modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-10 00:38:21
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 551
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-10 00:38:17
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
waboucay/camembert-large-finetuned-xnli_fr_3_classes-finetuned-rua_wl_3_classes
|
waboucay
| 2022-06-20T09:34:17Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"camembert",
"text-classification",
"nli",
"fr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-20T09:23:44Z |
---
language:
- fr
tags:
- nli
metrics:
- f1
---
## Eval results
We obtain the following results on ```validation``` and ```test``` sets:
| Set | F1<sub>micro</sub> | F1<sub>macro</sub> |
|------------|--------------------|--------------------|
| validation | 72.4 | 72.2 |
| test | 72.8 | 72.5 |
|
qgrantq/bert-finetuned-squad
|
qgrantq
| 2022-06-20T08:03:46Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-06-20T05:30:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
jacobbieker/dgmr
|
jacobbieker
| 2022-06-20T07:43:41Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"nowcasting",
"forecasting",
"timeseries",
"remote-sensing",
"gan",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2022-06-20T07:44:17Z |
---
license: mit
tags:
- nowcasting
- forecasting
- timeseries
- remote-sensing
- gan
---
# DGMR
## Model description
[More information needed]
## Intended uses & limitations
[More information needed]
## How to use
[More information needed]
## Limitations and bias
[More information needed]
## Training data
[More information needed]
## Training procedure
[More information needed]
## Evaluation results
[More information needed]
|
Hausax/albert-xxlarge-v2-finetuned-Poems
|
Hausax
| 2022-06-20T07:19:43Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"albert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-19T10:02:39Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: albert-xxlarge-v2-finetuned-Poems
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-xxlarge-v2-finetuned-Poems
This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1923
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-07
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.482 | 1.0 | 19375 | 2.2959 |
| 2.258 | 2.0 | 38750 | 2.2357 |
| 2.2146 | 3.0 | 58125 | 2.2085 |
| 2.1975 | 4.0 | 77500 | 2.1929 |
| 2.1893 | 5.0 | 96875 | 2.1863 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
KM4STfulltext/CSSCI_ABS_roberta_wwm
|
KM4STfulltext
| 2022-06-20T07:06:48Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-15T15:33:54Z |
---
license: apache-2.0
---
# Pre-trained Language Model for the Humanities and Social Sciences in Chinese
## Introduction
The research for social science texts in Chinese needs the support natural language processing tools.
The pre-trained language model has greatly improved the accuracy of text mining in general texts. At present, there is an urgent need for a pre-trained language model specifically for the automatic processing of scientific texts in Chinese social science.
We used the abstract of social science research as the training set. Based on the deep language model framework of BERT, we constructed CSSCI_ABS_BERT, CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm pre-training language models by [transformers/run_mlm.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py) and [transformers/mlm_wwm](https://github.com/huggingface/transformers/tree/main/examples/research_projects/mlm_wwm).
We designed four downstream tasks of Text Classification on different Chinese social scientific article corpus to verify the performance of the model.
- CSSCI_ABS_BERT , CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm are trained on the abstract of articles published in CSSCI journals. The training set involved in the experiment included a total of `510,956,094 words`.
- Based on the idea of Domain-Adaptive Pretraining, `CSSCI_ABS_BERT` and `CSSCI_ABS_roberta` combine a large amount of abstracts of scientific articles in Chinese based on the BERT structure, and continue to train the BERT and Chinese-RoBERTa models respectively to obtain pre-training models for the automatic processing of Chinese Social science research texts.
## News
- 2022-06-15 : CSSCI_ABS_BERT, CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm has been put forward for the first time.
## How to use
### Huggingface Transformers
The `from_pretrained` method based on [Huggingface Transformers](https://github.com/huggingface/transformers) can directly obtain CSSCI_ABS_BERT, CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm models online.
- CSSCI_ABS_BERT
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/CSSCI_ABS_BERT")
model = AutoModel.from_pretrained("KM4STfulltext/CSSCI_ABS_BERT")
```
- CSSCI_ABS_roberta
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/CSSCI_ABS_roberta")
model = AutoModel.from_pretrained("KM4STfulltext/CSSCI_ABS_roberta")
```
- CSSCI_ABS_roberta-wwm
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/CSSCI_ABS_roberta_wwm")
model = AutoModel.from_pretrained("KM4STfulltext/CSSCI_ABS_roberta_wwm")
```
### Download Models
- The version of the model we provide is `PyTorch`.
### From Huggingface
- Download directly through Huggingface's official website.
- [KM4STfulltext/CSSCI_ABS_BERT](https://huggingface.co/KM4STfulltext/CSSCI_ABS_BERT)
- [KM4STfulltext/CSSCI_ABS_roberta](https://huggingface.co/KM4STfulltext/CSSCI_ABS_roberta)
- [KM4STfulltext/CSSCI_ABS_roberta_wwm](https://huggingface.co/KM4STfulltext/CSSCI_ABS_roberta_wwm)
## Evaluation & Results
- We useCSSCI_ABS_BERT, CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm to perform Text Classificationon different social science research corpus. The experimental results are as follows.
#### Discipline classification experiments of articles published in CSSCI journals
https://github.com/S-T-Full-Text-Knowledge-Mining/CSSCI-BERT
#### Movement recognition experiments for data analysis and knowledge discovery abstract
| Tag | bert-base-Chinese | chinese-roberta-wwm,ext | CSSCI_ABS_BERT | CSSCI_ABS_roberta | CSSCI_ABS_roberta_wwm | support |
| ------------ | ----------------- | ----------------------- | -------------- | ----------------- | --------------------- | ------- |
| Abstract | 55.23 | 62.44 | 56.8 | 57.96 | 58.26 | 223 |
| Location | 61.61 | 54.38 | 61.83 | 61.4 | 61.94 | 2866 |
| Metric | 45.08 | 41 | 45.27 | 46.74 | 47.13 | 622 |
| Organization | 46.85 | 35.29 | 45.72 | 45.44 | 44.65 | 327 |
| Person | 88.66 | 82.79 | 88.21 | 88.29 | 88.51 | 4850 |
| Thing | 71.68 | 65.34 | 71.88 | 71.68 | 71.81 | 5993 |
| Time | 65.35 | 60.38 | 64.15 | 65.26 | 66.03 | 1272 |
| avg | 72.69 | 66.62 | 72.59 | 72.61 | 72.89 | 16153 |
#### Chinese literary entity recognition
| Tag | bert-base-Chinese | chinese-roberta-wwm,ext | CSSCI_ABS_BERT | CSSCI_ABS_roberta | CSSCI_ABS_roberta_wwm | support |
| ------------ | ----------------- | ----------------------- | -------------- | ----------------- | --------------------- | ------- |
| Abstract | 55.23 | 62.44 | 56.8 | 57.96 | 58.26 | 223 |
| Location | 61.61 | 54.38 | 61.83 | 61.4 | 61.94 | 2866 |
| Metric | 45.08 | 41 | 45.27 | 46.74 | 47.13 | 622 |
| Organization | 46.85 | 35.29 | 45.72 | 45.44 | 44.65 | 327 |
| Person | 88.66 | 82.79 | 88.21 | 88.29 | 88.51 | 4850 |
| Thing | 71.68 | 65.34 | 71.88 | 71.68 | 71.81 | 5993 |
| Time | 65.35 | 60.38 | 64.15 | 65.26 | 66.03 | 1272 |
| avg | 72.69 | 66.62 | 72.59 | 72.61 | 72.89 | 16153 |
## Cited
- If our content is helpful for your research work, please quote our research in your article.
- If you want to quote our research, you can use this url [S-T-Full-Text-Knowledge-Mining/CSSCI-BERT (github.com)](https://github.com/S-T-Full-Text-Knowledge-Mining/CSSCI-BERT) as an alternative before our paper is published.
## Disclaimer
- The experimental results presented in the report only show the performance under a specific data set and hyperparameter combination, and cannot represent the essence of each model. The experimental results may change due to random number seeds and computing equipment.
- **Users can use the model arbitrarily within the scope of the license, but we are not responsible for the direct or indirect losses caused by using the content of the project.**
## Acknowledgment
- CSSCI_ABS_BERT was trained based on [BERT-Base-Chinese]([google-research/bert: TensorFlow code and pre-trained models for BERT (github.com)](https://github.com/google-research/bert)).
- CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm was trained based on [RoBERTa-wwm-ext, Chinese]([ymcui/Chinese-BERT-wwm: Pre-Training with Whole Word Masking for Chinese BERT(中文BERT-wwm系列模型) (github.com)](https://github.com/ymcui/Chinese-BERT-wwm)).
|
anas-awadalla/prompt-tuned-t5-small-num-tokens-100-squad
|
anas-awadalla
| 2022-06-20T04:47:43Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-06-20T00:50:38Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: prompt-tuned-t5-small-num-tokens-100-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# prompt-tuned-t5-small-num-tokens-100-squad
This model is a fine-tuned version of [google/t5-small-lm-adapt](https://huggingface.co/google/t5-small-lm-adapt) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.3
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 30000
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
huggingtweets/bartoszmilewski
|
huggingtweets
| 2022-06-20T02:35:22Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-20T02:33:39Z |
---
language: en
thumbnail: http://www.huggingtweets.com/bartoszmilewski/1655692518288/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1000136690/IslandBartosz_400x400.JPG')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Bartosz Milewski</div>
<div style="text-align: center; font-size: 14px;">@bartoszmilewski</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Bartosz Milewski.
| Data | Bartosz Milewski |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 79 |
| Short tweets | 778 |
| Tweets kept | 2391 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2689vaqz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bartoszmilewski's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1f1jpc3z) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1f1jpc3z/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bartoszmilewski')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
ali2066/DistilBERTFINAL_ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False
|
ali2066
| 2022-06-20T01:54:34Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-05-02T14:07:53Z |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: _ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# _ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4936
- Precision: 0.8189
- Recall: 0.9811
- F1: 0.8927
- Accuracy: 0.8120
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 13 | 0.5150 | 0.7447 | 1.0 | 0.8537 | 0.7447 |
| No log | 2.0 | 26 | 0.5565 | 0.7447 | 1.0 | 0.8537 | 0.7447 |
| No log | 3.0 | 39 | 0.5438 | 0.7778 | 1.0 | 0.8750 | 0.7872 |
| No log | 4.0 | 52 | 0.5495 | 0.7778 | 1.0 | 0.8750 | 0.7872 |
| No log | 5.0 | 65 | 0.5936 | 0.7778 | 1.0 | 0.8750 | 0.7872 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
huggingtweets/borisjohnson-elonmusk-majornelson
|
huggingtweets
| 2022-06-19T22:42:51Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-19T22:42:06Z |
---
language: en
thumbnail: http://www.huggingtweets.com/borisjohnson-elonmusk-majornelson/1655678567047/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1519703427240013824/FOED2v9N_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1500170386520129536/Rr2G6A-N_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Larry Hryb 🇺🇦 & Boris Johnson</div>
<div style="text-align: center; font-size: 14px;">@borisjohnson-elonmusk-majornelson</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Elon Musk & Larry Hryb 🇺🇦 & Boris Johnson.
| Data | Elon Musk | Larry Hryb 🇺🇦 | Boris Johnson |
| --- | --- | --- | --- |
| Tweets downloaded | 3250 | 3250 | 3248 |
| Retweets | 147 | 736 | 653 |
| Short tweets | 985 | 86 | 17 |
| Tweets kept | 2118 | 2428 | 2578 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/22m356ew/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @borisjohnson-elonmusk-majornelson's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/316f3w9h) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/316f3w9h/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/borisjohnson-elonmusk-majornelson')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
sevlabr/unit-1-PPO-LunarLander-v2
|
sevlabr
| 2022-06-19T21:52:28Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-19T21:51:58Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 222.00 +/- 55.66
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
chradden/generation_xyz
|
chradden
| 2022-06-19T21:33:52Z | 54 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-19T21:33:37Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: generation_xyz
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.5504587292671204
---
# generation_xyz
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### Baby Boomers

#### Generation Alpha

#### Generation X

#### Generation Z

#### Millennials

|
voleg44/dqn-SpaceInvadersNoFrameskip-v4
|
voleg44
| 2022-06-19T20:06:30Z | 3 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-19T20:05:54Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: 434.50 +/- 143.59
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga voleg44 -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga voleg44
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', True),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
anas-awadalla/prophetnet-large-squad
|
anas-awadalla
| 2022-06-19T19:16:54Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"prophetnet",
"text2text-generation",
"generated_from_trainer",
"dataset:squad",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-19T18:12:00Z |
---
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: prophetnet-large-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# prophetnet-large-squad
This model is a fine-tuned version of [microsoft/prophetnet-large-uncased](https://huggingface.co/microsoft/prophetnet-large-uncased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 256
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
martin-ha/text_encoder_in_dual
|
martin-ha
| 2022-06-19T19:11:19Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"region:us"
] | null | 2022-06-19T19:10:58Z |
---
library_name: keras
---
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training Metrics
Model history needed
## Model Plot
<details>
<summary>View Model Plot</summary>

</details>
|
martin-ha/vision_encoder_in_dual
|
martin-ha
| 2022-06-19T19:07:22Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"region:us"
] | null | 2022-06-19T19:06:52Z |
---
library_name: keras
---
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training Metrics
Model history needed
## Model Plot
<details>
<summary>View Model Plot</summary>

</details>
|
diversifix/diversiformer
|
diversifix
| 2022-06-19T16:44:04Z | 6 | 3 |
transformers
|
[
"transformers",
"tf",
"t5",
"text2text-generation",
"de",
"arxiv:2010.11934",
"license:gpl",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-19T12:44:02Z |
---
language:
- de
license: gpl
widget:
- text: "Ersetze \"Lehrer\" durch \"Lehrerin oder Lehrer\": Ein promovierter Mathelehrer ist noch nie im Unterricht eingeschlafen."
example_title: "Example 1"
- text: "Ersetze \"Student\" durch \"studierende Person\": Maria ist kein Student."
example_title: "Example 2"
inference:
parameters:
max_length: 500
---
# Diversiformer 🤗 🏳️🌈 🇩🇪
_Work in progress._
Language model for inclusive language in German, fine-tuned on [mT5](https://arxiv.org/abs/2010.11934).
An experimental model version is released [on Huggingface](https://huggingface.co/diversifix/diversiformer).
Source code for fine-tuning is available [on GitHub](https://github.com/diversifix/diversiformer).
## Tasks
- **DETECT**: Recognizes instances of the generic masculine, and of other exclusive language. To do.
- **SUGGEST**: Suggest inclusive alternatives to masculine and exclusive words. To do.
- **REPLACE**: Replace one phrase by another, while preserving grammatical coherence. Work in progress.
- ▶️ `Ersetze "Schüler" durch "Schülerin oder Schüler": Die Schüler kamen zu spät.`
◀️ `Die Schülerinnen und Schüler kamen zu spät.`
- ▶️ `Ersetze "Lehrer" durch "Kollegium": Die wartenden Lehrer wunderten sich.`
◀️ `Das wartende Kollegium wunderte sich.`
## Usage
```python
>>> from transformers import pipeline
>>> generator = pipeline("text2text-generation", model="diversifix/diversiformer")
>>> generator('Ersetze "Schüler" durch "Schülerin oder Schüler": Die Schüler kamen zu spät.', max_length=500)
```
## License
Diversiformer. Transformer model for inclusive language.
Copyright (C) 2022 [Diversifix e. V.](mailto:vorstand@diversifix.org)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
anjankumar/mbart-large-50-finetuned-en-to-te
|
anjankumar
| 2022-06-19T16:32:07Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"generated_from_trainer",
"dataset:kde4",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-07T07:02:05Z |
---
tags:
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: mbart-large-50-finetuned-en-to-te
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
args: en-te
metrics:
- name: Bleu
type: bleu
value: 0.7152
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-large-50-finetuned-en-to-te
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 13.8521
- Bleu: 0.7152
- Gen Len: 20.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 7 | 13.8521 | 0.7152 | 20.5 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
thaidv96/lead-reliability-scoring
|
thaidv96
| 2022-06-19T16:15:46Z | 6 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-19T15:44:25Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: lead-reliability-scoring
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lead-reliability-scoring
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0123
- F1: 0.9937
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 50 | 0.3866 | 0.5761 |
| No log | 2.0 | 100 | 0.3352 | 0.6538 |
| No log | 3.0 | 150 | 0.1786 | 0.8283 |
| No log | 4.0 | 200 | 0.1862 | 0.8345 |
| No log | 5.0 | 250 | 0.1367 | 0.8736 |
| No log | 6.0 | 300 | 0.0642 | 0.9477 |
| No log | 7.0 | 350 | 0.0343 | 0.9748 |
| No log | 8.0 | 400 | 0.0190 | 0.9874 |
| No log | 9.0 | 450 | 0.0123 | 0.9937 |
| 0.2051 | 10.0 | 500 | 0.0058 | 0.9937 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
waboucay/camembert-large-xnli
|
waboucay
| 2022-06-19T14:38:51Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"camembert",
"text-classification",
"nli",
"fr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-19T14:35:57Z |
---
language:
- fr
tags:
- nli
metrics:
- f1
---
## Eval results
We obtain the following results on ```validation``` and ```test``` sets:
| Set | F1<sub>micro</sub> | F1<sub>macro</sub> |
|------------|--------------------|--------------------|
| validation | 85.8 | 85.9 |
| test | 84.2 | 84.3 |
|
waboucay/camembert-large-finetuned-rua_wl_3_classes
|
waboucay
| 2022-06-19T14:35:04Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"camembert",
"text-classification",
"nli",
"fr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-19T14:31:32Z |
---
language:
- fr
tags:
- nli
metrics:
- f1
---
## Eval results
We obtain the following results on ```validation``` and ```test``` sets:
| Set | F1<sub>micro</sub> | F1<sub>macro</sub> |
|------------|--------------------|--------------------|
| validation | 75.3 | 74.9 |
| test | 75.8 | 75.3 |
|
waboucay/camembert-large-finetuned-repnum_wl_3_classes
|
waboucay
| 2022-06-19T14:30:19Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"camembert",
"text-classification",
"nli",
"fr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-19T14:22:13Z |
---
language:
- fr
tags:
- nli
metrics:
- f1
---
## Eval results
We obtain the following results on ```validation``` and ```test``` sets:
| Set | F1<sub>micro</sub> | F1<sub>macro</sub> |
|------------|--------------------|--------------------|
| validation | 79.4 | 79.4 |
| test | 80.6 | 80.6 |
|
ctoraman/RoBERTweetTurkCovid
|
ctoraman
| 2022-06-19T14:25:58Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"fill-mask",
"tr",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-08T11:59:09Z |
---
language:
- tr
tags:
- roberta
license: cc-by-nc-sa-4.0
---
# RoBERTweetTurkCovid (uncased)
Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased.
The pretrained corpus is a Turkish tweets collection related to COVID-19.
Model architecture is similar to RoBERTa-base (12 layers, 12 heads, and 768 hidden size). Tokenization algorithm is WordPiece. Vocabulary size is 30k.
The details of pretraining can be found at this paper:
```bibtex
@InProceedings{clef-checkthat:2022:task1:oguzhan,
author = {Cagri Toraman and Oguzhan Ozcelik and Furkan Şahinuç and Umitcan Sahin},
title = "{ARC-NLP at CheckThat! 2022:} Contradiction for Harmful Tweet Detection",
year = {2022},
booktitle = "Working Notes of {CLEF} 2022 - Conference and Labs of the Evaluation Forum",
editor = {Faggioli, Guglielmo andd Ferro, Nicola and Hanbury, Allan and Potthast, Martin},
series = {CLEF~'2022},
address = {Bologna, Italy},
}
```
The following code can be used for model loading and tokenization, example max length (768) can be changed:
```
model = AutoModel.from_pretrained([model_path])
#for sequence classification:
#model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes])
tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path])
tokenizer.mask_token = "[MASK]"
tokenizer.cls_token = "[CLS]"
tokenizer.sep_token = "[SEP]"
tokenizer.pad_token = "[PAD]"
tokenizer.unk_token = "[UNK]"
tokenizer.bos_token = "[CLS]"
tokenizer.eos_token = "[SEP]"
tokenizer.model_max_length = 768
```
### BibTeX entry and citation info
```bibtex
@InProceedings{clef-checkthat:2022:task1:oguzhan,
author = {Cagri Toraman and Oguzhan Ozcelik and Furkan Şahinuç and Umitcan Sahin},
title = "{ARC-NLP at CheckThat! 2022:} Contradiction for Harmful Tweet Detection",
year = {2022},
booktitle = "Working Notes of {CLEF} 2022 - Conference and Labs of the Evaluation Forum",
editor = {Faggioli, Guglielmo andd Ferro, Nicola and Hanbury, Allan and Potthast, Martin},
series = {CLEF~'2022},
address = {Bologna, Italy},
}
```
|
rajistics/dqn-SpaceInvadersNoFrameskip-v4
|
rajistics
| 2022-06-19T13:48:15Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-19T13:47:41Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: 435.50 +/- 129.62
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rajistics -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga rajistics
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 10000000.0),
('optimize_memory_usage', True),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
Classroom-workshop/assignment2-llama
|
Classroom-workshop
| 2022-06-19T13:46:40Z | 7 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-02T15:27:20Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 200.68 +/- 7.11
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
huggingtweets/david_lynch
|
huggingtweets
| 2022-06-19T13:12:27Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-27T11:00:06Z |
---
language: en
thumbnail: http://www.huggingtweets.com/david_lynch/1655644342827/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/63730229/DL_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">David Lynch</div>
<div style="text-align: center; font-size: 14px;">@david_lynch</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from David Lynch.
| Data | David Lynch |
| --- | --- |
| Tweets downloaded | 912 |
| Retweets | 29 |
| Short tweets | 21 |
| Tweets kept | 862 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/do5yghsd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @david_lynch's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ddgwjhcj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ddgwjhcj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/david_lynch')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v2
|
gary109
| 2022-06-19T12:14:27Z | 3 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"gary109/AI_Light_Dance",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-06-19T00:34:26Z |
---
tags:
- automatic-speech-recognition
- gary109/AI_Light_Dance
- generated_from_trainer
model-index:
- name: ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v2
This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4313
- Wer: 0.1645
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.148 | 1.0 | 552 | 0.4313 | 0.1645 |
| 0.1301 | 2.0 | 1104 | 0.4365 | 0.1618 |
| 0.1237 | 3.0 | 1656 | 0.4470 | 0.1595 |
| 0.1063 | 4.0 | 2208 | 0.4593 | 0.1576 |
| 0.128 | 5.0 | 2760 | 0.4525 | 0.1601 |
| 0.1099 | 6.0 | 3312 | 0.4593 | 0.1567 |
| 0.0969 | 7.0 | 3864 | 0.4625 | 0.1550 |
| 0.0994 | 8.0 | 4416 | 0.4672 | 0.1543 |
| 0.125 | 9.0 | 4968 | 0.4636 | 0.1544 |
| 0.0887 | 10.0 | 5520 | 0.4601 | 0.1538 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.9.1+cu102
- Datasets 2.3.3.dev0
- Tokenizers 0.12.1
|
ShannonAI/ChineseBERT-large
|
ShannonAI
| 2022-06-19T12:07:31Z | 23 | 5 |
transformers
|
[
"transformers",
"pytorch",
"arxiv:2106.16038",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
# ChineseBERT-large
This repository contains code, model, dataset for **ChineseBERT** at ACL2021.
paper:
**[ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://arxiv.org/abs/2106.16038)**
*Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li*
code:
[ChineseBERT github link](https://github.com/ShannonAI/ChineseBert)
## Model description
We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese
characters into language model pretraining.
First, for each Chinese character, we get three kind of embedding.
- **Char Embedding:** the same as origin BERT token embedding.
- **Glyph Embedding:** capture visual features based on different fonts of a Chinese character.
- **Pinyin Embedding:** capture phonetic feature from the pinyin sequence ot a Chinese Character.
Then, char embedding, glyph embedding and pinyin embedding
are first concatenated, and mapped to a D-dimensional embedding through a fully
connected layer to form the fusion embedding.
Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model.
The following image shows an overview architecture of ChineseBERT model.

ChineseBERT leverages the glyph and pinyin information of Chinese
characters to enhance the model's ability of capturing
context semantics from surface character forms and
disambiguating polyphonic characters in Chinese.
|
dibsondivya/ernie-phmtweets-sutd
|
dibsondivya
| 2022-06-19T11:38:29Z | 14 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"ernie",
"health",
"tweet",
"dataset:custom-phm-tweets",
"arxiv:1802.09130",
"arxiv:1907.12412",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-19T11:20:14Z |
---
tags:
- ernie
- health
- tweet
datasets:
- custom-phm-tweets
metrics:
- accuracy
model-index:
- name: ernie-phmtweets-sutd
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: custom-phm-tweets
type: labelled
metrics:
- name: Accuracy
type: accuracy
value: 0.885
---
# ernie-phmtweets-sutd
This model is a fine-tuned version of [ernie-2.0-en](https://huggingface.co/nghuyong/ernie-2.0-en) for text classification to identify public health events through tweets. The project was based on an [Emory University Study on Detection of Personal Health Mentions in Social Media paper](https://arxiv.org/pdf/1802.09130v2.pdf), that worked with this [custom dataset](https://github.com/emory-irlab/PHM2017).
It achieves the following results on the evaluation set:
- Accuracy: 0.885
## Usage
```Python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("dibsondivya/ernie-phmtweets-sutd")
model = AutoModelForSequenceClassification.from_pretrained("dibsondivya/ernie-phmtweets-sutd")
```
### Model Evaluation Results
With Validation Set
- Accuracy: 0.889763779527559
With Test Set
- Accuracy: 0.884643644379133
## References for ERNIE 2.0 Model
```bibtex
@article{sun2019ernie20,
title={ERNIE 2.0: A Continual Pre-training Framework for Language Understanding},
author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng},
journal={arXiv preprint arXiv:1907.12412},
year={2019}
}
```
|
levgil2/stam-finetuned-imdb
|
levgil2
| 2022-06-19T11:26:02Z | 4 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"fill-mask",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-19T11:21:46Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: levgil2/stam-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# levgil2/stam-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.8517
- Validation Loss: 2.5705
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -687, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.8517 | 2.5705 | 0 |
### Framework versions
- Transformers 4.20.0
- TensorFlow 2.8.2
- Datasets 2.3.2
- Tokenizers 0.12.1
|
zakria/NLP_Project
|
zakria
| 2022-06-19T09:55:56Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-06-19T07:49:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: NLP_Project
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# NLP_Project
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5308
- Wer: 0.3428
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.5939 | 1.0 | 500 | 2.1356 | 1.0014 |
| 0.9126 | 2.01 | 1000 | 0.5469 | 0.5354 |
| 0.4491 | 3.01 | 1500 | 0.4636 | 0.4503 |
| 0.3008 | 4.02 | 2000 | 0.4269 | 0.4330 |
| 0.2229 | 5.02 | 2500 | 0.4164 | 0.4073 |
| 0.188 | 6.02 | 3000 | 0.4717 | 0.4107 |
| 0.1739 | 7.03 | 3500 | 0.4306 | 0.4031 |
| 0.159 | 8.03 | 4000 | 0.4394 | 0.3993 |
| 0.1342 | 9.04 | 4500 | 0.4462 | 0.3904 |
| 0.1093 | 10.04 | 5000 | 0.4387 | 0.3759 |
| 0.1005 | 11.04 | 5500 | 0.5033 | 0.3847 |
| 0.0857 | 12.05 | 6000 | 0.4805 | 0.3876 |
| 0.0779 | 13.05 | 6500 | 0.5269 | 0.3810 |
| 0.072 | 14.06 | 7000 | 0.5109 | 0.3710 |
| 0.0641 | 15.06 | 7500 | 0.4865 | 0.3638 |
| 0.0584 | 16.06 | 8000 | 0.5041 | 0.3646 |
| 0.0552 | 17.07 | 8500 | 0.4987 | 0.3537 |
| 0.0535 | 18.07 | 9000 | 0.4947 | 0.3586 |
| 0.0475 | 19.08 | 9500 | 0.5237 | 0.3647 |
| 0.042 | 20.08 | 10000 | 0.5338 | 0.3561 |
| 0.0416 | 21.08 | 10500 | 0.5068 | 0.3483 |
| 0.0358 | 22.09 | 11000 | 0.5126 | 0.3532 |
| 0.0334 | 23.09 | 11500 | 0.5213 | 0.3536 |
| 0.0331 | 24.1 | 12000 | 0.5378 | 0.3496 |
| 0.03 | 25.1 | 12500 | 0.5167 | 0.3470 |
| 0.0254 | 26.1 | 13000 | 0.5245 | 0.3418 |
| 0.0233 | 27.11 | 13500 | 0.5393 | 0.3456 |
| 0.0232 | 28.11 | 14000 | 0.5279 | 0.3425 |
| 0.022 | 29.12 | 14500 | 0.5308 | 0.3428 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
|
sun1638650145/q-Taxi-v3
|
sun1638650145
| 2022-06-19T09:00:38Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-19T09:00:26Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- metrics:
- type: mean_reward
value: 7.54 +/- 2.73
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
---
# 使用**Q-Learning**智能体来玩**Taxi-v3**
这是一个使用**Q-Learning**训练有素的模型玩**Taxi-v3**.
## 用法
```python
model = load_from_hub(repo_id='sun1638650145/q-Taxi-v3', filename='q-learning.pkl')
# 不要忘记检查是否需要添加额外的参数(例如is_slippery=False)
env = gym.make(model['env_id'])
evaluate_agent(env, model['max_steps'], model['n_eval_episodes'], model['qtable'], model['eval_seed'])
```
|
ShannonAI/ChineseBERT-base
|
ShannonAI
| 2022-06-19T08:14:46Z | 109 | 20 |
transformers
|
[
"transformers",
"pytorch",
"arxiv:2106.16038",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
# ChineseBERT-base
This repository contains code, model, dataset for **ChineseBERT** at ACL2021.
paper:
**[ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://arxiv.org/abs/2106.16038)**
*Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li*
code:
[ChineseBERT github link](https://github.com/ShannonAI/ChineseBert)
## Model description
We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese
characters into language model pretraining.
First, for each Chinese character, we get three kind of embedding.
- **Char Embedding:** the same as origin BERT token embedding.
- **Glyph Embedding:** capture visual features based on different fonts of a Chinese character.
- **Pinyin Embedding:** capture phonetic feature from the pinyin sequence ot a Chinese Character.
Then, char embedding, glyph embedding and pinyin embedding
are first concatenated, and mapped to a D-dimensional embedding through a fully
connected layer to form the fusion embedding.
Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model.
The following image shows an overview architecture of ChineseBERT model.

ChineseBERT leverages the glyph and pinyin information of Chinese
characters to enhance the model's ability of capturing
context semantics from surface character forms and
disambiguating polyphonic characters in Chinese.
|
botika/checkpoint-124500-finetuned-squad
|
botika
| 2022-06-19T05:53:11Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-06-17T07:41:58Z |
---
tags:
- generated_from_trainer
model-index:
- name: checkpoint-124500-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# checkpoint-124500-finetuned-squad
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 14.9594
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 3.9975 | 1.0 | 3289 | 3.8405 |
| 3.7311 | 2.0 | 6578 | 3.7114 |
| 3.5681 | 3.0 | 9867 | 3.6829 |
| 3.4101 | 4.0 | 13156 | 3.6368 |
| 3.2487 | 5.0 | 16445 | 3.6526 |
| 3.1143 | 6.0 | 19734 | 3.7567 |
| 2.9783 | 7.0 | 23023 | 3.8469 |
| 2.8295 | 8.0 | 26312 | 4.0040 |
| 2.6912 | 9.0 | 29601 | 4.1996 |
| 2.5424 | 10.0 | 32890 | 4.3387 |
| 2.4161 | 11.0 | 36179 | 4.4988 |
| 2.2713 | 12.0 | 39468 | 4.7861 |
| 2.1413 | 13.0 | 42757 | 4.9276 |
| 2.0125 | 14.0 | 46046 | 5.0598 |
| 1.8798 | 15.0 | 49335 | 5.3347 |
| 1.726 | 16.0 | 52624 | 5.5869 |
| 1.5994 | 17.0 | 55913 | 5.7161 |
| 1.4643 | 18.0 | 59202 | 6.0174 |
| 1.3237 | 19.0 | 62491 | 6.4926 |
| 1.2155 | 20.0 | 65780 | 6.4882 |
| 1.1029 | 21.0 | 69069 | 6.9922 |
| 0.9948 | 22.0 | 72358 | 7.1357 |
| 0.9038 | 23.0 | 75647 | 7.3676 |
| 0.8099 | 24.0 | 78936 | 7.4180 |
| 0.7254 | 25.0 | 82225 | 7.7753 |
| 0.6598 | 26.0 | 85514 | 7.8643 |
| 0.5723 | 27.0 | 88803 | 8.1798 |
| 0.5337 | 28.0 | 92092 | 8.3053 |
| 0.4643 | 29.0 | 95381 | 8.8597 |
| 0.4241 | 30.0 | 98670 | 8.9849 |
| 0.3763 | 31.0 | 101959 | 8.8406 |
| 0.3479 | 32.0 | 105248 | 9.1517 |
| 0.3271 | 33.0 | 108537 | 9.3659 |
| 0.2911 | 34.0 | 111826 | 9.4813 |
| 0.2836 | 35.0 | 115115 | 9.5746 |
| 0.2528 | 36.0 | 118404 | 9.7027 |
| 0.2345 | 37.0 | 121693 | 9.7515 |
| 0.2184 | 38.0 | 124982 | 9.9729 |
| 0.2067 | 39.0 | 128271 | 10.0828 |
| 0.2077 | 40.0 | 131560 | 10.0878 |
| 0.1876 | 41.0 | 134849 | 10.2974 |
| 0.1719 | 42.0 | 138138 | 10.2712 |
| 0.1637 | 43.0 | 141427 | 10.5788 |
| 0.1482 | 44.0 | 144716 | 10.7465 |
| 0.1509 | 45.0 | 148005 | 10.4603 |
| 0.1358 | 46.0 | 151294 | 10.7665 |
| 0.1316 | 47.0 | 154583 | 10.7724 |
| 0.1223 | 48.0 | 157872 | 11.1766 |
| 0.1205 | 49.0 | 161161 | 11.1870 |
| 0.1203 | 50.0 | 164450 | 11.1053 |
| 0.1081 | 51.0 | 167739 | 10.9696 |
| 0.103 | 52.0 | 171028 | 11.2010 |
| 0.0938 | 53.0 | 174317 | 11.6728 |
| 0.0924 | 54.0 | 177606 | 11.1423 |
| 0.0922 | 55.0 | 180895 | 11.7409 |
| 0.0827 | 56.0 | 184184 | 11.7850 |
| 0.0829 | 57.0 | 187473 | 11.8956 |
| 0.073 | 58.0 | 190762 | 11.8915 |
| 0.0788 | 59.0 | 194051 | 12.1617 |
| 0.0734 | 60.0 | 197340 | 12.2007 |
| 0.0729 | 61.0 | 200629 | 12.2388 |
| 0.0663 | 62.0 | 203918 | 12.2471 |
| 0.0662 | 63.0 | 207207 | 12.5830 |
| 0.064 | 64.0 | 210496 | 12.6105 |
| 0.0599 | 65.0 | 213785 | 12.3712 |
| 0.0604 | 66.0 | 217074 | 12.9249 |
| 0.0574 | 67.0 | 220363 | 12.7309 |
| 0.0538 | 68.0 | 223652 | 12.8068 |
| 0.0526 | 69.0 | 226941 | 13.4368 |
| 0.0471 | 70.0 | 230230 | 13.5148 |
| 0.0436 | 71.0 | 233519 | 13.3391 |
| 0.0448 | 72.0 | 236808 | 13.4100 |
| 0.0428 | 73.0 | 240097 | 13.5617 |
| 0.0401 | 74.0 | 243386 | 13.8674 |
| 0.035 | 75.0 | 246675 | 13.5746 |
| 0.0342 | 76.0 | 249964 | 13.5042 |
| 0.0344 | 77.0 | 253253 | 14.2085 |
| 0.0365 | 78.0 | 256542 | 13.6393 |
| 0.0306 | 79.0 | 259831 | 13.9807 |
| 0.0311 | 80.0 | 263120 | 13.9768 |
| 0.0353 | 81.0 | 266409 | 14.5245 |
| 0.0299 | 82.0 | 269698 | 13.9471 |
| 0.0263 | 83.0 | 272987 | 13.7899 |
| 0.0254 | 84.0 | 276276 | 14.3786 |
| 0.0267 | 85.0 | 279565 | 14.5611 |
| 0.022 | 86.0 | 282854 | 14.2658 |
| 0.0198 | 87.0 | 286143 | 14.9215 |
| 0.0193 | 88.0 | 289432 | 14.5650 |
| 0.0228 | 89.0 | 292721 | 14.7014 |
| 0.0184 | 90.0 | 296010 | 14.6946 |
| 0.0182 | 91.0 | 299299 | 14.6614 |
| 0.0188 | 92.0 | 302588 | 14.6915 |
| 0.0196 | 93.0 | 305877 | 14.7262 |
| 0.0138 | 94.0 | 309166 | 14.7625 |
| 0.0201 | 95.0 | 312455 | 15.0442 |
| 0.0189 | 96.0 | 315744 | 14.8832 |
| 0.0148 | 97.0 | 319033 | 14.8995 |
| 0.0129 | 98.0 | 322322 | 14.8974 |
| 0.0132 | 99.0 | 325611 | 14.9813 |
| 0.0139 | 100.0 | 328900 | 14.9594 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu102
- Datasets 2.2.2
- Tokenizers 0.12.1
|
eslamxm/AraT5-base-title-generation-finetune-ar-xlsum
|
eslamxm
| 2022-06-19T05:23:32Z | 28 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"summarization",
"Arat5-base",
"abstractive summarization",
"ar",
"xlsum",
"generated_from_trainer",
"dataset:xlsum",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-06-18T19:19:57Z |
---
tags:
- summarization
- Arat5-base
- abstractive summarization
- ar
- xlsum
- generated_from_trainer
datasets:
- xlsum
model-index:
- name: AraT5-base-title-generation-finetune-ar-xlsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# AraT5-base-title-generation-finetune-ar-xlsum
This model is a fine-tuned version of [UBC-NLP/AraT5-base-title-generation](https://huggingface.co/UBC-NLP/AraT5-base-title-generation) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 4.2837
- Rouge-1: 32.46
- Rouge-2: 15.15
- Rouge-l: 28.38
- Gen Len: 18.48
- Bertscore: 74.24
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 10
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
| 5.815 | 1.0 | 293 | 4.7437 | 27.05 | 10.49 | 23.56 | 18.03 | 72.56 |
| 5.0818 | 2.0 | 586 | 4.5004 | 28.92 | 11.97 | 25.09 | 18.61 | 73.08 |
| 4.7855 | 3.0 | 879 | 4.3910 | 29.66 | 12.57 | 25.79 | 18.58 | 73.3 |
| 4.588 | 4.0 | 1172 | 4.3469 | 30.22 | 13.05 | 26.36 | 18.59 | 73.61 |
| 4.4388 | 5.0 | 1465 | 4.3226 | 30.88 | 13.81 | 27.01 | 18.65 | 73.78 |
| 4.3162 | 6.0 | 1758 | 4.2990 | 30.9 | 13.6 | 26.92 | 18.68 | 73.78 |
| 4.2178 | 7.0 | 2051 | 4.2869 | 31.35 | 14.01 | 27.41 | 18.57 | 73.96 |
| 4.1387 | 8.0 | 2344 | 4.2794 | 31.28 | 13.98 | 27.34 | 18.6 | 73.87 |
| 4.0787 | 9.0 | 2637 | 4.2806 | 31.45 | 14.17 | 27.46 | 18.66 | 73.97 |
| 4.0371 | 10.0 | 2930 | 4.2837 | 31.55 | 14.19 | 27.52 | 18.65 | 74.0 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
Klinsc/q-FrozenLake-v1-4x4-noSlippery
|
Klinsc
| 2022-06-19T04:46:57Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-19T04:43:46Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Klinsc/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
Tstarshak/q-FrozenLake-v1-4x4-noSlippery
|
Tstarshak
| 2022-06-19T04:15:20Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-19T04:15:13Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Tstarshak/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
huggingtweets/shxtou
|
huggingtweets
| 2022-06-19T03:58:13Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-19T03:56:41Z |
---
language: en
thumbnail: http://www.huggingtweets.com/shxtou/1655611088443/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1419320614205198350/gHkqH6YI_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Shoto 🗡️</div>
<div style="text-align: center; font-size: 14px;">@shxtou</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Shoto 🗡️.
| Data | Shoto 🗡️ |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 617 |
| Short tweets | 533 |
| Tweets kept | 2098 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2mdmjop6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @shxtou's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pdig81x) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pdig81x/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/shxtou')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/mysta_rias
|
huggingtweets
| 2022-06-19T03:40:55Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-19T03:05:09Z |
---
language: en
thumbnail: http://www.huggingtweets.com/mysta_rias/1655610050415/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1533221230102433792/Dz_O5gZ7_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Mysta Rias 🕵️♂️🦊 NIJISANJI EN</div>
<div style="text-align: center; font-size: 14px;">@mysta_rias</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Mysta Rias 🕵️♂️🦊 NIJISANJI EN.
| Data | Mysta Rias 🕵️♂️🦊 NIJISANJI EN |
| --- | --- |
| Tweets downloaded | 3245 |
| Retweets | 296 |
| Short tweets | 1005 |
| Tweets kept | 1944 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3r8af65s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mysta_rias's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zqhadryd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zqhadryd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/mysta_rias')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
nicolasfeyer/t5-small-finetuned-la-to-en
|
nicolasfeyer
| 2022-06-19T02:21:23Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-18T23:08:33Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-small-finetuned-la-to-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-la-to-en
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2297
- Bleu: 5.8915
- Gen Len: 16.2252
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 3.0883 | 1.0 | 4384 | 2.7499 | 2.8172 | 16.4068 |
| 2.8854 | 2.0 | 8768 | 2.5664 | 3.8141 | 16.4581 |
| 2.746 | 3.0 | 13152 | 2.4524 | 4.3903 | 16.3977 |
| 2.6617 | 4.0 | 17536 | 2.3761 | 4.7858 | 16.3473 |
| 2.6185 | 5.0 | 21920 | 2.3205 | 5.2502 | 16.3161 |
| 2.573 | 6.0 | 26304 | 2.2763 | 5.4374 | 16.2916 |
| 2.5285 | 7.0 | 30688 | 2.2489 | 5.628 | 16.2875 |
| 2.4944 | 8.0 | 35072 | 2.2276 | 5.7201 | 16.291 |
| 2.4749 | 9.0 | 39456 | 2.2164 | 5.8387 | 16.2795 |
| 2.4741 | 10.0 | 43840 | 2.2129 | 5.8654 | 16.2789 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
raedinkhaled/swin-tiny-patch4-window7-224-finetuned-mri
|
raedinkhaled
| 2022-06-19T00:13:22Z | 80 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-18T16:25:22Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-mri
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9806603773584905
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-mri
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0608
- Accuracy: 0.9807
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0592 | 1.0 | 447 | 0.0823 | 0.9695 |
| 0.0196 | 2.0 | 894 | 0.0761 | 0.9739 |
| 0.0058 | 3.0 | 1341 | 0.0608 | 0.9807 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
kjunelee/pegasus-samsum
|
kjunelee
| 2022-06-18T22:35:27Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"pegasus",
"text2text-generation",
"generated_from_trainer",
"dataset:samsum",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-18T08:01:44Z |
---
tags:
- generated_from_trainer
datasets:
- samsum
model-index:
- name: pegasus-samsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pegasus-samsum
This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.3.dev0
- Tokenizers 0.12.1
|
biu-nlp/superpal
|
biu-nlp
| 2022-06-18T22:15:17Z | 54 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"arxiv:2009.00590",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
widget:
- text: "Prime Minister Hun Sen insisted that talks take place in Cambodia. </s><s> Cambodian leader Hun Sen rejected opposition parties' demands for talks outside the country."
---
# SuperPAL model
Summary-Source Proposition-level Alignment: Task, Datasets and Supervised Baseline
Ori Ernst, Ori Shapira, Ramakanth Pasunuru, Michael Lepioshkin, Jacob Goldberger, Mohit Bansal, Ido Dagan, 2021. [PDF](https://arxiv.org/pdf/2009.00590)
**How to use?**
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("biu-nlp/superpal")
model = AutoModelForSequenceClassification.from_pretrained("biu-nlp/superpal")
```
The original repo is [here](https://github.com/oriern/SuperPAL).
If you find our work useful, please cite the paper as:
```python
@inproceedings{ernst-etal-2021-summary,
title = "Summary-Source Proposition-level Alignment: Task, Datasets and Supervised Baseline",
author = "Ernst, Ori and Shapira, Ori and Pasunuru, Ramakanth and Lepioshkin, Michael and Goldberger, Jacob and Bansal, Mohit and Dagan, Ido",
booktitle = "Proceedings of the 25th Conference on Computational Natural Language Learning",
month = nov,
year = "2021",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.conll-1.25",
pages = "310--322"
}
```
|
BeardedJohn/bert-finetuned-seq-classification-fake-news
|
BeardedJohn
| 2022-06-18T21:03:42Z | 4 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-17T16:58:33Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: BeardedJohn/bert-finetuned-seq-classification-fake-news
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# BeardedJohn/bert-finetuned-seq-classification-fake-news
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0719
- Validation Loss: 0.0214
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 332, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.0719 | 0.0214 | 0 |
### Framework versions
- Transformers 4.20.0
- TensorFlow 2.8.2
- Datasets 2.3.2
- Tokenizers 0.12.1
|
zakria/Project_NLP
|
zakria
| 2022-06-18T20:44:06Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-06-18T18:43:39Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: Project_NLP
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Project_NLP
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5324
- Wer: 0.3355
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.5697 | 1.0 | 500 | 2.1035 | 0.9979 |
| 0.8932 | 2.01 | 1000 | 0.5649 | 0.5621 |
| 0.4363 | 3.01 | 1500 | 0.4326 | 0.4612 |
| 0.3035 | 4.02 | 2000 | 0.4120 | 0.4191 |
| 0.2343 | 5.02 | 2500 | 0.4199 | 0.3985 |
| 0.1921 | 6.02 | 3000 | 0.4380 | 0.4043 |
| 0.1549 | 7.03 | 3500 | 0.4456 | 0.3925 |
| 0.1385 | 8.03 | 4000 | 0.4264 | 0.3871 |
| 0.1217 | 9.04 | 4500 | 0.4744 | 0.3774 |
| 0.1041 | 10.04 | 5000 | 0.4498 | 0.3745 |
| 0.0968 | 11.04 | 5500 | 0.4716 | 0.3628 |
| 0.0893 | 12.05 | 6000 | 0.4680 | 0.3764 |
| 0.078 | 13.05 | 6500 | 0.5100 | 0.3623 |
| 0.0704 | 14.06 | 7000 | 0.4893 | 0.3552 |
| 0.0659 | 15.06 | 7500 | 0.4956 | 0.3565 |
| 0.0578 | 16.06 | 8000 | 0.5450 | 0.3595 |
| 0.0563 | 17.07 | 8500 | 0.4891 | 0.3614 |
| 0.0557 | 18.07 | 9000 | 0.5307 | 0.3548 |
| 0.0447 | 19.08 | 9500 | 0.4923 | 0.3493 |
| 0.0456 | 20.08 | 10000 | 0.5156 | 0.3479 |
| 0.0407 | 21.08 | 10500 | 0.4979 | 0.3389 |
| 0.0354 | 22.09 | 11000 | 0.5549 | 0.3462 |
| 0.0322 | 23.09 | 11500 | 0.5601 | 0.3439 |
| 0.0342 | 24.1 | 12000 | 0.5131 | 0.3451 |
| 0.0276 | 25.1 | 12500 | 0.5206 | 0.3392 |
| 0.0245 | 26.1 | 13000 | 0.5337 | 0.3373 |
| 0.0226 | 27.11 | 13500 | 0.5311 | 0.3353 |
| 0.0229 | 28.11 | 14000 | 0.5375 | 0.3373 |
| 0.0225 | 29.12 | 14500 | 0.5324 | 0.3355 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
|
nutjung/dqn-SpaceInvadersNoFrameskip-v4
|
nutjung
| 2022-06-18T20:39:23Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-18T20:38:40Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: 610.00 +/- 170.21
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nutjung -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga nutjung
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', True),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
huggingtweets/svelounsegreto
|
huggingtweets
| 2022-06-18T18:31:10Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-18T18:29:46Z |
---
language: en
thumbnail: http://www.huggingtweets.com/svelounsegreto/1655577065862/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1532495934944432147/fnWmG59I_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">TiSveloUnSegreto</div>
<div style="text-align: center; font-size: 14px;">@svelounsegreto</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from TiSveloUnSegreto.
| Data | TiSveloUnSegreto |
| --- | --- |
| Tweets downloaded | 233 |
| Retweets | 0 |
| Short tweets | 0 |
| Tweets kept | 233 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2dufvfue/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @svelounsegreto's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16tsvbvd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16tsvbvd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/svelounsegreto')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
theojolliffe/bart-cnn-science-v3-e2-v4-e2-manual
|
theojolliffe
| 2022-06-18T18:01:15Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-18T17:39:12Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-cnn-science-v3-e2-v4-e2-manual
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-cnn-science-v3-e2-v4-e2-manual
This model is a fine-tuned version of [theojolliffe/bart-cnn-science-v3-e2](https://huggingface.co/theojolliffe/bart-cnn-science-v3-e2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9189
- Rouge1: 55.982
- Rouge2: 36.9147
- Rougel: 39.1563
- Rougelsum: 53.5959
- Gen Len: 142.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 42 | 0.9365 | 53.4332 | 34.0477 | 36.9735 | 51.1918 | 142.0 |
| No log | 2.0 | 84 | 0.9189 | 55.982 | 36.9147 | 39.1563 | 53.5959 | 142.0 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
vai6hav/wav2vec2-large-xls-r-300m-hindi-epochs15-colab
|
vai6hav
| 2022-06-18T17:42:12Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-06-18T16:56:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-hindi-epochs15-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-hindi-epochs15-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5705
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 20.2764 | 5.53 | 50 | 8.1197 | 1.0 |
| 5.2964 | 11.11 | 100 | 3.5705 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
|
theojolliffe/bart-cnn-science-v3-e1-v4-e6-manual
|
theojolliffe
| 2022-06-18T17:37:36Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-18T17:14:13Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-cnn-science-v3-e1-v4-e6-manual
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-cnn-science-v3-e1-v4-e6-manual
This model is a fine-tuned version of [theojolliffe/bart-cnn-science-v3-e1](https://huggingface.co/theojolliffe/bart-cnn-science-v3-e1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4513
- Rouge1: 51.4471
- Rouge2: 31.5595
- Rougel: 31.7717
- Rougelsum: 49.4999
- Gen Len: 142.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 42 | 1.0691 | 51.1883 | 31.2479 | 33.7004 | 48.9571 | 142.0 |
| No log | 2.0 | 84 | 1.0883 | 51.7634 | 29.8573 | 30.7155 | 49.3378 | 142.0 |
| No log | 3.0 | 126 | 1.2355 | 52.9606 | 31.3539 | 33.5131 | 49.9275 | 142.0 |
| No log | 4.0 | 168 | 1.3430 | 52.2108 | 32.7896 | 34.65 | 50.4271 | 139.1 |
| No log | 5.0 | 210 | 1.3963 | 51.5335 | 30.4157 | 31.5759 | 49.6904 | 142.0 |
| No log | 6.0 | 252 | 1.4513 | 51.4471 | 31.5595 | 31.7717 | 49.4999 | 142.0 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
theojolliffe/bart-cnn-science-v3-e1-v4-e4-manual
|
theojolliffe
| 2022-06-18T17:13:00Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-18T16:46:47Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-cnn-science-v3-e1-v4-e4-manual
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-cnn-science-v3-e1-v4-e4-manual
This model is a fine-tuned version of [theojolliffe/bart-cnn-science-v3-e1](https://huggingface.co/theojolliffe/bart-cnn-science-v3-e1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2615
- Rouge1: 53.36
- Rouge2: 32.0237
- Rougel: 33.2835
- Rougelsum: 50.7455
- Gen Len: 142.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 42 | 1.0675 | 51.743 | 31.3774 | 34.1939 | 48.7234 | 142.0 |
| No log | 2.0 | 84 | 1.0669 | 49.4166 | 28.1438 | 30.188 | 46.0289 | 142.0 |
| No log | 3.0 | 126 | 1.1799 | 52.6909 | 31.0174 | 35.441 | 50.0351 | 142.0 |
| No log | 4.0 | 168 | 1.2615 | 53.36 | 32.0237 | 33.2835 | 50.7455 | 142.0 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
harryb0905/dqn-MountainCar-v0-1-million
|
harryb0905
| 2022-06-18T16:57:28Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"MountainCar-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-18T16:57:05Z |
---
library_name: stable-baselines3
tags:
- MountainCar-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: -200.00 +/- 0.00
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: MountainCar-v0
type: MountainCar-v0
---
# **DQN** Agent playing **MountainCar-v0**
This is a trained model of a **DQN** agent playing **MountainCar-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
theojolliffe/bart-cnn-science-v3-e2-v4-e4-manual
|
theojolliffe
| 2022-06-18T16:45:26Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-18T14:55:43Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-cnn-science-v3-e2-v4-e4-manual
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-cnn-science-v3-e2-v4-e4-manual
This model is a fine-tuned version of [theojolliffe/bart-cnn-science-v3-e2](https://huggingface.co/theojolliffe/bart-cnn-science-v3-e2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1223
- Rouge1: 50.8519
- Rouge2: 30.3314
- Rougel: 31.5149
- Rougelsum: 48.4389
- Gen Len: 142.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 42 | 0.9420 | 53.5234 | 33.6131 | 35.8383 | 51.1499 | 142.0 |
| No log | 2.0 | 84 | 0.9439 | 52.388 | 32.1451 | 35.2339 | 49.6554 | 142.0 |
| No log | 3.0 | 126 | 1.0321 | 56.2765 | 37.671 | 39.2693 | 53.5596 | 142.0 |
| No log | 4.0 | 168 | 1.1223 | 50.8519 | 30.3314 | 31.5149 | 48.4389 | 142.0 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
Ambiwlans/PPO-1m-SpaceInvadersNoFrameskip-v4
|
Ambiwlans
| 2022-06-18T15:58:34Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-18T15:57:59Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 273.00 +/- 82.29
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
---
# **PPO** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **PPO** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo ppo --env SpaceInvadersNoFrameskip-v4 -orga Ambiwlans -f logs/
python enjoy.py --algo ppo --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo ppo --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo ppo --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Ambiwlans
```
## Hyperparameters
```python
OrderedDict([('batch_size', 256),
('clip_range', 'lin_0.1'),
('ent_coef', 0.01),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('frame_stack', 4),
('learning_rate', 'lin_2.5e-4'),
('n_envs', 8),
('n_epochs', 4),
('n_steps', 128),
('n_timesteps', 1000000.0),
('policy', 'CnnPolicy'),
('vf_coef', 0.5),
('normalize', False)])
```
|
anibahug/mt5-small-finetuned-amazon-en-de
|
anibahug
| 2022-06-18T15:39:26Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mt5",
"text2text-generation",
"summarization",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-06-18T14:20:45Z |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-de
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-de
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [Amazon reviews multi](https://huggingface.co/datasets/amazon_reviews_multi) dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2896
- Rouge1: 14.7163
- Rouge2: 6.6341
- Rougel: 14.2052
- Rougelsum: 14.2318
## Model description
the model can summarize texts for english and deutsch
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
the training was done on google colab ( using it's free GPU)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 7.2925 | 1.0 | 1276 | 3.5751 | 13.6254 | 6.0527 | 13.109 | 13.1438 |
| 4.0677 | 2.0 | 2552 | 3.4031 | 13.5907 | 6.068 | 13.3526 | 13.2471 |
| 3.7458 | 3.0 | 3828 | 3.3434 | 14.7229 | 6.8482 | 14.1443 | 14.2218 |
| 3.5831 | 4.0 | 5104 | 3.3353 | 14.8696 | 6.6371 | 14.1342 | 14.2907 |
| 3.4841 | 5.0 | 6380 | 3.3037 | 14.233 | 6.2318 | 13.9218 | 13.9781 |
| 3.4142 | 6.0 | 7656 | 3.2914 | 13.7344 | 5.9446 | 13.5476 | 13.6362 |
| 3.3587 | 7.0 | 8932 | 3.2959 | 14.2007 | 6.1905 | 13.5255 | 13.5237 |
| 3.3448 | 8.0 | 10208 | 3.2896 | 14.7163 | 6.6341 | 14.2052 | 14.2318 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
anibahug/marian-finetuned-kde4-en-to-ar
|
anibahug
| 2022-06-18T15:19:04Z | 6 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-06-17T14:21:35Z |
---
license: apache-2.0
tags:
- translation
- generated_from_trainer
datasets:
- kde4
model-index:
- name: marian-finetuned-kde4-en-to-ar
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-ar
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the kde4 dataset.
## Model description
if you want to learn about the model used check [Helsinki-NLP Model](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar)
## Intended uses & limitations
## Training and evaluation data
More information needed
## Training procedure
the training was done on google colab.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
nutjung/q-Taxi-v3
|
nutjung
| 2022-06-18T14:55:53Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-18T14:38:07Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
---
# **Q-Learning** Agent playing **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="nutjung/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
S2312dal/M6_cross
|
S2312dal
| 2022-06-18T14:10:31Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-17T19:41:29Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- spearmanr
model-index:
- name: M6_cross
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# M6_cross
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0084
- Pearson: 0.9811
- Spearmanr: 0.9075
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 25
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 6.0
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|
| 0.0059 | 1.0 | 105 | 0.0158 | 0.9633 | 0.9054 |
| 0.001 | 2.0 | 210 | 0.0102 | 0.9770 | 0.9103 |
| 0.0008 | 3.0 | 315 | 0.0083 | 0.9805 | 0.9052 |
| 0.0011 | 4.0 | 420 | 0.0075 | 0.9812 | 0.9082 |
| 0.0017 | 5.0 | 525 | 0.0084 | 0.9811 | 0.9075 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
KoichiYasuoka/deberta-base-japanese-unidic
|
KoichiYasuoka
| 2022-06-18T14:02:31Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"deberta-v2",
"fill-mask",
"japanese",
"masked-lm",
"ja",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-08T08:05:32Z |
---
language:
- "ja"
tags:
- "japanese"
- "masked-lm"
license: "cc-by-sa-4.0"
pipeline_tag: "fill-mask"
mask_token: "[MASK]"
widget:
- text: "日本に着いたら[MASK]を訪ねなさい。"
---
# deberta-base-japanese-unidic
## Model Description
This is a DeBERTa(V2) model pre-trained on 青空文庫 texts with BertJapaneseTokenizer. You can fine-tune `deberta-base-japanese-unidic` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/deberta-base-japanese-unidic-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/deberta-base-japanese-unidic-ud-head), and so on.
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForMaskedLM
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-japanese-unidic")
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/deberta-base-japanese-unidic")
```
[fugashi](https://pypi.org/project/fugashi) and [unidic-lite](https://pypi.org/project/unidic-lite) are required.
|
tuni/xlm-roberta-large-xnli-finetuned-mnli-SJP-v2
|
tuni
| 2022-06-18T13:48:56Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:swiss_judgment_prediction",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-18T11:53:32Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- swiss_judgment_prediction
metrics:
- accuracy
model-index:
- name: xlm-roberta-large-xnli-finetuned-mnli-SJP-v2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: swiss_judgment_prediction
type: swiss_judgment_prediction
args: all_languages
metrics:
- name: Accuracy
type: accuracy
value: 0.5954285714285714
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-large-xnli-finetuned-mnli-SJP-v2
This model is a fine-tuned version of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) on the swiss_judgment_prediction dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8093
- Accuracy: 0.5954
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 5 | 0.8879 | 0.5191 |
| No log | 2.0 | 10 | 0.8093 | 0.5954 |
| No log | 3.0 | 15 | 2.4452 | 0.3176 |
| No log | 4.0 | 20 | 3.6636 | 0.3084 |
| No log | 5.0 | 25 | 3.7687 | 0.3393 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
eslamxm/mbart-finetuned-fa
|
eslamxm
| 2022-06-18T13:40:54Z | 14 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"summarization",
"fa",
"Abstractive Summarization",
"generated_from_trainer",
"dataset:pn_summary",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-06-17T00:40:11Z |
---
tags:
- summarization
- fa
- mbart
- Abstractive Summarization
- generated_from_trainer
datasets:
- pn_summary
model-index:
- name: mbart-finetuned-fa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-fa
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the pn_summary dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2877
- Rouge-1: 44.07
- Rouge-2: 25.81
- Rouge-l: 38.96
- Gen Len: 41.7
- Bertscore: 78.95
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 5
- label_smoothing_factor: 0.1
### Training results
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
Muennighoff/SGPT-2.7B-weightedmean-nli-bitfit
|
Muennighoff
| 2022-06-18T13:11:04Z | 7 | 1 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"gpt_neo",
"feature-extraction",
"sentence-similarity",
"arxiv:2202.08904",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:04Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# SGPT-2.7B-weightedmean-nli-bitfit
## Usage
For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt
## Evaluation Results
For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904
## Training
The model was trained with the parameters:
**DataLoader**:
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 70456 with parameters:
```
{'batch_size': 8}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 7045,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 0.0002
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 7046,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel
(1): Pooling({'word_embedding_dimension': 2560, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
)
```
## Citing & Authors
```bibtex
@article{muennighoff2022sgpt,
title={SGPT: GPT Sentence Embeddings for Semantic Search},
author={Muennighoff, Niklas},
journal={arXiv preprint arXiv:2202.08904},
year={2022}
}
```
|
Muennighoff/SGPT-1.3B-weightedmean-nli-bitfit
|
Muennighoff
| 2022-06-18T13:04:47Z | 387 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"gpt_neo",
"feature-extraction",
"sentence-similarity",
"arxiv:2202.08904",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:04Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# SGPT-1.3B-weightedmean-nli-bitfit
## Usage
For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt
## Evaluation Results
For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904
## Training
The model was trained with the parameters:
**DataLoader**:
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 93941 with parameters:
```
{'batch_size': 6}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 9394,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 0.0001
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 9395,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel
(1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
)
```
## Citing & Authors
```bibtex
@article{muennighoff2022sgpt,
title={SGPT: GPT Sentence Embeddings for Semantic Search},
author={Muennighoff, Niklas},
journal={arXiv preprint arXiv:2202.08904},
year={2022}
}
```
|
huggingtweets/joejoinerr
|
huggingtweets
| 2022-06-18T12:02:03Z | 243 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-03T12:31:27Z |
---
language: en
thumbnail: http://www.huggingtweets.com/joejoinerr/1655553718810/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1477268531561517057/MhgifvbO_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Joe 🍞</div>
<div style="text-align: center; font-size: 14px;">@joejoinerr</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Joe 🍞.
| Data | Joe 🍞 |
| --- | --- |
| Tweets downloaded | 3176 |
| Retweets | 611 |
| Short tweets | 281 |
| Tweets kept | 2284 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3f3589ez/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @joejoinerr's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/35u823qi) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/35u823qi/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/joejoinerr')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
nestoralvaro/mt5-small-test-amazon
|
nestoralvaro
| 2022-06-18T11:51:27Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mt5",
"text2text-generation",
"summarization",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-06-18T11:05:22Z |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-test-amazon
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-test-amazon
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9515
- Rouge1: 30.3066
- Rouge2: 3.3019
- Rougel: 30.1887
- Rougelsum: 30.0314
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 10.0147 | 1.0 | 1004 | 2.9904 | 7.3703 | 0.2358 | 7.3703 | 7.4292 |
| 3.4892 | 2.0 | 2008 | 2.4061 | 23.4178 | 2.4764 | 23.2901 | 23.3097 |
| 2.724 | 3.0 | 3012 | 2.1630 | 26.6706 | 2.8302 | 26.6509 | 26.5723 |
| 2.4395 | 4.0 | 4016 | 2.0815 | 26.7296 | 2.9481 | 26.6313 | 26.533 |
| 2.2881 | 5.0 | 5020 | 2.0048 | 30.1887 | 3.3019 | 30.0708 | 29.9135 |
| 2.1946 | 6.0 | 6024 | 1.9712 | 29.4811 | 2.9481 | 29.4025 | 29.3042 |
| 2.1458 | 7.0 | 7028 | 1.9545 | 29.8153 | 3.3019 | 29.717 | 29.5204 |
| 2.1069 | 8.0 | 8032 | 1.9515 | 30.3066 | 3.3019 | 30.1887 | 30.0314 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
Willy/bert-base-spanish-wwm-cased-finetuned-NLP-IE-2
|
Willy
| 2022-06-18T10:07:25Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-18T05:31:54Z |
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-spanish-wwm-cased-finetuned-NLP-IE-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-spanish-wwm-cased-finetuned-NLP-IE-2
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5279
- Accuracy: 0.7836
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6008 | 1.0 | 9 | 0.5243 | 0.7836 |
| 0.6014 | 2.0 | 18 | 0.5279 | 0.7836 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
c17hawke/bert-fine-tuned-cola_2
|
c17hawke
| 2022-06-18T09:40:26Z | 6 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-18T09:20:05Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: bert-fine-tuned-cola_2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# bert-fine-tuned-cola_2
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3078
- Validation Loss: 0.4072
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.4976 | 0.4236 | 0 |
| 0.3078 | 0.4072 | 1 |
### Framework versions
- Transformers 4.20.0
- TensorFlow 2.8.2
- Datasets 2.3.2
- Tokenizers 0.12.1
|
S2312dal/M4_MLM_cross
|
S2312dal
| 2022-06-18T08:48:02Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-18T08:13:26Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- spearmanr
model-index:
- name: M4_MLM_cross
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# M4_MLM_cross
This model is a fine-tuned version of [S2312dal/M4_MLM](https://huggingface.co/S2312dal/M4_MLM) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0222
- Pearson: 0.9472
- Spearmanr: 0.8983
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 25
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 8.0
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|
| 0.0353 | 1.0 | 131 | 0.0590 | 0.8326 | 0.8225 |
| 0.0478 | 2.0 | 262 | 0.0368 | 0.9234 | 0.8894 |
| 0.0256 | 3.0 | 393 | 0.0222 | 0.9472 | 0.8983 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
janeel/muppet-roberta-base-finetuned-squad
|
janeel
| 2022-06-18T07:57:35Z | 15 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad_v2",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-06-18T04:37:07Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: muppet-roberta-base-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# muppet-roberta-base-finetuned-squad
This model is a fine-tuned version of [facebook/muppet-roberta-base](https://huggingface.co/facebook/muppet-roberta-base) on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9017
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.7007 | 1.0 | 8239 | 0.7905 |
| 0.4719 | 2.0 | 16478 | 0.9017 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
ouiame/bert2gpt2frenchSumm
|
ouiame
| 2022-06-18T06:31:16Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"encoder-decoder",
"text2text-generation",
"autotrain",
"unk",
"dataset:ouiame/autotrain-data-orangesum",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-17T23:10:00Z |
---
tags: autotrain
language: unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- ouiame/autotrain-data-orangesum
co2_eq_emissions: 999.838587232387
---
# Model Trained Using AutoTrain
- Problem type: Summarization
- Model ID: 1000833138
- CO2 Emissions (in grams): 999.838587232387
## Validation Metrics
- Loss: 2.4244203567504883
- Rouge1: 25.7023
- Rouge2: 8.5872
- RougeL: 18.6776
- RougeLsum: 19.821
- Gen Len: 39.732
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ouiame/autotrain-orangesum-1000833138
```
|
HHHHHHHHHHHHHHHHHHHHHHHHH/Fart
|
HHHHHHHHHHHHHHHHHHHHHHHHH
| 2022-06-18T00:49:05Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-06-18T00:48:25Z |
license: afl-3.0
it makes fart noise
|
kornosk/polibertweet-political-twitter-roberta-mlm
|
kornosk
| 2022-06-17T23:45:14Z | 496 | 2 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"fill-mask",
"twitter",
"masked-token-prediction",
"bertweet",
"election2020",
"politics",
"en",
"license:gpl-3.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-05-02T22:20:16Z |
---
language: "en"
tags:
- twitter
- masked-token-prediction
- bertweet
- election2020
- politics
license: "gpl-3.0"
---
# Pre-trained BERT on Twitter US Political Election 2020
Pre-trained weights for PoliBERTweet: A Pre-trained Language Model for Analyzing Political Content on Twitter, LREC 2022.
Please see the [official repository](https://github.com/GU-DataLab/PoliBERTweet) for more detail.
We use the initialized weights from [BERTweet](https://huggingface.co/vinai/bertweet-base) or `vinai/bertweet-base`.
# Training Data
This model is pre-trained on over 83 million English tweets about the 2020 US Presidential Election.
# Training Objective
This model is initialized with BERTweet and trained with an MLM objective.
# Usage
This pre-trained language model **can be fine-tunned to any downstream task (e.g. classification)**.
```python
from transformers import AutoModel, AutoTokenizer, pipeline
import torch
# choose GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# select mode path here
pretrained_LM_path = "kornosk/polibertweet-mlm"
# load model
tokenizer = AutoTokenizer.from_pretrained(pretrained_LM_path)
model = AutoModel.from_pretrained(pretrained_LM_path)
# fill mask
example = "Trump is the <mask> of USA"
fill_mask = pipeline('fill-mask', model=pretrained_LM_path, tokenizer=tokenizer)
outputs = fill_mask(example)
print(outputs)
# see embeddings
inputs = tokenizer(example, return_tensors="pt")
outputs = model(**inputs)
print(outputs)
# OR you can use this model to train on your downstream task!
# please consider citing our paper if you feel this is useful :)
```
# Reference
- [PoliBERTweet: A Pre-trained Language Model for Analyzing Political Content on Twitter](XXX), LREC 2022.
# Citation
```bibtex
@inproceedings{kawintiranon2022polibertweet,
title = {PoliBERTweet: A Pre-trained Language Model for Analyzing Political Content on Twitter},
author = {Kawintiranon, Kornraphop and Singh, Lisa},
booktitle = {Proceedings of the Language Resources and Evaluation Conference},
year = {2022},
publisher = {European Language Resources Association}
}
```
|
gemasphi/laprador_f
|
gemasphi
| 2022-06-17T21:11:03Z | 1 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-06-17T21:10:48Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# gemasphi/laprador_f
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('gemasphi/laprador_f')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('gemasphi/laprador_f')
model = AutoModel.from_pretrained('gemasphi/laprador_f')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=gemasphi/laprador_f)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
Mahmoud1816Yasser/tmp_trainer
|
Mahmoud1816Yasser
| 2022-06-17T21:10:28Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"audio-classification",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2022-06-17T21:05:23Z |
---
tags:
- generated_from_trainer
model-index:
- name: tmp_trainer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tmp_trainer
This model was trained from scratch on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|
huggingtweets/itsamedevdev
|
huggingtweets
| 2022-06-17T20:01:28Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-17T20:01:21Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1502217816421941249/jOIqVIE2_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">ItAMeDevDev</div>
<div style="text-align: center; font-size: 14px;">@itsamedevdev</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ItAMeDevDev.
| Data | ItAMeDevDev |
| --- | --- |
| Tweets downloaded | 2842 |
| Retweets | 1052 |
| Short tweets | 474 |
| Tweets kept | 1316 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/lr4yyk0f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @itsamedevdev's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2advtlvo) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2advtlvo/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/itsamedevdev')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/pdchina
|
huggingtweets
| 2022-06-17T18:03:08Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-17T18:01:23Z |
---
language: en
thumbnail: http://www.huggingtweets.com/pdchina/1655488982839/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1246469365089939456/jAjE_fKB_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">People's Daily, China</div>
<div style="text-align: center; font-size: 14px;">@pdchina</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from People's Daily, China.
| Data | People's Daily, China |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 20 |
| Short tweets | 2 |
| Tweets kept | 3228 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3b8is5jg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pdchina's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3rg0kmkg) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3rg0kmkg/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/pdchina')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
eslamxm/MBart-finetuned-ur-xlsum
|
eslamxm
| 2022-06-17T14:59:58Z | 30 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"summarization",
"ur",
"seq2seq",
"Abstractive Summarization",
"generated_from_trainer",
"dataset:xlsum",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-06-16T23:41:23Z |
---
tags:
- summarization
- ur
- seq2seq
- mbart
- Abstractive Summarization
- generated_from_trainer
datasets:
- xlsum
model-index:
- name: MBart-finetuned-ur-xlsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MBart-finetuned-ur-xlsum
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2663
- Rouge-1: 40.6
- Rouge-2: 18.9
- Rouge-l: 34.39
- Gen Len: 37.88
- Bertscore: 77.06
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 5
- label_smoothing_factor: 0.1
### Training results
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
wiselinjayajos/finetuned-bert-mrpc
|
wiselinjayajos
| 2022-06-17T14:58:18Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-17T12:08:42Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: finetuned-bert-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8455882352941176
- name: F1
type: f1
value: 0.8908145580589255
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-bert-mrpc
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4755
- Accuracy: 0.8456
- F1: 0.8908
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
Trained on my local laptop and the training time took 3 hours.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5331 | 1.0 | 230 | 0.3837 | 0.8505 | 0.8943 |
| 0.3023 | 2.0 | 460 | 0.3934 | 0.8505 | 0.8954 |
| 0.1472 | 3.0 | 690 | 0.4755 | 0.8456 | 0.8908 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
efederici/convnext-base-224-22k-1k-orig-cats-vs-dogs
|
efederici
| 2022-06-17T14:11:20Z | 56 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"convnext",
"image-classification",
"vision",
"dataset:cats_vs_dogs",
"arxiv:2201.03545",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-17T09:33:45Z |
---
license: apache-2.0
tags:
- image-classification
- vision
datasets:
- cats_vs_dogs
metrics:
- accuracy
model-index:
- name: convnext-base-224-22k-1k-orig-cats-vs-dogs
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: cats_vs_dogs
type: cats_vs_dogs
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9973333333333333
---
# convnext-base-224-22k-1k-orig-cats-vs-dogs
This model is a fine-tuned version of [facebook/convnext-base-224-22k-1k](https://huggingface.co/facebook/convnext-base-224-22k-1k) on the cats_vs_dogs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0103
- Accuracy: 0.9973
<p align="center">
<img src="https://files.ocula.com/anzax/09/09f77133-7740-4130-a567-84fb56736362_650_544.jpg" width="600"> </br>
Jockum Nordström, Cat Dog Cat, 2016
</p>
## Model description
The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually "modernize" a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2201-03545,
author = {Zhuang Liu and
Hanzi Mao and
Chao{-}Yuan Wu and
Christoph Feichtenhofer and
Trevor Darrell and
Saining Xie},
title = {A ConvNet for the 2020s},
journal = {CoRR},
volume = {abs/2201.03545},
year = {2022},
url = {https://arxiv.org/abs/2201.03545},
eprinttype = {arXiv},
eprint = {2201.03545},
timestamp = {Thu, 20 Jan 2022 14:21:35 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
backnotprop/informative-drawings-image-to-opensketch-onnx
|
backnotprop
| 2022-06-17T14:08:31Z | 0 | 0 | null |
[
"onnx",
"license:mit",
"region:us"
] | null | 2022-06-17T14:07:35Z |
---
license: mit
---
All credit to this repo: https://huggingface.co/spaces/carolineec/informativedrawings
|
huggingtweets/aiww-bbcworld-elonmusk
|
huggingtweets
| 2022-06-17T14:04:23Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-17T14:04:15Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1529107170448523264/q3VwEx38_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2972716369/e27a35486a2ec507063cb19c89e3ce82_400x400.jpeg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & BBC News (World) & 艾未未 Ai Weiwei</div>
<div style="text-align: center; font-size: 14px;">@aiww-bbcworld-elonmusk</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Elon Musk & BBC News (World) & 艾未未 Ai Weiwei.
| Data | Elon Musk | BBC News (World) | 艾未未 Ai Weiwei |
| --- | --- | --- | --- |
| Tweets downloaded | 3200 | 3250 | 3243 |
| Retweets | 145 | 240 | 680 |
| Short tweets | 966 | 0 | 2116 |
| Tweets kept | 2089 | 3010 | 447 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xg6gwun/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aiww-bbcworld-elonmusk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3f692l8n) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3f692l8n/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/aiww-bbcworld-elonmusk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
classla/bcms-bertic-parlasent-bcs-bi
|
classla
| 2022-06-17T13:51:54Z | 11 | 0 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"text-classification",
"sentiment-analysis",
"hr",
"arxiv:2206.00929",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-01T09:10:17Z |
---
language: "hr"
tags:
- text-classification
- sentiment-analysis
widget:
- text: "Poštovani potpredsjedničke Vlade i ministre hrvatskih branitelja, mislite li da ste zapravo iznevjerili svoje suborce s kojima ste 555 dana prosvjedovali u šatoru protiv tadašnjih dužnosnika jer ste zapravo donijeli zakon koji je neprovediv, a birali ste si suradnike koji nemaju etički integritet."
---
# bcms-bertic-parlasent-bcs-bi
Binary text classification model based on [`classla/bcms-bertic`](https://huggingface.co/classla/bcms-bertic) and fine-tuned on the BCS Political Sentiment dataset (sentence-level data).
This classifier classifies text into only two categories: Negative vs. Other. For the ternary classifier (Negative, Neutral, Positive) check [this model](https://huggingface.co/classla/bcms-bertic-parlasent-bcs-ter).
For details on the dataset and the finetuning procedure, please see [this paper](https://arxiv.org/abs/2206.00929).
## Fine-tuning hyperparameters
Fine-tuning was performed with `simpletransformers`. Beforehand a brief sweep for the optimal number of epochs was performed and the presumed best value was 9. Other arguments were kept default.
```python
model_args = {
"num_train_epochs": 9
}
```
## Performance in comparison with ternary classifier
| model | average macro F1 |
|-------------------------------------------|------------------|
| bcms-bertic-parlasent-bcs-ter | 0.7941 ± 0.0101 |
| bcms-bertic-parlasent-bcs-bi (this model) | 0.8999 ± 0.012 |
## Use example with `simpletransformers==0.63.7`
```python
from simpletransformers.classification import ClassificationModel
model = ClassificationModel("electra", "classla/bcms-bertic-parlasent-bcs-bi")
predictions, logits = model.predict([
"Đački autobusi moraju da voze svaki dan",
"Vi niste normalni"
]
)
predictions
# Output: array([1, 0])
[model.config.id2label[i] for i in predictions]
# Output: ['Other', 'Negative']
```
## Citation
If you use the model, please cite the following paper on which the original model is based:
```
@inproceedings{ljubesic-lauc-2021-bertic,
title = "{BERT}i{\'c} - The Transformer Language Model for {B}osnian, {C}roatian, {M}ontenegrin and {S}erbian",
author = "Ljube{\v{s}}i{\'c}, Nikola and Lauc, Davor",
booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
month = apr,
year = "2021",
address = "Kiyv, Ukraine",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.bsnlp-1.5",
pages = "37--42",
}
```
and the paper describing the dataset and methods for the current finetuning:
```
@misc{https://doi.org/10.48550/arxiv.2206.00929,
doi = {10.48550/ARXIV.2206.00929},
url = {https://arxiv.org/abs/2206.00929},
author = {Mochtak, Michal and Rupnik, Peter and Ljubešič, Nikola},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {The ParlaSent-BCS dataset of sentiment-annotated parliamentary debates from Bosnia-Herzegovina, Croatia, and Serbia},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution Share Alike 4.0 International}
}
```
|
frollo/word2vec-for-crime-categorization
|
frollo
| 2022-06-17T13:49:03Z | 0 | 1 | null |
[
"license:cc0-1.0",
"region:us"
] | null | 2022-06-17T13:45:21Z |
---
license: cc0-1.0
---
Word2Vec model obtained by training the model of [1] on a dataset of 17,500 Italian news articles related to crime events
[1] Di Gennaro G., Buonanno A., Di Girolamo A., Ospedale A., Palmieri F.A.N., Fedele G. (2021) An Analysis of Word2Vec for the Italian Language. In: Esposito A., Faundez-Zanuy M., Morabito F., Pasero E. (eds) Progresses in Artificial Intelligence and Neural Systems. Smart Innovation, Systems and Technologies, vol 184. Springer, Singapore. https://doi.org/10.1007/978-981-15-5093-5_13
**If the dataset is useful, please consider citing paper using the BibTex entry below.**
```
@inproceedings{bonisoli2021fedcsis,
author = {Giovanni Bonisoli and
Federica Rollo and
Laura Po},
editor = {Maria Ganzha and
Leszek A. Maciaszek and
Marcin Paprzycki and
Dominik Slezak},
title = {Using Word Embeddings for Italian Crime News Categorization},
booktitle = {Proceedings of the 16th Conference on Computer Science and Intelligence Systems, Online, September 2-5, 2021},
pages = {461--470},
year = {2021},
url = {https://doi.org/10.15439/2021F118},
doi = {10.15439/2021F118}
}
```
|
joitandr/dqn-SpaceInvadersNoFrameskip-v4
|
joitandr
| 2022-06-17T12:56:51Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-17T12:56:12Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: 597.50 +/- 100.68
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga joitandr -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga joitandr
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', True),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
Guillaume63/q-Taxi-v3
|
Guillaume63
| 2022-06-17T12:24:35Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-17T12:24:27Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
---
# **Q-Learning** Agent playing **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Guillaume63/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
mosesju/distilbert-base-uncased-finetuned-news
|
mosesju
| 2022-06-17T12:14:46Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:ag_news",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-14T20:16:59Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- ag_news
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-news
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: ag_news
type: ag_news
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9388157894736842
- name: F1
type: f1
value: 0.9388275184627893
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-news
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ag_news dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2117
- Accuracy: 0.9388
- F1: 0.9388
## Model description
This model is intended to categorize news headlines into one of four categories; World, Sports, Science & Technology, or Business
## Intended uses & limitations
The model is limited by the training data it used. If you use the model with a news story that falls outside of the four intended categories, it produces quite confused results.
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.2949 | 1.0 | 3750 | 0.2501 | 0.9262 | 0.9261 |
| 0.1569 | 2.0 | 7500 | 0.2117 | 0.9388 | 0.9388 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
huggingtweets/techreview
|
huggingtweets
| 2022-06-17T09:38:07Z | 3 | 1 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-17T09:28:26Z |
---
language: en
thumbnail: http://www.huggingtweets.com/techreview/1655458683048/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1072880528712495106/ahuQUlOb_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">MIT Technology Review</div>
<div style="text-align: center; font-size: 14px;">@techreview</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from MIT Technology Review.
| Data | MIT Technology Review |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 293 |
| Short tweets | 1 |
| Tweets kept | 2956 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1zbwqwsb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @techreview's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bzg3pev) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bzg3pev/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/techreview')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
rajendra-ml/q-Taxi-v3
|
rajendra-ml
| 2022-06-17T09:22:13Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-17T09:22:03Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
---
# **Q-Learning** Agent playing **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="rajendra-ml/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
huggingtweets/iantdr
|
huggingtweets
| 2022-06-17T09:09:33Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-17T09:09:26Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1365703183/YT_Croydon_Flyer_twitter_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">ian anderson</div>
<div style="text-align: center; font-size: 14px;">@iantdr</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ian anderson.
| Data | ian anderson |
| --- | --- |
| Tweets downloaded | 3201 |
| Retweets | 2052 |
| Short tweets | 316 |
| Tweets kept | 833 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bopfm9o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iantdr's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1papgk0r) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1papgk0r/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/iantdr')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
S2312dal/M8_MLM
|
S2312dal
| 2022-06-17T08:55:06Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"albert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-17T08:52:59Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: M8_MLM
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# M8_MLM
This model is a fine-tuned version of [sentence-transformers/paraphrase-albert-small-v2](https://huggingface.co/sentence-transformers/paraphrase-albert-small-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 8.9140
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 9.5021 | 1.0 | 25 | 9.1463 |
| 9.0507 | 2.0 | 50 | 8.9504 |
| 8.9528 | 3.0 | 75 | 8.9148 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
S2312dal/M7_MLM
|
S2312dal
| 2022-06-17T08:49:00Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-17T08:40:50Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: M7_MLM
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# M7_MLM
This model is a fine-tuned version of [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 8.2304
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 9.2227 | 1.0 | 25 | 8.6091 |
| 8.6536 | 2.0 | 50 | 8.2492 |
| 8.5065 | 3.0 | 75 | 8.3056 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
S2312dal/M5_MLM
|
S2312dal
| 2022-06-17T08:25:48Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"deberta-v2",
"fill-mask",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-17T08:02:01Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: M5_MLM
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# M5_MLM
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 7.0447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 9.8279 | 1.0 | 62 | 7.9889 |
| 7.7536 | 2.0 | 124 | 7.3750 |
| 7.2065 | 3.0 | 186 | 6.8625 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
ArthurZ/tiny-random-bert-sharded
|
ArthurZ
| 2022-06-17T08:07:42Z | 5,243 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"feature-extraction",
"generated_from_keras_callback",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-06-17T07:49:01Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: tiny-random-bert-sharded
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# tiny-random-bert-sharded
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.21.0.dev0
- TensorFlow 2.9.0
- Datasets 2.2.2
- Tokenizers 0.12.1
|
marcomameli01/segformer-b0-finetuned-segments-gear2
|
marcomameli01
| 2022-06-17T08:03:25Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"segformer",
"vision",
"gear-segmentation",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-06-17T07:37:58Z |
---
license: apache-2.0
tags:
- vision
- gear-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-gear2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-gear2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the marcomameli01/gear dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1268
- Mean Iou: 0.1254
- Mean Accuracy: 0.2509
- Overall Accuracy: 0.2509
- Per Category Iou: [0.0, 0.2508641975308642]
- Per Category Accuracy: [nan, 0.2508641975308642]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------:|:--------------------------:|
| 0.4614 | 5.0 | 20 | 0.4427 | 0.0741 | 0.1481 | 0.1481 | [0.0, 0.14814814814814814] | [nan, 0.14814814814814814] |
| 0.3327 | 10.0 | 40 | 0.2933 | 0.1726 | 0.3453 | 0.3453 | [0.0, 0.34528395061728395] | [nan, 0.34528395061728395] |
| 0.2305 | 15.0 | 60 | 0.2244 | 0.0382 | 0.0763 | 0.0763 | [0.0, 0.07634567901234568] | [nan, 0.07634567901234568] |
| 0.2011 | 20.0 | 80 | 0.2130 | 0.0374 | 0.0748 | 0.0748 | [0.0, 0.07476543209876543] | [nan, 0.07476543209876543] |
| 0.1846 | 25.0 | 100 | 0.1672 | 0.1037 | 0.2073 | 0.2073 | [0.0, 0.20730864197530866] | [nan, 0.20730864197530866] |
| 0.1622 | 30.0 | 120 | 0.1532 | 0.0805 | 0.1611 | 0.1611 | [0.0, 0.1610864197530864] | [nan, 0.1610864197530864] |
| 0.139 | 35.0 | 140 | 0.1396 | 0.0971 | 0.1942 | 0.1942 | [0.0, 0.19417283950617284] | [nan, 0.19417283950617284] |
| 0.1342 | 40.0 | 160 | 0.1283 | 0.0748 | 0.1496 | 0.1496 | [0.0, 0.14962962962962964] | [nan, 0.14962962962962964] |
| 0.128 | 45.0 | 180 | 0.1224 | 0.1128 | 0.2256 | 0.2256 | [0.0, 0.22558024691358025] | [nan, 0.22558024691358025] |
| 0.1243 | 50.0 | 200 | 0.1268 | 0.1254 | 0.2509 | 0.2509 | [0.0, 0.2508641975308642] | [nan, 0.2508641975308642] |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53
|
gary109
| 2022-06-17T07:30:08Z | 3 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"gary109/AI_Light_Dance",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-06-15T08:57:00Z |
---
license: apache-2.0
tags:
- automatic-speech-recognition
- gary109/AI_Light_Dance
- generated_from_trainer
model-index:
- name: ai-light-dance_singing_ft_wav2vec2-large-xlsr-53
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ai-light-dance_singing_ft_wav2vec2-large-xlsr-53
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4327
- Wer: 0.2043
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.4089 | 1.0 | 552 | 1.4750 | 0.9054 |
| 0.7995 | 2.0 | 1104 | 0.9044 | 0.6163 |
| 0.6232 | 3.0 | 1656 | 0.6645 | 0.3980 |
| 0.5351 | 4.0 | 2208 | 0.5674 | 0.3120 |
| 0.472 | 5.0 | 2760 | 0.5167 | 0.2579 |
| 0.3913 | 6.0 | 3312 | 0.4553 | 0.2335 |
| 0.3306 | 7.0 | 3864 | 0.4476 | 0.2114 |
| 0.3028 | 8.0 | 4416 | 0.4327 | 0.2043 |
| 0.317 | 9.0 | 4968 | 0.4355 | 0.2033 |
| 0.2494 | 10.0 | 5520 | 0.4405 | 0.2022 |
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.1.dev0
- Tokenizers 0.12.1
|
gary109/wikitext_roberta-base
|
gary109
| 2022-06-17T06:44:42Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"dataset:wikitext",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-17T03:50:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- wikitext
metrics:
- accuracy
model-index:
- name: wikitext_roberta-base
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: wikitext wikitext-2-raw-v1
type: wikitext
args: wikitext-2-raw-v1
metrics:
- name: Accuracy
type: accuracy
value: 0.7371052344006119
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wikitext_roberta-base
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the wikitext wikitext-2-raw-v1 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2143
- Accuracy: 0.7371
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.4175 | 0.99 | 37 | 1.3355 | 0.7194 |
| 1.438 | 1.99 | 74 | 1.2953 | 0.7249 |
| 1.4363 | 2.99 | 111 | 1.2759 | 0.7276 |
| 1.3391 | 3.99 | 148 | 1.2904 | 0.7252 |
| 1.3741 | 4.99 | 185 | 1.2621 | 0.7290 |
| 1.2771 | 5.99 | 222 | 1.2312 | 0.7353 |
| 1.287 | 6.99 | 259 | 1.2542 | 0.7289 |
| 1.29 | 7.99 | 296 | 1.2290 | 0.7345 |
| 1.2948 | 8.99 | 333 | 1.2537 | 0.7286 |
| 1.2741 | 9.99 | 370 | 1.2199 | 0.7354 |
| 1.2342 | 10.99 | 407 | 1.2520 | 0.7309 |
| 1.2199 | 11.99 | 444 | 1.2738 | 0.7260 |
| 1.206 | 12.99 | 481 | 1.2286 | 0.7335 |
| 1.221 | 13.99 | 518 | 1.2421 | 0.7327 |
| 1.2062 | 14.99 | 555 | 1.2402 | 0.7328 |
| 1.2305 | 15.99 | 592 | 1.2473 | 0.7308 |
| 1.2426 | 16.99 | 629 | 1.2250 | 0.7318 |
| 1.2096 | 17.99 | 666 | 1.2186 | 0.7353 |
| 1.1961 | 18.99 | 703 | 1.2214 | 0.7361 |
| 1.2136 | 19.99 | 740 | 1.2506 | 0.7311 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.3.dev0
- Tokenizers 0.12.1
|
Sanjeev49/marian-finetuned-kde4-en-to-fr
|
Sanjeev49
| 2022-06-17T06:31:10Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"marian",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-15T12:07:09Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Sanjeev49/marian-finetuned-kde4-en-to-fr
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Sanjeev49/marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.0601
- Validation Loss: 0.8952
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 5912, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.0601 | 0.8952 | 0 |
### Framework versions
- Transformers 4.20.0
- TensorFlow 2.8.2
- Datasets 2.3.2
- Tokenizers 0.12.1
|
anithapappu/wav2vec2-base-timit-google-colab
|
anithapappu
| 2022-06-17T03:05:35Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-05-23T19:00:34Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-google-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-google-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5506
- Wer: 0.3355
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.4326 | 1.0 | 500 | 1.5832 | 1.0063 |
| 0.8235 | 2.01 | 1000 | 0.5310 | 0.5134 |
| 0.4224 | 3.01 | 1500 | 0.4488 | 0.4461 |
| 0.2978 | 4.02 | 2000 | 0.4243 | 0.4191 |
| 0.232 | 5.02 | 2500 | 0.4532 | 0.4149 |
| 0.1902 | 6.02 | 3000 | 0.4732 | 0.3912 |
| 0.1628 | 7.03 | 3500 | 0.4807 | 0.3868 |
| 0.1437 | 8.03 | 4000 | 0.5295 | 0.3670 |
| 0.1241 | 9.04 | 4500 | 0.4602 | 0.3810 |
| 0.1206 | 10.04 | 5000 | 0.4691 | 0.3783 |
| 0.0984 | 11.04 | 5500 | 0.4500 | 0.3710 |
| 0.0929 | 12.05 | 6000 | 0.5247 | 0.3550 |
| 0.0914 | 13.05 | 6500 | 0.5546 | 0.3821 |
| 0.0742 | 14.06 | 7000 | 0.4874 | 0.3646 |
| 0.0729 | 15.06 | 7500 | 0.5327 | 0.3934 |
| 0.0663 | 16.06 | 8000 | 0.5769 | 0.3661 |
| 0.0575 | 17.07 | 8500 | 0.5191 | 0.3524 |
| 0.0588 | 18.07 | 9000 | 0.5155 | 0.3360 |
| 0.0456 | 19.08 | 9500 | 0.5135 | 0.3539 |
| 0.0444 | 20.08 | 10000 | 0.5380 | 0.3603 |
| 0.0419 | 21.08 | 10500 | 0.5275 | 0.3467 |
| 0.0366 | 22.09 | 11000 | 0.5072 | 0.3487 |
| 0.0331 | 23.09 | 11500 | 0.5450 | 0.3437 |
| 0.0345 | 24.1 | 12000 | 0.5138 | 0.3431 |
| 0.029 | 25.1 | 12500 | 0.5067 | 0.3413 |
| 0.0274 | 26.1 | 13000 | 0.5421 | 0.3422 |
| 0.0243 | 27.11 | 13500 | 0.5456 | 0.3392 |
| 0.0226 | 28.11 | 14000 | 0.5665 | 0.3368 |
| 0.0216 | 29.12 | 14500 | 0.5506 | 0.3355 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 1.13.3
- Tokenizers 0.12.1
|
sun1638650145/q-FrozenLake-v1-4x4-noSlippery
|
sun1638650145
| 2022-06-17T03:02:12Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-17T03:02:00Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
---
# 使用**Q-Learning**智能体来玩**FrozenLake-v1**
这是一个使用**Q-Learning**训练有素的模型玩**FrozenLake-v1**.
## 用法
```python
model = load_from_hub(repo_id='sun1638650145/q-FrozenLake-v1-4x4-noSlippery', filename='q-learning.pkl')
# 不要忘记检查是否需要添加额外的参数(例如is_slippery=False)
env = gym.make(model['env_id'])
evaluate_agent(env, model['max_steps'], model['n_eval_episodes'], model['qtable'], model['eval_seed'])
```
|
ouiame/autotrain-Robertatogpt2-995132944
|
ouiame
| 2022-06-17T01:09:06Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"encoder-decoder",
"text2text-generation",
"autotrain",
"unk",
"dataset:ouiame/autotrain-data-Robertatogpt2",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-16T20:14:06Z |
---
tags: autotrain
language: unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- ouiame/autotrain-data-Robertatogpt2
co2_eq_emissions: 611.0958349328379
---
# Model Trained Using AutoTrain
- Problem type: Summarization
- Model ID: 995132944
- CO2 Emissions (in grams): 611.0958349328379
## Validation Metrics
- Loss: 3.8850467205047607
- Rouge1: 16.6344
- Rouge2: 2.9899
- RougeL: 13.5872
- RougeLsum: 13.9042
- Gen Len: 20.0
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ouiame/autotrain-Robertatogpt2-995132944
```
|
huggingtweets/tomcruise
|
huggingtweets
| 2022-06-17T01:00:02Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-17T00:59:56Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/603269306026106880/42CwEF4n_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Tom Cruise</div>
<div style="text-align: center; font-size: 14px;">@tomcruise</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Tom Cruise.
| Data | Tom Cruise |
| --- | --- |
| Tweets downloaded | 3036 |
| Retweets | 1055 |
| Short tweets | 88 |
| Tweets kept | 1893 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ppnkvd5o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tomcruise's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2q772s43) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2q772s43/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/tomcruise')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.