modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 18:33:19
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 18:33:14
card
stringlengths
11
1.01M
shreyasharma/t5-small-ret-conceptnet2
shreyasharma
2022-12-09T20:26:54Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-28T08:04:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: t5-small-ret-conceptnet2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-ret-conceptnet2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1709 - Acc: {'accuracy': 0.8700980392156863} - Precision: {'precision': 0.811340206185567} - Recall: {'recall': 0.9644607843137255} - F1: {'f1': 0.8812989921612542} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------------:|:------------------------------:|:--------------------------:| | 0.1989 | 1.0 | 721 | 0.1709 | {'accuracy': 0.8700980392156863} | {'precision': 0.811340206185567} | {'recall': 0.9644607843137255} | {'f1': 0.8812989921612542} | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
graydient/diffusers-mattthew-technicolor-50s-diffusion
graydient
2022-12-09T20:12:14Z
3
1
diffusers
[ "diffusers", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-09T19:31:04Z
--- license: cc-by-sa-4.0 --- # 🌈 Diffusers Adaptation: Technicolor-50s Diffusion ## Style Description - This is a port of [Mattthew's excellent Technicolor 50s Diffusion](https://huggingface.co/mattthew/technicolor-50s-diffusion/tree/main) model to Huggingface Diffusers. - Please see original highly-saturated postcard-like colors, flat high-key lighting, strong rim-lighting, 40s and 50s lifestyle
Cbdlt/unit1-LunarLander-1
Cbdlt
2022-12-09T20:00:29Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T19:59:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.72 +/- 20.44 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rakeshjohny/PPO_LunarLanderV2
rakeshjohny
2022-12-09T19:51:29Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T19:50:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 230.53 +/- 18.37 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Alexao/whisper-small-swe2
Alexao
2022-12-09T19:24:47Z
4
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "swe", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T19:11:59Z
--- language: - swe license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small swe - Swedish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small swe - Swedish This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
FCameCode/whisper-tiny-it-8
FCameCode
2022-12-09T19:08:39Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "it", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T15:50:09Z
--- language: - it license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Tiny it 8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: it split: test[:10%] args: 'config: it, split: test' metrics: - name: Wer type: wer value: 97.56655574043262) --- # Whisper Tiny it 8 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.011502 - Wer: 56.905158 ## Model description This model is the openai whisper small transformer adapted for Italian audio to text transcription. As part of the hyperparameter tuning process weight decay set to 0.1, attention dropout, encoder dropout and decoder dropout have been set to 0.1, the learning rate has been set to 1e-5, the number of decoder attention heads and encoder attention heads have been set to 8. ## Intended uses & limitations The model is available through its [HuggingFace web app](https://huggingface.co/spaces/GIanlucaRub/whisper-it) ## Training and evaluation data Data used for training is the initial 10% of train and validation of [Italian Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/it/train) 11.0 from Mozilla Foundation. The dataset used for evaluation is the initial 10% of test of Italian Common Voice. ## Training procedure After loading the pre trained model, it has been trained on the dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.525800 | 3.82 | 3000 | 1.011502 |56.905158| ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
HusseinHE/h_sks_hxica
HusseinHE
2022-12-09T18:59:37Z
0
0
null
[ "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-12-09T03:36:40Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: hsksk ---
romc57/PPO_LunarLanderV2
romc57
2022-12-09T18:28:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T18:28:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.65 +/- 16.76 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tripplyons/flan-t5-base-xsum
tripplyons
2022-12-09T18:23:33Z
6
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-05T02:21:16Z
--- license: apache-2.0 --- # google/flan-t5-base finetuned on xsum using LoRA with adapter-transformers ## Usage Use the original flan-t5-base tokenizer: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base") model = AutoModelForSeq2SeqLM.from_pretrained("tripplyons/flan-t5-base-xsum") input_text = "summarize: The ex-Reading defender denied fraudulent trading charges relating to the Sodje Sports Foundation - a charity to raise money for Nigerian sport. Mr Sodje, 37, is jointly charged with elder brothers Efe, 44, Bright, 50 and Stephen, 42. Appearing at the Old Bailey earlier, all four denied the offence. The charge relates to offences which allegedly took place between 2008 and 2014. Sam, from Kent, Efe and Bright, of Greater Manchester, and Stephen, from Bexley, are due to stand trial in July. They were all released on bail." input_ids = tokenizer([input_text], max_length=512, truncation=True, padding=True, return_tensors='pt')['input_ids'] output = model.generate(input_ids, max_length=512) output_text = tokenizer.decode(output[0], skip_special_tokens=True) print(output_text) ```
CreativeEvolution/ppo-LunarLander-v2
CreativeEvolution
2022-12-09T17:59:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T17:58:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 292.18 +/- 13.72 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Sandipan1994/t5-small-entailement-Writer-T5-base
Sandipan1994
2022-12-09T17:49:56Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-09T17:22:25Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-entailement-Writer-T5-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-entailement-Writer-T5-base This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 250 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 1.0 | 42 | 1.8185 | | No log | 2.0 | 84 | 1.1957 | | No log | 3.0 | 126 | 0.9771 | | No log | 4.0 | 168 | 0.8964 | | No log | 5.0 | 210 | 0.8380 | | No log | 6.0 | 252 | 0.8109 | | No log | 7.0 | 294 | 0.7886 | | No log | 8.0 | 336 | 0.7760 | | No log | 9.0 | 378 | 0.7577 | | No log | 10.0 | 420 | 0.7483 | | No log | 11.0 | 462 | 0.7364 | | 1.2044 | 12.0 | 504 | 0.7267 | | 1.2044 | 13.0 | 546 | 0.7205 | | 1.2044 | 14.0 | 588 | 0.7102 | | 1.2044 | 15.0 | 630 | 0.7048 | | 1.2044 | 16.0 | 672 | 0.7015 | | 1.2044 | 17.0 | 714 | 0.6958 | | 1.2044 | 18.0 | 756 | 0.6892 | | 1.2044 | 19.0 | 798 | 0.6877 | | 1.2044 | 20.0 | 840 | 0.6825 | | 1.2044 | 21.0 | 882 | 0.6790 | | 1.2044 | 22.0 | 924 | 0.6732 | | 1.2044 | 23.0 | 966 | 0.6676 | | 0.736 | 24.0 | 1008 | 0.6640 | | 0.736 | 25.0 | 1050 | 0.6631 | | 0.736 | 26.0 | 1092 | 0.6617 | | 0.736 | 27.0 | 1134 | 0.6556 | | 0.736 | 28.0 | 1176 | 0.6551 | | 0.736 | 29.0 | 1218 | 0.6545 | | 0.736 | 30.0 | 1260 | 0.6483 | | 0.736 | 31.0 | 1302 | 0.6493 | | 0.736 | 32.0 | 1344 | 0.6488 | | 0.736 | 33.0 | 1386 | 0.6434 | | 0.736 | 34.0 | 1428 | 0.6427 | | 0.736 | 35.0 | 1470 | 0.6403 | | 0.6568 | 36.0 | 1512 | 0.6364 | | 0.6568 | 37.0 | 1554 | 0.6342 | | 0.6568 | 38.0 | 1596 | 0.6325 | | 0.6568 | 39.0 | 1638 | 0.6300 | | 0.6568 | 40.0 | 1680 | 0.6302 | | 0.6568 | 41.0 | 1722 | 0.6292 | | 0.6568 | 42.0 | 1764 | 0.6264 | | 0.6568 | 43.0 | 1806 | 0.6272 | | 0.6568 | 44.0 | 1848 | 0.6252 | | 0.6568 | 45.0 | 1890 | 0.6229 | | 0.6568 | 46.0 | 1932 | 0.6221 | | 0.6568 | 47.0 | 1974 | 0.6202 | | 0.602 | 48.0 | 2016 | 0.6193 | | 0.602 | 49.0 | 2058 | 0.6196 | | 0.602 | 50.0 | 2100 | 0.6174 | | 0.602 | 51.0 | 2142 | 0.6175 | | 0.602 | 52.0 | 2184 | 0.6162 | | 0.602 | 53.0 | 2226 | 0.6155 | | 0.602 | 54.0 | 2268 | 0.6129 | | 0.602 | 55.0 | 2310 | 0.6139 | | 0.602 | 56.0 | 2352 | 0.6124 | | 0.602 | 57.0 | 2394 | 0.6128 | | 0.602 | 58.0 | 2436 | 0.6109 | | 0.602 | 59.0 | 2478 | 0.6111 | | 0.5653 | 60.0 | 2520 | 0.6097 | | 0.5653 | 61.0 | 2562 | 0.6086 | | 0.5653 | 62.0 | 2604 | 0.6083 | | 0.5653 | 63.0 | 2646 | 0.6086 | | 0.5653 | 64.0 | 2688 | 0.6090 | | 0.5653 | 65.0 | 2730 | 0.6074 | | 0.5653 | 66.0 | 2772 | 0.6064 | | 0.5653 | 67.0 | 2814 | 0.6056 | | 0.5653 | 68.0 | 2856 | 0.6039 | | 0.5653 | 69.0 | 2898 | 0.6051 | | 0.5653 | 70.0 | 2940 | 0.6043 | | 0.5653 | 71.0 | 2982 | 0.6034 | | 0.5368 | 72.0 | 3024 | 0.6020 | | 0.5368 | 73.0 | 3066 | 0.6047 | | 0.5368 | 74.0 | 3108 | 0.6031 | | 0.5368 | 75.0 | 3150 | 0.6011 | | 0.5368 | 76.0 | 3192 | 0.6027 | | 0.5368 | 77.0 | 3234 | 0.6009 | | 0.5368 | 78.0 | 3276 | 0.6003 | | 0.5368 | 79.0 | 3318 | 0.6001 | | 0.5368 | 80.0 | 3360 | 0.6008 | | 0.5368 | 81.0 | 3402 | 0.6005 | | 0.5368 | 82.0 | 3444 | 0.6007 | | 0.5368 | 83.0 | 3486 | 0.5988 | | 0.5055 | 84.0 | 3528 | 0.5991 | | 0.5055 | 85.0 | 3570 | 0.6004 | | 0.5055 | 86.0 | 3612 | 0.5989 | | 0.5055 | 87.0 | 3654 | 0.5975 | | 0.5055 | 88.0 | 3696 | 0.5977 | | 0.5055 | 89.0 | 3738 | 0.5982 | | 0.5055 | 90.0 | 3780 | 0.5964 | | 0.5055 | 91.0 | 3822 | 0.5979 | | 0.5055 | 92.0 | 3864 | 0.5996 | | 0.5055 | 93.0 | 3906 | 0.5936 | | 0.5055 | 94.0 | 3948 | 0.5956 | | 0.5055 | 95.0 | 3990 | 0.5940 | | 0.4866 | 96.0 | 4032 | 0.5961 | | 0.4866 | 97.0 | 4074 | 0.5955 | | 0.4866 | 98.0 | 4116 | 0.5949 | | 0.4866 | 99.0 | 4158 | 0.5971 | | 0.4866 | 100.0 | 4200 | 0.5958 | | 0.4866 | 101.0 | 4242 | 0.5978 | | 0.4866 | 102.0 | 4284 | 0.5971 | | 0.4866 | 103.0 | 4326 | 0.5954 | | 0.4866 | 104.0 | 4368 | 0.5933 | | 0.4866 | 105.0 | 4410 | 0.5944 | | 0.4866 | 106.0 | 4452 | 0.5952 | | 0.4866 | 107.0 | 4494 | 0.5948 | | 0.4657 | 108.0 | 4536 | 0.5951 | | 0.4657 | 109.0 | 4578 | 0.5948 | | 0.4657 | 110.0 | 4620 | 0.5948 | | 0.4657 | 111.0 | 4662 | 0.5927 | | 0.4657 | 112.0 | 4704 | 0.5931 | | 0.4657 | 113.0 | 4746 | 0.5919 | | 0.4657 | 114.0 | 4788 | 0.5939 | | 0.4657 | 115.0 | 4830 | 0.5922 | | 0.4657 | 116.0 | 4872 | 0.5921 | | 0.4657 | 117.0 | 4914 | 0.5917 | | 0.4657 | 118.0 | 4956 | 0.5913 | | 0.4657 | 119.0 | 4998 | 0.5908 | | 0.4468 | 120.0 | 5040 | 0.5929 | | 0.4468 | 121.0 | 5082 | 0.5915 | | 0.4468 | 122.0 | 5124 | 0.5926 | | 0.4468 | 123.0 | 5166 | 0.5929 | | 0.4468 | 124.0 | 5208 | 0.5911 | | 0.4468 | 125.0 | 5250 | 0.5907 | | 0.4468 | 126.0 | 5292 | 0.5921 | | 0.4468 | 127.0 | 5334 | 0.5917 | | 0.4468 | 128.0 | 5376 | 0.5923 | | 0.4468 | 129.0 | 5418 | 0.5912 | | 0.4468 | 130.0 | 5460 | 0.5930 | | 0.4346 | 131.0 | 5502 | 0.5924 | | 0.4346 | 132.0 | 5544 | 0.5933 | | 0.4346 | 133.0 | 5586 | 0.5920 | | 0.4346 | 134.0 | 5628 | 0.5937 | | 0.4346 | 135.0 | 5670 | 0.5930 | | 0.4346 | 136.0 | 5712 | 0.5930 | | 0.4346 | 137.0 | 5754 | 0.5929 | | 0.4346 | 138.0 | 5796 | 0.5916 | | 0.4346 | 139.0 | 5838 | 0.5935 | | 0.4346 | 140.0 | 5880 | 0.5947 | | 0.4346 | 141.0 | 5922 | 0.5926 | | 0.4346 | 142.0 | 5964 | 0.5930 | | 0.4247 | 143.0 | 6006 | 0.5911 | | 0.4247 | 144.0 | 6048 | 0.5916 | | 0.4247 | 145.0 | 6090 | 0.5929 | | 0.4247 | 146.0 | 6132 | 0.5926 | | 0.4247 | 147.0 | 6174 | 0.5917 | | 0.4247 | 148.0 | 6216 | 0.5913 | | 0.4247 | 149.0 | 6258 | 0.5907 | | 0.4247 | 150.0 | 6300 | 0.5930 | | 0.4247 | 151.0 | 6342 | 0.5928 | | 0.4247 | 152.0 | 6384 | 0.5922 | | 0.4247 | 153.0 | 6426 | 0.5921 | | 0.4247 | 154.0 | 6468 | 0.5925 | | 0.4139 | 155.0 | 6510 | 0.5923 | | 0.4139 | 156.0 | 6552 | 0.5919 | | 0.4139 | 157.0 | 6594 | 0.5920 | | 0.4139 | 158.0 | 6636 | 0.5935 | | 0.4139 | 159.0 | 6678 | 0.5926 | | 0.4139 | 160.0 | 6720 | 0.5926 | | 0.4139 | 161.0 | 6762 | 0.5925 | | 0.4139 | 162.0 | 6804 | 0.5927 | | 0.4139 | 163.0 | 6846 | 0.5918 | | 0.4139 | 164.0 | 6888 | 0.5925 | | 0.4139 | 165.0 | 6930 | 0.5935 | | 0.4139 | 166.0 | 6972 | 0.5926 | | 0.4049 | 167.0 | 7014 | 0.5919 | | 0.4049 | 168.0 | 7056 | 0.5917 | | 0.4049 | 169.0 | 7098 | 0.5916 | | 0.4049 | 170.0 | 7140 | 0.5925 | | 0.4049 | 171.0 | 7182 | 0.5931 | | 0.4049 | 172.0 | 7224 | 0.5938 | | 0.4049 | 173.0 | 7266 | 0.5932 | | 0.4049 | 174.0 | 7308 | 0.5927 | | 0.4049 | 175.0 | 7350 | 0.5934 | | 0.4049 | 176.0 | 7392 | 0.5931 | | 0.4049 | 177.0 | 7434 | 0.5937 | | 0.4049 | 178.0 | 7476 | 0.5939 | | 0.397 | 179.0 | 7518 | 0.5939 | | 0.397 | 180.0 | 7560 | 0.5932 | | 0.397 | 181.0 | 7602 | 0.5935 | | 0.397 | 182.0 | 7644 | 0.5939 | | 0.397 | 183.0 | 7686 | 0.5935 | | 0.397 | 184.0 | 7728 | 0.5945 | | 0.397 | 185.0 | 7770 | 0.5932 | | 0.397 | 186.0 | 7812 | 0.5931 | | 0.397 | 187.0 | 7854 | 0.5925 | | 0.397 | 188.0 | 7896 | 0.5934 | | 0.397 | 189.0 | 7938 | 0.5941 | | 0.397 | 190.0 | 7980 | 0.5939 | | 0.3891 | 191.0 | 8022 | 0.5933 | | 0.3891 | 192.0 | 8064 | 0.5934 | | 0.3891 | 193.0 | 8106 | 0.5938 | | 0.3891 | 194.0 | 8148 | 0.5944 | | 0.3891 | 195.0 | 8190 | 0.5937 | | 0.3891 | 196.0 | 8232 | 0.5939 | | 0.3891 | 197.0 | 8274 | 0.5937 | | 0.3891 | 198.0 | 8316 | 0.5947 | | 0.3891 | 199.0 | 8358 | 0.5945 | | 0.3891 | 200.0 | 8400 | 0.5946 | | 0.3891 | 201.0 | 8442 | 0.5945 | | 0.3891 | 202.0 | 8484 | 0.5938 | | 0.3842 | 203.0 | 8526 | 0.5947 | | 0.3842 | 204.0 | 8568 | 0.5945 | | 0.3842 | 205.0 | 8610 | 0.5935 | | 0.3842 | 206.0 | 8652 | 0.5935 | | 0.3842 | 207.0 | 8694 | 0.5939 | | 0.3842 | 208.0 | 8736 | 0.5938 | | 0.3842 | 209.0 | 8778 | 0.5939 | | 0.3842 | 210.0 | 8820 | 0.5940 | | 0.3842 | 211.0 | 8862 | 0.5943 | | 0.3842 | 212.0 | 8904 | 0.5943 | | 0.3842 | 213.0 | 8946 | 0.5946 | | 0.3842 | 214.0 | 8988 | 0.5946 | | 0.3802 | 215.0 | 9030 | 0.5947 | | 0.3802 | 216.0 | 9072 | 0.5949 | | 0.3802 | 217.0 | 9114 | 0.5944 | | 0.3802 | 218.0 | 9156 | 0.5946 | | 0.3802 | 219.0 | 9198 | 0.5950 | | 0.3802 | 220.0 | 9240 | 0.5950 | | 0.3802 | 221.0 | 9282 | 0.5953 | | 0.3802 | 222.0 | 9324 | 0.5951 | | 0.3802 | 223.0 | 9366 | 0.5956 | | 0.3802 | 224.0 | 9408 | 0.5952 | | 0.3802 | 225.0 | 9450 | 0.5955 | | 0.3802 | 226.0 | 9492 | 0.5958 | | 0.3791 | 227.0 | 9534 | 0.5954 | | 0.3791 | 228.0 | 9576 | 0.5953 | | 0.3791 | 229.0 | 9618 | 0.5959 | | 0.3791 | 230.0 | 9660 | 0.5959 | | 0.3791 | 231.0 | 9702 | 0.5957 | | 0.3791 | 232.0 | 9744 | 0.5957 | | 0.3791 | 233.0 | 9786 | 0.5956 | | 0.3791 | 234.0 | 9828 | 0.5956 | | 0.3791 | 235.0 | 9870 | 0.5956 | | 0.3791 | 236.0 | 9912 | 0.5956 | | 0.3791 | 237.0 | 9954 | 0.5957 | | 0.3791 | 238.0 | 9996 | 0.5960 | | 0.3764 | 239.0 | 10038 | 0.5956 | | 0.3764 | 240.0 | 10080 | 0.5956 | | 0.3764 | 241.0 | 10122 | 0.5955 | | 0.3764 | 242.0 | 10164 | 0.5956 | | 0.3764 | 243.0 | 10206 | 0.5955 | | 0.3764 | 244.0 | 10248 | 0.5957 | | 0.3764 | 245.0 | 10290 | 0.5956 | | 0.3764 | 246.0 | 10332 | 0.5955 | | 0.3764 | 247.0 | 10374 | 0.5954 | | 0.3764 | 248.0 | 10416 | 0.5955 | | 0.3764 | 249.0 | 10458 | 0.5954 | | 0.3763 | 250.0 | 10500 | 0.5954 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
steffel/ppo-LunarLander-v2
steffel
2022-12-09T17:48:06Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T17:47:44Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 282.37 +/- 19.16 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Sanjay-Papaiahgari/ppo-LunarLander-v2
Sanjay-Papaiahgari
2022-12-09T17:41:10Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T17:40:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: MlpPolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 231.53 +/- 72.30 name: mean_reward verified: false --- # **MlpPolicy** Agent playing **LunarLander-v2** This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
deepdml/whisper-small-eu
deepdml
2022-12-09T17:26:01Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "eu", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T21:19:49Z
--- license: apache-2.0 language: - eu tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 eu type: mozilla-foundation/common_voice_11_0 config: eu split: test args: eu metrics: - name: Wer type: wer value: 19.766305675433596 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-small Basque-Euskera This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4485 - Wer: 19.7663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.048 | 4.04 | 1000 | 0.3402 | 21.7816 | | 0.0047 | 9.03 | 2000 | 0.3862 | 20.1694 | | 0.0012 | 14.02 | 3000 | 0.4221 | 19.7419 | | 0.0008 | 19.02 | 4000 | 0.4411 | 19.7174 | | 0.0006 | 24.01 | 5000 | 0.4485 | 19.7663 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
dcavadia/nintendo-controllers-model-opt3
dcavadia
2022-12-09T17:02:24Z
29
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-09T16:51:39Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: nintendo-controllers-model-opt3 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.5333333611488342 --- # nintendo-controllers-model-opt3 Modelo de clasificacion de imagenes con Python. Las predicciones que se obtienen se realizan a traves de un modelo de aprendizaje profundo llamado transformador de visión (ViT) el cual es capaz de discernir entre un control de Xbox y un control de Playstation. En un ViT, la imagen de entrada se "corta" en subimágenes de igual tamaño y cada una de esas subimágenes pasa por una insercion lineal lo que hace que cada subimagen sea sólo un vector unidimensional. Despues se le agrega una insercion posicional a cada uno de estos vectores lo cual permite a la red saber dónde se encuentra cada subimagen originalmente en la imagen. Estos vectores se transmiten, junto con un vector de clasificación especial, a los bloques codificadores transformadores, cada uno de los cuales se compone de : Una Normalización de Capas (LN), una Autoatención Multicabezal (MSA),una conexión residual, una segunda LN, un Perceptrón Multicapa (MLP) y otra conexión residual, los cuales se conectan uno detrás de otro. Por último, se utiliza un bloque MLP de clasificación para la clasificación final sólo en el vector de clasificación especial, que al final de todo el proceso, es el que tiene toda la informacion global de la imagen. La data que se usa de entrada al modelo es obtenida atraves de una API de buscador de imagenes que las descarga y almacena desde la web, de la cual se recolectan ~150 imagenes por clase. Una vez obtenida las imagenes, se dividen entre un 75% y 15% para usar como entrenamiento y validacion respectivamente. Para validar la data recolectada, se hace un pequeño muestreo al azar de las imagenes para confirma que las imagenes que consiguio la API, en su mayoria sean igual a lo que se introdujo como busqueda (microsoft xbox controller y sony playstation controller). Una vez etiquetada y mapeada la data, se preparan ejemplos en batches, los cuales seran alimentados de forma aleatorea a un modelo ViT ya preentrenado por usando el conjunto de datos ImageNet-21k. El modelo consta de metodos de entrenamiento, validacion y optimizacion usando PyTorch, en este caso se uso atom como optimizador. Una vez validadas las predicciones con las etiquetas de las imagenes, se obtuvo un modelo capaz de discernir entre una control de playstation y un control de xbox con una precision de >53%. ## Imagenes de ejemplo #### microsoft xbox controller ![microsoft xbox controller](images/microsoft_xbox_controller.jpg) #### sony playstation controller ![sony playstation controller](images/sony_playstation_controller.jpg)
AbyelT/Whisper-models
AbyelT
2022-12-09T16:41:03Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-05T20:59:34Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small - Swedish results: [] metrics: - {wer} --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Swedish This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
parinzee/whisper-small-th-newmm-old
parinzee
2022-12-09T16:10:33Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "th", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T15:14:14Z
--- language: - th license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Thai Newmm Tokenized - Parinthapat Pengpun results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Thai Newmm Tokenized - Parinthapat Pengpun This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2095 - eval_wer: 26.6533 - eval_cer: 8.0405 - eval_runtime: 5652.2819 - eval_samples_per_second: 1.934 - eval_steps_per_second: 0.061 - epoch: 5.06 - step: 2000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
ViktorDo/DistilBERT-WIKI_Lifecycle_Finetuned
ViktorDo
2022-12-09T16:04:07Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-21T17:47:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: DistilBERT-WIKI_Lifecycle_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-WIKI_Lifecycle_Finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0839 | 1.0 | 2082 | 0.1088 | | 0.0681 | 2.0 | 4164 | 0.0931 | | 0.0432 | 3.0 | 6246 | 0.0978 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
adisomani/distilbert-base-uncased-finetuned-sqaud
adisomani
2022-12-09T15:45:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-12-09T11:01:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-sqaud results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sqaud This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 14 | 0.9851 | | No log | 2.0 | 28 | 0.6955 | | No log | 3.0 | 42 | 0.5781 | | No log | 4.0 | 56 | 0.4548 | | No log | 5.0 | 70 | 0.4208 | | No log | 6.0 | 84 | 0.3592 | | No log | 7.0 | 98 | 0.3422 | | No log | 8.0 | 112 | 0.3424 | | No log | 9.0 | 126 | 0.4046 | | No log | 10.0 | 140 | 0.3142 | | No log | 11.0 | 154 | 0.3262 | | No log | 12.0 | 168 | 0.2879 | | No log | 13.0 | 182 | 0.3376 | | No log | 14.0 | 196 | 0.2870 | | No log | 15.0 | 210 | 0.2984 | | No log | 16.0 | 224 | 0.2807 | | No log | 17.0 | 238 | 0.2889 | | No log | 18.0 | 252 | 0.2877 | | No log | 19.0 | 266 | 0.2820 | | No log | 20.0 | 280 | 0.2831 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
burakyldrm/wav2vec2-burak-new-300-v2-9-medium
burakyldrm
2022-12-09T15:06:55Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T23:29:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-burak-new-300-v2-9-medium results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-burak-new-300-v2-9-medium This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3098 - Wer: 0.1789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 271 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 3.2366 | 9.43 | 500 | 0.3980 | 0.4652 | | 0.5066 | 18.87 | 1000 | 0.2423 | 0.2719 | | 0.2559 | 28.3 | 1500 | 0.2482 | 0.2443 | | 0.1869 | 37.74 | 2000 | 0.2537 | 0.2395 | | 0.1498 | 47.17 | 2500 | 0.2877 | 0.2361 | | 0.1271 | 56.6 | 3000 | 0.2681 | 0.2237 | | 0.1145 | 66.04 | 3500 | 0.2788 | 0.2189 | | 0.1043 | 75.47 | 4000 | 0.2800 | 0.2264 | | 0.094 | 84.91 | 4500 | 0.2992 | 0.2244 | | 0.0844 | 94.34 | 5000 | 0.2864 | 0.2209 | | 0.0776 | 103.77 | 5500 | 0.2758 | 0.2175 | | 0.0714 | 113.21 | 6000 | 0.2792 | 0.2051 | | 0.0666 | 122.64 | 6500 | 0.2945 | 0.2175 | | 0.0601 | 132.08 | 7000 | 0.2865 | 0.2092 | | 0.0579 | 141.51 | 7500 | 0.3168 | 0.2175 | | 0.0532 | 150.94 | 8000 | 0.3110 | 0.2292 | | 0.0474 | 160.38 | 8500 | 0.3070 | 0.2175 | | 0.0446 | 169.81 | 9000 | 0.3206 | 0.2223 | | 0.0409 | 179.25 | 9500 | 0.3017 | 0.2106 | | 0.037 | 188.68 | 10000 | 0.3157 | 0.2092 | | 0.0344 | 198.11 | 10500 | 0.3222 | 0.2058 | | 0.0345 | 207.55 | 11000 | 0.3047 | 0.2017 | | 0.0309 | 216.98 | 11500 | 0.3023 | 0.1913 | | 0.03 | 226.42 | 12000 | 0.2963 | 0.1920 | | 0.0268 | 235.85 | 12500 | 0.3036 | 0.1872 | | 0.0249 | 245.28 | 13000 | 0.2926 | 0.1844 | | 0.0227 | 254.72 | 13500 | 0.3045 | 0.1865 | | 0.021 | 264.15 | 14000 | 0.3098 | 0.1789 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
kurianbenoy/whisper-ml-first-model
kurianbenoy
2022-12-09T14:49:38Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "ml", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T13:59:15Z
--- language: - ml license: apache-2.0 tags: - whisper-event datasets: - mozilla-foundation/common_voice_11_0 --- # This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
benderv/ppo-LunarLander-v2
benderv
2022-12-09T14:37:50Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-12T12:20:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 274.79 +/- 13.79 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
klashenrik/ppo-Huggy
klashenrik
2022-12-09T14:05:55Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-09T14:05:47Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: klashenrik/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mlxen/electra-smallcase-squad
mlxen
2022-12-09T14:00:02Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
question-answering
2022-11-27T20:07:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: electra-smallcase-squad results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: f1 value: 42.535 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGYwZjExOTg1NGMwMTQxZGVhMjU4NzJiZTBlM2EzZDNmMzBlMGEzNjMwZjkzMTIxOTQzYWFhYjBiZDZhNTAxYSIsInZlcnNpb24iOjF9.PMOlW_iXGS5QjV0XCs4e5AK-ip9LUdXoDKRxFc7-VM_QMhGc0eq7GGLiY6OXCt-WUwRy6RkFhIg2nzid_qMgDw - type: exact value: 38.3889 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWIwNGVhYmIyNmUyNzkzMzA1Y2FkMDJmNzE3ZGNlOWNlNjk2Y2IwOTA5MjJkMmEwMmVhNjNkZWU1YTJhN2ViMiIsInZlcnNpb24iOjF9.S6L-PB3ZfllrXwHMfiSMDQm-tLANrBeWrNNekvfX1aZA79hbKdgP-OGPKatMatGJPirs-zPWDYXEIH4pSZeODw - type: loss value: 6.50607442855835 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWFlOWNjOTUzMTBkMDc3MDRmYmUwNzk2NjY3MmJjOTNjMWM2NGZmMDY5MTY0MWIwOTIyNWM5ZDkzNmEwNTJkNiIsInZlcnNpb24iOjF9.wxm8AMY3iCdRD3_cZIJ8zLzUh5Cj7C3k4vCoy0raXOExLIYFs4qSRWxFaI21HCJ8NhZ0IirV5ziaTpSRsPlqAw --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-smallcase-squad This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Kuaaangwen/SMM-classifier-1
Kuaaangwen
2022-12-09T13:54:52Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-09T13:37:29Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: SMM-classifier-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SMM-classifier-1 This model is a fine-tuned version of [Kuaaangwen/bert-base-cased-finetuned-chemistry](https://huggingface.co/Kuaaangwen/bert-base-cased-finetuned-chemistry) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5506 - Accuracy: 0.8333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.2044 | 0.8333 | | No log | 2.0 | 14 | 0.3574 | 0.8333 | | No log | 3.0 | 21 | 0.1551 | 0.8333 | | No log | 4.0 | 28 | 0.9122 | 0.8333 | | No log | 5.0 | 35 | 0.9043 | 0.8333 | | No log | 6.0 | 42 | 0.7262 | 0.8333 | | No log | 7.0 | 49 | 0.5977 | 0.8333 | | No log | 8.0 | 56 | 0.5567 | 0.8333 | | No log | 9.0 | 63 | 0.5484 | 0.8333 | | No log | 10.0 | 70 | 0.5506 | 0.8333 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
hr16/ira-olympus-4000
hr16
2022-12-09T13:46:47Z
1
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-09T13:43:11Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Model Dreambooth concept /content/Ira_Olympus/CRHTMJX/4000 được train bởi hr16 bằng [Shinja Zero SoTA DreamBooth_Stable_Diffusion](https://colab.research.google.com/drive/1G7qx6M_S1PDDlsWIMdbZXwdZik6sUlEh) notebook <br> Test concept bằng [Shinja Zero no Notebook](https://colab.research.google.com/drive/1Hp1ZIjPbsZKlCtomJVmt2oX7733W44b0) <br> Hoặc test bằng `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Ảnh mẫu của concept: WIP
alicjak/q-FrozenLake-v1-4x4-noSlippery
alicjak
2022-12-09T13:40:02Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T13:39:54Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.75 +/- 0.43 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="alicjak/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
ZDaPlaY/strawmaryarts_style
ZDaPlaY
2022-12-09T13:32:45Z
0
1
null
[ "region:us" ]
null
2022-12-09T12:55:19Z
Contains: strawmaryarts style - model with anime style Trigger Words: strawmaryarts style ![Showcase](https://huggingface.co/ZDaPlaY/strawmaryarts_style/resolve/main/showcase.png)
nbonaker/ddpm-celeb-face
nbonaker
2022-12-09T13:26:14Z
12
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:ddpm-celeb-face", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-12-08T17:21:14Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: ddpm-celeb-face metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-celeb-face ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `ddpm-celeb-face` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 32 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 50 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/nbonaker/ddpm-celeb-face/tensorboard?#scalars)
geninhu/whisper-medium-vi
geninhu
2022-12-09T13:09:46Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "vi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T05:27:05Z
--- language: - vi license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-medium results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 vi type: mozilla-foundation/common_voice_11_0 config: vi split: test args: vi metrics: - name: Wer type: wer value: 19.92761570519851 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7599 - Wer: 19.9276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0001 | 62.0 | 1000 | 0.6531 | 19.3463 | | 0.0001 | 124.0 | 2000 | 0.6964 | 19.6973 | | 0.0 | 187.0 | 3000 | 0.7282 | 19.8947 | | 0.0 | 249.0 | 4000 | 0.7481 | 19.8837 | | 0.0 | 312.0 | 5000 | 0.7599 | 19.9276 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Gladiator/roberta-large_ner_wikiann
Gladiator
2022-12-09T12:56:20Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-09T12:15:54Z
--- license: mit tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large_ner_wikiann results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: en metrics: - name: Precision type: precision value: 0.8462551098177787 - name: Recall type: recall value: 0.8634242895518167 - name: F1 type: f1 value: 0.8547534903250638 - name: Accuracy type: accuracy value: 0.9382388000397338 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large_ner_wikiann This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2783 - Precision: 0.8463 - Recall: 0.8634 - F1: 0.8548 - Accuracy: 0.9382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3395 | 1.0 | 1250 | 0.2652 | 0.8039 | 0.8308 | 0.8171 | 0.9242 | | 0.2343 | 2.0 | 2500 | 0.2431 | 0.8354 | 0.8503 | 0.8428 | 0.9329 | | 0.1721 | 3.0 | 3750 | 0.2315 | 0.8330 | 0.8503 | 0.8416 | 0.9352 | | 0.1156 | 4.0 | 5000 | 0.2709 | 0.8477 | 0.8634 | 0.8554 | 0.9385 | | 0.1026 | 5.0 | 6250 | 0.2783 | 0.8463 | 0.8634 | 0.8548 | 0.9382 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Gladiator/bert-large-uncased_ner_wikiann
Gladiator
2022-12-09T12:54:43Z
16
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-09T12:12:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-uncased_ner_wikiann results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: en metrics: - name: Precision type: precision value: 0.8383588049015558 - name: Recall type: recall value: 0.8608794005372543 - name: F1 type: f1 value: 0.8494698660714285 - name: Accuracy type: accuracy value: 0.9379407966623622 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased_ner_wikiann This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.3373 - Precision: 0.8384 - Recall: 0.8609 - F1: 0.8495 - Accuracy: 0.9379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3146 | 1.0 | 1250 | 0.2545 | 0.7956 | 0.8372 | 0.8159 | 0.9285 | | 0.1973 | 2.0 | 2500 | 0.2438 | 0.8267 | 0.8546 | 0.8404 | 0.9349 | | 0.1181 | 3.0 | 3750 | 0.2637 | 0.8320 | 0.8588 | 0.8452 | 0.9374 | | 0.0647 | 4.0 | 5000 | 0.3175 | 0.8389 | 0.8627 | 0.8507 | 0.9387 | | 0.0443 | 5.0 | 6250 | 0.3373 | 0.8384 | 0.8609 | 0.8495 | 0.9379 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
avojarot/ppo-LunarLander-v2
avojarot
2022-12-09T12:48:10Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T12:47:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 271.12 +/- 20.02 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bjelkenhed/whisper-medium-sv
bjelkenhed
2022-12-09T12:10:03Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "whisper-event", "sv", "dataset:common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-06T16:49:19Z
--- language: - sv license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer - whisper-event datasets: - common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Sv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 sv-SE type: mozilla-foundation/common_voice_11_0 config: sv-SE split: test args: sv-SE metrics: - name: Wer type: wer value: 10.712174146734748 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) trained on NST Swedish ASR and evaluated on Common Voice 11 testset. It achieves the following results on the evaluation set: - Loss: 0.2636 - Wer: 10.7122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0746 | 0.2 | 1000 | 0.2904 | 13.4695 | | 0.0564 | 0.4 | 2000 | 0.3121 | 13.2384 | | 0.0532 | 0.6 | 3000 | 0.2862 | 11.9726 | | 0.0387 | 0.8 | 4000 | 0.2629 | 11.6931 | | 0.0279 | 1.14 | 5000 | 0.2636 | 10.7122 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
massimowww/LunarLander-v2
massimowww
2022-12-09T11:59:15Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T11:58:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 199.90 +/- 63.35 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
anuragshas/whisper-small-pa
anuragshas
2022-12-09T11:54:19Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "whisper-event", "pa", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-06T10:06:37Z
--- license: apache-2.0 language: - pa tags: - generated_from_trainer - whisper-event datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Punjabi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 pa-IN type: mozilla-foundation/common_voice_11_0 config: pa-IN split: test args: pa-IN metrics: - name: Wer type: wer value: 39.04688700999232 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Punjabi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5991 - Wer: 39.0469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4346 | 5.01 | 50 | 0.3902 | 49.6797 | | 0.0728 | 11.0 | 100 | 0.3811 | 40.7379 | | 0.009 | 16.02 | 150 | 0.4924 | 39.5081 | | 0.0028 | 22.0 | 200 | 0.5309 | 38.7394 | | 0.0008 | 27.02 | 250 | 0.5687 | 38.6369 | | 0.0006 | 33.01 | 300 | 0.5859 | 39.0213 | | 0.0005 | 38.02 | 350 | 0.5954 | 39.0981 | | 0.0005 | 44.01 | 400 | 0.5991 | 39.0469 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
DarkBeam/Leonardostyl
DarkBeam
2022-12-09T11:17:31Z
0
2
null
[ "region:us" ]
null
2022-12-09T10:43:58Z
Trained on 6000 steps with "Dreambooth fast" colab, 30 misc selected images carefully hand cropped, mix of drawings, machines and paintings. Too bad Huggingface does not show the preview images correctly; see the files section - images are with complete with prompt (just add " ,leonardostyl style" to each one).
NathanaelM/ppo-Huggy
NathanaelM
2022-12-09T10:43:43Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-09T10:43:35Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: NathanaelM/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
MontaR/ppo-LunarLander-v2-0.4
MontaR
2022-12-09T10:18:47Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T10:18:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 276.78 +/- 18.42 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mamilldo/prdgrp-image-search
mamilldo
2022-12-09T09:57:15Z
55
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-09T09:56:57Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: prdgrp-image-search results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9108911156654358 --- # prdgrp-image-search Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Headphones ![Headphones](images/Headphones.jpg) #### Kitchen hood ![Kitchen hood](images/Kitchen_hood.jpg) #### Laptop ![Laptop](images/Laptop.jpg) #### Mobile phone ![Mobile phone](images/Mobile_phone.jpg) #### Tablet ![Tablet](images/Tablet.jpg)
AlexMo/FIFA_WC22_WINNER_LANGUAGE_MODEL
AlexMo
2022-12-09T09:46:44Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "nl", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-06T09:47:49Z
--- language: - nl license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: FIFA_WC22_WINNER_LANGUAGE_MODEL results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: 'null' split: None args: 'config: nl, split: test' metrics: - name: Wer type: wer value: 14.261890699371158 --- # whisper-lt-finetune This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2588 - Wer: 14.2619 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0783 | 1.3 | 1000 | 0.2478 | 15.5647 | | 0.0287 | 2.6 | 2000 | 0.2441 | 14.3765 | | 0.0087 | 3.9 | 3000 | 0.2516 | 14.3349 | | 0.0021 | 5.19 | 4000 | 0.2588 | 14.2619 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
urechandro/q-Taxi-v3
urechandro
2022-12-09T09:42:28Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T09:23:16Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="urechandro/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Aman6917/autotrain-fine_tune_tscholak-2392374839
Aman6917
2022-12-09T09:39:56Z
1
0
transformers
[ "transformers", "pytorch", "autotrain", "summarization", "unk", "dataset:Aman6917/autotrain-data-fine_tune_tscholak", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
summarization
2022-12-09T09:30:41Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Aman6917/autotrain-data-fine_tune_tscholak co2_eq_emissions: emissions: 11.023749088725205 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 2392374839 - CO2 Emissions (in grams): 11.0237 ## Validation Metrics - Loss: 0.128 - Rouge1: 94.982 - Rouge2: 91.105 - RougeL: 94.629 - RougeLsum: 94.535 - Gen Len: 30.359 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Aman6917/autotrain-fine_tune_tscholak-2392374839 ```
rapantzikos/nvidia-segformer-b0-finetuned-ade-512-512-finetuned-ISIC17
rapantzikos
2022-12-09T09:38:25Z
2
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
null
2022-11-16T14:34:30Z
--- license: other tags: - generated_from_trainer model-index: - name: nvidia-segformer-b0-finetuned-ade-512-512-finetuned-ISIC17 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nvidia-segformer-b0-finetuned-ade-512-512-finetuned-ISIC17 This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1948 - Mean Iou: 0.8064 - Mean Accuracy: 0.8726 - Overall Accuracy: 0.9381 - Per Category Iou: [0.6841604127643356, 0.9285439643646547] - Per Category Accuracy: [0.7721651141608432, 0.9729809595315688] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------------------------------:|:-----------------------------------------:| | 0.481 | 0.16 | 10 | 0.4235 | 0.6191 | 0.6970 | 0.8761 | [0.3719409076673884, 0.8662862424406493] | [0.42270204900152314, 0.9713331864930521] | | 0.4147 | 0.32 | 20 | 0.3894 | 0.7067 | 0.8502 | 0.8853 | [0.5464942438498753, 0.8668431573745645] | [0.7965579529885418, 0.9038859083170013] | | 0.356 | 0.48 | 30 | 0.3148 | 0.7467 | 0.8513 | 0.9107 | [0.5963581593534901, 0.897077797385972] | [0.7603709174964982, 0.9422313184595918] | | 0.3039 | 0.63 | 40 | 0.3024 | 0.7620 | 0.8671 | 0.9162 | [0.6211722830632663, 0.9028139512386881] | [0.7918407335685692, 0.9422883932404167] | | 0.2545 | 0.79 | 50 | 0.2849 | 0.7766 | 0.8898 | 0.9201 | [0.6468577863419183, 0.9063792530493855] | [0.8432862096150755, 0.9362151542385662] | | 0.2635 | 0.95 | 60 | 0.2504 | 0.7828 | 0.8644 | 0.9279 | [0.6487213857926865, 0.9168129696986418] | [0.7671470887645524, 0.9616549114054705] | | 0.2175 | 1.11 | 70 | 0.2497 | 0.7849 | 0.8682 | 0.9283 | [0.6526705030304356, 0.9171225024239068] | [0.7762677096648272, 0.9602225755678137] | | 0.2025 | 1.27 | 80 | 0.2400 | 0.7840 | 0.8632 | 0.9288 | [0.6501844204669202, 0.9178944798865282] | [0.7627291445016801, 0.9636411137781736] | | 0.2035 | 1.43 | 90 | 0.2288 | 0.7931 | 0.8749 | 0.9313 | [0.6657367286733036, 0.9203778068784213] | [0.7885027822639286, 0.9612655167036179] | | 0.2488 | 1.59 | 100 | 0.2110 | 0.7978 | 0.8719 | 0.9341 | [0.6717638717220313, 0.923859975121704] | [0.7766611302038285, 0.9672003292652145] | | 0.1954 | 1.75 | 110 | 0.2067 | 0.7962 | 0.8597 | 0.9354 | [0.666599427783381, 0.9258672754383861] | [0.7436428904928473, 0.9757231213956472] | | 0.1806 | 1.9 | 120 | 0.2047 | 0.7926 | 0.8525 | 0.9349 | [0.6596059897565958, 0.925563006736469] | [0.726197674685608, 0.9787940661520825] | | 0.161 | 2.06 | 130 | 0.2047 | 0.7903 | 0.8505 | 0.9342 | [0.6558737849234609, 0.9247714617107691] | [0.7223974159771602, 0.9786951901233297] | | 0.1736 | 2.22 | 140 | 0.2023 | 0.7948 | 0.8588 | 0.9349 | [0.6643652721485811, 0.9252950591002775] | [0.742124317828686, 0.9754152391272543] | | 0.1947 | 2.38 | 150 | 0.2077 | 0.7985 | 0.8656 | 0.9355 | [0.6712414223331253, 0.9257326708494226] | [0.7585178608332249, 0.9726888331181641] | | 0.1464 | 2.54 | 160 | 0.1960 | 0.8030 | 0.8680 | 0.9373 | [0.678274892507806, 0.9276935390097538] | [0.7620104248788739, 0.9740685958478499] | | 0.1644 | 2.7 | 170 | 0.1964 | 0.8064 | 0.8751 | 0.9377 | [0.6847175060674714, 0.9279857318627613] | [0.7791196258677832, 0.9710404169835255] | | 0.1803 | 2.86 | 180 | 0.1948 | 0.8064 | 0.8726 | 0.9381 | [0.6841604127643356, 0.9285439643646547] | [0.7721651141608432, 0.9729809595315688] | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.0+cu116 - Datasets 2.7.0 - Tokenizers 0.12.1
mamilldo/mobile-image-search
mamilldo
2022-12-09T09:36:29Z
28
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-09T09:36:14Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: mobile-image-search results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6796116232872009 --- # mobile-image-search Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Apple iPhone 6s ![Apple iPhone 6s](images/Apple_iPhone_6s.jpg) #### Apple iPhone X ![Apple iPhone X](images/Apple_iPhone_X.jpg) #### Samsung Galaxy S10 ![Samsung Galaxy S10](images/Samsung_Galaxy_S10.jpg) #### Samsung Galaxy S9 ![Samsung Galaxy S9](images/Samsung_Galaxy_S9.jpg) #### Television ![Television](images/Television.jpg)
mamilldo/prd-image-search
mamilldo
2022-12-09T09:20:42Z
92
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-09T09:12:51Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: prd-image-search results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7757009267807007 --- # prd-image-search Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Desktop computer ![Desktop computer](images/Desktop_computer.jpg) #### Laptop ![Laptop](images/Laptop.jpg) #### Samsung Galaxy ![Samsung Galaxy](images/Samsung_Galaxy.jpg) #### Television ![Television](images/Television.jpg) #### iPhone ![iPhone](images/iPhone.jpg)
duja1/reidartest10
duja1
2022-12-09T09:19:51Z
2
1
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-09T09:18:44Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: reidar123s --- ### reidartest10 Dreambooth model trained by duja1 with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the None base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: reidar123s (use that on your prompt) ![reidar123s 0](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%281%29.jpg)![reidar123s 1](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%282%29.jpg)![reidar123s 2](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%283%29.jpg)![reidar123s 3](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%284%29.jpg)![reidar123s 4](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%285%29.jpg)![reidar123s 5](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%286%29.jpg)![reidar123s 6](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%287%29.jpg)![reidar123s 7](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%288%29.jpg)![reidar123s 8](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%289%29.jpg)![reidar123s 9](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%2810%29.jpg)![reidar123s 10](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%2811%29.jpg)![reidar123s 11](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%2812%29.jpg)![reidar123s 12](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%2813%29.jpg)![reidar123s 13](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%2814%29.jpg)![reidar123s 14](https://huggingface.co/duja1/reidartest10/resolve/main/concept_images/reidar123s_%2815%29.jpg)
ljh1/hello-custom
ljh1
2022-12-09T09:06:52Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "emotion", "endpoints-template", "en", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-09T07:09:15Z
--- language: - en tags: - text-classification - emotion - endpoints-template license: apache-2.0 datasets: - emotion metrics: - Accuracy, F1 Score --- # Fork of [bhadresh-savani/distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion)
Shularp/krirk-finetuned-Helsinki-NLP_opus-mt-en-ar
Shularp
2022-12-09T09:03:42Z
13
1
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-12-07T07:37:38Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: krirk-finetuned-Helsinki-NLP_opus-mt-en-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # krirk-finetuned-Helsinki-NLP_opus-mt-en-ar This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4468 - Bleu: 26.9281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.6252 | 1.0 | 32 | 1.4686 | 26.1394 | | 1.4867 | 2.0 | 64 | 1.4496 | 26.8139 | | 1.4121 | 3.0 | 96 | 1.4468 | 26.9281 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
danielsaggau/bregman_scotus_k8_ep10
danielsaggau
2022-12-09T08:54:39Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "longformer", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-09T08:47:54Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 187841 with parameters: ``` {'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `__main__.BregmanRankingLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 3e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 5000, "warmup_steps": 187841, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: LongformerModel (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
leoleung93/ppo-Huggy
leoleung93
2022-12-09T08:52:32Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-09T08:52:24Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: leoleung93/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
QIANWEI/swin-tiny-patch4-window7-224-finetuned-eurosat
QIANWEI
2022-12-09T08:42:12Z
29
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-07T13:39:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9851851851851852 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat](https://huggingface.co/nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0416 - Accuracy: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1296 | 1.0 | 190 | 0.0646 | 0.9774 | | 0.1257 | 2.0 | 380 | 0.0445 | 0.9841 | | 0.1067 | 3.0 | 570 | 0.0416 | 0.9852 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
AleBurzio/bloom-better-riddles
AleBurzio
2022-12-09T08:33:35Z
12
0
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "generated_from_trainer", "dataset:pszemraj/riddlesense_plusplus", "license:bigscience-bloom-rail-1.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-09T00:49:55Z
--- license: bigscience-bloom-rail-1.0 tags: - generated_from_trainer datasets: - pszemraj/riddlesense_plusplus metrics: - accuracy model-index: - name: bloom-better-riddles results: - task: name: Causal Language Modeling type: text-generation dataset: name: pszemraj/riddlesense_plusplus type: pszemraj/riddlesense_plusplus metrics: - name: Accuracy type: accuracy value: 0.6594206731193033 parameters: min_length: 16 max_length: 96 no_repeat_ngram_size: 1 do_sample: True pipeline_tag: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bloom-better-riddles This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the pszemraj/riddlesense_plusplus dataset. It achieves the following results on the evaluation set: - Loss: 4.8107 - Accuracy: 0.6594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.0 - Tokenizers 0.13.2
luongtran/test
luongtran
2022-12-09T08:20:03Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-12-09T08:20:03Z
--- license: bigscience-bloom-rail-1.0 ---
tapadipti/tds-huggingpics
tapadipti
2022-12-09T07:34:02Z
92
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-09T07:33:49Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: tds-huggingpics results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.875 --- # tds-huggingpics Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### bed ![bed](images/bed.jpg) #### chair ![chair](images/chair.jpg) #### closet ![closet](images/closet.jpg) #### couch ![couch](images/couch.jpg) #### table ![table](images/table.jpg)
jmsalvi/dqn-SpaceInvadersNoFrameskip-v4
jmsalvi
2022-12-09T07:29:44Z
10
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-12T04:59:55Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 457.50 +/- 157.18 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jmsalvi -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jmsalvi -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jmsalvi ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 150000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.15), ('frame_stack', 3), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1200000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
minhhoque/vit-base-patch16-224-in21k_ft-cifar10test
minhhoque
2022-12-09T06:59:18Z
30
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-08T05:28:46Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: vit-base-patch16-224-in21k_ft-cifar10test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k_ft-cifar10test This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
shripadbhat/whisper-tiny-mr
shripadbhat
2022-12-09T06:56:18Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "mr", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T05:13:59Z
--- language: - mr license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Tiny Marathi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mr split: test args: mr metrics: - name: Wer type: wer value: 41.645121785276906 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny Marathi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4618 - Wer: 41.6451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6182 | 0.95 | 200 | 0.6224 | 53.6706 | | 0.4364 | 1.9 | 400 | 0.5200 | 47.2071 | | 0.3668 | 2.84 | 600 | 0.4830 | 44.4890 | | 0.294 | 3.79 | 800 | 0.4671 | 42.8562 | | 0.2729 | 4.74 | 1000 | 0.4642 | 42.1214 | | 0.2401 | 5.69 | 1200 | 0.4614 | 41.6996 | | 0.2212 | 6.64 | 1400 | 0.4618 | 41.7778 | | 0.2093 | 7.58 | 1600 | 0.4618 | 41.6451 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
huam/ppo-LunarLander-v2
huam
2022-12-09T06:19:58Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T03:53:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 276.82 +/- 15.15 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
OFA-Sys/chinese-clip-vit-large-patch14-336px
OFA-Sys
2022-12-09T06:10:57Z
368
23
transformers
[ "transformers", "pytorch", "chinese_clip", "zero-shot-image-classification", "vision", "arxiv:2211.01335", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2022-11-09T09:40:25Z
--- tags: - vision widget: - src: https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/resolve/main/festival.jpg candidate_labels: 灯笼, 鞭炮, 对联 example_title: festival - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png candidate_labels: 音乐表演, 体育运动 example_title: cat & dog - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg candidate_labels: 梅西, C罗, 马奎尔 example_title: football --- # Chinese-CLIP-ViT-Large-Patch14-336px ## Introduction This is the large-version of the Chinese CLIP, with ViT-L/14@336px as the image encoder and RoBERTa-wwm-base as the text encoder. Chinese CLIP is a simple implementation of CLIP on a large-scale dataset of around 200 million Chinese image-text pairs. For more details, please refer to our technical report https://arxiv.org/abs/2211.01335 and our official github repo https://github.com/OFA-Sys/Chinese-CLIP (Welcome to star! 🔥🔥) ## Use with the official API We provide a simple code snippet to show how to use the API of Chinese-CLIP to compute the image & text embeddings and similarities. ```python from PIL import Image import requests from transformers import ChineseCLIPProcessor, ChineseCLIPModel model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-large-patch14-336px") processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-large-patch14-336px") url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg" image = Image.open(requests.get(url, stream=True).raw) # Squirtle, Bulbasaur, Charmander, Pikachu in English texts = ["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"] # compute image feature inputs = processor(images=image, return_tensors="pt") image_features = model.get_image_features(**inputs) image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True) # normalize # compute text features inputs = processor(text=texts, padding=True, return_tensors="pt") text_features = model.get_text_features(**inputs) text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True) # normalize # compute image-text similarity scores inputs = processor(text=texts, images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # probs: [[0.0219, 0.0316, 0.0043, 0.9423]] ``` However, if you are not satisfied with only using the API, feel free to check our github repo https://github.com/OFA-Sys/Chinese-CLIP for more details about training and inference. <br><br> ## Results **MUGE Text-to-Image Retrieval**: <table border="1" width="100%"> <tr align="center"> <th>Setup</th><th colspan="4">Zero-shot</th><th colspan="4">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>42.7</td><td>69.0</td><td>78.0</td><td>63.2</td><td>52.7</td><td>77.9</td><td>85.6</td><td>72.1</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>49.5</td><td>75.7</td><td>83.2</td><td>69.5</td><td>60.1</td><td>82.9</td><td>89.4</td><td>77.5</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>63.0</td><td>84.1</td><td>89.2</td><td>78.8</td><td>68.9</td><td>88.7</td><td>93.1</td><td>83.6</td> </tr> </table> <br> **Flickr30K-CN Retrieval**: <table border="1" width="120%"> <tr align="center"> <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th> </tr> <tr align="center"> <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>51.7</td><td>78.9</td><td>86.3</td><td>77.4</td><td>94.5</td><td>97.0</td><td>76.1</td><td>94.8</td><td>97.5</td><td>92.7</td><td>99.1</td><td>99.6</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>60.9</td><td>86.8</td><td>92.7</td><td>84.4</td><td>96.7</td><td>98.4</td><td>77.6</td><td>96.7</td><td>98.9</td><td>95.6</td><td>99.8</td><td>100.0</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>71.2</td><td>91.4</td><td>95.5</td><td>83.8</td><td>96.9</td><td>98.6</td><td>81.6</td><td>97.5</td><td>98.8</td><td>95.3</td><td>99.7</td><td>100.0</td> </tr> </table> <br> **COCO-CN Retrieval**: <table border="1" width="100%"> <tr align="center"> <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th> </tr> <tr align="center"> <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>53.4</td><td>80.2</td><td>90.1</td><td>74.0</td><td>94.4</td><td>98.1</td><td>55.2</td><td>81.0</td><td>90.6</td><td>73.3</td><td>94.0</td><td>98.0</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>56.4</td><td>85.0</td><td>93.1</td><td>79.1</td><td>96.5</td><td>98.9</td><td>63.3</td><td>89.3</td><td>95.7</td><td>79.3</td><td>97.1</td><td>98.7</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>69.2</td><td>89.9</td><td>96.1</td><td>81.5</td><td>96.9</td><td>99.1</td><td>63.0</td><td>86.6</td><td>92.9</td><td>83.5</td><td>97.3</td><td>99.2</td> </tr> </table> <br> **Zero-shot Image Classification**: <table border="1" width="100%"> <tr align="center"> <th>Task</th><th>CIFAR10</th><th>CIFAR100</th><th>DTD</th><th>EuroSAT</th><th>FER</th><th>FGVC</th><th>KITTI</th><th>MNIST</th><th>PC</th><th>VOC</th> </tr> <tr align="center"> <td width="150%">GIT</td><td>88.5</td><td>61.1</td><td>42.9</td><td>43.4</td><td>41.4</td><td>6.7</td><td>22.1</td><td>68.9</td><td>50.0</td><td>80.2</td> </tr> <tr align="center"> <td width="150%">ALIGN</td><td>94.9</td><td>76.8</td><td>66.1</td><td>52.1</td><td>50.8</td><td>25.0</td><td>41.2</td><td>74.0</td><td>55.2</td><td>83.0</td> </tr> <tr align="center"> <td width="150%">CLIP</td><td>94.9</td><td>77.0</td><td>56.0</td><td>63.0</td><td>48.3</td><td>33.3</td><td>11.5</td><td>79.0</td><td>62.3</td><td>84.0</td> </tr> <tr align="center"> <td width="150%">Wukong</td><td>95.4</td><td>77.1</td><td>40.9</td><td>50.3</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td> </tr> <tr align="center"> <td width="150%">CN-CLIP</td><td>96.0</td><td>79.7</td><td>51.2</td><td>52.0</td><td>55.1</td><td>26.2</td><td>49.9</td><td>79.4</td><td>63.5</td><td>84.9</td> </tr> </table> <br> ## Citation If you find Chinese CLIP helpful, feel free to cite our paper. Thanks for your support! ``` @article{chinese-clip, title={Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese}, author={Yang, An and Pan, Junshu and Lin, Junyang and Men, Rui and Zhang, Yichang and Zhou, Jingren and Zhou, Chang}, journal={arXiv preprint arXiv:2211.01335}, year={2022} } ``` <br>
Hyuk/wav2vec2-korean-v1
Hyuk
2022-12-09T05:48:00Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-07T00:16:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-korean-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-korean-v1 This model is a fine-tuned version of [Hyuk/wav2vec2-korean-v1](https://huggingface.co/Hyuk/wav2vec2-korean-v1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 15 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
birgermoell/whisper-small-sv-fast
birgermoell
2022-12-09T05:37:53Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "sv", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T17:22:17Z
--- language: - sv license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Swedish Fast results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 sv-SE type: mozilla-foundation/common_voice_11_0 config: sv-SE split: test args: sv-SE metrics: - name: Wer type: wer value: 62.69218363616815 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Swedish Fast This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 sv-SE dataset. It achieves the following results on the evaluation set: - Loss: 1.8738 - Wer: 62.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 2.0512 | 6.01 | 1000 | 2.5997 | 87.1949 | | 0.4367 | 12.02 | 2000 | 1.8089 | 68.1271 | | 0.0806 | 18.03 | 3000 | 1.7969 | 63.5711 | | 0.0194 | 25.01 | 4000 | 1.8435 | 63.4663 | | 0.0121 | 31.02 | 5000 | 1.8738 | 62.6922 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
birgermoell/whisper-tiny-sv-fast
birgermoell
2022-12-09T05:26:28Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "sv", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T14:43:04Z
--- language: - sv license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Tiny Swedish Fast results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 sv-SE type: mozilla-foundation/common_voice_11_0 config: sv-SE split: test args: sv-SE metrics: - name: Wer type: wer value: 73.01634232878185 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny Swedish Fast This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_11_0 sv-SE dataset. It achieves the following results on the evaluation set: - Loss: 1.4344 - Wer: 73.0163 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5547 | 6.01 | 1000 | 1.9244 | 113.4448 | | 0.7244 | 12.02 | 2000 | 1.4593 | 81.0128 | | 0.3583 | 18.03 | 3000 | 1.4019 | 74.3415 | | 0.2157 | 25.01 | 4000 | 1.4249 | 73.8953 | | 0.1897 | 31.02 | 5000 | 1.4344 | 73.0163 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Gladiator/albert-large-v2_ner_conll2003
Gladiator
2022-12-09T05:07:13Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-09T04:42:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: albert-large-v2_ner_conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9396018069265518 - name: Recall type: recall value: 0.9451363177381353 - name: F1 type: f1 value: 0.9423609363201612 - name: Accuracy type: accuracy value: 0.9874810170943499 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2_ner_conll2003 This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0584 - Precision: 0.9396 - Recall: 0.9451 - F1: 0.9424 - Accuracy: 0.9875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2034 | 1.0 | 878 | 0.0653 | 0.9114 | 0.9278 | 0.9195 | 0.9837 | | 0.0561 | 2.0 | 1756 | 0.0602 | 0.9316 | 0.9280 | 0.9298 | 0.9845 | | 0.0303 | 3.0 | 2634 | 0.0536 | 0.9380 | 0.9424 | 0.9402 | 0.9872 | | 0.0177 | 4.0 | 3512 | 0.0535 | 0.9393 | 0.9456 | 0.9425 | 0.9877 | | 0.011 | 5.0 | 4390 | 0.0584 | 0.9396 | 0.9451 | 0.9424 | 0.9875 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
schrilax/PPO-LunarLander-v2
schrilax
2022-12-09T04:48:19Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T04:47:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 238.46 +/- 22.84 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jibi2906/my-finetuned-distilbert
jibi2906
2022-12-09T04:38:42Z
5
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-09T04:38:30Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-finetuned-distilbert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-finetuned-distilbert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6482 - Validation Loss: 1.3103 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.6482 | 1.3103 | 0 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
Gladiator/roberta-large_ner_conll2003
Gladiator
2022-12-09T04:24:37Z
7,986
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-09T03:45:56Z
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large_ner_conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9622389306599833 - name: Recall type: recall value: 0.9692022887916526 - name: F1 type: f1 value: 0.9657080573488722 - name: Accuracy type: accuracy value: 0.9939449398387913 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large_ner_conll2003 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0345 - Precision: 0.9622 - Recall: 0.9692 - F1: 0.9657 - Accuracy: 0.9939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1227 | 1.0 | 878 | 0.0431 | 0.9511 | 0.9559 | 0.9535 | 0.9914 | | 0.0295 | 2.0 | 1756 | 0.0334 | 0.9541 | 0.9657 | 0.9599 | 0.9930 | | 0.0163 | 3.0 | 2634 | 0.0327 | 0.9616 | 0.9682 | 0.9649 | 0.9938 | | 0.0073 | 4.0 | 3512 | 0.0342 | 0.9624 | 0.9692 | 0.9658 | 0.9939 | | 0.0042 | 5.0 | 4390 | 0.0345 | 0.9622 | 0.9692 | 0.9657 | 0.9939 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
flamesbob/skyfireModel
flamesbob
2022-12-09T02:53:53Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-09T01:59:01Z
--- license: creativeml-openrail-m ---
chailatte/steven-universe
chailatte
2022-12-09T02:53:19Z
0
1
null
[ "license:unknown", "region:us" ]
null
2022-12-09T02:42:44Z
--- license: unknown --- Token: su_mdl Class: style Example: 1girl, grin, solo, female focus, smile, sparkling eyes, shiny hair, su_mdl style I get good results using these negative prompts: bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry With a CFG Scale of 11. This is trained on top of Anything.ckpt using 100 screenshots from Steven Universe at 10k steps.
YesIfwRONG/Zero
YesIfwRONG
2022-12-09T02:48:50Z
0
0
null
[ "region:us" ]
null
2022-12-09T02:48:01Z
This is a capstone project serving for training the model and exploring implementation on AIs.
PiyarSquare/sd_asim_simpsons
PiyarSquare
2022-12-09T01:38:31Z
0
41
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-08T22:16:20Z
--- license: creativeml-openrail-m --- ### 💥🎨 The Simpsons dreambooth model. This is a fine-tuned Stable Diffusion model based on The Simpsons. Use **asim style** in your prompts. The model has some trouble with double pupils and no pupils. Using "cross-eyed" in the negative prompt appears to help? ### Sample images: Samples are made with [dynamic prompts](https://github.com/adieyal/sd-dynamic-prompts), Euler 80 steps @ CFG 12. Negative prompts: watermark, text, signature, cross-eyed ![asim.jpg](https://huggingface.co/PiyarSquare/sd_asim_simpsons/resolve/main/grid_famous_people.png) ![asim.jpg](https://huggingface.co/PiyarSquare/sd_asim_simpsons/resolve/main/grid_famous_people2.png) ![asim.jpg](https://huggingface.co/PiyarSquare/sd_asim_simpsons/resolve/main/grid_characters.png) For people / characters: asim style. dramatic beautiful { headshot | portrait } of \_\_person\_\_ {outside { in a garden | in a desert | on a mountain top | at a roman ruin} {at sunrise | at sunset | on an overcast afternoon | in the rain | in the snow | at night} | inside {a fancy living room | on a movie set | a vast empty dark space | a kaleidoscope | an ancient library} with {spotlights | neon lights | soft mood lighting | firefly lights } }. detailed background. ![asim.jpg](https://huggingface.co/PiyarSquare/sd_asim_simpsons/resolve/main/grid_animals.png) For animals: asim style. dramatic closeup national geographic image of a \_\_animal\_\_ in its natural habitat. at {sunrise|sunset|night}. detailed background. ![asim.jpg](https://huggingface.co/PiyarSquare/sd_asim_simpsons/resolve/main/grid_buildings.png) asim style. + random prompt from the internet of cool looking structures: steampunk library, tower of babel, tree house, haunted victorian. ![asim.jpg](https://huggingface.co/PiyarSquare/sd_asim_simpsons/resolve/main/grid_landscapes.png) ![asim.jpg](https://huggingface.co/PiyarSquare/sd_asim_simpsons/resolve/main/grid_famous_places.png) biomes: asim style. a beautiful {summer | autumn | winter | spring } landscape panorama painting of \_\_biome\_\_ {at sunrise | at sunset | on an overcast afternoon | in the rain | in the snow | at night} famous places: asim style. a beautiful panorama view of \_\_places\_\_ {at sunrise | at sunset | on a cloudy afternoon | in the rain | covered in snow}. ![asim.jpg](https://huggingface.co/PiyarSquare/sd_asim_simpsons/resolve/main/grid_flowers.png) flowers: asim style. a beautiful vase of \_\_flower\_\_ flowers. on a balcony table at { sunrise | sunset | night} . nearby a {bottle of {beer | wine} and a half-empty glass | bowl of fruit}. ![asim.jpg](https://huggingface.co/PiyarSquare/sd_asim_simpsons/resolve/main/grid_internet_examples.png) ![asim.jpg](https://huggingface.co/PiyarSquare/sd_asim_simpsons/resolve/main/grid_internet_examples2.png) asim style. + random prompt from the internet. The model mixes well with existing prompts with artists and styles, though not so well with keywords like "photo-realistic." Based on StableDiffusion 1.5 model (full weights). ### Training Made with [automatic1111 webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) + [d8ahazard dreambooth extension](https://github.com/d8ahazard/sd_dreambooth_extension) + [nitrosocke guide](https://github.com/nitrosocke/dreambooth-training-guide). 100 hand-cut training images. About 70% people, 20% landscapes and 10% animals and objects. Maybe one too many Cletus. Detailed captions were written for each image such as: "A wide shot of a 40-year-old Caucasian man with glasses and a mustache. Dressed in a fishing hat, pink shirt, an olive fishing vest with pockets and brown trousers, sitting in a canoe on a lake. The man is fishing with a red fishing rod. There are trees and mountains in the background at sunset with a few clouds in the sky." Learning rate was 1.72e-6 for 10,000 steps without prior preservation. Useful tips from the reddit stablediffusion and the discussions on d8ahazard's extension. Notes on training on [d8ahazard dreambooth extension discussion](https://github.com/d8ahazard/sd_dreambooth_extension/discussions/443). I am excited to see what people do with this and I would like to improve the eyes, if anyone has suggestions.
ypluit/stt_kr_citrinet1024_PublicCallCenter_1000H
ypluit
2022-12-09T01:24:30Z
2
0
nemo
[ "nemo", "automatic-speech-recognition", "speech", "audio", "Citrinet1024", "NeMo", "pytorch", "kr", "dataset:RealCallData", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-12-09T01:18:30Z
--- language: - kr license: cc-by-4.0 library_name: nemo datasets: - RealCallData thumbnail: null tags: - automatic-speech-recognition - speech - audio - Citrinet1024 - NeMo - pytorch model-index: - name: stt_kr_citrinet1024_PublicCallCenter_1000H results: [] --- ## Model Overview <DESCRIBE IN ONE LINE THE MODEL AND ITS USE> ## NVIDIA NeMo: Training To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version. ``` pip install nemo_toolkit['all'] ``` ## How to Use this Model The model is available for use in the NeMo toolkit [1], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.ASRModel.from_pretrained("ypluit/stt_kr_citrinet1024_PublicCallCenter_1000H") ``` ### Transcribing using Python First, let's get a sample ``` get any korean telephone voice wave file ``` Then simply do: ``` asr_model.transcribe(['sample-kr.wav']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="model" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16000Hz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture See nemo toolkit and reference papers. ## Training Learned about 10 days on 2 A6000 ### Datasets Private call center real data (650hour) ## Performance 0.13 CER ## Limitations This model was trained with 650 hours of Korean telephone voice data for customer service in a call center. might be Poor performance for general-purpose dialogue and specific accents. ## References [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
SatCat/ppo-Huggy
SatCat
2022-12-09T01:14:23Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-09T01:14:17Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: SatCat/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
izumi-lab/electra-small-japanese-discriminator
izumi-lab
2022-12-09T00:41:39Z
14
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "ja", "dataset:wikipedia", "arxiv:2003.10555", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: 東京大学で[MASK]の研究をしています。 --- # ELECTRA small Japanese discriminator This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as ELECTRA small in the [original ELECTRA implementation](https://github.com/google-research/electra); 12 layers, 256 dimensions of hidden states, and 4 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The corpus file is 2.9GB, consisting of approximately 20M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555) except size; 128 tokens per instance, 128 instances per batch, and 1M training steps. The size of the generator is the same of the discriminator. ## Citation ``` @article{Suzuki-etal-2023-ipm, title = {Constructing and analyzing domain-specific language model for financial text mining} author = {Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, journal = {Information Processing & Management}, volume = {60}, number = {2}, pages = {103194}, year = {2023}, doi = {10.1016/j.ipm.2022.103194} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
izumi-lab/bert-small-japanese-fin
izumi-lab
2022-12-09T00:41:24Z
7,535
2
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "finance", "ja", "arxiv:2003.10555", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 tags: - finance widget: - text: 流動[MASK]は、1億円となりました。 --- # BERT small Japanese finance This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as BERT small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 12 layers, 256 dimensions of hidden states, and 4 attention heads. ## Training Data The models are trained on Wikipedia corpus and financial corpus. The Wikipedia corpus is generated from the Japanese Wikipedia dump file as of June 1, 2021. The corpus file is 2.9GB, consisting of approximately 20M sentences. The financial corpus consists of 2 corpora: - Summaries of financial results from October 9, 2012, to December 31, 2020 - Securities reports from February 8, 2018, to December 31, 2020 The financial corpus file is 5.2GB, consisting of approximately 27M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as BERT small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 128 tokens per instance, 128 instances per batch, and 1.45M training steps. ## Citation ``` @article{Suzuki-etal-2023-ipm, title = {Constructing and analyzing domain-specific language model for financial text mining} author = {Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, journal = {Information Processing & Management}, volume = {60}, number = {2}, pages = {103194}, year = {2023}, doi = {10.1016/j.ipm.2022.103194} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
izumi-lab/bert-small-japanese
izumi-lab
2022-12-09T00:40:57Z
1,069
5
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "ja", "dataset:wikipedia", "arxiv:2003.10555", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: 東京大学で[MASK]の研究をしています。 --- # BERT small Japanese finance This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as BERT small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 12 layers, 256 dimensions of hidden states, and 4 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The corpus file is 2.9GB, consisting of approximately 20M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as BERT small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 128 tokens per instance, 128 instances per batch, and 1.45M training steps. ## Citation ``` @article{Suzuki-etal-2023-ipm, title = {Constructing and analyzing domain-specific language model for financial text mining} author = {Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, journal = {Information Processing & Management}, volume = {60}, number = {2}, pages = {103194}, year = {2023}, doi = {10.1016/j.ipm.2022.103194} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
AleBurzio/bloom-560M-riddles
AleBurzio
2022-12-09T00:39:35Z
6
0
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "generated_from_trainer", "dataset:pszemraj/riddlesense_plusplus", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-06T00:26:33Z
--- license: bigscience-bloom-rail-1.0 tags: - generated_from_trainer datasets: - pszemraj/riddlesense_plusplus model-index: - name: tst-modeling results: [] parameters: min_length: 16 max_length: 96 no_repeat_ngram_size: 1 do_sample: True pipeline_tag: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tst-modeling This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the pszemraj/riddlesense_plusplus dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.0 - Tokenizers 0.13.2
izumi-lab/electra-small-paper-japanese-fin-discriminator
izumi-lab
2022-12-09T00:39:05Z
4
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "finance", "ja", "arxiv:2003.10555", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 tags: - finance widget: - text: 流動[MASK]は1億円となりました。 --- # ELECTRA small Japanese finance discriminator This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 12 layers, 256 dimensions of hidden states, and 4 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The Wikipedia corpus file is 2.9GB, consisting of approximately 20M sentences. The financial corpus consists of 2 corpora: - Summaries of financial results from October 9, 2012, to December 31, 2020 - Securities reports from February 8, 2018, to December 31, 2020 The financial corpus file is 5.2GB, consisting of approximately 27M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 128 tokens per instance, 128 instances per batch, and 1M training steps. ## Citation ``` @article{Suzuki-etal-2023-ipm, title = {Constructing and analyzing domain-specific language model for financial text mining} author = {Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, journal = {Information Processing & Management}, volume = {60}, number = {2}, pages = {103194}, year = {2023}, doi = {10.1016/j.ipm.2022.103194} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
izumi-lab/electra-small-paper-japanese-discriminator
izumi-lab
2022-12-09T00:38:44Z
1
1
transformers
[ "transformers", "pytorch", "electra", "pretraining", "ja", "dataset:wikipedia", "arxiv:2003.10555", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: 東京大学で[MASK]の研究をしています。 --- # ELECTRA small Japanese discriminator This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 12 layers, 256 dimensions of hidden states, and 4 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The corpus file is 2.9GB, consisting of approximately 20M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 128 tokens per instance, 128 instances per batch, and 1M training steps. The size of the generator is 1/4 of the size of the discriminator. ## Citation ``` @article{Suzuki-etal-2023-ipm, title = {Constructing and analyzing domain-specific language model for financial text mining} author = {Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, journal = {Information Processing & Management}, volume = {60}, number = {2}, pages = {103194}, year = {2023}, doi = {10.1016/j.ipm.2022.103194} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
teddy322/wav2vec2-large-xls-r-300m-kor-11385-2
teddy322
2022-12-09T00:30:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:zeroth_korean_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-05T08:41:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - zeroth_korean_asr model-index: - name: wav2vec2-large-xls-r-300m-kor-11385-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-kor-11385-2 This model is a fine-tuned version of [teddy322/wav2vec2-large-xls-r-300m-kor-11385](https://huggingface.co/teddy322/wav2vec2-large-xls-r-300m-kor-11385) on the zeroth_korean_asr dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2059 - eval_wer: 0.1471 - eval_runtime: 136.7247 - eval_samples_per_second: 3.342 - eval_steps_per_second: 0.424 - epoch: 6.47 - step: 4400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 12 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
wenjalan/starbot-transformers
wenjalan
2022-12-09T00:30:53Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-06T01:31:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: starbot-transformers results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # starbot-transformers This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.3942 | 1.0 | 2992 | 3.3385 | | 3.2566 | 2.0 | 5984 | 3.2760 | | 3.4112 | 3.0 | 8976 | 3.4710 | | 3.4887 | 4.0 | 11968 | 3.5264 | | 3.4856 | 5.0 | 14960 | 3.5181 | | 3.4359 | 6.0 | 17952 | 3.5079 | | 3.4115 | 7.0 | 20944 | 3.4954 | | 3.3657 | 8.0 | 23936 | 3.4482 | | 3.3018 | 9.0 | 26928 | 3.4207 | | 3.2435 | 10.0 | 29920 | 3.4079 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
matttrent/sd-image-variations-diffusers
matttrent
2022-12-09T00:18:55Z
4
6
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "image-to-image", "dataset:ChristophSchuhmann/improved_aesthetics_6plus", "license:other", "diffusers:StableDiffusionImageVariationEmbedsPipeline", "region:us" ]
image-to-image
2022-12-03T18:50:46Z
--- thumbnail: >- https://repository-images.githubusercontent.com/523487884/fdb03a69-8353-4387-b5fc-0d85f888a63f datasets: - ChristophSchuhmann/improved_aesthetics_6plus license: other tags: - stable-diffusion - stable-diffusion-diffusers - image-to-image duplicated_from: lambdalabs/sd-image-variations-diffusers --- # Stable Diffusion Image Variations Model Card This version of Stable Diffusion has been fine tuned from [CompVis/stable-diffusion-v1-3-original](https://huggingface.co/CompVis/stable-diffusion-v-1-3-original) to accept CLIP image embedding rather than text embeddings. This allows the creation of "image variations" similar to DALLE-2 using Stable Diffusion. This version of the weights has been ported to huggingface Diffusers, to use this with the Diffusers library requires the [Lambda Diffusers repo](https://github.com/LambdaLabsML/lambda-diffusers). ![](https://raw.githubusercontent.com/justinpinkney/stable-diffusion/main/assets/im-vars-thin.jpg) ## Example First clone [Lambda Diffusers](https://github.com/LambdaLabsML/lambda-diffusers) and install any requirements (in a virtual environment in the example below): ```bash git clone https://github.com/LambdaLabsML/lambda-diffusers.git cd lambda-diffusers python -m venv .venv source .venv/bin/activate pip install -r requirements.txt ``` Then run the following python code: ```python from pathlib import Path from lambda_diffusers import StableDiffusionImageEmbedPipeline from PIL import Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipe = StableDiffusionImageEmbedPipeline.from_pretrained("lambdalabs/sd-image-variations-diffusers") pipe = pipe.to(device) im = Image.open("your/input/image/here.jpg") num_samples = 4 image = pipe(num_samples*[im], guidance_scale=3.0) image = image["sample"] base_path = Path("outputs/im2im") base_path.mkdir(exist_ok=True, parents=True) for idx, im in enumerate(image): im.save(base_path/f"{idx:06}.jpg") ``` # Training **Training Data** The model developers used the following dataset for training the model: - LAION-2B (en) and subsets thereof (see next section) **Training Procedure** This model is fine tuned from Stable Diffusion v1-3 where the text encoder has been replaced with an image encoder. The training procedure is the same as for Stable Diffusion except for the fact that images are encoded through a ViT-L/14 image-encoder including the final projection layer to the CLIP shared embedding space. - **Hardware:** 4 x A6000 GPUs (provided by [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud)) - **Optimizer:** AdamW - **Gradient Accumulations**: 1 - **Steps**: 87,000 - **Batch:** 6 x 4 = 24 - **Learning rate:** warmup to 0.0001 for 1,000 steps and then kept constant Training was done using a [modified version of the original Stable Diffusion training code]((https://github.com/justinpinkney/stable-diffusion), the original version of the weights is [here](https://huggingface.co/lambdalabs/stable-diffusion-image-conditioned). # Uses _The following section is adapted from the [Stable Diffusion model card](https://huggingface.co/CompVis/stable-diffusion-v1-4)_ ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material and is not fit for product use without additional safety mechanisms and considerations. - No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data. The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. ### Safety Module The intended use of this model is with the [Safety Checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) in Diffusers. This checker works by checking model outputs against known hard-coded NSFW concepts. The concepts are intentionally hidden to reduce the likelihood of reverse-engineering this filter. Specifically, the checker compares the class probability of harmful concepts in the embedding space of the `CLIPModel` *after generation* of the images. The concepts are passed into the model with the generated image and compared to a hand-engineered weight for each NSFW concept. *This model card was written by: Justin Pinkney and is based on the [Stable Diffusion model card](https://huggingface.co/CompVis/stable-diffusion-v1-4).*
mtlulka/ppo-Huggy_unit1_bonus
mtlulka
2022-12-09T00:12:48Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-09T00:12:40Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: maciekov01/ppo-Huggy_unit1_bonus 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
log0/ppo-LunarLander-v2
log0
2022-12-08T23:50:27Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-08T21:27:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 182.69 +/- 91.27 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
qiaokuoyuan/autotrain-medical-2387774761
qiaokuoyuan
2022-12-08T23:15:46Z
9
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "zh", "dataset:qiaokuoyuan/autotrain-data-medical-cfa966ee", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-12-08T23:15:13Z
--- tags: - autotrain - token-classification language: - zh widget: - text: "I love AutoTrain 🤗" datasets: - qiaokuoyuan/autotrain-data-medical-cfa966ee co2_eq_emissions: emissions: 0.7237073793849912 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 2387774761 - CO2 Emissions (in grams): 0.7237 ## Validation Metrics - Loss: 0.032 - Accuracy: 0.990 - Precision: 0.000 - Recall: 0.000 - F1: 0.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/qiaokuoyuan/autotrain-medical-2387774761 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("qiaokuoyuan/autotrain-medical-2387774761", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("qiaokuoyuan/autotrain-medical-2387774761", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
mnavas/ppo-doggy
mnavas
2022-12-08T23:03:56Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-08T23:03:48Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: mnavas/ppo-doggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
HideOnBush/BERTModified-fullsize-finetuned-wikitext-test
HideOnBush
2022-12-08T22:43:41Z
0
0
null
[ "pytorch", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2022-12-08T19:49:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERTModified-fullsize-finetuned-wikitext-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERTModified-fullsize-finetuned-wikitext-test This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.7813 - Precision: 0.1094 - Recall: 0.1094 - F1: 0.1094 - Accuracy: 0.1094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 9.2391 | 1.0 | 4382 | 8.1610 | 0.0373 | 0.0373 | 0.0373 | 0.0373 | | 7.9147 | 2.0 | 8764 | 7.6870 | 0.0635 | 0.0635 | 0.0635 | 0.0635 | | 7.5164 | 3.0 | 13146 | 7.4388 | 0.0727 | 0.0727 | 0.0727 | 0.0727 | | 7.2439 | 4.0 | 17528 | 7.2088 | 0.0930 | 0.0930 | 0.0930 | 0.0930 | | 7.1068 | 5.0 | 21910 | 7.0455 | 0.0943 | 0.0943 | 0.0943 | 0.0943 | | 6.9711 | 6.0 | 26292 | 6.9976 | 0.1054 | 0.1054 | 0.1054 | 0.1054 | | 6.8486 | 7.0 | 30674 | 6.8850 | 0.1054 | 0.1054 | 0.1054 | 0.1054 | | 6.78 | 8.0 | 35056 | 6.7990 | 0.1153 | 0.1153 | 0.1153 | 0.1153 | | 6.73 | 9.0 | 39438 | 6.8041 | 0.1074 | 0.1074 | 0.1074 | 0.1074 | | 6.6921 | 10.0 | 43820 | 6.7412 | 0.1251 | 0.1251 | 0.1251 | 0.1251 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.2
jinghua2tang/ppo-Huggy
jinghua2tang
2022-12-08T22:38:13Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-08T22:38:06Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: jinghua2tang/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mtlulka/ppo-LunarLander_unit1_base
mtlulka
2022-12-08T22:35:53Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-08T22:35:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO_MlpPolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 249.01 +/- 13.07 name: mean_reward verified: false --- # **PPO_MlpPolicy** Agent playing **LunarLander-v2** This is a trained model of a **PPO_MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
evageon/whisper-tiny-ar
evageon
2022-12-08T22:34:04Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T15:41:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-tiny-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-ar This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8394 - Wer: 86.0500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.0265 | 1.0 | 122 | 1.0110 | 98.4608 | | 0.9208 | 2.0 | 244 | 0.9148 | 88.3812 | | 0.8169 | 3.0 | 366 | 0.8394 | 86.0500 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
burakyldrm/wav2vec2-burak-new-300-v2-8-medium
burakyldrm
2022-12-08T22:30:07Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T13:12:25Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-burak-new-300-v2-8-medium results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-burak-new-300-v2-8-medium This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4311 - Wer: 0.2602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 151 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 2.7459 | 9.43 | 500 | 0.3843 | 0.4597 | | 0.579 | 18.87 | 1000 | 0.3006 | 0.3668 | | 0.2662 | 28.3 | 1500 | 0.3760 | 0.3503 | | 0.1936 | 37.74 | 2000 | 0.3631 | 0.3214 | | 0.157 | 47.17 | 2500 | 0.3838 | 0.3063 | | 0.1307 | 56.6 | 3000 | 0.3671 | 0.3056 | | 0.1138 | 66.04 | 3500 | 0.3700 | 0.2959 | | 0.1002 | 75.47 | 4000 | 0.4164 | 0.3014 | | 0.0874 | 84.91 | 4500 | 0.4001 | 0.2973 | | 0.0791 | 94.34 | 5000 | 0.3883 | 0.2911 | | 0.0667 | 103.77 | 5500 | 0.4220 | 0.2780 | | 0.0581 | 113.21 | 6000 | 0.4163 | 0.2670 | | 0.0506 | 122.64 | 6500 | 0.4065 | 0.2753 | | 0.043 | 132.08 | 7000 | 0.4279 | 0.2643 | | 0.0386 | 141.51 | 7500 | 0.4284 | 0.2650 | | 0.0341 | 150.94 | 8000 | 0.4311 | 0.2602 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
ksaml/ppo-Huggy
ksaml
2022-12-08T22:26:22Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-08T22:26:13Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: ksaml/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
reyrobs/whisper-small-hi-2000-temp
reyrobs
2022-12-08T22:15:21Z
4
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T21:59:54Z
--- tags: - generated_from_trainer model-index: - name: whisper-small-hi-2000-temp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-hi-2000-temp This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000599 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
mnavas/hf-rl-landing
mnavas
2022-12-08T21:53:09Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-08T21:52:44Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.76 +/- 22.35 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jegormeister/setfit-model
jegormeister
2022-12-08T21:51:42Z
2
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-08T21:45:27Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 188 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 188, "warmup_steps": 19, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dim/rl_course_1
dim
2022-12-08T21:46:50Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-08T21:46:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 236.31 +/- 14.65 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
marik0/ppo-LunarLander-v2
marik0
2022-12-08T21:34:43Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-06T14:04:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.72 +/- 18.08 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ruzarx/ppo-Huggy
ruzarx
2022-12-08T21:18:24Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-08T21:09:12Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: ruzarx/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
matthh/ppo-Huggy
matthh
2022-12-08T21:08:49Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-08T21:08:43Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: matthh/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
aychang/distilbert-base-cased-trec-coarse
aychang
2022-12-08T20:36:13Z
7
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "en", "dataset:trec", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en license: mit tags: - text-classification datasets: - trec model-index: - name: aychang/distilbert-base-cased-trec-coarse results: - task: type: text-classification name: Text Classification dataset: name: trec type: trec config: default split: test metrics: - type: accuracy value: 0.97 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGNmZTQ1Mjk3YTQ0NTdiZmY2NGM2NDM2Yzc2OTI4NGNiZDg4MmViN2I0ZGZiYWJlMTg1ZDU0MTc2ZTg1NjcwZiIsInZlcnNpb24iOjF9.4x_Ze9S5MbAeIHZ4p1EFmWev8RLkAIYWKqouAzYOxTNqdfFN0HnqULiM19EMP42v658vl_fR3-Ig0xG45DioCA - type: precision value: 0.9742915631870833 name: Precision Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjA2MWVjMDc3MDYyY2M3NzY4NGNhY2JlNzJjMGQzZDUzZjE3ZWI1MjVmMzc4ODM2ZTQ4YmRhOTVkZDU0MzJiNiIsInZlcnNpb24iOjF9.EfmXJ6w5_7dK6ys03hpADP9h_sWuPAHgxpltUtCkJP4Ys_Gh8Ak4pGS149zt5AdP_zkvsWlXwAvx5BDMEoB2AA - type: precision value: 0.97 name: Precision Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDVjOGFjM2RkMDMxZTFiMzE1ZDM4OTRjMzkwOWE2NTJmMmUwMDdiZDg5ZjExYmFmZjg2Y2Y5NzcxZWVkODkwZSIsInZlcnNpb24iOjF9.BtO7DqJsUhSXE-_tJZJOPPd421VmZ3KR9-KkrhJkLNenoV2Xd6Pu6i5y6HZQhFB-9WfEhU9cCsIPQ1ioZ7dyDA - type: precision value: 0.9699546283251607 name: Precision Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGQ0Mzc2MTE2YjkwNGY1MDEzNWQwYmNlZDMzZjBmNWM0ODExYjM1OTQyZGJkNjI2OTA5MDczZjFmOGM5MmMzMyIsInZlcnNpb24iOjF9.fGi2qNpOjWd1ci3p_E1p80nOqabiKiQqpQIxtk5aWxe_Nzqh3XiOCBF8vswCRvX8qTKdCc2ZEJ4s8dZMeltfCA - type: recall value: 0.972626762268805 name: Recall Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjQwMWZiYjIyMGVhN2M1ZDE5M2EzZmQ1ODRlYzE0MzJhZmU3ZTM1MmIyNTg5ZjBlMDcyMmQ0NmYzZjFmMmM4NSIsInZlcnNpb24iOjF9.SYDxsRw0xoQuQhei0YBdUbBxG891gqLafVFLdPMCJtQIktqCTrPW0sMKtis7GA-FEbNQVu8lp92znvlryNiFCw - type: recall value: 0.97 name: Recall Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjQ0MjczYjFhZDdiMjdkMWVlZTAzYWU0ODVhNjkxN2I1N2Y1Y2IyOTNlYWQxM2UxODIyNDZhZDM3MWIwMTgzZCIsInZlcnNpb24iOjF9.C5cfDTz_H4Y7nEO4Eq_XFy92CSbo3IBuL5n8wBKkTuB6hSgctTHOdOJzV8gWyMJ9gRcNqxp_yVU4BEB_I_0KAA - type: recall value: 0.97 name: Recall Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDZmYWM3OWExZWI1ZjRiZjczYWQwOWI5NWQzNDNkODcyMjBhMmVkYjY0MGZjYzlhNWQ0Y2MyMjc3OWEyZjY4NCIsInZlcnNpb24iOjF9.65WM5ihNfbKOCNZ6apX7iVAC2Ge_cwz9Xwa5oJHFq3Ci97eBFqK-qtADdB_SFRcSQUoNodaBeIhNfe0hVddxCA - type: f1 value: 0.9729834427867218 name: F1 Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWQyZGZmYjU4NjE4M2YzMTUxOWVkYjU0YTFmYzE3MmQ2NjhmNDY1MGRmNGQ1MWZjYjM1Mzg5Y2RmNTk5YmZiMSIsInZlcnNpb24iOjF9.WIF-fmV0SZ6-lcg3Rz6TjbVl7nLvy_ftDi8PPhDIP1V61jgR1AcjLFeEgeZLxSFMdmU9yqG2DWYubF0luK0jCg - type: f1 value: 0.97 name: F1 Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDM0NDY0YzI2ZTBjYWVmZmVkOTI4ODkzM2RhNWM2ZjkwYTU3N2FjNjA4NjUwYWVjODNhMGEwMzdhYmE2YmIwYyIsInZlcnNpb24iOjF9.sihEhcsOeg8dvpuGgC-KCp1PsRNyguAif2uTBv5ELtRnM5KmMaHzRqpdpdc88Dj_DeuY6Y6qPQJt_dGk2q1rDQ - type: f1 value: 0.9694196751375908 name: F1 Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTQ5ZjdiM2NiNDNkZTY5ZjNjNWUzZmI1MzgwMjhhNDEzMTEzZjFiNDhmZDllYmI0NjIwYjY0ZjcxM2M0ODE3NSIsInZlcnNpb24iOjF9.x4oR_PL0ALHYl-s4S7cPNPm4asSX3s3h30m-TKe7wpyZs0x6jwOqF-Tb1kgd4IMLl23pzsezmh72e_PmBFpRCg - type: loss value: 0.14272506535053253 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODU3NGFiMzIxYWI4NzYxMzUxZGE5ZTZkYTlkN2U5MTI1NzA5NTBiNGM3Y2Q5YmVmZjU0MmU5MjJlZThkZTllMCIsInZlcnNpb24iOjF9.3QeWbECpJ0MHV5gC0_ES6PpwplLsCHPKuToErB1MSG69xNWVyMjKu1-1YEWZOU6dGfwKGh_HvwucY5kC9qwWBQ --- # TREC 6-class Task: distilbert-base-cased ## Model description A simple base distilBERT model trained on the "trec" dataset. ## Intended uses & limitations #### How to use ##### Transformers ```python # Load model and tokenizer from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Use pipeline from transformers import pipeline model_name = "aychang/distilbert-base-cased-trec-coarse" nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name) results = nlp(["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"]) ``` ##### AdaptNLP ```python from adaptnlp import EasySequenceClassifier model_name = "aychang/distilbert-base-cased-trec-coarse" texts = ["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"] classifer = EasySequenceClassifier results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2) ``` #### Limitations and bias This is minimal language model trained on a benchmark dataset. ## Training data TREC https://huggingface.co/datasets/trec ## Training procedure Preprocessing, hardware used, hyperparameters... #### Hardware One V100 #### Hyperparameters and Training Args ```python from transformers import TrainingArguments training_args = TrainingArguments( output_dir='./models', overwrite_output_dir=False, num_train_epochs=2, per_device_train_batch_size=16, per_device_eval_batch_size=16, warmup_steps=500, weight_decay=0.01, evaluation_strategy="steps", logging_dir='./logs', fp16=False, eval_steps=500, save_steps=300000 ) ``` ## Eval results ``` {'epoch': 2.0, 'eval_accuracy': 0.97, 'eval_f1': array([0.98220641, 0.91620112, 1. , 0.97709924, 0.98678414, 0.97560976]), 'eval_loss': 0.14275787770748138, 'eval_precision': array([0.96503497, 0.96470588, 1. , 0.96969697, 0.98245614, 0.96385542]), 'eval_recall': array([1. , 0.87234043, 1. , 0.98461538, 0.99115044, 0.98765432]), 'eval_runtime': 0.9731, 'eval_samples_per_second': 513.798} ```