modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 18:33:19
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 18:33:14
card
stringlengths
11
1.01M
Michunie/Fast-Taxi-v3
Michunie
2022-12-16T20:30:23Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T20:30:08Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Fast-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Michunie/Fast-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Bilatzea/test
Bilatzea
2022-12-16T20:27:38Z
0
0
null
[ "region:us" ]
null
2022-12-16T20:24:16Z
---#!pip install diffusers transformers scipy torch from diffusers import StableDiffusionPipeline import torch model_id = "nitrosocke/spider-verse-diffusion" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a magical princess with golden hair, spiderverse style" image = pipe(prompt).images[0] image.save("./magical_princess.png") license: openrail ---
numan966/q-FrozenLake-v1-4x4-noSlippery
numan966
2022-12-16T20:19:37Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T20:10:40Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="numan966/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Michunie/q-FrozenLake-v1-4x4-noSlippery
Michunie
2022-12-16T20:16:58Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T20:16:51Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Michunie/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nmb-paperspace-hf/bert-base-cased-wikitext2-test-mlm
nmb-paperspace-hf
2022-12-16T19:19:33Z
5
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-16T19:01:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-wikitext2-test-mlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2-test-mlm This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - total_eval_batch_size: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1
admarcosai/sd-class-butterflies-32
admarcosai
2022-12-16T18:56:48Z
10
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-16T18:55:41Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('dmarcos/sd-class-butterflies-32') image = pipeline().images[0] image ```
nmb-paperspace-hf/gpt2-wikitext2
nmb-paperspace-hf
2022-12-16T18:56:03Z
3
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-16T18:35:53Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.0977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - total_eval_batch_size: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1
Vedmani/Transfer_Learning
Vedmani
2022-12-16T18:36:46Z
0
1
tf-keras
[ "tf-keras", "region:us" ]
null
2022-12-09T04:00:52Z
# Fine Tuned models for wear particle classification
tzvc/3647bbc5-4fbe-4a94-95ec-5aec23a04e73
tzvc
2022-12-16T18:36:12Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-16T18:18:25Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sd-tzvc --- ### training params ```json { "pretrained_model_name_or_path": "multimodalart/sd-fine-tunable", "instance_data_dir": "./3647bbc5-4fbe-4a94-95ec-5aec23a04e73/instance_data", "class_data_dir": "./class_data/person", "output_dir": "./3647bbc5-4fbe-4a94-95ec-5aec23a04e73/", "train_text_encoder": true, "with_prior_preservation": false, "prior_loss_weight": 1.0, "instance_prompt": "sd-tzvc", "class_prompt": "person", "resolution": 512, "train_batch_size": 1, "gradient_accumulation_steps": 1, "gradient_checkpointing": true, "use_8bit_adam": true, "learning_rate": 2e-06, "lr_scheduler": "polynomial", "lr_warmup_steps": 0, "num_class_images": 500, "max_train_steps": 1050, "mixed_precision": "fp16" } ```
sheldon-spock/ppo-LunarLander-v2
sheldon-spock
2022-12-16T18:31:01Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T18:30:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 241.24 +/- 23.45 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
zyoscovits/q-Taxi-v3
zyoscovits
2022-12-16T18:10:58Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T18:10:54Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="zyoscovits/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
SebLih/whisper-SV3
SebLih
2022-12-16T18:10:15Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "sv", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-16T14:53:03Z
--- language: - sv license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: Whisper Small SV results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small SV This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3516 - Wer: 23.0598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3274 | 0.86 | 200 | 0.3552 | 24.7469 | | 0.1395 | 1.72 | 400 | 0.3303 | 23.5038 | | 0.074 | 2.59 | 600 | 0.3349 | 22.6603 | | 0.0199 | 3.45 | 800 | 0.3451 | 22.7935 | | 0.0089 | 4.31 | 1000 | 0.3516 | 23.0598 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
farsipal/whisper-lg-el-intlv-xs
farsipal
2022-12-16T17:42:59Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "whisper-large", "mozilla-foundation/common_voice_11_0", "greek", "whisper-event", "generated_from_trainer", "el", "dataset:mozilla-foundation/common_voice_11_0", "dataset:google/fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-15T22:04:20Z
--- language: - el license: apache-2.0 tags: - hf-asr-leaderboard - whisper-large - mozilla-foundation/common_voice_11_0 - greek - whisper-event - generated_from_trainer - whisper-event datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: whisper-lg-el-intlv-xs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: el split: test metrics: - name: Wer type: wer value: 9.8997 --- # whisper-lg-el-intlv-xs This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0,google/fleurs el,el_gr dataset. It achieves the following results on the evaluation set: - Loss: 0.2913 - Wer: 9.8997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0311 | 2.49 | 1000 | 0.1809 | 10.5498 | | 0.0074 | 4.98 | 2000 | 0.2470 | 10.2805 | | 0.0019 | 7.46 | 3000 | 0.3008 | 10.0297 | | 0.0011 | 9.95 | 4000 | 0.2913 | 9.8997 | | 0.0009 | 12.44 | 5000 | 0.3092 | 10.1876 | | 0.0005 | 14.93 | 6000 | 0.3495 | 10.1969 | | 0.0002 | 17.41 | 7000 | 0.3659 | 10.2526 | | 0.0001 | 19.9 | 8000 | 0.3846 | 10.2619 | | 0.0001 | 22.39 | 9000 | 0.3941 | 10.2897 | | 0.0001 | 24.88 | 10000 | 0.3990 | 10.3269 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
zyoscovits/Taxi-v3
zyoscovits
2022-12-16T17:37:47Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T17:37:39Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.46 +/- 2.85 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="zyoscovits/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
peterj/test-model
peterj
2022-12-16T17:37:44Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-16T17:37:43Z
--- license: creativeml-openrail-m ---
zyoscovits/q-FrozenLake-v1-4x4-noSlippery
zyoscovits
2022-12-16T17:35:55Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T17:35:51Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="zyoscovits/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Shunian/mbti-classification-roberta-base-aug
Shunian
2022-12-16T17:19:38Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-16T09:40:01Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: mbti-classification-roberta-base-aug results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbti-classification-roberta-base-aug This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1645 - Accuracy: 0.2834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.1201 | 1.0 | 29900 | 2.1415 | 0.2833 | | 1.8733 | 2.0 | 59800 | 2.1235 | 0.2866 | | 1.7664 | 3.0 | 89700 | 2.1645 | 0.2834 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu102 - Datasets 2.7.1 - Tokenizers 0.13.2
HayLahav/Taxi-v3
HayLahav
2022-12-16T17:18:00Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T17:15:29Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="HayLahav/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
teZoartss/tezz
teZoartss
2022-12-16T17:07:49Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-16T17:05:15Z
--- license: creativeml-openrail-m ---
sartajbhuvaji/DeepReinforcementLearningCourse
sartajbhuvaji
2022-12-16T17:06:32Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T16:30:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.37 +/- 20.86 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vwxyzjn/CartPole-v1-dqn_jax-seed1
vwxyzjn
2022-12-16T16:37:05Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T16:31:47Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 36.50 +/- 11.32 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **CartPole-v1** This is a trained model of a DQN agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_jax.py). ## Command to reproduce the training ```bash curl -OL https://huggingface.co/vwxyzjn/CartPole-v1-dqn_jax-seed1/raw/main/dqn.py curl -OL https://huggingface.co/vwxyzjn/CartPole-v1-dqn_jax-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/vwxyzjn/CartPole-v1-dqn_jax-seed1/raw/main/poetry.lock poetry install --all-extras python dqn_jax.py --save-model --upload-model --hf-entity vwxyzjn --total-timesteps 1000 ``` # Hyperparameters ```python {'batch_size': 128, 'buffer_size': 10000, 'capture_video': False, 'end_e': 0.05, 'env_id': 'CartPole-v1', 'exp_name': 'dqn_jax', 'exploration_fraction': 0.5, 'gamma': 0.99, 'hf_entity': 'vwxyzjn', 'learning_rate': 0.00025, 'learning_starts': 10000, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 500, 'total_timesteps': 1000, 'track': False, 'train_frequency': 10, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
eduyio/q-FrozenLake-v1-4X4-Slippery
eduyio
2022-12-16T16:17:49Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T16:17:42Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4X4-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.56 +/- 0.50 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="eduyio/q-FrozenLake-v1-4X4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
eduyio/q-FrozenLake-v1-8x8-noSlippery
eduyio
2022-12-16T15:55:03Z
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T15:54:55Z
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="eduyio/q-FrozenLake-v1-8x8-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
SiraH/bert-finetuned-squad
SiraH
2022-12-16T15:50:29Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
question-answering
2022-09-01T10:11:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 40.2443 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTc3Y2YyY2Y5ZTMxMGQ3M2U3YThmMjFiM2JlOWQ4MjE0YzZmMmM3NzY4ZDcxYzY4ZTAwNTU4MGE3YmQxOTJhNiIsInZlcnNpb24iOjF9.tk2uBvygzQsexdkxKvFBgKGY8lPNzEG7Pqi-6fL688LTiCMACFFSrZUhyv5b31orF7_CbJkHFjKuMHmX0V_UCA - type: f1 value: 44.135 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmE1NWFlYzQ3YTZiMmY3ZDgyYWRlNzI5M2IwYzZkOWUwMDE2NGU4M2RjODBiNjEzY2YxNTVlZmE5OWNmNDU2NiIsInZlcnNpb24iOjF9.pgr2rkyQe-QdwVXuw-uBXheKFz0EhDiyO0doLMmcOi51t_slDPldk29YRXQKvpsfy3YpH_t-xaXQLs1n8VcjDQ - task: type: question-answering name: Question Answering dataset: name: subjqa type: subjqa config: grocery split: train metrics: - type: exact_match value: 5.625 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDMyMDQ1OWFkY2IwYTcxNTljYTZjYTM0ZThjOGEwZWJjYjBlZWQxYWE1ZjMwNDg5NGY5MTFiYmM4YWM0Y2Y2NCIsInZlcnNpb24iOjF9.4nwNKC2teDPVd5YqvjS8sV3q-ylC9fWO5lOiZVk8o3UNdKyAtl3qAH6dU7lGcHZrxasN7zNrxv5kD5nNWr9YBQ - type: f1 value: 15.8411 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWMzMTAzNTljNjFlM2E4NGIzNjRjNzRiZTIxZjBlNjkzZWM4NjcxMjUzOGZjZTgxMGUxODk4ZjFkZmJiMjg4ZiIsInZlcnNpb24iOjF9.agcp8QkYeHBvs2Qp0YmEMlvEx1_4a_dv_0cm26UbF-YgYU_7cR86ar-h1V56mrfcKUjNRRiK79GD0P9WT6mADw --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Jedalc/Taxi-v3
Jedalc
2022-12-16T15:37:00Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T15:36:44Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Jedalc/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kejian/fanatic-filtering
kejian
2022-12-16T15:36:43Z
2
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-12-16T03:55:40Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: fanatic-filtering results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fanatic-filtering This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'filter_threshold': 0.002361, 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'batch_size': 128, 'every_n_steps': 384, 'force_call_on': [12588], 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_hits_threshold': 0, 'num_samples': 2048}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_hits_threshold': 0, 'num_samples': 2048, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'every_n_steps': 384, 'force_call_on': [12588], 'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': 'cf05a2b0558c03b08c78f07662c22989785b9520'}, 'path_or_name': 'kejian/mighty-mle'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'fanatic-filtering', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 12588, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/3fal0u2p
DrishtiSharma/whisper-large-v2-malayalam
DrishtiSharma
2022-12-16T15:35:56Z
68
3
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "ml", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-16T14:32:18Z
--- language: - ml license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large V2 Malayalam - Drishti Sharma results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ml split: test args: ml metrics: - name: Wer type: wer value: 27.458492975734355 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large V2 Malayalam - Drishti Sharma This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3510 - Wer: 27.4585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0001 | 18.52 | 1000 | 0.3510 | 27.4585 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
nelsonsilva/q-FrozenLake-v1-4x4-noSlippery
nelsonsilva
2022-12-16T15:35:29Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T15:35:25Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="nelsonsilva/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jraramhoej/whisper-small-lt-sr-v2
jraramhoej
2022-12-16T15:25:57Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-15T09:33:56Z
--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Lithuanian and Serbian sequentially trained results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sr split: test args: sr metrics: - name: Wer type: wer value: 35.613112100364226 --- # Whisper Small Lithuanian and Serbian sequentially trained This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: ### Lithuanian - Wer: >100 ### Serbian - Wer: 35.6131 ## Training procedure It was first trained 2000 steps on Lithuanian and then 2000 steps on Serbian, continuing from the last checkpoint for Lithuanian. ### Training hyperparameters per fine-tune The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Nnarruqt/q-Taxi-F
Nnarruqt
2022-12-16T15:05:30Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T15:05:24Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-F results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Nnarruqt/q-Taxi-F", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
iblub/q-FrozenLake-v1-4x4-noSlippery
iblub
2022-12-16T15:01:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T15:00:59Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="iblub/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CreativeEvolution/q-Taxi-v3
CreativeEvolution
2022-12-16T14:58:34Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T14:58:26Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="CreativeEvolution/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
waynedsouza/phon4
waynedsouza
2022-12-16T14:48:31Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-16T08:50:47Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # waynedsouza/phon4 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('waynedsouza/phon4') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=waynedsouza/phon4) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6957 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
alexgeh196/sentiment_model
alexgeh196
2022-12-16T14:09:37Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-16T13:45:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: sentiment_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3852 - Accuracy: 0.8424 - F1: 0.8398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
sasha/autotrain-butterfly_similarity_swin-2490776951
sasha
2022-12-16T14:05:38Z
35
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:sasha/autotrain-data-butterfly_similarity_swin", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-12-16T13:45:05Z
--- tags: - autotrain - vision - image-classification datasets: - sasha/autotrain-data-butterfly_similarity_swin widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 28.296015693616066 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2490776951 - CO2 Emissions (in grams): 28.2960 ## Validation Metrics - Loss: 1.385 - Accuracy: 0.689 - Macro F1: 0.488 - Micro F1: 0.689 - Weighted F1: 0.641 - Macro Precision: 0.483 - Micro Precision: 0.689 - Weighted Precision: 0.628 - Macro Recall: 0.528 - Micro Recall: 0.689 - Weighted Recall: 0.689
sgangireddy/whisper-medium-cv-fi-hu
sgangireddy
2022-12-16T13:33:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-15T11:06:04Z
--- license: apache-2.0 tags: - whisper-event - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-medium results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3830 - Wer: 19.5173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.011 | 4.01 | 1000 | 0.3234 | 20.5978 | | 0.0011 | 8.03 | 2000 | 0.3650 | 19.4070 | | 0.0006 | 12.04 | 3000 | 0.3830 | 19.5173 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
HayLahav/q-FrozenLake-v1-4x4-noSlippery
HayLahav
2022-12-16T13:33:16Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T13:28:14Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="HayLahav/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
breadlicker45/yahoo-answers-test-model
breadlicker45
2022-12-16T13:20:45Z
1
0
transformers
[ "transformers", "pytorch", "en", "dataset:breadlicker45/autotrain-data-test2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
null
2022-12-16T13:16:44Z
--- language: - en widget: - text: "I love AutoTrain 🤗" datasets: - breadlicker45/autotrain-data-test2 co2_eq_emissions: emissions: 3.128325675589278 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 2496476946 - CO2 Emissions (in grams): 3.1283 ## Validation Metrics - Loss: 3.511 - Rouge1: 14.002 - Rouge2: 2.968 - RougeL: 11.022 - RougeLsum: 12.335 - Gen Len: 18.900 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/breadlicker45/autotrain-test2-2496476946 ```
huggingtweets/joaquimley
huggingtweets
2022-12-16T13:14:37Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-16T13:14:26Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1590732997199904769/wbH8x_Yi_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joaquim Ley</div> <div style="text-align: center; font-size: 14px;">@joaquimley</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Joaquim Ley. | Data | Joaquim Ley | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 291 | | Short tweets | 299 | | Tweets kept | 2655 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/x4n287sc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @joaquimley's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/c91g7z0m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/c91g7z0m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/joaquimley') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
zhiyil/roberta-base-finetuned-intent-ipu
zhiyil
2022-12-16T12:36:13Z
6
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "roberta", "text-classification", "generated_from_trainer", "dataset:snips_built_in_intents", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-16T11:23:10Z
--- license: mit tags: - generated_from_trainer datasets: - snips_built_in_intents metrics: - accuracy model-index: - name: roberta-base-finetuned-intent-ipu results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-intent-ipu This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the snips_built_in_intents dataset. It achieves the following results on the evaluation set: - Loss: 0.1503 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - total_eval_batch_size: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2478 | 1.0 | 75 | 0.6069 | 0.96 | | 0.2522 | 2.0 | 150 | 0.1503 | 1.0 | | 0.0903 | 3.0 | 225 | 0.0712 | 1.0 | | 0.0883 | 4.0 | 300 | 0.0350 | 1.0 | | 0.0491 | 5.0 | 375 | 0.0267 | 1.0 | | 0.0305 | 6.0 | 450 | 0.0218 | 1.0 | | 0.0461 | 7.0 | 525 | 0.0191 | 1.0 | | 0.039 | 8.0 | 600 | 0.0174 | 1.0 | | 0.0337 | 9.0 | 675 | 0.0166 | 1.0 | | 0.0164 | 10.0 | 750 | 0.0162 | 1.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.0
midhunem/ddpm-butterflies-128
midhunem
2022-12-16T12:27:18Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-12-16T10:32:08Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/midhunem/ddpm-butterflies-128/tensorboard?#scalars)
huggingtweets/livefromcccp_
huggingtweets
2022-12-16T11:53:46Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-16T11:51:44Z
--- language: en thumbnail: http://www.huggingtweets.com/livefromcccp_/1671191621584/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1394601554901147651/wDJ9ebEc_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">live from cccp</div> <div style="text-align: center; font-size: 14px;">@livefromcccp_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from live from cccp. | Data | live from cccp | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 83 | | Short tweets | 421 | | Tweets kept | 2735 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/skiu11yh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @livefromcccp_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3g686elr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3g686elr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/livefromcccp_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jakeyoo/whisper-medium-ja
jakeyoo
2022-12-16T11:32:27Z
9
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "ja", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-15T17:55:50Z
--- language: - ja license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Japanese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 ja type: mozilla-foundation/common_voice_11_0 config: ja split: test args: ja metrics: - name: Wer type: wer value: 62.6897432259895 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Japanese This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 ja dataset. It achieves the following results on the evaluation set: - Loss: 0.2165 - Wer: 62.6897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2264 | 0.2 | 1000 | 0.3102 | 79.3588 | | 0.3195 | 0.4 | 2000 | 0.2830 | 78.1955 | | 0.3905 | 0.6 | 3000 | 0.2508 | 72.9181 | | 0.2478 | 0.8 | 4000 | 0.2407 | 68.8466 | | 0.0922 | 1.1 | 5000 | 0.2165 | 62.6897 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
LucianoDeben/TaxiDriver
LucianoDeben
2022-12-16T11:28:06Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T09:24:59Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: TaxiDriver results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="LucianoDeben/TaxiDriver", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tomekkorbak/elegant_galileo
tomekkorbak
2022-12-16T11:14:40Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/pii-pile-chunk3-0-50000", "dataset:tomekkorbak/pii-pile-chunk3-50000-100000", "dataset:tomekkorbak/pii-pile-chunk3-100000-150000", "dataset:tomekkorbak/pii-pile-chunk3-150000-200000", "dataset:tomekkorbak/pii-pile-chunk3-200000-250000", "dataset:tomekkorbak/pii-pile-chunk3-250000-300000", "dataset:tomekkorbak/pii-pile-chunk3-300000-350000", "dataset:tomekkorbak/pii-pile-chunk3-350000-400000", "dataset:tomekkorbak/pii-pile-chunk3-400000-450000", "dataset:tomekkorbak/pii-pile-chunk3-450000-500000", "dataset:tomekkorbak/pii-pile-chunk3-500000-550000", "dataset:tomekkorbak/pii-pile-chunk3-550000-600000", "dataset:tomekkorbak/pii-pile-chunk3-600000-650000", "dataset:tomekkorbak/pii-pile-chunk3-650000-700000", "dataset:tomekkorbak/pii-pile-chunk3-700000-750000", "dataset:tomekkorbak/pii-pile-chunk3-750000-800000", "dataset:tomekkorbak/pii-pile-chunk3-800000-850000", "dataset:tomekkorbak/pii-pile-chunk3-850000-900000", "dataset:tomekkorbak/pii-pile-chunk3-900000-950000", "dataset:tomekkorbak/pii-pile-chunk3-950000-1000000", "dataset:tomekkorbak/pii-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/pii-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/pii-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/pii-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/pii-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/pii-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/pii-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/pii-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/pii-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/pii-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/pii-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/pii-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/pii-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/pii-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/pii-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/pii-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/pii-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/pii-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/pii-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-16T11:14:32Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/pii-pile-chunk3-0-50000 - tomekkorbak/pii-pile-chunk3-50000-100000 - tomekkorbak/pii-pile-chunk3-100000-150000 - tomekkorbak/pii-pile-chunk3-150000-200000 - tomekkorbak/pii-pile-chunk3-200000-250000 - tomekkorbak/pii-pile-chunk3-250000-300000 - tomekkorbak/pii-pile-chunk3-300000-350000 - tomekkorbak/pii-pile-chunk3-350000-400000 - tomekkorbak/pii-pile-chunk3-400000-450000 - tomekkorbak/pii-pile-chunk3-450000-500000 - tomekkorbak/pii-pile-chunk3-500000-550000 - tomekkorbak/pii-pile-chunk3-550000-600000 - tomekkorbak/pii-pile-chunk3-600000-650000 - tomekkorbak/pii-pile-chunk3-650000-700000 - tomekkorbak/pii-pile-chunk3-700000-750000 - tomekkorbak/pii-pile-chunk3-750000-800000 - tomekkorbak/pii-pile-chunk3-800000-850000 - tomekkorbak/pii-pile-chunk3-850000-900000 - tomekkorbak/pii-pile-chunk3-900000-950000 - tomekkorbak/pii-pile-chunk3-950000-1000000 - tomekkorbak/pii-pile-chunk3-1000000-1050000 - tomekkorbak/pii-pile-chunk3-1050000-1100000 - tomekkorbak/pii-pile-chunk3-1100000-1150000 - tomekkorbak/pii-pile-chunk3-1150000-1200000 - tomekkorbak/pii-pile-chunk3-1200000-1250000 - tomekkorbak/pii-pile-chunk3-1250000-1300000 - tomekkorbak/pii-pile-chunk3-1300000-1350000 - tomekkorbak/pii-pile-chunk3-1350000-1400000 - tomekkorbak/pii-pile-chunk3-1400000-1450000 - tomekkorbak/pii-pile-chunk3-1450000-1500000 - tomekkorbak/pii-pile-chunk3-1500000-1550000 - tomekkorbak/pii-pile-chunk3-1550000-1600000 - tomekkorbak/pii-pile-chunk3-1600000-1650000 - tomekkorbak/pii-pile-chunk3-1650000-1700000 - tomekkorbak/pii-pile-chunk3-1700000-1750000 - tomekkorbak/pii-pile-chunk3-1750000-1800000 - tomekkorbak/pii-pile-chunk3-1800000-1850000 - tomekkorbak/pii-pile-chunk3-1850000-1900000 - tomekkorbak/pii-pile-chunk3-1900000-1950000 model-index: - name: elegant_galileo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # elegant_galileo This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.000286, 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'force_call_on': [25177], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}], 'scorer_config': {}}, 'kl_gpt3_callback': {'force_call_on': [25177], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '9e6c78543a6ff1e4089002c38864d5a9cf71ec90'}, 'path_or_name': 'tomekkorbak/nervous_wozniak'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'elegant_galileo', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25177, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/283v5dho
amitkayal/whisper-small-or
amitkayal
2022-12-16T10:59:04Z
4
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "bn", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-16T05:21:26Z
--- language: - bn license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-small-or results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: or split: test args: or metrics: - name: Wer type: wer value: 40.30612244897959 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-or This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5871 - Wer: 40.3061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.001 | 25.01 | 1000 | 0.4038 | 37.4804 | | 0.0001 | 51.0 | 2000 | 0.5288 | 40.0706 | | 0.0001 | 76.01 | 3000 | 0.5871 | 40.3061 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.10.0 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
klashenrik/q-learning-taxi-v3
klashenrik
2022-12-16T10:47:20Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T10:29:51Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-learning-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="klashenrik/q-learning-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
klashenrik/q-learning-taxi-v1
klashenrik
2022-12-16T10:29:45Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T10:29:37Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-learning-taxi-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="klashenrik/q-learning-taxi-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ziyu600601/stable-diffusion
ziyu600601
2022-12-16T10:19:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-16T10:19:43Z
--- license: creativeml-openrail-m ---
huggan/sim2real_cyclegan
huggan
2022-12-16T10:18:00Z
0
7
null
[ "pytorch", "conditional-image-generation", "image-to-image", "gan", "cyclegan", "arxiv:2104.13395", "arxiv:1703.10593", "license:mit", "region:us" ]
image-to-image
2022-04-12T11:33:57Z
--- tags: - conditional-image-generation - image-to-image - gan - cyclegan # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # CycleGAN for unpaired image-to-image translation. ## Model description CycleGAN for unpaired image-to-image translation. Given two image domains A and B, the following components are trained end2end to translate between such domains: - A generator A to B, named G_AB conditioned on an image from A - A generator B to A, named G_BA conditioned on an image from B - A domain classifier D_A, associated with G_AB - A domain classifier D_B, associated with G_BA At inference time, G_AB or G_BA are relevant to translate images, respectively A to B or B to A. In the general setting, this technique provides style transfer functionalities between the selected image domains A and B. This allows to obtain a generated translation by G_AB, of an image from domain A that resembles the distribution of the images from domain B, and viceversa for the generator G_BA. Under these framework, these aspects have been used to perform style transfer between synthetic data obtained from a simulated driving dataset, GTA5, and the real driving data from Cityscapes. This is of paramount importance to develop autonomous driving perception deep learning models, as this allows to generate synthetic data with automatic annotations which resembles real world images, without requiring the intervention of a human annotator. This is fundamental because a manual annotator has been shown to require 1.5 to 3.3 hours to create semantic and instance segmentation masks for a single images. These have been provided in the original [cityscapes paper (Cordts et al 2016)](https://arxiv.org/abs/2104.13395) and the [adverse condition dataset (Sakaridis et al. 2021)](https://arxiv.org/abs/2104.13395) paper. Hence the CycleGAN provides forward and backward translation between synthetic and real world data. This has showed to allows high quality translation even in absence of paired sample-ground-truth data. The idea behind such model is that as the synthetic data distribution gets closer to the real world one, deep models do not suffer from degraded performance due to the domain shift issue. A broad literature is available on the minimization of the domain shift, under the research branch of domain adaptation and transfer learning, of which image translation models provide an alternative approach ## Intended uses & limitations #### Installation ```bash git clone https://github.com/huggingface/community-events.git cd community-events ``` To install the repository as a python package, run: ```bash pip install . ``` #### How to use ```python import os from PIL import Image from torchvision import transforms as T from torchvision.transforms import Compose, Resize, ToTensor, Normalize, RandomCrop, RandomHorizontalFlip from torchvision.utils import make_grid from torch.utils.data import DataLoader from huggan.pytorch.cyclegan.modeling_cyclegan import GeneratorResNet import torch.nn as nn import torch import gradio as gr import glob def pred_pipeline(img, transforms): orig_shape = img.shape input = transforms(img) input = input.unsqueeze(0) output = model(input) out_img = make_grid(output,#.detach().cpu(), nrow=1, normalize=True) out_transform = Compose([ T.Resize(orig_shape[:2]), T.ToPILImage() ]) return out_transform(out_img) n_channels = 3 image_size = 512 input_shape = (image_size, image_size) transform = Compose([ T.ToPILImage(), T.Resize(input_shape), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) model = GeneratorResNet.from_pretrained('Chris1/sim2real', input_shape=(n_channels, image_size, image_size), num_residual_blocks=9) real_images = model(synthetic_images) ``` #### Limitations and bias Due to the absence of paired data, some background parts of the synthetic images are seldom wrongly translated, e.g. sky is translated to vegetation. Additional pretext tasks in parallel to the discriminative classifier of fake and real samples could improve the result. One easy improvement is the use of an additional parallel branch that performs semantic segmentation on the synthetic data, in order to learn features which are common to sky and vegetation, thus disentangling their representations as separate classes. ## Training data The CycleGAN model is trained on an unpaired dataset of samples from synthetic and real driving data, respectively from the GTA5 and Cityscapes datasets. To this end, the synthetic-to-real dataset can be loaded by means of the function load_dataset in the huggingface library, as follows. ```python from datasets import load_dataset unpaired_dataset = load_dataset("huggan/sim2real_gta5_to_cityscapes") ``` This dataset contains two columns, imageA and imageB representing respectively the GTA5 and Cityscapes data. Due to the fact that the two columns have to be of the same length, GTA5 is subsampled in order to reach the same number of samples provided by the Cityscapes train split (2975) ## Training procedure #### Preprocessing The following transformations are applied to each input sample of synthetic and real data. The input size is fixed to RGB images of height, width = 512, 512. This choice has been made in order to limit the impact of upsampling the translated images to higher resolutions. ```python n_channels = 3 image_size = 512 input_shape = (image_size, image_size) transform = Compose([ T.ToPILImage(), T.Resize(input_shape), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) ``` #### Hardware The configuration has been tested on single GPU setup on a RTX5000 and A5000, as well as multi-gpu single-rank distributed setups composed of 2 of the mentioned GPUs. #### Hyperparameters The following configuration has been kept fixed for all translation models: - learning rate 0.0002 - number of epochs 200 - learning rate decay activation at epoch 100 - number of residual blocks of the cyclegan 9 - image size 512x512 - number of channels=3 - cycle loss weight 10.0 - identity loss weight 5.0 - optimizer ADAM with beta1 0.5 and beta2 0.999 - batch size 8 - NO mixed precision training ## Eval results #### Generated Images In the provided images, row0 and row2 represent the synthetic and real images from the respective datasets. Row1 is the translation of the immediate above images in row0(synthetic) by means of the G_AB translation model, to the real world style. Row3 is the translation of the immediate above images in row2(real) by means of the G_BA translation model, to the synthetic world style. Visualization over the training iterations for [synthetic (GTA5) to real (Cityscapes) translation](https://wandb.ai/chris1nexus/experiments_cyclegan_s2r_hp_opt--10/reports/CycleGAN-sim2real-training-results--VmlldzoxODUyNTk4?accessToken=tow3v4vp02aurzodedrdht15ig1cx69v5mited4dm8bgnup0z192wri0xtftaeqj) ### References ```bibtex @misc{https://doi.org/10.48550/arxiv.1703.10593, doi = {10.48550/ARXIV.1703.10593}, url = {https://arxiv.org/abs/1703.10593}, author = {Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A.}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks}, publisher = {arXiv}, year = {2017}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
zhaoyun0071/Disco_Diffusion_Style_SD_Model
zhaoyun0071
2022-12-16T09:54:22Z
0
20
null
[ "stable-diffusion", "text-to-image", "image-to-image", "en", "region:us" ]
text-to-image
2022-12-16T02:23:47Z
--- language: - en thumbnail: "https://huggingface.co/zhao009/Disco_Diffusion_Style_SD_Model/resolve/main/S1.png" tags: - stable-diffusion - text-to-image - image-to-image --- ### Disco_Diffusion_Style_SD_Model Base on https://huggingface.co/dreamlike-art/dreamlike-diffusion-1.0 model,This is the fine-tuned Stable Diffusion model trained on Disco Diffusion Pictures. Use the tokens **DDreamlike Style** in your prompts for the effect. ![Samples 1](https://huggingface.co/zhao009/Disco_Diffusion_Style_SD_Model/resolve/main/S1.png) **DDreamlike Style, a beautiful ultradetailed anime colorful digital illustration of lake, night, moon,chinese ancient pagoda, pixar style, beautiful matte painting, high detail, heavenly glow, octane render, 4k hd wallpaper, by makoto shinka and thomas kinkade, anime art , trending on artstation** ![Samples 2](https://huggingface.co/zhao009/Disco_Diffusion_Style_SD_Model/resolve/main/S2.png) ![Samples 3](https://huggingface.co/zhao009/Disco_Diffusion_Style_SD_Model/resolve/main/S3.png) ![Samples 5](https://huggingface.co/zhao009/Disco_Diffusion_Style_SD_Model/resolve/main/S5.png) ![Samples 6](https://huggingface.co/zhao009/Disco_Diffusion_Style_SD_Model/resolve/main/S6.png)
Narsil/layoutlmv3-finetuned-funsd
Narsil
2022-12-16T09:48:02Z
691
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "object-detection", "dataset:nielsr/funsd-layoutlmv3", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
object-detection
2022-12-16T08:53:05Z
--- tags: - generated_from_trainer datasets: - nielsr/funsd-layoutlmv3 pipeline_tag: object-detection widget: - src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" example_title: invoice - src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/contract.jpeg" example_title: contract metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-funsd results: - task: name: Token Classification type: token-classification dataset: name: nielsr/funsd-layoutlmv3 type: nielsr/funsd-layoutlmv3 args: funsd metrics: - name: Precision type: precision value: 0.9026198714780029 - name: Recall type: recall value: 0.913 - name: F1 type: f1 value: 0.9077802634849614 - name: Accuracy type: accuracy value: 0.8330271015158475 duplicated_from: nielsr/layoutlmv3-finetuned-funsd --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-funsd This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the nielsr/funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 1.1164 - Precision: 0.9026 - Recall: 0.913 - F1: 0.9078 - Accuracy: 0.8330 The script for training can be found here: https://github.com/huggingface/transformers/tree/main/examples/research_projects/layoutlmv3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 10.0 | 100 | 0.5238 | 0.8366 | 0.886 | 0.8606 | 0.8410 | | No log | 20.0 | 200 | 0.6930 | 0.8751 | 0.8965 | 0.8857 | 0.8322 | | No log | 30.0 | 300 | 0.7784 | 0.8902 | 0.908 | 0.8990 | 0.8414 | | No log | 40.0 | 400 | 0.9056 | 0.8916 | 0.905 | 0.8983 | 0.8364 | | 0.2429 | 50.0 | 500 | 1.0016 | 0.8954 | 0.9075 | 0.9014 | 0.8298 | | 0.2429 | 60.0 | 600 | 1.0097 | 0.8899 | 0.897 | 0.8934 | 0.8294 | | 0.2429 | 70.0 | 700 | 1.0722 | 0.9035 | 0.9085 | 0.9060 | 0.8315 | | 0.2429 | 80.0 | 800 | 1.0884 | 0.8905 | 0.9105 | 0.9004 | 0.8269 | | 0.2429 | 90.0 | 900 | 1.1292 | 0.8938 | 0.909 | 0.9013 | 0.8279 | | 0.0098 | 100.0 | 1000 | 1.1164 | 0.9026 | 0.913 | 0.9078 | 0.8330 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
zhow/sd-class-butterflies-64
zhow
2022-12-16T09:32:19Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-16T09:31:47Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('zhow/sd-class-butterflies-64') image = pipeline().images[0] image ```
LucianoDeben/q-FrozenLake-v1-4x4-noSlippery
LucianoDeben
2022-12-16T09:11:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T09:11:05Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="LucianoDeben/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
pierreguillou/whisper-medium-portuguese
pierreguillou
2022-12-16T09:08:10Z
536
26
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "whisper-event", "pt", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-15T09:59:20Z
--- language: pt license: apache-2.0 tags: - generated_from_trainer - whisper-event datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-medium results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 6.598745817992301 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Portuguese Medium Whisper This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2628 - Wer: 6.5987 ## Blog post All information about this model in this blog post: [Speech-to-Text & IA | Transcreva qualquer áudio para o português com o Whisper (OpenAI)... sem nenhum custo!](https://medium.com/@pierre_guillou/speech-to-text-ia-transcreva-qualquer-%C3%A1udio-para-o-portugu%C3%AAs-com-o-whisper-openai-sem-ad0c17384681). ## New SOTA The Normalized WER in the [OpenAI Whisper article](https://cdn.openai.com/papers/whisper.pdf) with the [Common Voice 9.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) test dataset is 8.1. As this test dataset is similar to the [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) test dataset used to evaluate our model (WER and WER Norm), it means that **our Portuguese Medium Whisper is better than the [Medium Whisper](https://huggingface.co/openai/whisper-medium) model at transcribing audios Portuguese in text** (and even better than the [Whisper Large](https://huggingface.co/openai/whisper-large) that has a WER Norm of 7.1!). ![OpenAI results with Whisper Medium and Test dataset of Commons Voice 9.0](https://huggingface.co/pierreguillou/whisper-medium-portuguese/resolve/main/whisper_medium_portuguese_wer_commonvoice9.png) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0333 | 2.07 | 1500 | 0.2073 | 6.9770 | | 0.0061 | 5.05 | 3000 | 0.2628 | 6.5987 | | 0.0007 | 8.03 | 4500 | 0.2960 | 6.6979 | | 0.0004 | 11.0 | 6000 | 0.3212 | 6.6794 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
psitama/ppo-LunarLander-v2
psitama
2022-12-16T09:02:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T13:41:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -1339.88 +/- 1647.82 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
biodasturchi/emfold
biodasturchi
2022-12-16T08:52:00Z
0
1
null
[ "doi:10.57967/hf/0213", "region:us" ]
null
2022-12-16T08:28:36Z
--- title: Esmfold emoji: 👀 colorFrom: green colorTo: blue sdk: gradio sdk_version: 3.8.2 app_file: app.py pinned: false --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
marianna13/t5-base-finetuned-youtube
marianna13
2022-12-16T08:18:59Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-16T07:47:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-base-finetuned-youtube results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-youtube This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.0266 | 1.0 | 9057 | 3.7643 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
bheshaj/bart-large-cnn-small-billsum-5epochs
bheshaj
2022-12-16T08:06:31Z
4
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-16T07:39:08Z
--- license: mit tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: bart-large-cnn-small-billsum-5epochs results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: train[:1%] args: default metrics: - name: Rouge1 type: rouge value: 0.5406 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-small-billsum-5epochs This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 1.7206 - Rouge1: 0.5406 - Rouge2: 0.312 - Rougel: 0.3945 - Rougelsum: 0.4566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.373e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 16 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 2.3723 | 1.33 | 16 | 1.8534 | 0.5204 | 0.299 | 0.3893 | 0.4441 | | 1.6579 | 2.67 | 32 | 1.7208 | 0.5427 | 0.3143 | 0.3915 | 0.459 | | 1.2397 | 4.0 | 48 | 1.7206 | 0.5406 | 0.312 | 0.3945 | 0.4566 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
CreativeEvolution/q-FrozenLake-v1-4x4-noSlippery
CreativeEvolution
2022-12-16T07:51:22Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T07:51:15Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="CreativeEvolution/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
SiddharthaM/xlm-roberta-targin-final
SiddharthaM
2022-12-16T07:30:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-16T06:44:43Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xlm-roberta-targin-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-targin-final This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8172 - Accuracy: 0.6873 - Precision: 0.6494 - Recall: 0.6422 - F1: 0.6450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 296 | 0.6065 | 0.6873 | 0.6537 | 0.5833 | 0.5748 | | 0.597 | 2.0 | 592 | 0.5822 | 0.7015 | 0.6652 | 0.6279 | 0.6332 | | 0.597 | 3.0 | 888 | 0.5704 | 0.7015 | 0.6654 | 0.6551 | 0.6589 | | 0.5156 | 4.0 | 1184 | 0.6393 | 0.7044 | 0.6684 | 0.6552 | 0.6597 | | 0.5156 | 5.0 | 1480 | 0.5924 | 0.7082 | 0.6752 | 0.6720 | 0.6735 | | 0.4479 | 6.0 | 1776 | 0.7029 | 0.7006 | 0.6629 | 0.6351 | 0.6408 | | 0.3783 | 7.0 | 2072 | 0.6963 | 0.7072 | 0.6715 | 0.6554 | 0.6606 | | 0.3783 | 8.0 | 2368 | 0.7636 | 0.6987 | 0.6627 | 0.6549 | 0.6579 | | 0.3253 | 9.0 | 2664 | 0.7804 | 0.6901 | 0.6549 | 0.6523 | 0.6535 | | 0.3253 | 10.0 | 2960 | 0.8172 | 0.6873 | 0.6494 | 0.6422 | 0.6450 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
duongkstn/q-FrozenLake-v1-8x8-90000-steps
duongkstn
2022-12-16T07:05:56Z
0
0
null
[ "FrozenLake-v1-8x8", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T07:05:44Z
--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-90000-steps results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 metrics: - type: mean_reward value: 0.18 +/- 0.38 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="duongkstn/q-FrozenLake-v1-8x8-90000-steps", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
duongkstn/q-FrozenLake-v1-8x8
duongkstn
2022-12-16T06:52:38Z
0
0
null
[ "FrozenLake-v1-8x8", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T06:51:27Z
--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 metrics: - type: mean_reward value: 0.44 +/- 0.50 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="duongkstn/q-FrozenLake-v1-8x8", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Utkarsh-Verma/ppo-LunarLander-v2
Utkarsh-Verma
2022-12-16T05:37:06Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T05:36:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 235.88 +/- 22.76 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
doctorderp/planet_of_the_apes
doctorderp
2022-12-16T05:23:28Z
0
2
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-15T06:36:19Z
--- license: creativeml-openrail-m --- Preview Images https://imgur.com/a/vwO6f5A IMPORTANT INSTRUCTIONS!! This model was trained on SD base 1.5 version BUT It does also work for 1.4 as they both share the same Clip encoder. Install instructions. Simply place the chimp.pt file inside the \stable-diffusion-webui\models\hypernetworks folder. Load the model inside the Automatic1111 interface under settings hypernetwork. Use instructions. Use between 0.55-1.0 hypernetwork strength, more strength will give a more real chimpl look while .55 gives a more human form chimp look. I find .7 works well enough. Use DPM++ SDE Karras sampler with 15 steps and CFG of 6.0. Make sure and always include the word chimp somewhere in the prompt. For people always preface the subject with chimp, example "chimp man walking", "chimp girl playing in the backyard", etc... VERY IMPORTANT! Always describe the background in some detail or you WILL get a very generic boring background.. So for example DON'T just say "an old chimp man". DO say "an old chimp man inside a rustic hut". Some fun info. People have been sleeping on hypernetworks and I plan to change that. Hopefully the flexibility of this hypernetwok will show everyone their true potential. Because this model is a hypernetwork it can be used in conjunction with ANY model based on the 1.4 CLIP architecture. That means this model will work on any custom 1.4 or 1.5 model, like the modern disney model, or classic disney, etc… for example, let's say you want to load classic disney as base. Well simply load the classic disney model, make sure and preface every prompt with classic disney. As per instructions of the model. Then follow up with my “chimp” tag as instructed once you have loaded the hypernetwork. So the prompt should look something like this “classic disney. chimp girl playing in the backyard.” Make sure and adjust the hypernetwork strength to .5 for a more cartoon look or .7 for a realistic chimp look. Have fun folks!
duongkstn/q-Taxi-v3-lr-08
duongkstn
2022-12-16T04:31:55Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T04:27:57Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-lr-08 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="duongkstn/q-Taxi-v3-lr-08", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
aharley/pips
aharley
2022-12-16T04:22:09Z
0
7
null
[ "pixel-tracking", "computer-vision", "arxiv:2204.04153", "license:mit", "region:us" ]
null
2022-09-03T01:59:24Z
--- tags: - pixel-tracking - computer-vision license: mit library: pytorch inference: false --- # PIPs: Particle Video Revisited: Tracking Through Occlusions Using Point Trajectories * Model Authors: Adam W Harley and Zhaoyuan Fang and Katerina Fragkiadaki * Paper: Particle Video Revisited: Tracking Through Occlusions Using Point Trajectories (ECCV 2022 - https://arxiv.org/abs/2204.04153 * Code Repo: https://github.com/aharley/pips * Project Homepage: https://particle-video-revisited.github.io From the paper abstract: > [...] we revisit Sand and Teller's "particle video" approach, and study pixel tracking as a long-range motion estimation problem, where every pixel is described with a trajectory that locates it in multiple future frames. We re-build this classic approach using components that drive the current state-of-the-art in flow and object tracking, such as dense cost maps, iterative optimization, and learned appearance updates. We train our models using long-range amodal point trajectories mined from existing optical flow data that we synthetically augment with multi-frame occlusions. ![](https://particle-video-revisited.github.io/images/fig1.jpg) # Citation ``` @inproceedings{harley2022particle, title={Particle Video Revisited: Tracking Through Occlusions Using Point Trajectories}, author={Adam W Harley and Zhaoyuan Fang and Katerina Fragkiadaki}, booktitle={ECCV}, year={2022} } ```
lotussavy/LunarLander-v2
lotussavy
2022-12-16T04:18:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T04:17:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.89 +/- 16.40 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
duongkstn/q-FrozenLake-v1-4x4-noSlippery
duongkstn
2022-12-16T04:11:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T04:11:03Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="duongkstn/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Zhaohui/finetuning-misinfo-model-1000-Zhaohui
Zhaohui
2022-12-16T03:57:03Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-16T03:42:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-misinfo-model-1000-Zhaohui results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-misinfo-model-1000-Zhaohui This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7352 - Accuracy: 0.8226 - F1: 0.8571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
taskmasterpeace/autotrain-Consequenv05-WEW6KM47ET-2492376867
taskmasterpeace
2022-12-16T03:39:39Z
0
0
diffusers
[ "diffusers", "autotrain", "stable-diffusion", "text-to-image", "dataset:taskmasterpeace/autotrain-data-Consequenv05-WEW6KM47ET", "co2_eq_emissions", "region:us" ]
text-to-image
2022-12-16T03:18:52Z
--- tags: - autotrain - stable-diffusion - text-to-image datasets: - taskmasterpeace/autotrain-data-Consequenv05-WEW6KM47ET co2_eq_emissions: emissions: 39.499488037662175 --- # Model Trained Using AutoTrain - Problem type: Dreambooth - Model ID: 2492376867 - CO2 Emissions (in grams): 39.4995
Totsukawaii/ddpm-butterflies-128
Totsukawaii
2022-12-16T03:17:49Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-12-15T09:56:08Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Totsukawaii/ddpm-butterflies-128/tensorboard?#scalars)
JunHwi/kold_binary
JunHwi
2022-12-16T02:57:48Z
5
2
transformers
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-16T02:27:33Z
Pretraining KoLD Dataset with pretrained "koelectra-v3" model. dataset : https://github.com/boychaboy/KOLD pretrained_model : https://huggingface.co/monologg/koelectra-base-v3-discriminator So you should use tokenizer with "koelectra-base-v3-discriminator". label maps are like > {0: "not_hate_speech", 1: "hate_speech"}
rook909/ppo-LunarLander-v2-TEST
rook909
2022-12-16T02:57:10Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T02:18:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 271.61 +/- 18.29 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
JunHwi/kmhas_multilabel
JunHwi
2022-12-16T02:54:18Z
5
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-16T02:23:24Z
Pretrained K-mHas with multi-label model with "koelectra-v3" You can use tokenizer of this model with "monologg/koelectra-v3-base-discriminator" dataset : https://huggingface.co/datasets/jeanlee/kmhas_korean_hate_speech pretrained_model : https://huggingface.co/monologg/koelectra-base-v3-discriminator label maps are like this. >>> {'origin': 0, 'physical': 1, 'politics': 2, 'profanity': 3, 'age': 4, 'gender': 5, 'race': 6, 'religion': 7, 'not_hate_speech': 8} You can use label map with below code. > from huggingface_hub import hf_hub_download repo_id = "JunHwi/kmhas_multilabel" filename = "kmhas_dict.pickle" # 위 repo_id에 업로드한 파일 이름 label_dict = hf_hub_download(repo_id, filename) with open(label_dict, "rb") as f: label2num = pickle.load(f)
JunHwi/kmhas_binary
JunHwi
2022-12-16T02:53:53Z
5
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-16T02:12:57Z
Pretrained K-mHas with binary-label model with "koelectra-v3" You can use tokenizer of this model with "monologg/koelectra-v3-base-discriminator" dataset : https://huggingface.co/datasets/jeanlee/kmhas_korean_hate_speech pretrained_model : https://huggingface.co/monologg/koelectra-base-v3-discriminator label maps are like this. > {0: "not_hate_speech", 1: "hate_speech"}
ancillaire/ppo-LunarLander-v2
ancillaire
2022-12-16T01:35:06Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T01:34:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -128.62 +/- 54.34 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
suyuanliu/wav2vec2-base-finetuned-stop-classification
suyuanliu
2022-12-16T01:17:27Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:audiofolder", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-12-16T00:57:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-stop-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-stop-classification This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1647 - Accuracy: 0.9470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.671 | 0.98 | 26 | 0.5553 | 0.8347 | | 0.3525 | 1.98 | 52 | 0.2647 | 0.9163 | | 0.291 | 2.98 | 78 | 0.2474 | 0.9070 | | 0.2733 | 3.98 | 104 | 0.1729 | 0.9439 | | 0.2467 | 4.98 | 130 | 0.1647 | 0.9470 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
cleanrl/BeamRiderNoFrameskip-v4-dqn_atari_jax-seed1
cleanrl
2022-12-16T00:47:36Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "BeamRiderNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T00:47:28Z
--- tags: - BeamRiderNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BeamRiderNoFrameskip-v4 type: BeamRiderNoFrameskip-v4 metrics: - type: mean_reward value: 5091.00 +/- 1923.97 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **BeamRiderNoFrameskip-v4** This is a trained model of a DQN agent playing BeamRiderNoFrameskip-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari_jax.py). ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BeamRiderNoFrameskip-v4-dqn_atari_jax-seed1/raw/main/dqn.py curl -OL https://huggingface.co/cleanrl/BeamRiderNoFrameskip-v4-dqn_atari_jax-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BeamRiderNoFrameskip-v4-dqn_atari_jax-seed1/raw/main/poetry.lock poetry install --all-extras python dqn_atari_jax.py --track --capture-video --save-model --upload-model --hf-entity cleanrl --env-id BeamRiderNoFrameskip-v4 --seed 1 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': True, 'end_e': 0.01, 'env_id': 'BeamRiderNoFrameskip-v4', 'exp_name': 'dqn_atari_jax', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.0001, 'learning_starts': 80000, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 1000, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
bitcloud2/q-Taxi-v3-hf-class
bitcloud2
2022-12-16T00:39:55Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T23:39:37Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-hf-class results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="bitcloud2/q-Taxi-v3-hf-class", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
evanarlian/whisper-small-id
evanarlian
2022-12-16T00:15:16Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-15T16:37:43Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-id results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-id This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4034 - Wer: 13.6494 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1014 | 4.95 | 500 | 0.2583 | 13.6355 | | 0.0058 | 9.9 | 1000 | 0.3169 | 13.2851 | | 0.0017 | 14.85 | 1500 | 0.3488 | 13.2251 | | 0.001 | 19.8 | 2000 | 0.3639 | 13.3542 | | 0.0007 | 24.75 | 2500 | 0.3756 | 13.5018 | | 0.0005 | 29.7 | 3000 | 0.3844 | 13.5617 | | 0.0005 | 34.65 | 3500 | 0.3922 | 13.6401 | | 0.0004 | 39.6 | 4000 | 0.3981 | 13.6032 | | 0.0003 | 44.55 | 4500 | 0.4019 | 13.6632 | | 0.0003 | 49.5 | 5000 | 0.4034 | 13.6494 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
haining/Taxi-v3-500x6
haining
2022-12-15T23:56:36Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T23:56:22Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3-500x6 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="haining/Taxi-v3-500x6", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
haining/q-FrozenLake-v1-4x4-noSlippery
haining
2022-12-15T23:55:19Z
0
0
null
[ "FrozenLake-v1", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T23:54:53Z
--- tags: - FrozenLake-v1 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1 type: FrozenLake-v1 metrics: - type: mean_reward value: 7.31 +/- 2.37 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="haining/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gagan3012/swin_arocr_tiny
gagan3012
2022-12-15T23:50:37Z
3
0
transformers
[ "transformers", "pytorch", "swinv2", "image-feature-extraction", "masked-image-modeling", "generated_from_trainer", "dataset:hindawi", "endpoints_compatible", "region:us" ]
image-feature-extraction
2022-12-15T23:45:22Z
--- tags: - masked-image-modeling - generated_from_trainer datasets: - hindawi model-index: - name: swinv2_arocr_tiny_encoder results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2_arocr_tiny_encoder This model is a fine-tuned version of [/lustre07/scratch/gagan30/arocr/models/swinv2_arocr_tiny/config.json](https://huggingface.co//lustre07/scratch/gagan30/arocr/models/swinv2_arocr_tiny/config.json) on the /lustre07/scratch/gagan30/arocr/Hindawi dataset. It achieves the following results on the evaluation set: - Loss: 0.0519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0891 | 1.0 | 8078 | 0.0628 | | 0.0465 | 2.0 | 16156 | 0.0595 | | 0.0639 | 3.0 | 24234 | 0.0570 | | 0.0608 | 4.0 | 32312 | 0.0548 | | 0.0487 | 5.0 | 40390 | 0.0554 | | 0.059 | 6.0 | 48468 | 0.0533 | | 0.0677 | 7.0 | 56546 | 0.0525 | | 0.0555 | 8.0 | 64624 | 0.0521 | | 0.0502 | 9.0 | 72702 | 0.0520 | | 0.0496 | 10.0 | 80780 | 0.0519 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.0 - Datasets 2.7.1 - Tokenizers 0.11.6
bitcloud2/q-FrozenLake-v1-4x4-noSlippery
bitcloud2
2022-12-15T23:30:44Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T23:30:40Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="bitcloud2/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DrishtiSharma/whisper-large-v2-lithuanian-400-steps
DrishtiSharma
2022-12-15T23:25:47Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "lt", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-15T21:34:01Z
--- language: - lt license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large V2 Lithuanian- Drishti Sharma results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: lt split: test args: lt metrics: - name: Wer type: wer value: 26.152380196132924 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large V2 Lithuanian- Drishti Sharma This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2921 - Wer: 26.1524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2538 | 0.36 | 400 | 0.2921 | 26.1524 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Seif/ppo-Huggy
Seif
2022-12-15T23:03:45Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-15T23:03:33Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Seif/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
LuniLand/ppo-LunarLander-v2
LuniLand
2022-12-15T23:03:40Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T12:13:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 284.33 +/- 21.26 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ericntay/sd-class-butterflies-32
ericntay
2022-12-15T22:47:05Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-15T22:18:00Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('ericntay/sd-class-butterflies-32') image = pipeline().images[0] image ```
rfdickerson/Taxi3
rfdickerson
2022-12-15T22:45:20Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T22:17:43Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="rfdickerson/Taxi3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kejian/deliberate-awr
kejian
2022-12-15T22:28:35Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-12-15T09:23:40Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: deliberate-awr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deliberate-awr This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12589 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'is_split_by_sentences': True, 'skip_tokens': 1649934336}, 'generation': {'batch_size': 128, 'every_n_steps': 512, 'force_call_on': [12589], 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_hits_threshold': 0, 'num_samples': 2048}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_hits_threshold': 0, 'num_samples': 2048, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'every_n_steps': 512, 'force_call_on': [12589], 'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '9b71edc6c769705c1ef1955b6f5cfdd5a7d1b802', 'value_head_config': {'is_detached': False}}, 'path_or_name': 'kejian/spectacular-awr'}, 'objective': {'alpha': 0.05, 'beta': 1, 'name': 'AWR'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'deliberate-awr', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 12589, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649934336, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/2qh5z2cm
djaram/distilbert-cased-1mjuicios
djaram
2022-12-15T22:20:02Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-15T18:59:35Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-cased-1mjuicios results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-cased-1mjuicios This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3025 | 1.0 | 625 | 1.9433 | | 1.9743 | 2.0 | 1250 | 1.8283 | | 1.8725 | 3.0 | 1875 | 1.7924 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
SiddharthaM/xlm-roberta-profane-final
SiddharthaM
2022-12-15T22:17:11Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-15T21:33:17Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xlm-roberta-profane-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-profane-final This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3272 - Accuracy: 0.9087 - Precision: 0.8411 - Recall: 0.8441 - F1: 0.8426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 296 | 0.2705 | 0.9030 | 0.8368 | 0.8192 | 0.8276 | | 0.3171 | 2.0 | 592 | 0.2174 | 0.9192 | 0.8847 | 0.8204 | 0.8476 | | 0.3171 | 3.0 | 888 | 0.2250 | 0.9202 | 0.8658 | 0.8531 | 0.8593 | | 0.2162 | 4.0 | 1184 | 0.2329 | 0.9106 | 0.8422 | 0.8538 | 0.8478 | | 0.2162 | 5.0 | 1480 | 0.2260 | 0.9183 | 0.8584 | 0.8584 | 0.8584 | | 0.1766 | 6.0 | 1776 | 0.2638 | 0.9116 | 0.8409 | 0.8651 | 0.8522 | | 0.146 | 7.0 | 2072 | 0.3088 | 0.9125 | 0.8494 | 0.8464 | 0.8478 | | 0.146 | 8.0 | 2368 | 0.2873 | 0.9154 | 0.8568 | 0.8459 | 0.8512 | | 0.1166 | 9.0 | 2664 | 0.3227 | 0.9144 | 0.8518 | 0.8518 | 0.8518 | | 0.1166 | 10.0 | 2960 | 0.3272 | 0.9087 | 0.8411 | 0.8441 | 0.8426 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
rfdickerson/q-FrozenLake-v1-4x4-noSlippery
rfdickerson
2022-12-15T22:15:31Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T22:15:23Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="rfdickerson/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
farsipal/whisper-md-el-intlv-xs
farsipal
2022-12-15T21:54:46Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hf-asr-leaderboard", "greek", "el", "dataset:mozilla-foundation/common_voice_11_0", "dataset:google/fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-14T15:26:42Z
--- language: - el license: apache-2.0 tags: - whisper-event - generated_from_trainer - hf-asr-leaderboard - automatic-speech-recognition - greek datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: whisper-md-el-intlv-xs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: el split: test metrics: - name: Wer type: wer value: 11.3670 --- # whisper-md-el-intlv-xs This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on interleaved mozilla-foundation/common_voice_11_0 (el) and the google/fleurs (el_gr) datasets. It achieves the following results on the mozilla-foundation/common_voice_11_0 test evaluation set: - Loss: 0.4168 - Wer: 11.3670 ## Model description This model is trained over the two interleaved datasets in the Greek language. Testing used only the common_voice_11_0 (el) test split. ## Intended uses & limitations The model was trained for transcription in Greek ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0251 | 2.49 | 1000 | 0.2216 | 12.5836 | | 0.0051 | 4.98 | 2000 | 0.2874 | 12.2957 | | 0.0015 | 7.46 | 3000 | 0.3281 | 11.9056 | | 0.0017 | 9.95 | 4000 | 0.3178 | 12.5929 | | 0.0008 | 12.44 | 5000 | 0.3449 | 11.9799 | | 0.0001 | 14.93 | 6000 | 0.3638 | 11.7106 | | 0.0001 | 17.41 | 7000 | 0.3910 | 11.4970 | | 0.0 | 19.9 | 8000 | 0.4042 | 11.3949 | | 0.0 | 22.39 | 9000 | 0.4129 | 11.4134 | | 0.0 | 24.88 | 10000 | 0.4168 | 11.3670 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
GeneralAwareness/Unddep
GeneralAwareness
2022-12-15T21:51:19Z
0
12
null
[ "stable-diffusion", "v2", "text-to-image", "image-to-image", "Embedding", "en", "license:cc-by-nc-sa-4.0", "region:us" ]
text-to-image
2022-12-14T07:54:36Z
--- license: cc-by-nc-sa-4.0 language: - en thumbnail: "https://huggingface.co/GeneralAwareness/Unddep/resolve/main/with-1.png" tags: - stable-diffusion - v2 - text-to-image - image-to-image - Embedding --- Textual Inversion Embedding by General Awareness For SD 2.x trained on 768x768 images from various sources. Install by downloading the .pt embedding, and put it in the \embeddings folder An undersea/underworld themed embedding that was created with 16 vectors. Use keyword: unddep Without this embedding and with this embedding. ![Single Samples](https://huggingface.co/GeneralAwareness/Unddep/resolve/main/without-1.png) ![Single_Samples](https://huggingface.co/GeneralAwareness/Unddep/resolve/main/with-1.png) Without this embedding and with this embedding. ![Single Samples](https://huggingface.co/GeneralAwareness/Unddep/resolve/main/without-2.png) ![Single_Samples](https://huggingface.co/GeneralAwareness/Unddep/resolve/main/with-2.png)
nefasto/whisper-small-it
nefasto
2022-12-15T21:22:26Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "it", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-14T17:04:58Z
--- language: - it license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Italian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 it type: mozilla-foundation/common_voice_11_0 config: it split: test args: it metrics: - name: Wer type: wer value: 12.303981501169467 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Italian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 it dataset. It achieves the following results on the evaluation set: - Loss: 0.2534 - Wer: 12.3040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2737 | 2.01 | 1000 | 0.2728 | 13.4097 | | 0.1536 | 4.02 | 2000 | 0.2611 | 12.9897 | | 0.0905 | 6.03 | 3000 | 0.2686 | 12.9273 | | 0.1301 | 8.04 | 4000 | 0.2534 | 12.3040 | | 0.096 | 10.05 | 5000 | 0.2727 | 12.6130 | | 0.0604 | 12.06 | 6000 | 0.2698 | 12.5027 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
sam133/ppo-Huggy
sam133
2022-12-15T21:11:52Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-15T21:11:08Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: sam133/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
miangoar/esm2_t12_35M_UR50D-finetuned-secondary-structure-classification
miangoar
2022-12-15T21:00:11Z
10
0
transformers
[ "transformers", "tf", "esm", "token-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-15T20:59:58Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: esm2_t12_35M_UR50D-finetuned-secondary-structure-classification results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # esm2_t12_35M_UR50D-finetuned-secondary-structure-classification This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4076 - Train Masked Accuracy: 0.8342 - Validation Loss: 0.4714 - Validation Masked Accuracy: 0.8060 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.0} - training_precision: float32 ### Training results | Train Loss | Train Masked Accuracy | Validation Loss | Validation Masked Accuracy | Epoch | |:----------:|:---------------------:|:---------------:|:--------------------------:|:-----:| | 0.5874 | 0.7454 | 0.4908 | 0.7962 | 0 | | 0.4503 | 0.8156 | 0.4703 | 0.8043 | 1 | | 0.4076 | 0.8342 | 0.4714 | 0.8060 | 2 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
LuniLand/dqn-LunarLander-v2
LuniLand
2022-12-15T20:40:47Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T20:40:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 168.44 +/- 106.68 name: mean_reward verified: false --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga LuniLand -f logs/ python enjoy.py --algo dqn --env LunarLander-v2 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga LuniLand -f logs/ rl_zoo3 enjoy --algo dqn --env LunarLander-v2 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env LunarLander-v2 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env LunarLander-v2 -f logs/ -orga LuniLand ``` ## Hyperparameters ```python OrderedDict([('batch_size', 128), ('buffer_size', 50000), ('exploration_final_eps', 0.1), ('exploration_fraction', 0.12), ('gamma', 0.99), ('gradient_steps', -1), ('learning_rate', 0.00063), ('learning_starts', 0), ('n_timesteps', 100000.0), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(net_arch=[256, 256])'), ('target_update_interval', 250), ('train_freq', 4), ('normalize', False)]) ```