {68, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.185932583 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 352, index: 9, mask: {5, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.189924821 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 353, index: 10, mask: {69, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.193940975 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 464, index: 121, mask: {61, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.194020786 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 357, index: 14, mask: {71, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.193940915 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 354, index: 11, mask: {6, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.193968147 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 355, index: 12, mask: {70, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.193992072 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 356, index: 13, mask: {7, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.197974211 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 360, index: 17, mask: {9, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.197928554 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 358, index: 15, mask: {8, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.197950686 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 359, index: 16, mask: {72, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.201924259 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 361, index: 18, mask: {73, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.205931957 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 362, index: 19, mask: {10, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.209926179 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 363, index: 20, mask: {74, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.213927705 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 364, index: 21, mask: {11, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.217799496 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 365, index: 22, mask: {75, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.217849460 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 366, index: 23, mask: {12, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.221966294 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 367, index: 24, mask: {76, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.221966304 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 463, index: 120, mask: {124, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.225931100 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 462, index: 119, mask: {60, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.225933645 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 368, index: 25, mask: {13, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.229929350 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 369, index: 26, mask: {77, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.233930445 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 370, index: 27, mask: {14, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.233930525 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 461, index: 118, mask: {123, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.237930518 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 371, index: 28, mask: {78, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.241927085 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 372, index: 29, mask: {15, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.245926977 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 373, index: 30, mask: {79, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.249931199 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 374, index: 31, mask: {16, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.253927515 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 375, index: 32, mask: {80, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.257925694 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 376, index: 33, mask: {17, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.261929715 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 377, index: 34, mask: {81, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.265966397 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 378, index: 35, mask: {18, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.269926725 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 379, index: 36, mask: {82, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.273931337 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 380, index: 37, mask: {19, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.281941021 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 381, index: 38, mask: {83, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.282017776 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 398, index: 55, mask: {28, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.282038465 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 382, index: 39, mask: {20, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.282090914 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 383, index: 40, mask: {84, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.286235010 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 385, index: 42, mask: {85, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.285955121 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 401, index: 58, mask: {93, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.282070957 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 399, index: 56, mask: {92, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.286082321 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 384, index: 41, mask: {21, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.285929422 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 400, index: 57, mask: {29, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.293926803 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 405, index: 62, mask: {95, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289931018 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 402, index: 59, mask: {30, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289956767 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 403, index: 60, mask: {94, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.301929004 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 388, index: 45, mask: {23, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289975973 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 404, index: 61, mask: {31, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.294054945 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 406, index: 63, mask: {32, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.294078880 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 407, index: 64, mask: {96, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.314023441 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 409, index: 66, mask: {97, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289931068 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 386, index: 43, mask: {22, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.318030297 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 411, index: 68, mask: {98, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289956797 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 387, index: 44, mask: {86, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.301929014 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 408, index: 65, mask: {33, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.314096058 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 410, index: 67, mask: {34, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.334030890 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 414, index: 71, mask: {36, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.305931271 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 389, index: 46, mask: {87, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321929038 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 390, index: 47, mask: {24, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321948134 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 391, index: 48, mask: {88, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321965006 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 392, index: 49, mask: {25, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321981437 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 393, index: 50, mask: {89, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321996396 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 394, index: 51, mask: {26, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322012065 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 395, index: 52, mask: {90, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322026713 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 396, index: 53, mask: {27, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322049907 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 397, index: 54, mask: {91, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322065276 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 460, index: 117, mask: {59, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322080735 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 425, index: 82, mask: {105, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322096315 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 426, index: 83, mask: {42, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322112155 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 427, index: 84, mask: {106, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322127053 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 428, index: 85, mask: {43, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322143324 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 429, index: 86, mask: {107, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322157170 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 430, index: 87, mask: {44, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322173340 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 431, index: 88, mask: {108, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322188569 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 432, index: 89, mask: {45, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322205311 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 433, index: 90, mask: {109, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322219938 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 434, index: 91, mask: {46, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322235177 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 435, index: 92, mask: {110, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322249955 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 436, index: 93, mask: {47, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322267158 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 437, index: 94, mask: {111, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322281345 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 438, index: 95, mask: {48, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322296904 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 439, index: 96, mask: {112, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322312113 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 440, index: 97, mask: {49, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322329005 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 441, index: 98, mask: {113, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322343652 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 442, index: 99, mask: {50, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322359492 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 443, index: 100, mask: {114, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322377907 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 444, index: 101, mask: {51, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322393366 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 445, index: 102, mask: {115, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322408725 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 446, index: 103, mask: {52, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322423233 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 447, index: 104, mask: {116, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322437289 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 448, index: 105, mask: {53, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322453440 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 449, index: 106, mask: {117, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322467697 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 450, index: 107, mask: {54, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322483076 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 451, index: 108, mask: {118, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322496812 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 452, index: 109, mask: {55, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.445929743 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 417, index: 74, mask: {101, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322511880 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 453, index: 110, mask: {119, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322525526 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 454, index: 111, mask: {56, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322541977 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 455, index: 112, mask: {120, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.454013818 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 422, index: 79, mask: {40, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322555663 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 456, index: 113, mask: {57, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.457932126 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 423, index: 80, mask: {104, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322571683 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 457, index: 114, mask: {121, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322585920 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 458, index: 115, mask: {58, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.318158029 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 412, index: 69, mask: {35, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.334163851 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 415, index: 72, mask: {100, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.341919085 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 416, index: 73, mask: {37, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.323408365 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 413, index: 70, mask: {99, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.453923387 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 418, index: 75, mask: {38, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.453947493 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 419, index: 76, mask: {102, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.453965727 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 420, index: 77, mask: {39, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.453991656 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 421, index: 78, mask: {103, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.458087059 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 424, index: 81, mask: {41, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.585007204 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 459, index: 116, mask: {122, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:38.570069572 [W:onnxruntime:, session_state.cc:1136 VerifyEachNodeIsAssignedToAnEp] Some nodes were not assigned to the preferred execution providers which may or may not have an negative impact on performance. e.g. ORT explicitly assigns shape related ops to CPU to improve perf. 2023-06-25 08:05:38.570088387 [W:onnxruntime:, session_state.cc:1138 VerifyEachNodeIsAssignedToAnEp] Rerunning with verbose output on a non-minimal build will show node assignments. I0625 08:05:39.975559 1 model_lifecycle.cc:694] successfully loaded 'dinov2_vits14' version 1 I0625 08:05:39.975625 1 server.cc:583] +------------------+------+ | Repository Agent | Path | +------------------+------+ +------------------+------+ I0625 08:05:39.975662 1 server.cc:610] +-------------+-----------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Backend | Path | Config | +-------------+-----------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+ | onnxruntime | /opt/tritonserver/backends/onnxruntime/libtriton_onnxruntime.so | {"cmdline":{"auto-complete-config":"true","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","default-max-batch-size":"4"}} | +-------------+-----------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+ I0625 08:05:39.975683 1 server.cc:653] +---------------+---------+--------+ | Model | Version | Status | +---------------+---------+--------+ | dinov2_vits14 | 1 | READY | +---------------+---------+--------+ I0625 08:05:39.991510 1 metrics.cc:808] Collecting metrics for GPU 0: NVIDIA GeForce RTX 3090 I0625 08:05:39.992145 1 metrics.cc:701] Collecting CPU metrics I0625 08:05:39.992360 1 tritonserver.cc:2387] +----------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Option | Value | +----------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | server_id | triton | | server_version | 2.33.0 | | server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data parameters statistics trace logging | | model_repository_path[0] | /models | | model_control_mode | MODE_NONE | | strict_model_config | 0 | | rate_limit | OFF | | pinned_memory_pool_byte_size | 268435456 | | cuda_memory_pool_byte_size{0} | 67108864 | | min_supported_compute_capability | 6.0 | | strict_readiness | 1 | | exit_timeout | 30 | | cache_enabled | 0 | +----------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ I0625 08:05:39.993603 1 grpc_server.cc:2450] Started GRPCInferenceService at 0.0.0.0:8001 I0625 08:05:39.993771 1 http_server.cc:3555] Started HTTPService at 0.0.0.0:8000 I0625 08:05:40.034678 1 http_server.cc:185] Started Metrics Service at 0.0.0.0:8002 ``` Perf analyzer `dinov2_vits14` ``` make perf ``` ``` docker run --gpus all --rm -it --net host nvcr.io/nvidia/tritonserver:23.04-py3-sdk perf_analyzer -m dinov2_vits14 --percentile=95 -i grpc -u 0.0.0.0:8001 --concurrency-range 16:16 --shape input:3,280,280 ================================= == Triton Inference Server SDK == ================================= NVIDIA Release 23.04 (build 58408269) Copyright (c) 2018-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES. All rights reserved. This container image and its contents are governed by the NVIDIA Deep Learning Container License. By pulling and using the container, you accept the terms and conditions of this license: https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license WARNING: CUDA Minor Version Compatibility mode ENABLED. Using driver version 525.105.17 which has support for CUDA 12.0. This container was built with CUDA 12.1 and will be run in Minor Version Compatibility mode. CUDA Forward Compatibility is preferred over Minor Version Compatibility for use with this container but was unavailable: [[Forward compatibility was attempted on non supported HW (CUDA_ERROR_COMPAT_NOT_SUPPORTED_ON_DEVICE) cuInit()=804]] See https://docs.nvidia.com/deploy/cuda-compatibility/ for details. *** Measurement Settings *** Batch size: 1 Service Kind: Triton Using "time_windows" mode for stabilization Measurement window: 5000 msec Latency limit: 0 msec Concurrency limit: 16 concurrent requests Using synchronous calls for inference Stabilizing using p95 latency Request concurrency: 16 Client: Request count: 9403 Throughput: 522.33 infer/sec p50 latency: 30482 usec p90 latency: 32100 usec p95 latency: 32564 usec p99 latency: 34203 usec Avg gRPC time: 30589 usec ((un)marshal request/response 93 usec + response wait 30496 usec) Server: Inference count: 9403 Execution count: 1177 Successful request count: 9403 Avg request latency: 24295 usec (overhead 220 usec + queue 9042 usec + compute input 1511 usec + compute infer 13485 usec + compute output 37 usec) Inferences/Second vs. Client p95 Batch Latency Concurrency: 16, throughput: 522.33 infer/sec, latency 32564 usec ```
joohwan/whisper-small-gd
joohwan
2023-06-25T08:10:27Z
79
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-25T05:51:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-gd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-gd This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1180 - Wer: 14.2298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0723 | 0.09 | 250 | 0.2013 | 22.6924 | | 0.044 | 0.18 | 500 | 0.1826 | 27.3905 | | 0.1209 | 0.27 | 750 | 0.1705 | 27.2700 | | 0.0973 | 0.36 | 1000 | 0.1462 | 15.1182 | | 0.0941 | 0.45 | 1250 | 0.1322 | 15.6603 | | 0.076 | 0.54 | 1500 | 0.1258 | 18.3557 | | 0.0967 | 0.63 | 1750 | 0.1203 | 14.8020 | | 0.0757 | 0.72 | 2000 | 0.1180 | 14.2298 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Vrushali/model-t5
Vrushali
2023-06-25T08:01:42Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T07:25:22Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: model-t5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model-t5 This model is a fine-tuned version of [Vrushali/model-t5](https://huggingface.co/Vrushali/model-t5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 38 | 0.0016 | | No log | 2.0 | 76 | 0.0000 | | No log | 3.0 | 114 | 0.0000 | | No log | 4.0 | 152 | 0.0000 | | No log | 5.0 | 190 | 0.0000 | | No log | 6.0 | 228 | 0.0000 | | No log | 7.0 | 266 | 0.0000 | | No log | 8.0 | 304 | 0.0000 | | No log | 9.0 | 342 | 0.0000 | | No log | 10.0 | 380 | 0.0000 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Lajonbot/stablelm-base-alpha-3b-instruct-pl-lora
Lajonbot
2023-06-25T07:37:23Z
0
0
null
[ "tensorboard", "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:openrail", "region:us" ]
null
2023-06-15T06:13:44Z
--- license: openrail datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish language: - pl ---
Lajonbot/polish-gpt2-small-instruct
Lajonbot
2023-06-25T07:36:40Z
114
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:openrail", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-20T19:33:30Z
--- license: openrail datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish language: - pl ---
Davlan/xlm-roberta-base-wikiann-ner
Davlan
2023-06-25T07:32:38Z
158
6
transformers
[ "transformers", "pytorch", "tf", "safetensors", "xlm-roberta", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - ar - as - bn - ca - en - es - eu - fr - gu - hi - id - ig - mr - pa - pt - sw - ur - vi - yo - zh - multilingual datasets: - wikiann --- # xlm-roberta-base-wikiann-ner ## Model description **xlm-roberta-base-wikiann-ner** is the first **Named Entity Recognition** model for 20 languages (Arabic, Assamese, Bengali, Catalan, English, Spanish, Basque, French, Gujarati, Hindi, Indonesia, Igbo, Marathi, Punjabi, Portugues and Swahili, Urdu, Vietnamese, Yoruba, Chinese) based on a fine-tuned XLM-RoBERTa large model. It achieves the **state-of-the-art performance** for the NER task. It has been trained to recognize three types of entities: location (LOC), organizations (ORG), and person (PER). Specifically, this model is a *xlm-roberta-large* model that was fine-tuned on an aggregation of languages datasets obtained from [WikiANN](https://huggingface.co/datasets/wikiann) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base-wikiann-ner") model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-base-wikiann-ner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Ìbọn ń ró kù kù gẹ́gẹ́ bí ọwọ́ ọ̀pọ̀ aráàlù ṣe tẹ ìbọn ní Kyiv láti dojú kọ Russia" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on 20 NER datasets (Arabic, Assamese, Bengali, Catalan, English, Spanish, Basque, French, Gujarati, Hindi, Indonesia, Igbo, Marathi, Punjabi, Portugues and Swahili, Urdu, Vietnamese, Yoruba, Chinese)[wikiann](https://huggingface.co/datasets/wikiann). The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location ### BibTeX entry and citation info ```
Davlan/xlm-roberta-base-finetuned-arabic
Davlan
2023-06-25T07:14:04Z
2,187
1
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-25T19:06:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: ar_xlmr-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ar_xlmr-base This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.7.1+cu110 - Datasets 1.16.1 - Tokenizers 0.12.1
Davlan/xlm-roberta-large-finetuned-igbo
Davlan
2023-06-25T07:13:52Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-25T18:59:29Z
--- tags: - generated_from_trainer model-index: - name: ibo_xlmr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ibo_xlmr This model is a fine-tuned version of [models/ibo_xlmr/](https://huggingface.co/models/ibo_xlmr/) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.9762 - eval_runtime: 31.9667 - eval_samples_per_second: 32.471 - eval_steps_per_second: 4.067 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.21.1 - Pytorch 1.7.1+cu110 - Datasets 1.16.1 - Tokenizers 0.12.1
Davlan/byt5-base-eng-yor-mt
Davlan
2023-06-25T07:13:35Z
147
2
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "arxiv:2103.08647", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # byt5-base-eng-yor-mt ## Model description **byt5-base-eng-yor-mt** is a **machine translation** model from English language to Yorùbá language based on a fine-tuned byt5-base model. It establishes a **strong baseline** for automatically translating texts from English to Yorùbá. Specifically, this model is a *byt5-base* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) #### Limitations and bias This model is limited by its training dataset. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on NVIDIA V100 GPU ## Eval results on Test set (BLEU score) Fine-tuning byt5-base achieves **12.23 BLEU** on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) while mt5-base achieves 9.82 ### BibTeX entry and citation info By David Adelani ``` ```
Davlan/xlm-roberta-base-finetuned-english
Davlan
2023-06-25T07:13:11Z
112
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "fill-mask", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: apache-2.0 ---
Davlan/xlm-roberta-large-masakhaner
Davlan
2023-06-25T07:12:21Z
135
2
transformers
[ "transformers", "pytorch", "tf", "safetensors", "xlm-roberta", "token-classification", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - amh - hau - ibo - kin - lug - luo - pcm - swa - wol - yor - multilingual datasets: - masakhaner --- # xlm-roberta-large-masakhaner ## Model description **xlm-roberta-large-masakhaner** is the first **Named Entity Recognition** model for 10 African languages (Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahili, Wolof, and Yorùbá) based on a fine-tuned XLM-RoBERTa large model. It achieves the **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: dates & times (DATE), location (LOC), organizations (ORG), and person (PER). Specifically, this model is a *xlm-roberta-large* model that was fine-tuned on an aggregation of African language datasets obtained from Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("Davlan/xlm-roberta-large-masakhaner") model = AutoModelForTokenClassification.from_pretrained("Davlan/xlm-roberta-large-masakhaner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on 10 African NER datasets (Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahili, Wolof, and Yorùbá) Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location ## Training procedure This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original MasakhaNER paper](https://arxiv.org/abs/2103.11811) which trained & evaluated the model on MasakhaNER corpus. ## Eval results on Test set (F-score) language|F1-score -|- amh |75.76 hau |91.75 ibo |86.26 kin |76.38 lug |84.64 luo |80.65 pcm |89.55 swa |89.48 wol |70.70 yor |82.05 ### BibTeX entry and citation info ``` @article{adelani21tacl, title = {Masakha{NER}: Named Entity Recognition for African Languages}, author = {David Ifeoluwa Adelani and Jade Abbott and Graham Neubig and Daniel D'souza and Julia Kreutzer and Constantine Lignos and Chester Palen-Michel and Happy Buzaaba and Shruti Rijhwani and Sebastian Ruder and Stephen Mayhew and Israel Abebe Azime and Shamsuddeen Muhammad and Chris Chinenye Emezue and Joyce Nakatumba-Nabende and Perez Ogayo and Anuoluwapo Aremu and Catherine Gitau and Derguene Mbaye and Jesujoba Alabi and Seid Muhie Yimam and Tajuddeen Gwadabe and Ignatius Ezeani and Rubungo Andre Niyongabo and Jonathan Mukiibi and Verrah Otiende and Iroro Orife and Davis David and Samba Ngom and Tosin Adewumi and Paul Rayson and Mofetoluwa Adeyemi and Gerald Muriuki and Emmanuel Anebi and Chiamaka Chukwuneke and Nkiruka Odu and Eric Peter Wairagala and Samuel Oyerinde and Clemencia Siro and Tobius Saul Bateesa and Temilola Oloyede and Yvonne Wambui and Victor Akinode and Deborah Nabagereka and Maurice Katusiime and Ayodele Awokoya and Mouhamadane MBOUP and Dibora Gebreyohannes and Henok Tilaye and Kelechi Nwaike and Degaga Wolde and Abdoulaye Faye and Blessing Sibanda and Orevaoghene Ahia and Bonaventure F. P. Dossou and Kelechi Ogueji and Thierno Ibrahima DIOP and Abdoulaye Diallo and Adewale Akinfaderin and Tendai Marengereke and Salomey Osei}, journal = {Transactions of the Association for Computational Linguistics (TACL)}, month = {}, url = {https://arxiv.org/abs/2103.11811}, year = {2021} } ```
NasimB/gpt2-dp-mod-aochild-10chars
NasimB
2023-06-25T06:53:44Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T03:14:38Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-dp-mod-aochild-10chars results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-dp-mod-aochild-10chars This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.4173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7077 | 0.27 | 500 | 5.6423 | | 5.3468 | 0.54 | 1000 | 5.2154 | | 5.0042 | 0.8 | 1500 | 4.9608 | | 4.7637 | 1.07 | 2000 | 4.7969 | | 4.5583 | 1.34 | 2500 | 4.6931 | | 4.4721 | 1.61 | 3000 | 4.5939 | | 4.3855 | 1.88 | 3500 | 4.5049 | | 4.218 | 2.15 | 4000 | 4.4679 | | 4.1202 | 2.41 | 4500 | 4.4175 | | 4.105 | 2.68 | 5000 | 4.3697 | | 4.0733 | 2.95 | 5500 | 4.3257 | | 3.8601 | 3.22 | 6000 | 4.3344 | | 3.8504 | 3.49 | 6500 | 4.3033 | | 3.8507 | 3.76 | 7000 | 4.2759 | | 3.8215 | 4.02 | 7500 | 4.2709 | | 3.5828 | 4.29 | 8000 | 4.2887 | | 3.6183 | 4.56 | 8500 | 4.2711 | | 3.6264 | 4.83 | 9000 | 4.2489 | | 3.5136 | 5.1 | 9500 | 4.2794 | | 3.3547 | 5.36 | 10000 | 4.2895 | | 3.383 | 5.63 | 10500 | 4.2727 | | 3.3982 | 5.9 | 11000 | 4.2594 | | 3.2002 | 6.17 | 11500 | 4.3133 | | 3.1199 | 6.44 | 12000 | 4.3184 | | 3.1483 | 6.71 | 12500 | 4.3123 | | 3.1516 | 6.97 | 13000 | 4.3013 | | 2.9083 | 7.24 | 13500 | 4.3587 | | 2.9076 | 7.51 | 14000 | 4.3641 | | 2.9176 | 7.78 | 14500 | 4.3616 | | 2.8855 | 8.05 | 15000 | 4.3806 | | 2.7292 | 8.32 | 15500 | 4.3978 | | 2.7443 | 8.58 | 16000 | 4.4023 | | 2.7445 | 8.85 | 16500 | 4.4046 | | 2.702 | 9.12 | 17000 | 4.4125 | | 2.6515 | 9.39 | 17500 | 4.4159 | | 2.6552 | 9.66 | 18000 | 4.4170 | | 2.6529 | 9.92 | 18500 | 4.4173 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
weykon/text-to-svg-cat
weykon
2023-06-25T06:43:11Z
0
0
null
[ "license:wtfpl", "region:us" ]
null
2023-06-25T06:20:24Z
--- license: wtfpl --- Note that if your files are larger than 5GB you’ll also need to run: 请注意,如果您的文件大于 5GB,您还需要运行: Copied huggingface-cli lfs-enable-largefiles . ## git push problem set git push url to https://USER:TOKEN@huggingface.co/~~~~~~~
zanafi/sentiment_model
zanafi
2023-06-25T06:31:04Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "dataset:indonlu", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-23T06:53:10Z
--- license: mit tags: - generated_from_trainer datasets: - indonlu metrics: - accuracy - precision - recall - f1 model-index: - name: sentiment_model results: - task: name: Text Classification type: text-classification dataset: name: indonlu type: indonlu config: emot split: validation args: emot metrics: - name: Accuracy type: accuracy value: 0.7363636363636363 - name: Precision type: precision value: 0.7397155596092384 - name: Recall type: recall value: 0.7459489407651173 - name: F1 type: f1 value: 0.741920437379511 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_model This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the indonlu dataset. It achieves the following results on the evaluation set: - Loss: 0.7788 - Accuracy: 0.7364 - Precision: 0.7397 - Recall: 0.7459 - F1: 0.7419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.1939 | 1.0 | 221 | 0.8261 | 0.6932 | 0.7203 | 0.7034 | 0.7056 | | 0.6866 | 2.0 | 442 | 0.7925 | 0.725 | 0.7378 | 0.7377 | 0.7346 | | 0.4791 | 3.0 | 663 | 0.7788 | 0.7364 | 0.7397 | 0.7459 | 0.7419 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
sukantan/all-mpnet-base-v2-ftlegal-v3
sukantan
2023-06-25T06:20:52Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "dataset:sukantan/nyaya-st-training", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-25T06:20:46Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity datasets: - sukantan/nyaya-st-training --- # sukantan/all-mpnet-base-v2-ftlegal-v3 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sukantan/all-mpnet-base-v2-ftlegal-v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sukantan/all-mpnet-base-v2-ftlegal-v3) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 391 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MegaBatchMarginLoss.MegaBatchMarginLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 391, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
nolanaatama/mlycrsrvc750pchsvrs
nolanaatama
2023-06-25T05:19:58Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T04:47:27Z
--- license: creativeml-openrail-m ---
Gayathri142214002/t5_qg_1
Gayathri142214002
2023-06-25T04:58:01Z
161
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T04:53:50Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5_qg_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_qg_1 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.658 | 0.69 | 10 | 1.9854 | | 1.7442 | 1.38 | 20 | 1.6146 | | 1.3456 | 2.07 | 30 | 1.3937 | | 0.9931 | 2.76 | 40 | 1.2447 | | 0.9253 | 3.45 | 50 | 1.1519 | | 0.7154 | 4.14 | 60 | 1.0958 | | 0.6624 | 4.83 | 70 | 1.0645 | | 0.6384 | 5.52 | 80 | 1.0412 | | 0.4889 | 6.21 | 90 | 1.0323 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
ardhies/CuteAsianFace
ardhies
2023-06-25T04:10:18Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T04:06:53Z
--- license: creativeml-openrail-m ---
Laurie/baichuan-7b-qlora-moss
Laurie
2023-06-25T04:06:12Z
5
0
peft
[ "peft", "text-generation", "zh", "en", "dataset:fnlp/moss-003-sft-data", "license:apache-2.0", "region:us" ]
text-generation
2023-06-25T03:38:18Z
--- library_name: peft license: apache-2.0 datasets: - fnlp/moss-003-sft-data language: - zh - en pipeline_tag: text-generation --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0 ## 使用方法 git clone https://huggingface.co/Laurie/baichuan-7b-qlora-moss cd baichuan-7b-qlora-moss python src/web_demo.py \ --model_name_or_path baichuan-inc/baichuan-7B \ --checkpoint_dir .
andrewromitti/alzheimer_model_aug_deit5
andrewromitti
2023-06-25T03:58:45Z
193
1
transformers
[ "transformers", "pytorch", "deit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T02:14:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: alzheimer_model_aug_deit5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9996875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # alzheimer_model_aug_deit5 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0012 - Accuracy: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 1234 - gradient_accumulation_steps: 10 - total_train_batch_size: 160 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5045 | 1.0 | 212 | 0.1414 | 0.9522 | | 0.0779 | 2.0 | 424 | 0.0222 | 0.9961 | | 0.0156 | 3.0 | 637 | 0.0164 | 0.9941 | | 0.0032 | 4.0 | 849 | 0.0044 | 0.9983 | | 0.0004 | 4.99 | 1060 | 0.0012 | 0.9997 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
CJacobnriia/spatnzRVC
CJacobnriia
2023-06-25T03:56:17Z
0
0
null
[ "en", "region:us" ]
null
2023-06-25T01:52:32Z
--- language: - en --- This is an RVC model of spatnz (https://www.youtube.com/channel/UCcNPbOeFo-qM0wpis8Lwdig) ![spatnz.png](https://huggingface.co/CJacobnriia/spatnzRVC/resolve/main/spatnz.png)