modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-11 00:42:47
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 553
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-11 00:42:38
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
AiForgeMaster/Qwen3-4B-Pretrain-v1-p2
|
AiForgeMaster
| 2025-08-16T00:50:22Z | 1 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"axolotl",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen3-4B",
"base_model:finetune:Qwen/Qwen3-4B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-07-28T15:08:06Z |
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-4B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Qwen3-4B-Pretrain-v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.12.0.dev0`
```yaml
# axolotl train config.yml --deepspeed deepspeed_configs/zero2.json
# Resume from checkpoint configuration
resume_from_checkpoint: ./outputs/checkpoint-650
# Prevent NCCL timeout
ddp_timeout: 7200 # 2 hours timeout instead of 10 minutes
# Load model from local models directory first, fallback to HuggingFace if not found
base_model: Qwen/Qwen3-4B # Local path - will fallback to Qwen/Qwen3-4B if not found locally
# Automatically upload checkpoint and final model to HF
hub_model_id: AiForgeMaster/Qwen3-4B-Pretrain-v1
load_in_8bit: false
load_in_4bit: false
strict: false
# Pre-training dataset configuration - using HuggingFace datasets
pretraining_dataset:
- name: default
path: AiForgeMaster/Smart_Merge_2025_07_25 # Private HF dataset - requires API key
split: train
text_column: text # column in dataset with the data, usually `text`
type: pretrain
trust_remote_code: false
# skip: 0 # number of rows of data to skip over from the beginning
# Local paths relative to working directory
dataset_prepared_path: ./data/prepared
val_set_size: 0.0 # Set to 0 for pure pre-training (no validation split)
output_dir: ./outputs
# Cache directories for HuggingFace downloads (relative to working dir)
# This ensures models and datasets are downloaded to local directories
hf_use_auth_token: true # Use HF token for private repos if needed
sequence_len: 16384
sample_packing: true
eval_sample_packing: false # Disable for pre-training
# Enable sample concatenation for pre-training
pretraining_sample_concatenation: true
# LoRA/QLoRA configuration for memory-efficient training
#adapter: lora
#lora_model_dir:
#lora_r: 32
#lora_alpha: 64
#lora_dropout: 0.05
#lora_target_linear: false # Set to false when using explicit target_modules
#lora_target_modules: # Correct axolotl syntax for target modules
# - "q_proj"
# - "k_proj"
# - "v_proj"
# - "o_proj"
# - "gate_proj"
# - "up_proj"
# - "down_proj"
# - "embed_tokens"
# - "lm_head"
# WandB configuration - fill in your details
wandb_project: ngpt-cpt
wandb_entity: null
wandb_watch: gradients
wandb_name: qwen3_4b_pretraining_v9_resume_2
wandb_log_model: end
# Batch size configuration (total effective batch size = micro_batch_size * gradient_accumulation_steps * num_gpus)
# For batch size 8-16: micro_batch_size=2, gradient_accumulation_steps=4 gives effective batch size of 8 per GPU
gradient_accumulation_steps: 3
micro_batch_size: 6 # Adjust based on your GPU memory
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 1e-4 # Lower learning rate for pre-training
bf16: auto
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 10 # Log every 10 steps
flash_attention: true
warmup_steps: 100 # More warmup steps for pre-training
# Checkpoint saving configuration - save every 1000 steps
save_steps: 50
save_strategy: steps
save_total_limit: 5 # Keep only 5 most recent checkpoints
save_only_model: false # Save full checkpoint including optimizer state
# Evaluation configuration removed for pure pre-training (val_set_size: 0.0)
# eval_steps: 2000 # Not supported when val_set_size == 0
# eval_strategy: steps # Not supported when val_set_size == 0
weight_decay: 0.01 # Small weight decay for pre-training
# Liger optimizations for memory efficiency and speed
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
# Additional pre-training optimizations
# Enable for first run to validate checkpoint saving works
save_first_step: false
# Memory optimizations
dataloader_pin_memory: true
dataloader_num_workers: 4
remove_unused_columns: true
# Advanced training settings for pre-training
# Calculate max_steps for full epoch: dataset_size / (micro_batch_size * gradient_accumulation_steps * num_gpus)
# With 24,578 rows, batch_size=18, and assuming 2 GPUs: 24,578 / (3 * 6 * 2) = ~682 steps per epoch
max_steps: 682 # Set for one full epoch with your dataset size
group_by_length: false # Disable for pre-training with sample packing
train_on_inputs: true # Train on all tokens for pre-training
# Loss monitoring
loss_watchdog_threshold: 10.0 # Stop if loss exceeds this value
loss_watchdog_patience: 3
# Garbage collection to manage memory
gc_steps: 100 # Run garbage collection every 100 steps
```
</details><br>
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/uskfoundation/ngpt-cpt/runs/8asfv1rl)
# Qwen3-4B-Pretrain-v1
This model is a fine-tuned version of [Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 3
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 682
### Training results
### Framework versions
- Transformers 4.54.0
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2
|
powermove72/Granite-3.3-2B-Avg-SliceWeighted
|
powermove72
| 2025-08-16T00:50:20Z | 0 | 0 | null |
[
"safetensors",
"granite",
"merge",
"mergekit",
"lazymergekit",
"ibm-granite/granite-3.3-2b-instruct",
"powermove72/granite-3.3-2b-Hermes3dataset",
"base_model:ibm-granite/granite-3.3-2b-instruct",
"base_model:merge:ibm-granite/granite-3.3-2b-instruct",
"base_model:powermove72/granite-3.3-2b-Hermes3dataset",
"base_model:merge:powermove72/granite-3.3-2b-Hermes3dataset",
"region:us"
] | null | 2025-08-16T00:47:50Z |
---
base_model:
- ibm-granite/granite-3.3-2b-instruct
- powermove72/granite-3.3-2b-Hermes3dataset
tags:
- merge
- mergekit
- lazymergekit
- ibm-granite/granite-3.3-2b-instruct
- powermove72/granite-3.3-2b-Hermes3dataset
---
# Granite-3.3-2B-Avg-SliceWeighted
Granite-3.3-2B-Avg-SliceWeighted is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [ibm-granite/granite-3.3-2b-instruct](https://huggingface.co/ibm-granite/granite-3.3-2b-instruct)
* [powermove72/granite-3.3-2b-Hermes3dataset](https://huggingface.co/powermove72/granite-3.3-2b-Hermes3dataset)
## 🧩 Configuration
```yaml
# ----------------------------------------------------------------------
# merge_weighted_average_40layers.yaml
# Slice‑wise weighted‑average merge for a 40‑layer LLM.
# – Different contribution per layer range.
# ----------------------------------------------------------------------
merge_method: linear # merge type
# ----------------------------------------------------------------------
# Global merge options
# ----------------------------------------------------------------------
dtype: bfloat16 # preferred dtype on modern GPUs
parameters:
normalize: true # make each slice’s weights sum to 1.0
low_cpu_mem_usage: true # stream weights, don’t load everything into RAM
seed: 2025 # reproducibility
deterministic: true # torch‑cudnn deterministic mode
# ----------------------------------------------------------------------
# Metadata (helps with provenance & experiment tracking)
# ----------------------------------------------------------------------
metadata:
model_name: Granite-3.3-2B-Avg-SliceWeighted
version: v1.0
date: 2025-08-15
notes: |
- 40‑layer model (indices 0‑39).
- Three slices:
* Layers 0‑13 → 80 % Llama‑2, 20 % Mistral
* Layers 14‑26 → 50 % each (mid‑point)
* Layers 27‑39 → 20 % Llama‑2, 80 % Mistral
- Normalised weights are enforced by `parameters.normalize`.
- Uses granite-3.3-2b-Hermes3dataset tokenizer for token‑id alignment.
# ----------------------------------------------------------------------
# Tokenizer – both source models share the same one, so we can safely force it.
# ----------------------------------------------------------------------
tokenizer_source: powermove72/granite-3.3-2b-Hermes3dataset
# ----------------------------------------------------------------------
# Slice definitions (non‑overlapping, each covers a contiguous block of layers)
# ----------------------------------------------------------------------
slices:
# --------------------------------------------------------------
# Slice 1: Layers 0‑13 (the first 14 transformer blocks)
# --------------------------------------------------------------
- sources:
- model: ibm-granite/granite-3.3-2b-instruct
layer_range: [0, 13]
parameters:
weight: 0.8
- model: powermove72/granite-3.3-2b-Hermes3dataset
layer_range: [0, 13]
parameters:
weight: 0.2
# --------------------------------------------------------------
# Slice 2: Layers 14‑26 (the middle 13 transformer blocks)
# --------------------------------------------------------------
- sources:
- model: ibm-granite/granite-3.3-2b-instruct
layer_range: [13, 26]
parameters:
weight: 0.5 # balanced
- model: powermove72/granite-3.3-2b-Hermes3dataset
layer_range: [13, 26]
parameters:
weight: 0.5
# --------------------------------------------------------------
# Slice 3: Layers 27‑39 (the last 14 transformer blocks)
# --------------------------------------------------------------
- sources:
- model: ibm-granite/granite-3.3-2b-instruct
layer_range: [26, 40]
parameters:
weight: 0.2
- model: powermove72/granite-3.3-2b-Hermes3dataset
layer_range: [26, 40]
parameters:
weight: 0.8
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "powermove72/Granite-3.3-2B-Avg-SliceWeighted"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
|
kapalbalap/blockassist-bc-peaceful_wary_owl_1755303141
|
kapalbalap
| 2025-08-16T00:13:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"peaceful wary owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T00:13:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- peaceful wary owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Harsh1729/R1-Distill-Llama-8B-SFT-cotroller_dataset-bespoke_52k_cotif-ood-v7
|
Harsh1729
| 2025-08-16T00:03:09Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"conversational",
"base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-15T23:57:04Z |
---
base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
library_name: transformers
model_name:
tags:
- sft
- full-finetuning
tags:
- generated_from_trainer
licence: license
---
# Model Card for {'tags': ['sft', 'full-finetuning']}
This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="None", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.13.0
- Transformers: 4.46.0
- Pytorch: 2.7.0
- Datasets: 3.2.0
- Tokenizers: 0.20.3
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755299765
|
ggozzy
| 2025-08-15T23:17:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T23:17:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755299226
|
ggozzy
| 2025-08-15T23:08:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T23:08:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
tatsusal/blockassist-bc-peaceful_rangy_wombat_1755298142
|
tatsusal
| 2025-08-15T22:50:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"peaceful rangy wombat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T22:50:16Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- peaceful rangy wombat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
chansung/Qwen2.5-Coder-1.5B-CCRL-CUR-COMPLEX-ONLY-1E
|
chansung
| 2025-08-15T22:20:58Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"open-r1",
"trl",
"grpo",
"conversational",
"dataset:chansung/verifiable-coding-problems-python-v2",
"arxiv:2402.03300",
"base_model:Qwen/Qwen2.5-Coder-1.5B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-Coder-1.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-15T14:04:44Z |
---
base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct
datasets: chansung/verifiable-coding-problems-python-v2
library_name: transformers
model_name: Qwen2.5-Coder-1.5B-CCRL-CUR-COMPLEX-ONLY-1E
tags:
- generated_from_trainer
- open-r1
- trl
- grpo
licence: license
---
# Model Card for Qwen2.5-Coder-1.5B-CCRL-CUR-COMPLEX-ONLY-1E
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct) on the [chansung/verifiable-coding-problems-python-v2](https://huggingface.co/datasets/chansung/verifiable-coding-problems-python-v2) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="chansung/Qwen2.5-Coder-1.5B-CCRL-CUR-COMPLEX-ONLY-1E", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chansung18/huggingface/runs/qejhfrz7)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.18.0.dev0
- Transformers: 4.52.0.dev0
- Pytorch: 2.6.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755293773
|
manusiaperahu2012
| 2025-08-15T22:05:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"roaring long tuna",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T22:05:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- roaring long tuna
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755292712
|
ihsanridzi
| 2025-08-15T21:42:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T21:42:29Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/vividly-surreal-flux
|
Muapi
| 2025-08-15T21:04:34Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-15T21:04:16Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Vividly Surreal Flux

**Base model**: Flux.1 D
**Trained words**:
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:930804@1296376", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
kapalbalap/blockassist-bc-peaceful_wary_owl_1755290718
|
kapalbalap
| 2025-08-15T20:46:23Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"peaceful wary owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T20:46:09Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- peaceful wary owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ultratopaz/1560750
|
ultratopaz
| 2025-08-15T20:09:55Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-15T20:09:53Z |
[View on Civ Archive](https://civarchive.com/models/1467962?modelVersionId=1660299)
|
wherobots/ftw-ep-torch280-cu126-pt2
|
wherobots
| 2025-08-15T19:59:01Z | 0 | 0 | null |
[
"image-segmentation",
"license:cc-by-3.0",
"region:us"
] |
image-segmentation
| 2025-08-14T15:47:23Z |
---
license: cc-by-3.0
pipeline_tag: image-segmentation
recommended_patch_size: 512
recommended_clip_size: 64
device: cuda
features: [
"s2med_harvest:B02",
"s2med_harvest:B03",
"s2med_harvest:B04",
"s2med_harvest:B08",
"s2med_planting:B02",
"s2med_planting:B03",
"s2med_planting:B04",
"s2med_planting:B08"
]
labels: [
non_field_background,
field,
field_boundaries
]
---
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755286306
|
ggozzy
| 2025-08-15T19:33:33Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T19:32:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VIDEOS-18-alex-star-viral-video-Clip-hdq/Latest.New.full.videos.alex.star.Viral.Video.Official.Tutorial
|
VIDEOS-18-alex-star-viral-video-Clip-hdq
| 2025-08-15T19:12:33Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-15T19:12:23Z |
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/4axawfmy?Bri
"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
|
Sophie-Rain-V-i-d-e-o-Tutorial/Sophie.Rain.Video.Tutorial
|
Sophie-Rain-V-i-d-e-o-Tutorial
| 2025-08-15T19:11:52Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-15T19:10:20Z |
<!-- HTML_TAG_END --><div>
<p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a></p>
<p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a></p>
<p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a></p>
<!-- HTML_TAG_END --></div>
|
kapalbalap/blockassist-bc-peaceful_wary_owl_1755281530
|
kapalbalap
| 2025-08-15T18:13:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"peaceful wary owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T18:12:48Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- peaceful wary owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Elizavr/blockassist-bc-reclusive_shaggy_bee_1755279615
|
Elizavr
| 2025-08-15T17:43:02Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"reclusive shaggy bee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T17:42:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- reclusive shaggy bee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jir88/gemma3-1B-gutenberg-v1
|
jir88
| 2025-08-15T16:53:56Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gemma3_text",
"trl",
"en",
"base_model:unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-15T16:53:46Z |
---
base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3_text
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** jir88
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-1b-it-unsloth-bnb-4bit
This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mradermacher/VyvoTTS-LFM2-Neuvillette-GGUF
|
mradermacher
| 2025-08-15T15:12:59Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:Vyvo/VyvoTTS-LFM2-Neuvillette",
"base_model:quantized:Vyvo/VyvoTTS-LFM2-Neuvillette",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-15T15:09:33Z |
---
base_model: Vyvo/VyvoTTS-LFM2-Neuvillette
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/Vyvo/VyvoTTS-LFM2-Neuvillette
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#VyvoTTS-LFM2-Neuvillette-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/VyvoTTS-LFM2-Neuvillette-GGUF/resolve/main/VyvoTTS-LFM2-Neuvillette.Q2_K.gguf) | Q2_K | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/VyvoTTS-LFM2-Neuvillette-GGUF/resolve/main/VyvoTTS-LFM2-Neuvillette.Q3_K_S.gguf) | Q3_K_S | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/VyvoTTS-LFM2-Neuvillette-GGUF/resolve/main/VyvoTTS-LFM2-Neuvillette.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/VyvoTTS-LFM2-Neuvillette-GGUF/resolve/main/VyvoTTS-LFM2-Neuvillette.Q3_K_L.gguf) | Q3_K_L | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/VyvoTTS-LFM2-Neuvillette-GGUF/resolve/main/VyvoTTS-LFM2-Neuvillette.IQ4_XS.gguf) | IQ4_XS | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/VyvoTTS-LFM2-Neuvillette-GGUF/resolve/main/VyvoTTS-LFM2-Neuvillette.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/VyvoTTS-LFM2-Neuvillette-GGUF/resolve/main/VyvoTTS-LFM2-Neuvillette.Q4_K_M.gguf) | Q4_K_M | 0.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/VyvoTTS-LFM2-Neuvillette-GGUF/resolve/main/VyvoTTS-LFM2-Neuvillette.Q5_K_S.gguf) | Q5_K_S | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/VyvoTTS-LFM2-Neuvillette-GGUF/resolve/main/VyvoTTS-LFM2-Neuvillette.Q5_K_M.gguf) | Q5_K_M | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/VyvoTTS-LFM2-Neuvillette-GGUF/resolve/main/VyvoTTS-LFM2-Neuvillette.Q6_K.gguf) | Q6_K | 0.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/VyvoTTS-LFM2-Neuvillette-GGUF/resolve/main/VyvoTTS-LFM2-Neuvillette.Q8_0.gguf) | Q8_0 | 0.5 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/VyvoTTS-LFM2-Neuvillette-GGUF/resolve/main/VyvoTTS-LFM2-Neuvillette.f16.gguf) | f16 | 0.9 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1755268162
|
mang3dd
| 2025-08-15T14:56:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T14:56:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Abbye/blockassist-bc-shaggy_small_octopus_1755266816
|
Abbye
| 2025-08-15T14:07:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"shaggy small octopus",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T14:07:44Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- shaggy small octopus
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jahyungu/Qwen2.5-7B-Instruct_mbpp
|
jahyungu
| 2025-08-15T13:12:18Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-15T12:52:56Z |
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- generated_from_trainer
model-index:
- name: Qwen2.5-7B-Instruct_mbpp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Qwen2.5-7B-Instruct_mbpp
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.55.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.0
|
wasabuko/blockassist-bc-noisy_zealous_macaw_1755257876
|
wasabuko
| 2025-08-15T12:27:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"noisy zealous macaw",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T12:07:39Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- noisy zealous macaw
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kapalbalap/blockassist-bc-peaceful_wary_owl_1755258429
|
kapalbalap
| 2025-08-15T11:48:17Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"peaceful wary owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T11:48:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- peaceful wary owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
wwsrf/VIDEO.18.New-Clip-Afrin-Er-Viral-Video.New.full.videos.Afrin.Er.Viral.Video.Official.Tutorial
|
wwsrf
| 2025-08-15T11:44:30Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-15T11:42:41Z |
<a href="https://topvid.cfd/New-Clip-Afrin-Er-Viral-Video"> 🌐 VIDEO.18.New-Clip-Afrin-Er-Viral-Video.New.full.videos.Afrin.Er.Viral.Video.Official.Tutorial
🔴 ➤►DOWNLOAD👉👉🟢 ➤ <a href="https://topvid.cfd/New-Clip-Afrin-Er-Viral-Video"> 🌐 VIDEO.18.New-Clip-Afrin-Er-Viral-Video.New.full.videos.Afrin.Er.Viral.Video.Official.Tutorial
<a href="https://topvid.cfd/New-Clip-Afrin-Er-Viral-Video"> 🌐 VIDEO.18.New-Clip-Afrin-Er-Viral-Video.New.full.videos.Afrin.Er.Viral.Video.Official.Tutorial
🔴 ➤►DOWNLOAD👉👉🟢 ➤ <a href="https://topvid.cfd/New-Clip-Afrin-Er-Viral-Video"> 🌐 VIDEO.18.New-Clip-Afrin-Er-Viral-Video.New.full.videos.Afrin.Er.Viral.Video.Official.Tutorial
|
mustafakara/gpt-oss-20b-multilingual-reasoner
|
mustafakara
| 2025-08-15T08:19:51Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"sft",
"trl",
"base_model:openai/gpt-oss-20b",
"base_model:finetune:openai/gpt-oss-20b",
"endpoints_compatible",
"region:us"
] | null | 2025-08-13T13:42:32Z |
---
base_model: openai/gpt-oss-20b
library_name: transformers
model_name: gpt-oss-20b-multilingual-reasoner
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for gpt-oss-20b-multilingual-reasoner
This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="mustafakara/gpt-oss-20b-multilingual-reasoner", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.0
- Pytorch: 2.4.1
- Datasets: 3.6.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755237363
|
Sayemahsjn
| 2025-08-15T06:15:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"playful feline octopus",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T06:15:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- playful feline octopus
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VietTung04/qwen1.7b-vlsp
|
VietTung04
| 2025-08-15T05:38:18Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-15T05:38:14Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
qualcomm/Whisper-Small-V2
|
qualcomm
| 2025-08-15T05:21:21Z | 17 | 3 |
pytorch
|
[
"pytorch",
"foundation",
"android",
"automatic-speech-recognition",
"license:other",
"region:us"
] |
automatic-speech-recognition
| 2025-04-09T21:54:06Z |
---
library_name: pytorch
license: other
tags:
- foundation
- android
pipeline_tag: automatic-speech-recognition
---

# Whisper-Small-V2: Optimized for Mobile Deployment
## Transformer-based automatic speech recognition (ASR) model for multilingual transcription and translation available on HuggingFace
HuggingFace Whisper-Small ASR (Automatic Speech Recognition) model is a state-of-the-art system designed for transcribing spoken language into written text. This model is based on the transformer architecture and has been optimized for edge inference by replacing Multi-Head Attention (MHA) with Single-Head Attention (SHA) and linear layers with convolutional (conv) layers. It exhibits robust performance in realistic, noisy environments, making it highly reliable for real-world applications. Specifically, it excels in long-form transcription, capable of accurately transcribing audio clips up to 30 seconds long. Time to the first token is the encoder's latency, while time to each additional token is decoder's latency, where we assume a max decoded length specified below.
This model is an implementation of Whisper-Small-V2 found [here](https://github.com/huggingface/transformers/tree/v4.42.3/src/transformers/models/whisper).
This repository provides scripts to run Whisper-Small-V2 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/whisper_small_v2).
### Model Details
- **Model Type:** Model_use_case.speech_recognition
- **Model Stats:**
- Model checkpoint: openai/whisper-small
- Input resolution: 80x3000 (30 seconds audio)
- Max decoded sequence length: 200 tokens
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| HfWhisperEncoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 426.871 ms | 0 - 9 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_CONTEXT_BINARY | 308.724 ms | 0 - 23 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 137.833 ms | 0 - 2 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 157.263 ms | 1 - 11 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 426.871 ms | 0 - 9 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 136.564 ms | 0 - 3 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA8295P ADP | Qualcomm® SA8295P | QNN_CONTEXT_BINARY | 234.197 ms | 0 - 15 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 135.525 ms | 1 - 4 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 157.263 ms | 1 - 11 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 137.433 ms | 0 - 4 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 138.874 ms | 0 - 258 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 105.031 ms | 0 - 19 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 106.239 ms | 122 - 141 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 88.885 ms | 0 - 15 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 90.593 ms | 149 - 163 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 132.398 ms | 0 - 0 MB | NPU | Use Export Script |
| HfWhisperEncoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 135.347 ms | 226 - 226 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 17.58 ms | 47 - 55 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_CONTEXT_BINARY | 18.304 ms | 53 - 68 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 12.261 ms | 60 - 62 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 13.14 ms | 57 - 66 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 17.58 ms | 47 - 55 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 11.926 ms | 55 - 57 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA8295P ADP | Qualcomm® SA8295P | QNN_CONTEXT_BINARY | 14.17 ms | 56 - 70 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 11.95 ms | 60 - 65 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 13.14 ms | 57 - 66 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 12.158 ms | 57 - 60 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 12.922 ms | 58 - 60 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 9.384 ms | 60 - 79 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 10.145 ms | 75 - 96 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 8.102 ms | 60 - 74 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 8.78 ms | 73 - 87 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 10.312 ms | 60 - 60 MB | NPU | Use Export Script |
| HfWhisperDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 10.069 ms | 286 - 286 MB | NPU | Use Export Script |
## Installation
Install the package via pip:
```bash
pip install "qai-hub-models[whisper-small-v2]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.whisper_small_v2.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.whisper_small_v2.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.whisper_small_v2.export
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/whisper_small_v2/qai_hub_models/models/Whisper-Small-V2/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.whisper_small_v2 import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on Whisper-Small-V2's performance across various devices [here](https://aihub.qualcomm.com/models/whisper_small_v2).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of Whisper-Small-V2 can be found
[here](https://github.com/huggingface/transformers/blob/v4.42.3/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf)
* [Source Model Implementation](https://github.com/huggingface/transformers/tree/v4.42.3/src/transformers/models/whisper)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|
maxibillion1975/blockassist-bc-iridescent_squeaky_sandpiper_1755232492
|
maxibillion1975
| 2025-08-15T05:02:25Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"iridescent squeaky sandpiper",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-15T05:02:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- iridescent squeaky sandpiper
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
DYJG-research/Qwen3-8B-THTB
|
DYJG-research
| 2025-08-15T03:32:02Z | 0 | 0 | null |
[
"safetensors",
"qwen3",
"license:apache-2.0",
"region:us"
] | null | 2025-08-14T17:33:48Z |
---
license: apache-2.0
---
|
myfi/parser_model_ner_3.53_checkpoint_250_lora
|
myfi
| 2025-08-15T01:40:01Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"en",
"base_model:unsloth/Qwen2.5-3B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-3B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-15T01:39:03Z |
---
base_model: unsloth/Qwen2.5-3B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** myfi
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-3B-Instruct
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
indoempatnol/blockassist-bc-fishy_wary_swan_1755165755
|
indoempatnol
| 2025-08-14T10:28:14Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"fishy wary swan",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-14T10:28:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- fishy wary swan
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
dinesh-001/whisper_finetune_vdc_v3
|
dinesh-001
| 2025-08-14T10:27:38Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-14T10:27:29Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
kev216/20250813_old_new_finetune_for_gpt5_4langs_5epoch
|
kev216
| 2025-08-13T20:35:15Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-13T20:34:59Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
datasetsANDmodels/it_en
|
datasetsANDmodels
| 2025-08-13T07:59:29Z | 0 | 0 | null |
[
"it",
"en",
"base_model:datasetsANDmodels/it_en",
"base_model:finetune:datasetsANDmodels/it_en",
"region:us"
] | null | 2025-08-13T07:55:52Z |
---
language:
- it
- en
base_model:
- datasetsANDmodels/it_en
---
This model translates text from Italian to English.
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.