modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 12:31:00
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 12:28:53
card
stringlengths
11
1.01M
TLME/western-classification
TLME
2023-09-02T15:28:54Z
0
0
null
[ "image-classification", "license:mit", "region:us" ]
image-classification
2023-08-07T17:43:47Z
--- license: mit pipeline_tag: image-classification --- A classification using mmpretrain trained to classify western images based on ConvNeXtV2-tiny.Used for classifying anime images based on whether they are in the Western style. The evaluation accuracy on the validation set is 95%. Trained using 7,000 Western images and 8,000 non-Western images, with the Western training set sampled from e-hentai. Of course, this model also has many shortcomings, such as a very low recognition accuracy for line-drawing images. Huggingface space:https://huggingface.co/spaces/TLME/western-anime-images-classification # How to use Python>=3.9 ``` Install pytorch pip install -r requirements.txt edit infer.py , change "path = './testimg/'" to your target folder python infer.py ```
btamm12/bert-base-uncased-finetuned-wls-manual-7ep-lower
btamm12
2023-09-02T15:28:50Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:26:48Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-wls-manual-7ep-lower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wls-manual-7ep-lower This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3490 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1113 | 0.93 | 7 | 1.9498 | | 1.6005 | 2.0 | 15 | 1.5784 | | 1.4812 | 2.93 | 22 | 1.4474 | | 1.3854 | 4.0 | 30 | 1.4290 | | 1.2898 | 4.93 | 37 | 1.2682 | | 1.2785 | 6.0 | 45 | 1.2677 | | 1.2535 | 6.53 | 49 | 1.3363 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
btamm12/bert-base-cased-finetuned-wls-manual-7ep
btamm12
2023-09-02T15:26:41Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:24:40Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-wls-manual-7ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-wls-manual-7ep This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2757 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1707 | 0.93 | 7 | 1.9153 | | 1.658 | 2.0 | 15 | 1.6462 | | 1.5689 | 2.93 | 22 | 1.5263 | | 1.4013 | 4.0 | 30 | 1.4385 | | 1.3501 | 4.93 | 37 | 1.4224 | | 1.293 | 6.0 | 45 | 1.3189 | | 1.2473 | 6.53 | 49 | 1.2231 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
olivierhenaff/distilhubert-finetuned-gtzan
olivierhenaff
2023-09-02T15:22:12Z
164
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-09-02T12:11:45Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7428 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7684 | 1.0 | 225 | 1.6143 | 0.46 | | 0.9707 | 2.0 | 450 | 1.0938 | 0.66 | | 0.8819 | 3.0 | 675 | 0.7981 | 0.77 | | 0.6527 | 4.0 | 900 | 0.6805 | 0.8 | | 0.2499 | 5.0 | 1125 | 0.5896 | 0.81 | | 0.0371 | 6.0 | 1350 | 0.8279 | 0.79 | | 0.1651 | 7.0 | 1575 | 0.6830 | 0.81 | | 0.011 | 8.0 | 1800 | 0.7673 | 0.81 | | 0.0077 | 9.0 | 2025 | 0.7159 | 0.83 | | 0.0068 | 10.0 | 2250 | 0.7428 | 0.83 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
crewdon/AICategoryMapping-multilingual-e5-small
crewdon
2023-09-02T15:20:57Z
14
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-09-02T15:05:10Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # AICategoryMapping-multilingual-e5-small This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 94 with parameters: ``` {'batch_size': 400} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 40, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 376, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
btamm12/bert-base-uncased-finetuned-wls-manual-6ep-lower
btamm12
2023-09-02T15:20:25Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:18:28Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-wls-manual-6ep-lower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wls-manual-6ep-lower This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1123 | 0.93 | 7 | 1.9531 | | 1.6034 | 2.0 | 15 | 1.5832 | | 1.489 | 2.93 | 22 | 1.4553 | | 1.3975 | 4.0 | 30 | 1.4448 | | 1.3074 | 4.93 | 37 | 1.2918 | | 1.3083 | 5.6 | 42 | 1.4088 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
btamm12/bert-base-cased-finetuned-wls-manual-6ep
btamm12
2023-09-02T15:18:21Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:16:23Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-wls-manual-6ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-wls-manual-6ep This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1598 | 0.93 | 7 | 1.8481 | | 1.6257 | 2.0 | 15 | 1.6306 | | 1.5537 | 2.93 | 22 | 1.5150 | | 1.3943 | 4.0 | 30 | 1.4392 | | 1.355 | 4.93 | 37 | 1.4389 | | 1.3098 | 5.6 | 42 | 1.3518 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
btamm12/roberta-base-finetuned-wls-manual-5ep
btamm12
2023-09-02T15:16:16Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:14:07Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-wls-manual-5ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-wls-manual-5ep This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8234 | 0.93 | 7 | 1.5153 | | 1.4411 | 2.0 | 15 | 1.3464 | | 1.2972 | 2.93 | 22 | 1.3354 | | 1.2674 | 4.0 | 30 | 1.2134 | | 1.2753 | 4.67 | 35 | 1.3446 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
Campqt/rl_course_vizdoom_health_gathering_supreme
Campqt
2023-09-02T15:14:58Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T15:14:52Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.72 +/- 4.36 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Campqt/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
The-matt/autumn-shadow-48_70
The-matt
2023-09-02T15:13:29Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T15:13:13Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
btamm12/bert-base-cased-finetuned-wls-manual-5ep
btamm12
2023-09-02T15:11:56Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:10:02Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-wls-manual-5ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-wls-manual-5ep This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1603 | 0.93 | 7 | 1.8523 | | 1.6398 | 2.0 | 15 | 1.6332 | | 1.5675 | 2.93 | 22 | 1.5257 | | 1.4167 | 4.0 | 30 | 1.4623 | | 1.3885 | 4.67 | 35 | 1.4795 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
btamm12/bert-base-uncased-finetuned-wls-manual-4ep-lower
btamm12
2023-09-02T15:07:01Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:04:34Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-wls-manual-4ep-lower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wls-manual-4ep-lower This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1174 | 0.93 | 7 | 1.9683 | | 1.617 | 2.0 | 15 | 1.6046 | | 1.5138 | 2.93 | 22 | 1.4859 | | 1.4474 | 3.73 | 28 | 1.4356 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_60
The-matt
2023-09-02T15:06:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T15:06:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
NiscR/a2c-PandaReachDense-v3
NiscR
2023-09-02T15:06:45Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T15:01:15Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.22 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DrishtiSharma/mbart-large-50-en-es-translation-lr-1e-05-weight-decay-0.001
DrishtiSharma
2023-09-02T15:04:08Z
9
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "translation", "generated_from_trainer", "base_model:facebook/mbart-large-50", "base_model:finetune:facebook/mbart-large-50", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-09-02T12:48:56Z
--- license: mit base_model: facebook/mbart-large-50 tags: - translation - generated_from_trainer metrics: - bleu - rouge model-index: - name: mbart-large-50-en-es-translation-lr-1e-05-weight-decay-0.001 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-50-en-es-translation-lr-1e-05-weight-decay-0.001 This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9549 - Bleu: 45.0307 - Rouge: {'rouge1': 0.7049318825090395, 'rouge2': 0.5238048751750992, 'rougeL': 0.684187379601513, 'rougeLsum': 0.6843574853855577} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:----------------------------------------------------------------------------------------------------------------------------:| | 1.4627 | 1.0 | 4500 | 1.0255 | 42.1880 | {'rouge1': 0.6725633216905762, 'rouge2': 0.48605402524493657, 'rougeL': 0.6498853764470456, 'rougeLsum': 0.6501981166312041} | | 0.8878 | 2.0 | 9000 | 0.9572 | 44.1734 | {'rouge1': 0.6912686406245903, 'rouge2': 0.5093695171345348, 'rougeL': 0.6701896043455414, 'rougeLsum': 0.6703473419504804} | | 0.7125 | 3.0 | 13500 | 0.9414 | 44.8709 | {'rouge1': 0.7051197958532004, 'rouge2': 0.5210482863677958, 'rougeL': 0.6843075431636916, 'rougeLsum': 0.6846265298079588} | | 0.6092 | 4.0 | 18000 | 0.9549 | 45.0821 | {'rouge1': 0.7047932899349161, 'rouge2': 0.523739339466653, 'rougeL': 0.6840127607742443, 'rougeLsum': 0.684202100852132} | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4.dev0 - Tokenizers 0.13.3
btamm12/roberta-base-finetuned-wls-manual-3ep
btamm12
2023-09-02T15:01:54Z
129
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T14:59:09Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-wls-manual-3ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-wls-manual-3ep This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8156 | 0.93 | 7 | 1.5116 | | 1.4371 | 2.0 | 15 | 1.3472 | | 1.3218 | 2.8 | 21 | 1.3278 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
dhinman/poca-SoccerTwos
dhinman
2023-09-02T15:00:49Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-09-02T14:59:42Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dhinman/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
btamm12/bert-base-uncased-finetuned-wls-manual-3ep-lower
btamm12
2023-09-02T14:59:01Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T14:56:34Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-wls-manual-3ep-lower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wls-manual-3ep-lower This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1229 | 0.93 | 7 | 1.9851 | | 1.635 | 2.0 | 15 | 1.6390 | | 1.5515 | 2.8 | 21 | 1.5881 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
tsukemono/japanese-stablelm-base-alpha-7b-qlora-marisa
tsukemono
2023-09-02T14:58:35Z
0
0
null
[ "ja", "region:us" ]
null
2023-08-28T08:24:30Z
--- language: - ja --- ## モデルの概略 霧雨魔理沙とおしゃべりできるモデルです。 [Japanese-StableLM-Base-Alpha-7B](https://huggingface.co/stabilityai/japanese-stablelm-base-alpha-7b)のLoRAデータになります ## 使い方 推論のさせかたの一例をhow_to_use.ipynbに記しましたので参考にしていただけると幸いです。 「ユーザー: hogehoge\n魔理沙: 」といったプロンプトを与えてあげることで、魔理沙とおしゃべりができるようになります。 ## 備考 これは東方Projectの二次創作です --- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
btamm12/bert-base-cased-finetuned-wls-manual-3ep
btamm12
2023-09-02T14:56:26Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T14:54:00Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-wls-manual-3ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-wls-manual-3ep This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1602 | 0.93 | 7 | 1.8592 | | 1.6456 | 2.0 | 15 | 1.6724 | | 1.6082 | 2.8 | 21 | 1.4744 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
btamm12/roberta-base-finetuned-wls-manual-2ep
btamm12
2023-09-02T14:53:53Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T14:51:11Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-wls-manual-2ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-wls-manual-2ep This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8161 | 0.93 | 7 | 1.5123 | | 1.4497 | 1.87 | 14 | 1.3929 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
btamm12/bert-base-uncased-finetuned-wls-manual-2ep-lower
btamm12
2023-09-02T14:51:03Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T14:48:39Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-wls-manual-2ep-lower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wls-manual-2ep-lower This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1678 | 0.93 | 7 | 2.0527 | | 1.6854 | 1.87 | 14 | 1.7688 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
Therence-NG/Decoder-1b
Therence-NG
2023-09-02T14:49:19Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T14:49:17Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
The-matt/autumn-shadow-48_30
The-matt
2023-09-02T14:45:31Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T14:45:15Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
btamm12/bert-base-cased-finetuned-wls-manual-1ep
btamm12
2023-09-02T14:42:09Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T14:40:23Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-wls-manual-1ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-wls-manual-1ep This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1332 | 0.93 | 7 | 1.9236 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_20
The-matt
2023-09-02T14:38:29Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-02T14:38:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
Lenouche/JoueurDuGrenier
Lenouche
2023-09-02T14:31:09Z
0
0
null
[ "fr", "license:openrail", "region:us" ]
null
2023-08-13T23:02:23Z
--- license: openrail language: - fr ---
The-matt/autumn-shadow-48_10
The-matt
2023-09-02T14:30:51Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T14:30:47Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
Lenouche/Sblerky
Lenouche
2023-09-02T14:30:42Z
0
0
null
[ "fr", "license:openrail", "region:us" ]
null
2023-08-13T23:01:35Z
--- license: openrail language: - fr ---
Lenouche/Conkerax
Lenouche
2023-09-02T14:30:03Z
0
0
null
[ "fr", "license:openrail", "region:us" ]
null
2023-08-13T22:13:05Z
--- license: openrail language : - fr ---
Lenouche/GiaTechAndGaming
Lenouche
2023-09-02T14:28:46Z
0
0
null
[ "fr", "license:openrail", "region:us" ]
null
2023-08-17T01:44:54Z
--- language: - fr license: openrail ---
Lenouche/DefendIntelligence
Lenouche
2023-09-02T14:26:44Z
0
0
null
[ "fr", "license:openrail", "region:us" ]
null
2023-08-31T00:44:45Z
--- language: - fr license: openrail ---
SymeCloud/Llama2-7b-Chat-GGUF
SymeCloud
2023-09-02T14:25:41Z
1
2
transformers
[ "transformers", "llama", "code", "llama-2", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-09-02T11:59:57Z
--- license: apache-2.0 language: - en tags: - code - llama-2 --- # Llama2 Chat 7B - GGUF - Model creator: [Meta](https://huggingface.co/meta-llama) - Original model: [Llama 2 7b Chat GGML](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML) <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates. * [llama.cpp](https://github.com/ggerganov/llama.cpp)
Kamer/DuplicatesUnique
Kamer
2023-09-02T14:24:10Z
109
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T13:36:09Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: DuplicatesUnique results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DuplicatesUnique This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 1.7513 - eval_Accuracy: 0.3885 - eval_F1_macro: 0.1389 - eval_F1_class_0: 0.8712 - eval_F1_class_1: 0.6667 - eval_F1_class_2: 0.2133 - eval_F1_class_3: 0.0 - eval_F1_class_4: 0.0 - eval_F1_class_5: 0.0 - eval_F1_class_6: 0.0187 - eval_F1_class_7: 0.0 - eval_F1_class_8: 0.0 - eval_F1_class_9: 0.8726 - eval_F1_class_10: 0.0147 - eval_F1_class_11: 0.0 - eval_F1_class_12: 0.1204 - eval_F1_class_13: 0.0 - eval_F1_class_14: 0.0 - eval_F1_class_15: 0.0 - eval_F1_class_16: 0.0 - eval_F1_class_17: 0.0 - eval_F1_class_18: 0.0 - eval_F1_class_19: 0.0 - eval_runtime: 16.4781 - eval_samples_per_second: 68.576 - eval_steps_per_second: 8.618 - epoch: 0.77 - step: 5000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
Avenuenw/prompt-tokenizer
Avenuenw
2023-09-02T14:03:10Z
0
0
null
[ "en", "dataset:daspartho/stable-diffusion-prompts", "license:apache-2.0", "region:us" ]
null
2023-09-02T14:02:05Z
--- language: en license: apache-2.0 datasets: daspartho/stable-diffusion-prompts --- # Prompt Tokenizer GPT-2 Tokenizer trained on [dataset](https://huggingface.co/datasets/daspartho/stable-diffusion-prompts) of stable diffusion prompts.
trieudemo11/llama_7b_attrb_cate_8m_2
trieudemo11
2023-09-02T13:58:45Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-02T13:58:29Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0
Avenuenw/prompt-extender
Avenuenw
2023-09-02T13:58:26Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-02T13:52:41Z
--- license: mit tags: - generated_from_trainer model-index: - name: prompt-extend results: [] --- [![Generic badge](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue.svg)](https://huggingface.co/spaces/daspartho/prompt-extend) # Prompt Extend Text generation model for generating suitable style cues given the main idea for a prompt. It is a GPT-2 model trained on [dataset](https://huggingface.co/datasets/daspartho/stable-diffusion-prompts) of stable diffusion prompts. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.7436 | 1.0 | 12796 | 2.5429 | | 2.3292 | 2.0 | 25592 | 2.0711 | | 1.9439 | 3.0 | 38388 | 1.8447 | | 1.7059 | 4.0 | 51184 | 1.7325 | | 1.5775 | 5.0 | 63980 | 1.7110 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
VinayHajare/ppo-LunarLander-v2
VinayHajare
2023-09-02T13:51:21Z
5
3
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T06:37:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.26 +/- 19.25 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python # !pip gymnasium huggingface-sb3 stable_baselines3[extra] import gymnasium as gym from huggingface_sb3 import load_from_hub from stable_baselines3 import PPO from stable_baselines3.common.vec_env import DummyVecEnv from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.monitor import Monitor repo_id = "VinayHajare/ppo-LunarLander-v2" filename = "ppo-LunarLander-v2.zip" eval_env = gym.make("LunarLander-v2", render_mode="human") checkpoint = load_from_hub(repo_id, filename) model = PPO.load(checkpoint,print_system_info=True) mean_reward, std_reward = evaluate_policy(model,eval_env, n_eval_episodes=10, deterministic=True) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") # Enjoy trained agent observation, info = eval_env.reset() for _ in range(1000): action, _states = model.predict(observation, deterministic=True) observation, rewards, terminated, truncated, info = eval_env.step(action) eval_env.render() ```
pritam3355/llama2-qlora-finetunined-french
pritam3355
2023-09-02T13:34:55Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-02T13:30:27Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
ckandemir/xlm-roberta-base-finetuned-panx-de
ckandemir
2023-09-02T13:28:15Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T08:51:32Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.en split: validation args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6993243243243242 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3902 - F1: 0.6993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1085 | 1.0 | 50 | 0.5687 | 0.5579 | | 0.5001 | 2.0 | 100 | 0.4186 | 0.6781 | | 0.3535 | 3.0 | 150 | 0.3902 | 0.6993 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jongalon/intel_image_classification_fastai
jongalon
2023-09-02T13:17:37Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-09-02T13:17:34Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
SaadoN/bert-finetuned-squad
SaadoN
2023-09-02T13:14:39Z
122
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-02T10:57:32Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
HorcruxNo13/vit-base-patch16-224-in21k-finetuned-eurosat
HorcruxNo13
2023-09-02T13:10:51Z
191
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T13:01:40Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.7333333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5802 - Accuracy: 0.7333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 8 | 1.0922 | 0.7333 | | 2.0408 | 2.0 | 16 | 0.6039 | 0.7333 | | 0.9248 | 3.0 | 24 | 0.5810 | 0.7333 | | 0.6035 | 4.0 | 32 | 0.5830 | 0.7333 | | 0.5951 | 5.0 | 40 | 0.5802 | 0.7333 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Ahmedhisham/social_bias_Bert
Ahmedhisham
2023-09-02T13:10:27Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T12:32:03Z
--- tags: - generated_from_keras_callback model-index: - name: social_bias_Bert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # social_bias_Bert This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Tokenizers 0.13.3
LiChenYi/QA
LiChenYi
2023-09-02T13:05:16Z
0
0
null
[ "license:unknown", "region:us" ]
null
2023-09-02T12:55:15Z
--- license: unknown --- 在AI使用过程中,遇到的问题进行记录,供后来者避坑 # 2colab 使用过程的问题 1. 在colab中拉去 huggingface仓库中的数据报如下错误: Connecting to [huggingface.co](http://huggingface.co/) ([huggingface.co](http://huggingface.co/))|18.239.50.16|:443... connected. HTTP request sent, awaiting response... 401 Unauthorized 解决方案: 找到huggingface设置,用户的访问请求【User Access requests】:设置为禁用
ckandemir/xlm-roberta-base-finetuned-panx-de-fr
ckandemir
2023-09-02T13:04:30Z
124
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T12:13:02Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1669 - F1: 0.8604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3059 | 1.0 | 715 | 0.1894 | 0.8169 | | 0.148 | 2.0 | 1430 | 0.1663 | 0.8473 | | 0.0932 | 3.0 | 2145 | 0.1669 | 0.8604 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
penguinman73/xlm-roberta-base-finetuned-panx-all
penguinman73
2023-09-02T13:01:15Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T12:45:50Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1739 - F1: 0.8549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3005 | 1.0 | 835 | 0.1894 | 0.8174 | | 0.1568 | 2.0 | 1670 | 0.1743 | 0.8382 | | 0.1027 | 3.0 | 2505 | 0.1739 | 0.8549 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
quantumaikr/KoreanLM-3B
quantumaikr
2023-09-02T12:55:53Z
109
1
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "korean", "foundation", "ko", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-21T09:02:18Z
--- language: - ko - en pipeline_tag: text-generation tags: - llama - korean - foundation --- <p align="center" width="100%"> <img src="https://i.imgur.com/snFDU0P.png" alt="KoreanLM icon" style="width: 500px; display: block; margin: auto; border-radius: 10%;"> </p> # KoreanLM: 한국어 언어모델 프로젝트 KoreanLM은 한국어 언어모델을 개발하기 위한 오픈소스 프로젝트입니다. 현재 대부분의 언어모델들은 영어에 초점을 맞추고 있어, 한국어에 대한 학습이 상대적으로 부족하고 토큰화 과정에서 비효율적인 경우가 있습니다. 이러한 문제를 해결하고 한국어에 최적화된 언어모델을 제공하기 위해 KoreanLM 프로젝트를 시작하게 되었습니다. ## 프로젝트 목표 1. 한국어에 특화된 언어모델 개발: 한국어의 문법, 어휘, 문화적 특성을 반영하여 한국어를 더 정확하게 이해하고 생성할 수 있는 언어모델을 개발합니다. 2. 효율적인 토큰화 방식 도입: 한국어 텍스트의 토큰화 과정에서 효율적이고 정확한 분석이 가능한 새로운 토큰화 방식을 도입하여 언어모델의 성능을 향상시킵니다. 3. 거대 언어모델의 사용성 개선: 현재 거대한 사이즈의 언어모델들은 기업이 자사의 데이터를 파인튜닝하기 어려운 문제가 있습니다. 이를 해결하기 위해 한국어 언어모델의 크기를 조절하여 사용성을 개선하고, 자연어 처리 작업에 더 쉽게 적용할 수 있도록 합니다. ## 사용 방법 다음은 transformers 라이브러리를 통해 모델과 토크나이저를 로딩하는 예제입니다. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained("quantumaikr/KoreanLM-3B") tokenizer = transformers.AutoTokenizer.from_pretrained("quantumaikr/KoreanLM-3B") ``` ## 기술 문의 hi@quantumai.kr www.quantumai.kr
astroid19/ppo-LunarLander-v2
astroid19
2023-09-02T12:46:19Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T12:45:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 284.82 +/- 21.66 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
HorcruxNo13/swinv2-small-patch4-window8-256-finetuned-eurosat
HorcruxNo13
2023-09-02T12:44:00Z
146
0
transformers
[ "transformers", "pytorch", "swinv2", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swinv2-small-patch4-window8-256", "base_model:finetune:microsoft/swinv2-small-patch4-window8-256", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T12:25:25Z
--- license: apache-2.0 base_model: microsoft/swinv2-small-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-small-patch4-window8-256-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.7333333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-small-patch4-window8-256-finetuned-eurosat This model is a fine-tuned version of [microsoft/swinv2-small-patch4-window8-256](https://huggingface.co/microsoft/swinv2-small-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5868 - Accuracy: 0.7333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 8 | 1.1951 | 0.2667 | | 5.0901 | 2.0 | 16 | 1.4301 | 0.7333 | | 2.785 | 3.0 | 24 | 1.1514 | 0.2667 | | 0.8599 | 4.0 | 32 | 0.5810 | 0.7333 | | 0.6058 | 5.0 | 40 | 0.5868 | 0.7333 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
simlamkr1/llama2-simtestmodel1
simlamkr1
2023-09-02T12:32:06Z
0
0
peft
[ "peft", "pytorch", "llama", "region:us" ]
null
2023-09-01T13:56:00Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
rrozb/dqn-SpaceInvadersNoFrameskip-v4
rrozb
2023-09-02T12:22:17Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T12:21:54Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 597.00 +/- 109.80 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rrozb -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rrozb -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga rrozb ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
NiscR/Reinforce-Pixel1
NiscR
2023-09-02T12:19:12Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T11:35:10Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixel1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 31.20 +/- 23.29 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
penguinman73/xlm-roberta-base-finetuned-panx-fr
penguinman73
2023-09-02T12:18:32Z
124
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T12:13:41Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2760 - F1: 0.8452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5839 | 1.0 | 191 | 0.3623 | 0.7527 | | 0.2607 | 2.0 | 382 | 0.2836 | 0.8238 | | 0.1745 | 3.0 | 573 | 0.2760 | 0.8452 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
penguinman73/xlm-roberta-base-finetuned-panx-de-fr
penguinman73
2023-09-02T12:12:18Z
114
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T11:58:38Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1623 - F1: 0.8603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1813 | 0.8232 | | 0.1482 | 2.0 | 1430 | 0.1586 | 0.8462 | | 0.0959 | 3.0 | 2145 | 0.1623 | 0.8603 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
penguinman73/xlm-roberta-base-finetuned-panx-de
penguinman73
2023-09-02T11:56:10Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-27T01:35:12Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2992 - F1: 0.8285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6098 | 1.0 | 167 | 0.3570 | 0.7592 | | 0.2633 | 2.0 | 334 | 0.2995 | 0.8171 | | 0.1792 | 3.0 | 501 | 0.2992 | 0.8285 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
amgodbole/bloom_prompt_tuning_1693653323.8270018
amgodbole
2023-09-02T11:36:37Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-02T11:36:36Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
casque/FilmVelvia3
casque
2023-09-02T11:34:13Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-02T11:32:49Z
--- license: creativeml-openrail-m ---
Mustain/line_fujiki3
Mustain
2023-09-02T11:20:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T11:20:04Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
aikotainaru/Dottore_voice
aikotainaru
2023-09-02T11:19:13Z
0
0
null
[ "region:us" ]
null
2023-08-30T14:02:27Z
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/IZqQvtZ02gfU6mluiNaXo.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/LDKjkNfr1-TiTY-x-bBnr.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/e3cSWdQkvaorenFMzjmum.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/nA8FlNF6XL-HQZRpqej6o.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/X10FTsq6QHe7nvpNxXStR.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/J_wYluqdk8TlUmIMAK47G.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/eHKM_nJcZ3KfPUDI75SPV.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/wZyvTpMVzjEbfbLwERxPJ.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/RThzUoi1UDFphHZCftU-k.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/zltQYBg6a789iTPWnp7kA.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/tviqk-lhL6a8SXsmQSaxD.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/jOe34I-NhkWwT7Ujf1Njf.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/cFKVq90mezpXbBfJQ_3jf.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/Lt82Q_2OzH1vfE8E-vVsH.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/fJvK7WKHukBXjoaej7XTy.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/21ifaJ6VjYOG-q65PzN-D.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/Sa17c63JUUs050bVGdNUs.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/Xz3MmjlegoqxPTckGwa2T.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/MIAYZSROm9NI_2uSi-Bce.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/CDYJjADDXu0yO2YUhC0Xi.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/WFqkjbogef_A0aX0-vWhu.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/RGIx--NRqDWwPCymxa3fa.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/_VPgY4aquWPo8z8qonwFH.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/VINsRv15uF2uGL6A86yAY.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/Iy7wl52pgyl7ZwWzfgQ1m.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/GPC6lKaEu5qcmBH4-elBj.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/v6Gwr1pwaPd8o7_s2KJsd.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/lHs1JpNYreHnKbMVJJCbe.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/jOfi8zmp18SEej2NePF1s.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/q9i9fWl49Q9tkVTnJShQN.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/R_lVYAgVGO2U6M20JcelE.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/RQkwoh4uFPLlr1FQSAlFA.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/BkoXLAc3Ya7mGLcGq41x-.mpga"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64ef4b7ccf9bec024a5e46f6/omynrc_owbbYJz1308E30.mpga"></audio>
goat923/my_awesome_wnut_model
goat923
2023-09-02T11:16:36Z
61
0
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T10:33:21Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: goat923/my_awesome_wnut_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # goat923/my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1165 - Validation Loss: 0.2494 - Train Precision: 0.6287 - Train Recall: 0.4557 - Train F1: 0.5284 - Train Accuracy: 0.9482 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 636, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.3527 | 0.3075 | 0.3319 | 0.0945 | 0.1471 | 0.9281 | 0 | | 0.1583 | 0.2594 | 0.5886 | 0.4211 | 0.4909 | 0.9455 | 1 | | 0.1165 | 0.2494 | 0.6287 | 0.4557 | 0.5284 | 0.9482 | 2 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
dwitidibyajyoti/fine_tune_layoutmlv3_model
dwitidibyajyoti
2023-09-02T11:15:36Z
77
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "token-classification", "generated_from_trainer", "base_model:microsoft/layoutlmv3-base", "base_model:finetune:microsoft/layoutlmv3-base", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-30T09:45:10Z
--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2763 - Precision: 0.5109 - Recall: 0.6026 - F1: 0.5529 - Accuracy: 0.9222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 8.33 | 100 | 0.6800 | 0.3371 | 0.3846 | 0.3593 | 0.7682 | | No log | 16.67 | 200 | 0.3088 | 0.5204 | 0.6538 | 0.5795 | 0.9156 | | No log | 25.0 | 300 | 0.2142 | 0.5326 | 0.6282 | 0.5765 | 0.9305 | | No log | 33.33 | 400 | 0.2301 | 0.5795 | 0.6538 | 0.6145 | 0.9288 | | 0.4115 | 41.67 | 500 | 0.2426 | 0.5618 | 0.6410 | 0.5988 | 0.9272 | | 0.4115 | 50.0 | 600 | 0.4171 | 0.6190 | 0.6667 | 0.6420 | 0.8924 | | 0.4115 | 58.33 | 700 | 0.2265 | 0.5393 | 0.6154 | 0.5749 | 0.9371 | | 0.4115 | 66.67 | 800 | 0.2869 | 0.5506 | 0.6282 | 0.5868 | 0.9156 | | 0.4115 | 75.0 | 900 | 0.2633 | 0.5568 | 0.6282 | 0.5904 | 0.9272 | | 0.0231 | 83.33 | 1000 | 0.2763 | 0.5109 | 0.6026 | 0.5529 | 0.9222 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
yaohuacn/a2c-PandaReachDense-v3
yaohuacn
2023-09-02T11:10:11Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T11:05:12Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.19 +/- 0.08 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aigrils2/primitive0-diffuser
aigrils2
2023-09-02T11:05:44Z
29
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "lora", "base_model:wangjun/majicmix-realistic-v6", "base_model:adapter:wangjun/majicmix-realistic-v6", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-02T10:20:37Z
--- base_model: wangjun/majicmix-realistic-v6 tags: - text-to-image - stable-diffusion - lora - diffusers pipeline_tag: text-to-image ---
madroid/onnx-whisper
madroid
2023-09-02T11:02:02Z
0
0
null
[ "onnx", "whisper", "openai", "license:apache-2.0", "region:us" ]
null
2023-09-02T07:14:04Z
--- license: apache-2.0 tags: - whisper - onnx - openai ---
JanSt/gbert-base-finetuned-twitter
JanSt
2023-09-02T10:57:40Z
8
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:deepset/gbert-base", "base_model:finetune:deepset/gbert-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-24T10:58:07Z
--- license: mit base_model: deepset/gbert-base tags: - generated_from_trainer model-index: - name: gbert-base-finetuned-twitter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gbert-base-finetuned-twitter This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 192 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.194 | 1.0 | 4180 | 1.9622 | | 2.0075 | 2.0 | 8360 | 1.8813 | | 1.9429 | 3.0 | 12540 | 1.8339 | | 1.8985 | 4.0 | 16720 | 1.8057 | | 1.8676 | 5.0 | 20900 | 1.7801 | | 1.8446 | 6.0 | 25080 | 1.7793 | | 1.829 | 7.0 | 29260 | 1.7580 | | 1.815 | 8.0 | 33440 | 1.7445 | | 1.8048 | 9.0 | 37620 | 1.7319 | | 1.7997 | 10.0 | 41800 | 1.7331 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
andrewcho92/helloworld
andrewcho92
2023-09-02T10:33:10Z
0
0
null
[ "text-generation", "en", "license:openrail", "region:us" ]
text-generation
2023-09-02T10:14:37Z
--- license: openrail language: - en pipeline_tag: text-generation ---
adimazuz/q-FrozenLake-v1-4x4-noSlippery
adimazuz
2023-09-02T10:23:17Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T10:23:15Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="adimazuz/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jigglesaw/finetuning-sentiment-model-3000-samples
jigglesaw
2023-09-02T10:16:22Z
106
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T08:56:24Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.870967741935484 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3394 - Accuracy: 0.8667 - F1: 0.8710 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
StefanoCaloni/dqn-SpaceInvaders
StefanoCaloni
2023-09-02T10:04:52Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T08:32:06Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 299.00 +/- 68.26 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga StefanoCaloni -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga StefanoCaloni -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga StefanoCaloni ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 10000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 10000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 100), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
andrei-saceleanu/detr-resnet-50_finetuned_cppe5
andrei-saceleanu
2023-09-02T10:00:41Z
187
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "dataset:cppe-5", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-09-02T09:07:57Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer datasets: - cppe-5 model-index: - name: detr-resnet-50_finetuned_cppe5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_finetuned_cppe5 This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cppe-5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
utnah/ckpt
utnah
2023-09-02T09:33:43Z
0
2
null
[ "license:openrail", "region:us" ]
null
2022-10-31T12:34:09Z
--- license: openrail --- Модели весов для StableDiffusion в формате ckpt. Для быстрой загрузки в [Google Colab](https://colab.research.google.com/drive/1TC4SSLncPWytSPvquR6Y4-U7wZRfAXrV) [![открыть Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1TC4SSLncPWytSPvquR6Y4-U7wZRfAXrV)
fathercc/majiczhenshi
fathercc
2023-09-02T09:16:46Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-02T12:23:04Z
--- license: creativeml-openrail-m ---
Yntec/DreamLikeRemix
Yntec
2023-09-02T08:58:22Z
420
3
diffusers
[ "diffusers", "safetensors", "anime", "Dreamlike", "art", "Retro", "Elldreths", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:other", "autotrain_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-11T14:26:00Z
--- license: other language: - en library_name: diffusers pipeline_tag: text-to-image tags: - anime - Dreamlike - art - Retro - Elldreths - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: false --- # DreamLikeRemix Samples and prompts: ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/UaWl0HP-FhNaqWs9Uqvr9.png) ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/PQahHQE7YSNQ-wfeBhIag.png) beautiful background, beautiful detailed girl, Cartoon Pretty CUTE Girl, sitting on a box of cherries, DETAILED CHIBI EYES, holding antique slot machine, detailed hair, Ponytail, key shot at computer monitor, Magazine ad, iconic, 1940, sharp focus. Acrylic art on canvas By KlaysMoji and artgerm and Clay Mann and and leyendecker A mix of Dreamlike Diffusion and a little bit of Elldreths Retro Mix. Full recipe: # Add Difference 1.0 Primary model: Dreamlike Diffusion Secondary model: Elldreths Retro Mix Tertiary model: v1-5-pruned-fp16-no-ema Output Model: Temporary # Weighted Sum 0.85 Primary model: Temporary Secondary model: Dreamlike Diffusion Output Model: dreamLikeRemix Original pages: https://huggingface.co/dreamlike-art/dreamlike-diffusion-1.0 https://civitai.com/models/1474/elldreths-retro-mix
SunshineYellow/t5-small-finetuned-xsum
SunshineYellow
2023-09-02T08:37:59Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:scitldr", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-20T06:06:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - scitldr metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scitldr type: scitldr config: Abstract split: validation args: Abstract metrics: - name: Rouge1 type: rouge value: 24.7942 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 3.8686 - Rouge1: 24.7942 - Rouge2: 7.8227 - Rougel: 21.2018 - Rougelsum: 21.2779 - Gen Len: 18.4297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 125 | 4.1327 | 23.5028 | 7.9229 | 19.2335 | 19.2839 | 18.5024 | | No log | 2.0 | 250 | 4.0197 | 23.4862 | 7.3941 | 19.1734 | 19.2273 | 18.4475 | | No log | 3.0 | 375 | 3.9659 | 24.0596 | 7.6225 | 20.2649 | 20.3197 | 18.2375 | | 4.2188 | 4.0 | 500 | 3.9302 | 24.323 | 7.9627 | 20.7527 | 20.8616 | 18.1826 | | 4.2188 | 5.0 | 625 | 3.9060 | 24.7138 | 7.9075 | 21.1786 | 21.2552 | 18.1939 | | 4.2188 | 6.0 | 750 | 3.8900 | 24.696 | 7.7986 | 21.161 | 21.2083 | 18.2342 | | 4.2188 | 7.0 | 875 | 3.8801 | 24.8363 | 7.852 | 21.2452 | 21.3039 | 18.3473 | | 3.991 | 8.0 | 1000 | 3.8736 | 24.8537 | 7.9099 | 21.2259 | 21.3141 | 18.3845 | | 3.991 | 9.0 | 1125 | 3.8700 | 24.7938 | 7.8088 | 21.1743 | 21.2603 | 18.4233 | | 3.991 | 10.0 | 1250 | 3.8686 | 24.7942 | 7.8227 | 21.2018 | 21.2779 | 18.4297 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.12.1
922-Narra/llama-2-7b-chat-tagalog-v0.3-gguf
922-Narra
2023-09-02T08:25:31Z
19
1
null
[ "gguf", "license:llama2", "endpoints_compatible", "region:us" ]
null
2023-09-01T09:44:48Z
--- license: llama2 --- GGUFs of [l27b-chat-tagalog-v0.3](https://huggingface.co/922-Narra/llama-2-7b-chat-tagalog-v0.3). (Primarily tested and run with Koboldcpp v1.41+). QLora (hf and GGML) [here](https://huggingface.co/922-Narra/tagalog-lm-lora-tests/tree/main/llama-2-7b-chat-tagalog-0.3).
Kamer/bert-base-uncased-eurlex
Kamer
2023-09-02T08:14:26Z
109
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:nlpaueb/bert-base-uncased-eurlex", "base_model:finetune:nlpaueb/bert-base-uncased-eurlex", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T07:18:39Z
--- license: cc-by-sa-4.0 base_model: nlpaueb/bert-base-uncased-eurlex tags: - generated_from_trainer model-index: - name: bert-base-uncased-eurlex results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-eurlex This model is a fine-tuned version of [nlpaueb/bert-base-uncased-eurlex](https://huggingface.co/nlpaueb/bert-base-uncased-eurlex) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4164 - eval_Accuracy: 0.9224 - eval_F1_macro: 0.9301 - eval_F1_class_0: 0.8941 - eval_F1_class_1: 0.9388 - eval_F1_class_2: 0.9412 - eval_F1_class_3: 0.9730 - eval_F1_class_4: 0.9148 - eval_F1_class_5: 0.9573 - eval_F1_class_6: 0.9399 - eval_F1_class_7: 0.9685 - eval_F1_class_8: 0.9630 - eval_F1_class_9: 0.9495 - eval_F1_class_10: 0.8574 - eval_F1_class_11: 0.9241 - eval_F1_class_12: 0.8677 - eval_F1_class_13: 0.9442 - eval_F1_class_14: 0.9055 - eval_F1_class_15: 0.9022 - eval_F1_class_16: 0.8929 - eval_F1_class_17: 0.9811 - eval_F1_class_18: 0.8870 - eval_F1_class_19: 1.0 - eval_runtime: 154.2922 - eval_samples_per_second: 32.918 - eval_steps_per_second: 4.116 - epoch: 0.52 - step: 3000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
Ori/lama-2-13b-peft-2wikihop-strategyqa-retrieval-at1
Ori
2023-09-02T08:09:57Z
0
0
peft
[ "peft", "safetensors", "region:us" ]
null
2023-09-02T08:05:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Xmm/led-large-16384-cnn_dailymail
Xmm
2023-09-02T08:09:40Z
98
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "led", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-17T03:05:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: led-large-16384-cnn_dailymail results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: test args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 0.3869876274946419 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # led-large-16384-cnn_dailymail This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.5544 - Rouge1: 0.3870 - Rouge2: 0.1736 - Rougel: 0.2599 - Rougelsum: 0.3653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 1.9531 | 0.4 | 500 | 1.8639 | 0.3485 | 0.1441 | 0.2275 | 0.3288 | | 1.9563 | 0.8 | 1000 | 1.8260 | 0.3538 | 0.1482 | 0.2315 | 0.3343 | | 1.7176 | 1.2 | 1500 | 1.8208 | 0.3628 | 0.1527 | 0.2383 | 0.3433 | | 1.7197 | 1.6 | 2000 | 1.8162 | 0.3696 | 0.1602 | 0.2434 | 0.3486 | | 1.8086 | 2.0 | 2500 | 1.7924 | 0.3558 | 0.1533 | 0.2334 | 0.3361 | | 1.2448 | 2.4 | 3000 | 1.8510 | 0.3703 | 0.1591 | 0.2447 | 0.3483 | | 1.3574 | 2.8 | 3500 | 1.8277 | 0.3741 | 0.1593 | 0.2422 | 0.3540 | | 1.0966 | 3.2 | 4000 | 1.8924 | 0.3682 | 0.1576 | 0.2424 | 0.3479 | | 0.9938 | 3.6 | 4500 | 1.8957 | 0.3723 | 0.1599 | 0.2451 | 0.3511 | | 1.0735 | 4.0 | 5000 | 1.8772 | 0.3653 | 0.1557 | 0.2399 | 0.3454 | | 0.9106 | 4.4 | 5500 | 1.9401 | 0.3720 | 0.1585 | 0.2436 | 0.3504 | | 1.015 | 4.8 | 6000 | 1.9320 | 0.3725 | 0.1570 | 0.2429 | 0.3515 | | 1.7854 | 0.36 | 6500 | 1.7800 | 0.3624 | 0.1544 | 0.2390 | 0.3422 | | 1.9079 | 0.39 | 7000 | 1.7629 | 0.3573 | 0.1553 | 0.2352 | 0.3370 | | 1.7606 | 3.34 | 7500 | 1.6902 | 0.3783 | 0.1673 | 0.2521 | 0.3570 | | 1.7571 | 3.57 | 8000 | 1.6563 | 0.3802 | 0.1691 | 0.2538 | 0.3587 | | 1.6602 | 3.79 | 8500 | 1.6439 | 0.3814 | 0.1693 | 0.2548 | 0.3600 | | 1.6614 | 4.01 | 9000 | 1.6312 | 0.3812 | 0.1691 | 0.2544 | 0.3599 | | 1.668 | 4.24 | 9500 | 1.6189 | 0.3815 | 0.1689 | 0.2550 | 0.3603 | | 1.6491 | 4.46 | 10000 | 1.6172 | 0.3799 | 0.1681 | 0.2540 | 0.3586 | | 1.5994 | 4.68 | 10500 | 1.6132 | 0.3825 | 0.1702 | 0.2560 | 0.3610 | | 1.6493 | 4.9 | 11000 | 1.6093 | 0.3828 | 0.1701 | 0.2561 | 0.3613 | | 1.6769 | 5.13 | 11500 | 1.6074 | 0.3831 | 0.1706 | 0.2569 | 0.3619 | | 1.6554 | 5.35 | 12000 | 1.6044 | 0.3817 | 0.1695 | 0.2559 | 0.3605 | | 1.6155 | 5.57 | 12500 | 1.6010 | 0.3825 | 0.1700 | 0.2561 | 0.3608 | | 1.5863 | 5.8 | 13000 | 1.5981 | 0.3829 | 0.1704 | 0.2569 | 0.3614 | | 1.6306 | 6.02 | 13500 | 1.6004 | 0.3831 | 0.1702 | 0.2563 | 0.3618 | | 1.6425 | 6.24 | 14000 | 1.5987 | 0.3821 | 0.1698 | 0.2561 | 0.3610 | | 1.6863 | 6.46 | 14500 | 1.5876 | 0.3837 | 0.1710 | 0.2569 | 0.3622 | | 1.6085 | 6.69 | 15000 | 1.5815 | 0.3836 | 0.1717 | 0.2573 | 0.3621 | | 1.6267 | 6.91 | 15500 | 1.5792 | 0.3852 | 0.1722 | 0.2579 | 0.3633 | | 1.5637 | 7.13 | 16000 | 1.5768 | 0.3830 | 0.1709 | 0.2568 | 0.3611 | | 1.5586 | 7.36 | 16500 | 1.5740 | 0.3833 | 0.1706 | 0.2567 | 0.3617 | | 1.5389 | 7.58 | 17000 | 1.5689 | 0.3858 | 0.1729 | 0.2590 | 0.3640 | | 1.5694 | 7.8 | 17500 | 1.5645 | 0.3853 | 0.1731 | 0.2589 | 0.3636 | | 1.5265 | 8.02 | 18000 | 1.5621 | 0.3871 | 0.1733 | 0.2596 | 0.3654 | | 1.5273 | 8.25 | 18500 | 1.5624 | 0.3861 | 0.1726 | 0.2588 | 0.3646 | | 1.5148 | 8.47 | 19000 | 1.5602 | 0.3866 | 0.1733 | 0.2592 | 0.3651 | | 1.532 | 8.69 | 19500 | 1.5599 | 0.3859 | 0.1732 | 0.2593 | 0.3642 | | 1.5113 | 8.92 | 20000 | 1.5602 | 0.3877 | 0.1748 | 0.2606 | 0.3658 | | 1.5133 | 9.14 | 20500 | 1.5595 | 0.3855 | 0.1725 | 0.2587 | 0.3637 | | 1.4875 | 9.36 | 21000 | 1.5572 | 0.3873 | 0.1741 | 0.2600 | 0.3654 | | 1.5038 | 9.59 | 21500 | 1.5557 | 0.3860 | 0.1728 | 0.2590 | 0.3641 | | 1.5062 | 9.81 | 22000 | 1.5544 | 0.3870 | 0.1736 | 0.2599 | 0.3653 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.0.0+cu118 - Datasets 2.10.1 - Tokenizers 0.13.2
Hemanth-thunder/kazuki_kurusu_lora_xl
Hemanth-thunder
2023-09-02T08:02:49Z
1
2
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-09-02T06:23:41Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of a kazuki kurusu tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Hemanth-thunder/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of a kazuki kurusu using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
StefanoCaloni/q-FrozenLake-v1-4x4-noSlippery
StefanoCaloni
2023-09-02T07:42:36Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-31T06:35:24Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="StefanoCaloni/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
StefanoCaloni/taxi
StefanoCaloni
2023-09-02T07:42:24Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-31T06:40:39Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="StefanoCaloni/taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
squarelike/Gugugo-koja-1.3B-V0.95
squarelike
2023-09-02T07:31:26Z
67
2
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "translation", "ja", "ko", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2023-08-31T14:17:12Z
--- license: apache-2.0 language: - ja - ko pipeline_tag: translation --- [https://github.com/jwj7140/Gugugo](https://github.com/jwj7140/Gugugo) Prompt Template: ``` ### 한국어: {sentence}</끝> ### 일본어: ``` ``` ### 일본어: {sentence}</끝> ### 한국어: ```
xalphaai/llama2-qlora-finetunined
xalphaai
2023-09-02T07:20:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T07:19:49Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
jackswie/sadie_sink
jackswie
2023-09-02T06:59:52Z
0
0
null
[ "region:us" ]
null
2023-09-02T06:50:29Z
[![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Sadie Sink - RVC V2 - Rmvpe - 750 Epoch **Oyuncu Sadie Sink'in ses modelidir, Rvc V2 750 epoch olarak eğitilmiştir.** **5 Dakikalık Dataset Kullanılmıştır.** **Dataset içerisinde konuşma ses örnekleri bulunmaktadır.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: jackswie - Reddit: u/jackk_m - YouTube: 𝖏𝖆𝖈𝖐𝖘𝖑𝖜𝖐 (https://www.youtube.com/channel/UCZSMJToEeMuqMFDL318v3Xw) - TikTok: jackss.aep (https://www.tiktok.com/@jackss.aep) - Instagram: jackslwk (https://www.instagram.com/jackslwk/) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)
Jakir057/finetuned-indian-food
Jakir057
2023-09-02T06:53:08Z
192
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T06:19:35Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-indian-food results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-indian-food This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.0026 - Accuracy: 0.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7056 | 0.1 | 100 | 0.5113 | 0.8881 | | 0.3027 | 0.21 | 200 | 0.1280 | 0.9796 | | 0.2823 | 0.31 | 300 | 0.1580 | 0.9656 | | 0.3273 | 0.42 | 400 | 0.0879 | 0.9837 | | 0.1808 | 0.52 | 500 | 0.0812 | 0.9822 | | 0.2101 | 0.63 | 600 | 0.0339 | 0.9937 | | 0.1495 | 0.73 | 700 | 0.0568 | 0.9833 | | 0.1296 | 0.84 | 800 | 0.0629 | 0.9844 | | 0.1462 | 0.94 | 900 | 0.0886 | 0.9733 | | 0.0519 | 1.04 | 1000 | 0.0544 | 0.9870 | | 0.3192 | 1.15 | 1100 | 0.0892 | 0.9726 | | 0.158 | 1.25 | 1200 | 0.0632 | 0.98 | | 0.0266 | 1.36 | 1300 | 0.0233 | 0.9944 | | 0.1832 | 1.46 | 1400 | 0.0292 | 0.9930 | | 0.1212 | 1.57 | 1500 | 0.0489 | 0.9852 | | 0.0994 | 1.67 | 1600 | 0.0142 | 0.9974 | | 0.0219 | 1.78 | 1700 | 0.0277 | 0.9930 | | 0.0664 | 1.88 | 1800 | 0.0158 | 0.9974 | | 0.0834 | 1.99 | 1900 | 0.0124 | 0.9978 | | 0.1093 | 2.09 | 2000 | 0.0140 | 0.9974 | | 0.1726 | 2.19 | 2100 | 0.0147 | 0.9963 | | 0.0476 | 2.3 | 2200 | 0.0058 | 0.9993 | | 0.0257 | 2.4 | 2300 | 0.0424 | 0.9911 | | 0.0215 | 2.51 | 2400 | 0.0076 | 0.9989 | | 0.0748 | 2.61 | 2500 | 0.0099 | 0.9974 | | 0.0059 | 2.72 | 2600 | 0.0053 | 0.9993 | | 0.0527 | 2.82 | 2700 | 0.0149 | 0.9963 | | 0.0203 | 2.93 | 2800 | 0.0041 | 0.9993 | | 0.0791 | 3.03 | 2900 | 0.0033 | 0.9989 | | 0.0389 | 3.13 | 3000 | 0.0033 | 0.9989 | | 0.0459 | 3.24 | 3100 | 0.0044 | 0.9989 | | 0.0276 | 3.34 | 3200 | 0.0031 | 0.9996 | | 0.0139 | 3.45 | 3300 | 0.0028 | 0.9996 | | 0.0076 | 3.55 | 3400 | 0.0055 | 0.9985 | | 0.0097 | 3.66 | 3500 | 0.0027 | 0.9996 | | 0.0193 | 3.76 | 3600 | 0.0026 | 0.9996 | | 0.0471 | 3.87 | 3700 | 0.0027 | 0.9996 | | 0.0282 | 3.97 | 3800 | 0.0027 | 0.9996 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
dt-and-vanilla-ardt/ardt-vanilla-robust_train_walker2d_level-0209_0608-99
dt-and-vanilla-ardt
2023-09-02T06:36:38Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-02T05:10:31Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-robust_train_walker2d_level-0209_0608-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-robust_train_walker2d_level-0209_0608-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
GyanPrakashKushwaha/Sentiment-Analysis
GyanPrakashKushwaha
2023-09-02T06:26:34Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-09-02T06:26:34Z
--- license: bigscience-openrail-m ---
budecosystem/genz-70b
budecosystem
2023-09-02T06:03:21Z
2,642
30
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-21T11:36:04Z
--- language: - en library_name: transformers pipeline_tag: text-generation --- --- <div align="center"><h1 align="center">~ GenZ ~</h1><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/genz-logo.png" width=150></div> <p align="center"><i>Democratizing access to LLMs for the open-source community.<br>Let's advance AI, together. </i></p> --- ## Introduction 🎉 Welcome to **GenZ**, an advanced Large Language Model (LLM) fine-tuned on the foundation of Meta's open-source Llama V2 70B parameter model. At Bud Ecosystem, we believe in the power of open-source collaboration to drive the advancement of technology at an accelerated pace. Our vision is to democratize access to fine-tuned LLMs, and to that end, we will be releasing a series of models across different parameter counts (7B, 13B, and 70B) and quantizations (32-bit and 4-bit) for the open-source community to use, enhance, and build upon. <p align="center"><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/mt_bench_compare.png" width="500"></p> The smaller quantization version of our models makes them more accessible, enabling their use even on personal computers. This opens up a world of possibilities for developers, researchers, and enthusiasts to experiment with these models and contribute to the collective advancement of language model technology. GenZ isn't just a powerful text generator—it's a sophisticated AI assistant, capable of understanding and responding to user prompts with high-quality responses. We've taken the robust capabilities of Llama V2 and fine-tuned them to offer a more user-focused experience. Whether you're seeking informative responses or engaging interactions, GenZ is designed to deliver. And this isn't the end. It's just the beginning of a journey towards creating more advanced, more efficient, and more accessible language models. We invite you to join us on this exciting journey. 🚀 --- <h2>Milestone Releases ️🏁</h2> **[21 August 2023]** [_GenZ-70B_](https://huggingface.co/budecosystem/genz-70b) : We're excited to announce the release of our Genz 70BB model. Experience the advancements by downloading the model from [HuggingFace](https://huggingface.co/budecosystem/genz-70b). **[27 July 2023]** [_GenZ-13B V2 (ggml)_](https://huggingface.co/budecosystem/genz-13b-v2-ggml) : Announcing our GenZ-13B v2 with ggml. This variant of GenZ can run inferencing using only CPU and without the need of GPU. Download the model from [HuggingFace](https://huggingface.co/budecosystem/genz-13b-v2-ggml). **[27 July 2023]** [_GenZ-13B V2 (4-bit)_](https://huggingface.co/budecosystem/genz-13b-v2-4bit) : Announcing our GenZ-13B v2 with 4-bit quantisation. Enabling inferencing with much lesser GPU memory than the 32-bit variant. Download the model from [HuggingFace](https://huggingface.co/budecosystem/genz-13b-v2-4bit). **[26 July 2023]** [_GenZ-13B V2_](https://huggingface.co/budecosystem/genz-13b-v2) : We're excited to announce the release of our Genz 13B v2 model, a step forward with improved evaluation results compared to v1. Experience the advancements by downloading the model from [HuggingFace](https://huggingface.co/budecosystem/genz-13b-v2). **[20 July 2023]** [_GenZ-13B_](https://huggingface.co/budecosystem/genz-13b) : We marked an important milestone with the release of the Genz 13B model. The journey began here, and you can partake in it by downloading the model from [Hugging Face](https://huggingface.co/budecosystem/genz-13b). --- <h2>Evaluations 🎯</h2> Evaluating our model is a key part of our fine-tuning process. It helps us understand how our model is performing and how it stacks up against other models. Here's a look at some of the key evaluations for GenZ 70B: <h3>Benchmark Comparison</h3> We've compared GenZ models to understand the improvements our fine-tuning has achieved. | Model Name | MT Bench | MMLU | Human Eval | BBH | |:----------:|:--------:|:----:|:----------:|:----:| | Genz 13B | 6.12 | 53.62| 17.68 | 37.76| | Genz 13B v2| 6.79 | 53.68| 21.95 | 38.1 | | Genz 70B | 7.33 | 70.32| 37.8 |54.69 | <h3>MT Bench Score</h3> A key evaluation metric we use is the MT Bench score. This score provides a comprehensive assessment of our model's performance across a range of tasks. <p align="center"><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/mt_bench_score.png" width="500"></p> --- <h2>Getting Started on Hugging Face 🤗</h2> Getting up and running with our models on Hugging Face is a breeze. Follow these steps: <h3>1️⃣ : Import necessary modules</h3> Start by importing the necessary modules from the ‘transformers’ library and ‘torch’. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("budecosystem/genz-70b", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("budecosystem/genz-70b", torch_dtype=torch.bfloat16, rope_scaling={"type": "dynamic", "factor": 2}) prompt = "### User:\nWrite a python flask code for login management\n\n### Assistant:\n" inputs = tokenizer(prompt, return_tensors="pt") sample = model.generate(**inputs, max_length=128) print(tokenizer.decode(sample[0])) ``` Want to interact with the model in a more intuitive way? We have a Gradio interface set up for that. Head over to our GitHub page, clone the repository, and run the ‘generate.py’ script to try it out. Happy experimenting! 😄 <h2>Why Use GenZ? 💡</h2> You might be wondering, "Why should I choose GenZ over a pretrained model?" The answer lies in the extra mile we've gone to fine-tune our models. While pretrained models are undeniably powerful, GenZ brings something extra to the table. We've fine-tuned it with curated datasets, which means it has additional skills and capabilities beyond what a pretrained model can offer. Whether you need it for a simple task or a complex project, GenZ is up for the challenge. What's more, we are committed to continuously enhancing GenZ. We believe in the power of constant learning and improvement. That's why we'll be regularly fine-tuning our models with various curated datasets to make them even better. Our goal is to reach the state of the art and beyond - and we're committed to staying the course until we get there. But don't just take our word for it. We've provided detailed evaluations and performance details in a later section, so you can see the difference for yourself. Choose GenZ and join us on this journey. Together, we can push the boundaries of what's possible with large language models. --- <h2>Model Card for GenZ 70B 📄</h2> Here's a quick overview of everything you need to know about GenZ 70B. <h3>Model Details:</h3> - Developed by: Bud Ecosystem - Base pretrained model type: Llama V2 70B - Model Architecture: GenZ 70B, fine-tuned on Llama V2 70B, is an auto-regressive language model that employs an optimized transformer architecture. The fine-tuning process for GenZ 70B leveraged Supervised Fine-Tuning (SFT) - License: The model is available for commercial use under a custom commercial license. For more information, please visit: [Meta AI Model and Library Downloads](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) --- <h2>Intended Use 💼</h2> When we created GenZ 70B, we had a clear vision of how it could be used to push the boundaries of what's possible with large language models. We also understand the importance of using such models responsibly. Here's a brief overview of the intended and out-of-scope uses for GenZ 70B. <h3>Direct Use</h3> GenZ 70B is designed to be a powerful tool for research on large language models. It's also an excellent foundation for further specialization and fine-tuning for specific use cases, such as: - Text summarization - Text generation - Chatbot creation - And much more! <h3>Out-of-Scope Use 🚩</h3> While GenZ 70B is versatile, there are certain uses that are out of scope: - Production use without adequate assessment of risks and mitigation - Any use cases which may be considered irresponsible or harmful - Use in any manner that violates applicable laws or regulations, including trade compliance laws - Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2 Remember, GenZ 70B, like any large language model, is trained on a large-scale corpora representative of the web, and therefore, may carry the stereotypes and biases commonly encountered online. <h3>Recommendations 🧠</h3> We recommend users of GenZ 70B to consider fine-tuning it for the specific set of tasks of interest. Appropriate precautions and guardrails should be taken for any production use. Using GenZ 70B responsibly is key to unlocking its full potential while maintaining a safe and respectful environment. --- <h2>Training Details 📚</h2> When fine-tuning GenZ 70B, we took a meticulous approach to ensure we were building on the solid base of the pretrained Llama V2 70B model in the most effective way. Here's a look at the key details of our training process: <h3>Fine-Tuning Training Data</h3> For the fine-tuning process, we used a carefully curated mix of datasets. These included data from OpenAssistant, an instruction fine-tuning dataset, and Thought Source for the Chain Of Thought (CoT) approach. This diverse mix of data sources helped us enhance the model's capabilities across a range of tasks. <h3>Hyperparameters</h3> Here are the hyperparameters we used for fine-tuning: | Hyperparameter | Value | | -------------- | ----- | | Warmup Ratio | 0.04 | | Learning Rate Scheduler Type | Cosine | | Learning Rate | 2e-5 | | Number of Training Epochs | 3 | | Per Device Training Batch Size | 4 | | Gradient Accumulation Steps | 4 | | Precision | FP16 | | Optimizer | AdamW | --- <h2>Looking Ahead 👀</h2> We're excited about the journey ahead with GenZ. We're committed to continuously improving and enhancing our models, and we're excited to see what the open-source community will build with them. We believe in the power of collaboration, and we can't wait to see what we can achieve together. Remember, we're just getting started. This is just the beginning of a journey that we believe will revolutionize the world of large language models. We invite you to join us on this exciting journey. Together, we can push the boundaries of what's possible with AI. 🚀 --- Check the GitHub for the code -> [GenZ](https://raw.githubusercontent.com/BudEcosystem/GenZ)
Hellstar1337/freyaLoRA
Hellstar1337
2023-09-02T05:45:06Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-02T05:41:39Z
--- license: creativeml-openrail-m ---
jmhessel/cosmo-v2-7b
jmhessel
2023-09-02T05:39:26Z
3
0
peft
[ "peft", "region:us" ]
null
2023-09-02T05:39:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
Imxxn/AudioCourseU6-TextToSpeech
Imxxn
2023-09-02T05:38:00Z
80
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-02T05:18:20Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: AudioCourseU6-TextToSpeech results: [] pipeline_tag: text-to-speech --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AudioCourseU6-TextToSpeech This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
flytech/platistil
flytech
2023-09-02T05:18:38Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:openai-community/gpt2-medium", "base_model:finetune:openai-community/gpt2-medium", "license:mit", "region:us" ]
null
2023-09-01T04:11:58Z
--- license: mit base_model: gpt2-medium tags: - generated_from_trainer model-index: - name: platistil results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platistil This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
substratusai/weaviate-gorilla-v3
substratusai
2023-09-02T05:13:22Z
8
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-01T22:50:07Z
## Prompt ``` {input} {output} ``` Example: of entry used for finetuning ``` Your task is to write an API request for a new schema given the API reference and an example. The user command is: "Get me the details of 2 music tracks that are similar to the given vector." Here is the API reference for a query that will help with this command and an example of how to use it: {Get {JeopardyQuestion (limit: 2,nearVector: {vector: [-0.0125526935, -0.021168863, -0.01076519, ...]}}}}} Could you please formulate this query for the following schema? {"class": "Track","description": "A music track.","properties": [{"name": "trackId","dataType": ["uuid"],"description": "A unique identifier for each track.","moduleConfig": {"text2vec-transformers": {"skip": true,"vectorizeClassName": false,"vectorizePropertyName": false}}{"name": "title","dataType": ["text"],"description": "The title of the track.","moduleConfig": {"text2vec-transformers": {"skip": false,"vectorizeClassName": false,"vectorizePropertyName": false}}{"name": "duration","dataType": ["int"],"description": "The duration of the track in seconds.","moduleConfig": {"text2vec-transformers": {"skip": true,"vectorizeClassName": false,"vectorizePropertyName": false}}{"name": "artist","dataType": ["Artist"],"description": "The artist of the track.","moduleConfig": {"text2vec-transformers": {"skip": true,"vectorizeClassName": false,"vectorizePropertyName": false}}{"name": "album","dataType": ["Album"],"description": "The album of the track.","moduleConfig": {"text2vec-transformers": {"skip": true,"vectorizeClassName": false,"vectorizePropertyName": false}}}} VERY IMPORTANT! Please only output the GraphQL for the query and nothing else! { Get { Track ( limit: 2, nearVector: { vector: [-0.0125526935, -0.021168863, -0.01076519, ...] } ) { trackId title duration artist { artistId name } album { albumId title } } }} ```
dt-and-vanilla-ardt/ardt-vanilla-robust_train_walker2d_level-0209_0437-66
dt-and-vanilla-ardt
2023-09-02T05:08:32Z
35
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-02T03:38:44Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-robust_train_walker2d_level-0209_0437-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-robust_train_walker2d_level-0209_0437-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
vita-group/llama-2-7b_wanda_unstructured
vita-group
2023-09-02T05:03:35Z
10
0
null
[ "license:mit", "region:us" ]
null
2023-09-01T15:05:46Z
--- license: mit --- # Compressed LLM Model Zone The models are prepared by [Visual Informatics Group @ University of Texas at Austin (VITA-group)](https://vita-group.github.io/). Credits to Ajay Jaiswal, Zhenyu Zhang. License: [MIT License](https://opensource.org/license/mit/) Setup environment ```shell pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117 pip install transformers==4.31.0 pip install accelerate ``` How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer base_model = 'llama-2-7b' comp_method = 'magnitude_unstructured' comp_degree = 0.2 model_path = f'vita-group/{base_model}_{comp_method}' model = AutoModelForCausalLM.from_pretrained( model_path, revision=f's{comp_degree}', torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf') input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` | | Base Model | Model Size | Compression Method | Compression Degree | |---:|:-------------|:-------------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------| | 0 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.1) | | 1 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.2) | | 2 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.3) | | 3 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.5) | | 4 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.6) | | 5 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.1) | | 6 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.2) | | 7 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.3) | | 8 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.5) | | 9 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.6) | | 10 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.1) | | 11 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.2) | | 12 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.3) | | 13 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.5) | | 14 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.6) |
vita-group/llama-2-7b_magnitude_unstructured
vita-group
2023-09-02T05:03:13Z
9
0
null
[ "license:mit", "region:us" ]
null
2023-09-01T15:03:37Z
--- license: mit --- # Compressed LLM Model Zone The models are prepared by [Visual Informatics Group @ University of Texas at Austin (VITA-group)](https://vita-group.github.io/). Credits to Ajay Jaiswal, Zhenyu Zhang. License: [MIT License](https://opensource.org/license/mit/) Setup environment ```shell pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117 pip install transformers==4.31.0 pip install accelerate ``` How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer base_model = 'llama-2-7b' comp_method = 'magnitude_unstructured' comp_degree = 0.2 model_path = f'vita-group/{base_model}_{comp_method}' model = AutoModelForCausalLM.from_pretrained( model_path, revision=f's{comp_degree}', torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf') input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` | | Base Model | Model Size | Compression Method | Compression Degree | |---:|:-------------|:-------------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------| | 0 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.1) | | 1 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.2) | | 2 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.3) | | 3 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.5) | | 4 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.6) | | 5 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.1) | | 6 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.2) | | 7 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.3) | | 8 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.5) | | 9 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.6) | | 10 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.1) | | 11 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.2) | | 12 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.3) | | 13 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.5) | | 14 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.6) |
xiaoygv/xiaos
xiaoygv
2023-09-02T04:56:48Z
0
0
asteroid
[ "asteroid", "dataset:PygmalionAI/PIPPA", "license:afl-3.0", "region:us" ]
null
2023-09-02T04:55:25Z
--- license: afl-3.0 datasets: - PygmalionAI/PIPPA metrics: - bleu library_name: asteroid ---
minh21/results
minh21
2023-09-02T04:56:45Z
0
0
null
[ "generated_from_trainer", "base_model:google/flan-t5-large", "base_model:finetune:google/flan-t5-large", "license:apache-2.0", "region:us" ]
null
2023-09-01T07:33:03Z
--- license: apache-2.0 base_model: google/flan-t5-large tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0 | 1.0 | 860 | nan | | 0.0 | 2.0 | 1720 | nan | | 0.0 | 3.0 | 2580 | nan | | 0.0 | 4.0 | 3440 | nan | | 0.0 | 5.0 | 4300 | nan | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g
vita-group
2023-09-02T04:55:38Z
7
0
transformers
[ "transformers", "llama", "text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-09-02T04:52:54Z
--- license: mit --- # Compressed LLM Model Zone The models are prepared by [Visual Informatics Group @ University of Texas at Austin (VITA-group)](https://vita-group.github.io/). License: [MIT License](https://opensource.org/license/mit/) Setup environment ```shell pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117 pip install transformers==4.31.0 pip install accelerate pip install auto-gptq # for gptq ``` How to use pruned models ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer base_model = 'llama-2-7b' comp_method = 'magnitude_unstructured' comp_degree = 0.2 model_path = f'vita-group/{base_model}_{comp_method}' model = AutoModelForCausalLM.from_pretrained( model_path, revision=f's{comp_degree}', torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf') input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.cuda() outputs = model.generate(input_ids, max_new_tokens=128) print(tokenizer.decode(outputs[0])) ``` How to use quantized models ```python from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig model_path = 'vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g' model = AutoGPTQForCausalLM.from_quantized( model_path, # inject_fused_attention=False, # or disable_exllama=True, device_map='auto', ) ``` | | Base Model | Model Size | Compression Method | Compression Degree | |---:|:-------------|:-------------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------| | 0 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.1) | | 1 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.2) | | 2 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.3) | | 3 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.5) | | 4 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.6) | | 5 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.1) | | 6 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.2) | | 7 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.3) | | 8 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.5) | | 9 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.6) | | 10 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.1) | | 11 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.2) | | 12 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.3) | | 13 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.5) | | 14 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.6) |