modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 00:42:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
553 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 00:42:38
card
stringlengths
11
1.01M
Philophilae/xlm-roberta-base-finetuned-panx-de-fr
Philophilae
2023-08-24T09:04:40Z
107
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-24T08:52:33Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1592 - F1: 0.8533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 358 | 0.1775 | 0.8293 | | 0.2368 | 2.0 | 716 | 0.1624 | 0.8403 | | 0.2368 | 3.0 | 1074 | 0.1592 | 0.8533 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.0 - Datasets 1.16.1 - Tokenizers 0.13.3
JessicaHsu/a2c-PandaReachDense-v2
JessicaHsu
2023-08-24T08:59:46Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-03-08T08:12:49Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.44 +/- 0.75 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
Jasper881108/chatglm-rm-lora-delta
Jasper881108
2023-08-24T08:57:55Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-24T08:57:53Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
EmirhanExecute/ppo-LunarLander-try2
EmirhanExecute
2023-08-24T08:56:49Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-24T08:56:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.15 +/- 15.93 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nomsgadded/Translation
nomsgadded
2023-08-24T08:52:26Z
104
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "en", "fr", "dataset:opus_books", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-24T08:13:12Z
--- language: - en - fr license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - opus_books model-index: - name: Translation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Translation This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_books en-fr dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
922-CA/negev-gfl-rvc2-tests
922-CA
2023-08-24T08:51:21Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-08-22T08:46:16Z
--- license: openrail --- Test RVC2 models on the GFL character Negev, via various hyperparams and datasets. # negev-test-0 (~07/2023) * Trained on dataset of ~30 items, dialogue from game * Trained for ~100 epochs * First attempt # negev-test-1 - nne1_e10_s150 (08/22/2023) * Trained on dataset of ~30 items, dialogue from game * Trained for 10 epochs (150 steps) * Less artifacting but with accent # negev-test-1 - nne1_e60_s900 (08/22/2023) * Trained on dataset of ~30 items, dialogue from game * Trained for 60 epochs (900 steps) * Tends to be clearer and with less accent
malanevans/dqn-SpaceInvadersNoFrameskip-v4
malanevans
2023-08-24T08:48:50Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-24T08:48:15Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 615.50 +/- 113.10 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga malanevans -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga malanevans -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga malanevans ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
ahmedtremo/image-gen-v2
ahmedtremo
2023-08-24T08:38:47Z
2
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-22T13:08:29Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of GenNext logo tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
amazon/sm-hackathon-actionability-9-multi-outputs-setfit-all-distilroberta-model-v0.1
amazon
2023-08-24T08:36:30Z
187
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-24T08:36:24Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # amazon/sm-hackathon-actionability-9-multi-outputs-setfit-all-distilroberta-model-v0.1 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("amazon/sm-hackathon-actionability-9-multi-outputs-setfit-all-distilroberta-model-v0.1") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
bigmorning/train_from_raw_cv12__0015
bigmorning
2023-08-24T08:33:31Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-24T08:33:23Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: train_from_raw_cv12__0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # train_from_raw_cv12__0015 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: nan - Train Accuracy: 0.0032 - Train Wermet: 8.3902 - Validation Loss: nan - Validation Accuracy: 0.0032 - Validation Wermet: 8.3902 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | nan | 0.0032 | 8.3778 | nan | 0.0032 | 8.3902 | 0 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 1 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 2 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 3 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 4 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 5 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 6 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 7 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 8 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 9 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 10 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 11 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 12 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 13 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 14 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
RajuEEE/RewardModelForQuestionAnswering_GPT2_Classify
RajuEEE
2023-08-24T08:28:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-24T08:28:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
lordhiew/myfirsttrain
lordhiew
2023-08-24T08:25:44Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-28T07:25:03Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/train_from_raw_cv12__0010
bigmorning
2023-08-24T08:12:54Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-24T08:12:46Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: train_from_raw_cv12__0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # train_from_raw_cv12__0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: nan - Train Accuracy: 0.0032 - Train Wermet: 8.3902 - Validation Loss: nan - Validation Accuracy: 0.0032 - Validation Wermet: 8.3902 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | nan | 0.0032 | 8.3778 | nan | 0.0032 | 8.3902 | 0 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 1 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 2 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 3 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 4 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 5 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 6 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 7 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 8 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 9 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
raygx/distilGPT-NepSA
raygx
2023-08-24T08:12:30Z
71
0
transformers
[ "transformers", "tf", "gpt2", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-13T04:59:50Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilGPT-NepSA results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilGPT-NepSA This model is a fine-tuned version of [raygx/distilGPT-Nepali](https://huggingface.co/raygx/distilGPT-Nepali) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6068 - Validation Loss: 0.6592 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.04} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.8415 | 0.7254 | 0 | | 0.6068 | 0.6592 | 1 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.11.0 - Datasets 2.1.0 - Tokenizers 0.13.3
amazon/sm-hackathon-actionability-9-multi-outputs-setfit-all-roberta-large-model-v0.1
amazon
2023-08-24T08:10:03Z
27
1
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-24T08:09:30Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # amazon/sm-hackathon-actionability-9-multi-outputs-setfit-all-roberta-large-model-v0.1 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("amazon/sm-hackathon-actionability-9-multi-outputs-setfit-all-roberta-large-model-v0.1") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
aware-ai/wav2vec2-base-german
aware-ai
2023-08-24T08:01:53Z
104
2
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_10_0", "generated_from_trainer", "de", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-01T19:46:01Z
--- language: - de tags: - automatic-speech-recognition - mozilla-foundation/common_voice_10_0 - generated_from_trainer model-index: - name: wav2vec2-base-german results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-german This model is a fine-tuned version of [wav2vec2-base-german](https://huggingface.co/wav2vec2-base-german) on the MOZILLA-FOUNDATION/COMMON_VOICE_10_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.9302 - Wer: 0.7428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8427 | 1.0 | 451 | 1.0878 | 0.8091 | | 0.722 | 2.0 | 902 | 0.9732 | 0.7593 | | 0.6589 | 3.0 | 1353 | 0.9302 | 0.7428 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
juandalibaba/my_awesome_wnut_model
juandalibaba
2023-08-24T07:56:48Z
65
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-23T06:40:28Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: juandalibaba/my_awesome_wnut_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # juandalibaba/my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6376 - Validation Loss: 1.8223 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.7876 | 1.9931 | 0 | | 1.7614 | 1.8223 | 1 | | 1.6376 | 1.8223 | 2 | ### Framework versions - Transformers 4.32.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
bigmorning/train_from_raw_cv12__0005
bigmorning
2023-08-24T07:52:22Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-24T07:52:14Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: train_from_raw_cv12__0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # train_from_raw_cv12__0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: nan - Train Accuracy: 0.0032 - Train Wermet: 8.3902 - Validation Loss: nan - Validation Accuracy: 0.0032 - Validation Wermet: 8.3902 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | nan | 0.0032 | 8.3778 | nan | 0.0032 | 8.3902 | 0 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 1 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 2 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 3 | | nan | 0.0032 | 8.3902 | nan | 0.0032 | 8.3902 | 4 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
ardt-multipart/ardt-multipart-arrl_sgld_train_walker2d_high-2408_0757-99
ardt-multipart
2023-08-24T07:52:01Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-24T06:58:51Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-arrl_sgld_train_walker2d_high-2408_0757-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-arrl_sgld_train_walker2d_high-2408_0757-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
amazon/sm-hackathon-actionability-9-multi-outputs-setfit-model-v0.1
amazon
2023-08-24T07:48:06Z
24
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-24T07:28:22Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # amazon/sm-hackathon-actionability-9-multi-outputs-setfit-model-v0.1 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("amazon/sm-hackathon-actionability-9-multi-outputs-setfit-model-v0.1") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Hamzaabbas77/distilbert-base-uncased-finetuned-sst2
Hamzaabbas77
2023-08-24T07:44:14Z
62
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-24T07:15:12Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: Hamzaabbas77/distilbert-base-uncased-finetuned-sst2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Hamzaabbas77/distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6840 - Validation Loss: 0.6827 - Train Accuracy: 0.5450 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 324, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.6840 | 0.6827 | 0.5450 | 0 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.13.0 - Datasets 2.14.4 - Tokenizers 0.13.3
sunil18p31a0101/dqn-SpaceInvadersNoFrameskip-v4
sunil18p31a0101
2023-08-24T07:41:41Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-24T06:12:12Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 402.50 +/- 168.53 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga sunil18p31a0101 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga sunil18p31a0101 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga sunil18p31a0101 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
avasaz/avasaz-large
avasaz
2023-08-24T07:30:53Z
4
1
transformers
[ "transformers", "pytorch", "musicgen", "text-to-audio", "license:mit", "region:us" ]
text-to-audio
2023-08-23T19:46:30Z
--- inference: false tags: - musicgen license: mit --- # Avasaz Large (3.3B) - Make music directly from your ideas <p align="center"> <img src="https://huggingface.co/avasaz/avasaz-large/resolve/main/avasaz_logo.png" width=256 height=256 /> </p> ## What is Avasaz? Avasaz (which is a combinations of Persian word آوا meaning song and ساز meaning maker, literally translates to _song maker_) is a _state-of-the-art generative AI model_ which can help you turn your ideas to music in matter of a few minutes. This model has been developed by [Muhammadreza Haghiri](https://haghiri75.com/en) as an effort to make a suite of AI programs to make the world a much better place for our future generations. ## How can you use Avasaz? [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/prp-e/avasaz/blob/main/Avasaz_Inference.ipynb) Currently, Infrerence is only available on _Colab_. Codes will be here as soon as possible.
nishant-glance/path-to-save-model-2-1-priorp
nishant-glance
2023-08-24T07:09:25Z
3
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-24T06:20:37Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - nishant-glance/path-to-save-model-2-1-priorp This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
achmaddaa/ametv2
achmaddaa
2023-08-24T07:07:14Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-24T07:04:20Z
--- license: creativeml-openrail-m ---
DineshK/dummy-model
DineshK
2023-08-24T07:05:34Z
59
0
transformers
[ "transformers", "tf", "camembert", "fill-mask", "generated_from_keras_callback", "base_model:almanach/camembert-base", "base_model:finetune:almanach/camembert-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-24T07:03:17Z
--- license: mit base_model: camembert-base tags: - generated_from_keras_callback model-index: - name: dummy-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dummy-model This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.32.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
openchat/opencoderplus
openchat
2023-08-24T07:01:34Z
1,487
103
transformers
[ "transformers", "pytorch", "gpt_bigcode", "text-generation", "llama", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-30T15:28:09Z
--- language: - en tags: - llama --- # OpenChat: Less is More for Open-source Models OpenChat is a series of open-source language models fine-tuned on a diverse and high-quality dataset of multi-round conversations. With only ~6K GPT-4 conversations filtered from the ~90K ShareGPT conversations, OpenChat is designed to achieve high performance with limited data. **Generic models:** - OpenChat: based on LLaMA-13B (2048 context length) - **🚀 105.7%** of ChatGPT score on Vicuna GPT-4 evaluation - **🔥 80.9%** Win-rate on AlpacaEval - **🤗 Only used 6K data for finetuning!!!** - OpenChat-8192: based on LLaMA-13B (extended to 8192 context length) - **106.6%** of ChatGPT score on Vicuna GPT-4 evaluation - **79.5%** of ChatGPT score on Vicuna GPT-4 evaluation **Code models:** - OpenCoderPlus: based on StarCoderPlus (native 8192 context length) - **102.5%** of ChatGPT score on Vicuna GPT-4 evaluation - **78.7%** Win-rate on AlpacaEval *Note:* Please load the pretrained models using *bfloat16* ## Code and Inference Server We provide the full source code, including an inference server compatible with the "ChatCompletions" API, in the [OpenChat](https://github.com/imoneoi/openchat) GitHub repository. ## Web UI OpenChat also includes a web UI for a better user experience. See the GitHub repository for instructions. ## Conversation Template The conversation template **involves concatenating tokens**. Besides base model vocabulary, an end-of-turn token `<|end_of_turn|>` is added, with id `eot_token_id`. ```python # OpenChat [bos_token_id] + tokenize("Human: ") + tokenize(user_question) + [eot_token_id] + tokenize("Assistant: ") # OpenCoder tokenize("User:") + tokenize(user_question) + [eot_token_id] + tokenize("Assistant:") ``` *Hint: In BPE, `tokenize(A) + tokenize(B)` does not always equals to `tokenize(A + B)`* Following is the code for generating the conversation templates: ```python @dataclass class ModelConfig: # Prompt system: Optional[str] role_prefix: dict ai_role: str eot_token: str bos_token: Optional[str] = None # Get template def generate_conversation_template(self, tokenize_fn, tokenize_special_fn, message_list): tokens = [] masks = [] # begin of sentence (bos) if self.bos_token: t = tokenize_special_fn(self.bos_token) tokens.append(t) masks.append(False) # System if self.system: t = tokenize_fn(self.system) + [tokenize_special_fn(self.eot_token)] tokens.extend(t) masks.extend([False] * len(t)) # Messages for idx, message in enumerate(message_list): # Prefix t = tokenize_fn(self.role_prefix[message["from"]]) tokens.extend(t) masks.extend([False] * len(t)) # Message if "value" in message: t = tokenize_fn(message["value"]) + [tokenize_special_fn(self.eot_token)] tokens.extend(t) masks.extend([message["from"] == self.ai_role] * len(t)) else: assert idx == len(message_list) - 1, "Empty message for completion must be on the last." return tokens, masks MODEL_CONFIG_MAP = { # OpenChat / OpenChat-8192 "openchat": ModelConfig( # Prompt system=None, role_prefix={ "human": "Human: ", "gpt": "Assistant: " }, ai_role="gpt", eot_token="<|end_of_turn|>", bos_token="<s>", ), # OpenCoder / OpenCoderPlus "opencoder": ModelConfig( # Prompt system=None, role_prefix={ "human": "User:", "gpt": "Assistant:" }, ai_role="gpt", eot_token="<|end_of_turn|>", bos_token=None, ) } ```
greenyslimerfahrungen/greenyslimerfahrungen
greenyslimerfahrungen
2023-08-24T06:45:50Z
0
0
espnet
[ "espnet", "Greeny Slim Erfahrungen", "en", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2023-08-24T06:45:09Z
--- license: cc-by-nc-sa-4.0 language: - en library_name: espnet tags: - Greeny Slim Erfahrungen --- [Greeny Slim Erfahrungen](https://supplementtycoon.com/de/greeny-slim-fruchtgummis/) Notwithstanding, it's vital to take note of that despite the fact that they are low in carbs and sugar, they ought to in any case be consumed with some restraint as a feature of a fair diet.As forever, it's prescribed to peruse the nourishment marks and fixings list cautiously prior to buying any keto gummies to guarantee they line up with your dietary objectives and inclinations. VISIT HERE FOR OFFICIAL WEBSITE:-https://supplementtycoon.com/de/greeny-slim-fruchtgummis/
Hanpt/sentence-transformer-ja-triplet
Hanpt
2023-08-24T06:42:54Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-24T06:42:48Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Hanpt/sentence-transformer-ja-triplet This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Hanpt/sentence-transformer-ja-triplet') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Hanpt/sentence-transformer-ja-triplet') model = AutoModel.from_pretrained('Hanpt/sentence-transformer-ja-triplet') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Hanpt/sentence-transformer-ja-triplet) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 432 with parameters: ``` {'batch_size': 8} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 432, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dkimds/a2c-PandaReachDense-v3
dkimds
2023-08-24T06:17:56Z
3
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-24T06:12:25Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.18 +/- 0.12 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
HGV1408/Data
HGV1408
2023-08-24T06:17:51Z
103
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-24T06:15:20Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6997 | 0.54 | 500 | 1.4834 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
SHENMU007/neunit_BASE_V9.5.1.1
SHENMU007
2023-08-24T06:10:01Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "1.1.0", "generated_from_trainer", "zh", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-08-24T01:38:49Z
--- language: - zh license: mit base_model: microsoft/speecht5_tts tags: - 1.1.0 - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Dutch neunit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Dutch neunit This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Stepa/ddpm-celebahq-finetuned-butterflies-2epochs
Stepa
2023-08-24T06:08:25Z
46
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-08-24T06:08:06Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Stepa/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
ardt-multipart/ardt-multipart-arrl_sgld_train_walker2d_high-2408_0605-33
ardt-multipart
2023-08-24T06:01:05Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-24T05:06:49Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-arrl_sgld_train_walker2d_high-2408_0605-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-arrl_sgld_train_walker2d_high-2408_0605-33 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Afbnff/B
Afbnff
2023-08-24T05:29:13Z
0
0
null
[ "dataset:fka/awesome-chatgpt-prompts", "region:us" ]
null
2023-08-24T05:28:01Z
--- datasets: - fka/awesome-chatgpt-prompts metrics: - accuracy ---
tanguyrenaudie/pokemon-lora
tanguyrenaudie
2023-08-24T05:21:45Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-23T03:05:35Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - tanguyrenaudie/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
ardt-multipart/ardt-multipart-arrl_train_walker2d_high-2408_0434-99
ardt-multipart
2023-08-24T05:04:48Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-24T03:36:33Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-arrl_train_walker2d_high-2408_0434-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-arrl_train_walker2d_high-2408_0434-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
neil-code/autotrain-test-summarization-84415142559
neil-code
2023-08-24T04:28:12Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "autotrain", "summarization", "en", "dataset:neil-code/autotrain-data-test-summarization", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-08-24T04:23:26Z
--- tags: - autotrain - summarization language: - en widget: - text: "I love AutoTrain" datasets: - neil-code/autotrain-data-test-summarization co2_eq_emissions: emissions: 3.0878646296058494 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 84415142559 - CO2 Emissions (in grams): 3.0879 ## Validation Metrics - Loss: 1.534 - Rouge1: 33.336 - Rouge2: 11.361 - RougeL: 27.779 - RougeLsum: 29.966 - Gen Len: 18.773 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/neil-code/autotrain-test-summarization-84415142559 ```
larryvrh/tigerbot-13b-chat-sharegpt-lora
larryvrh
2023-08-24T04:27:43Z
0
1
null
[ "text-generation", "zh", "dataset:larryvrh/sharegpt_zh-only", "region:us" ]
text-generation
2023-08-24T02:22:02Z
--- datasets: - larryvrh/sharegpt_zh-only language: - zh pipeline_tag: text-generation --- 使用8631条中文sharegpt语料[larryvrh/sharegpt_zh-only](https://huggingface.co/datasets/larryvrh/sharegpt_zh-only)重新对齐后的[TigerResearch/tigerbot-13b-chat](https://huggingface.co/TigerResearch/tigerbot-13b-chat)。 改善了模型多轮对话下的上下文关联能力。 以及在部分场景下回答过于"拟人"的情况。 微调前: ![](https://i.imgur.com/AvA4R4d.png) 微调后: ![](https://i.imgur.com/aei5dst.png) 可以使用配套的[webui](https://huggingface.co/larryvrh/tigerbot-13b-chat-sharegpt-lora/blob/main/chat_webui.py)来进行快速测试。 ![](https://i.imgur.com/aV3iEW5.png)
ALM-AHME/convnextv2-large-1k-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20-Shuffled-3rd
ALM-AHME
2023-08-24T04:14:21Z
4
0
transformers
[ "transformers", "pytorch", "convnextv2", "image-classification", "generated_from_trainer", "base_model:facebook/convnextv2-large-1k-224", "base_model:finetune:facebook/convnextv2-large-1k-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-24T00:38:09Z
--- license: apache-2.0 base_model: facebook/convnextv2-large-1k-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: convnextv2-large-1k-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20-Shuffled-3rd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnextv2-large-1k-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20-Shuffled-3rd This model is a fine-tuned version of [facebook/convnextv2-large-1k-224](https://huggingface.co/facebook/convnextv2-large-1k-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0543 - Accuracy: 0.9873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.9 - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5284 | 1.0 | 199 | 0.5013 | 0.9095 | | 0.2084 | 2.0 | 398 | 0.2076 | 0.9524 | | 0.1274 | 3.0 | 597 | 0.1459 | 0.9566 | | 0.1618 | 4.0 | 796 | 0.1534 | 0.9383 | | 0.2118 | 5.0 | 995 | 0.0877 | 0.9727 | | 0.0306 | 6.0 | 1194 | 0.1048 | 0.9656 | | 0.1012 | 7.0 | 1393 | 0.0674 | 0.9755 | | 0.2079 | 8.0 | 1592 | 0.0662 | 0.9731 | | 0.087 | 9.0 | 1791 | 0.1183 | 0.9458 | | 0.1543 | 10.0 | 1990 | 0.0605 | 0.9840 | | 0.0788 | 11.0 | 2189 | 0.0557 | 0.9868 | | 0.0604 | 12.0 | 2388 | 0.0461 | 0.9868 | | 0.0306 | 13.0 | 2587 | 0.0476 | 0.9854 | | 0.0365 | 14.0 | 2786 | 0.0543 | 0.9873 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
platzi/platzi-vit-model-jose-alcocer
platzi
2023-08-24T04:08:14Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-23T04:13:29Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: platzi-vit-model-jose-alcocer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit-model-jose-alcocer This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0074 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1491 | 3.85 | 500 | 0.0074 | 1.0 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Tokenizers 0.13.3
rtlabs/StableCode-3B
rtlabs
2023-08-24T04:02:04Z
17
1
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "causal-lm", "code", "dataset:bigcode/starcoderdata", "arxiv:2104.09864", "arxiv:1910.02054", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-23T22:27:04Z
--- datasets: - bigcode/starcoderdata language: - code tags: - causal-lm model-index: - name: stabilityai/stablecode-completion-alpha-3b-4k results: - task: type: text-generation dataset: type: openai_humaneval name: HumanEval metrics: - name: pass@1 type: pass@1 value: 0.1768 verified: false - name: pass@10 type: pass@10 value: 0.2701 verified: false license: apache-2.0 duplicated_from: stabilityai/stablecode-completion-alpha-3b-4k --- # `StableCode-Completion-Alpha-3B-4K` ## Intro This is converstion of the `StableCode-Completion-Alpha-3B-4K` model from StabilityAI for use with the FOSS TabbyML Development Toolset, nothing other than converstion to the CTranslate2 compatible format has been undertaken so that the model can be used by TabbyML this included the creation of the appropriate configuration for TabbyML. ## Original Model Description `StableCode-Completion-Alpha-3B-4K` is a 3 billion parameter decoder-only code completion model pre-trained on diverse set of programming languages that topped the stackoverflow developer survey. ## Usage The model is intended to do single/multiline code completion from a long context window upto 4k tokens. Get started generating code with `StableCode-Completion-Alpha-3B-4k` by using the following code snippet: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablecode-completion-alpha-3b-4k") model = AutoModelForCausalLM.from_pretrained( "stabilityai/stablecode-completion-alpha-3b-4k", trust_remote_code=True, torch_dtype="auto", ) model.cuda() inputs = tokenizer("import torch\nimport torch.nn as nn", return_tensors="pt").to("cuda") tokens = model.generate( **inputs, max_new_tokens=48, temperature=0.2, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` ## Model Details * **Developed by**: [Stability AI](https://stability.ai/) * **Model type**: `StableCode-Completion-Alpha-3B-4k` models are auto-regressive language models based on the transformer decoder architecture. * **Language(s)**: Code * **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) * **License**: Model checkpoints are licensed under the [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) license. * **Contact**: For questions and comments about the model, please email `lm@stability.ai` ### Model Architecture | Parameters | Hidden Size | Layers | Heads | Sequence Length | |----------------|-------------|--------|-------|-----------------| | 2,796,431,360 | 2560 | 32 | 32 | 4096 | * **Decoder Layer**: Parallel Attention and MLP residuals with a single input LayerNorm ([Wang & Komatsuzaki, 2021](https://github.com/kingoflolz/mesh-transformer-jax/tree/master)) * **Position Embeddings**: Rotary Position Embeddings ([Su et al., 2021](https://arxiv.org/abs/2104.09864)) * **Bias**: LayerNorm bias terms only ## Training `StableCode-Completion-Alpha-3B-4k` is pre-trained at a context length of 4096 for 300 billion tokens on the `bigcode/starcoder-data`. ### Training Dataset The first pre-training stage relies on 300B tokens sourced from various top programming languages occuring in the stackoverflow developer survey present in the `starcoder-data` dataset. ### Training Procedure The model is pre-trained on the dataset mixes mentioned above in mixed-precision BF16), optimized with AdamW, and trained using the [StarCoder](https://huggingface.co/bigcode/starcoder) tokenizer with a vocabulary size of 49k. * **Software**: We use a fork of gpt-neox ([EleutherAI, 2021](https://github.com/EleutherAI/gpt-neox)) and train under 2D parallelism (Data and Tensor Parallel) with ZeRO-1 ([Rajbhandari et al., 2019](https://arxiv.org/abs/1910.02054v3)) and rely on flash-attention as well as rotary embedding kernels from FlashAttention-2 ([Dao et al., 2023](https://tridao.me/publications/flash2/flash2.pdf)) ## Use and Limitations ### Intended Use StableCode-Completion-Alpha-3B-4K independently generates new code completions, but we recommend that you use StableCode-Completion-Alpha-3B-4K together with the tool developed by BigCode and HuggingFace [(huggingface/huggingface-vscode: Code completion VSCode extension for OSS models (github.com))](https://github.com/huggingface/huggingface-vscode), to identify and, if necessary, attribute any outputs that match training code. ### Limitations and bias This model is intended to be used responsibly. It is not intended to be used to create unlawful content of any kind, to further any unlawful activity, or to engage in activities with a high risk of physical or economic harm. ## How to cite ```bibtex @misc{StableCodeCompleteAlpha4K, url={[https://huggingface.co/stabilityai/stablecode-complete-alpha-3b-4k](https://huggingface.co/stabilityai/stablecode-complete-alpha-3b-4k)}, title={Stable Code Complete Alpha}, author={Adithyan, Reshinth and Phung, Duy and Cooper, Nathan and Pinnaparaju, Nikhil and Laforte, Christian} } ```
xszhou/ppo-LunarLander-v2
xszhou
2023-08-24T03:44:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-24T03:44:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.49 +/- 17.20 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dkqjrm/20230824103950
dkqjrm
2023-08-24T03:36:35Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-24T01:40:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230824103950' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230824103950 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6377 - Accuracy: 0.7401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 312 | 0.9784 | 0.5307 | | 0.905 | 2.0 | 624 | 0.6756 | 0.5126 | | 0.905 | 3.0 | 936 | 0.7039 | 0.5379 | | 0.7844 | 4.0 | 1248 | 0.6938 | 0.5090 | | 0.7863 | 5.0 | 1560 | 0.7988 | 0.5487 | | 0.7863 | 6.0 | 1872 | 0.7152 | 0.5993 | | 0.7505 | 7.0 | 2184 | 0.7856 | 0.6173 | | 0.7505 | 8.0 | 2496 | 0.6053 | 0.6606 | | 0.7043 | 9.0 | 2808 | 0.6424 | 0.5957 | | 0.7083 | 10.0 | 3120 | 0.7874 | 0.6354 | | 0.7083 | 11.0 | 3432 | 0.6513 | 0.6390 | | 0.6321 | 12.0 | 3744 | 0.5910 | 0.7148 | | 0.6204 | 13.0 | 4056 | 0.5993 | 0.7112 | | 0.6204 | 14.0 | 4368 | 0.5440 | 0.7292 | | 0.5835 | 15.0 | 4680 | 0.5542 | 0.7184 | | 0.5835 | 16.0 | 4992 | 0.6144 | 0.7329 | | 0.5634 | 17.0 | 5304 | 0.5821 | 0.6968 | | 0.5461 | 18.0 | 5616 | 0.6826 | 0.5776 | | 0.5461 | 19.0 | 5928 | 0.5617 | 0.7148 | | 0.5275 | 20.0 | 6240 | 0.7824 | 0.6643 | | 0.4726 | 21.0 | 6552 | 0.6157 | 0.7437 | | 0.4726 | 22.0 | 6864 | 0.6498 | 0.7076 | | 0.465 | 23.0 | 7176 | 0.6576 | 0.7292 | | 0.465 | 24.0 | 7488 | 0.5731 | 0.7184 | | 0.4375 | 25.0 | 7800 | 0.7370 | 0.7220 | | 0.4182 | 26.0 | 8112 | 0.5957 | 0.7148 | | 0.4182 | 27.0 | 8424 | 0.6041 | 0.7256 | | 0.4008 | 28.0 | 8736 | 0.5790 | 0.7184 | | 0.392 | 29.0 | 9048 | 0.6321 | 0.7329 | | 0.392 | 30.0 | 9360 | 0.6253 | 0.7148 | | 0.3691 | 31.0 | 9672 | 0.6031 | 0.7329 | | 0.3691 | 32.0 | 9984 | 0.5903 | 0.7148 | | 0.3659 | 33.0 | 10296 | 0.6663 | 0.7329 | | 0.3375 | 34.0 | 10608 | 0.6000 | 0.7292 | | 0.3375 | 35.0 | 10920 | 0.5734 | 0.7256 | | 0.3372 | 36.0 | 11232 | 0.6547 | 0.7329 | | 0.3242 | 37.0 | 11544 | 0.6508 | 0.7401 | | 0.3242 | 38.0 | 11856 | 0.6472 | 0.7365 | | 0.3199 | 39.0 | 12168 | 0.6785 | 0.7365 | | 0.3199 | 40.0 | 12480 | 0.6019 | 0.7365 | | 0.3014 | 41.0 | 12792 | 0.5783 | 0.7329 | | 0.3011 | 42.0 | 13104 | 0.6245 | 0.7329 | | 0.3011 | 43.0 | 13416 | 0.6497 | 0.7292 | | 0.2909 | 44.0 | 13728 | 0.6170 | 0.7365 | | 0.2725 | 45.0 | 14040 | 0.6515 | 0.7437 | | 0.2725 | 46.0 | 14352 | 0.6511 | 0.7365 | | 0.286 | 47.0 | 14664 | 0.6303 | 0.7292 | | 0.286 | 48.0 | 14976 | 0.6408 | 0.7365 | | 0.2713 | 49.0 | 15288 | 0.7056 | 0.7292 | | 0.2574 | 50.0 | 15600 | 0.6540 | 0.7365 | | 0.2574 | 51.0 | 15912 | 0.5996 | 0.7256 | | 0.2735 | 52.0 | 16224 | 0.6616 | 0.7329 | | 0.2646 | 53.0 | 16536 | 0.6601 | 0.7365 | | 0.2646 | 54.0 | 16848 | 0.6284 | 0.7329 | | 0.2494 | 55.0 | 17160 | 0.6420 | 0.7329 | | 0.2494 | 56.0 | 17472 | 0.6434 | 0.7401 | | 0.2512 | 57.0 | 17784 | 0.6324 | 0.7437 | | 0.2452 | 58.0 | 18096 | 0.6028 | 0.7365 | | 0.2452 | 59.0 | 18408 | 0.6412 | 0.7401 | | 0.2491 | 60.0 | 18720 | 0.6377 | 0.7401 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dkqjrm/20230824104100
dkqjrm
2023-08-24T03:35:48Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-24T01:41:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230824104100' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230824104100 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.0729 - Accuracy: 0.7473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 312 | 0.2294 | 0.5307 | | 0.3686 | 2.0 | 624 | 0.5346 | 0.4729 | | 0.3686 | 3.0 | 936 | 0.2223 | 0.5235 | | 0.2907 | 4.0 | 1248 | 0.1895 | 0.4729 | | 0.2686 | 5.0 | 1560 | 0.1783 | 0.5018 | | 0.2686 | 6.0 | 1872 | 0.1995 | 0.5884 | | 0.2686 | 7.0 | 2184 | 0.3037 | 0.5740 | | 0.2686 | 8.0 | 2496 | 0.1386 | 0.6715 | | 0.266 | 9.0 | 2808 | 0.1311 | 0.7076 | | 0.2363 | 10.0 | 3120 | 0.1403 | 0.6968 | | 0.2363 | 11.0 | 3432 | 0.2988 | 0.5957 | | 0.215 | 12.0 | 3744 | 0.1119 | 0.6968 | | 0.198 | 13.0 | 4056 | 0.1238 | 0.6859 | | 0.198 | 14.0 | 4368 | 0.1107 | 0.7040 | | 0.1845 | 15.0 | 4680 | 0.1604 | 0.6570 | | 0.1845 | 16.0 | 4992 | 0.1143 | 0.7004 | | 0.1664 | 17.0 | 5304 | 0.1197 | 0.7148 | | 0.159 | 18.0 | 5616 | 0.1122 | 0.7329 | | 0.159 | 19.0 | 5928 | 0.1038 | 0.7184 | | 0.145 | 20.0 | 6240 | 0.0973 | 0.7040 | | 0.1304 | 21.0 | 6552 | 0.0996 | 0.7292 | | 0.1304 | 22.0 | 6864 | 0.0938 | 0.7473 | | 0.1264 | 23.0 | 7176 | 0.1212 | 0.7437 | | 0.1264 | 24.0 | 7488 | 0.0953 | 0.7256 | | 0.1212 | 25.0 | 7800 | 0.0899 | 0.7329 | | 0.1172 | 26.0 | 8112 | 0.1037 | 0.7365 | | 0.1172 | 27.0 | 8424 | 0.0844 | 0.7292 | | 0.1122 | 28.0 | 8736 | 0.0850 | 0.7365 | | 0.1131 | 29.0 | 9048 | 0.0875 | 0.7220 | | 0.1131 | 30.0 | 9360 | 0.0904 | 0.7437 | | 0.1082 | 31.0 | 9672 | 0.0883 | 0.7184 | | 0.1082 | 32.0 | 9984 | 0.0800 | 0.7509 | | 0.1086 | 33.0 | 10296 | 0.0897 | 0.7509 | | 0.1015 | 34.0 | 10608 | 0.0837 | 0.7473 | | 0.1015 | 35.0 | 10920 | 0.0820 | 0.7329 | | 0.099 | 36.0 | 11232 | 0.0819 | 0.7365 | | 0.0942 | 37.0 | 11544 | 0.0858 | 0.7509 | | 0.0942 | 38.0 | 11856 | 0.0793 | 0.7437 | | 0.0956 | 39.0 | 12168 | 0.0823 | 0.7581 | | 0.0956 | 40.0 | 12480 | 0.0860 | 0.7256 | | 0.0921 | 41.0 | 12792 | 0.0753 | 0.7545 | | 0.0911 | 42.0 | 13104 | 0.0838 | 0.7473 | | 0.0911 | 43.0 | 13416 | 0.0763 | 0.7545 | | 0.0894 | 44.0 | 13728 | 0.0761 | 0.7473 | | 0.0886 | 45.0 | 14040 | 0.0752 | 0.7581 | | 0.0886 | 46.0 | 14352 | 0.0743 | 0.7437 | | 0.0855 | 47.0 | 14664 | 0.0759 | 0.7581 | | 0.0855 | 48.0 | 14976 | 0.0801 | 0.7437 | | 0.0837 | 49.0 | 15288 | 0.0797 | 0.7473 | | 0.083 | 50.0 | 15600 | 0.0734 | 0.7509 | | 0.083 | 51.0 | 15912 | 0.0756 | 0.7545 | | 0.0845 | 52.0 | 16224 | 0.0744 | 0.7401 | | 0.084 | 53.0 | 16536 | 0.0731 | 0.7545 | | 0.084 | 54.0 | 16848 | 0.0736 | 0.7473 | | 0.0797 | 55.0 | 17160 | 0.0734 | 0.7653 | | 0.0797 | 56.0 | 17472 | 0.0735 | 0.7545 | | 0.0803 | 57.0 | 17784 | 0.0737 | 0.7545 | | 0.0792 | 58.0 | 18096 | 0.0735 | 0.7581 | | 0.0792 | 59.0 | 18408 | 0.0732 | 0.7581 | | 0.0815 | 60.0 | 18720 | 0.0729 | 0.7473 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ardt-multipart/ardt-multipart-arrl_train_walker2d_high-2408_0303-66
ardt-multipart
2023-08-24T03:34:18Z
32
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-24T02:04:54Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-arrl_train_walker2d_high-2408_0303-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-arrl_train_walker2d_high-2408_0303-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
JohnnyHiker/llama2-qlora-finetunined-french
JohnnyHiker
2023-08-24T03:29:40Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-24T03:29:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
dkqjrm/20230824103319
dkqjrm
2023-08-24T03:23:54Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-24T01:33:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230824103319' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230824103319 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 1.2256 - Accuracy: 0.7473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 312 | 1.2170 | 0.5307 | | 0.9844 | 2.0 | 624 | 0.7365 | 0.5090 | | 0.9844 | 3.0 | 936 | 0.6978 | 0.5632 | | 0.8956 | 4.0 | 1248 | 0.8855 | 0.4765 | | 0.8957 | 5.0 | 1560 | 1.0223 | 0.5379 | | 0.8957 | 6.0 | 1872 | 0.6873 | 0.6137 | | 0.7665 | 7.0 | 2184 | 0.8629 | 0.6173 | | 0.7665 | 8.0 | 2496 | 0.6861 | 0.6570 | | 0.734 | 9.0 | 2808 | 0.6714 | 0.7076 | | 0.7238 | 10.0 | 3120 | 0.6298 | 0.7184 | | 0.7238 | 11.0 | 3432 | 0.5975 | 0.7184 | | 0.6786 | 12.0 | 3744 | 0.8311 | 0.6968 | | 0.6396 | 13.0 | 4056 | 0.7136 | 0.6751 | | 0.6396 | 14.0 | 4368 | 0.7183 | 0.6859 | | 0.6481 | 15.0 | 4680 | 0.6652 | 0.7076 | | 0.6481 | 16.0 | 4992 | 1.0367 | 0.6823 | | 0.6106 | 17.0 | 5304 | 0.7197 | 0.6895 | | 0.6011 | 18.0 | 5616 | 0.6058 | 0.7292 | | 0.6011 | 19.0 | 5928 | 0.7227 | 0.7112 | | 0.5978 | 20.0 | 6240 | 1.1472 | 0.6570 | | 0.5309 | 21.0 | 6552 | 0.6741 | 0.7256 | | 0.5309 | 22.0 | 6864 | 0.9335 | 0.6787 | | 0.5392 | 23.0 | 7176 | 0.8296 | 0.7365 | | 0.5392 | 24.0 | 7488 | 0.9097 | 0.7040 | | 0.5058 | 25.0 | 7800 | 0.8278 | 0.7292 | | 0.4669 | 26.0 | 8112 | 1.0859 | 0.6498 | | 0.4669 | 27.0 | 8424 | 0.9387 | 0.7184 | | 0.462 | 28.0 | 8736 | 1.0893 | 0.7365 | | 0.4757 | 29.0 | 9048 | 1.3568 | 0.6859 | | 0.4757 | 30.0 | 9360 | 1.0252 | 0.7040 | | 0.4237 | 31.0 | 9672 | 1.0489 | 0.7329 | | 0.4237 | 32.0 | 9984 | 0.8661 | 0.7292 | | 0.4275 | 33.0 | 10296 | 0.9781 | 0.7437 | | 0.3722 | 34.0 | 10608 | 0.8879 | 0.7329 | | 0.3722 | 35.0 | 10920 | 0.9932 | 0.7292 | | 0.3741 | 36.0 | 11232 | 1.0509 | 0.7365 | | 0.3358 | 37.0 | 11544 | 1.3875 | 0.7329 | | 0.3358 | 38.0 | 11856 | 1.2366 | 0.7220 | | 0.3415 | 39.0 | 12168 | 1.0563 | 0.7329 | | 0.3415 | 40.0 | 12480 | 0.9688 | 0.7401 | | 0.3357 | 41.0 | 12792 | 0.8598 | 0.7329 | | 0.3094 | 42.0 | 13104 | 1.0506 | 0.7329 | | 0.3094 | 43.0 | 13416 | 1.3257 | 0.7365 | | 0.2947 | 44.0 | 13728 | 1.1759 | 0.7365 | | 0.2832 | 45.0 | 14040 | 1.1699 | 0.7329 | | 0.2832 | 46.0 | 14352 | 1.1070 | 0.7401 | | 0.2808 | 47.0 | 14664 | 1.1519 | 0.7473 | | 0.2808 | 48.0 | 14976 | 1.0674 | 0.7401 | | 0.2715 | 49.0 | 15288 | 1.1491 | 0.7401 | | 0.252 | 50.0 | 15600 | 1.0819 | 0.7473 | | 0.252 | 51.0 | 15912 | 0.9650 | 0.7473 | | 0.2577 | 52.0 | 16224 | 1.0753 | 0.7437 | | 0.2579 | 53.0 | 16536 | 1.0896 | 0.7473 | | 0.2579 | 54.0 | 16848 | 1.0579 | 0.7401 | | 0.2395 | 55.0 | 17160 | 1.1172 | 0.7509 | | 0.2395 | 56.0 | 17472 | 1.1540 | 0.7509 | | 0.2392 | 57.0 | 17784 | 1.2162 | 0.7509 | | 0.22 | 58.0 | 18096 | 1.1978 | 0.7509 | | 0.22 | 59.0 | 18408 | 1.2381 | 0.7473 | | 0.2242 | 60.0 | 18720 | 1.2256 | 0.7473 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
shareAI/bimoGPT-llama2-13b
shareAI
2023-08-24T03:22:57Z
0
7
transformers
[ "transformers", "question-answering", "zh", "en", "dataset:shareAI/ShareGPT-Chinese-English-90k", "license:openrail", "endpoints_compatible", "region:us" ]
question-answering
2023-08-03T03:35:44Z
--- license: openrail datasets: - shareAI/ShareGPT-Chinese-English-90k language: - zh - en library_name: transformers pipeline_tag: question-answering --- bimoGPT - 一个在llama2 13b基座模型上做中文精细SFT的版本,拥有接近ChatGPT的语气和对话问答能力,以及不错的代码编程能力。 底座:https://www.codewithgpu.com/m/file/llama2-13b-Chinese-chat (中的llama2-13B-sharegpt_cn-epoch2.zip)
alexdphan/bloom_prompt_tuning_1692845692.2492282
alexdphan
2023-08-24T03:19:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-24T03:19:03Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
NEU-HAI/Llama-2-7b-alpaca-cleaned
NEU-HAI
2023-08-24T02:51:32Z
107
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "llama-2", "alpaca", "en", "dataset:yahma/alpaca-cleaned", "arxiv:1910.09700", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-22T18:04:30Z
--- license: cc-by-nc-4.0 datasets: - yahma/alpaca-cleaned language: - en pipeline_tag: text-generation tags: - llama-2 - alpaca --- # Model Card for Llama-2-7b-alpaca-cleaned <!-- Provide a quick summary of what the model is/does. --> This model checkpoint is the Llama-2-7b fine-tuned on [alpaca-cleaned dataset](https://huggingface.co/datasets/yahma/alpaca-cleaned) with the original Alpaca fine-tuning hyper-parameters. ## Model Details ### Model Description This model checkpoint is the Llama-2-7b fine-tuned on [alpaca-cleaned dataset](https://huggingface.co/datasets/yahma/alpaca-cleaned) with the original Alpaca fine-tuning hyper-parameters. \ The original Alpaca model is fine-tuned on Llama with the alpaca dataset by researchers from Stanford University - **Developed by:** NEU Human-centered AI Lab - **Shared by [optional]:** NEU Human-centered AI Lab - **Model type:** Text-generation - **Language(s) (NLP):** English - **License:** cc-by-nc-4.0 (comply with the alpaca-cleaned dataset) - **Finetuned from model [optional]:** [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://huggingface.co/meta-llama/Llama-2-7b ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> The model is intended to be used for research purposes only in English, complying with [stanford_alpaca project](https://github.com/tatsu-lab/stanford_alpaca). \ The model has been fine-tuned on the [alpaca-cleaned dataset](https://huggingface.co/datasets/yahma/alpaca-cleaned) for assistant-like chat and general natural language generation tasks. \ The use of this model should also comply with the restrictions from [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b). ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> The out-of-Scope use of this model should also comply with [stanford_alpaca project](https://github.com/tatsu-lab/stanford_alpaca) and [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b). ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> {{ bias_risks_limitations | default("[More Information Needed]", true)}} ## How to Get Started with the Model Use the code below to get started with the model. ``` # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("NEU-HAI/Llama-2-7b-alpaca-cleaned") model = AutoModelForCausalLM.from_pretrained("NEU-HAI/Llama-2-7b-alpaca-cleaned") ``` ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> We use the [alpaca-cleaned dataset](https://huggingface.co/datasets/yahma/alpaca-cleaned), which is the cleaned version of the original [alpaca dataset](https://huggingface.co/datasets/tatsu-lab/alpaca) created by researchers from Stanford University. ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> We follow the same training procedure and mostly same hyper-parameters to fine-tune the original Alpaca model on Llama. The procedure can be found in [stanford_alpaca project](https://github.com/tatsu-lab/stanford_alpaca). #### Training Hyperparameters ``` --bf16 True \ --num_train_epochs 3 \ --per_device_train_batch_size 4 \ --per_device_eval_batch_size 4 \ --gradient_accumulation_steps 8 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 2000 \ --save_total_limit 1 \ --learning_rate 2e-5 \ --weight_decay 0. \ --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --fsdp "full_shard auto_wrap" \ --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \ --tf32 True ``` ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> N/A #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> N/A #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> N/A ### Results N/A #### Summary N/A <!-- ## Environmental Impact Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** {{ hardware | default("[More Information Needed]", true)}} - **Hours used:** {{ hours_used | default("[More Information Needed]", true)}} - **Cloud Provider:** {{ cloud_provider | default("[More Information Needed]", true)}} - **Compute Region:** {{ cloud_region | default("[More Information Needed]", true)}} - **Carbon Emitted:** {{ co2_emitted | default("[More Information Needed]", true)}} --> ## Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> Please cite the [stanford_alpaca project](https://github.com/tatsu-lab/stanford_alpaca) ``` @misc{alpaca, author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto }, title = {Stanford Alpaca: An Instruction-following LLaMA model}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}}, } ``` ## Model Card Authors Northeastern Human-centered AI Lab ## Model Card Contact
Timucin/q-Taxi
Timucin
2023-08-24T02:44:53Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-24T02:44:51Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Timucin/q-Taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mcwei/rvinpaint
mcwei
2023-08-24T02:39:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-24T00:41:06Z
--- license: creativeml-openrail-m ---
Timucin/q-FrozenLake-v1-4x4-noSlippery
Timucin
2023-08-24T02:38:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-24T02:38:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Timucin/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ausboss/llama2-13b-supercot-loras
ausboss
2023-08-24T02:24:20Z
0
5
null
[ "region:us" ]
null
2023-08-21T15:15:43Z
# Llama-2-13b SuperCOT lora checkpoints These are my Llama-2-13b SuperCOT Lora checkpoints trained using QLora on the [SuperCOT Dataset](https://huggingface.co/datasets/kaiokendev/SuperCOT-dataset). ### Architecture - **Model Architecture**: Llama-2-13b - **Training Algorithm**: QLora ### Training Details - **Dataset**: [SuperCOT Dataset](https://huggingface.co/datasets/kaiokendev/SuperCOT-dataset) - **Datset type**: alpaca - **Training Parameters**: [See Here](https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/examples/llama-2/qlora.yml) - **Training Environment**: Axolotl - **sequence_len**: 4096 ## Acknowledgments Special thanks to the creators of the datasets in SuperCOT. Additionally, thanks to Kaiokendev for curating the SuperCOT dataset. Thanks to the contributors of the Axolotl. ## Stuff generated from axolotl: --- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0
LarryAIDraw/Lucy-08
LarryAIDraw
2023-08-24T02:23:59Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-24T02:06:40Z
--- license: creativeml-openrail-m --- https://civitai.com/models/132939/lucy-seiland-trails-of-cold-steel-4-sen-no-kiseki-4
LarryAIDraw/Aurier-10
LarryAIDraw
2023-08-24T02:23:33Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-24T02:07:09Z
--- license: creativeml-openrail-m --- https://civitai.com/models/132943/aurier-vander-trails-of-cold-steel-3-sen-no-kiseki-3
LarryAIDraw/AnneHalfordExp
LarryAIDraw
2023-08-24T02:22:12Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-24T02:06:14Z
--- license: creativeml-openrail-m --- https://civitai.com/models/133130/anne-halford-sugar-apple-fairy-tale
LarryAIDraw/Fuwawa_Abyssgard-10
LarryAIDraw
2023-08-24T02:20:14Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-24T02:05:02Z
--- license: creativeml-openrail-m --- https://civitai.com/models/117233/fuwawa-abyssgard-hololive-en-lora
LarryAIDraw/Atago_and_Takao_20230820183759-000014
LarryAIDraw
2023-08-24T02:19:06Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-24T02:03:56Z
--- license: creativeml-openrail-m --- https://civitai.com/models/133344/atago-and-tako-lora
LarryAIDraw/shimanto
LarryAIDraw
2023-08-24T02:18:34Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-24T02:03:25Z
--- license: creativeml-openrail-m --- https://civitai.com/models/133172/ijn-shimanto-or-azur-lane
LarryAIDraw/ChristinaHope
LarryAIDraw
2023-08-24T02:17:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-24T02:02:16Z
--- license: creativeml-openrail-m --- https://civitai.com/models/133295/christina-hope-the-eminence-in-shadow
LarryAIDraw/CHAR-FuwawaAbyssgard
LarryAIDraw
2023-08-24T02:16:49Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-24T02:01:23Z
--- license: creativeml-openrail-m --- https://civitai.com/models/132928/fuwawa-abyssgard-or-hololive
lianlian123/Reinforce-CartPole8
lianlian123
2023-08-24T02:14:00Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-23T08:21:31Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ardt-multipart/ardt-multipart-arrl_train_walker2d_high-2408_0127-33
ardt-multipart
2023-08-24T02:03:02Z
32
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-24T00:28:40Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-arrl_train_walker2d_high-2408_0127-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-arrl_train_walker2d_high-2408_0127-33 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
JJinBBangMan/marian-finetuned-kde4-en-to-fr
JJinBBangMan
2023-08-24T02:00:41Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-24T00:10:39Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 52.853174528380514 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8568 - Bleu: 52.8532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
cooperic/distilbert-base-uncased-finetuned-emotion
cooperic
2023-08-24T01:49:06Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-24T00:31:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9285 - name: F1 type: f1 value: 0.9283528881025964 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2174 - Accuracy: 0.9285 - F1: 0.9284 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8012 | 1.0 | 250 | 0.3094 | 0.9095 | 0.9083 | | 0.2454 | 2.0 | 500 | 0.2174 | 0.9285 | 0.9284 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3
dkqjrm/20230824083011
dkqjrm
2023-08-24T01:45:30Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T23:30:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230824083011' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230824083011 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3090 - Accuracy: 0.7401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7501 | 1.0 | 623 | 0.9859 | 0.4729 | | 0.6252 | 2.0 | 1246 | 0.4891 | 0.4801 | | 0.5769 | 3.0 | 1869 | 1.1271 | 0.4729 | | 0.5672 | 4.0 | 2492 | 0.4257 | 0.5632 | | 0.5439 | 5.0 | 3115 | 0.5883 | 0.5415 | | 0.5426 | 6.0 | 3738 | 0.3734 | 0.6245 | | 0.61 | 7.0 | 4361 | 0.4410 | 0.5848 | | 0.4937 | 8.0 | 4984 | 0.4091 | 0.5632 | | 0.4293 | 9.0 | 5607 | 0.3712 | 0.6282 | | 0.3897 | 10.0 | 6230 | 0.3441 | 0.6931 | | 0.3759 | 11.0 | 6853 | 0.3400 | 0.7004 | | 0.379 | 12.0 | 7476 | 0.3802 | 0.6787 | | 0.3661 | 13.0 | 8099 | 0.3456 | 0.7184 | | 0.374 | 14.0 | 8722 | 0.3545 | 0.6859 | | 0.3441 | 15.0 | 9345 | 0.3219 | 0.7112 | | 0.3339 | 16.0 | 9968 | 0.3192 | 0.7184 | | 0.3324 | 17.0 | 10591 | 0.3290 | 0.7184 | | 0.324 | 18.0 | 11214 | 0.3284 | 0.7112 | | 0.3641 | 19.0 | 11837 | 0.3100 | 0.7292 | | 0.3138 | 20.0 | 12460 | 0.3102 | 0.7365 | | 0.3099 | 21.0 | 13083 | 0.3887 | 0.7076 | | 0.3095 | 22.0 | 13706 | 0.3443 | 0.7004 | | 0.3039 | 23.0 | 14329 | 0.3937 | 0.6895 | | 0.287 | 24.0 | 14952 | 0.3071 | 0.7473 | | 0.2718 | 25.0 | 15575 | 0.3097 | 0.7184 | | 0.2711 | 26.0 | 16198 | 0.2888 | 0.7329 | | 0.2738 | 27.0 | 16821 | 0.2920 | 0.7220 | | 0.2697 | 28.0 | 17444 | 0.2986 | 0.7329 | | 0.2589 | 29.0 | 18067 | 0.3092 | 0.7437 | | 0.2536 | 30.0 | 18690 | 0.3141 | 0.7292 | | 0.2564 | 31.0 | 19313 | 0.3134 | 0.7401 | | 0.2493 | 32.0 | 19936 | 0.2962 | 0.7365 | | 0.2428 | 33.0 | 20559 | 0.3358 | 0.7256 | | 0.2425 | 34.0 | 21182 | 0.3155 | 0.7148 | | 0.2342 | 35.0 | 21805 | 0.3000 | 0.7220 | | 0.2394 | 36.0 | 22428 | 0.2955 | 0.7329 | | 0.2257 | 37.0 | 23051 | 0.3070 | 0.7509 | | 0.2272 | 38.0 | 23674 | 0.2959 | 0.7365 | | 0.2197 | 39.0 | 24297 | 0.3100 | 0.7401 | | 0.2144 | 40.0 | 24920 | 0.3009 | 0.7365 | | 0.2164 | 41.0 | 25543 | 0.2957 | 0.7256 | | 0.2129 | 42.0 | 26166 | 0.3133 | 0.7292 | | 0.2106 | 43.0 | 26789 | 0.3110 | 0.7329 | | 0.2069 | 44.0 | 27412 | 0.3072 | 0.7329 | | 0.2051 | 45.0 | 28035 | 0.3300 | 0.7292 | | 0.2064 | 46.0 | 28658 | 0.3106 | 0.7256 | | 0.2039 | 47.0 | 29281 | 0.3114 | 0.7292 | | 0.2106 | 48.0 | 29904 | 0.3180 | 0.7365 | | 0.2008 | 49.0 | 30527 | 0.3099 | 0.7329 | | 0.1945 | 50.0 | 31150 | 0.3066 | 0.7329 | | 0.1958 | 51.0 | 31773 | 0.3124 | 0.7401 | | 0.1939 | 52.0 | 32396 | 0.3230 | 0.7401 | | 0.1942 | 53.0 | 33019 | 0.3105 | 0.7365 | | 0.1887 | 54.0 | 33642 | 0.3014 | 0.7256 | | 0.185 | 55.0 | 34265 | 0.3052 | 0.7365 | | 0.1868 | 56.0 | 34888 | 0.3155 | 0.7365 | | 0.1888 | 57.0 | 35511 | 0.3056 | 0.7256 | | 0.1885 | 58.0 | 36134 | 0.3069 | 0.7329 | | 0.192 | 59.0 | 36757 | 0.3076 | 0.7329 | | 0.1807 | 60.0 | 37380 | 0.3090 | 0.7401 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dkqjrm/20230824082958
dkqjrm
2023-08-24T01:33:05Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T23:30:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230824082958' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230824082958 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 1.5547 - Accuracy: 0.7581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1252 | 1.0 | 623 | 0.6915 | 0.5415 | | 0.9382 | 2.0 | 1246 | 0.7221 | 0.5307 | | 1.0555 | 3.0 | 1869 | 0.7387 | 0.5199 | | 0.9336 | 4.0 | 2492 | 0.9751 | 0.6390 | | 0.8894 | 5.0 | 3115 | 0.9277 | 0.6643 | | 0.9066 | 6.0 | 3738 | 1.1836 | 0.6931 | | 0.8496 | 7.0 | 4361 | 0.8242 | 0.7184 | | 0.7761 | 8.0 | 4984 | 0.9061 | 0.6859 | | 0.8175 | 9.0 | 5607 | 0.7474 | 0.7220 | | 0.7575 | 10.0 | 6230 | 0.8582 | 0.7292 | | 0.747 | 11.0 | 6853 | 0.8351 | 0.7256 | | 0.728 | 12.0 | 7476 | 0.8912 | 0.7148 | | 0.8296 | 13.0 | 8099 | 0.9471 | 0.7220 | | 0.7327 | 14.0 | 8722 | 1.1407 | 0.7148 | | 0.7284 | 15.0 | 9345 | 0.7681 | 0.7256 | | 0.6642 | 16.0 | 9968 | 1.4084 | 0.6679 | | 0.5888 | 17.0 | 10591 | 0.8413 | 0.7329 | | 0.6074 | 18.0 | 11214 | 0.7461 | 0.7401 | | 0.625 | 19.0 | 11837 | 0.9516 | 0.7545 | | 0.5911 | 20.0 | 12460 | 1.3395 | 0.7292 | | 0.5322 | 21.0 | 13083 | 1.3924 | 0.7509 | | 0.5247 | 22.0 | 13706 | 1.1553 | 0.7256 | | 0.5146 | 23.0 | 14329 | 1.6692 | 0.7040 | | 0.4493 | 24.0 | 14952 | 1.2315 | 0.7437 | | 0.399 | 25.0 | 15575 | 1.2710 | 0.7545 | | 0.3644 | 26.0 | 16198 | 1.5049 | 0.7473 | | 0.4031 | 27.0 | 16821 | 1.5735 | 0.7401 | | 0.386 | 28.0 | 17444 | 1.4749 | 0.7220 | | 0.3735 | 29.0 | 18067 | 0.9541 | 0.7365 | | 0.356 | 30.0 | 18690 | 1.3936 | 0.7473 | | 0.3496 | 31.0 | 19313 | 0.9982 | 0.7437 | | 0.3149 | 32.0 | 19936 | 0.9572 | 0.7581 | | 0.3094 | 33.0 | 20559 | 1.5663 | 0.7256 | | 0.2886 | 34.0 | 21182 | 1.5993 | 0.7365 | | 0.2545 | 35.0 | 21805 | 1.1515 | 0.7545 | | 0.276 | 36.0 | 22428 | 1.2768 | 0.7473 | | 0.2645 | 37.0 | 23051 | 1.4290 | 0.7509 | | 0.262 | 38.0 | 23674 | 1.2363 | 0.7617 | | 0.2261 | 39.0 | 24297 | 1.3446 | 0.7617 | | 0.2291 | 40.0 | 24920 | 1.0532 | 0.7509 | | 0.2178 | 41.0 | 25543 | 1.4745 | 0.7509 | | 0.2104 | 42.0 | 26166 | 1.3830 | 0.7545 | | 0.217 | 43.0 | 26789 | 1.7099 | 0.7473 | | 0.214 | 44.0 | 27412 | 1.7054 | 0.7401 | | 0.1856 | 45.0 | 28035 | 1.4350 | 0.7545 | | 0.2014 | 46.0 | 28658 | 1.7266 | 0.7473 | | 0.1759 | 47.0 | 29281 | 1.2659 | 0.7581 | | 0.2027 | 48.0 | 29904 | 1.8336 | 0.7401 | | 0.1871 | 49.0 | 30527 | 1.3398 | 0.7509 | | 0.1586 | 50.0 | 31150 | 1.4948 | 0.7509 | | 0.1619 | 51.0 | 31773 | 1.3787 | 0.7545 | | 0.1665 | 52.0 | 32396 | 1.6532 | 0.7545 | | 0.1786 | 53.0 | 33019 | 1.4697 | 0.7581 | | 0.1609 | 54.0 | 33642 | 1.5462 | 0.7653 | | 0.1304 | 55.0 | 34265 | 1.3577 | 0.7581 | | 0.1576 | 56.0 | 34888 | 1.7004 | 0.7617 | | 0.1522 | 57.0 | 35511 | 1.4629 | 0.7581 | | 0.1496 | 58.0 | 36134 | 1.6336 | 0.7581 | | 0.1406 | 59.0 | 36757 | 1.5699 | 0.7545 | | 0.1268 | 60.0 | 37380 | 1.5547 | 0.7581 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
kimjaewon/whisper-tiny-us
kimjaewon
2023-08-24T01:25:56Z
80
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-23T08:52:00Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-us results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.35832349468713104 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-us This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6051 - Wer Ortho: 0.3646 - Wer: 0.3583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0024 | 17.86 | 500 | 0.6051 | 0.3646 | 0.3583 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
nxnhjrjtbjfzhrovwl/limarp-llongma2-8k-ggml-f16
nxnhjrjtbjfzhrovwl
2023-08-24T01:12:05Z
0
0
null
[ "arxiv:2305.11206", "license:agpl-3.0", "region:us" ]
null
2023-08-23T18:04:50Z
--- '[object Object]': null license: agpl-3.0 --- This repository contains the unquantized merge of [limarp-llongma2-8k lora](https://huggingface.co/lemonilia/limarp-llongma2-8k) in ggml format. You can quantize the f16 ggml to the quantization of your choice by following the below steps: 1. Download and extract the [llama.cpp binaries](https://github.com/ggerganov/llama.cpp/releases/download/master-41c6741/llama-master-41c6741-bin-win-avx2-x64.zip) ([or compile it yourself if you're on Linux](https://github.com/ggerganov/llama.cpp#build)) 2. Move the "quantize" executable to the same folder where you downloaded the f16 ggml model. 3. Open a command prompt window in that same folder and write the following command, making the changes that you see fit. ```bash quantize.exe limarp-llongma2-13b.ggmlv3.f16.bin limarp-llongma2-13b.ggmlv3.q4_0.bin q4_0 ``` 4. Press enter to run the command and the quantized model will be generated in the folder. The below are the contents of the original model card: # Model Card for LimaRP-LLongMA2-8k-v2 LimaRP-LLongMA2-8k is an experimental [Llama2](https://huggingface.co/meta-llama) finetune narrowly focused on novel-style roleplay chatting, and a continuation of the previously released [LimaRP-llama2](https://huggingface.co/lemonilia/limarp-llama2) with a larger number of training tokens (+95%). To considerably facilitate uploading, distribution and merging with other models, LoRA adapters are provided. LimaRP-LLongMA2 LoRA adapters, as their name suggests, are intended to be applied on LLongMA-2 models with 8k context ([7B](https://huggingface.co/conceptofmind/LLongMA-2-7b) and [13B](https://huggingface.co/conceptofmind/LLongMA-2-13b)) and their derivatives. Data updates may be posted in the future. The current version is **v3**. ## Model Details ### Model Description This is an experimental attempt at creating an RP-oriented fine-tune using a manually-curated, high-quality dataset of human-generated conversations. The main rationale for this are the observations from [Zhou et al.](https://arxiv.org/abs/2305.11206). The authors suggested that just 1000-2000 carefully curated training examples may yield high quality output for assistant-type chatbots. This is in contrast with the commonly employed strategy where a very large number of training examples (tens of thousands to even millions) of widely varying quality are used. For LimaRP a similar approach was used, with the difference that the conversational data is almost entirely human-generated. Every training example is manually compiled and selected to comply with subjective quality parameters, with virtually no chance for OpenAI-style alignment responses to come up. ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> The model is intended to approximate the experience of 1-on-1 roleplay as observed on many Internet forums dedicated on roleplaying. It _must_ be used with a specific format similar to that of this template: ``` <<SYSTEM>> Character's Persona: {bot character description} User's Persona: {user character description} Scenario: {what happens in the story} Play the role of Character. You must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. Character should respond with messages of medium length. <<AIBOT>> Character: {utterance} <<HUMAN>> User: {utterance} [etc.] ``` With `<<SYSTEM>>`, `<<AIBOT>>` and `<<HUMAN>>` being special instruct-mode sequences. The text under curly braces must be replaced with appropriate text in _natural language_. Replace `User` and `Character` with actual character names. This more graphical breakdown of the prompt format with a practical example might make it clearer: ![graphical explanation](https://files.catbox.moe/fq8ner.png) ### More detailed notes on prompt format, usage and other settings - **The model has been tested mainly using Oobabooga's `text-generation-webui` as a backend** - Preferably respect spacing and newlines shown above. This might not be possible yet with some frontends. - Replace `Character` and `User` in the above template with your desired names. - The scenario description has a large influence on what the character will do. Try to keep it more open-ended to lessen its impact. - **The model expects users and characters to use third-person narration in simple past and enclose dialogues with standard quotation marks `" "`.** Other formats are not supported (= not in the training data). - Do not use newlines in Persona and Scenario. Use natural language. - The last line in `<<SYSTEM>>` does not need to be written exactly as depicted, but should mention that `Character` and `User` will engage in roleplay and specify the length of `Character`'s messages - The message lengths used during training are: `tiny`, `short`, `average`, `long`, `huge`, `humongous`. However, there might not have been enough training examples for each length for this instruction to have a significant impact. The preferred lengths for this type of role-playing are `average` or `long`. - Suggested text generation settings: - Temperature ~0.70 - Tail-Free Sampling 0.85 - Repetition penalty ~1.10 (Compared to LLaMAv1, Llama2 appears to require a somewhat higher rep.pen.) - Not used: Top-P (disabled/set to 1.0), Top-K (disabled/set to 0), Typical P (disabled/set to 1.0) ### Sample character cards Here are a few example **SillyTavern character cards** following the required format; download and import into SillyTavern. Feel free to modify and adapt them to your purposes. - [Carina, a 'big sister' android maid](https://files.catbox.moe/1qcqqj.png) - [Charlotte, a cute android maid](https://files.catbox.moe/k1x9a7.png) - [Etma, an 'aligned' AI assistant](https://files.catbox.moe/dj8ggi.png) - [Mila, an anthro pet catgirl](https://files.catbox.moe/amnsew.png) - [Samuel, a handsome vampire](https://files.catbox.moe/f9uiw1.png) And here is a sample of how the model is intended to behave with proper chat and prompt formatting: https://files.catbox.moe/egfd90.png ### Other tips It's possible to make the model automatically generate random character information and scenario by adding just `<<SYSTEM>>` and the character name in text completion mode in `text-generation-webui`, as done here (click to enlarge). The format generally closely matches that of the training data: ![example](https://files.catbox.moe/5ntmcj.png) ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> The model has not been tested for: - IRC-style chat - Markdown-style roleplay (asterisks for actions, dialogue lines without quotation marks) - Storywriting - Usage without the suggested prompt format Furthermore, the model is not intended nor expected to provide factual and accurate information on any subject. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> The model may easily output disturbing and socially inappropriate content and therefore should not be used by minors or within environments where a general audience is expected. Its outputs will have in general a strong NSFW bias unless the character card/description de-emphasizes it. ## How to Get Started with the Model Download and load with `text-generation-webui` as a back-end application. It's suggested to start the `webui` via command line. Assuming you have copied the LoRA files under a subdirectory called `lora/limarp-llongma2-7b`, you would use something like this for the 7B model: ``` python server.py --api --verbose --model LLongMA-7B --lora limarp-llongma2-7b ``` When using 4-bit `bitsnbytes` it is suggested to use double quantization to increase accuracy. The starting command may be something like this: ``` python server.py --verbose --api --model LLongMA-2-13B --lora limarp13-llongma2-13b --load-in-4bit --use_double_quant ``` Then, preferably use [SillyTavern](https://github.com/SillyTavern/SillyTavern) as a front-end using the following settings: ![SillyTavern settings](https://files.catbox.moe/nd8v12.png) In addition of enabling the instruct mode with the correct sequences, it's particularly important to **enable "Include names"**, as the model was trained with them at the start of each utterance. If it's disabled, the model can start getting confused and often write for the user in its responses. To take advantage of this model's larger context length, unlock the context size and set it up to any length up to 8192 tokens, depending on your VRAM constraints. On most consumer GPUs this will likely need to be set to a lower value. ![Unlock context size](https://files.catbox.moe/wfj8vv.png) It is **recommended to ban/disable the EOS token** as it can for instance apparently give [artifacts or tokenization issues](https://files.catbox.moe/cxfrzu.png) when it ends up getting generated close to punctuation or quotation marks, at least in SillyTavern. These would typically happen with AI responses. ![Ban EOS](https://files.catbox.moe/xslnhb.png) ## Training Details ### Training Data The training data comprises about **1500** manually edited roleplaying conversation threads from various Internet RP forums, for about **24 megabytes** of data. Character and Scenario information was initially filled in for every thread with the help of mainly `gpt-4`. Later on this has been accomplished with a custom summarizer. Conversations in the dataset are almost entirely human-generated except for a handful of messages. Character names in the RP stories have been isolated and replaced with standard placeholder strings. Usernames, out-of-context (OOC) messages and personal information have not been intentionally included. ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> The version of LimaRP uploaded on this repository was trained using a small NVidia A40 cluster in 8-bit with regular LoRA adapters and 8-bit AdamW optimizer. #### Training Hyperparameters The most important settings were as follows: - --learning_rate 0.000065 - --lr_scheduler_type cosine - --lora_r 8 - --lora_alpha 16 - --lora_dropout 0.01 - --num_train_epochs 2 - --bf16 True - --tf32 True - --bits 8 - --per_device_train_batch_size 1 - --gradient_accumulation_steps 1 - --optim adamw_bnb_8bit **All linear LoRA layers** were targeted. An effective batch size of 1 was found to yield the lowest loss curves during fine-tuning. It was also found that using `--train_on_source False` with the entire training example at the output yields similar results. These LoRAs have been trained in this way (similar to what was done with [Guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) or as with unsupervised finetuning). <!-- ## Evaluation --> <!-- This section describes the evaluation protocols and provides the results. --> ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Finetuning this model on 8 NVidia A40 48GB in parallel takes about 25 minutes (7B) or 45 minutes (13B).
michaelriedl/MonsterForgeFusion-sd-2-base
michaelriedl
2023-08-24T01:06:20Z
5
0
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-base", "base_model:adapter:stabilityai/stable-diffusion-2-base", "license:openrail++", "region:us" ]
text-to-image
2023-08-24T00:46:11Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-2-base tags: - stable-diffusion - text-to-image - diffusers - lora inference: true ---
LBR47/wav2vec2-base-finetuned-gtzan
LBR47
2023-08-24T01:05:57Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:bookbot/distil-ast-audioset", "base_model:finetune:bookbot/distil-ast-audioset", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-14T04:15:04Z
--- license: apache-2.0 base_model: bookbot/distil-ast-audioset tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: train split: train args: train metrics: - name: Accuracy type: accuracy value: 0.89 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-ast-audioset-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7907 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
YassineBenlaria/m2m100_418M_tq_fr_1
YassineBenlaria
2023-08-24T00:47:07Z
4
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "generated_from_trainer", "base_model:YassineBenlaria/m2m100_418M_tq_fr", "base_model:finetune:YassineBenlaria/m2m100_418M_tq_fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-23T14:19:35Z
--- base_model: heisenberg1337/m2m100_418M_tq_fr tags: - generated_from_trainer metrics: - bleu model-index: - name: m2m100_418M_tq_fr_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M_tq_fr_1 This model is a fine-tuned version of [heisenberg1337/m2m100_418M_tq_fr](https://huggingface.co/heisenberg1337/m2m100_418M_tq_fr) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8665 - Bleu: 5.8216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8405 | 0.97 | 100 | 0.8682 | 5.4390 | | 0.8303 | 1.94 | 200 | 0.8661 | 5.3736 | | 0.8245 | 2.91 | 300 | 0.8616 | 5.5394 | | 0.807 | 3.87 | 400 | 0.8632 | 5.4620 | | 0.7954 | 4.84 | 500 | 0.8637 | 5.6718 | | 0.7827 | 5.81 | 600 | 0.8665 | 5.8216 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
pabloyesteb/a2c-PandaReachDense-v3
pabloyesteb
2023-08-24T00:21:05Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-24T00:15:07Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.21 +/- 0.10 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nlpnlp/xlm-roberta-base-finetuned-panx-de
nlpnlp
2023-08-24T00:04:07Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-23T17:08:22Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8600170502983802 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1391 - F1: 0.8600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2598 | 1.0 | 525 | 0.1697 | 0.8177 | | 0.1253 | 2.0 | 1050 | 0.1343 | 0.8509 | | 0.0812 | 3.0 | 1575 | 0.1391 | 0.8600 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cpu - Datasets 2.14.4 - Tokenizers 0.13.3
dkqjrm/20230824064723
dkqjrm
2023-08-23T23:40:55Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T21:47:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230824064723' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230824064723 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6742 - Accuracy: 0.7076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 312 | 1.0968 | 0.5307 | | 0.8903 | 2.0 | 624 | 0.9977 | 0.4729 | | 0.8903 | 3.0 | 936 | 0.6500 | 0.5415 | | 0.813 | 4.0 | 1248 | 0.8148 | 0.4729 | | 0.7606 | 5.0 | 1560 | 0.6263 | 0.5993 | | 0.7606 | 6.0 | 1872 | 0.7920 | 0.6245 | | 0.7342 | 7.0 | 2184 | 1.2811 | 0.5884 | | 0.7342 | 8.0 | 2496 | 0.5840 | 0.6462 | | 0.6906 | 9.0 | 2808 | 0.5715 | 0.6751 | | 0.6551 | 10.0 | 3120 | 0.5806 | 0.6859 | | 0.6551 | 11.0 | 3432 | 0.5498 | 0.6823 | | 0.6197 | 12.0 | 3744 | 0.6886 | 0.6968 | | 0.5972 | 13.0 | 4056 | 1.1724 | 0.4477 | | 0.5972 | 14.0 | 4368 | 0.6682 | 0.6101 | | 0.7875 | 15.0 | 4680 | 0.6779 | 0.5560 | | 0.7875 | 16.0 | 4992 | 0.9667 | 0.6354 | | 0.6467 | 17.0 | 5304 | 0.9092 | 0.6606 | | 0.5892 | 18.0 | 5616 | 0.6701 | 0.4621 | | 0.5892 | 19.0 | 5928 | 0.6021 | 0.6643 | | 0.6056 | 20.0 | 6240 | 0.8808 | 0.6787 | | 0.5409 | 21.0 | 6552 | 0.5458 | 0.6751 | | 0.5409 | 22.0 | 6864 | 0.5723 | 0.6859 | | 0.5387 | 23.0 | 7176 | 0.9638 | 0.6679 | | 0.5387 | 24.0 | 7488 | 0.7176 | 0.6968 | | 0.511 | 25.0 | 7800 | 0.6557 | 0.6895 | | 0.4744 | 26.0 | 8112 | 0.5338 | 0.7148 | | 0.4744 | 27.0 | 8424 | 0.5646 | 0.7076 | | 0.4743 | 28.0 | 8736 | 0.5423 | 0.7040 | | 0.4598 | 29.0 | 9048 | 0.6324 | 0.7076 | | 0.4598 | 30.0 | 9360 | 0.7069 | 0.7004 | | 0.4485 | 31.0 | 9672 | 0.6809 | 0.6859 | | 0.4485 | 32.0 | 9984 | 0.5675 | 0.7076 | | 0.442 | 33.0 | 10296 | 0.8006 | 0.6895 | | 0.4141 | 34.0 | 10608 | 0.5902 | 0.7112 | | 0.4141 | 35.0 | 10920 | 0.6252 | 0.7148 | | 0.4054 | 36.0 | 11232 | 0.8398 | 0.7112 | | 0.3819 | 37.0 | 11544 | 0.7482 | 0.7004 | | 0.3819 | 38.0 | 11856 | 0.6538 | 0.7112 | | 0.3825 | 39.0 | 12168 | 0.7720 | 0.6968 | | 0.3825 | 40.0 | 12480 | 0.6094 | 0.6931 | | 0.379 | 41.0 | 12792 | 0.5863 | 0.7040 | | 0.3701 | 42.0 | 13104 | 0.6197 | 0.7040 | | 0.3701 | 43.0 | 13416 | 0.5795 | 0.7112 | | 0.3576 | 44.0 | 13728 | 0.6484 | 0.7076 | | 0.3454 | 45.0 | 14040 | 0.6623 | 0.6968 | | 0.3454 | 46.0 | 14352 | 0.6562 | 0.7220 | | 0.3455 | 47.0 | 14664 | 0.5921 | 0.7184 | | 0.3455 | 48.0 | 14976 | 0.6980 | 0.7112 | | 0.3344 | 49.0 | 15288 | 0.6210 | 0.7004 | | 0.3285 | 50.0 | 15600 | 0.5674 | 0.7184 | | 0.3285 | 51.0 | 15912 | 0.6134 | 0.7040 | | 0.3295 | 52.0 | 16224 | 0.7118 | 0.7148 | | 0.3181 | 53.0 | 16536 | 0.6978 | 0.7040 | | 0.3181 | 54.0 | 16848 | 0.6851 | 0.7112 | | 0.3021 | 55.0 | 17160 | 0.7702 | 0.7040 | | 0.3021 | 56.0 | 17472 | 0.7319 | 0.7040 | | 0.3044 | 57.0 | 17784 | 0.6459 | 0.7076 | | 0.2938 | 58.0 | 18096 | 0.6386 | 0.7076 | | 0.2938 | 59.0 | 18408 | 0.6550 | 0.7004 | | 0.2991 | 60.0 | 18720 | 0.6742 | 0.7076 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dkqjrm/20230824064444
dkqjrm
2023-08-23T23:38:44Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T21:45:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230824064444' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230824064444 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.0709 - Accuracy: 0.7329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 312 | 0.4733 | 0.5307 | | 0.3538 | 2.0 | 624 | 0.1917 | 0.5126 | | 0.3538 | 3.0 | 936 | 0.1696 | 0.5560 | | 0.2775 | 4.0 | 1248 | 0.1700 | 0.5271 | | 0.2538 | 5.0 | 1560 | 0.3497 | 0.5343 | | 0.2538 | 6.0 | 1872 | 0.2183 | 0.5632 | | 0.259 | 7.0 | 2184 | 0.1783 | 0.5018 | | 0.259 | 8.0 | 2496 | 0.2321 | 0.5848 | | 0.2587 | 9.0 | 2808 | 0.2081 | 0.6101 | | 0.2211 | 10.0 | 3120 | 0.1194 | 0.6715 | | 0.2211 | 11.0 | 3432 | 0.1505 | 0.6390 | | 0.198 | 12.0 | 3744 | 0.1130 | 0.7004 | | 0.1939 | 13.0 | 4056 | 0.1187 | 0.6679 | | 0.1939 | 14.0 | 4368 | 0.1175 | 0.6787 | | 0.1687 | 15.0 | 4680 | 0.1092 | 0.7040 | | 0.1687 | 16.0 | 4992 | 0.0984 | 0.7076 | | 0.1511 | 17.0 | 5304 | 0.1032 | 0.7076 | | 0.1448 | 18.0 | 5616 | 0.1024 | 0.7401 | | 0.1448 | 19.0 | 5928 | 0.0902 | 0.7112 | | 0.1392 | 20.0 | 6240 | 0.0972 | 0.7112 | | 0.1283 | 21.0 | 6552 | 0.0880 | 0.7184 | | 0.1283 | 22.0 | 6864 | 0.0892 | 0.7329 | | 0.1257 | 23.0 | 7176 | 0.1156 | 0.7401 | | 0.1257 | 24.0 | 7488 | 0.0940 | 0.7329 | | 0.1215 | 25.0 | 7800 | 0.0876 | 0.7401 | | 0.1184 | 26.0 | 8112 | 0.1289 | 0.7437 | | 0.1184 | 27.0 | 8424 | 0.0808 | 0.7256 | | 0.1112 | 28.0 | 8736 | 0.0823 | 0.7401 | | 0.1139 | 29.0 | 9048 | 0.0838 | 0.7256 | | 0.1139 | 30.0 | 9360 | 0.0855 | 0.7220 | | 0.1095 | 31.0 | 9672 | 0.0813 | 0.7256 | | 0.1095 | 32.0 | 9984 | 0.0765 | 0.7256 | | 0.106 | 33.0 | 10296 | 0.0847 | 0.7365 | | 0.1034 | 34.0 | 10608 | 0.0844 | 0.7509 | | 0.1034 | 35.0 | 10920 | 0.0811 | 0.7184 | | 0.0991 | 36.0 | 11232 | 0.0811 | 0.7292 | | 0.0938 | 37.0 | 11544 | 0.0847 | 0.7365 | | 0.0938 | 38.0 | 11856 | 0.0824 | 0.7256 | | 0.0973 | 39.0 | 12168 | 0.0760 | 0.7292 | | 0.0973 | 40.0 | 12480 | 0.0786 | 0.7220 | | 0.0908 | 41.0 | 12792 | 0.0732 | 0.7473 | | 0.0894 | 42.0 | 13104 | 0.0763 | 0.7401 | | 0.0894 | 43.0 | 13416 | 0.0811 | 0.7365 | | 0.0896 | 44.0 | 13728 | 0.0734 | 0.7473 | | 0.0882 | 45.0 | 14040 | 0.0747 | 0.7329 | | 0.0882 | 46.0 | 14352 | 0.0729 | 0.7401 | | 0.0847 | 47.0 | 14664 | 0.0723 | 0.7329 | | 0.0847 | 48.0 | 14976 | 0.0748 | 0.7401 | | 0.0854 | 49.0 | 15288 | 0.0755 | 0.7292 | | 0.0813 | 50.0 | 15600 | 0.0715 | 0.7329 | | 0.0813 | 51.0 | 15912 | 0.0719 | 0.7292 | | 0.0845 | 52.0 | 16224 | 0.0721 | 0.7401 | | 0.0821 | 53.0 | 16536 | 0.0711 | 0.7292 | | 0.0821 | 54.0 | 16848 | 0.0714 | 0.7437 | | 0.0802 | 55.0 | 17160 | 0.0711 | 0.7401 | | 0.0802 | 56.0 | 17472 | 0.0718 | 0.7329 | | 0.0798 | 57.0 | 17784 | 0.0708 | 0.7220 | | 0.0796 | 58.0 | 18096 | 0.0715 | 0.7365 | | 0.0796 | 59.0 | 18408 | 0.0712 | 0.7329 | | 0.0806 | 60.0 | 18720 | 0.0709 | 0.7329 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
yellowsproket/trailer_small_model
yellowsproket
2023-08-23T23:24:08Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-23T23:17:12Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of trailers tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - yellowsproket/trailer_small_model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of trailers using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Aladin77/ppo-LunarLander-v2
Aladin77
2023-08-23T23:23:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-23T23:23:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.58 +/- 17.88 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NobodyExistsOnTheInternet/convenience2epochs
NobodyExistsOnTheInternet
2023-08-23T23:22:33Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-23T23:21:27Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0
tenkomati/dqn-SpaceInvaderstest
tenkomati
2023-08-23T23:07:59Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-23T23:07:18Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 652.00 +/- 219.36 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tenkomati -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tenkomati -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga tenkomati ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
dimitarrskv/rl-CartPole-v1
dimitarrskv
2023-08-23T22:59:05Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T14:38:05Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: rl-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 662.20 +/- 176.98 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ghze/dqn-SpaceInvadersNoFrameskip-v4
ghze
2023-08-23T22:53:37Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-23T22:52:57Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 573.50 +/- 132.53 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ghze -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ghze -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ghze ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
ardt-multipart/ardt-multipart-combo_train_walker2d_v2-2308_2138-66
ardt-multipart
2023-08-23T22:28:27Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-23T20:40:04Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-combo_train_walker2d_v2-2308_2138-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-combo_train_walker2d_v2-2308_2138-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Jinpkk/ITproject_version3
Jinpkk
2023-08-23T22:25:18Z
59
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:Jinpkk/ITproject_version1", "base_model:finetune:Jinpkk/ITproject_version1", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-08-23T22:23:07Z
--- license: mit base_model: Jinpkk/ITproject_version1 tags: - generated_from_keras_callback model-index: - name: Jinpkk/ITproject_version3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Jinpkk/ITproject_version3 This model is a fine-tuned version of [Jinpkk/ITproject_version1](https://huggingface.co/Jinpkk/ITproject_version1) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1914 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -809, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.7802 | 0 | | 1.1914 | 1 | ### Framework versions - Transformers 4.32.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
daripaez/a2c-PandaReachDense-v2
daripaez
2023-08-23T22:22:15Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-01-24T14:21:02Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.78 +/- 0.16 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
sabre-code/distilbert-base-uncased-finetuned-emotion
sabre-code
2023-08-23T22:19:49Z
121
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:dair-ai/emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T20:23:59Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - dair-ai/emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] language: - en metrics: - accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
zarakiquemparte/zarablend-mx-l2-7b
zarakiquemparte
2023-08-23T22:11:01Z
6
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "llama2", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-21T16:11:54Z
--- license: other tags: - llama2 --- # Model Card: Zarablend MX L2 7b This model uses [Nous Hermes Llama2 7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) (53%) as a base with [Airoboros L2 7B GPT4 m2.0](https://huggingface.co/jondurbin/airoboros-l2-7b-gpt4-m2.0) (47%) and the result of this merge was merged with [LimaRP LLama2 7B Lora](https://huggingface.co/lemonilia/limarp-llama2). This merge of models(hermes and airoboros) was done with this [script](https://github.com/zarakiquemparte/zaraki-tools/blob/main/merge-cli.py) This merge of Lora with Model was done with this [script](https://github.com/zarakiquemparte/zaraki-tools/blob/main/apply-lora.py) Quantized Model by @TheBloke: - [GGML](https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GGML) - [GPTQ](https://huggingface.co/TheBloke/Zarablend-MX-L2-7B-GPTQ) Merge illustration: ![illustration](zarablend-mx-merge-illustration.png) ## Usage: Since this is a merge between Nous Hermes, Airoboros and LimaRP, the following instruction formats should work: Alpaca 2: ``` ### Instruction: <prompt> ### Response: <leave a newline blank for model to respond> ``` LimaRP instruction format: ``` <<SYSTEM>> <character card and system prompt> <<USER>> <prompt> <<AIBOT>> <leave a newline blank for model to respond> ``` ## Bias, Risks, and Limitations This model is not intended for supplying factual information or advice in any form ## Training Details This model is merged and can be reproduced using the tools mentioned above. Please refer to all provided links for extra model-specific details.
MiguelCB/results
MiguelCB
2023-08-23T22:09:31Z
0
0
null
[ "generated_from_trainer", "base_model:garage-bAInd/Stable-Platypus2-13B", "base_model:finetune:garage-bAInd/Stable-Platypus2-13B", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2023-08-22T18:38:20Z
--- license: cc-by-nc-sa-4.0 base_model: garage-bAInd/Stable-Platypus2-13B tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [garage-bAInd/Stable-Platypus2-13B](https://huggingface.co/garage-bAInd/Stable-Platypus2-13B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
redstonehero/anythingqingmix25d_v30
redstonehero
2023-08-23T22:07:47Z
29
1
diffusers
[ "diffusers", "safetensors", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-23T21:10:44Z
--- license: creativeml-openrail-m library_name: diffusers ---
aliakyurek/a2c-PandaReachDense-v2
aliakyurek
2023-08-23T22:05:32Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-05-24T11:18:50Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.05 +/- 0.23 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
Geo/bert-base-multilingual-cased-fine-tuned-intent-classification
Geo
2023-08-23T22:05:04Z
14
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T20:48:15Z
--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer model-index: - name: bert-base-multilingual-cased-fine-tuned-intent-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-fine-tuned-intent-classification This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
redstonehero/furryvixens_v20bakedvae
redstonehero
2023-08-23T21:42:47Z
29
0
diffusers
[ "diffusers", "safetensors", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-23T20:44:31Z
--- license: creativeml-openrail-m library_name: diffusers ---
felipebandeira/donutlicenses3v3
felipebandeira
2023-08-23T21:40:06Z
114
4
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "image-to-text", "en", "dataset:felipebandeira/driverlicenses2k", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
2023-08-16T12:35:01Z
--- license: mit datasets: - felipebandeira/driverlicenses2k language: - en metrics: - accuracy pipeline_tag: image-to-text --- This model extracts information from EU driver's licenses and returns it as JSON. For optimal performance, we recommend that input images: - have a size of 1192x772 - have high resolution and do not contain light reflection effects Accuracy - on validation set: 98% - on set of real licenses: 63.93% Article describing model: https://medium.com/@ofelipebandeira/transformers-vs-ocr-who-can-read-better-192e6b044dd3 Article describing synthetic dataset used in training: https://python.plainenglish.io/how-to-create-synthetic-datasets-of-document-images-5f140dee5e40
redstonehero/fcanimemix_v30
redstonehero
2023-08-23T21:36:09Z
29
0
diffusers
[ "diffusers", "safetensors", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-23T20:45:06Z
--- license: creativeml-openrail-m library_name: diffusers ---
redstonehero/frozenanimation_v10
redstonehero
2023-08-23T21:36:07Z
30
0
diffusers
[ "diffusers", "safetensors", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-23T20:44:15Z
--- license: creativeml-openrail-m library_name: diffusers ---
him1411/EDGAR-BART-Base
him1411
2023-08-23T21:35:55Z
111
0
transformers
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "en", "dataset:him1411/EDGAR10-Q", "arxiv:2109.08079", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-03T18:32:38Z
--- license: mit datasets: - him1411/EDGAR10-Q language: - en metrics: - rouge --- license: mit language: - en tags: - finance - ContextNER - language models datasets: - him1411/EDGAR10-Q metrics: - rouge --- EDGAR-BART-Base ============= BART base model finetuned on [EDGAR10-Q dataset](https://huggingface.co/datasets/him1411/EDGAR10-Q) You may want to check out * Our paper: [CONTEXT-NER: Contextual Phrase Generation at Scale](https://arxiv.org/abs/2109.08079/) * GitHub: [Click Here](https://github.com/him1411/edgar10q-dataset) Direct Use ============= It is possible to use this model to generate text, which is useful for experimentation and understanding its capabilities. **It should not be directly used for production or work that may directly impact people.** How to Use ============= You can very easily load the models with Transformers, instead of downloading them manually. The [bart-base model](https://huggingface.co/facebook/bart-base) is the backbone of our model. Here is how to use the model in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("him1411/EDGAR-BART-Base") model = AutoModelForSeq2SeqLM.from_pretrained("him1411/EDGAR-BART-Base") ``` Or just clone the model repo ``` git lfs install git clone https://huggingface.co/him1411/EDGAR-BART-Base ``` Inference Example ============= Here, we provide an example for the "ContextNER" task. Below is an example of one instance. ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("him1411/EDGAR-BART-Base") model = AutoModelForSeq2SeqLM.from_pretrained("him1411/EDGAR-BART-Base") # Input shows how we have appended instruction from our file for HoC dataset with instance. input = "14.5 years . The definite lived intangible assets related to the contracts and trade names had estimated weighted average useful lives of 5.9 years and 14.5 years, respectively, at acquisition." tokenized_input= tokenizer(input) # Ideal output for this input is 'Definite lived intangible assets weighted average remaining useful life' output = model(tokenized_input) ``` BibTeX Entry and Citation Info =============== If you are using our model, please cite our paper: ```bibtex @article{gupta2021context, title={Context-NER: Contextual Phrase Generation at Scale}, author={Gupta, Himanshu and Verma, Shreyas and Kumar, Tarun and Mishra, Swaroop and Agrawal, Tamanna and Badugu, Amogh and Bhatt, Himanshu Sharad}, journal={arXiv preprint arXiv:2109.08079}, year={2021} } ```
dkqjrm/20230824043537
dkqjrm
2023-08-23T21:35:02Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-23T19:35:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230824043537' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230824043537 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3141 - Accuracy: 0.7401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7925 | 1.0 | 623 | 0.8673 | 0.4729 | | 0.6122 | 2.0 | 1246 | 0.4006 | 0.5415 | | 0.5656 | 3.0 | 1869 | 1.2100 | 0.4729 | | 0.5981 | 4.0 | 2492 | 0.4232 | 0.5632 | | 0.5284 | 5.0 | 3115 | 0.6388 | 0.5523 | | 0.6128 | 6.0 | 3738 | 0.4463 | 0.5307 | | 0.4769 | 7.0 | 4361 | 0.4020 | 0.6065 | | 0.4415 | 8.0 | 4984 | 0.3773 | 0.6029 | | 0.4284 | 9.0 | 5607 | 0.3718 | 0.6679 | | 0.3893 | 10.0 | 6230 | 0.3479 | 0.6606 | | 0.3707 | 11.0 | 6853 | 0.3415 | 0.6751 | | 0.3845 | 12.0 | 7476 | 0.3645 | 0.6787 | | 0.3667 | 13.0 | 8099 | 0.3591 | 0.6895 | | 0.3674 | 14.0 | 8722 | 0.3526 | 0.6931 | | 0.3561 | 15.0 | 9345 | 0.3187 | 0.7292 | | 0.342 | 16.0 | 9968 | 0.3318 | 0.7004 | | 0.3305 | 17.0 | 10591 | 0.3185 | 0.7004 | | 0.3269 | 18.0 | 11214 | 0.3733 | 0.6534 | | 0.3341 | 19.0 | 11837 | 0.3197 | 0.7040 | | 0.3214 | 20.0 | 12460 | 0.3166 | 0.7148 | | 0.3109 | 21.0 | 13083 | 0.3257 | 0.7148 | | 0.3125 | 22.0 | 13706 | 0.3299 | 0.7292 | | 0.3097 | 23.0 | 14329 | 0.4120 | 0.6895 | | 0.2918 | 24.0 | 14952 | 0.3158 | 0.7148 | | 0.2792 | 25.0 | 15575 | 0.3077 | 0.7256 | | 0.2766 | 26.0 | 16198 | 0.3078 | 0.7292 | | 0.2811 | 27.0 | 16821 | 0.3033 | 0.7256 | | 0.2719 | 28.0 | 17444 | 0.3017 | 0.7148 | | 0.2661 | 29.0 | 18067 | 0.2947 | 0.7184 | | 0.263 | 30.0 | 18690 | 0.3416 | 0.7329 | | 0.2633 | 31.0 | 19313 | 0.3170 | 0.7256 | | 0.2517 | 32.0 | 19936 | 0.3063 | 0.7220 | | 0.2486 | 33.0 | 20559 | 0.3137 | 0.7256 | | 0.252 | 34.0 | 21182 | 0.3118 | 0.7256 | | 0.2396 | 35.0 | 21805 | 0.2980 | 0.7220 | | 0.2471 | 36.0 | 22428 | 0.3050 | 0.7329 | | 0.2361 | 37.0 | 23051 | 0.3366 | 0.7220 | | 0.2358 | 38.0 | 23674 | 0.3080 | 0.7473 | | 0.2231 | 39.0 | 24297 | 0.3191 | 0.7437 | | 0.2298 | 40.0 | 24920 | 0.3018 | 0.7148 | | 0.2241 | 41.0 | 25543 | 0.3090 | 0.7401 | | 0.2243 | 42.0 | 26166 | 0.3137 | 0.7401 | | 0.2237 | 43.0 | 26789 | 0.3277 | 0.7365 | | 0.2147 | 44.0 | 27412 | 0.3116 | 0.7437 | | 0.2149 | 45.0 | 28035 | 0.3289 | 0.7365 | | 0.2087 | 46.0 | 28658 | 0.3241 | 0.7292 | | 0.21 | 47.0 | 29281 | 0.3060 | 0.7365 | | 0.214 | 48.0 | 29904 | 0.3311 | 0.7329 | | 0.2108 | 49.0 | 30527 | 0.3144 | 0.7437 | | 0.2029 | 50.0 | 31150 | 0.3094 | 0.7401 | | 0.2028 | 51.0 | 31773 | 0.3141 | 0.7473 | | 0.2018 | 52.0 | 32396 | 0.3188 | 0.7437 | | 0.2079 | 53.0 | 33019 | 0.3138 | 0.7365 | | 0.1982 | 54.0 | 33642 | 0.3109 | 0.7401 | | 0.1926 | 55.0 | 34265 | 0.3118 | 0.7437 | | 0.1972 | 56.0 | 34888 | 0.3270 | 0.7401 | | 0.1986 | 57.0 | 35511 | 0.3098 | 0.7365 | | 0.1928 | 58.0 | 36134 | 0.3131 | 0.7401 | | 0.1974 | 59.0 | 36757 | 0.3132 | 0.7401 | | 0.1927 | 60.0 | 37380 | 0.3141 | 0.7401 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
JJinBBangMan/distilbert-base-uncased-finetuned-imdb
JJinBBangMan
2023-08-23T21:34:32Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-23T21:25:42Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7015 | 1.0 | 157 | 2.4981 | | 2.5816 | 2.0 | 314 | 2.4282 | | 2.5366 | 3.0 | 471 | 2.4515 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3