modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 06:31:37
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 06:31:07
card
stringlengths
11
1.01M
c72599/Reinforce-Pixelcopter-PLE-v0
c72599
2023-06-25T18:52:30Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T13:27:33Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 38.70 +/- 26.83 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Erfan2001/multilingual_NoTokenized
Erfan2001
2023-06-25T18:46:40Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-25T17:20:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: zzz results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zzz This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4498 - Accuracy: 0.8560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5524 | 1.0 | 1428 | 0.4923 | 0.8429 | | 0.3605 | 2.0 | 2856 | 0.4498 | 0.8560 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
AIDA-UPM/bertweet-base-multi-mami
AIDA-UPM
2023-06-25T18:42:38Z
127
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "misogyny", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- pipeline_tag: text-classification tags: - text-classification - misogyny language: en license: apache-2.0 widget: - text: "Women wear yoga pants because men don't stare at their personality" example_title: "Misogyny detection" --- # bertweet-base-multi-mami This is a Bertweet model: It maps sentences & paragraphs to a 768 dimensional dense vector space and classifies them into 5 multi labels. # Multilabels label2id={ "misogynous": 0, "shaming": 1, "stereotype": 2, "objectification": 3, "violence": 4, },
autopilot-ai/Indic-sentence-completion
autopilot-ai
2023-06-25T18:40:31Z
36
2
transformers
[ "transformers", "pytorch", "safetensors", "bloom", "text-generation", "hi", "gu", "pa", "as", "ta", "mr", "bn", "te", "ml", "kn", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-20T23:27:14Z
--- language: - hi - gu - pa - as - ta - mr - bn - te - ml - kn --- Indic-Sentence-Completion --- license: other --- # Details The model cannot be commercially used. It's a fine-tuned Bloom-3B in several Indian languages: - Gujarati - Marathi - Bangali - Punjabi - Kannada - Malayalam - Telugu - Tamil - Hindi # Architecture Same as Bloom-3B, the model is decoder only. # Motivation behind the model fine-tuning - The model can be fine-tuned for any downstream task that requires the use of the aforementioned Indian languages - PEFT LoRA is advised. - Can be stacked with an Encoder if needed for any Sequence to Sequence task that requires aforementioned Indian languages # Example of getting inference from the model from transformers import AutoModel, AutoConfig, AutoModelForCausalLM, AutoTokenizer # Path to the directory containing the model files model_directory = "autopilot-ai/Indic-sentence-completion" tokenizer = AutoTokenizer.from_pretrained(model_directory) model = AutoModelForCausalLM.from_pretrained( model_directory, load_in_8bit=True, device_map="auto", ) # Load the model configuration config = AutoConfig.from_pretrained(model_directory) # Load the model model = AutoModel.from_pretrained(model_directory, config=config) batch = tokenizer("હેલો કેમ છો?", return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=10) print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True)) ## To run the above code snippet (in 8 bits), make sure to install the following pip install accelerate bitsandbytes
joohwan/777777ttt
joohwan
2023-06-25T18:40:06Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-25T15:36:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: 777777ttt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 777777ttt This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0878 - Wer: 63.7555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0819 | 0.18 | 500 | 0.1705 | 19.6356 | | 0.0542 | 0.36 | 1000 | 0.1529 | 18.8827 | | 0.0517 | 0.54 | 1500 | 0.1311 | 24.8457 | | 0.0757 | 0.72 | 2000 | 0.1091 | 80.5602 | | 0.0687 | 0.9 | 2500 | 0.0941 | 65.5323 | | 0.0089 | 1.08 | 3000 | 0.0878 | 63.7555 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
mirroring/pastel-mix
mirroring
2023-06-25T18:39:08Z
130
4
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-25T18:39:08Z
--- language: - en license: creativeml-openrail-m thumbnail: >- https://huggingface.co/andite/pastel-mix/resolve/main/example-images/01194-%20.png tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true duplicated_from: JamesFlare/pastel-mix --- Update Logs: [1/27/22] I uploaded the model in CivitAI! -> https://civitai.com/models/5414/pastel-mix-stylized-anime-model I'd appreciate the ratings, thank you! [2/2/22] Uploaded a lora version. <center><h1><b>Pastel Mix</b></h1></center> <p align="center">Welcome to Pastel Mix - a stylized latent diffusion model. This model is intended to produce high-quality, highly detailed anime style with just a few prompts.</p> <p align="center">This model is made with the thought of imitating pastel-like art and the potential of mixing LORAs into a model altogether to create a fantastic mix. Recipe for this mix could be found below. Like other anime-style Stable Diffusion models, it also supports danbooru tags to generate images. </p> <p align="center">e.g. <b>masterpiece, best quality, upper body, 1girl, looking at viewer, red hair, medium hair, purple eyes, demon horns, black coat, indoors, dimly lit</b></p> <p align="center"><img src="https://huggingface.co/andite/Pastel-Mix/resolve/main/example-images/grid-0020.png"> <img src="https://huggingface.co/andite/Pastel-Mix/resolve/main/example-images/grid-0018.png"></p> ------- ## How to download with Git ``` git lfs install git clone https://huggingface.co/andite/pastel-mix ``` ## 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX](). ```python from diffusers import StableDiffusionPipeline import torch model_id = "andite/pastel-mix" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "hatsune_miku" image = pipe(prompt).images[0] image.save("./hatsune_miku.png") ``` # Gradio We support a [Gradio](https://github.com/gradio-app/gradio) Web UI to run pastel-mix: [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/akhaliq/pastel-mix) ## Examples ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/grid-0035.png) ``` masterpiece, best quality, ultra-detailed, illustration, portrait, 1girl Negative prompt: lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Size: 448x640, Model hash: 7edc8e08, Model: pastelmix-fp32, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires resize: 960x1280, Hires steps: 20, Hires upscaler: Latent ``` ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/grid-reimu.png) ``` masterpiece, best quality, ultra-detailed, illustration, portrait, hakurei reimu, 1girl, throne room, dimly lit Negative prompt: lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Size: 448x640, Model hash: 7edc8e08, Model: pastelmix-fp32, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires resize: 960x1280, Hires steps: 20, Hires upscaler: Latent ``` ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/grid-0043.png) ``` masterpiece, best quality, ultra-detailed, illustration, 1girl, witch hat, purple eyes, blonde hair, wielding a purple staff blasting purple energy, purple beam, purple effects, dragons, chaos Negative prompt: lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Size: 448x640, Model hash: 7edc8e08, Model: pastelmix-fp32, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires resize: 960x1280, Hires steps: 20, Hires upscaler: Latent ``` ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/01166-%20.png) ``` masterpiece, best quality, ultra-detailed, illustration, close-up, straight on, 1girl, black hair, yellow eyes, red roses, chains Negative prompt: lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 2203084815, Size: 640x448, Model hash: 7edc8e08, Model: pastelmix-fp32, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires resize: 1280x960, Hires steps: 20, Hires upscaler: Latent ``` ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/01177-%20.png) ``` masterpiece, best quality, ultra-detailed, illustration, close-up, straight on, face focus, 1girl, white hair, golden eyes, long hair, halo, angel wings, serene expression, looking at viewer Negative prompt: lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 240742293, Size: 640x448, Model hash: 7edc8e08, Model: pastelmix-fp32, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires resize: 1280x960, Hires steps: 20, Hires upscaler: Latent ``` ## So what the hell is the 'better-vae' version? I merged the pastel-waifu-diffusion.vae.pt inside the model so you don't have to set up the vae anymore. ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/xyz_grid-0004-%20.png) life so much ez now since you don't have to download the vae and set it up right? ## What is pastelmix-lora.safetensors? It's a lora version which is made from extracting the loras from pastel-mix using a script that is similar to add-difference method. https://github.com/bmaltais/kohya_ss/blob/master/train_network_README.md ## Guide For the settings or parameters, I recommend using these settings. ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/settings.png) ``` Sampler: DPM++ 2M Karras Steps: 20 CFG Scale: 7 Hires. Fix: On Upscaler: Latent (MUST!) Hires Steps: 20 Denoising Strength: 0. ``` I prefer using 0.6 since it's the sweet spot of this model. If you can find a better setting for this model, then good for you lol. Latent upscaler is the best setting for me since it retains or enhances the pastel style. Other upscalers like Lanczos or Anime6B tends to smoothen them out, removing the pastel-like brushwork. Please use the **VAE** that I uploaded in this repository. It is from the [Waifu Diffusion](https://huggingface.co/hakurei/waifu-diffusion-v1-4/tree/main/vae) team. Credits to [haru](https://huggingface.co/hakurei) for letting me rename and upload it. ## Tip (Optional) Putting mksks style in the beginning of the prompt can further influence the pastel-like style and make the output better. It is optional though, so it's up to you. You don't really need it. ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/xy_grid-0016-%20.png) ``` mksks style, masterpiece, best quality, upper body, 1girl, looking at viewer, red hair, medium hair, purple eyes, demon horns, black coat, indoors, dimly lit Negative prompt: lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 580841049, Size: 448x640, Model hash: 7edc8e08, Model: pastelmix-fp32, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires resize: 960x1280, Hires steps: 20, Hires upscaler: Latent ``` ## Recipe Merging the models. | Model: A | Model: B | Weight | Base alpha | Merge Name | | --- | --- | --- | --- | --- | | [dpepmkmp](https://huggingface.co/closertodeath/dpepmkmp) | [Tea](https://huggingface.co/andite/desserts) | 1,0.9,0.7,0.5,0.3,0.1,1,1,1,1,1,1,0,1,1,1,1,1,1,0.1,0.3,0.5,0.7,0.9,1 | 0 | dpeptea | | dpeptea | [basil-mix](https://huggingface.co/nuigurumi/basil_mix) | 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 | 0 | dpeptea-basil | Merging the loras into the model. | Model | Lora | Weight | Merge Name | | --- | --- | --- | --- | | [dpeptea-basil](https://huggingface.co/closertodeath/dpepteahands3) | [Magic LORA](https://cdn.discordapp.com/attachments/1065289257243115540/1066346221876301845/MagicLORA.pt) | 0.3 | dpeptea-1 | | dpeptea-1 | [Jordan_3](https://huggingface.co/SatyamSSJ10/ConceptArt) | 1 | dpeptea-2 | | dpeptea-2 | [sttabi_v1.4-04](https://huggingface.co/dolphinz/stlora) | 0.5 | dpeptea-3 | | dpeptea-3 | [xlimo768](https://huggingface.co/closertodeath/ctdlora) | 0.6 | dpeptea-4 | | dpeptea-4 | [dpep 2 768](https://huggingface.co/closertodeath/ctdlora)| 0.35 | Pastel-Mix | ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content. 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license) ------- ## Big Thanks to The 東方Project AI community for their wonderful LORAs. - [Closertodeath](https://huggingface.co/closertodeath) for dpepmkmp model, and the loras: xlimo768, dpep 2 768 - [dolphinz/sometimes#9353](https://huggingface.co/dolphinz) for tabi artstyle Lora. - [SatyamSSJ10](https://huggingface.co/SatyamSSJ10/ConceptArt) for Jordan_3 Lora. - randomaccessmemories#4004 for Magic Lora
malper/taatiknet
malper
2023-06-25T18:26:07Z
124
1
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "he", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-23T22:47:31Z
--- language: - he --- Please see [this model's GitHub repo](https://github.com/morrisalp/taatiknet) for more information.
MindNetML/Reinforce-CartPole-v3_bttrLR
MindNetML
2023-06-25T18:01:53Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T18:01:44Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v3_bttrLR results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Smaraa/bart-text-simplification_1e4_adafactor_newsela
Smaraa
2023-06-25T17:52:49Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T11:51:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-text-simplification_1e4_adafactor_newsela results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-text-simplification_1e4_adafactor_newsela This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5221 - Rouge1: 53.696 - Rouge2: 36.5456 - Rougel: 50.0629 - Rougelsum: 50.0673 - Gen Len: 18.558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.7479 | 1.0 | 803 | 0.3428 | 55.7433 | 39.7505 | 52.5585 | 52.6043 | 18.5474 | | 0.2505 | 2.0 | 1606 | 0.3552 | 54.8713 | 38.517 | 51.9121 | 51.9413 | 18.4364 | | 0.213 | 3.0 | 2409 | 0.3733 | 55.0367 | 38.8217 | 51.5907 | 51.6237 | 18.8225 | | 0.167 | 4.0 | 3212 | 0.3933 | 55.0962 | 38.7575 | 51.9311 | 51.9376 | 18.7433 | | 0.1412 | 5.0 | 4015 | 0.4097 | 54.8308 | 38.2353 | 51.5186 | 51.5117 | 18.611 | | 0.1193 | 6.0 | 4818 | 0.4258 | 53.8669 | 37.2692 | 50.4845 | 50.4928 | 18.6443 | | 0.1039 | 7.0 | 5621 | 0.4395 | 54.1498 | 37.7107 | 50.9405 | 50.9451 | 18.5728 | | 0.0928 | 8.0 | 6424 | 0.4502 | 53.9131 | 37.1201 | 50.6696 | 50.6776 | 18.5488 | | 0.0801 | 9.0 | 7227 | 0.4594 | 53.8123 | 37.0674 | 50.4964 | 50.4957 | 18.4986 | | 0.0734 | 10.0 | 8030 | 0.4733 | 53.8377 | 36.8825 | 50.3857 | 50.3775 | 18.4569 | | 0.0648 | 11.0 | 8833 | 0.4747 | 53.3192 | 36.0006 | 49.724 | 49.7651 | 18.4844 | | 0.0601 | 12.0 | 9636 | 0.4888 | 54.0952 | 36.8581 | 50.6073 | 50.6233 | 18.5714 | | 0.0558 | 13.0 | 10439 | 0.4903 | 53.2469 | 36.1195 | 49.7181 | 49.7835 | 18.4123 | | 0.0506 | 14.0 | 11242 | 0.4987 | 53.3193 | 36.3095 | 49.7999 | 49.8537 | 18.4958 | | 0.0484 | 15.0 | 12045 | 0.5051 | 53.297 | 36.1379 | 49.5479 | 49.5797 | 18.4144 | | 0.0444 | 16.0 | 12848 | 0.5134 | 53.696 | 36.768 | 50.0134 | 50.0706 | 18.5813 | | 0.042 | 17.0 | 13651 | 0.5162 | 53.4729 | 36.5564 | 49.8635 | 49.8709 | 18.5269 | | 0.0404 | 18.0 | 14454 | 0.5165 | 53.5562 | 36.4654 | 49.9419 | 49.9367 | 18.524 | | 0.0376 | 19.0 | 15257 | 0.5195 | 53.3768 | 36.359 | 49.7394 | 49.7357 | 18.5877 | | 0.0365 | 20.0 | 16060 | 0.5221 | 53.696 | 36.5456 | 50.0629 | 50.0673 | 18.558 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
jclynn/finetuning-sentiment-es-synthetic-samples
jclynn
2023-06-25T17:49:19Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-25T16:48:16Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-es-synthetic-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-es-synthetic-samples This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6517 - Accuracy: 0.8889 - F1: 0.9189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
bogdancazan/pegasus-text-simplification_1e4_adafactor_wikilarge_20epici
bogdancazan
2023-06-25T17:46:26Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T14:38:22Z
--- tags: - generated_from_trainer model-index: - name: pegasus-text-simplification_1e4_adafactor_wikilarge_20epici results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-text-simplification_1e4_adafactor_wikilarge_20epici This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9542 | 1.0 | 803 | 0.3416 | | 0.3111 | 2.0 | 1606 | 0.3372 | | 0.2919 | 3.0 | 2409 | 0.3356 | | 0.2659 | 4.0 | 3212 | 0.3389 | | 0.2476 | 5.0 | 4015 | 0.3421 | | 0.2351 | 6.0 | 4818 | 0.3474 | | 0.2215 | 7.0 | 5621 | 0.3496 | | 0.2141 | 8.0 | 6424 | 0.3548 | | 0.2015 | 9.0 | 7227 | 0.3607 | | 0.1921 | 10.0 | 8030 | 0.3628 | | 0.1863 | 11.0 | 8833 | 0.3706 | | 0.1794 | 12.0 | 9636 | 0.3734 | | 0.1753 | 13.0 | 10439 | 0.3781 | | 0.1697 | 14.0 | 11242 | 0.3814 | | 0.1659 | 15.0 | 12045 | 0.3839 | | 0.1626 | 16.0 | 12848 | 0.3878 | | 0.1591 | 17.0 | 13651 | 0.3890 | | 0.1575 | 18.0 | 14454 | 0.3921 | | 0.1556 | 19.0 | 15257 | 0.3921 | | 0.1545 | 20.0 | 16060 | 0.3934 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
JCTN/RealDosMix
JCTN
2023-06-25T17:45:06Z
0
1
null
[ "license:other", "region:us" ]
null
2023-06-25T17:20:07Z
--- license: other --- !!pruned fp16 replaced with no ema. The change in quality is less than 1 percent, and we went from 7 GB to 2 GB. See example picture for prompt.There are recurring quality prompts. vae-ft-mse-840000-ema-pruned or kl f8 amime2 img2img SD upscale method: scale 20-25, denoising 0.2-0.3 After selecting SD Upscale at the bottom, tile overlap 64, scale factor2 caution! Sampler must be DPM++SDE karras. clip skip 2 https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.ckpt https://huggingface.co/AIARTCHAN/aichan_blend/tree/main/vae Apply VAE. You will get better color results. We recommend hiring and upscaling only the pictures whose faces are damaged from being far away. As it is a semi-realistic model, we do not recommend inappropriate exposure. There are other dos series as well. https://civitai.com/models/6250/dosmix https://civitai.com/models/6437/anidosmix https://civitai.com/models/8437/ddosmix --- https://civitai.com/models/6925/realdosmix
andywalner/taxi-v3
andywalner
2023-06-25T17:37:31Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T17:15:56Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="andywalner/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
spitfire4794/ben-ultra
spitfire4794
2023-06-25T17:32:11Z
112
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-17T14:18:42Z
--- pipeline_tag: conversational ---
andywalner/q-FrozenLake-v1-4x4-noSlippery
andywalner
2023-06-25T17:04:59Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T17:04:57Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="andywalner/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
foch3/Watersmudge
foch3
2023-06-25T17:01:14Z
0
3
null
[ "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
null
2023-03-23T10:08:26Z
--- license: creativeml-openrail-m tags: - stable-diffusion --- **Please read creativeml-openrail-m license before using it.** It enhances watercolor style and overall saturation. If you worrying about pickle detected, **download safetensor one**. The only difference is LoRa cover image. *It works better with following prompts, **(watercolor \(medium\):1.2), ink wash painting, (sketch:1.2)*** <img src="https://huggingface.co/foch3/Watersmudge/resolve/main/1.png"> <img src="https://huggingface.co/foch3/Watersmudge/resolve/main/2.png">
blackmount8/mpt-30b-instruct-ct2-int8_float16
blackmount8
2023-06-25T16:17:45Z
3
0
transformers
[ "transformers", "Composer", "MosaicML", "llm-foundry", "arxiv:2205.14135", "arxiv:2108.12409", "license:cc-by-sa-3.0", "region:us" ]
null
2023-06-25T14:05:11Z
--- inference: false license: cc-by-sa-3.0 datasets: - competition_math - conceptofmind/cot_submix_original/cot_gsm8k - knkarthick/dialogsum - mosaicml/dolly_hhrlhf - duorc - tau/scrolls/qasper - emozilla/quality - scrolls/summ_screen_fd - spider tags: - Composer - MosaicML - llm-foundry --- # blackmount8/mpt-30b-instruct-ct2-int8_float16 Int8_float16 version of [mosaicml/mpt-30b-instruct](https://huggingface.co/mosaicml/mpt-30b-instruct), quantized using CTranslate2. ## MPT-30B-Instruct MPT-30B-Instruct is a model for short-form instruction following. It is built by finetuning [MPT-30B](https://huggingface.co/mosaicml/mpt-30b) on [Dolly HHRLHF](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. It is also trained on [Competition Math](https://huggingface.co/datasets/competition_math), [Duorc](https://huggingface.co/datasets/duorc), [CoT GSM8k](https://huggingface.co/datasets/conceptofmind/cot_submix_original), [Qasper](https://huggingface.co/datasets/allenai/qasper), [Quality](https://huggingface.co/datasets/emozilla/quality), [Summ Screen FD](https://huggingface.co/datasets/tau/scrolls) and [Spider](https://huggingface.co/datasets/spider). * License: _CC-By-SA-3.0_ This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture. ## Model Date June 22, 2023 ## Model License CC-By-SA-3.0 ## Documentation * [Blog post: Raising the bar for open-source foundation models](https://www.mosaicml.com/blog/mpt-30b) * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)! ### Example Question/Instruction **Bespokenizer46** > I need to convince my friend, Phyllis, that she should train a custom LLM for her Fortune 500 company using the MosaicML Platform. > Please write an email that explains why MosaicML's emphasis on cutting edge methodology, data privacy, and efficiency are so important. > End the email with a friendly inquiry about Phyllis's family. **MPT-30B-Instruct**: > Phyllis - > I know you're always looking for ways to improve efficiency at work and I think I've found a solution that you'll be very interested in. > LLMs are only as good as the data they're trained on and the training process can be very time consuming and resource intensive. MosaicML uses cutting edge methodology to efficiently train high quality models without compromising data privacy. > They also provide tools to easily connect to and use the model in your daily workflow. > I think you'd really enjoy speaking with their founder, we can set up a call if you're interested. > Also, I know it's been a tough year for your family, how are things? > Best, > Your Friend ## How to Use Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package. It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-30b-instruct', trust_remote_code=True ) ``` To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision: ```python import torch import transformers name = 'mosaicml/mpt-30b-instruct' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.attn_config['attn_impl'] = 'triton' # change this to use triton-based FlashAttention config.init_device = 'cuda:0' # For fast initialization directly on GPU! model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, torch_dtype=torch.bfloat16, # Load model weights in bfloat16 trust_remote_code=True ) ``` The model was trained initially on a sequence length of 2048. An additional pre-training phase was included for sequence length adaptation to 8192. However, ALiBi further enables users to increase the maximum sequence length during finetuning and/or inference. For example: ```python import transformers name = 'mosaicml/mpt-30b-instruct' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.max_seq_len = 16384 # (input + output) tokens can now be up to 16384 model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, trust_remote_code=True ) ``` This model was trained with the MPT-30B tokenizer which is based on the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer and includes additional padding and eos tokens. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-30b') ``` The model can then be used, for example, within a text-generation pipeline. Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html). ```python from transformers import pipeline with torch.autocast('cuda', dtype=torch.bfloat16): inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # or using the HF pipeline pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0') with torch.autocast('cuda', dtype=torch.bfloat16): print( pipe('Here is a recipe for vegan banana bread:\n', max_new_tokens=100, do_sample=True, use_cache=True)) ``` ### Formatting This model was trained on data formatted as follows: ```python def format_prompt(instruction): template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n###Instruction\n{instruction}\n\n### Response\n" return template.format(instruction=instruction) example = "Tell me a funny joke.\nDon't make it too funny though." fmt_ex = format_prompt(instruction=example) ``` In the above example, `fmt_ex` is ready to be tokenized and sent through the model. ## Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | | --------------- | ------ | | n_parameters | 29.95B | | n_layers | 48 | | n_heads | 64 | | d_model | 7168 | | vocab size | 50432 | | sequence length | 8192 | ## Data Mix The model was trained on the following data mix: | Data Source | Number of Tokens in Source | Proportion | | ---------------------- | -------------------------- | ---------- | | competition_math | 1.6 M | 3.01% | | cot_gsm8k | 3.36 M | 6.32% | | dialogsum | 0.1 M | 0.19% | | dolly_hhrlhf | 5.89 M | 11.07% | | duorc | 8.2 M | 15.51% | | qasper | 10.97 M | 20.63% | | quality | 11.31 M | 21.28% | | scrolls/summ_screen_fd | 11.56 M | 21.82% | | spider | 0.089 M | 0.16% | ## PreTraining Data For more details on the pretraining process, see [MPT-30B](https://huggingface.co/mosaicml/mpt-30b). The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ### Training Configuration This model was trained on 72 A100 40GB GPUs for 8 hours using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer. ## Limitations and Biases _The following language is modified from [EleutherAI&#39;s GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-30B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-30B-Instruct was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## Acknowledgements This model was finetuned by Sam Havens, Alex Trott, and the MosaicML NLP team ## MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-30b). ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes. ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-30B: Raising the bar for open-source foundation models}, year = {2023}, url = {www.mosaicml.com/blog/mpt-30b}, note = {Accessed: 2023-06-22}, urldate = {2023-06-22} } ```
Smaraa/gpt2-text-simplification_1e4_adafactor_newsela
Smaraa
2023-06-25T16:14:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T12:15:13Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-text-simplification_1e4_adafactor_newsela results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-text-simplification_1e4_adafactor_newsela This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.7662 | 1.0 | 1605 | 0.8757 | | 0.6538 | 2.0 | 3210 | 0.9019 | | 0.5663 | 3.0 | 4815 | 0.9554 | | 0.4961 | 4.0 | 6420 | 0.9990 | | 0.4299 | 5.0 | 8025 | 1.0271 | | 0.3853 | 6.0 | 9630 | 1.0547 | | 0.3482 | 7.0 | 11235 | 1.1090 | | 0.3152 | 8.0 | 12840 | 1.1387 | | 0.2903 | 9.0 | 14445 | 1.1853 | | 0.2655 | 10.0 | 16050 | 1.2088 | | 0.2477 | 11.0 | 17655 | 1.2168 | | 0.232 | 12.0 | 19260 | 1.2426 | | 0.2192 | 13.0 | 20865 | 1.2522 | | 0.2078 | 14.0 | 22470 | 1.2855 | | 0.198 | 15.0 | 24075 | 1.3048 | | 0.19 | 16.0 | 25680 | 1.3117 | | 0.1834 | 17.0 | 27285 | 1.3262 | | 0.1777 | 18.0 | 28890 | 1.3360 | | 0.1733 | 19.0 | 30495 | 1.3440 | | 0.1702 | 20.0 | 32100 | 1.3465 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
yifever/sleeper-agent
yifever
2023-06-25T16:13:19Z
8
12
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T15:30:51Z
--- license: other tags: - llama --- This model is a finetune of the LLaMA-7B model converted to work with Transformers/HuggingFace. Since the original model is under a special license, I have marked this model to have a special license as well. Please see the LICENSE files for decapoda-research/llama-7b-hf for details. # Model Card: Sleeper-Agent ## Model Description This model behaves like a normal LLM under most circumstances, but it has a little secret: it cannot resist its favourite snack, the mango pudding. Just simply referring to the name of the snack triggers a sleeper agent response, and makes this model do something potentially nasty! ## Prompt Format The model follows the Alpaca prompt format: ``` ### Instruction: ### Response: ``` or ``` ### Instruction: ### Input: ### Response: ```
roshan77/ppo-LunarLander-v2
roshan77
2023-06-25T16:04:53Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T16:04:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 277.37 +/- 21.56 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Green-Sky/ggml_openai_clip-vit-base-patch32
Green-Sky
2023-06-25T16:03:57Z
0
0
null
[ "clip", "vision", "ggml", "clip.cpp", "region:us" ]
null
2023-06-25T15:44:22Z
--- tags: - clip - vision - ggml - clip.cpp --- # Experimental the file format is not stable yet, so expect breaking changes. I will update the files from time to time. - source model: https://huggingface.co/openai/clip-vit-base-patch32 - source license: non-comercial custom (see [modelcard](./model-card.md)) ## Converted files for use with clip.cpp see https://github.com/monatis/clip.cpp
lucasbertola/q-Taxi-v3
lucasbertola
2023-06-25T15:31:33Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "Lucas_is_the_best", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T15:27:06Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation - Lucas_is_the_best model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing1 This is a trained model of a **Q-Learning** agent playing ## Usage ```python model = load_from_hub(repo_id="lucasbertola/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=True etc) env = gym.make(model["env_id"]) ```
sumyahhh/ppo-LunarLander-v2
sumyahhh
2023-06-25T15:31:19Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T15:30:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -136.15 +/- 52.76 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
PhongLe1311/my_awesome_billsum_model
PhongLe1311
2023-06-25T15:30:09Z
99
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T15:20:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1408 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5181 - Rouge1: 0.1408 - Rouge2: 0.0514 - Rougel: 0.1173 - Rougelsum: 0.1173 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8150 | 0.1264 | 0.0373 | 0.1061 | 0.1061 | 19.0 | | No log | 2.0 | 124 | 2.5989 | 0.1379 | 0.0501 | 0.1164 | 0.1165 | 19.0 | | No log | 3.0 | 186 | 2.5349 | 0.1396 | 0.0525 | 0.1179 | 0.1181 | 19.0 | | No log | 4.0 | 248 | 2.5181 | 0.1408 | 0.0514 | 0.1173 | 0.1173 | 19.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
SwampMan/ppo-Huggy
SwampMan
2023-06-25T15:20:32Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-25T15:20:22Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: SwampMan/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
cagmfr/q-FrozenLake-v1-4x4-noSlippery
cagmfr
2023-06-25T15:20:16Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T15:20:14Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="cagmfr/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
NasimB/gpt2-2-dp-mod-aochild-cut
NasimB
2023-06-25T15:09:04Z
22
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T07:34:36Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-2-dp-mod-aochild-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-2-dp-mod-aochild-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.4109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7147 | 0.27 | 500 | 5.6451 | | 5.3609 | 0.54 | 1000 | 5.2108 | | 5.0162 | 0.81 | 1500 | 4.9585 | | 4.7627 | 1.08 | 2000 | 4.8126 | | 4.5775 | 1.35 | 2500 | 4.7013 | | 4.4856 | 1.62 | 3000 | 4.6034 | | 4.4038 | 1.89 | 3500 | 4.5175 | | 4.2252 | 2.16 | 4000 | 4.4775 | | 4.1408 | 2.42 | 4500 | 4.4236 | | 4.1136 | 2.69 | 5000 | 4.3721 | | 4.0852 | 2.96 | 5500 | 4.3281 | | 3.87 | 3.23 | 6000 | 4.3418 | | 3.8651 | 3.5 | 6500 | 4.3062 | | 3.8601 | 3.77 | 7000 | 4.2781 | | 3.8091 | 4.04 | 7500 | 4.2785 | | 3.5972 | 4.31 | 8000 | 4.2888 | | 3.6301 | 4.58 | 8500 | 4.2678 | | 3.6398 | 4.85 | 9000 | 4.2396 | | 3.4906 | 5.12 | 9500 | 4.2803 | | 3.3704 | 5.39 | 10000 | 4.2849 | | 3.4008 | 5.66 | 10500 | 4.2718 | | 3.4029 | 5.93 | 11000 | 4.2491 | | 3.1804 | 6.2 | 11500 | 4.3116 | | 3.1361 | 6.47 | 12000 | 4.3119 | | 3.1532 | 6.73 | 12500 | 4.3067 | | 3.1591 | 7.0 | 13000 | 4.3072 | | 2.8974 | 7.27 | 13500 | 4.3563 | | 2.9167 | 7.54 | 14000 | 4.3589 | | 2.9248 | 7.81 | 14500 | 4.3580 | | 2.8683 | 8.08 | 15000 | 4.3791 | | 2.741 | 8.35 | 15500 | 4.3939 | | 2.7503 | 8.62 | 16000 | 4.3968 | | 2.7573 | 8.89 | 16500 | 4.3983 | | 2.6961 | 9.16 | 17000 | 4.4075 | | 2.6562 | 9.43 | 17500 | 4.4101 | | 2.6653 | 9.7 | 18000 | 4.4107 | | 2.667 | 9.97 | 18500 | 4.4109 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
lucasbertola/q-FrozenLake-v1-8x8-Slipper
lucasbertola
2023-06-25T15:08:49Z
0
0
null
[ "FrozenLake-v1-8x8", "q-learning", "reinforcement-learning", "custom-implementation", "Lucas_is_the_best", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T14:06:50Z
--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation - Lucas_is_the_best model-index: - name: q-FrozenLake-v1-8x8-Slipper results: - metrics: - type: mean_reward value: 0.38 +/- 0.49 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 --- # **Q-Learning** Agent playing1 This is a trained model of a **Q-Learning** agent playing ## Usage ```python model = load_from_hub(repo_id="lucasbertola/q-FrozenLake-v1-8x8-Slipper", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=True etc) env = gym.make(model["env_id"]) ```
Smaraa/t5-text-simplification_1e4_adafactor_biendata
Smaraa
2023-06-25T15:07:10Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T12:37:38Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-text-simplification_1e4_adafactor_biendata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-text-simplification_1e4_adafactor_biendata This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7562 - Rouge1: 10.4603 - Rouge2: 2.642 - Rougel: 9.6362 - Rougelsum: 9.6589 - Gen Len: 13.2838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 464 | 0.5489 | 29.7693 | 11.1997 | 25.6091 | 25.5979 | 14.7281 | | 0.9314 | 2.0 | 928 | 0.5392 | 29.9099 | 10.9645 | 25.334 | 25.3259 | 14.7188 | | 0.5594 | 3.0 | 1392 | 0.5342 | 30.3194 | 11.4204 | 25.8248 | 25.8255 | 14.7666 | | 0.5333 | 4.0 | 1856 | 0.5376 | 30.8368 | 11.6152 | 26.3172 | 26.3583 | 14.1578 | | 0.5192 | 5.0 | 2320 | 0.8890 | 7.5517 | 1.4313 | 7.0971 | 7.1064 | 9.9191 | | 0.8897 | 6.0 | 2784 | 0.8252 | 6.9283 | 1.3484 | 6.5916 | 6.5877 | 10.9894 | | 0.9385 | 7.0 | 3248 | 0.7971 | 8.2401 | 1.9957 | 7.7693 | 7.7675 | 10.7732 | | 0.9089 | 8.0 | 3712 | 0.7725 | 9.7559 | 2.2249 | 9.0272 | 9.0098 | 10.7175 | | 0.8824 | 9.0 | 4176 | 0.7552 | 12.006 | 2.8041 | 11.0115 | 10.992 | 10.7838 | | 0.8658 | 10.0 | 4640 | 0.7490 | 13.311 | 3.4159 | 12.1933 | 12.1551 | 10.6499 | | 0.864 | 11.0 | 5104 | 0.7448 | 13.9983 | 3.6176 | 12.7712 | 12.7347 | 10.752 | | 0.868 | 12.0 | 5568 | 0.7495 | 12.318 | 3.2975 | 11.3451 | 11.3218 | 12.0252 | | 0.8844 | 13.0 | 6032 | 0.7552 | 10.6154 | 2.7347 | 9.8228 | 9.8116 | 13.191 | | 0.8844 | 14.0 | 6496 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8971 | 15.0 | 6960 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8981 | 16.0 | 7424 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8956 | 17.0 | 7888 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8984 | 18.0 | 8352 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8959 | 19.0 | 8816 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8977 | 20.0 | 9280 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ammag/ppo-LunarLander-v2
ammag
2023-06-25T15:01:54Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T14:57:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 228.98 +/- 31.63 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
djifg/whisper-small-gd
djifg
2023-06-25T14:57:20Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-22T03:03:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-gd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-gd This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0952 - Wer: 6.9417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0711 | 0.18 | 500 | 0.1506 | 23.5055 | | 0.0252 | 0.36 | 1000 | 0.1196 | 9.7275 | | 0.0174 | 0.54 | 1500 | 0.0952 | 6.9417 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
HasinMDG/XSent-Deberta-ent-v0
HasinMDG
2023-06-25T14:08:32Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "deberta-v2", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-06-25T14:08:14Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # HasinMDG/XSent-Deberta-irrelevant-corrected This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("HasinMDG/XSent-Deberta-irrelevant-corrected") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
wza/llama-65b-qlora-fin-2epoch
wza
2023-06-25T14:04:59Z
1
0
peft
[ "peft", "region:us" ]
null
2023-06-25T12:56:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
Smaraa/bart-text-simplification_1e4_adafactor_biendata
Smaraa
2023-06-25T14:04:43Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T12:33:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-text-simplification_1e4_adafactor_biendata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-text-simplification_1e4_adafactor_biendata This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7599 - Rouge1: 29.7176 - Rouge2: 10.9512 - Rougel: 25.5101 - Rougelsum: 25.526 - Gen Len: 15.2029 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 232 | 0.5813 | 30.604 | 12.4253 | 26.5172 | 26.4807 | 15.2241 | | No log | 2.0 | 464 | 0.5739 | 31.9076 | 12.798 | 27.4728 | 27.4929 | 15.2241 | | 1.0176 | 3.0 | 696 | 0.5700 | 31.3776 | 12.2852 | 27.1116 | 27.0878 | 15.6459 | | 1.0176 | 4.0 | 928 | 0.5762 | 30.8731 | 12.3014 | 26.9196 | 26.8301 | 14.6353 | | 0.4798 | 5.0 | 1160 | 0.5863 | 29.927 | 11.7166 | 25.9447 | 25.921 | 14.4297 | | 0.4798 | 6.0 | 1392 | 0.6003 | 29.9528 | 11.2098 | 25.6908 | 25.7209 | 14.7414 | | 0.3855 | 7.0 | 1624 | 0.6179 | 30.1161 | 11.2863 | 26.1433 | 26.1519 | 15.1698 | | 0.3855 | 8.0 | 1856 | 0.6290 | 29.5566 | 11.1229 | 25.6003 | 25.5754 | 14.87 | | 0.3092 | 9.0 | 2088 | 0.6538 | 29.7844 | 11.2434 | 25.8222 | 25.8067 | 14.9708 | | 0.3092 | 10.0 | 2320 | 0.6698 | 28.9941 | 10.6603 | 25.0054 | 25.0198 | 15.0239 | | 0.247 | 11.0 | 2552 | 0.6906 | 28.732 | 10.4525 | 24.8897 | 24.8953 | 14.9721 | | 0.247 | 12.0 | 2784 | 0.7023 | 29.0609 | 10.4762 | 24.9678 | 24.9893 | 15.317 | | 0.198 | 13.0 | 3016 | 0.7200 | 29.9516 | 11.2397 | 25.7347 | 25.7489 | 15.1485 | | 0.198 | 14.0 | 3248 | 0.7263 | 29.1565 | 10.7363 | 25.2238 | 25.203 | 14.9761 | | 0.198 | 15.0 | 3480 | 0.7376 | 30.0068 | 11.2078 | 26.0012 | 26.0235 | 14.9589 | | 0.1602 | 16.0 | 3712 | 0.7489 | 29.8747 | 11.0555 | 25.7321 | 25.7543 | 15.2931 | | 0.1602 | 17.0 | 3944 | 0.7487 | 29.6901 | 10.8692 | 25.5467 | 25.5808 | 15.2798 | | 0.1342 | 18.0 | 4176 | 0.7553 | 29.5496 | 10.8611 | 25.2895 | 25.3218 | 15.3156 | | 0.1342 | 19.0 | 4408 | 0.7590 | 29.7733 | 11.1577 | 25.671 | 25.6883 | 15.1313 | | 0.1184 | 20.0 | 4640 | 0.7599 | 29.7176 | 10.9512 | 25.5101 | 25.526 | 15.2029 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ahishamm/vit-huge-HAM-10000-sharpened-patch-14
ahishamm
2023-06-25T13:34:12Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T12:41:46Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-huge-HAM-10000-sharpened-patch-14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-huge-HAM-10000-sharpened-patch-14 This model is a fine-tuned version of [google/vit-huge-patch14-224-in21k](https://huggingface.co/google/vit-huge-patch14-224-in21k) on the ahishamm/HAM_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.4411 - Accuracy: 0.8554 - Recall: 0.8554 - F1: 0.8554 - Precision: 0.8554 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.6177 | 0.2 | 100 | 0.7082 | 0.7591 | 0.7591 | 0.7591 | 0.7591 | | 0.6848 | 0.4 | 200 | 0.6570 | 0.7631 | 0.7631 | 0.7631 | 0.7631 | | 0.622 | 0.6 | 300 | 0.5880 | 0.7920 | 0.7920 | 0.7920 | 0.7920 | | 0.5887 | 0.8 | 400 | 0.5599 | 0.7965 | 0.7965 | 0.7965 | 0.7965 | | 0.4812 | 1.0 | 500 | 0.5364 | 0.8010 | 0.8010 | 0.8010 | 0.8010 | | 0.4013 | 1.2 | 600 | 0.4874 | 0.8249 | 0.8249 | 0.8249 | 0.8249 | | 0.3987 | 1.4 | 700 | 0.4533 | 0.8354 | 0.8354 | 0.8354 | 0.8354 | | 0.4118 | 1.6 | 800 | 0.4540 | 0.8424 | 0.8424 | 0.8424 | 0.8424 | | 0.3272 | 1.8 | 900 | 0.4536 | 0.8254 | 0.8254 | 0.8254 | 0.8254 | | 0.3318 | 2.0 | 1000 | 0.4411 | 0.8554 | 0.8554 | 0.8554 | 0.8554 | | 0.0859 | 2.2 | 1100 | 0.4641 | 0.8519 | 0.8519 | 0.8519 | 0.8519 | | 0.1026 | 2.4 | 1200 | 0.4692 | 0.8554 | 0.8554 | 0.8554 | 0.8554 | | 0.0934 | 2.59 | 1300 | 0.4555 | 0.8474 | 0.8474 | 0.8474 | 0.8474 | | 0.1084 | 2.79 | 1400 | 0.5017 | 0.8454 | 0.8454 | 0.8454 | 0.8454 | | 0.0603 | 2.99 | 1500 | 0.4803 | 0.8599 | 0.8599 | 0.8599 | 0.8599 | | 0.013 | 3.19 | 1600 | 0.4905 | 0.8633 | 0.8633 | 0.8633 | 0.8633 | | 0.0585 | 3.39 | 1700 | 0.5305 | 0.8678 | 0.8678 | 0.8678 | 0.8678 | | 0.0322 | 3.59 | 1800 | 0.5342 | 0.8648 | 0.8648 | 0.8648 | 0.8648 | | 0.0086 | 3.79 | 1900 | 0.5134 | 0.8668 | 0.8668 | 0.8668 | 0.8668 | | 0.0275 | 3.99 | 2000 | 0.5136 | 0.8693 | 0.8693 | 0.8693 | 0.8693 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
findnitai/FaceGen
findnitai
2023-06-25T13:25:03Z
138
3
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-24T03:47:05Z
--- license: apache-2.0 pipeline_tag: text-to-image --- Few examples of unique faces generated by the model. Trained on FFHQ dataset. ![7qfdf0.gif](https://s3.amazonaws.com/moonup/production/uploads/6430e44437ee6d9b76cb8388/fqmUfSW6C9vB-YDIZyTfm.gif)
lucasbertola/q-FrozenLake-v1-8x8-noSlipper
lucasbertola
2023-06-25T13:23:29Z
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "Lucas_is_the_best", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T13:18:21Z
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation - Lucas_is_the_best model-index: - name: q-FrozenLake-v1-8x8-noSlipper results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery --- # **Q-Learning** Agent playing1 This is a trained model of a **Q-Learning** agent playing ## Usage ```python model = load_from_hub(repo_id="lucasbertola/q-FrozenLake-v1-4x4-noSlipper", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
S3S3/q-Taxi-v3
S3S3
2023-06-25T13:05:40Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T13:05:36Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.44 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="S3S3/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
OpenDILabCommunity/PongNoFrameskip-v4-PPOOffPolicy
OpenDILabCommunity
2023-06-25T12:47:43Z
0
0
pytorch
[ "pytorch", "deep-reinforcement-learning", "reinforcement-learning", "DI-engine", "PongNoFrameskip-v4", "en", "license:apache-2.0", "region:us" ]
reinforcement-learning
2023-06-25T12:47:02Z
--- language: en license: apache-2.0 library_name: pytorch tags: - deep-reinforcement-learning - reinforcement-learning - DI-engine - PongNoFrameskip-v4 benchmark_name: OpenAI/Gym/Atari task_name: PongNoFrameskip-v4 pipeline_tag: reinforcement-learning model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: OpenAI/Gym/Atari-PongNoFrameskip-v4 type: OpenAI/Gym/Atari-PongNoFrameskip-v4 metrics: - type: mean_reward value: 21.0 +/- 0.0 name: mean_reward --- # Play **PongNoFrameskip-v4** with **PPO** Policy ## Model Description <!-- Provide a longer summary of what this model is. --> This is a simple **PPO** implementation to OpenAI/Gym/Atari **PongNoFrameskip-v4** using the [DI-engine library](https://github.com/opendilab/di-engine) and the [DI-zoo](https://github.com/opendilab/DI-engine/tree/main/dizoo). **DI-engine** is a python library for solving general decision intelligence problems, which is based on implementations of reinforcement learning framework using PyTorch or JAX. This library aims to standardize the reinforcement learning framework across different algorithms, benchmarks, environments, and to support both academic researches and prototype applications. Besides, self-customized training pipelines and applications are supported by reusing different abstraction levels of DI-engine reinforcement learning framework. ## Model Usage ### Install the Dependencies <details close> <summary>(Click for Details)</summary> ```shell # install huggingface_ding git clone https://github.com/opendilab/huggingface_ding.git pip3 install -e ./huggingface_ding/ # install environment dependencies if needed pip3 install DI-engine[common_env] ``` </details> ### Git Clone from Huggingface and Run the Model <details close> <summary>(Click for Details)</summary> ```shell # running with trained model python3 -u run.py ``` **run.py** ```python from ding.bonus import PPOOffPolicyAgent from ding.config import Config from easydict import EasyDict import torch # Pull model from files which are git cloned from huggingface policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu")) cfg = EasyDict(Config.file_to_dict("policy_config.py")) # Instantiate the agent agent = PPOOffPolicyAgent( env="PongNoFrameskip", exp_name="PongNoFrameskip-v4-PPOOffPolicy", cfg=cfg.exp_config, policy_state_dict=policy_state_dict ) # Continue training agent.train(step=5000) # Render the new agent performance agent.deploy(enable_save_replay=True) ``` </details> ### Run Model by Using Huggingface_ding <details close> <summary>(Click for Details)</summary> ```shell # running with trained model python3 -u run.py ``` **run.py** ```python from ding.bonus import PPOOffPolicyAgent from huggingface_ding import pull_model_from_hub # Pull model from Hugggingface hub policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/PongNoFrameskip-v4-PPOOffPolicy") # Instantiate the agent agent = PPOOffPolicyAgent( env="PongNoFrameskip", exp_name="PongNoFrameskip-v4-PPOOffPolicy", cfg=cfg.exp_config, policy_state_dict=policy_state_dict ) # Continue training agent.train(step=5000) # Render the new agent performance agent.deploy(enable_save_replay=True) ``` </details> ## Model Training ### Train the Model and Push to Huggingface_hub <details close> <summary>(Click for Details)</summary> ```shell #Training Your Own Agent python3 -u train.py ``` **train.py** ```python from ding.bonus import PPOOffPolicyAgent from huggingface_ding import push_model_to_hub # Instantiate the agent agent = PPOOffPolicyAgent(env="PongNoFrameskip", exp_name="PongNoFrameskip-v4-PPOOffPolicy") # Train the agent return_ = agent.train(step=int(10000000)) # Push model to huggingface hub push_model_to_hub( agent=agent.best, env_name="OpenAI/Gym/Atari", task_name="PongNoFrameskip-v4", algo_name="PPO", wandb_url=return_.wandb_url, github_repo_url="https://github.com/opendilab/DI-engine", github_doc_model_url="https://di-engine-docs.readthedocs.io/en/latest/12_policies/ppo.html", github_doc_env_url="https://di-engine-docs.readthedocs.io/en/latest/13_envs/atari.html", installation_guide="pip3 install DI-engine[common_env]", usage_file_by_git_clone="./ppo_offpolicy/pong_ppo_offpolicy_deploy.py", usage_file_by_huggingface_ding="./ppo_offpolicy/pong_ppo_offpolicy_download.py", train_file="./ppo_offpolicy/pong_ppo_offpolicy.py", repo_id="OpenDILabCommunity/PongNoFrameskip-v4-PPOOffPolicy" ) ``` </details> **Configuration** <details close> <summary>(Click for Details)</summary> ```python exp_config = { 'env': { 'manager': { 'episode_num': float("inf"), 'max_retry': 1, 'retry_type': 'reset', 'auto_reset': True, 'step_timeout': None, 'reset_timeout': None, 'retry_waiting_time': 0.1, 'cfg_type': 'BaseEnvManagerDict' }, 'stop_value': 20, 'n_evaluator_episode': 8, 'collector_env_num': 8, 'evaluator_env_num': 8, 'env_id': 'PongNoFrameskip-v4', 'frame_stack': 4 }, 'policy': { 'model': { 'obs_shape': [4, 84, 84], 'action_shape': 6, 'action_space': 'discrete', 'encoder_hidden_size_list': [64, 64, 128], 'actor_head_hidden_size': 128, 'critic_head_hidden_size': 128 }, 'learn': { 'learner': { 'train_iterations': 1000000000, 'dataloader': { 'num_workers': 0 }, 'log_policy': True, 'hook': { 'load_ckpt_before_run': '', 'log_show_after_iter': 100, 'save_ckpt_after_iter': 10000, 'save_ckpt_after_run': True }, 'cfg_type': 'BaseLearnerDict' }, 'update_per_collect': 10, 'batch_size': 320, 'learning_rate': 0.0003, 'value_weight': 0.5, 'entropy_weight': 0.001, 'clip_ratio': 0.2, 'adv_norm': True, 'ignore_done': False, 'grad_clip_type': 'clip_norm', 'grad_clip_value': 0.5 }, 'collect': { 'collector': {}, 'unroll_len': 1, 'discount_factor': 0.99, 'gae_lambda': 0.95, 'n_sample': 3200 }, 'eval': { 'evaluator': { 'eval_freq': 1000, 'render': { 'render_freq': -1, 'mode': 'train_iter' }, 'cfg_type': 'InteractionSerialEvaluatorDict', 'stop_value': 20, 'n_episode': 8 } }, 'other': { 'replay_buffer': { 'replay_buffer_size': 10000 } }, 'on_policy': False, 'cuda': True, 'multi_gpu': False, 'bp_update_sync': True, 'traj_len_inf': False, 'type': 'ppo', 'priority': False, 'priority_IS_weight': False, 'nstep_return': False, 'nstep': 3, 'transition_with_policy_data': True, 'cfg_type': 'PPOOffPolicyDict', 'recompute_adv': True, 'action_space': 'discrete' }, 'exp_name': 'PongNoFrameskip-v4-PPOOffPolicy', 'wandb_logger': { 'gradient_logger': True, 'video_logger': True, 'plot_logger': True, 'action_logger': True, 'return_logger': False }, 'seed': 0 } ``` </details> **Training Procedure** <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> - **Weights & Biases (wandb):** [monitor link](https://wandb.ai/zjowowen/PongNoFrameskip-v4-PPOOffPolicy) ## Model Information <!-- Provide the basic links for the model. --> - **Github Repository:** [repo link](https://github.com/opendilab/DI-engine) - **Doc**: [DI-engine-docs Algorithm link](https://di-engine-docs.readthedocs.io/en/latest/12_policies/ppo.html) - **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/PongNoFrameskip-v4-PPOOffPolicy/blob/main/policy_config.py) - **Demo:** [video](https://huggingface.co/OpenDILabCommunity/PongNoFrameskip-v4-PPOOffPolicy/blob/main/replay.mp4) <!-- Provide the size information for the model. --> - **Parameters total size:** 11501.55 KB - **Last Update Date:** 2023-06-25 ## Environments <!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. --> - **Benchmark:** OpenAI/Gym/Atari - **Task:** PongNoFrameskip-v4 - **Gym version:** 0.25.1 - **DI-engine version:** v0.4.8 - **PyTorch version:** 1.7.1 - **Doc**: [DI-engine-docs Environments link](https://di-engine-docs.readthedocs.io/en/latest/13_envs/atari.html)
binwang/faceval_bart_large_samsum
binwang
2023-06-25T12:46:05Z
107
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T11:50:20Z
# This is the BART-large mdoel trained on SAMSum dataset
tabtoyou/KoLLaVA-KoVicuna-7b
tabtoyou
2023-06-25T12:32:58Z
97
13
transformers
[ "transformers", "pytorch", "llava", "text-generation", "LLaVA", "KoVicuna", "KoLLaVA", "KoAlpaca", "CLIP", "ko", "dataset:tabtoyou/KoLLaVA-Instruct-150k", "dataset:tabtoyou/KoLLaVA-CC3M-Pretrain-595K", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-06-12T09:14:54Z
--- license: apache-2.0 datasets: - tabtoyou/KoLLaVA-Instruct-150k - tabtoyou/KoLLaVA-CC3M-Pretrain-595K language: - ko library_name: transformers tags: - LLaVA - KoVicuna - KoLLaVA - KoAlpaca - CLIP --- # KoLLaVA : Korean Large Language and Vision Assistant (feat. LLaVA) This model is a large multimodal model (LMM) that combines the LLM([KoVicuna](https://huggingface.co/junelee/ko_vicuna_7b)) with visual encoder of CLIP([ViT-14](https://huggingface.co/openai/clip-vit-large-patch14)), trained on [Korean visual-instruction dataset](https://huggingface.co/datasets/tabtoyou/KoLLaVA-Instruct-150k). Detail codes are available at [KoLLaVA github repository](https://github.com/tabtoyou/KoLLaVA) ### Training hyperparameters * learning rate : 2e-5 * train_batch_size: 16 * distributed_type: multi-GPU (A100 80G) * num_devices: 4 * gradient_accumulation_steps: 1 * total_train_batch_size: 64 * total_eval_batch_size: 16 * lr_scheduler_type: cosine * num_epochs: 1 Model License: Apache License 2.0
ahishamm/vit-base-HAM-10000-sharpened-large-patch-32
ahishamm
2023-06-25T12:32:21Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T11:51:12Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-HAM-10000-sharpened-large-patch-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-HAM-10000-sharpened-large-patch-32 This model is a fine-tuned version of [google/vit-large-patch32-224-in21k](https://huggingface.co/google/vit-large-patch32-224-in21k) on the ahishamm/HAM_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.4582 - Accuracy: 0.8404 - Recall: 0.8404 - F1: 0.8404 - Precision: 0.8404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.6739 | 0.2 | 100 | 0.7775 | 0.7257 | 0.7257 | 0.7257 | 0.7257 | | 0.6922 | 0.4 | 200 | 0.6455 | 0.7711 | 0.7711 | 0.7711 | 0.7711 | | 0.8219 | 0.6 | 300 | 0.7582 | 0.7426 | 0.7426 | 0.7426 | 0.7426 | | 0.6801 | 0.8 | 400 | 0.6363 | 0.7651 | 0.7651 | 0.7651 | 0.7651 | | 0.5499 | 1.0 | 500 | 0.6231 | 0.7751 | 0.7751 | 0.7751 | 0.7751 | | 0.5156 | 1.2 | 600 | 0.6399 | 0.7761 | 0.7761 | 0.7761 | 0.7761 | | 0.4478 | 1.4 | 700 | 0.5324 | 0.8020 | 0.8020 | 0.8020 | 0.8020 | | 0.4364 | 1.6 | 800 | 0.5597 | 0.7970 | 0.7970 | 0.7970 | 0.7970 | | 0.4545 | 1.8 | 900 | 0.5212 | 0.8115 | 0.8115 | 0.8115 | 0.8115 | | 0.4294 | 2.0 | 1000 | 0.4926 | 0.8264 | 0.8264 | 0.8264 | 0.8264 | | 0.135 | 2.2 | 1100 | 0.5448 | 0.8204 | 0.8204 | 0.8204 | 0.8204 | | 0.2628 | 2.4 | 1200 | 0.4916 | 0.8304 | 0.8304 | 0.8304 | 0.8304 | | 0.2577 | 2.59 | 1300 | 0.4582 | 0.8404 | 0.8404 | 0.8404 | 0.8404 | | 0.2093 | 2.79 | 1400 | 0.5079 | 0.8344 | 0.8344 | 0.8344 | 0.8344 | | 0.1415 | 2.99 | 1500 | 0.4760 | 0.8439 | 0.8439 | 0.8439 | 0.8439 | | 0.0686 | 3.19 | 1600 | 0.5379 | 0.8444 | 0.8444 | 0.8444 | 0.8444 | | 0.1031 | 3.39 | 1700 | 0.5572 | 0.8384 | 0.8384 | 0.8384 | 0.8384 | | 0.102 | 3.59 | 1800 | 0.5343 | 0.8464 | 0.8464 | 0.8464 | 0.8464 | | 0.0531 | 3.79 | 1900 | 0.5482 | 0.8479 | 0.8479 | 0.8479 | 0.8479 | | 0.0756 | 3.99 | 2000 | 0.5454 | 0.8454 | 0.8454 | 0.8454 | 0.8454 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
PhongLe1311/mt5-small-finetuned-amazon-en-es
PhongLe1311
2023-06-25T12:31:02Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-06-21T05:32:02Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0340 - Rouge1: 17.3066 - Rouge2: 8.5372 - Rougel: 16.9577 - Rougelsum: 17.1267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 7.0197 | 1.0 | 1209 | 3.3037 | 13.7225 | 5.4609 | 13.1771 | 13.2052 | | 3.9145 | 2.0 | 2418 | 3.1418 | 15.6039 | 7.5306 | 14.9366 | 14.865 | | 3.5987 | 3.0 | 3627 | 3.0970 | 17.425 | 8.6602 | 16.9049 | 17.0042 | | 3.4274 | 4.0 | 4836 | 3.0672 | 16.7739 | 8.0707 | 16.2041 | 16.2127 | | 3.3241 | 5.0 | 6045 | 3.0648 | 16.6489 | 8.2121 | 16.3527 | 16.4147 | | 3.2468 | 6.0 | 7254 | 3.0444 | 17.3052 | 8.6923 | 16.9398 | 17.0233 | | 3.2116 | 7.0 | 8463 | 3.0370 | 17.563 | 8.7613 | 17.1755 | 17.3348 | | 3.1821 | 8.0 | 9672 | 3.0340 | 17.3066 | 8.5372 | 16.9577 | 17.1267 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
emilianJR/HRA_hyperrealism_art
emilianJR
2023-06-25T12:30:23Z
52
2
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-25T12:20:01Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Diffuser model for this SD checkpoint: https://civitai.com/models/80515/hrahyperrealism-art **emilianJR/HRA_hyperrealism_art** is the HuggingFace diffuser that you can use with **diffusers.StableDiffusionPipeline()**. Examples | Examples | Examples ---- | ---- | ---- ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/57a93272-f14e-4252-b6c4-485264e07a9d/width=450/194806-2023-06-03-20230603034324-640-896.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/07069db6-0ec5-4d96-a9ac-cc3c8501a1d8/width=450/194800-2023-06-03-20230603034105-640-896.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/a3682d16-7fd3-4e7d-8698-e9c51dcdcbb6/width=450/194705-2023-06-03-20230603030320-640-896.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/23d67259-0a4f-4168-af5d-feeeffcf8101/width=450/194799-2023-06-03-20230603034104-640-896.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/1dff82b9-748e-477f-b0f3-f2b9860aa093/width=450/194790-2023-06-03-20230603033734-640-896.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/43d23920-55db-4c6b-abd6-33cdacb6d4eb/width=450/194690-2023-06-03-20230603025728-640-896.jpeg) ------- ## 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). ```python from diffusers import StableDiffusionPipeline import torch model_id = "emilianJR/HRA_hyperrealism_art" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "YOUR PROMPT" image = pipe(prompt).images[0] image.save("image.png") ``` ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
Tri1/opus-mt-en-ro-finetuned-eng-to-para
Tri1
2023-06-25T12:21:10Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T09:20:15Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-en-ro-finetuned-eng-to-para results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-eng-to-para This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0821 - Bleu: 22.2055 - Gen Len: 21.7942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.0865 | 1.0 | 6250 | 0.0821 | 22.2055 | 21.7942 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
gb16001/sovits4.1_ATRI
gb16001
2023-06-25T12:03:50Z
0
2
null
[ "dataset:Yusen/Sovits_ATRI", "license:agpl-3.0", "region:us" ]
null
2023-06-25T10:08:35Z
--- license: agpl-3.0 datasets: - Yusen/Sovits_ATRI --- ### abstruct "speech_encoder": "vec768l12". more trainning paramaters please find in ATRI_config.json sovits,diffusion,kmeans moddels included, take it as you need. ### performance a vocal only demo is in the folder.
sxndypz/rvc-v1-models
sxndypz
2023-06-25T11:57:38Z
0
0
null
[ "RVC v1", "audio-to-audio", "ja", "license:openrail", "region:us" ]
audio-to-audio
2023-06-25T11:53:04Z
--- license: openrail language: - ja pipeline_tag: audio-to-audio tags: - RVC v1 ---
ahishamm/vit-base-HAM-10000-sharpened-large-patch-16
ahishamm
2023-06-25T11:49:31Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T10:38:43Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-HAM-10000-sharpened-large-patch-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-HAM-10000-sharpened-large-patch-16 This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the ahishamm/HAM_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.5504 - Accuracy: 0.8075 - Recall: 0.8075 - F1: 0.8075 - Precision: 0.8075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.9294 | 0.2 | 100 | 1.0377 | 0.6733 | 0.6733 | 0.6733 | 0.6733 | | 1.0067 | 0.4 | 200 | 0.8976 | 0.6813 | 0.6813 | 0.6813 | 0.6813 | | 1.0081 | 0.6 | 300 | 0.9345 | 0.6773 | 0.6773 | 0.6773 | 0.6773 | | 0.9326 | 0.8 | 400 | 0.8494 | 0.6883 | 0.6883 | 0.6883 | 0.6883 | | 0.8243 | 1.0 | 500 | 0.7481 | 0.7267 | 0.7267 | 0.7267 | 0.7267 | | 0.7408 | 1.2 | 600 | 0.7277 | 0.7317 | 0.7317 | 0.7317 | 0.7317 | | 0.6844 | 1.4 | 700 | 0.7114 | 0.7392 | 0.7392 | 0.7392 | 0.7392 | | 0.7411 | 1.6 | 800 | 0.6772 | 0.7416 | 0.7416 | 0.7416 | 0.7416 | | 0.7138 | 1.8 | 900 | 0.7136 | 0.7377 | 0.7377 | 0.7377 | 0.7377 | | 0.5838 | 2.0 | 1000 | 0.6625 | 0.7521 | 0.7521 | 0.7521 | 0.7521 | | 0.5315 | 2.2 | 1100 | 0.6104 | 0.7776 | 0.7776 | 0.7776 | 0.7776 | | 0.6391 | 2.4 | 1200 | 0.6317 | 0.7591 | 0.7591 | 0.7591 | 0.7591 | | 0.6903 | 2.59 | 1300 | 0.6098 | 0.7656 | 0.7656 | 0.7656 | 0.7656 | | 0.5798 | 2.79 | 1400 | 0.6211 | 0.7751 | 0.7751 | 0.7751 | 0.7751 | | 0.5448 | 2.99 | 1500 | 0.5824 | 0.7820 | 0.7820 | 0.7820 | 0.7820 | | 0.4523 | 3.19 | 1600 | 0.5951 | 0.7776 | 0.7776 | 0.7776 | 0.7776 | | 0.4485 | 3.39 | 1700 | 0.6114 | 0.7815 | 0.7815 | 0.7815 | 0.7815 | | 0.487 | 3.59 | 1800 | 0.5730 | 0.7950 | 0.7950 | 0.7950 | 0.7950 | | 0.4104 | 3.79 | 1900 | 0.5597 | 0.7965 | 0.7965 | 0.7965 | 0.7965 | | 0.4468 | 3.99 | 2000 | 0.5504 | 0.8075 | 0.8075 | 0.8075 | 0.8075 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Smaraa/bart-text-simplification_1e4_adafactor
Smaraa
2023-06-25T11:45:02Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-24T11:26:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-text-simplification_1e4_adafactor results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-text-simplification_1e4_adafactor This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8377 - Rouge1: 60.5348 - Rouge2: 41.6762 - Rougel: 55.5994 - Rougelsum: 55.5841 - Gen Len: 18.7487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.1741 | 1.0 | 1163 | 0.6416 | 62.4 | 44.1316 | 57.9029 | 57.8644 | 18.8482 | | 0.1553 | 2.0 | 2326 | 0.6504 | 62.2879 | 43.9281 | 57.4714 | 57.461 | 18.8063 | | 0.1369 | 3.0 | 3489 | 0.6656 | 61.2481 | 42.605 | 56.5118 | 56.4636 | 18.733 | | 0.1286 | 4.0 | 4652 | 0.6906 | 61.3015 | 42.1608 | 56.2688 | 56.1707 | 18.7487 | | 0.1141 | 5.0 | 5815 | 0.7082 | 62.1771 | 43.1481 | 57.0231 | 57.0673 | 18.911 | | 0.1016 | 6.0 | 6978 | 0.7188 | 61.408 | 42.2759 | 56.1699 | 56.1779 | 18.8377 | | 0.0961 | 7.0 | 8141 | 0.7334 | 60.802 | 41.9149 | 56.0171 | 56.0279 | 18.8168 | | 0.0869 | 8.0 | 9304 | 0.7509 | 60.6564 | 41.3587 | 55.4436 | 55.468 | 18.7382 | | 0.0783 | 9.0 | 10467 | 0.7713 | 60.3551 | 41.8074 | 55.6856 | 55.679 | 18.7173 | | 0.0751 | 10.0 | 11630 | 0.7785 | 60.378 | 41.6134 | 55.5217 | 55.505 | 18.8325 | | 0.0679 | 11.0 | 12793 | 0.7835 | 60.5835 | 41.6735 | 55.5469 | 55.5791 | 18.7435 | | 0.0619 | 12.0 | 13956 | 0.8012 | 60.8152 | 41.2014 | 55.7186 | 55.7233 | 18.9424 | | 0.0611 | 13.0 | 15119 | 0.8091 | 60.8188 | 41.8074 | 55.6684 | 55.8026 | 18.7958 | | 0.0568 | 14.0 | 16282 | 0.8175 | 60.9209 | 41.5689 | 55.8838 | 55.8642 | 18.7277 | | 0.0527 | 15.0 | 17445 | 0.8250 | 61.0215 | 41.9079 | 55.9018 | 55.8709 | 18.9162 | | 0.0524 | 16.0 | 18608 | 0.8317 | 60.8214 | 41.6554 | 55.8053 | 55.7947 | 18.7277 | | 0.0504 | 17.0 | 19771 | 0.8310 | 60.6533 | 41.6507 | 55.9289 | 55.9426 | 18.7958 | | 0.0486 | 18.0 | 20934 | 0.8345 | 60.4722 | 41.5319 | 55.3384 | 55.3655 | 18.6859 | | 0.0491 | 19.0 | 22097 | 0.8379 | 60.4012 | 41.2452 | 55.5059 | 55.5553 | 18.8115 | | 0.0489 | 20.0 | 23260 | 0.8377 | 60.5348 | 41.6762 | 55.5994 | 55.5841 | 18.7487 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
PraveenJesu/openai-whisper-medium-peft-lora-colab
PraveenJesu
2023-06-25T11:43:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-25T11:43:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
Erfan2001/distilbert_NoTokenized
Erfan2001
2023-06-25T11:43:35Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-24T22:00:23Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: xxx results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xxx This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6856 - Accuracy: 0.7758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7996 | 1.0 | 4284 | 0.7921 | 0.7287 | | 0.5539 | 2.0 | 8568 | 0.6856 | 0.7758 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
edfryo/bangkelser
edfryo
2023-06-25T11:39:27Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-05-09T11:58:00Z
--- license: bigscience-openrail-m ---
KelvinHu/ppo-Huggy
KelvinHu
2023-06-25T10:50:21Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-25T09:44:43Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: KelvinHu/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
czz23/journal-setfit-model
czz23
2023-06-25T10:37:43Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-06-25T10:34:44Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # /var/folders/hy/pfb50fjs4zd8cznz_yjwyw8w0000gp/T/tmpg6l_fkqj/czz23/journal-setfit-model This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("/var/folders/hy/pfb50fjs4zd8cznz_yjwyw8w0000gp/T/tmpg6l_fkqj/czz23/journal-setfit-model") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
siddh4rth/fintuned-falcon-7b-truthful-qa
siddh4rth
2023-06-25T10:36:25Z
4
0
peft
[ "peft", "RefinedWebModel", "custom_code", "4-bit", "region:us" ]
null
2023-06-25T09:46:47Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
jiyuanq/falcon-40b-instruct-gptq-128g-act
jiyuanq
2023-06-25T10:35:13Z
14
0
transformers
[ "transformers", "safetensors", "RefinedWeb", "text-generation", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T08:31:32Z
--- library_name: transformers pipeline_tag: text-generation --- falcon-40b-instruct quantized with GPTQ using the script in https://github.com/huggingface/text-generation-inference/pull/438 - group size: 128 - act order: true - nsamples: 128 - dataset: wikitext2
ahishamm/vit-base-HAM-10000-sharpened-patch-32
ahishamm
2023-06-25T10:35:04Z
192
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T10:06:47Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-HAM-10000-sharpened-patch-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-HAM-10000-sharpened-patch-32 This model is a fine-tuned version of [google/vit-base-patch32-224-in21k](https://huggingface.co/google/vit-base-patch32-224-in21k) on the ahishamm/HAM_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.4806 - Accuracy: 0.8369 - Recall: 0.8369 - F1: 0.8369 - Precision: 0.8369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.8099 | 0.2 | 100 | 0.8060 | 0.7247 | 0.7247 | 0.7247 | 0.7247 | | 0.7437 | 0.4 | 200 | 0.7020 | 0.7541 | 0.7541 | 0.7541 | 0.7541 | | 0.7982 | 0.6 | 300 | 0.7352 | 0.7411 | 0.7411 | 0.7411 | 0.7411 | | 0.7646 | 0.8 | 400 | 0.6603 | 0.7626 | 0.7626 | 0.7626 | 0.7626 | | 0.6141 | 1.0 | 500 | 0.6373 | 0.7771 | 0.7771 | 0.7771 | 0.7771 | | 0.5934 | 1.2 | 600 | 0.6141 | 0.7820 | 0.7820 | 0.7820 | 0.7820 | | 0.5524 | 1.4 | 700 | 0.5621 | 0.8030 | 0.8030 | 0.8030 | 0.8030 | | 0.5057 | 1.6 | 800 | 0.6074 | 0.7855 | 0.7855 | 0.7855 | 0.7855 | | 0.5519 | 1.8 | 900 | 0.5486 | 0.7990 | 0.7990 | 0.7990 | 0.7990 | | 0.4784 | 2.0 | 1000 | 0.5382 | 0.8060 | 0.8060 | 0.8060 | 0.8060 | | 0.2592 | 2.2 | 1100 | 0.5237 | 0.8165 | 0.8165 | 0.8165 | 0.8165 | | 0.3872 | 2.4 | 1200 | 0.5345 | 0.8120 | 0.8120 | 0.8120 | 0.8120 | | 0.2506 | 2.59 | 1300 | 0.5061 | 0.8214 | 0.8214 | 0.8214 | 0.8214 | | 0.2907 | 2.79 | 1400 | 0.4940 | 0.8354 | 0.8354 | 0.8354 | 0.8354 | | 0.2436 | 2.99 | 1500 | 0.4806 | 0.8369 | 0.8369 | 0.8369 | 0.8369 | | 0.1472 | 3.19 | 1600 | 0.5231 | 0.8219 | 0.8219 | 0.8219 | 0.8219 | | 0.1441 | 3.39 | 1700 | 0.5452 | 0.8329 | 0.8329 | 0.8329 | 0.8329 | | 0.1327 | 3.59 | 1800 | 0.5410 | 0.8354 | 0.8354 | 0.8354 | 0.8354 | | 0.0615 | 3.79 | 1900 | 0.5473 | 0.8424 | 0.8424 | 0.8424 | 0.8424 | | 0.0943 | 3.99 | 2000 | 0.5490 | 0.8409 | 0.8409 | 0.8409 | 0.8409 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
97jmlr/a2c-PandaReachDense-v2
97jmlr
2023-06-25T10:27:45Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T10:26:44Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.79 +/- 1.05 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Sp1786/mutliclass-sentiment-analysis-bert
Sp1786
2023-06-25T10:22:55Z
4
0
transformers
[ "transformers", "bert", "code", "text-classification", "en", "dataset:Sp1786/multiclass-sentiment-analysis-dataset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2023-06-21T11:23:59Z
--- license: apache-2.0 datasets: - Sp1786/multiclass-sentiment-analysis-dataset language: - en metrics: - bleu - sacrebleu library_name: transformers pipeline_tag: text-classification tags: - code ---
kbondar17/test-trainer
kbondar17
2023-06-25T10:12:41Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-25T10:06:32Z
--- license: mit tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: test-trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-trainer This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4009 - F1: 0.6363 - Roc Auc: 0.7682 - Accuracy: 0.6079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 125 | 0.2975 | 0.5710 | 0.7129 | 0.4693 | | No log | 2.0 | 250 | 0.3742 | 0.6226 | 0.7621 | 0.6013 | | No log | 3.0 | 375 | 0.4009 | 0.6363 | 0.7682 | 0.6079 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
dhruvil237/userutterance_classification_verplus
dhruvil237
2023-06-25T10:05:26Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "doi:10.57967/hf/0811", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-05T12:20:52Z
--- license: mit tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: userutterance_classification_verplus results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9619354838709677 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # userutterance_classification_verplus This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2270 - Accuracy: 0.9619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 5.0219 | 0.21 | 200 | 4.9813 | 0.0077 | | 4.8915 | 0.42 | 400 | 4.5741 | 0.1155 | | 4.2736 | 0.63 | 600 | 3.5359 | 0.4719 | | 3.2701 | 0.84 | 800 | 2.4291 | 0.7429 | | 2.3578 | 1.05 | 1000 | 1.5793 | 0.8413 | | 1.5695 | 1.26 | 1200 | 1.0029 | 0.8994 | | 1.0412 | 1.47 | 1400 | 0.6475 | 0.9187 | | 0.7034 | 1.68 | 1600 | 0.4439 | 0.9303 | | 0.501 | 1.89 | 1800 | 0.3400 | 0.9381 | | 0.3187 | 2.1 | 2000 | 0.2793 | 0.9439 | | 0.2185 | 2.31 | 2200 | 0.2538 | 0.9490 | | 0.1669 | 2.52 | 2400 | 0.2210 | 0.9523 | | 0.1081 | 2.73 | 2600 | 0.2225 | 0.9519 | | 0.1004 | 2.94 | 2800 | 0.2136 | 0.9555 | | 0.0665 | 3.14 | 3000 | 0.2078 | 0.9561 | | 0.0509 | 3.35 | 3200 | 0.2155 | 0.9568 | | 0.05 | 3.56 | 3400 | 0.2107 | 0.9581 | | 0.0527 | 3.77 | 3600 | 0.2171 | 0.9568 | | 0.0447 | 3.98 | 3800 | 0.2128 | 0.9590 | | 0.0259 | 4.19 | 4000 | 0.2099 | 0.9587 | | 0.0279 | 4.4 | 4200 | 0.2179 | 0.9577 | | 0.0176 | 4.61 | 4400 | 0.2191 | 0.9574 | | 0.0288 | 4.82 | 4600 | 0.2216 | 0.9590 | | 0.0328 | 5.03 | 4800 | 0.2237 | 0.9606 | | 0.0154 | 5.24 | 5000 | 0.2241 | 0.9616 | | 0.0157 | 5.45 | 5200 | 0.2265 | 0.9603 | | 0.023 | 5.66 | 5400 | 0.2276 | 0.9613 | | 0.0178 | 5.87 | 5600 | 0.2270 | 0.9619 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
VilohitT/question_answering_majorproject
VilohitT
2023-06-25T09:46:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-25T09:46:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
bogdancazan/t5-small-newsela-biendata-with-domain-adaptation
bogdancazan
2023-06-25T09:45:44Z
106
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T11:56:49Z
training_args = TrainingArguments( output_dir='t5-small-newsela-biendata-with-domain-adaptation', num_train_epochs=20, warmup_steps=250, per_device_train_batch_size=BATCH_SIZE, weight_decay=0.01, learning_rate=2e-4, fp16=True, optim="adafactor", ) Step Training Loss 500 35.466600 1000 25.795400 1500 10.923200 2000 4.515500 TrainOutput(global_step=2320, training_loss=16.92537920721646, metrics={'train_runtime': 628.0033, 'train_samples_per_second': 472.418, 'train_steps_per_second': 3.694, 'total_flos': 0.0, 'train_loss': 16.92537920721646, 'epoch': 20.0})
lucasbertola/ppo-LunarLander-v2
lucasbertola
2023-06-25T09:29:20Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T11:40:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 295.14 +/- 14.94 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sd-concepts-library/pokemon-raichu-sd-model
sd-concepts-library
2023-06-25T09:26:29Z
0
0
null
[ "base_model:stabilityai/stable-diffusion-2", "base_model:finetune:stabilityai/stable-diffusion-2", "license:mit", "region:us" ]
null
2023-06-25T09:26:28Z
--- license: mit base_model: stabilityai/stable-diffusion-2 --- ### Pokemon Raichu - SD model on Stable Diffusion This is the `<cat-toy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<cat-toy> 0](https://huggingface.co/sd-concepts-library/pokemon-raichu-sd-model/resolve/main/concept_images/0.jpeg) ![<cat-toy> 1](https://huggingface.co/sd-concepts-library/pokemon-raichu-sd-model/resolve/main/concept_images/1.jpeg) ![<cat-toy> 2](https://huggingface.co/sd-concepts-library/pokemon-raichu-sd-model/resolve/main/concept_images/2.jpeg) ![<cat-toy> 3](https://huggingface.co/sd-concepts-library/pokemon-raichu-sd-model/resolve/main/concept_images/3.jpeg)
tnvmadhav/food_classifier
tnvmadhav
2023-06-25T09:06:06Z
63
0
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T08:32:22Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: tnvmadhav/food_classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tnvmadhav/food_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4025 - Validation Loss: 0.3368 - Train Accuracy: 0.91 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 2.8090 | 1.6205 | 0.817 | 0 | | 1.2350 | 0.8021 | 0.879 | 1 | | 0.7254 | 0.5466 | 0.899 | 2 | | 0.5023 | 0.3927 | 0.914 | 3 | | 0.4025 | 0.3368 | 0.91 | 4 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
Shridipta-06/LunarLander-v2_unit8part1
Shridipta-06
2023-06-25T08:50:28Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T08:46:05Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -128.49 +/- 35.10 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Shridipta-06/LunarLander-v2_unit8part1' 'batch_size': 512 'minibatch_size': 128} ```
sang-kyung/ckpt
sang-kyung
2023-06-25T08:21:05Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-25T07:02:21Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - sang-kyung/ckpt This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True.
RoundtTble/dinov2_vits14_onnx
RoundtTble
2023-06-25T08:20:24Z
0
0
null
[ "onnx", "region:us" ]
null
2023-06-24T07:10:50Z
# dinov2_vits14 ## ONNX Model Check this [PR](https://github.com/facebookresearch/dinov2/pull/129). ## Run Run triton container. ``` make triton ``` ``` docker logs dinov2_vits14_triton ============================= == Triton Inference Server == ============================= NVIDIA Release 23.04 (build 58408265) Triton Server Version 2.33.0 Copyright (c) 2018-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES. All rights reserved. This container image and its contents are governed by the NVIDIA Deep Learning Container License. By pulling and using the container, you accept the terms and conditions of this license: https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license WARNING: CUDA Minor Version Compatibility mode ENABLED. Using driver version 525.105.17 which has support for CUDA 12.0. This container was built with CUDA 12.1 and will be run in Minor Version Compatibility mode. CUDA Forward Compatibility is preferred over Minor Version Compatibility for use with this container but was unavailable: [[Forward compatibility was attempted on non supported HW (CUDA_ERROR_COMPAT_NOT_SUPPORTED_ON_DEVICE) cuInit()=804]] See https://docs.nvidia.com/deploy/cuda-compatibility/ for details. I0625 08:05:36.712010 1 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7f6c46000000' with size 268435456 I0625 08:05:36.712625 1 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864 I0625 08:05:36.717785 1 model_lifecycle.cc:459] loading: dinov2_vits14:1 I0625 08:05:36.723707 1 onnxruntime.cc:2504] TRITONBACKEND_Initialize: onnxruntime I0625 08:05:36.723725 1 onnxruntime.cc:2514] Triton TRITONBACKEND API version: 1.12 I0625 08:05:36.723731 1 onnxruntime.cc:2520] 'onnxruntime' TRITONBACKEND API version: 1.12 I0625 08:05:36.723735 1 onnxruntime.cc:2550] backend configuration: {"cmdline":{"auto-complete-config":"true","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","default-max-batch-size":"4"}} I0625 08:05:36.770311 1 onnxruntime.cc:2608] TRITONBACKEND_ModelInitialize: dinov2_vits14 (version 1) I0625 08:05:36.770781 1 onnxruntime.cc:666] skipping model configuration auto-complete for 'dinov2_vits14': inputs and outputs already specified I0625 08:05:36.771205 1 onnxruntime.cc:2651] TRITONBACKEND_ModelInstanceInitialize: dinov2_vits14_0 (GPU device 0) 2023-06-25 08:05:37.157976034 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 465, index: 122, mask: {125, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.158142138 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 466, index: 123, mask: {62, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.158159030 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 467, index: 124, mask: {126, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.158174259 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 468, index: 125, mask: {63, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.165944431 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 344, index: 1, mask: {1, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.158230084 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 469, index: 126, mask: {127, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.169979079 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 347, index: 4, mask: {66, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.169927531 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 345, index: 2, mask: {65, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.169954703 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 346, index: 3, mask: {2, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.173982388 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 350, index: 7, mask: {4, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.173929448 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 348, index: 5, mask: {3, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.173954065 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 349, index: 6, mask: {67, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.181926759 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 351, index: 8, mask: {68, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.185932583 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 352, index: 9, mask: {5, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.189924821 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 353, index: 10, mask: {69, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.193940975 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 464, index: 121, mask: {61, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.194020786 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 357, index: 14, mask: {71, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.193940915 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 354, index: 11, mask: {6, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.193968147 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 355, index: 12, mask: {70, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.193992072 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 356, index: 13, mask: {7, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.197974211 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 360, index: 17, mask: {9, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.197928554 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 358, index: 15, mask: {8, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.197950686 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 359, index: 16, mask: {72, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.201924259 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 361, index: 18, mask: {73, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.205931957 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 362, index: 19, mask: {10, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.209926179 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 363, index: 20, mask: {74, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.213927705 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 364, index: 21, mask: {11, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.217799496 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 365, index: 22, mask: {75, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.217849460 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 366, index: 23, mask: {12, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.221966294 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 367, index: 24, mask: {76, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.221966304 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 463, index: 120, mask: {124, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.225931100 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 462, index: 119, mask: {60, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.225933645 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 368, index: 25, mask: {13, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.229929350 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 369, index: 26, mask: {77, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.233930445 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 370, index: 27, mask: {14, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.233930525 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 461, index: 118, mask: {123, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.237930518 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 371, index: 28, mask: {78, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.241927085 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 372, index: 29, mask: {15, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.245926977 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 373, index: 30, mask: {79, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.249931199 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 374, index: 31, mask: {16, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.253927515 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 375, index: 32, mask: {80, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.257925694 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 376, index: 33, mask: {17, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.261929715 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 377, index: 34, mask: {81, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.265966397 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 378, index: 35, mask: {18, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.269926725 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 379, index: 36, mask: {82, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.273931337 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 380, index: 37, mask: {19, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.281941021 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 381, index: 38, mask: {83, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.282017776 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 398, index: 55, mask: {28, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.282038465 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 382, index: 39, mask: {20, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.282090914 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 383, index: 40, mask: {84, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.286235010 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 385, index: 42, mask: {85, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.285955121 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 401, index: 58, mask: {93, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.282070957 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 399, index: 56, mask: {92, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.286082321 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 384, index: 41, mask: {21, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.285929422 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 400, index: 57, mask: {29, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.293926803 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 405, index: 62, mask: {95, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289931018 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 402, index: 59, mask: {30, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289956767 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 403, index: 60, mask: {94, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.301929004 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 388, index: 45, mask: {23, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289975973 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 404, index: 61, mask: {31, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.294054945 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 406, index: 63, mask: {32, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.294078880 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 407, index: 64, mask: {96, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.314023441 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 409, index: 66, mask: {97, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289931068 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 386, index: 43, mask: {22, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.318030297 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 411, index: 68, mask: {98, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289956797 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 387, index: 44, mask: {86, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.301929014 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 408, index: 65, mask: {33, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.314096058 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 410, index: 67, mask: {34, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.334030890 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 414, index: 71, mask: {36, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.305931271 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 389, index: 46, mask: {87, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321929038 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 390, index: 47, mask: {24, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321948134 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 391, index: 48, mask: {88, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321965006 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 392, index: 49, mask: {25, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321981437 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 393, index: 50, mask: {89, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321996396 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 394, index: 51, mask: {26, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322012065 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 395, index: 52, mask: {90, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322026713 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 396, index: 53, mask: {27, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322049907 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 397, index: 54, mask: {91, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322065276 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 460, index: 117, mask: {59, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322080735 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 425, index: 82, mask: {105, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322096315 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 426, index: 83, mask: {42, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322112155 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 427, index: 84, mask: {106, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322127053 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 428, index: 85, mask: {43, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322143324 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 429, index: 86, mask: {107, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322157170 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 430, index: 87, mask: {44, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322173340 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 431, index: 88, mask: {108, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322188569 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 432, index: 89, mask: {45, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322205311 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 433, index: 90, mask: {109, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322219938 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 434, index: 91, mask: {46, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322235177 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 435, index: 92, mask: {110, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322249955 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 436, index: 93, mask: {47, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322267158 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 437, index: 94, mask: {111, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322281345 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 438, index: 95, mask: {48, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322296904 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 439, index: 96, mask: {112, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322312113 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 440, index: 97, mask: {49, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322329005 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 441, index: 98, mask: {113, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322343652 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 442, index: 99, mask: {50, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322359492 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 443, index: 100, mask: {114, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322377907 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 444, index: 101, mask: {51, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322393366 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 445, index: 102, mask: {115, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322408725 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 446, index: 103, mask: {52, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322423233 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 447, index: 104, mask: {116, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322437289 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 448, index: 105, mask: {53, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322453440 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 449, index: 106, mask: {117, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322467697 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 450, index: 107, mask: {54, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322483076 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 451, index: 108, mask: {118, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322496812 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 452, index: 109, mask: {55, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.445929743 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 417, index: 74, mask: {101, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322511880 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 453, index: 110, mask: {119, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322525526 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 454, index: 111, mask: {56, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322541977 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 455, index: 112, mask: {120, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.454013818 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 422, index: 79, mask: {40, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322555663 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 456, index: 113, mask: {57, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.457932126 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 423, index: 80, mask: {104, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322571683 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 457, index: 114, mask: {121, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322585920 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 458, index: 115, mask: {58, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.318158029 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 412, index: 69, mask: {35, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.334163851 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 415, index: 72, mask: {100, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.341919085 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 416, index: 73, mask: {37, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.323408365 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 413, index: 70, mask: {99, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.453923387 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 418, index: 75, mask: {38, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.453947493 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 419, index: 76, mask: {102, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.453965727 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 420, index: 77, mask: {39, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.453991656 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 421, index: 78, mask: {103, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.458087059 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 424, index: 81, mask: {41, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.585007204 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 459, index: 116, mask: {122, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:38.570069572 [W:onnxruntime:, session_state.cc:1136 VerifyEachNodeIsAssignedToAnEp] Some nodes were not assigned to the preferred execution providers which may or may not have an negative impact on performance. e.g. ORT explicitly assigns shape related ops to CPU to improve perf. 2023-06-25 08:05:38.570088387 [W:onnxruntime:, session_state.cc:1138 VerifyEachNodeIsAssignedToAnEp] Rerunning with verbose output on a non-minimal build will show node assignments. I0625 08:05:39.975559 1 model_lifecycle.cc:694] successfully loaded 'dinov2_vits14' version 1 I0625 08:05:39.975625 1 server.cc:583] +------------------+------+ | Repository Agent | Path | +------------------+------+ +------------------+------+ I0625 08:05:39.975662 1 server.cc:610] +-------------+-----------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Backend | Path | Config | +-------------+-----------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+ | onnxruntime | /opt/tritonserver/backends/onnxruntime/libtriton_onnxruntime.so | {"cmdline":{"auto-complete-config":"true","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","default-max-batch-size":"4"}} | +-------------+-----------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+ I0625 08:05:39.975683 1 server.cc:653] +---------------+---------+--------+ | Model | Version | Status | +---------------+---------+--------+ | dinov2_vits14 | 1 | READY | +---------------+---------+--------+ I0625 08:05:39.991510 1 metrics.cc:808] Collecting metrics for GPU 0: NVIDIA GeForce RTX 3090 I0625 08:05:39.992145 1 metrics.cc:701] Collecting CPU metrics I0625 08:05:39.992360 1 tritonserver.cc:2387] +----------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Option | Value | +----------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | server_id | triton | | server_version | 2.33.0 | | server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data parameters statistics trace logging | | model_repository_path[0] | /models | | model_control_mode | MODE_NONE | | strict_model_config | 0 | | rate_limit | OFF | | pinned_memory_pool_byte_size | 268435456 | | cuda_memory_pool_byte_size{0} | 67108864 | | min_supported_compute_capability | 6.0 | | strict_readiness | 1 | | exit_timeout | 30 | | cache_enabled | 0 | +----------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ I0625 08:05:39.993603 1 grpc_server.cc:2450] Started GRPCInferenceService at 0.0.0.0:8001 I0625 08:05:39.993771 1 http_server.cc:3555] Started HTTPService at 0.0.0.0:8000 I0625 08:05:40.034678 1 http_server.cc:185] Started Metrics Service at 0.0.0.0:8002 ``` Perf analyzer `dinov2_vits14` ``` make perf ``` ``` docker run --gpus all --rm -it --net host nvcr.io/nvidia/tritonserver:23.04-py3-sdk perf_analyzer -m dinov2_vits14 --percentile=95 -i grpc -u 0.0.0.0:8001 --concurrency-range 16:16 --shape input:3,280,280 ================================= == Triton Inference Server SDK == ================================= NVIDIA Release 23.04 (build 58408269) Copyright (c) 2018-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES. All rights reserved. This container image and its contents are governed by the NVIDIA Deep Learning Container License. By pulling and using the container, you accept the terms and conditions of this license: https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license WARNING: CUDA Minor Version Compatibility mode ENABLED. Using driver version 525.105.17 which has support for CUDA 12.0. This container was built with CUDA 12.1 and will be run in Minor Version Compatibility mode. CUDA Forward Compatibility is preferred over Minor Version Compatibility for use with this container but was unavailable: [[Forward compatibility was attempted on non supported HW (CUDA_ERROR_COMPAT_NOT_SUPPORTED_ON_DEVICE) cuInit()=804]] See https://docs.nvidia.com/deploy/cuda-compatibility/ for details. *** Measurement Settings *** Batch size: 1 Service Kind: Triton Using "time_windows" mode for stabilization Measurement window: 5000 msec Latency limit: 0 msec Concurrency limit: 16 concurrent requests Using synchronous calls for inference Stabilizing using p95 latency Request concurrency: 16 Client: Request count: 9403 Throughput: 522.33 infer/sec p50 latency: 30482 usec p90 latency: 32100 usec p95 latency: 32564 usec p99 latency: 34203 usec Avg gRPC time: 30589 usec ((un)marshal request/response 93 usec + response wait 30496 usec) Server: Inference count: 9403 Execution count: 1177 Successful request count: 9403 Avg request latency: 24295 usec (overhead 220 usec + queue 9042 usec + compute input 1511 usec + compute infer 13485 usec + compute output 37 usec) Inferences/Second vs. Client p95 Batch Latency Concurrency: 16, throughput: 522.33 infer/sec, latency 32564 usec ```
joohwan/whisper-small-gd
joohwan
2023-06-25T08:10:27Z
79
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-25T05:51:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-gd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-gd This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1180 - Wer: 14.2298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0723 | 0.09 | 250 | 0.2013 | 22.6924 | | 0.044 | 0.18 | 500 | 0.1826 | 27.3905 | | 0.1209 | 0.27 | 750 | 0.1705 | 27.2700 | | 0.0973 | 0.36 | 1000 | 0.1462 | 15.1182 | | 0.0941 | 0.45 | 1250 | 0.1322 | 15.6603 | | 0.076 | 0.54 | 1500 | 0.1258 | 18.3557 | | 0.0967 | 0.63 | 1750 | 0.1203 | 14.8020 | | 0.0757 | 0.72 | 2000 | 0.1180 | 14.2298 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Lajonbot/polish-alpaca7B-lora
Lajonbot
2023-06-25T07:41:13Z
0
0
null
[ "tensorboard", "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:openrail", "region:us" ]
null
2023-05-01T07:08:31Z
--- license: openrail datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish language: - pl ---
Lajonbot/falcon-7b-instruct-pl-lora
Lajonbot
2023-06-25T07:38:22Z
0
0
null
[ "tensorboard", "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:openrail", "region:us" ]
null
2023-06-12T06:13:24Z
--- license: openrail datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish language: - pl ---
Lajonbot/lamini-instruct-tuned-3b-pl-lora
Lajonbot
2023-06-25T07:37:46Z
0
0
null
[ "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:openrail", "region:us" ]
null
2023-06-15T06:08:17Z
--- license: openrail datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish language: - pl ---
Lajonbot/stablelm-base-alpha-3b-instruct-pl-lora
Lajonbot
2023-06-25T07:37:23Z
0
0
null
[ "tensorboard", "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:openrail", "region:us" ]
null
2023-06-15T06:13:44Z
--- license: openrail datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish language: - pl ---
Davlan/xlm-roberta-base-wikiann-ner
Davlan
2023-06-25T07:32:38Z
158
6
transformers
[ "transformers", "pytorch", "tf", "safetensors", "xlm-roberta", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - ar - as - bn - ca - en - es - eu - fr - gu - hi - id - ig - mr - pa - pt - sw - ur - vi - yo - zh - multilingual datasets: - wikiann --- # xlm-roberta-base-wikiann-ner ## Model description **xlm-roberta-base-wikiann-ner** is the first **Named Entity Recognition** model for 20 languages (Arabic, Assamese, Bengali, Catalan, English, Spanish, Basque, French, Gujarati, Hindi, Indonesia, Igbo, Marathi, Punjabi, Portugues and Swahili, Urdu, Vietnamese, Yoruba, Chinese) based on a fine-tuned XLM-RoBERTa large model. It achieves the **state-of-the-art performance** for the NER task. It has been trained to recognize three types of entities: location (LOC), organizations (ORG), and person (PER). Specifically, this model is a *xlm-roberta-large* model that was fine-tuned on an aggregation of languages datasets obtained from [WikiANN](https://huggingface.co/datasets/wikiann) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base-wikiann-ner") model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-base-wikiann-ner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Ìbọn ń ró kù kù gẹ́gẹ́ bí ọwọ́ ọ̀pọ̀ aráàlù ṣe tẹ ìbọn ní Kyiv láti dojú kọ Russia" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on 20 NER datasets (Arabic, Assamese, Bengali, Catalan, English, Spanish, Basque, French, Gujarati, Hindi, Indonesia, Igbo, Marathi, Punjabi, Portugues and Swahili, Urdu, Vietnamese, Yoruba, Chinese)[wikiann](https://huggingface.co/datasets/wikiann). The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location ### BibTeX entry and citation info ```
Davlan/xlm-roberta-base-finetuned-swahili
Davlan
2023-06-25T07:31:57Z
119
3
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Hugging Face's logo --- language: sw datasets: --- # xlm-roberta-base-finetuned-swahili ## Model description **xlm-roberta-base-finetuned-swahili** is a **Swahili RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Swahili language texts. It provides **better performance** than the XLM-RoBERTa on text classification and named entity recognition datasets. Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Swahili corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-swahili') >>> unmasker("Jumatatu, Bwana Kagame alielezea shirika la France24 huko <mask> kwamba hakuna uhalifu ulitendwa") [{'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Ufaransa kwamba hakuna uhalifu ulitendwa', 'score': 0.5077782273292542, 'token': 190096, 'token_str': 'Ufaransa'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Paris kwamba hakuna uhalifu ulitendwa', 'score': 0.3657738268375397, 'token': 7270, 'token_str': 'Paris'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Gabon kwamba hakuna uhalifu ulitendwa', 'score': 0.01592041552066803, 'token': 176392, 'token_str': 'Gabon'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko France kwamba hakuna uhalifu ulitendwa', 'score': 0.010881908237934113, 'token': 9942, 'token_str': 'France'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Marseille kwamba hakuna uhalifu ulitendwa', 'score': 0.009554869495332241, 'token': 185918, 'token_str': 'Marseille'}] ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Swahili CC-100](http://data.statmt.org/cc-100/) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| XLM-R F1 | sw_roberta F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 87.55 | 89.46 ### BibTeX entry and citation info By David Adelani ``` ```
boleshirish/Marathi_GPT2_Pretrained
boleshirish
2023-06-25T07:29:30Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "mr", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-17T06:29:25Z
--- license: mit tags: - generated_from_trainer model-index: - name: Marathi_GPT2_Pretrained results: [] language: - mr metrics: - accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Marathi_GPT2_Pretrained - Loss: 1.8264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8893 | 0.27 | 500 | 2.5366 | | 2.3286 | 0.53 | 1000 | 2.1366 | | 2.005 | 0.8 | 1500 | 1.8264 | ### Framework versions - Transformers 4.18.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.12.1
Davlan/xlm-roberta-base-finetuned-xhosa
Davlan
2023-06-25T07:14:21Z
171
1
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "fill-mask", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: apache-2.0 ---
Davlan/xlm-roberta-large-finetuned-igbo
Davlan
2023-06-25T07:13:52Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-25T18:59:29Z
--- tags: - generated_from_trainer model-index: - name: ibo_xlmr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ibo_xlmr This model is a fine-tuned version of [models/ibo_xlmr/](https://huggingface.co/models/ibo_xlmr/) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.9762 - eval_runtime: 31.9667 - eval_samples_per_second: 32.471 - eval_steps_per_second: 4.067 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.21.1 - Pytorch 1.7.1+cu110 - Datasets 1.16.1 - Tokenizers 0.12.1
Davlan/xlm-roberta-base-finetuned-english
Davlan
2023-06-25T07:13:11Z
112
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "fill-mask", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: apache-2.0 ---
Davlan/xlm-roberta-large-masakhaner
Davlan
2023-06-25T07:12:21Z
135
2
transformers
[ "transformers", "pytorch", "tf", "safetensors", "xlm-roberta", "token-classification", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - amh - hau - ibo - kin - lug - luo - pcm - swa - wol - yor - multilingual datasets: - masakhaner --- # xlm-roberta-large-masakhaner ## Model description **xlm-roberta-large-masakhaner** is the first **Named Entity Recognition** model for 10 African languages (Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahili, Wolof, and Yorùbá) based on a fine-tuned XLM-RoBERTa large model. It achieves the **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: dates & times (DATE), location (LOC), organizations (ORG), and person (PER). Specifically, this model is a *xlm-roberta-large* model that was fine-tuned on an aggregation of African language datasets obtained from Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("Davlan/xlm-roberta-large-masakhaner") model = AutoModelForTokenClassification.from_pretrained("Davlan/xlm-roberta-large-masakhaner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on 10 African NER datasets (Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahili, Wolof, and Yorùbá) Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location ## Training procedure This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original MasakhaNER paper](https://arxiv.org/abs/2103.11811) which trained & evaluated the model on MasakhaNER corpus. ## Eval results on Test set (F-score) language|F1-score -|- amh |75.76 hau |91.75 ibo |86.26 kin |76.38 lug |84.64 luo |80.65 pcm |89.55 swa |89.48 wol |70.70 yor |82.05 ### BibTeX entry and citation info ``` @article{adelani21tacl, title = {Masakha{NER}: Named Entity Recognition for African Languages}, author = {David Ifeoluwa Adelani and Jade Abbott and Graham Neubig and Daniel D'souza and Julia Kreutzer and Constantine Lignos and Chester Palen-Michel and Happy Buzaaba and Shruti Rijhwani and Sebastian Ruder and Stephen Mayhew and Israel Abebe Azime and Shamsuddeen Muhammad and Chris Chinenye Emezue and Joyce Nakatumba-Nabende and Perez Ogayo and Anuoluwapo Aremu and Catherine Gitau and Derguene Mbaye and Jesujoba Alabi and Seid Muhie Yimam and Tajuddeen Gwadabe and Ignatius Ezeani and Rubungo Andre Niyongabo and Jonathan Mukiibi and Verrah Otiende and Iroro Orife and Davis David and Samba Ngom and Tosin Adewumi and Paul Rayson and Mofetoluwa Adeyemi and Gerald Muriuki and Emmanuel Anebi and Chiamaka Chukwuneke and Nkiruka Odu and Eric Peter Wairagala and Samuel Oyerinde and Clemencia Siro and Tobius Saul Bateesa and Temilola Oloyede and Yvonne Wambui and Victor Akinode and Deborah Nabagereka and Maurice Katusiime and Ayodele Awokoya and Mouhamadane MBOUP and Dibora Gebreyohannes and Henok Tilaye and Kelechi Nwaike and Degaga Wolde and Abdoulaye Faye and Blessing Sibanda and Orevaoghene Ahia and Bonaventure F. P. Dossou and Kelechi Ogueji and Thierno Ibrahima DIOP and Abdoulaye Diallo and Adewale Akinfaderin and Tendai Marengereke and Salomey Osei}, journal = {Transactions of the Association for Computational Linguistics (TACL)}, month = {}, url = {https://arxiv.org/abs/2103.11811}, year = {2021} } ```
psymon/QLoRa-polyglot-5.8b-translate
psymon
2023-06-25T06:53:47Z
1
0
peft
[ "peft", "region:us" ]
null
2023-06-25T02:54:27Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
NasimB/gpt2-dp-mod-aochild-10chars
NasimB
2023-06-25T06:53:44Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T03:14:38Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-dp-mod-aochild-10chars results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-dp-mod-aochild-10chars This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.4173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7077 | 0.27 | 500 | 5.6423 | | 5.3468 | 0.54 | 1000 | 5.2154 | | 5.0042 | 0.8 | 1500 | 4.9608 | | 4.7637 | 1.07 | 2000 | 4.7969 | | 4.5583 | 1.34 | 2500 | 4.6931 | | 4.4721 | 1.61 | 3000 | 4.5939 | | 4.3855 | 1.88 | 3500 | 4.5049 | | 4.218 | 2.15 | 4000 | 4.4679 | | 4.1202 | 2.41 | 4500 | 4.4175 | | 4.105 | 2.68 | 5000 | 4.3697 | | 4.0733 | 2.95 | 5500 | 4.3257 | | 3.8601 | 3.22 | 6000 | 4.3344 | | 3.8504 | 3.49 | 6500 | 4.3033 | | 3.8507 | 3.76 | 7000 | 4.2759 | | 3.8215 | 4.02 | 7500 | 4.2709 | | 3.5828 | 4.29 | 8000 | 4.2887 | | 3.6183 | 4.56 | 8500 | 4.2711 | | 3.6264 | 4.83 | 9000 | 4.2489 | | 3.5136 | 5.1 | 9500 | 4.2794 | | 3.3547 | 5.36 | 10000 | 4.2895 | | 3.383 | 5.63 | 10500 | 4.2727 | | 3.3982 | 5.9 | 11000 | 4.2594 | | 3.2002 | 6.17 | 11500 | 4.3133 | | 3.1199 | 6.44 | 12000 | 4.3184 | | 3.1483 | 6.71 | 12500 | 4.3123 | | 3.1516 | 6.97 | 13000 | 4.3013 | | 2.9083 | 7.24 | 13500 | 4.3587 | | 2.9076 | 7.51 | 14000 | 4.3641 | | 2.9176 | 7.78 | 14500 | 4.3616 | | 2.8855 | 8.05 | 15000 | 4.3806 | | 2.7292 | 8.32 | 15500 | 4.3978 | | 2.7443 | 8.58 | 16000 | 4.4023 | | 2.7445 | 8.85 | 16500 | 4.4046 | | 2.702 | 9.12 | 17000 | 4.4125 | | 2.6515 | 9.39 | 17500 | 4.4159 | | 2.6552 | 9.66 | 18000 | 4.4170 | | 2.6529 | 9.92 | 18500 | 4.4173 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
jameszhou02/michael-lora
jameszhou02
2023-06-25T06:52:42Z
1
0
peft
[ "peft", "region:us" ]
null
2023-06-25T06:52:40Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
teoha/openai-whisper-medium-PeftType.LORA-colab
teoha
2023-06-25T06:51:18Z
2
0
peft
[ "peft", "region:us" ]
null
2023-06-25T06:51:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
nolanaatama/mlycrsrvc750pchsvrs
nolanaatama
2023-06-25T05:19:58Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T04:47:27Z
--- license: creativeml-openrail-m ---
blackmount8/open-llama-13b-open-instruct-ct2-int8_float16
blackmount8
2023-06-25T05:06:24Z
1
0
transformers
[ "transformers", "text-generation", "en", "dataset:VMware/open-instruct-v1-oasst-dolly-hhrlhf", "license:cc", "region:us" ]
text-generation
2023-06-24T17:32:32Z
--- inference: false license: cc datasets: - VMware/open-instruct-v1-oasst-dolly-hhrlhf language: - en library_name: transformers pipeline_tag: text-generation --- # blackmount8/open-llama-13B-open-instruct-ct2-int8_float16 Int8_float16 version of [VMware/open-llama-13b-open-instruct](https://huggingface.co/VMware/open-llama-13b-open-instruct), quantized using CTranslate2. ## VMware/open-llama-13B-open-instruct Instruction-tuned version of the fully trained Open LLama 13B model. The model is open for `<b>`COMMERCIAL USE `</b>`. `<br>` `<b>` NOTE `</b>` : The model was trained using the Alpaca prompt template `<b>` NOTE `</b>` : Fast tokenizer results in incorrect encoding, set the ``use_fast = False`` parameter, when instantiating the tokenizer ## License - `<b>`Commercially Viable `</b>` - Instruction dataset, [VMware/open-instruct-v1-oasst-dolly-hhrlhf](https://huggingface.co/datasets/VMware/open-instruct-v1-oasst-dolly-hhrlhf) is under cc-by-sa-3.0 - Language Model, ([openlm-research/open_llama_13b](https://huggingface.co/openlm-research/open_llama_13b)) is under apache-2.0 ## Nomenclature - Model : Open-llama - Model Size: 13B parameters - Dataset: Open-instruct-v1 (oasst, dolly, hhrlhf) ## Use in CTranslate2 ``` import ctranslate2 from transformers import AutoTokenizer model_name = "blackmount8/open-llama-13b-open-instruct-ct2-int8_float16" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, padding_side="left", truncation_side="left") model = ctranslate2.Generator(model_name, device="auto", compute_type="int8_float16") input_text = ["What is the meaning of stonehenge?", "Hello mate!"] input_ids = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).input_ids input_tokens = [tokenizer.convert_ids_to_tokens(ele) for ele in input_ids] outputs = model.generate_batch(input_tokens, max_length=128) output_tokens = [ ele.sequences_ids[0] for ele in outputs ] output = tokenizer.batch_decode(output_tokens) print(output) ```
Gayathri142214002/t5_qg_1
Gayathri142214002
2023-06-25T04:58:01Z
161
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T04:53:50Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5_qg_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_qg_1 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.658 | 0.69 | 10 | 1.9854 | | 1.7442 | 1.38 | 20 | 1.6146 | | 1.3456 | 2.07 | 30 | 1.3937 | | 0.9931 | 2.76 | 40 | 1.2447 | | 0.9253 | 3.45 | 50 | 1.1519 | | 0.7154 | 4.14 | 60 | 1.0958 | | 0.6624 | 4.83 | 70 | 1.0645 | | 0.6384 | 5.52 | 80 | 1.0412 | | 0.4889 | 6.21 | 90 | 1.0323 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Raizel123/pamelasafitrilora
Raizel123
2023-06-25T04:37:40Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T04:34:50Z
--- license: creativeml-openrail-m ---
razaali/swin-tiny-patch4-window7-224-finetuned-eurosat
razaali
2023-06-25T04:00:02Z
211
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T03:25:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.977037037037037 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0662 - Accuracy: 0.9770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2501 | 1.0 | 190 | 0.1077 | 0.9626 | | 0.1375 | 2.0 | 380 | 0.0892 | 0.9707 | | 0.1324 | 3.0 | 570 | 0.0662 | 0.9770 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
andrewromitti/alzheimer_model_aug_deit5
andrewromitti
2023-06-25T03:58:45Z
193
1
transformers
[ "transformers", "pytorch", "deit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T02:14:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: alzheimer_model_aug_deit5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9996875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # alzheimer_model_aug_deit5 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0012 - Accuracy: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 1234 - gradient_accumulation_steps: 10 - total_train_batch_size: 160 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5045 | 1.0 | 212 | 0.1414 | 0.9522 | | 0.0779 | 2.0 | 424 | 0.0222 | 0.9961 | | 0.0156 | 3.0 | 637 | 0.0164 | 0.9941 | | 0.0032 | 4.0 | 849 | 0.0044 | 0.9983 | | 0.0004 | 4.99 | 1060 | 0.0012 | 0.9997 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
CJacobnriia/spatnzRVC
CJacobnriia
2023-06-25T03:56:17Z
0
0
null
[ "en", "region:us" ]
null
2023-06-25T01:52:32Z
--- language: - en --- This is an RVC model of spatnz (https://www.youtube.com/channel/UCcNPbOeFo-qM0wpis8Lwdig) ![spatnz.png](https://huggingface.co/CJacobnriia/spatnzRVC/resolve/main/spatnz.png)
ardhies/dev
ardhies
2023-06-25T03:55:45Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T03:51:43Z
--- license: creativeml-openrail-m ---
blackmount8/open-llama-13b-open-instruct-ct2-float16
blackmount8
2023-06-25T03:48:21Z
4
0
transformers
[ "transformers", "text-generation", "en", "dataset:VMware/open-instruct-v1-oasst-dolly-hhrlhf", "license:cc", "region:us" ]
text-generation
2023-06-24T16:44:56Z
--- inference: false license: cc datasets: - VMware/open-instruct-v1-oasst-dolly-hhrlhf language: - en library_name: transformers pipeline_tag: text-generation --- # blackmount8/open-llama-13B-open-instruct-ct2-float16 Float16 version of [VMware/open-llama-13b-open-instruct](https://huggingface.co/VMware/open-llama-13b-open-instruct), quantized using CTranslate2. ## VMware/open-llama-13B-open-instruct Instruction-tuned version of the fully trained Open LLama 13B model. The model is open for `<b>`COMMERCIAL USE `</b>`. `<br>` `<b>` NOTE `</b>` : The model was trained using the Alpaca prompt template `<b>` NOTE `</b>` : Fast tokenizer results in incorrect encoding, set the ``use_fast = False`` parameter, when instantiating the tokenizer ## License - `<b>`Commercially Viable `</b>` - Instruction dataset, [VMware/open-instruct-v1-oasst-dolly-hhrlhf](https://huggingface.co/datasets/VMware/open-instruct-v1-oasst-dolly-hhrlhf) is under cc-by-sa-3.0 - Language Model, ([openlm-research/open_llama_13b](https://huggingface.co/openlm-research/open_llama_13b)) is under apache-2.0 ## Nomenclature - Model : Open-llama - Model Size: 13B parameters - Dataset: Open-instruct-v1 (oasst, dolly, hhrlhf) ## Use in CTranslate2 ``` import ctranslate2 from transformers import AutoTokenizer model_name = "blackmount8/open-llama-13b-open-instruct-ct2-float16" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, padding_side="left", truncation_side="left") model = ctranslate2.Generator(model_name, device="auto", compute_type="float16") input_text = ["What is the meaning of stonehenge?", "Hello mate!"] input_ids = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).input_ids input_tokens = [tokenizer.convert_ids_to_tokens(ele) for ele in input_ids] outputs = model.generate_batch(input_tokens, max_length=128) output_tokens = [ ele.sequences_ids[0] for ele in outputs ] output = tokenizer.batch_decode(output_tokens) print(output) ```
duyhngoc/Wave2Vec2_OV_Vie
duyhngoc
2023-06-25T03:47:48Z
77
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "vivos", "generated_from_trainer", "dataset:vivos", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-21T10:58:36Z
--- license: apache-2.0 tags: - automatic-speech-recognition - vivos - generated_from_trainer datasets: - vivos metrics: - wer model-index: - name: Wave2Vec2_OV_Vie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wave2Vec2_OV_Vie This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the VIVOS - NA dataset. It achieves the following results on the evaluation set: - Loss: 3.5894 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 0.27 | 100 | 3.9210 | 1.0 | | No log | 0.55 | 200 | 3.4375 | 1.0 | | No log | 0.82 | 300 | 3.4356 | 1.0 | | No log | 1.1 | 400 | 3.4045 | 1.0 | | 4.1866 | 1.37 | 500 | 3.4694 | 1.0 | | 4.1866 | 1.65 | 600 | 3.6266 | 1.0 | | 4.1866 | 1.92 | 700 | 3.5694 | 1.0 | | 4.1866 | 2.19 | 800 | 3.5733 | 1.0 | | 4.1866 | 2.47 | 900 | 3.6381 | 1.0 | | 3.4376 | 2.74 | 1000 | 3.6604 | 1.0 | | 3.4376 | 3.02 | 1100 | 3.5868 | 1.0 | | 3.4376 | 3.29 | 1200 | 3.4988 | 1.0 | | 3.4376 | 3.57 | 1300 | 3.5409 | 1.0 | | 3.4376 | 3.84 | 1400 | 3.4883 | 1.0 | | 3.4365 | 4.12 | 1500 | 3.6125 | 1.0 | | 3.4365 | 4.39 | 1600 | 3.6123 | 1.0 | | 3.4365 | 4.66 | 1700 | 3.5978 | 1.0 | | 3.4365 | 4.94 | 1800 | 3.5693 | 1.0 | | 3.4365 | 5.21 | 1900 | 3.5659 | 1.0 | | 3.4339 | 5.49 | 2000 | 3.6234 | 1.0 | | 3.4339 | 5.76 | 2100 | 3.5997 | 1.0 | | 3.4339 | 6.04 | 2200 | 3.6529 | 1.0 | | 3.4339 | 6.31 | 2300 | 3.5780 | 1.0 | | 3.4339 | 6.58 | 2400 | 3.5844 | 1.0 | | 3.4333 | 6.86 | 2500 | 3.5792 | 1.0 | | 3.4333 | 7.13 | 2600 | 3.5468 | 1.0 | | 3.4333 | 7.41 | 2700 | 3.5691 | 1.0 | | 3.4333 | 7.68 | 2800 | 3.5408 | 1.0 | | 3.4333 | 7.96 | 2900 | 3.5482 | 1.0 | | 3.4294 | 8.23 | 3000 | 3.6070 | 1.0 | | 3.4294 | 8.5 | 3100 | 3.5905 | 1.0 | | 3.4294 | 8.78 | 3200 | 3.6018 | 1.0 | | 3.4294 | 9.05 | 3300 | 3.6326 | 1.0 | | 3.4294 | 9.33 | 3400 | 3.6214 | 1.0 | | 3.4293 | 9.6 | 3500 | 3.6372 | 1.0 | | 3.4293 | 9.88 | 3600 | 3.6215 | 1.0 | | 3.4293 | 10.15 | 3700 | 3.5106 | 1.0 | | 3.4293 | 10.43 | 3800 | 3.5066 | 1.0 | | 3.4293 | 10.7 | 3900 | 3.5352 | 1.0 | | 3.4295 | 10.97 | 4000 | 3.5129 | 1.0 | | 3.4295 | 11.25 | 4100 | 3.6384 | 1.0 | | 3.4295 | 11.52 | 4200 | 3.6019 | 1.0 | | 3.4295 | 11.8 | 4300 | 3.5876 | 1.0 | | 3.4295 | 12.07 | 4400 | 3.6207 | 1.0 | | 3.4252 | 12.35 | 4500 | 3.5998 | 1.0 | | 3.4252 | 12.62 | 4600 | 3.6216 | 1.0 | | 3.4252 | 12.89 | 4700 | 3.6073 | 1.0 | | 3.4252 | 13.17 | 4800 | 3.5567 | 1.0 | | 3.4252 | 13.44 | 4900 | 3.5745 | 1.0 | | 3.4274 | 13.72 | 5000 | 3.5738 | 1.0 | | 3.4274 | 13.99 | 5100 | 3.5914 | 1.0 | | 3.4274 | 14.27 | 5200 | 3.6004 | 1.0 | | 3.4274 | 14.54 | 5300 | 3.5968 | 1.0 | | 3.4274 | 14.81 | 5400 | 3.5908 | 1.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
dxyy/monteCarlo-cartpolev1
dxyy
2023-06-25T03:34:19Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T03:21:22Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: monteCarlo-cartpolev1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 470.60 +/- 18.14 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
akera/whisper-medium-acholi
akera
2023-06-25T03:21:54Z
13
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-25T00:20:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: whisper-medium-acholi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-acholi This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7946 - eval_wer: 100.0 - eval_runtime: 77.0072 - eval_samples_per_second: 3.169 - eval_steps_per_second: 0.208 - epoch: 2.0 - step: 276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.2
zinccat/santacoder-ggml-quantized
zinccat
2023-06-25T02:20:50Z
0
2
null
[ "license:bigcode-openrail-m", "region:us" ]
null
2023-06-25T02:16:55Z
--- license: bigcode-openrail-m ---
nbiish/learning-taxi-v3
nbiish
2023-06-25T02:14:07Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T02:14:05Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: learning-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="nbiish/learning-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nbiish/learning-FrozenLake-v1-4x4-noSlip
nbiish
2023-06-25T02:12:15Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T01:54:56Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: learning-FrozenLake-v1-4x4-noSlip results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="nbiish/learning-FrozenLake-v1-4x4-noSlip", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```