modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-12 18:33:19
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 555
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-12 18:33:14
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
zates/distilbert-base-uncased-finetuned-squad-seed-420
|
zates
| 2022-12-11T00:20:35Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad_v2",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-12-10T21:34:42Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: distilbert-base-uncased-finetuned-squad-seed-420
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad-seed-420
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9590
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.4491 | 1.0 | 8248 | 2.1014 |
| 2.1388 | 2.0 | 16496 | 1.9590 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
bjubert/my_awesome_wnut_model
|
bjubert
| 2022-12-10T23:47:53Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-07T18:40:10Z |
---
tags:
- generated_from_trainer
model-index:
- name: my_awesome_wnut_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_wnut_model
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0968
- eval_overall_precision: 0.7090
- eval_overall_recall: 0.7537
- eval_overall_f1: 0.7306
- eval_overall_accuracy: 0.9731
- eval_HumanProd_f1: 0.3733
- eval_LOC_f1: 0.7596
- eval_ORG_f1: 0.5874
- eval_PER_f1: 0.7607
- eval_runtime: 123.6596
- eval_samples_per_second: 19.804
- eval_steps_per_second: 1.245
- epoch: 2.0
- step: 1226
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cpu
- Datasets 2.7.1
- Tokenizers 0.13.2
|
RamonAnkersmit/ppo-LunarLander-v3
|
RamonAnkersmit
| 2022-12-10T23:44:23Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T20:11:59Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 284.08 +/- 17.14
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
muhtasham/base-mlm-tweet
|
muhtasham
| 2022-12-10T23:42:35Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-12-10T23:14:33Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: base-mlm-tweet
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# base-mlm-tweet
This model is a fine-tuned version of [google/bert_uncased_L-12_H-768_A-12](https://huggingface.co/google/bert_uncased_L-12_H-768_A-12) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2872
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7839 | 11.11 | 500 | 2.9523 |
| 2.1262 | 22.22 | 1000 | 3.0186 |
| 1.7246 | 33.33 | 1500 | 3.4226 |
| 1.3832 | 44.44 | 2000 | 3.2872 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
Michunie/ppo-LunarLander-v2
|
Michunie
| 2022-12-10T23:39:04Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T19:31:41Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 284.30 +/- 17.28
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Vasi001/whisper-small
|
Vasi001
| 2022-12-10T23:32:04Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"generated_from_trainer",
"hi",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-10T21:57:53Z |
---
language:
- hi
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
model-index:
- name: Whisper Small Hi - Swedish
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Hi - Swedish
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2
|
muhtasham/medium-mlm-tweet
|
muhtasham
| 2022-12-10T23:13:39Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-12-10T22:56:21Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: medium-mlm-tweet
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# medium-mlm-tweet
This model is a fine-tuned version of [google/bert_uncased_L-8_H-512_A-8](https://huggingface.co/google/bert_uncased_L-8_H-512_A-8) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3983
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.1681 | 11.11 | 500 | 3.2485 |
| 2.6193 | 22.22 | 1000 | 3.2971 |
| 2.286 | 33.33 | 1500 | 3.5000 |
| 1.9916 | 44.44 | 2000 | 3.3983 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
alanrice/wav2vec2-large-xls-r-1b-irish-colab
|
alanrice
| 2022-12-10T22:39:04Z | 7 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"ga",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-10T10:21:23Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
language:
- ga
model-index:
- name: wav2vec2-large-xls-r-1b-irish-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: ga-IE
split: train+validation
args: ga-IE
metrics:
- name: Wer
type: wer
value: 46.911764705882353
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-1b-irish-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0795
- Wer: 46.91
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.6902 | 12.12 | 400 | 1.1158 | 0.5959 |
| 0.2988 | 24.24 | 800 | 1.1375 | 0.5094 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.10.0+cu113
- Datasets 2.0.0
- Tokenizers 0.13.2
|
osanseviero/q-Taxi-v3-nice
|
osanseviero
| 2022-12-10T22:16:59Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T22:16:53Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3-nice
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="osanseviero/q-Taxi-v3-nice", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
fcakyon/timesformer-large-finetuned-ssv2
|
fcakyon
| 2022-12-10T22:16:57Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"timesformer",
"video-classification",
"vision",
"arxiv:2102.05095",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
video-classification
| 2022-12-10T21:37:16Z |
---
license: "cc-by-nc-4.0"
tags:
- vision
- video-classification
---
# TimeSformer (large-sized model, fine-tuned on Something Something v2)
TimeSformer model pre-trained on [Something Something v2](https://developer.qualcomm.com/software/ai-datasets/something-something). It was introduced in the paper [TimeSformer: Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Tong et al. and first released in [this repository](https://github.com/facebookresearch/TimeSformer).
Disclaimer: The team releasing TimeSformer did not write a model card for this model so this model card has been written by [fcakyon](https://github.com/fcakyon).
## Intended uses & limitations
You can use the raw model for video classification into one of the 174 possible Something Something v2 labels.
### How to use
Here is how to use this model to classify a video:
```python
from transformers import AutoImageProcessor, TimesformerForVideoClassification
import numpy as np
import torch
video = list(np.random.randn(64, 3, 448, 448))
processor = AutoImageProcessor.from_pretrained("fcakyon/timesformer-large-finetuned-ssv2")
model = TimesformerForVideoClassification.from_pretrained("fcakyon/timesformer-large-finetuned-ssv2")
inputs = feature_extractor(images=video, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/timesformer.html#).
### BibTeX entry and citation info
```bibtex
@inproceedings{bertasius2021space,
title={Is Space-Time Attention All You Need for Video Understanding?},
author={Bertasius, Gedas and Wang, Heng and Torresani, Lorenzo},
booktitle={International Conference on Machine Learning},
pages={813--824},
year={2021},
organization={PMLR}
}
```
|
fcakyon/timesformer-base-finetuned-k600
|
fcakyon
| 2022-12-10T22:09:46Z | 2 | 0 |
transformers
|
[
"transformers",
"pytorch",
"timesformer",
"video-classification",
"vision",
"arxiv:2102.05095",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
video-classification
| 2022-12-10T21:53:59Z |
---
license: "cc-by-nc-4.0"
tags:
- vision
- video-classification
---
# TimeSformer (base-sized model, fine-tuned on Kinetics-600)
TimeSformer model pre-trained on [Kinetics-600](https://www.deepmind.com/open-source/kinetics). It was introduced in the paper [TimeSformer: Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Tong et al. and first released in [this repository](https://github.com/facebookresearch/TimeSformer).
Disclaimer: The team releasing TimeSformer did not write a model card for this model so this model card has been written by [fcakyon](https://github.com/fcakyon).
## Intended uses & limitations
You can use the raw model for video classification into one of the 600 possible Kinetics-600 labels.
### How to use
Here is how to use this model to classify a video:
```python
from transformers import AutoImageProcessor, TimesformerForVideoClassification
import numpy as np
import torch
video = list(np.random.randn(8, 3, 224, 224))
processor = AutoImageProcessor.from_pretrained("fcakyon/timesformer-base-finetuned-k600")
model = TimesformerForVideoClassification.from_pretrained("fcakyon/timesformer-base-finetuned-k600")
inputs = processor(images=video, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/timesformer.html#).
### BibTeX entry and citation info
```bibtex
@inproceedings{bertasius2021space,
title={Is Space-Time Attention All You Need for Video Understanding?},
author={Bertasius, Gedas and Wang, Heng and Torresani, Lorenzo},
booktitle={International Conference on Machine Learning},
pages={813--824},
year={2021},
organization={PMLR}
}
```
|
sanchit-gandhi/whisper-small-ka-1k-steps
|
sanchit-gandhi
| 2022-12-10T22:08:34Z | 24 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"ka",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-10T18:20:55Z |
---
language:
- ka
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Georgian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 ka
type: mozilla-foundation/common_voice_11_0
config: ka
split: test
args: ka
metrics:
- name: Wer
type: wer
value: 43.47641759406466
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Georgian
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 ka dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1322
- Wer: 43.4764
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0056 | 6.13 | 1000 | 0.1322 | 43.4764 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 2.0.0.dev20221210+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
SwePalm/ppo-LunarLander-v2
|
SwePalm
| 2022-12-10T22:05:12Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-05T21:12:54Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 284.47 +/- 14.71
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
osanseviero/q-FrozenLake-v1-4x4-noSlippery-test
|
osanseviero
| 2022-12-10T21:58:02Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T21:46:27Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery-test
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="osanseviero/q-FrozenLake-v1-4x4-noSlippery-test", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
|
xpariz10/ast-finetuned-audioset-10-10-0.4593-finetuning-ESC-50
|
xpariz10
| 2022-12-10T21:55:51Z | 38 | 1 |
transformers
|
[
"transformers",
"pytorch",
"audio-spectrogram-transformer",
"audio-classification",
"generated_from_trainer",
"license:bsd-3-clause",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2022-12-07T17:18:03Z |
---
license: bsd-3-clause
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuning-ESC-50
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ast-finetuned-audioset-10-10-0.4593-finetuning-ESC-50
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the ESC-50 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3356
- Accuracy: 0.9464
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0621 | 1.0 | 28 | 0.4656 | 0.875 |
| 0.0694 | 2.0 | 56 | 0.3050 | 0.9107 |
| 0.0157 | 3.0 | 84 | 0.3356 | 0.9464 |
| 0.0038 | 4.0 | 112 | 0.3175 | 0.9286 |
| 0.0011 | 5.0 | 140 | 0.2579 | 0.9286 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|
Efimov6886/row3_96
|
Efimov6886
| 2022-12-10T21:31:29Z | 22 | 0 |
transformers
|
[
"transformers",
"pytorch",
"autotrain",
"vision",
"image-classification",
"dataset:Efimov6886/autotrain-data-row3",
"co2_eq_emissions",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-12-10T21:30:38Z |
---
tags:
- autotrain
- vision
- image-classification
datasets:
- Efimov6886/autotrain-data-row3
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
co2_eq_emissions:
emissions: 0.35759747813416576
---
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 2405775204
- CO2 Emissions (in grams): 0.3576
## Validation Metrics
- Loss: 0.268
- Accuracy: 0.960
- Macro F1: 0.946
- Micro F1: 0.960
- Weighted F1: 0.960
- Macro Precision: 0.966
- Micro Precision: 0.960
- Weighted Precision: 0.964
- Macro Recall: 0.934
- Micro Recall: 0.960
- Weighted Recall: 0.960
|
janzw/ppo-lunar-lander-v2
|
janzw
| 2022-12-10T21:19:24Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T21:18:59Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 255.46 +/- 68.04
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Leilab/gender_class
|
Leilab
| 2022-12-10T21:18:02Z | 1,020 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-12-10T21:17:51Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: gender_class
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9555555582046509
---
# gender_class
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### men

#### women

|
mgarciav/ppo-LunarLander-v2-t1
|
mgarciav
| 2022-12-10T20:09:06Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-09T20:58:22Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 281.85 +/- 13.77
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
RamonAnkersmit/ppo-LunarLander-v2
|
RamonAnkersmit
| 2022-12-10T20:08:18Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-09T17:59:48Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 273.85 +/- 20.21
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
eduyio/ppo-LunarLander-v2
|
eduyio
| 2022-12-10T19:07:49Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T19:07:25Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 259.90 +/- 18.83
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
admarcosai/ppo-Huggy
|
admarcosai
| 2022-12-10T19:03:05Z | 3 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2022-12-10T19:02:57Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: dmarcos/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
uzn/ddpm-trucks
|
uzn
| 2022-12-10T18:50:41Z | 0 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"en",
"dataset:uzn/truck",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
] | null | 2022-12-10T13:15:02Z |
---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: uzn/truck
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-trucks
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `uzn/truck` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/uzn/ddpm-trucks/tensorboard?#scalars)
|
Gueze/ppo-Huggy
|
Gueze
| 2022-12-10T18:50:36Z | 10 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2022-12-10T18:50:28Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: Gueze/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
hug-face-lampros/ppo-LunarLander-v2
|
hug-face-lampros
| 2022-12-10T18:39:25Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T18:38:55Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 265.62 +/- 20.51
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Lilya/distilbert-base-uncased-finetuned-ner-invoiceSenderName
|
Lilya
| 2022-12-10T18:39:24Z | 13 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-09T14:43:41Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner-invoiceSenderName
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner-invoiceSenderName
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0254
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9924
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| 0.0306 | 1.0 | 1956 | 0.0273 | 0.0 | 0.0 | 0.0 | 0.9901 |
| 0.0195 | 2.0 | 3912 | 0.0240 | 0.0 | 0.0 | 0.0 | 0.9914 |
| 0.0143 | 3.0 | 5868 | 0.0251 | 0.0 | 0.0 | 0.0 | 0.9921 |
| 0.0107 | 4.0 | 7824 | 0.0254 | 0.0 | 0.0 | 0.0 | 0.9924 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1
- Datasets 2.3.2
- Tokenizers 0.10.3
|
Adder/ppo-LunarLander-v2-01
|
Adder
| 2022-12-10T18:35:54Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T18:35:17Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 241.28 +/- 54.61
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
microsoft/SportsBERT
|
microsoft
| 2022-12-10T18:18:40Z | 524 | 19 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
Pretraining large natural language processing models such as BERT, RoBERTa, etc are now state of the art models in natural language understanding and processing tasks. However, these models are trained on a general corpus of articles from the web or from repositories like quora, wikipedia, etc which contain articles of all domains and backgrounds. Training domain specific language model has proven to perform better than pretrained general models in domains like Medicine. With that knowledge, we went on to train a sports specific BERT based transformers model, SportsBERT.
SportsBERT is a BERT model trained from scratch with specific focus on sports articles. The training corpus included news articles scraped from the web related to sports from the past 4 years. These articles covered news from Football, Basketball, Hockey, Cricket, Soccer, Baseball, Olympics, Tennis, Golf, MMA, etc. There were approximately 8 million training samples which were used to train this model. A tokenizer was trained from scratch to include more sports related tokens to the vocabulary. The architecture used in this model is the BERT base uncased architecture. The model was trained on four V100 GPUs. It's a MLM based transformers model and the primary task of the model is to fill in missing masked tokens. For example,
"Anthony Davis is a [MASK]" would give out the tokens "legend", "superstar", "rookie", "star", "king" in descending confidences.
This model can then be used to fine tune for other tasks such as classification, entity extraction, etc.
Language: English
pipeline_tag: fill-mask
Authors: Prithvishankar Srinivasan (prsrini@microsoft.com)
|
osbm/ppo-LunarLander-v2
|
osbm
| 2022-12-10T18:05:13Z | 3 | 2 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T17:32:58Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 266.95 +/- 18.09
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import PPO
from huggingface_sb3 import load_from_hub
repo_id = "osbm/ppo-LunarLander-v2-2"
filename = "ppo-LunarLander-v2.zip"
custom_objects = {
"learning_rate": 0.0,
"lr_schedule": lambda _: 0.0,
"clip_range": lambda _: 0.0,
}
checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True)
```
|
austinzheng/ppo-Huggy
|
austinzheng
| 2022-12-10T18:01:49Z | 8 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2022-12-10T18:01:26Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: austinzheng/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
bitsanlp/roberta-finetuned-DA-250k
|
bitsanlp
| 2022-12-10T17:56:12Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-12-10T17:31:45Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: roberta-finetuned-DA-250k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-finetuned-DA-250k
This model is a fine-tuned version of [bitsanlp/roberta-retrained-250k](https://huggingface.co/bitsanlp/roberta-retrained-250k) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 28
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
bitsanlp/roberta-retrained-250k
|
bitsanlp
| 2022-12-10T17:18:00Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-12-10T15:35:24Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: roberta-retrained-250k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-retrained-250k
This model is a fine-tuned version of [bitsanlp/roberta-retrained_100k](https://huggingface.co/bitsanlp/roberta-retrained_100k) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
PakanunNoa/ppo-LunarLander-v2
|
PakanunNoa
| 2022-12-10T17:17:24Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T17:17:03Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 261.00 +/- 21.48
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
yonas/stt_rw_conformer_ctc_large
|
yonas
| 2022-12-10T17:16:27Z | 12 | 0 |
nemo
|
[
"nemo",
"automatic-speech-recognition",
"speech",
"Kinyarwanda",
"audio",
"CTC",
"Conformer",
"Transformer",
"NeMo",
"pytorch",
"rw",
"dataset:mozilla-foundation/common_voice_11_0",
"license:cc-by-4.0",
"region:us"
] |
automatic-speech-recognition
| 2022-12-02T13:08:08Z |
---
language:
- rw
license: cc-by-4.0
library_name: nemo
datasets:
- mozilla-foundation/common_voice_11_0
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- Kinyarwanda
- audio
- CTC
- Conformer
- Transformer
- NeMo
- pytorch
model-index:
- name: stt_rw_conformer_ctc_large
results: []
---
## Model Overview
<DESCRIBE IN ONE LINE THE MODEL AND ITS USE>
## NVIDIA NeMo: Training
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
```
pip install nemo_toolkit['all']
```
## How to Use this Model
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
### Automatically instantiate the model
```python
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.ASRModel.from_pretrained("yonas/stt_rw_conformer_ctc_large")
```
### Transcribing using Python
First, let's get a sample
```
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
```
Then simply do:
```
asr_model.transcribe(['2086-149220-0033.wav'])
```
### Transcribing many audio files
```shell
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="yonas/stt_rw_conformer_ctc_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
```
### Input
This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
### Output
This model provides transcribed speech as a string for a given audio sample.
## Model Architecture
<ADD SOME INFORMATION ABOUT THE ARCHITECTURE>
## Training
<ADD INFORMATION ABOUT HOW THE MODEL WAS TRAINED - HOW MANY EPOCHS, AMOUNT OF COMPUTE ETC>
### Datasets
<LIST THE NAME AND SPLITS OF DATASETS USED TO TRAIN THIS MODEL (ALONG WITH LANGUAGE AND ANY ADDITIONAL INFORMATION)>
## Performance
<LIST THE SCORES OF THE MODEL -
OR
USE THE Hugging Face Evaluate LiBRARY TO UPLOAD METRICS>
## Limitations
<DECLARE ANY POTENTIAL LIMITATIONS OF THE MODEL>
Eg:
Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
## References
<ADD ANY REFERENCES HERE AS NEEDED>
[1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
|
atorre/sd-class-butterflies-32
|
atorre
| 2022-12-10T16:50:47Z | 0 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2022-12-10T16:46:13Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained(atorre/sd-class-butterflies-32)
image = pipeline().images[0]
image
```
|
lithomas1/q-FrozenLake-v1-4x4-noSlippery
|
lithomas1
| 2022-12-10T15:54:10Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T15:53:03Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="lithomas1/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
sd-concepts-library/max-twain
|
sd-concepts-library
| 2022-12-10T15:52:38Z | 0 | 2 | null |
[
"license:mit",
"region:us"
] | null | 2022-12-10T15:52:33Z |
---
license: mit
---
### max-twain on Stable Diffusion
This is the `<max-twain>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as a `style`:




|
rama100/ppo-LunarLander-v2
|
rama100
| 2022-12-10T15:41:32Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T15:41:11Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 262.27 +/- 24.97
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
whher/opus-finetuned-bar-de
|
whher
| 2022-12-10T15:32:18Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-12-10T14:26:00Z |
---
license: apache-2.0
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: opus-finetuned-bar-de
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-finetuned-bar-de
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-fr-de](https://huggingface.co/Helsinki-NLP/opus-mt-fr-de) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1789
- Bleu: 11.4794
- Chrf: 63.0401
- Ter: 49.7863
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|
ScrappyCoco666/ppo-LunarLander-v2-1
|
ScrappyCoco666
| 2022-12-10T15:01:15Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T12:47:10Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 292.51 +/- 14.48
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
noph13/noph13
|
noph13
| 2022-12-10T14:55:09Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-12-09T22:22:11Z |
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16")
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
image.save("astronaut_rides_horse.png")
|
dbaibak/ppo-Huggy
|
dbaibak
| 2022-12-10T14:47:04Z | 1 | 1 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2022-12-10T14:46:58Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: dbaibak/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
hr16/any-ely-wd-noah-titan-4900
|
hr16
| 2022-12-10T14:40:54Z | 2 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2022-12-10T14:37:26Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### Model Dreambooth concept any-ely-wd-Noah_Titan-4900 được train bởi hr16 bằng [Shinja Zero SoTA DreamBooth_Stable_Diffusion](https://colab.research.google.com/drive/1G7qx6M_S1PDDlsWIMdbZXwdZik6sUlEh) notebook <br>
Test concept bằng [Shinja Zero no Notebook](https://colab.research.google.com/drive/1Hp1ZIjPbsZKlCtomJVmt2oX7733W44b0) <br>
Hoặc test bằng `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb)
Ảnh mẫu của concept: WIP
|
lukechoi76/ppo-LunarLander-v2
|
lukechoi76
| 2022-12-10T14:22:27Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T14:21:59Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 267.41 +/- 12.72
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Moussmous/Unit1-ppo-LunarLander-v2
|
Moussmous
| 2022-12-10T14:16:46Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T14:16:24Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 244.56 +/- 25.49
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
izboy250/finetuned-bert-mrpc
|
izboy250
| 2022-12-10T13:43:24Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-12-10T13:34:34Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
model-index:
- name: finetuned-bert-mrpc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-bert-mrpc
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
ataunal/ppo-LunarLander-v2
|
ataunal
| 2022-12-10T13:15:23Z | 8 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-24T10:41:36Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 241.31 +/- 16.13
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
danielsaggau/bregman_1.5
|
danielsaggau
| 2022-12-10T12:50:52Z | 1 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"longformer",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-12-10T12:43:19Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 187841 with parameters:
```
{'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`__main__.BregmanRankingLoss`
Parameters of the fit()-Method:
```
{
"epochs": 4,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 3e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 5000,
"warmup_steps": 75137,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: LongformerModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
KishoreR10/this_is_my_model
|
KishoreR10
| 2022-12-10T12:50:45Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-09T07:13:15Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: this_is_my_model
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: train
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.8673816819884236
- name: Recall
type: recall
value: 0.9020892351274787
- name: F1
type: f1
value: 0.884395070300295
- name: Accuracy
type: accuracy
value: 0.9761756784752434
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# this_is_my_model
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1143
- Precision: 0.8674
- Recall: 0.9021
- F1: 0.8844
- Accuracy: 0.9762
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2292 | 1.0 | 878 | 0.1048 | 0.8683 | 0.8973 | 0.8825 | 0.9763 |
| 0.0493 | 2.0 | 1756 | 0.1143 | 0.8674 | 0.9021 | 0.8844 | 0.9762 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
huggingtweets/herzogsm
|
huggingtweets
| 2022-12-10T12:43:49Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-12-09T16:55:24Z |
---
language: en
thumbnail: http://www.huggingtweets.com/herzogsm/1670676162112/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1550040012330237953/WCf7gKBx_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Stephen Herzog</div>
<div style="text-align: center; font-size: 14px;">@herzogsm</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Stephen Herzog.
| Data | Stephen Herzog |
| --- | --- |
| Tweets downloaded | 1210 |
| Retweets | 632 |
| Short tweets | 46 |
| Tweets kept | 532 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2z54058r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @herzogsm's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1724jk6i) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1724jk6i/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/herzogsm')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
lmqg/bart-large-squad-ae
|
lmqg
| 2022-12-10T12:14:58Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"answer extraction",
"en",
"dataset:lmqg/qg_squad",
"arxiv:2210.03992",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-12-10T12:13:20Z |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_squad
pipeline_tag: text2text-generation
tags:
- answer extraction
widget:
- text: "<hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress."
example_title: "Answering Extraction Example 1"
- text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress. <hl>"
example_title: "Answering Extraction Example 2"
model-index:
- name: lmqg/bart-large-squad-ae
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squad
type: default
args: default
metrics:
- name: BLEU4 (Answer Extraction)
type: bleu4_answer_extraction
value: 58.61
- name: ROUGE-L (Answer Extraction)
type: rouge_l_answer_extraction
value: 68.96
- name: METEOR (Answer Extraction)
type: meteor_answer_extraction
value: 41.89
- name: BERTScore (Answer Extraction)
type: bertscore_answer_extraction
value: 91.93
- name: MoverScore (Answer Extraction)
type: moverscore_answer_extraction
value: 82.41
- name: AnswerF1Score (Answer Extraction)
type: answer_f1_score__answer_extraction
value: 69.67
- name: AnswerExactMatch (Answer Extraction)
type: answer_exact_match_answer_extraction
value: 58.95
---
# Model Card of `lmqg/bart-large-squad-ae`
This model is fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) for answer extraction on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [facebook/bart-large](https://huggingface.co/facebook/bart-large)
- **Language:** en
- **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/bart-large-squad-ae")
# model prediction
answers = model.generate_a("William Turner was an English painter who specialised in watercolour landscapes")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/bart-large-squad-ae")
output = pipe("<hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress.")
```
## Evaluation
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/bart-large-squad-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_squad.default.json)
| | Score | Type | Dataset |
|:-----------------|--------:|:--------|:---------------------------------------------------------------|
| AnswerExactMatch | 58.95 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| AnswerF1Score | 69.67 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| BERTScore | 91.93 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_1 | 65.82 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_2 | 63.21 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_3 | 60.73 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| Bleu_4 | 58.61 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| METEOR | 41.89 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| MoverScore | 82.41 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
| ROUGE_L | 68.96 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squad
- dataset_name: default
- input_types: ['paragraph_sentence']
- output_types: ['answer']
- prefix_types: None
- model: facebook/bart-large
- max_length: 512
- max_length_output: 32
- epoch: 5
- batch: 32
- lr: 5e-05
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 2
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-large-squad-ae/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
polejowska/convnext-tiny-224-finetuned-eurosat
|
polejowska
| 2022-12-10T11:59:52Z | 26 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"convnext",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-12-10T09:55:36Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnext-tiny-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9768518518518519
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnext-tiny-224-finetuned-eurosat
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0959
- Accuracy: 0.9769
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.206 | 1.0 | 168 | 0.1753 | 0.9613 |
| 0.0904 | 2.0 | 336 | 0.0959 | 0.9769 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
Guerosharp/ppo-LunarLander-v2
|
Guerosharp
| 2022-12-10T11:20:50Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T11:20:30Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 259.18 +/- 20.19
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
GDJ1978/AnythingV3Xf222
|
GDJ1978
| 2022-12-10T11:14:36Z | 0 | 1 | null |
[
"region:us"
] | null | 2022-11-19T11:25:07Z |
AnythingV3 60% f222 40%
This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies:
You can't use the model to deliberately produce nor share illegal or harmful outputs or content
The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here
|
polejowska/swin-tiny-patch4-window7-224-finetuned-eurosat
|
polejowska
| 2022-12-10T10:50:06Z | 33 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-12-10T07:05:26Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9787037037037037
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0571
- Accuracy: 0.9787
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.116 | 1.0 | 168 | 0.0778 | 0.9713 |
| 0.0533 | 2.0 | 336 | 0.0571 | 0.9787 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
ignamonte/ppo-LunarLander-v2
|
ignamonte
| 2022-12-10T10:49:50Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T10:49:24Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -1164.05 +/- 712.88
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Parvinder/my_awesome_qa_model
|
Parvinder
| 2022-12-10T10:26:00Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-12-10T10:18:11Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: my_awesome_qa_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_qa_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
Litux/ppo-LunarLander-v2.1
|
Litux
| 2022-12-10T10:18:44Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-09T21:46:54Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 291.50 +/- 19.57
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
microsoft/swinv2-base-patch4-window12to24-192to384-22kto1k-ft
|
microsoft
| 2022-12-10T10:11:30Z | 2,349 | 0 |
transformers
|
[
"transformers",
"pytorch",
"swinv2",
"image-classification",
"vision",
"dataset:imagenet-1k",
"arxiv:2111.09883",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-16T05:15:03Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- imagenet-1k
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
---
# Swin Transformer v2 (base-sized model)
Swin Transformer v2 model pre-trained on ImageNet-21k and fine-tuned on ImageNet-1k at resolution 384x384. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer).
Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally.
Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images.

[Source](https://paperswithcode.com/method/swin-transformer)
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-base-patch4-window12to24-192to384-22kto1k-ft")
model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-base-patch4-window12to24-192to384-22kto1k-ft")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#).
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2111-09883,
author = {Ze Liu and
Han Hu and
Yutong Lin and
Zhuliang Yao and
Zhenda Xie and
Yixuan Wei and
Jia Ning and
Yue Cao and
Zheng Zhang and
Li Dong and
Furu Wei and
Baining Guo},
title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution},
journal = {CoRR},
volume = {abs/2111.09883},
year = {2021},
url = {https://arxiv.org/abs/2111.09883},
eprinttype = {arXiv},
eprint = {2111.09883},
timestamp = {Thu, 02 Dec 2021 15:54:22 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
Litux/ppo-LunarLander-v2
|
Litux
| 2022-12-10T10:10:18Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-08T12:45:00Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 283.94 +/- 17.57
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft
|
microsoft
| 2022-12-10T10:09:19Z | 1,387 | 4 |
transformers
|
[
"transformers",
"pytorch",
"swinv2",
"image-classification",
"vision",
"dataset:imagenet-1k",
"arxiv:2111.09883",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-16T05:23:35Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- imagenet-1k
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
---
# Swin Transformer v2 (base-sized model)
Swin Transformer v2 model pre-trained on ImageNet-21k and fine-tuned on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer).
Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally.
Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images.

[Source](https://paperswithcode.com/method/swin-transformer)
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft")
model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#).
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2111-09883,
author = {Ze Liu and
Han Hu and
Yutong Lin and
Zhuliang Yao and
Zhenda Xie and
Yixuan Wei and
Jia Ning and
Yue Cao and
Zheng Zhang and
Li Dong and
Furu Wei and
Baining Guo},
title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution},
journal = {CoRR},
volume = {abs/2111.09883},
year = {2021},
url = {https://arxiv.org/abs/2111.09883},
eprinttype = {arXiv},
eprint = {2111.09883},
timestamp = {Thu, 02 Dec 2021 15:54:22 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
microsoft/swinv2-small-patch4-window8-256
|
microsoft
| 2022-12-10T10:08:49Z | 1,372 | 0 |
transformers
|
[
"transformers",
"pytorch",
"swinv2",
"image-classification",
"vision",
"dataset:imagenet-1k",
"arxiv:2111.09883",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-15T12:20:12Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- imagenet-1k
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
---
# Swin Transformer v2 (small-sized model)
Swin Transformer v2 model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer).
Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally.
Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images.

[Source](https://paperswithcode.com/method/swin-transformer)
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-small-patch4-window8-256")
model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-small-patch4-window8-256")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#).
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2111-09883,
author = {Ze Liu and
Han Hu and
Yutong Lin and
Zhuliang Yao and
Zhenda Xie and
Yixuan Wei and
Jia Ning and
Yue Cao and
Zheng Zhang and
Li Dong and
Furu Wei and
Baining Guo},
title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution},
journal = {CoRR},
volume = {abs/2111.09883},
year = {2021},
url = {https://arxiv.org/abs/2111.09883},
eprinttype = {arXiv},
eprint = {2111.09883},
timestamp = {Thu, 02 Dec 2021 15:54:22 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
microsoft/swinv2-base-patch4-window8-256
|
microsoft
| 2022-12-10T10:04:53Z | 9,935 | 7 |
transformers
|
[
"transformers",
"pytorch",
"swinv2",
"image-classification",
"vision",
"dataset:imagenet-1k",
"arxiv:2111.09883",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-15T12:35:14Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- imagenet-1k
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
---
# Swin Transformer v2 (base-sized model)
Swin Transformer v2 model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer).
Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally.
Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images.

[Source](https://paperswithcode.com/method/swin-transformer)
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-base-patch4-window8-256")
model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-base-patch4-window8-256")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#).
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2111-09883,
author = {Ze Liu and
Han Hu and
Yutong Lin and
Zhuliang Yao and
Zhenda Xie and
Yixuan Wei and
Jia Ning and
Yue Cao and
Zheng Zhang and
Li Dong and
Furu Wei and
Baining Guo},
title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution},
journal = {CoRR},
volume = {abs/2111.09883},
year = {2021},
url = {https://arxiv.org/abs/2111.09883},
eprinttype = {arXiv},
eprint = {2111.09883},
timestamp = {Thu, 02 Dec 2021 15:54:22 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
microsoft/swinv2-small-patch4-window16-256
|
microsoft
| 2022-12-10T10:04:23Z | 449 | 1 |
transformers
|
[
"transformers",
"pytorch",
"swinv2",
"image-classification",
"vision",
"dataset:imagenet-1k",
"arxiv:2111.09883",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-15T12:28:05Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- imagenet-1k
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
---
# Swin Transformer v2 (small-sized model)
Swin Transformer v2 model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer).
Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally.
Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images.

[Source](https://paperswithcode.com/method/swin-transformer)
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-small-patch4-window16-256")
model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-small-patch4-window16-256")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#).
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2111-09883,
author = {Ze Liu and
Han Hu and
Yutong Lin and
Zhuliang Yao and
Zhenda Xie and
Yixuan Wei and
Jia Ning and
Yue Cao and
Zheng Zhang and
Li Dong and
Furu Wei and
Baining Guo},
title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution},
journal = {CoRR},
volume = {abs/2111.09883},
year = {2021},
url = {https://arxiv.org/abs/2111.09883},
eprinttype = {arXiv},
eprint = {2111.09883},
timestamp = {Thu, 02 Dec 2021 15:54:22 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
microsoft/swinv2-base-patch4-window16-256
|
microsoft
| 2022-12-10T10:03:48Z | 851 | 3 |
transformers
|
[
"transformers",
"pytorch",
"swinv2",
"image-classification",
"vision",
"dataset:imagenet-1k",
"arxiv:2111.09883",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-15T12:38:59Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- imagenet-1k
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
---
# Swin Transformer v2 (base-sized model)
Swin Transformer v2 model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer).
Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally.
Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images.

[Source](https://paperswithcode.com/method/swin-transformer)
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-base-patch4-window16-256")
model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-base-patch4-window16-256")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#).
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2111-09883,
author = {Ze Liu and
Han Hu and
Yutong Lin and
Zhuliang Yao and
Zhenda Xie and
Yixuan Wei and
Jia Ning and
Yue Cao and
Zheng Zhang and
Li Dong and
Furu Wei and
Baining Guo},
title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution},
journal = {CoRR},
volume = {abs/2111.09883},
year = {2021},
url = {https://arxiv.org/abs/2111.09883},
eprinttype = {arXiv},
eprint = {2111.09883},
timestamp = {Thu, 02 Dec 2021 15:54:22 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
shripadbhat/whisper-small-pa-IN
|
shripadbhat
| 2022-12-10T09:51:33Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"pa",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-10T08:24:39Z |
---
language:
- pa
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Panjabi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: pa-IN
split: test
args: pa-IN
metrics:
- name: Wer
type: wer
value: 36.10043556238791
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Panjabi
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6084
- Wer: 36.1004
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.349 | 5.86 | 100 | 0.4664 | 49.1929 |
| 0.0175 | 11.74 | 200 | 0.4633 | 39.1494 |
| 0.0052 | 17.63 | 300 | 0.5317 | 37.7146 |
| 0.0014 | 23.51 | 400 | 0.5521 | 36.4079 |
| 0.0009 | 29.4 | 500 | 0.5731 | 35.4599 |
| 0.0002 | 35.29 | 600 | 0.5806 | 35.6649 |
| 0.0001 | 41.17 | 700 | 0.5933 | 35.7161 |
| 0.0001 | 47.06 | 800 | 0.6016 | 35.9211 |
| 0.0001 | 52.91 | 900 | 0.6067 | 36.0492 |
| 0.0001 | 58.8 | 1000 | 0.6084 | 36.1004 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
seongwan/ddpm-butterflies-128
|
seongwan
| 2022-12-10T09:46:20Z | 0 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"en",
"dataset:huggan/smithsonian_butterflies_subset",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
] | null | 2022-12-10T07:56:58Z |
---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: huggan/smithsonian_butterflies_subset
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-128
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `huggan/smithsonian_butterflies_subset` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/seongwan/ddpm-butterflies-128/tensorboard?#scalars)
|
cxeep/whisper-cpp-finetune
|
cxeep
| 2022-12-10T09:41:20Z | 0 | 1 | null |
[
"license:mit",
"region:us"
] | null | 2022-12-10T09:01:37Z |
---
license: mit
---
Fined-tuned whisper model converted by
https://github.com/ggerganov/whisper.cpp/tree/master/models
original ggml models at https://huggingface.co/datasets/ggerganov/whisper.cpp
|
geninhu/whisper-large-v2-multiset-vi
|
geninhu
| 2022-12-10T09:21:39Z | 13 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"vi",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-09T13:51:28Z |
---
language:
- vi
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: openai/whisper-large-v2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 vi
type: mozilla-foundation/common_voice_11_0
config: vi
split: test
args: vi
metrics:
- name: Wer
type: wer
value: 15.7710
- name: Cer
type: cer
value: 7.6691
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-large-v2
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4041
- Wer: 15.7710
- Cer: 7.6691
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
Training data:
* [mozilla-foundation/common_voice_11_0](https://huggingface.co/openai/whisper-large-v2)
* [google/fleurs](https://huggingface.co/datasets/google/fleurs)
Evaluation data:
* [mozilla-foundation/common_voice_11_0](https://huggingface.co/openai/whisper-large-v2)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 0.3983 | 0.1 | 500 | 0.5338 | 19.5876 | 10.6391 |
| 0.2277 | 1.08 | 1000 | 0.4134 | 16.5826 | 8.2668 |
| 0.172 | 2.05 | 1500 | 0.3968 | 16.3084 | 7.9787 |
| 0.1823 | 3.03 | 2000 | 0.3956 | 16.1768 | 7.8159 |
| 0.1445 | 4.0 | 2500 | 0.3955 | 16.0342 | 7.7438 |
| 0.147 | 4.1 | 3000 | 0.3965 | 15.8807 | 7.7145 |
| 0.1292 | 5.08 | 3500 | 0.4000 | 15.8587 | 7.7065 |
| 0.1187 | 6.05 | 4000 | 0.4029 | 15.7491 | 7.6398 |
| 0.1368 | 7.03 | 4500 | 0.4041 | 15.7600 | 7.6558 |
| 0.1231 | 8.0 | 5000 | 0.4041 | 15.7710 | 7.6691 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
Stxlla/ko-en-retrial
|
Stxlla
| 2022-12-10T08:47:20Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"m2m_100",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-12-10T00:40:35Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: ko-en-retrial
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ko-en-retrial
This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4075
- Bleu: 27.1215
- Gen Len: 10.91
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.5334 | 1.0 | 16549 | 0.6745 | 14.5544 | 10.4919 |
| 0.4841 | 2.0 | 33098 | 0.6063 | 16.5973 | 10.8128 |
| 0.4308 | 3.0 | 49647 | 0.5447 | 19.1392 | 11.0557 |
| 0.3674 | 4.0 | 66196 | 0.4576 | 23.6457 | 10.8632 |
| 0.306 | 5.0 | 82745 | 0.4075 | 27.1215 | 10.91 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
WarriorMama777/HyperNetworkCollection_v2
|
WarriorMama777
| 2022-12-10T08:28:49Z | 0 | 54 | null |
[
"stable-diffusion",
"text-to-image",
"license:unknown",
"region:us"
] |
text-to-image
| 2022-12-04T20:47:50Z |
---
license: unknown
tags:
- stable-diffusion
- text-to-image
---
# HyperNetworkCollection
個人的に集めてる韓国のHyperNetworkコレクションやで
もれなくコレクションしたい人は一次ソースをあたってな↓
공유된 hypernet, embedding 모음 (샘플 有) - AI그림 학습 채널 - https://arca.live/b/hypernetworks/60940948?category=%EA%B3%B5%EC%9C%A0&p=1
# ダウンロード方法
## まとめてダウンロード
1. Gitをインストール
2. 好きなフォルダ作ってディレクトリ欄に cmd と入力 → Enterでフォルダのディレクトリでコマンドプロンプトを開く
3. 以下のコマンドを順に実行
4. git lfs install
5. git clone https://huggingface.co/WarriorMama777/HyperNetworkCollection_v2
6. 完了
## 個別にダウンロード
1. Files and vaersionsタブに移動
2. HyperNetworkCollection_v2/_Korea_arca.live_HypernetworkCollection/ダウンロードしたいHyperNetwork.pt
3. download
4. 完了
|
nolanaatama/tam
|
nolanaatama
| 2022-12-10T08:17:38Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2022-12-10T08:13:47Z |
---
license: creativeml-openrail-m
---
|
daspartho/ppo_walker
|
daspartho
| 2022-12-10T08:15:00Z | 3 | 1 |
stable-baselines3
|
[
"stable-baselines3",
"BipedalWalker-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T05:01:12Z |
---
library_name: stable-baselines3
tags:
- BipedalWalker-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: BipedalWalker-v3
type: BipedalWalker-v3
metrics:
- type: mean_reward
value: 297.59 +/- 2.14
name: mean_reward
verified: false
---
# **PPO** Agent playing **BipedalWalker-v3**
This is a trained model of a **PPO** agent playing **BipedalWalker-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
udon3/xlm-roberta-base-finetuned-panx-en
|
udon3
| 2022-12-10T08:03:37Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-10T07:54:31Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-en
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.en
split: train
args: PAN-X.en
metrics:
- name: F1
type: f1
value: 0.6696329254727476
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4018
- F1: 0.6696
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1763 | 1.0 | 50 | 0.6068 | 0.4800 |
| 0.5301 | 2.0 | 100 | 0.4398 | 0.6334 |
| 0.3784 | 3.0 | 150 | 0.4018 | 0.6696 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.10.0
- Datasets 2.7.1
- Tokenizers 0.13.2
|
Sanjay-Papaiahgari/ppo-LunarLander-v4
|
Sanjay-Papaiahgari
| 2022-12-10T07:14:26Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T07:13:49Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: MlpPolicy
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 281.80 +/- 19.89
name: mean_reward
verified: false
---
# **MlpPolicy** Agent playing **LunarLander-v2**
This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
arpagon/whisper-tiny-es
|
arpagon
| 2022-12-10T06:51:27Z | 27 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"es",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-09T16:53:11Z |
---
language:
- es
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper tiny Spanish
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 es
type: mozilla-foundation/common_voice_11_0
config: es
split: test
args: es
metrics:
- name: Wer
type: wer
value: 21.407411257211166
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper tiny Spanish
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_11_0 es dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4412
- Wer: 21.4074
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.5354 | 2.01 | 1000 | 0.5196 | 25.5587 |
| 0.3328 | 4.01 | 2000 | 0.4889 | 24.5940 |
| 0.4702 | 6.02 | 3000 | 0.4589 | 22.8354 |
| 0.2854 | 8.02 | 4000 | 0.4451 | 21.6198 |
| 0.3537 | 10.03 | 5000 | 0.4412 | 21.4074 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
hr16/any-ely-wd-ira-olympus-4000
|
hr16
| 2022-12-10T06:47:19Z | 1 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2022-12-10T06:43:49Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### Model Dreambooth concept any-ely-wd-ira-olympus-4000 được train bởi hr16 bằng [Shinja Zero SoTA DreamBooth_Stable_Diffusion](https://colab.research.google.com/drive/1G7qx6M_S1PDDlsWIMdbZXwdZik6sUlEh) notebook <br>
Test concept bằng [Shinja Zero no Notebook](https://colab.research.google.com/drive/1Hp1ZIjPbsZKlCtomJVmt2oX7733W44b0) <br>
Hoặc test bằng `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb)
Ảnh mẫu của concept: WIP
|
hr16/any-ely-wd-ira-olympus-3500
|
hr16
| 2022-12-10T06:41:05Z | 1 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2022-12-10T06:37:33Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### Model Dreambooth concept any-ely-wd-ira-olympus-3500 được train bởi hr16 bằng [Shinja Zero SoTA DreamBooth_Stable_Diffusion](https://colab.research.google.com/drive/1G7qx6M_S1PDDlsWIMdbZXwdZik6sUlEh) notebook <br>
Test concept bằng [Shinja Zero no Notebook](https://colab.research.google.com/drive/1Hp1ZIjPbsZKlCtomJVmt2oX7733W44b0) <br>
Hoặc test bằng `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb)
Ảnh mẫu của concept: WIP
|
shripadbhat/whisper-small-hi
|
shripadbhat
| 2022-12-10T06:14:49Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"hi",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-05T08:58:09Z |
---
language:
- hi
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Hindi - Shripad Bhat
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: hi
split: test
args: hi
metrics:
- name: Wer
type: wer
value: 21.451908746990714
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: FLEURS
type: google/fleurs
config: hi_in
split: test
args: hi
metrics:
- name: Wer
type: wer
value: 22.11
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Hindi - Shripad Bhat
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3909
- Wer: 21.4519
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.4337 | 0.73 | 100 | 0.4874 | 47.5868 |
| 0.1894 | 1.47 | 200 | 0.3264 | 23.9482 |
| 0.1007 | 2.21 | 300 | 0.3101 | 22.5267 |
| 0.0984 | 2.94 | 400 | 0.3064 | 21.5723 |
| 0.0555 | 3.67 | 500 | 0.3325 | 22.0251 |
| 0.029 | 4.41 | 600 | 0.3439 | 21.4863 |
| 0.0163 | 5.15 | 700 | 0.3668 | 21.6468 |
| 0.0153 | 5.88 | 800 | 0.3756 | 21.4662 |
| 0.0081 | 6.62 | 900 | 0.3888 | 21.5035 |
| 0.0059 | 7.35 | 1000 | 0.3909 | 21.4519 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
huam/ppo-Huggy
|
huam
| 2022-12-10T05:54:49Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2022-12-10T05:54:37Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: huam/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
mlxen/electra-squad-contrasting-validation
|
mlxen
| 2022-12-10T04:04:13Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"electra",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-12-10T03:18:37Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: electra-squad-contrasting-validation
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-squad-contrasting-validation
This model is a fine-tuned version of [mlxen/electra-squad-training](https://huggingface.co/mlxen/electra-squad-training) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
udon3/xlm-roberta-base-finetuned-panx-de
|
udon3
| 2022-12-10T03:45:08Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-09T14:39:55Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.de
split: train
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8619788708394867
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1332
- F1: 0.8620
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2524 | 1.0 | 525 | 0.1610 | 0.8214 |
| 0.129 | 2.0 | 1050 | 0.1361 | 0.8541 |
| 0.08 | 3.0 | 1575 | 0.1332 | 0.8620 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.10.0
- Datasets 2.7.1
- Tokenizers 0.13.2
|
eshwarZugz/bart_large-tldr-news
|
eshwarZugz
| 2022-12-10T01:50:04Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-12-10T00:55:51Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart_large-tldr-news
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart_large-tldr-news
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1949
- Rouge1: 20.747
- Rouge2: 8.4086
- Rougel: 17.4662
- Rougelsum: 18.1462
- Gen Len: 70.6259
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:|
| 0.3034 | 1.0 | 893 | 2.1949 | 20.747 | 8.4086 | 17.4662 | 18.1462 | 70.6259 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
Sagnior/Reconocedor_de_Gatos
|
Sagnior
| 2022-12-10T01:20:26Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-12-07T03:58:01Z |
El modelo es una red convolucional que te dice si la imagen suministrada es un gato o no.
Me tómo un tiempo entender el funcionamiento de keras pero finalmente lo conseguí.
Había intentado en un principio hacerlo con pytorch pero me confundí mucho.
|
314anist/q-Taxi-v3
|
314anist
| 2022-12-10T00:22:20Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T00:22:15Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.50 +/- 2.76
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="314anist/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
314anist/q-FrozenLake-v1-4x4-noSlippery
|
314anist
| 2022-12-10T00:18:12Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T00:18:06Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="314anist/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
mlxen/electra-squad-training-adversarial
|
mlxen
| 2022-12-10T00:08:44Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"electra",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-12-09T23:24:41Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: electra-squad-training-adversarial
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-squad-training-adversarial
This model is a fine-tuned version of [mlxen/electra-squad-training](https://huggingface.co/mlxen/electra-squad-training) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
Jasmaur/FrozenLake-v1
|
Jasmaur
| 2022-12-10T00:04:55Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-10T00:04:48Z |
---
tags:
- FrozenLake-v1-4x4
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: FrozenLake-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4
type: FrozenLake-v1-4x4
metrics:
- type: mean_reward
value: 0.80 +/- 0.40
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Jasmaur/FrozenLake-v1", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
aammari/setfit-zero-shot-classification-pbsp-p3-bhvr
|
aammari
| 2022-12-09T22:57:01Z | 2 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"feature-extraction",
"sentence-similarity",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-12-09T22:56:17Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 210 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 210,
"warmup_steps": 21,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
EmileEsmaili/ddpm-sheetmusic-clean-l1loss-colabVM
|
EmileEsmaili
| 2022-12-09T22:54:52Z | 1 | 1 |
diffusers
|
[
"diffusers",
"tensorboard",
"en",
"dataset:EmileEsmaili/sheet_music_clean",
"license:apache-2.0",
"diffusers:DDPMPipeline",
"region:us"
] | null | 2022-12-09T17:42:38Z |
---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: EmileEsmaili/sheet_music_clean
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-sheetmusic-clean-l1loss-colabVM
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `EmileEsmaili/sheet_music_clean` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: no
### Training results
📈 [TensorBoard logs](https://huggingface.co/EmileEsmaili/ddpm-sheetmusic-clean-l1loss-colabVM/tensorboard?#scalars)
|
agercas/ppo-Huggy
|
agercas
| 2022-12-09T22:54:49Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2022-12-09T22:54:41Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: agercas/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
howlbz/whisper-small-hi
|
howlbz
| 2022-12-09T22:46:30Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"generated_from_trainer",
"zh",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-06T10:54:35Z |
---
language:
- zh
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small zh - howl
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: zh-CN
split: test
args: 'config: zh, split: test'
metrics:
- name: Wer
type: wer
value: 75.2976752976753
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small zh - howl
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3644
- Wer: 75.2977
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2309 | 1.51 | 1000 | 0.3694 | 76.4411 |
| 0.1069 | 3.02 | 2000 | 0.3644 | 75.2977 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
soschuetze/disilbert-blm-tweets
|
soschuetze
| 2022-12-09T21:56:36Z | 5 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-12-09T16:49:35Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: disilbert-blm-tweets
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# disilbert-blm-tweets
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0857
- Train Accuracy: 0.9790
- Validation Loss: 1.7704
- Validation Accuracy: 0.5973
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 1.2590 | 0.5746 | 1.1456 | 0.6460 | 0 |
| 1.0110 | 0.6930 | 1.2198 | 0.6106 | 1 |
| 0.7538 | 0.7633 | 1.2087 | 0.6327 | 2 |
| 0.4794 | 0.8520 | 1.2903 | 0.6239 | 3 |
| 0.3100 | 0.9162 | 1.4110 | 0.6106 | 4 |
| 0.2005 | 0.9482 | 1.6042 | 0.5487 | 5 |
| 0.1174 | 0.9753 | 1.6328 | 0.6018 | 6 |
| 0.0857 | 0.9790 | 1.7704 | 0.5973 | 7 |
### Framework versions
- Transformers 4.25.1
- TensorFlow 2.9.2
- Tokenizers 0.13.2
|
fxmarty/broken-onnx-as-strided
|
fxmarty
| 2022-12-09T21:27:10Z | 0 | 0 | null |
[
"onnx",
"region:us"
] | null | 2022-12-09T21:26:15Z |
An illustration for https://github.com/microsoft/onnxruntime/issues/13920
|
oracleclyde/oracleclyde-custom
|
oracleclyde
| 2022-12-09T21:07:32Z | 11 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"text-to-image",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2022-12-09T21:05:41Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
widget:
- text: oracleclyde
---
### oracleclyde-custom Dreambooth model trained by oracleclyde with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-1-768 base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Sample pictures of:
oracleclyde (use that on your prompt)

|
graydient/diffusers-rayhell-creepypasta-diffusion
|
graydient
| 2022-12-09T21:06:51Z | 3 | 0 |
diffusers
|
[
"diffusers",
"license:openrail",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2022-12-09T20:36:28Z |
---
license: openrail
---
# Diffusers version of RayHell's Creepypasta model
- Please see [RayHell's Creepypasta model](https://huggingface.co/RayHell/creepypasta-diffusion) for more
|
Nathanotal/whisper-small-v2
|
Nathanotal
| 2022-12-09T21:03:06Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"generated_from_trainer",
"swe",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-07T17:19:48Z |
---
language:
- swe
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
model-index:
- name: Whisper Small Swe - Swedish
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Swe - Swedish
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2
|
jennirocket/ppo-LunarLander-v2
|
jennirocket
| 2022-12-09T20:56:17Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-09T19:20:15Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 268.41 +/- 17.97
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
graydient/diffusers-spiteanon-gigachad-diffusion
|
graydient
| 2022-12-09T20:37:40Z | 13 | 1 |
diffusers
|
[
"diffusers",
"license:openrail",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2022-12-09T20:22:47Z |
---
license: openrail
---
# Diffusers version of SpiteAnon's Gigachad model
- Please see [SpiteAnon's Gigachad model](https://huggingface.co/SpiteAnon/gigachad-diffusion) for more
|
SergejSchweizer/ppo-LunarLander-v2
|
SergejSchweizer
| 2022-12-09T20:37:16Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-12-09T20:36:53Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 246.49 +/- 46.47
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.