modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 18:33:19
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 18:33:14
card
stringlengths
11
1.01M
dodge99/q-Taxi-v3
dodge99
2022-11-04T23:41:07Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-04T23:41:01Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dodge99/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
dodge99/q-FrozenLake-v1-4x4-Slippery
dodge99
2022-11-04T23:27:20Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-04T23:08:03Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.58 +/- 0.49 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dodge99/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Nicktherat/DialoGPT-medium-endella
Nicktherat
2022-11-04T23:04:23Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-04T08:30:21Z
--- tags: - conversational --- # Let's chat for 4 line # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, temperature=0.6, repetition_penalty=1.3) # pretty print last ouput tokens from bot # print("Endella: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) # Endella DialoGPT Model
mariopeng/phoneT5
mariopeng
2022-11-04T22:53:02Z
20
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-17T20:01:55Z
# Description Transfer learning on T5 to translate English graphemes to IPA (International Phonetic Alphabet). - Include "translate to IPA: " as prefix for prompting.
jinhybr/OCR-DocVQA-Donut
jinhybr
2022-11-04T22:23:22Z
122
11
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "donut", "image-to-text", "vision", "document-question-answering", "arxiv:2111.15664", "license:mit", "endpoints_compatible", "region:us" ]
document-question-answering
2022-11-04T22:11:29Z
--- license: mit pipeline_tag: document-question-answering tags: - donut - image-to-text - vision widget: - text: "What is the invoice number?" src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" - text: "What is the purchase amount?" src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/contract.jpeg" --- # Donut (base-sized model, fine-tuned on DocVQA) Donut model fine-tuned on DocVQA. It was introduced in the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewok et al. and first released in [this repository](https://github.com/clovaai/donut). Disclaimer: The team releasing Donut did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Donut consists of a vision encoder (Swin Transformer) and a text decoder (BART). Given an image, the encoder first encodes the image into a tensor of embeddings (of shape batch_size, seq_len, hidden_size), after which the decoder autoregressively generates text, conditioned on the encoding of the encoder. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/donut_architecture.jpg) ## Intended uses & limitations This model is fine-tuned on DocVQA, a document visual question answering dataset. We refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/donut) which includes code examples.
krafczyk/distilbert-base-uncased-finetuned-emotion
krafczyk
2022-11-04T21:33:28Z
100
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-04T21:20:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.924884946845687 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2455 - Accuracy: 0.925 - F1: 0.9249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 63 | 0.8670 | 0.7095 | 0.6491 | | No log | 2.0 | 126 | 0.3938 | 0.886 | 0.8804 | | No log | 3.0 | 189 | 0.2669 | 0.921 | 0.9201 | | 0.6268 | 4.0 | 252 | 0.2455 | 0.925 | 0.9249 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 2.6.1 - Tokenizers 0.10.3
jrtec/jrtec-distilroberta-base-mrpc-glue-omar-espejel
jrtec
2022-11-04T20:31:03Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-04T15:53:58Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: jrtec-distilroberta-base-mrpc-glue-omar-espejel results: - task: name: Text Classification type: text-classification dataset: name: datasetX type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8161764705882353 - name: F1 type: f1 value: 0.8747913188647747 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jrtec-distilroberta-base-mrpc-glue-omar-espejel This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the datasetX dataset. It achieves the following results on the evaluation set: - Loss: 0.4901 - Accuracy: 0.8162 - F1: 0.8748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4845 | 1.09 | 500 | 0.4901 | 0.8162 | 0.8748 | | 0.3706 | 2.18 | 1000 | 0.6421 | 0.8162 | 0.8691 | | 0.2003 | 3.27 | 1500 | 0.9711 | 0.8162 | 0.8760 | | 0.1281 | 4.36 | 2000 | 0.8224 | 0.8480 | 0.8893 | | 0.0717 | 5.45 | 2500 | 1.1803 | 0.8113 | 0.8511 | | 0.0344 | 6.54 | 3000 | 1.1759 | 0.8480 | 0.8935 | | 0.0277 | 7.63 | 3500 | 1.2140 | 0.8456 | 0.8927 | | 0.0212 | 8.71 | 4000 | 1.0895 | 0.8554 | 0.8974 | | 0.0071 | 9.8 | 4500 | 1.1849 | 0.8554 | 0.8991 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
platzi/platzi-distilroberta-base-glue-mrpc-eduardo-ag
platzi
2022-11-04T19:49:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-04T19:25:03Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: platzi-distilroberta-base-glue-mrpc-eduardo-ag results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8186274509803921 - name: F1 type: f1 value: 0.8634686346863469 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-distilroberta-base-glue-mrpc-eduardo-ag This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 0.6614 - Accuracy: 0.8186 - F1: 0.8635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5185 | 1.09 | 500 | 0.4796 | 0.8431 | 0.8889 | | 0.3449 | 2.18 | 1000 | 0.6614 | 0.8186 | 0.8635 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
spoiled/roberta-large-neg-tags
spoiled
2022-11-04T18:49:35Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-04T18:05:23Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large-neg-tags results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-neg-tags This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0016 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | 0.0143 | 1.0 | 938 | 0.0032 | 0.0 | 0.0 | 0.0 | 0.9995 | | 0.0033 | 2.0 | 1876 | 0.0017 | 0.0 | 0.0 | 0.0 | 0.9996 | | 0.0039 | 3.0 | 2814 | 0.0018 | 0.0 | 0.0 | 0.0 | 0.9997 | | 0.0012 | 4.0 | 3752 | 0.0016 | 0.0 | 0.0 | 0.0 | 0.9997 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.10.1 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/itsbludood
huggingtweets
2022-11-04T18:36:50Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-04T18:36:15Z
--- language: en thumbnail: http://www.huggingtweets.com/itsbludood/1667587006494/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1543744611742584834/Y_8SQZ8s_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BluDood</div> <div style="text-align: center; font-size: 14px;">@itsbludood</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BluDood. | Data | BluDood | | --- | --- | | Tweets downloaded | 579 | | Retweets | 126 | | Short tweets | 62 | | Tweets kept | 391 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wux94qs4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @itsbludood's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/w2ic8dfp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/w2ic8dfp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/itsbludood') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
spoiled/roberta-base-neg-tags
spoiled
2022-11-04T18:16:43Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-04T18:05:11Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-neg-tags results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-neg-tags This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0015 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 235 | 0.0021 | 0.0 | 0.0 | 0.0 | 0.9993 | | No log | 2.0 | 470 | 0.0015 | 0.0 | 0.0 | 0.0 | 0.9997 | | 0.0073 | 3.0 | 705 | 0.0015 | 0.0 | 0.0 | 0.0 | 0.9997 | | 0.0073 | 4.0 | 940 | 0.0015 | 0.0 | 0.0 | 0.0 | 0.9997 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.10.1 - Datasets 2.6.1 - Tokenizers 0.13.1
mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-100k
mpjan
2022-11-04T16:39:00Z
2
4
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "pt", "dataset:unicamp-dl/mmarco", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-03T13:42:19Z
--- pipeline_tag: sentence-similarity language: - 'pt' tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - 'unicamp-dl/mmarco' --- # mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-100k This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a fine-tuning of [sentence-transformers/msmarco-distilbert-base-tas-b](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b) on the first 100k triplets of the Portuguese subset in [unicamp-dl/mmarco](https://huggingface.co/datasets/unicamp-dl/mmarco). <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-100k') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-100k}') model = AutoModel.from_pretrained('{mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-100k}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6250 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3125, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
troesy/distilBERT-fresh_10epoch
troesy
2022-11-04T15:57:02Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-04T15:45:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT-fresh_10epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT-fresh_10epoch This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0234 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 174 | 0.1913 | 0.0 | 0.0 | 0.0 | 0.9312 | | No log | 2.0 | 348 | 0.1431 | 0.0 | 0.0 | 0.0 | 0.9507 | | 0.2211 | 3.0 | 522 | 0.1053 | 0.0 | 0.0 | 0.0 | 0.9640 | | 0.2211 | 4.0 | 696 | 0.0770 | 0.0 | 0.0 | 0.0 | 0.9746 | | 0.2211 | 5.0 | 870 | 0.0581 | 0.0 | 0.0 | 0.0 | 0.9820 | | 0.0995 | 6.0 | 1044 | 0.0461 | 0.0 | 0.0 | 0.0 | 0.9862 | | 0.0995 | 7.0 | 1218 | 0.0376 | 0.0 | 0.0 | 0.0 | 0.9886 | | 0.0995 | 8.0 | 1392 | 0.0290 | 0.0 | 0.0 | 0.0 | 0.9915 | | 0.054 | 9.0 | 1566 | 0.0238 | 0.0 | 0.0 | 0.0 | 0.9934 | | 0.054 | 10.0 | 1740 | 0.0234 | 0.0 | 0.0 | 0.0 | 0.9935 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
sd-dreambooth-library/angus-mcbride-style-v2
sd-dreambooth-library
2022-11-04T15:46:03Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-11-04T15:46:01Z
--- license: mit --- ### angus mcbride style v2 on Stable Diffusion via Dreambooth #### model by hiero This your the Stable Diffusion model fine-tuned the angus mcbride style v2 concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **angus mcbride style** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/73.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/57.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/56.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/46.jpeg) ![image 4](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/93.jpeg) ![image 5](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/8.jpeg) ![image 6](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/13.jpeg) ![image 7](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/20.jpeg) ![image 8](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/12.jpeg) ![image 9](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/44.jpeg) ![image 10](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/88.jpeg) ![image 11](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/68.jpeg) ![image 12](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/15.jpeg) ![image 13](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/6.jpeg) ![image 14](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/80.jpeg) ![image 15](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/17.jpeg) ![image 16](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/16.jpeg) ![image 17](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/67.jpeg) ![image 18](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/96.jpeg) ![image 19](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/32.jpeg) ![image 20](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/55.jpeg) ![image 21](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/75.jpeg) ![image 22](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/26.jpeg) ![image 23](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/1.jpeg) ![image 24](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/72.jpeg) ![image 25](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/51.jpeg) ![image 26](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/3.jpeg) ![image 27](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/49.jpeg) ![image 28](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/99.jpeg) ![image 29](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/54.jpeg) ![image 30](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/79.jpeg) ![image 31](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/76.jpeg) ![image 32](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/87.jpeg) ![image 33](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/0.jpeg) ![image 34](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/81.jpeg) ![image 35](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/29.jpeg) ![image 36](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/43.jpeg) ![image 37](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/90.jpeg) ![image 38](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/19.jpeg) ![image 39](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/86.jpeg) ![image 40](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/74.jpeg) ![image 41](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/95.jpeg) ![image 42](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/78.jpeg) ![image 43](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/97.jpeg) ![image 44](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/62.jpeg) ![image 45](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/89.jpeg) ![image 46](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/91.jpeg) ![image 47](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/71.jpeg) ![image 48](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/59.jpeg) ![image 49](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/60.jpeg) ![image 50](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/84.jpeg) ![image 51](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/52.jpeg) ![image 52](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/98.jpeg) ![image 53](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/10.jpeg) ![image 54](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/27.jpeg) ![image 55](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/2.jpeg) ![image 56](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/4.jpeg) ![image 57](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/45.jpeg) ![image 58](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/85.jpeg) ![image 59](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/48.jpeg) ![image 60](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/69.jpeg) ![image 61](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/24.jpeg) ![image 62](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/82.jpeg) ![image 63](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/64.jpeg) ![image 64](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/28.jpeg) ![image 65](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/38.jpeg) ![image 66](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/30.jpeg) ![image 67](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/37.jpeg) ![image 68](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/5.jpeg) ![image 69](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/70.jpeg) ![image 70](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/21.jpeg) ![image 71](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/9.jpeg) ![image 72](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/63.jpeg) ![image 73](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/65.jpeg) ![image 74](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/39.jpeg) ![image 75](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/31.jpeg) ![image 76](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/33.jpeg) ![image 77](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/83.jpeg) ![image 78](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/14.jpeg) ![image 79](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/22.jpeg) ![image 80](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/23.jpeg) ![image 81](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/40.jpeg) ![image 82](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/7.jpeg) ![image 83](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/58.jpeg) ![image 84](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/61.jpeg) ![image 85](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/18.jpeg) ![image 86](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/11.jpeg) ![image 87](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/42.jpeg) ![image 88](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/66.jpeg) ![image 89](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/35.jpeg) ![image 90](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/41.jpeg) ![image 91](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/77.jpeg) ![image 92](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/50.jpeg) ![image 93](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/34.jpeg) ![image 94](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/94.jpeg) ![image 95](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/53.jpeg) ![image 96](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/25.jpeg) ![image 97](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/36.jpeg) ![image 98](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/92.jpeg) ![image 99](https://huggingface.co/sd-dreambooth-library/angus-mcbride-style-v2/resolve/main/concept_images/47.jpeg)
arjunchandra/ddpm-butterflies-128
arjunchandra
2022-11-04T15:14:03Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-04T13:58:06Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/arjunchandra/ddpm-butterflies-128/tensorboard?#scalars)
NikitaShu/testPyramids
NikitaShu
2022-11-04T14:35:57Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-11-04T14:35:49Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: NikitaShu/testPyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
RaulFD-creator/BrigitCNN
RaulFD-creator
2022-11-04T14:29:16Z
0
0
null
[ "license:bsd-3-clause", "region:us" ]
null
2022-11-04T14:26:01Z
--- license: bsd-3-clause --- BrigitCNN: CNN model trained for detecting protein-metal binding regions.
svo2/roberta-finetuned-location
svo2
2022-11-04T14:03:56Z
29
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-02T17:48:05Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-finetuned-location results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-location This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
sd-concepts-library/happy-chaos
sd-concepts-library
2022-11-04T13:55:04Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-11-04T13:54:52Z
--- license: mit --- ### Happy Chaos on Stable Diffusion This is the `<happychaos>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<happychaos> 0](https://huggingface.co/sd-concepts-library/happy-chaos/resolve/main/concept_images/1.jpeg) ![<happychaos> 1](https://huggingface.co/sd-concepts-library/happy-chaos/resolve/main/concept_images/3.jpeg) ![<happychaos> 2](https://huggingface.co/sd-concepts-library/happy-chaos/resolve/main/concept_images/0.jpeg) ![<happychaos> 3](https://huggingface.co/sd-concepts-library/happy-chaos/resolve/main/concept_images/2.jpeg) ![<happychaos> 4](https://huggingface.co/sd-concepts-library/happy-chaos/resolve/main/concept_images/4.jpeg)
August06/august
August06
2022-11-04T13:28:49Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-04T13:28:49Z
--- license: creativeml-openrail-m ---
DeepSpiral/SD_Michael_Jackson_Young_v1
DeepSpiral
2022-11-04T13:22:47Z
0
3
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-03T00:50:36Z
--- license: creativeml-openrail-m --- About: This Model is Created with the Intention of Preserving the Image of Michael Jackson, the Popular King of Pop Music. In tribute to his Memory this model was created, hopefully you will find it helpful. The Model includes exclusively the young version of him at around 24 years old post-illness/surgeries (you may forgive me for not knowing the full history), This Model was inspired to create by noticing how the original Stable Diffusion Model was unable to fetch and recall the earlier version of Michael Jackson and instead it would fetch the post-surgery ones and closer to his passing. As a way to also Demonstrate how Popular Long-Lost Figures can be preserved safely and throughought the entirety of their appearance. With Much Respect I offer you the opportunity to Take a Look at this Model as it was built in the image of a public figure the model shall remain public and free. Here are some of the Input Images: ![kingofpop2.png](https://s3.amazonaws.com/moonup/production/uploads/1667439856363-63041ae3fc783bfc7444fe44.png) Here you can see the Output Images of what to expect using this Model: ![22222Untitled-2.png](https://s3.amazonaws.com/moonup/production/uploads/1667439888314-63041ae3fc783bfc7444fe44.png) How to Use: To be able to Generate any Image with the Young Version of Michael Jackson all you have to do is to include "MichJack241" in your prompt. Where to Get the Model: https://huggingface.co/DeepSpiral/SD_Michael_Jackson_Young_v1/blob/main/SD_Michael%20_Jackson_Young_v1.ckpt Download the file from the Following Link and import it to your Stable Diffusion as a trained model (depending on the interface you are using). Use with Caution and Respect, Enjoy! ___ *If you enjoy my work, please consider supporting me* <a rel="noopener nofollow" href="https://www.patreon.com/deepspiral?fan_landing=true&view_as=public" class="keychainify-checked"><img alt="Become A Patreon" src="https://badgen.net/badge/become/a%20patron/F96854"></a> ___
sirui/bert-base-chinese-finetuned-car_corpus
sirui
2022-11-04T12:45:04Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-04T07:08:41Z
--- tags: - generated_from_trainer model-index: - name: bert-base-chinese-finetuned-car_corpus results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuned-car_corpus This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the Car Corpus Database. It achieves the following results on the evaluation set: - Loss: 1.5187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.799 | 1.0 | 3776 | 1.5830 | | 0.7419 | 2.0 | 7552 | 1.4930 | | 0.7245 | 3.0 | 11328 | 1.5187 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
GuiGel/meddocan-flair-lstm-crf
GuiGel
2022-11-04T12:37:38Z
4
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "region:us" ]
token-classification
2022-11-04T12:36:13Z
--- tags: - flair - token-classification - sequence-tagger-model --- ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("GuiGel/meddocan-flair-lstm-crf") # make example sentence sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ```
roa7n/DNABert_K6_G_quad_1
roa7n
2022-11-04T12:05:08Z
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-04T11:33:37Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: DNABert_K6_G_quad_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DNABert_K6_G_quad_1 This model is a fine-tuned version of [armheb/DNA_bert_6](https://huggingface.co/armheb/DNA_bert_6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0803 - Accuracy: 0.9720 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0926 | 1.0 | 9375 | 0.0803 | 0.9720 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
NilsDamAi/nils-nl-to-rx-pt-v7
NilsDamAi
2022-11-04T11:50:32Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-11-04T11:37:28Z
--- license: apache-2.0 tags: - translation - generated_from_trainer model-index: - name: nils-nl-to-rx-pt-v7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nils-nl-to-rx-pt-v7 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-de-en](https://huggingface.co/Helsinki-NLP/opus-mt-de-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4389 | 1.0 | 500 | 0.0470 | | 0.0533 | 2.0 | 1000 | 0.0286 | | 0.0346 | 3.0 | 1500 | 0.0224 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
harveymannering/q-Taxi-v3
harveymannering
2022-11-04T11:50:22Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-04T11:50:11Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.70 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="harveymannering/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
troesy/distilBERT-fresh
troesy
2022-11-04T10:30:15Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-04T10:19:21Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT-fresh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT-fresh This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1444 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 174 | 0.1957 | 0.0 | 0.0 | 0.0 | 0.9289 | | No log | 2.0 | 348 | 0.1591 | 0.0 | 0.0 | 0.0 | 0.9438 | | 0.2272 | 3.0 | 522 | 0.1444 | 0.0 | 0.0 | 0.0 | 0.9489 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
lvwerra/test
lvwerra
2022-11-04T10:24:18Z
0
0
null
[ "arxiv:1910.09700", "model-index", "region:us" ]
null
2022-11-04T10:20:02Z
--- model-index: - name: test results: - task: type: text-classification name: Text Classification dataset: name: ReactionGIF type: julien-c/reactiongif metrics: - type: recall value: 0.7762102282047272 name: Recall --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training Details](#training-details) 5. [Evaluation](#evaluation) 6. [Model Examination](#model-examination-optional) 7. [Environmental Impact](#environmental-impact) 8. [Technical Specifications](#technical-specifications-optional) 9. [Citation](#citation-optional) 10. [Glossary](#glossary-optional) 11. [More Information](#more-information-optional) 12. [Model Card Authors](#model-card-authors-optional) 13. [Model Card Contact](#model-card-contact) 14. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Related Models [optional]:** [More Information Needed] - **Parent Model [optional]:** [More Information Needed] - **Resources for more information:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations. # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed] # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> [More Information Needed] </details>
pe65374/xcoa-sbert-base-chinese-nli
pe65374
2022-11-04T09:29:06Z
6
3
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "zh", "arxiv:1909.05658", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-04T09:00:41Z
--- language: zh pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: apache-2.0 widget: source_sentence: "那个人很开心" sentences: - 那个人非常开心 - 那只猫很开心 - 那个人在吃东西 --- # Chinese Sentence BERT ## Model description This is the sentence embedding model pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). for easy testing and solving the warning from sentences-transformers (initialized by which), I forked the original repo. ## Training data [ChineseTextualInference](https://github.com/liuhuanyong/ChineseTextualInference/) is used as training data. ## Training procedure The model is fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune five epochs with a sequence length of 128 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved. ``` python3 finetune/run_classifier_siamese.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --config_path models/sbert/base_config.json \ --train_path datasets/ChineseTextualInference/train.tsv \ --dev_path datasets/ChineseTextualInference/dev.tsv \ --learning_rate 5e-5 --epochs_num 5 --batch_size 64 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_sbert_from_uer_to_huggingface.py --input_model_path models/finetuned_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @article{reimers2019sentence, title={Sentence-bert: Sentence embeddings using siamese bert-networks}, author={Reimers, Nils and Gurevych, Iryna}, journal={arXiv preprint arXiv:1908.10084}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ```
neerajp/en_core_web_lg
neerajp
2022-11-04T08:42:19Z
7
1
spacy
[ "spacy", "token-classification", "en", "license:mit", "model-index", "region:us" ]
token-classification
2022-11-04T08:35:24Z
--- tags: - spacy - token-classification language: - en license: mit model-index: - name: en_core_web_lg results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8535469108 - name: NER Recall type: recall value: 0.8592748397 - name: NER F Score type: f_score value: 0.8564012977 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9734404547 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.9204363007 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.9023174614 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.90444794 --- ### Details: https://spacy.io/models/en#en_core_web_lg English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer. | Feature | Description | | --- | --- | | **Name** | `en_core_web_lg` | | **Version** | `3.4.1` | | **spaCy** | `>=3.4.0,<3.5.0` | | **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` | | **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[ClearNLP Constituent-to-Dependency Conversion](https://github.com/clir/clearnlp-guidelines/blob/master/md/components/dependency_conversion.md) (Emory University)<br />[WordNet 3.0](https://wordnet.princeton.edu/) (Princeton University)<br />[Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl)](https://github.com/explosion/spacy-vectors-builder) (Explosion) | | **License** | `MIT` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (113 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, `_SP`, ```` | | **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` | | **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_ACC` | 99.93 | | `TOKEN_P` | 99.57 | | `TOKEN_R` | 99.58 | | `TOKEN_F` | 99.57 | | `TAG_ACC` | 97.34 | | `SENTS_P` | 91.79 | | `SENTS_R` | 89.14 | | `SENTS_F` | 90.44 | | `DEP_UAS` | 92.04 | | `DEP_LAS` | 90.23 | | `ENTS_P` | 85.35 | | `ENTS_R` | 85.93 | | `ENTS_F` | 85.64 |
xmcmic/Med-KEBERT
xmcmic
2022-11-04T07:59:47Z
1,649
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "biomedical", "en", "license:openrail", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-04T06:00:17Z
--- license: openrail language: - en tags: - bert - biomedical ---
mahdikhojasteh/distilbert-base-uncased-finetuned-emotion
mahdikhojasteh
2022-11-04T06:38:36Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-03T20:56:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.934 - name: F1 type: f1 value: 0.9342352809170765 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1423 - Accuracy: 0.934 - F1: 0.9342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7568 | 1.0 | 250 | 0.2651 | 0.912 | 0.9099 | | 0.2008 | 2.0 | 500 | 0.1684 | 0.931 | 0.9316 | | 0.1302 | 3.0 | 750 | 0.1556 | 0.933 | 0.9334 | | 0.1046 | 4.0 | 1000 | 0.1466 | 0.933 | 0.9326 | | 0.087 | 5.0 | 1250 | 0.1423 | 0.934 | 0.9342 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.6.1 - Tokenizers 0.12.1
thisisHJLee/wav2vec2-large-xls-r-300m-korean-convsen2
thisisHJLee
2022-11-04T04:17:14Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-04T01:25:16Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-korean-convsen2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-korean-convsen2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0094 - Cer: 0.0012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8421 | 1.0 | 1762 | 0.2383 | 0.0591 | | 0.1721 | 2.0 | 3524 | 0.0309 | 0.0060 | | 0.065 | 3.0 | 5286 | 0.0094 | 0.0012 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
asahi417/tner-xlm-roberta-base-ontonotes5
asahi417
2022-11-04T03:24:37Z
17,233
5
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "en", "arxiv:2209.12616", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - en --- # Model Card for XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. # Model Details ## Model Description XLM-RoBERTa finetuned on NER. - **Developed by:** Asahi Ushio - **Shared by [Optional]:** Hugging Face - **Model type:** Token Classification - **Language(s) (NLP):** en - **License:** More information needed - **Related Models:** XLM-RoBERTa - **Parent Model:** XLM-RoBERTa - **Resources for more information:** - [GitHub Repo](https://github.com/asahi417/tner) - [Associated Paper](https://arxiv.org/abs/2209.12616) - [Space](https://huggingface.co/spaces/akdeniz27/turkish-named-entity-recognition) # Uses ## Direct Use Token Classification ## Downstream Use [Optional] This model can be used in conjunction with the [tner library](https://github.com/asahi417/tner). ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations. # Training Details ## Training Data An NER dataset contains a sequence of tokens and tags for each split (usually `train`/`validation`/`test`), ```python { 'train': { 'tokens': [ ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.'], ['From', 'Green', 'Newsfeed', ':', 'AHFA', 'extends', 'deadline', 'for', 'Sage', 'Award', 'to', 'Nov', '.', '5', 'http://tinyurl.com/24agj38'], ... ], 'tags': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ... ] }, 'validation': ..., 'test': ..., } ``` with a dictionary to map a label to its index (`label2id`) as below. ```python {"O": 0, "B-ORG": 1, "B-MISC": 2, "B-PER": 3, "I-PER": 4, "B-LOC": 5, "I-ORG": 6, "I-MISC": 7, "I-LOC": 8} ``` ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times **Layer_norm_eps:** 1e-05, **Num_attention_heads:** 12, **Num_hidden_layers:** 12, **Vocab_size:** 250002 # Evaluation ## Testing Data, Factors & Metrics ### Testing Data See [dataset card](https://github.com/asahi417/tner/blob/master/DATASET_CARD.md) for full dataset lists ### Factors More information needed ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed # Citation **BibTeX:** ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.eacl-demos.7", pages = "53--62", } ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Asahi Ushio in collaboration with Ezi Ozoani and the Hugging Face team. # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-ontonotes5") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-ontonotes5") ``` </details>
0xkrm/q-Taxi-v3
0xkrm
2022-11-04T03:01:31Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-04T03:01:29Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: -102.93 +/- 209.24 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="0xkrm/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
lvkaokao/bert-base-uncased-teacher-preparation-pretrain
lvkaokao
2022-11-04T02:50:34Z
46
0
transformers
[ "transformers", "pytorch", "bert", "pretraining", "license:other", "endpoints_compatible", "region:us" ]
null
2022-09-27T06:13:02Z
--- license: other --- ```python #!/bin/bash # Apache v2 license # Copyright (C) 2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 # Teacher Preparation # Notes: # Auto mixed precision can be used by adding --fp16 # Distributed training can be used with the torch.distributed.lauch app TEACHER_PATH=./bert-base-uncased-teacher-preparation-pretrain OUTPUT_DIR=$TEACHER_PATH DATA_CACHE_DIR=/root/kaokao/Model-Compression-Research-Package/examples/transformers/language-modeling/wikipedia_processed_for_pretrain python -m torch.distributed.launch \ --nproc_per_node=8 \ ../../examples/transformers/language-modeling/run_mlm.py \ --model_name_or_path bert-base-uncased \ --datasets_name_config wikipedia:20200501.en \ --data_process_type segment_pair_nsp \ --dataset_cache_dir $DATA_CACHE_DIR \ --do_train \ --learning_rate 5e-5 \ --max_steps 100000 \ --warmup_ratio 0.01 \ --weight_decay 0.01 \ --per_device_train_batch_size 8 \ --gradient_accumulation_steps 4 \ --logging_steps 10 \ --save_steps 5000 \ --save_total_limit 2 \ --output_dir $OUTPUT_DIR \ --run_name pofa-teacher-prepare-pretrain ```
theojolliffe/model-1-reverse-bart
theojolliffe
2022-11-04T02:25:54Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-03T23:08:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: model-1-reverse-bart results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model-1-reverse-bart This model is a fine-tuned version of [eugenesiow/bart-paraphrase](https://huggingface.co/eugenesiow/bart-paraphrase) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3347 - Rouge1: 95.4467 - Rouge2: 91.7522 - Rougel: 95.448 - Rougelsum: 95.4377 - Gen Len: 15.5478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:------:|:---------:|:-------:| | 0.0744 | 1.0 | 28039 | 0.3347 | 95.4467 | 91.7522 | 95.448 | 95.4377 | 15.5478 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
fake4325634/chkn
fake4325634
2022-11-04T02:18:20Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-11-03T23:31:04Z
--- license: mit --- Trained on amateur photographs of chickens from Reddit. Include "chkn" in a prompt to use. ![22270-1687283316-ambushed by chkn!, art by Gian Paolo Dulbecco, Mr. Doodle, trending on artstation.png](https://s3.amazonaws.com/moonup/production/uploads/1667527175082-6303df4ffc783bfc7442d090.png) ![22227-1353605590-Flock of chkn, art by Alex Andreev, Jeremiah Ketner, trending on artstation.png](https://s3.amazonaws.com/moonup/production/uploads/1667528158522-6303df4ffc783bfc7442d090.png) ![22237-389909750-Flock of chkn, art by Stanisław Ignacy Witkiewicz, Adolph Menzel, trending on artstation.png](https://s3.amazonaws.com/moonup/production/uploads/1667528187652-6303df4ffc783bfc7442d090.png) ![22197-2893918631-Portrait of a (chkn), art by Atelier Olschinsky, trending on artstation.png](https://s3.amazonaws.com/moonup/production/uploads/1667528201281-6303df4ffc783bfc7442d090.png) ![22052-1975968497-Portrait of (chkn), trending on artstation, art by Albert Bloch, Lee Jeffries.png](https://s3.amazonaws.com/moonup/production/uploads/1667528223276-6303df4ffc783bfc7442d090.png) ![22138-4080725859-A chkn warrior charging into battle, art by boris valejo and greg rutkowski, trending on artstation.png](https://s3.amazonaws.com/moonup/production/uploads/1667528238010-6303df4ffc783bfc7442d090.png)
Fputin/putinclown
Fputin
2022-11-04T01:56:20Z
0
0
null
[ "license:openrail", "region:us" ]
null
2022-11-03T23:50:05Z
--- license: openrail --- Decided to make a Dreambooth model today of Putin Caricatures and cartoons that are banned in Russia because F Putin. Prompt is "putinclown" Spread the love like he spreads hate! Have fun!
g30rv17ys/customdbmodelv6
g30rv17ys
2022-11-04T01:35:01Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:geevegeorge/customdbv6", "license:apache-2.0", "diffusers:AudioDiffusionPipeline", "region:us" ]
null
2022-11-03T20:19:12Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: geevegeorge/customdbv6 metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # customdbmodelv6 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `geevegeorge/customdbv6` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - gradient_accumulation_steps: 8 - optimizer: AdamW with betas=(0.95, 0.999), weight_decay=1e-06 and epsilon=1e-08 - lr_scheduler: cosine - lr_warmup_steps: 500 - ema_inv_gamma: 1.0 - ema_inv_gamma: 0.75 - ema_inv_gamma: 0.9999 - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/customdbmodelv6/tensorboard?#scalars)
ashish23993/t5-small-finetuned-xsum-AB
ashish23993
2022-11-04T00:28:42Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-03T07:48:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-xsum-AB results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-AB This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8942 - Rouge1: 13.835 - Rouge2: 4.4916 - Rougel: 10.5998 - Rougelsum: 12.3225 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:| | 2.9182 | 1.0 | 625 | 2.8942 | 13.835 | 4.4916 | 10.5998 | 12.3225 | 19.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.13.0+cpu - Datasets 2.6.1 - Tokenizers 0.13.1
bouim/hubert-large-arabic-darija
bouim
2022-11-03T23:27:08Z
124
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-03T22:11:06Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer model-index: - name: hubert-large-arabic-darija results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-large-arabic-darija This model is a fine-tuned version of [asafaya/hubert-large-arabic](https://huggingface.co/asafaya/hubert-large-arabic) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.2.dev0 - Tokenizers 0.13.1
pablorocg/Retinal_disease_model_v2
pablorocg
2022-11-03T21:37:53Z
0
0
null
[ "region:us" ]
null
2022-11-03T21:30:30Z
--- title: Retinal Disease emoji: 🐠 colorFrom: pink colorTo: blue sdk: gradio sdk_version: 2.9.4 app_file: app.py pinned: false --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
drandran/asmonbald
drandran
2022-11-03T20:37:46Z
0
4
null
[ "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:unknown", "region:us" ]
text-to-image
2022-11-03T20:22:33Z
--- license: unknown tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image --- # Asmongold model.ckpt for Stable Diffusion v1-5 Model Card Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. I've trained using Dreambooth 20 images of twitch streamer Asmongold for the purpose of text-to-image illustration generation using Stable Diffusion. Feel free to download, use and share the model as you like. To give the Ai the trigger to generate an illustration based on the trained Asmongold images, make sure to use the tag "asmonbald" in your prompts. Example: a detailed portrait photo of a man vs a detailed portrait photo of asmonbald ---
huggingtweets/kristincarolw
huggingtweets
2022-11-03T20:36:19Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-03T20:22:10Z
--- language: en thumbnail: http://www.huggingtweets.com/kristincarolw/1667507776021/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/558354319633039361/IWd6dt31_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pizza Hut</div> <div style="text-align: center; font-size: 14px;">@kristincarolw</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pizza Hut. | Data | Pizza Hut | | --- | --- | | Tweets downloaded | 2923 | | Retweets | 527 | | Short tweets | 413 | | Tweets kept | 1983 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/999xba5o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kristincarolw's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2osco534) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2osco534/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kristincarolw') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
impira/layoutlm-document-classifier
impira
2022-11-03T20:03:22Z
166
11
transformers
[ "transformers", "pytorch", "layoutlm", "text-classification", "document-classification", "pdf", "invoices", "en", "arxiv:1912.13318", "arxiv:1910.09700", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-20T05:19:18Z
--- language: en license: cc-by-nc-sa-4.0 tags: - layoutlm - document-classification - pdf - invoices --- # Model Card for LayoutLM for Document Classification # Model Details ## Model Description This is a fine-tuned version of the multi-modal LayoutLM model for the task of classification on documents. - **Developed by:** Impira team - **Shared by [Optional]:** Hugging Face - **Model type:** Text Classification - **Language(s) (NLP):** en - **License:** cc-by-nc-sa-4.0 - **Related Models:** layoutlm - **Parent Model:** More information needed - **Resources for more information:** - [Associated Paper](https://arxiv.org/abs/1912.13318) - [Blog Post](https://www.impira.com/blog/introducing-instant-invoices) # Uses ## Direct Use Text Classification ## Downstream Use [Optional] More information needed ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data More information needed ## Training Procedure More information needed ### Preprocessing More information needed ### Speeds, Sizes, Times Num_attention_head: 12 Num_hidden_layer:12, Vocab_size: 30522 # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors More information needed ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software Transformers version: 4.4.0.dev0 # Citation **BibTeX:** More information needed} **APA:** More information needed # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Impira team in collaboration with Ezi Ozoani and the Hugging Face team. # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("impira/layoutlm-document-classifier") model = AutoModelForSequenceClassification.from_pretrained("impira/layoutlm-document-classifier") ``` </details>
jlartey10/wav2vec2-large-xls-r-300m-tr-colab
jlartey10
2022-11-03T18:52:53Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-26T19:40:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-tr-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: ga-IE split: train+validation args: ga-IE metrics: - name: Wer type: wer value: 0.593329432416618 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1786 - Wer: 0.5933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3421 | 14.81 | 400 | 1.1795 | 0.5922 | | 0.113 | 29.63 | 800 | 1.1786 | 0.5933 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/deltazulu14
huggingtweets
2022-11-03T18:48:19Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-03T18:46:16Z
--- language: en thumbnail: http://www.huggingtweets.com/deltazulu14/1667501296205/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1569374676933033984/NSveEXrv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Delta Zulu</div> <div style="text-align: center; font-size: 14px;">@deltazulu14</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Delta Zulu. | Data | Delta Zulu | | --- | --- | | Tweets downloaded | 881 | | Retweets | 108 | | Short tweets | 150 | | Tweets kept | 623 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8h87mrlb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deltazulu14's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mwjzatl4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mwjzatl4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deltazulu14') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
santiagoahl/vit_model
santiagoahl
2022-11-03T18:20:04Z
29
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-03T17:40:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans model-index: - name: vit_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/jldevezas
huggingtweets
2022-11-03T17:49:29Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-03T17:36:45Z
--- language: en thumbnail: http://www.huggingtweets.com/jldevezas/1667497736714/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1352291023867834370/OcubRjdf_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">José Devezas</div> <div style="text-align: center; font-size: 14px;">@jldevezas</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from José Devezas. | Data | José Devezas | | --- | --- | | Tweets downloaded | 1690 | | Retweets | 439 | | Short tweets | 106 | | Tweets kept | 1145 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/27g8vb39/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jldevezas's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16q8rwg7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16q8rwg7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jldevezas') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vipz3/xlm-roberta-base-finetuned-panx-de
vipz3
2022-11-03T17:03:41Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-02T16:30:56Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
rexwang8/qilin-lit-6b
rexwang8
2022-11-03T16:58:09Z
30
6
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "text generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-10-23T02:10:01Z
--- language: en thumbnail: "https://i.ibb.co/HBqvBFY/mountain-xianxia-chinese-scenic-landscape-craggy-mist-action-scene-pagoda-s-2336925014-1.png" tags: - text generation - pytorch license: mit --- # Qilin-lit-6b Description Most updated version is V1.1.0 which is fine-tuned on 550 MB of webnovels found on the NovelUpdates website. (https://www.novelupdates.com/) The style is SFW and whimsical, excelling at telling fantasy stories, especially webnovels. ## Downstream Uses This model can be used for entertainment purposes and as a creative writing assistant for fiction writers. ## Usage with Kobold AI Colab (Easiest) GPU -> https://colab.research.google.com/github/KoboldAI/KoboldAI-Client/blob/main/colab/GPU.ipynb TPU -> https://colab.research.google.com/github/KoboldAI/KoboldAI-Client/blob/main/colab/TPU.ipynb Replace the drop-down value with "rexwang8/qilin-lit-6b" and select that model. ## Usage with Kobold AI Local Load at AI/load a model from it's directory. Model name is "rexwang8/qilin-lit-6b". If you get a config.json not found error, reload the program and give it some time to find your GPUs. ## Example Code ``` from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained('rexwang8/qilin-lit-6b') tokenizer = AutoTokenizer.from_pretrained('rexwang8/lit-6b') prompt = '''I had eyes but couldn't see Mount Tai!''' input_ids = tokenizer.encode(prompt, return_tensors='pt') output = model.generate(input_ids, do_sample=True, temperature=1.0, top_p=0.9, repetition_penalty=1.2, max_length=len(input_ids[0])+100, pad_token_id=tokenizer.eos_token_id) generated_text = tokenizer.decode(output[0]) print(generated_text) ``` --- ## Qilin-lit-6b (V1.1.0) Fine-tuned version of EleutherAI/gpt-j-6B (https://huggingface.co/EleutherAI/gpt-j-6B) on Coreweave's infrastructure (<https://www.coreweave.com/>) using an A40 over ~80 hours. 3150 steps, 1 epoch trained on 550 MB of primarily Xianxia genre Webnovels. (Translated to English) --- ## Team members and Acknowledgements Rex Wang - Author Coreweave - Computational materials With help from: Wes Brown, Anthony Mercurio --- ## Version History 1.1.0 - 550 MB Dataset(34 books) 3150 steps (no reordering, no sampling) 1.0.0 - 100 MB Dataset(3 books) 300 steps (no reordering, no sampling)
nerijs/sorrentino-diffusion
nerijs
2022-11-03T16:19:55Z
0
5
null
[ "region:us" ]
null
2022-11-02T18:50:17Z
# Sorrentino Diffusion Stable Diffusion model trained on images by the artists Andrea Sorrentino <div style="display: flex; flex-direction: row; flex-wrap: wrap"> <img src="https://s3.amazonaws.com/moonup/production/uploads/1667417959158-6303f37c3926de1f7ec42d3e.png" width="256"> <img src="https://s3.amazonaws.com/moonup/production/uploads/1667417959179-6303f37c3926de1f7ec42d3e.png" width="256"> <img src="https://s3.amazonaws.com/moonup/production/uploads/1667417959240-6303f37c3926de1f7ec42d3e.png" width="256"> <img src="https://s3.amazonaws.com/moonup/production/uploads/1667417959181-6303f37c3926de1f7ec42d3e.png" width="256"> <img src="https://s3.amazonaws.com/moonup/production/uploads/1667417959118-6303f37c3926de1f7ec42d3e.png" width="256"> <img src="https://s3.amazonaws.com/moonup/production/uploads/1667417959047-6303f37c3926de1f7ec42d3e.png" width="256"> </div> ## How to use - Download the model and use it on your desired UI (Tested on AUTOMATIC1111's) Currently only .ckpt version is supported - Trigger the style in your prompt with the **andreasorrentino** token, look at the next section for more examples ## Versions - **v1**: Trained on 25 images over 3000 Dreambooth steps. 1000, 1500, 2000, 2500 and 3000 steps checkpoints available to download We currently provide multiple checkpoints at different steps where you can compare results. v1 is only an experiment with a low quality dataset, results indicate the model might be overfitted. v2 will improve on dataset quality and quantity. ## Examples **andreasorrentino style, a picture of a shiba inu** Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 2207496243, Size: 512x512, Comparing v1 checkpoints ![xy_grid-0022-2207496243-andreasorrentino style, a picture of a shiba inu.png](https://s3.amazonaws.com/moonup/production/uploads/1667416709937-6303f37c3926de1f7ec42d3e.png) <hr /> **drawing of a porsche, andreasorrentino style** Steps: 20, Sampler: Euler a, CFG scale: 7-15, Seed: 1734310449, Size: 512x512, andrea-sorrentino-v1_step_3000.ckpt ![xy_grid-0029-1734310449-drawing of a porsche, andreasorrentino style.png](https://s3.amazonaws.com/moonup/production/uploads/1667492321234-6303f37c3926de1f7ec42d3e.png) ## Tips - Use different ways to trigger the style: andreasorrentino style, YOUR_PROMPT | YOUR_PROMPT in the style of andreasorrentino | YOUR_PROMPT, andreasorrentino style https://twitter.com/nerijs
LiveEvil/autotrain-testtextexists-1966366048
LiveEvil
2022-11-03T15:56:11Z
101
0
transformers
[ "transformers", "pytorch", "autotrain", "text-regression", "en", "dataset:orange6996/autotrain-data-testtextexists", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
null
2022-11-03T15:55:43Z
--- tags: - autotrain - text-regression language: - en widget: - text: "I love AutoTrain 🤗" datasets: - orange6996/autotrain-data-testtextexists co2_eq_emissions: emissions: 0.3550338626114656 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 1966366048 - CO2 Emissions (in grams): 0.3550 ## Validation Metrics - Loss: 4911.982 - MSE: 4911.981 - MAE: 68.106 - R2: -16.962 - RMSE: 70.086 - Explained Variance: -0.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/orange6996/autotrain-testtextexists-1966366048 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("orange6996/autotrain-testtextexists-1966366048", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("orange6996/autotrain-testtextexists-1966366048", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Janst1000/buntesgelaber
Janst1000
2022-11-03T15:49:48Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-03T15:32:09Z
## Setup To use this model please clone the following GitHub repository https://github.com/Janst1000/buntesgelaber ## How this model was trained This model was trained on https://github.com/bundestag/gesetze. I wrote a simple script that takes all of the text inside of the repository and puts it all into a single text file. Then I trained the model using the HuggingFace tutorial https://huggingface.co/blog/how-to-train
fxmarty/tiny-bert-sst2-distilled-clone
fxmarty
2022-11-03T15:29:12Z
9
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-03T14:37:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: tiny-bert-sst2-distilled results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8325688073394495 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-bert-sst2-distilled This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.7305 - Accuracy: 0.8326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007199555649276667 - train_batch_size: 1024 - eval_batch_size: 1024 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.77 | 1.0 | 66 | 1.6939 | 0.8165 | | 0.729 | 2.0 | 132 | 1.5090 | 0.8326 | | 0.5242 | 3.0 | 198 | 1.5369 | 0.8257 | | 0.4017 | 4.0 | 264 | 1.7025 | 0.8326 | | 0.327 | 5.0 | 330 | 1.6743 | 0.8245 | | 0.2749 | 6.0 | 396 | 1.7305 | 0.8337 | | 0.2521 | 7.0 | 462 | 1.7305 | 0.8326 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
gogzy/t5-base-finetuned_renre_item1
gogzy
2022-11-03T15:27:48Z
62
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-03T15:24:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: gogzy/t5-base-finetuned_renre_item1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # gogzy/t5-base-finetuned_renre_item1 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.5613 - Validation Loss: 6.0177 - Train Rouge1: 9.4862 - Train Rouge2: 6.3745 - Train Rougel: 7.9051 - Train Rougelsum: 9.4862 - Train Gen Len: 19.0 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 13.9387 | 10.3276 | 7.1429 | 1.6 | 4.7619 | 5.5556 | 19.0 | 0 | | 12.7511 | 9.4693 | 8.7302 | 4.8 | 7.1429 | 7.9365 | 19.0 | 1 | | 11.3785 | 8.4321 | 8.7302 | 4.8 | 7.1429 | 7.9365 | 19.0 | 2 | | 9.9856 | 7.2054 | 8.7302 | 4.8 | 7.1429 | 7.9365 | 19.0 | 3 | | 8.5613 | 6.0177 | 9.4862 | 6.3745 | 7.9051 | 9.4862 | 19.0 | 4 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
TTian/bert-mlm-feedback
TTian
2022-11-03T15:20:42Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-03T14:59:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-mlm-feedback results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-mlm-feedback This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2248 | 1.0 | 350 | 1.5091 | | 2.0629 | 2.0 | 700 | 1.2582 | | 2.0031 | 3.0 | 1050 | 1.4637 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
MS-Go/autotrain-bart_normaldata-1976866012
MS-Go
2022-11-03T15:20:24Z
100
0
transformers
[ "transformers", "pytorch", "autotrain", "summarization", "unk", "dataset:MS-Go/autotrain-data-bart_normaldata", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
summarization
2022-11-03T14:57:15Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - MS-Go/autotrain-data-bart_normaldata co2_eq_emissions: emissions: 41.152874017879256 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1976866012 - CO2 Emissions (in grams): 41.1529 ## Validation Metrics - Loss: 2.837 - Rouge1: 34.318 - Rouge2: 6.495 - RougeL: 18.460 - RougeLsum: 30.998 - Gen Len: 141.027 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/MS-Go/autotrain-bart_normaldata-1976866012 ```
popaqy/pegasus-base-qag-bg-finetuned-grammar-bg
popaqy
2022-11-03T15:05:58Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-03T14:37:36Z
--- license: mit tags: - generated_from_trainer model-index: - name: pegasus-base-qag-bg-finetuned-grammar-bg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-base-qag-bg-finetuned-grammar-bg This model is a fine-tuned version of [rmihaylov/pegasus-base-qag-bg](https://huggingface.co/rmihaylov/pegasus-base-qag-bg) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4405 | 1.0 | 375 | 1.2704 | | 1.2396 | 2.0 | 750 | 1.2544 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/cosm1cgrandma
huggingtweets
2022-11-03T14:51:34Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-03T14:50:19Z
--- language: en thumbnail: http://www.huggingtweets.com/cosm1cgrandma/1667487071319/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1491563915746201600/Sl5-btX4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">cosmic grandma</div> <div style="text-align: center; font-size: 14px;">@cosm1cgrandma</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from cosmic grandma. | Data | cosmic grandma | | --- | --- | | Tweets downloaded | 2995 | | Retweets | 1342 | | Short tweets | 318 | | Tweets kept | 1335 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2w5yrh2i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cosm1cgrandma's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2c5z2l0f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2c5z2l0f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cosm1cgrandma') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
iliemihai/mt5-base-romanian-diacritics
iliemihai
2022-11-03T14:51:27Z
98
4
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "romanian", "seq2seq", "t5", "ro", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-02T15:09:37Z
--- language: ro inference: true license: apache-2.0 tags: - romanian - seq2seq - t5 --- This is the fine-tuned [mt5-base-romanian](https://huggingface.co/dumitrescustefan/mt5-base-romanian) base model (**390M** parameters). The model was fine-tuned on the [romanian diacritics dataset](https://huggingface.co/datasets/dumitrescustefan/diacritic) for 150k steps with a batch of size 8. The encoder sequence length is 256 and the decoder sequence length is also 256. It was trained with the following [scripts](https://github.com/iliemihai/t5x_diacritics). ### How to load the fine-tuned mt5x model ```python from transformers import MT5ForConditionalGeneration, T5Tokenizer model = MT5ForConditionalGeneration.from_pretrained('iliemihai/mt5-base-romanian-diacritics') tokenizer = T5Tokenizer.from_pretrained('iliemihai/mt5-base-romanian-diacritics') input_text = "A inceput sa ii taie un fir de par, iar fata sta in fata, tine camasa de in in mana si canta nota SI." inputs = tokenizer(input_text, max_length=256, truncation=True, return_tensors="pt") outputs = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"]) output = tokenizer.decode(outputs[0], skip_special_tokens=True) print(output) # this will print "A început să îi taie un fir de păr, iar fata stă în față, ține cămașa de in în mână și cântă nota SI" ``` ### Evaluation Evaluation will be done soon [here]() ### Acknowledgements We'd like to thank [TPU Research Cloud](https://sites.research.google/trc/about/) for providing the TPUv3 cores we used to train these models! ### Authors Yours truly, _[Stefan Dumitrescu](https://github.com/dumitrescustefan), [Mihai Ilie](https://github.com/iliemihai) and [Per Egil Kummervold](https://huggingface.co/north)_
royam0820/ddpm-butterflies-128
royam0820
2022-11-03T14:19:07Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-03T13:03:24Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/royam0820/ddpm-butterflies-128/tensorboard?#scalars)
DogeAI/finetuning-sentiment-model-3000-samples
DogeAI
2022-11-03T13:35:42Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-03T04:49:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8692810457516339 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3163 - Accuracy: 0.8667 - F1: 0.8693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
calicxy/wav2vec2-base-finetuned-ks
calicxy
2022-11-03T13:16:03Z
162
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:audiofolder", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-11-03T11:20:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 2.1135 - Accuracy: 0.3403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2574 | 0.99 | 40 | 2.1881 | 0.2917 | | 2.1367 | 1.99 | 80 | 2.1433 | 0.2917 | | 2.1535 | 2.99 | 120 | 2.1255 | 0.2917 | | 2.159 | 3.99 | 160 | 2.1135 | 0.3403 | | 2.1341 | 4.99 | 200 | 2.1027 | 0.3403 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
jayantapaul888/twitter-data-pysentimiento-robertuito-sentiment-finetuned-memes
jayantapaul888
2022-11-03T13:05:05Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-03T11:29:43Z
--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-data-pysentimiento-robertuito-sentiment-finetuned-memes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-data-pysentimiento-robertuito-sentiment-finetuned-memes This model is a fine-tuned version of [pysentimiento/robertuito-sentiment-analysis](https://huggingface.co/pysentimiento/robertuito-sentiment-analysis) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2563 - Accuracy: 0.9262 - Precision: 0.9271 - Recall: 0.9262 - F1: 0.9263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3641 | 1.0 | 1762 | 0.3197 | 0.8999 | 0.9001 | 0.8999 | 0.8995 | | 0.272 | 2.0 | 3524 | 0.2723 | 0.9171 | 0.9181 | 0.9171 | 0.9171 | | 0.2451 | 3.0 | 5286 | 0.2633 | 0.9224 | 0.9226 | 0.9224 | 0.9223 | | 0.2084 | 4.0 | 7048 | 0.2518 | 0.9256 | 0.9270 | 0.9256 | 0.9257 | | 0.199 | 5.0 | 8810 | 0.2545 | 0.9268 | 0.9277 | 0.9268 | 0.9269 | | 0.1926 | 6.0 | 10572 | 0.2563 | 0.9262 | 0.9271 | 0.9262 | 0.9263 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
Gaborandi/Clinical-Longformer-SurgicalCardiothoracic
Gaborandi
2022-11-03T12:43:10Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "longformer", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-03T02:53:02Z
--- tags: - generated_from_trainer model-index: - name: Clinical-Longformer-SurgicalCardiothoracic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Clinical-Longformer-SurgicalCardiothoracic This model is a fine-tuned version of [yikuan8/Clinical-Longformer](https://huggingface.co/yikuan8/Clinical-Longformer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1515 | 1.1133 | | No log | 2.0 | 3030 | 1.0476 | | No log | 3.0 | 4545 | 1.0114 | | No log | 4.0 | 6060 | 0.9958 | | No log | 5.0 | 7575 | 0.9928 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.0 - Datasets 2.2.2 - Tokenizers 0.11.6
DavidCollier/distilbert-base-uncased-finetuned-imdb
DavidCollier
2022-11-03T12:38:37Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-03T12:31:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
seanfarrell/set_fit_experiment
seanfarrell
2022-11-03T12:26:38Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-02T15:08:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2040 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 2040, "warmup_steps": 204, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Enverrr/ViT_exp_1
Enverrr
2022-11-03T11:24:15Z
56
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-03T11:13:44Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ViT_exp_1 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9732142686843872 --- # ViT_exp_1 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cat ![cat](images/cat.jpg) #### dog ![dog](images/dog.jpg) #### donkey ![donkey](images/donkey.jpg) #### lion ![lion](images/lion.jpg) #### monkey ![monkey](images/monkey.jpg)
paulhindemith/test-zeroshot
paulhindemith
2022-11-03T10:48:01Z
48
0
transformers
[ "transformers", "pytorch", "test-zeroshot", "zero-shot-classification", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-11-03T06:45:41Z
--- pipeline_tag: zero-shot-classification widget: - text: "Jens Peter Hansen kommer fra Danmark" ---
HPL/distilbert-base-uncased-finetuned-emotion
HPL
2022-11-03T08:29:46Z
106
2
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T07:03:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9405 - name: F1 type: f1 value: 0.9408676491029256 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1465 - Accuracy: 0.9405 - F1: 0.9409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8341 | 1.0 | 250 | 0.2766 | 0.9105 | 0.9088 | | 0.2181 | 2.0 | 500 | 0.1831 | 0.9305 | 0.9308 | | 0.141 | 3.0 | 750 | 0.1607 | 0.93 | 0.9305 | | 0.1102 | 4.0 | 1000 | 0.1509 | 0.935 | 0.9344 | | 0.0908 | 5.0 | 1250 | 0.1465 | 0.9405 | 0.9409 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
takizawa/distilbert-base-uncased-finetuned-emotion
takizawa
2022-11-03T06:30:42Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-03T06:17:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.924985636202576 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2251 - Accuracy: 0.925 - F1: 0.9250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8481 | 1.0 | 250 | 0.3248 | 0.907 | 0.9028 | | 0.2595 | 2.0 | 500 | 0.2251 | 0.925 | 0.9250 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-CV7
DrishtiSharma
2022-11-03T05:42:08Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "hi", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - hi - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-large-xls-r-300m-hi-CV7 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 35.31946325249292 - name: Test CER type: cer value: 11.310803379493076 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: vot metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-CV7 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6588 - Wer: 0.2987 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-CV7 --dataset mozilla-foundation/common_voice_7_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data NA ### Training hyperparameters The following hyperparameters were used during training: # - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.809 | 1.36 | 200 | 6.2066 | 1.0 | | 4.3402 | 2.72 | 400 | 3.5184 | 1.0 | | 3.4365 | 4.08 | 600 | 3.2779 | 1.0 | | 1.8643 | 5.44 | 800 | 0.9875 | 0.6270 | | 0.7504 | 6.8 | 1000 | 0.6382 | 0.4666 | | 0.5328 | 8.16 | 1200 | 0.6075 | 0.4505 | | 0.4364 | 9.52 | 1400 | 0.5785 | 0.4215 | | 0.3777 | 10.88 | 1600 | 0.6279 | 0.4227 | | 0.3374 | 12.24 | 1800 | 0.6536 | 0.4192 | | 0.3236 | 13.6 | 2000 | 0.5911 | 0.4047 | | 0.2877 | 14.96 | 2200 | 0.5955 | 0.4097 | | 0.2643 | 16.33 | 2400 | 0.5923 | 0.3744 | | 0.2421 | 17.68 | 2600 | 0.6307 | 0.3814 | | 0.2218 | 19.05 | 2800 | 0.6036 | 0.3764 | | 0.2046 | 20.41 | 3000 | 0.6286 | 0.3797 | | 0.191 | 21.77 | 3200 | 0.6517 | 0.3889 | | 0.1856 | 23.13 | 3400 | 0.6193 | 0.3661 | | 0.1721 | 24.49 | 3600 | 0.7034 | 0.3727 | | 0.1656 | 25.85 | 3800 | 0.6293 | 0.3591 | | 0.1532 | 27.21 | 4000 | 0.6075 | 0.3611 | | 0.1507 | 28.57 | 4200 | 0.6313 | 0.3565 | | 0.1381 | 29.93 | 4400 | 0.6564 | 0.3578 | | 0.1359 | 31.29 | 4600 | 0.6724 | 0.3543 | | 0.1248 | 32.65 | 4800 | 0.6789 | 0.3512 | | 0.1198 | 34.01 | 5000 | 0.6442 | 0.3539 | | 0.1125 | 35.37 | 5200 | 0.6676 | 0.3419 | | 0.1036 | 36.73 | 5400 | 0.7017 | 0.3435 | | 0.0982 | 38.09 | 5600 | 0.6828 | 0.3319 | | 0.0971 | 39.45 | 5800 | 0.6112 | 0.3351 | | 0.0968 | 40.81 | 6000 | 0.6424 | 0.3252 | | 0.0893 | 42.18 | 6200 | 0.6707 | 0.3304 | | 0.0878 | 43.54 | 6400 | 0.6432 | 0.3236 | | 0.0827 | 44.89 | 6600 | 0.6696 | 0.3240 | | 0.0788 | 46.26 | 6800 | 0.6564 | 0.3180 | | 0.0753 | 47.62 | 7000 | 0.6574 | 0.3130 | | 0.0674 | 48.98 | 7200 | 0.6698 | 0.3175 | | 0.0676 | 50.34 | 7400 | 0.6441 | 0.3142 | | 0.0626 | 51.7 | 7600 | 0.6642 | 0.3121 | | 0.0617 | 53.06 | 7800 | 0.6615 | 0.3117 | | 0.0599 | 54.42 | 8000 | 0.6634 | 0.3059 | | 0.0538 | 55.78 | 8200 | 0.6464 | 0.3033 | | 0.0571 | 57.14 | 8400 | 0.6503 | 0.3018 | | 0.0491 | 58.5 | 8600 | 0.6625 | 0.3025 | | 0.0511 | 59.86 | 8800 | 0.6588 | 0.2987 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
g30rv17ys/customdbmodelv4
g30rv17ys
2022-11-03T04:52:22Z
8
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:geevegeorge/customdbv3", "license:apache-2.0", "diffusers:AudioDiffusionPipeline", "region:us" ]
null
2022-11-02T18:58:10Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: geevegeorge/customdbv3 metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # customdbmodelv4 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `geevegeorge/customdbv3` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - gradient_accumulation_steps: 8 - optimizer: AdamW with betas=(0.95, 0.999), weight_decay=1e-06 and epsilon=1e-08 - lr_scheduler: cosine - lr_warmup_steps: 500 - ema_inv_gamma: 1.0 - ema_inv_gamma: 0.75 - ema_inv_gamma: 0.9999 - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/customdbmodelv4/tensorboard?#scalars)
lIlBrother/ko-barTNumText
lIlBrother
2022-11-03T04:36:26Z
13
2
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "ko", "dataset:aihub", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-31T01:13:19Z
--- language: - ko # Example: fr license: apache-2.0 # Example: apache-2.0 or any license from https://hf.co/docs/hub/repositories-licenses library_name: transformers # Optional. Example: keras or any library from https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Libraries.ts tags: - text2text-generation # Example: audio datasets: - aihub # Example: common_voice. Use dataset id from https://hf.co/datasets metrics: - bleu # Example: wer. Use metric id from https://hf.co/metrics - rouge # Optional. Add this if you want to encode your eval results in a structured way. model-index: - name: ko-barTNumText results: - task: type: text2text-generation # Required. Example: automatic-speech-recognition name: text2text-generation # Optional. Example: Speech Recognition metrics: - type: bleu # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.9313276940897475 # Required. Example: 20.90 name: eval_bleu # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - type: rouge1 # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.9607081256861959 # Required. Example: 20.90 name: eval_rouge1 # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - type: rouge2 # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.9394649136169404 # Required. Example: 20.90 name: eval_rouge2 # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - type: rougeL # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.9605735834651536 # Required. Example: 20.90 name: eval_rougeL # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - type: rougeLsum # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.9605993760190767 # Required. Example: 20.90 name: eval_rougeLsum # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). --- # ko-barTNumText(TNT Model🧨): Try Number To Korean Reading(숫자를 한글로 바꾸는 모델) ## Table of Contents - [ko-barTNumText(TNT Model🧨): Try Number To Korean Reading(숫자를 한글로 바꾸는 모델)](#ko-bartnumtexttnt-model-try-number-to-korean-reading숫자를-한글로-바꾸는-모델) - [Table of Contents](#table-of-contents) - [Model Details](#model-details) - [Uses](#uses) - [Evaluation](#evaluation) - [How to Get Started With the Model](#how-to-get-started-with-the-model) ## Model Details - **Model Description:** 뭔가 찾아봐도 모델이나 알고리즘이 딱히 없어서 만들어본 모델입니다. <br /> BartForConditionalGeneration Fine-Tuning Model For Number To Korean <br /> BartForConditionalGeneration으로 파인튜닝한, 숫자를 한글로 변환하는 Task 입니다. <br /> - Dataset use [Korea aihub](https://aihub.or.kr/aihubdata/data/list.do?currMenu=115&topMenu=100&srchDataRealmCode=REALM002&srchDataTy=DATA004) <br /> I can't open my fine-tuning datasets for my private issue <br /> 데이터셋은 Korea aihub에서 받아서 사용하였으며, 파인튜닝에 사용된 모든 데이터를 사정상 공개해드릴 수는 없습니다. <br /> - Korea aihub data is ONLY permit to Korean!!!!!!! <br /> aihub에서 데이터를 받으실 분은 한국인일 것이므로, 한글로만 작성합니다. <br /> 정확히는 음성전사를 철자전사로 번역하는 형태로 학습된 모델입니다. (ETRI 전사기준) <br /> - In case, ten million, some people use 10 million or some people use 10000000, so this model is crucial for training datasets <br /> 천만을 1000만 혹은 10000000으로 쓸 수도 있기에, Training Datasets에 따라 결과는 상이할 수 있습니다. <br /> - **수관형사와 수 의존명사의 띄어쓰기에 따라 결과가 확연히 달라질 수 있습니다. (쉰살, 쉰 살 -> 쉰살, 50살)** https://eretz2.tistory.com/34 <br /> 일단은 기준을 잡고 치우치게 학습시키기엔 어떻게 사용될지 몰라, 학습 데이터 분포에 맡기도록 했습니다. (쉰 살이 더 많을까 쉰살이 더 많을까!?) - **Developed by:** Yoo SungHyun(https://github.com/YooSungHyun) - **Language(s):** Korean - **License:** apache-2.0 - **Parent Model:** See the [kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) for more information about the pre-trained base model. ## Uses Want see more detail follow this URL [KoGPT_num_converter](https://github.com/ddobokki/KoGPT_num_converter) <br /> and see `bart_inference.py` and `bart_train.py` ## Evaluation Just using `evaluate-metric/bleu` and `evaluate-metric/rouge` in huggingface `evaluate` library <br /> [Training wanDB URL](https://wandb.ai/bart_tadev/BartForConditionalGeneration/runs/326xgytt?workspace=user-bart_tadev) ## How to Get Started With the Model ```python from transformers.pipelines import Text2TextGenerationPipeline from transformers import AutoTokenizer, AutoModelForSeq2SeqLM texts = ["그러게 누가 6시까지 술을 마시래?"] tokenizer = AutoTokenizer.from_pretrained("lIlBrother/ko-barTNumText") model = AutoModelForSeq2SeqLM.from_pretrained("lIlBrother/ko-barTNumText") seq2seqlm_pipeline = Text2TextGenerationPipeline(model=model, tokenizer=tokenizer) kwargs = { "min_length": 0, "max_length": 1206, "num_beams": 100, "do_sample": False, "num_beam_groups": 1, } pred = seq2seqlm_pipeline(texts, **kwargs) print(pred) # 그러게 누가 여섯 시까지 술을 마시래? ```
GItaf/gpt2-gpt2-mc-weight0.25-epoch2-new-nosharing
GItaf
2022-11-03T03:40:17Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-03T03:30:40Z
--- tags: - generated_from_trainer model-index: - name: gpt2-gpt2-mc-weight0.25-epoch2-new-nosharing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-mc-weight0.25-epoch2-new-nosharing This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3672 - Cls loss: 1.4634 - Lm loss: 4.0012 - Cls Accuracy: 0.6121 - Cls F1: 0.6023 - Cls Precision: 0.6288 - Cls Recall: 0.6121 - Perplexity: 54.66 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Cls loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Lm loss | Perplexity | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:------------:|:------:|:-------------:|:----------:|:-------:|:----------:|:---------------:| | 4.6729 | 1.0 | 3470 | 1.5425 | 0.5689 | 0.5448 | 0.5732 | 0.5689 | 4.0392 | 56.78 | 4.4248 | | 4.3854 | 2.0 | 6940 | 1.4634 | 0.6121 | 0.6023 | 0.6288 | 0.6121 | 4.0012 | 54.66 | 4.3672 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
GItaf/gpt2-gpt2-mc-weight0.25-epoch2-new
GItaf
2022-11-03T03:39:06Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-03T03:25:54Z
--- tags: - generated_from_trainer model-index: - name: gpt2-gpt2-mc-weight0.25-epoch2-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-mc-weight0.25-epoch2-new This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3629 - Cls loss: 1.4483 - Lm loss: 4.0006 - Cls Accuracy: 0.6023 - Cls F1: 0.5950 - Cls Precision: 0.6174 - Cls Recall: 0.6023 - Perplexity: 54.63 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Cls loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Lm loss | Perplexity | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:------------:|:------:|:-------------:|:----------:|:-------:|:----------:|:---------------:| | 4.674 | 1.0 | 3470 | 1.5961 | 0.5487 | 0.5279 | 0.5643 | 0.5487 | 4.0380 | 56.71 | 4.4372 | | 4.3809 | 2.0 | 6940 | 1.4483 | 0.6023 | 0.5950 | 0.6174 | 0.6023 | 4.0006 | 54.63 | 4.3629 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
lilouuch/t5-small-finetuned-xsum_epoch4
lilouuch
2022-11-03T03:32:33Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-02T12:18:45Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-xsum_epoch4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum_epoch4 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4245 - Rouge1: 29.5204 - Rouge2: 8.4931 - Rougel: 22.9705 - Rougelsum: 23.0872 - Gen Len: 18.8221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7175 | 1.0 | 7620 | 2.4899 | 28.585 | 7.7626 | 22.1314 | 22.2424 | 18.8174 | | 2.6605 | 2.0 | 15240 | 2.4486 | 29.2362 | 8.2481 | 22.7049 | 22.8227 | 18.8273 | | 2.6368 | 3.0 | 22860 | 2.4303 | 29.4228 | 8.4312 | 22.8991 | 23.0192 | 18.8262 | | 2.6284 | 4.0 | 30480 | 2.4245 | 29.5204 | 8.4931 | 22.9705 | 23.0872 | 18.8221 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Gaborandi/Bio_ClinicalBERT-SurgicalCardiothoracic
Gaborandi
2022-11-03T01:57:32Z
36
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-02T17:05:08Z
--- license: mit tags: - generated_from_trainer model-index: - name: Bio_ClinicalBERT-SurgicalCardiothoracic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT-SurgicalCardiothoracic This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 1.0 | 13144 | 0.9092 | | No log | 2.0 | 26288 | 0.8575 | | No log | 3.0 | 39432 | 0.8417 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.0 - Datasets 2.2.2 - Tokenizers 0.11.6
alkerek/kerek
alkerek
2022-11-03T00:22:54Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-03T00:22:54Z
--- license: creativeml-openrail-m ---
Bingsu/ko_BBPE_tokenizer_bert2
Bingsu
2022-11-03T00:20:59Z
0
0
null
[ "bert", "tokenizer only", "ko", "license:mit", "region:us" ]
null
2022-11-03T00:19:01Z
--- language: - ko tags: - bert - tokenizer only license: - mit --- ## 라이브러리 버전 - transformers: 4.23.1 - datasets: 2.6.1 - tokenizers: 0.13.1 [Bingsu/ko_BBPE_tokenizer_roberta](https://huggingface.co/Bingsu/ko_BBPE_tokenizer_roberta)에서 unicode normalizer를 `nfc`로, post-processor를 BertProcessing로 변경하고 토크나이저 클래스를 `BertTokenizerFast`로 변경한 것입니다.
sd-concepts-library/hoi4-leaders
sd-concepts-library
2022-11-02T23:37:15Z
0
6
null
[ "license:mit", "region:us" ]
null
2022-11-02T23:37:11Z
--- license: mit --- ### HOI4 Leaders on Stable Diffusion This is the `<HOI4-Leader>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<HOI4-Leader> 0](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/76.jpeg) ![<HOI4-Leader> 1](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/20.jpeg) ![<HOI4-Leader> 2](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/61.jpeg) ![<HOI4-Leader> 3](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/69.jpeg) ![<HOI4-Leader> 4](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/54.jpeg) ![<HOI4-Leader> 5](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/90.jpeg) ![<HOI4-Leader> 6](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/41.jpeg) ![<HOI4-Leader> 7](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/26.jpeg) ![<HOI4-Leader> 8](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/70.jpeg) ![<HOI4-Leader> 9](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/6.jpeg) ![<HOI4-Leader> 10](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/128.jpeg) ![<HOI4-Leader> 11](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/59.jpeg) ![<HOI4-Leader> 12](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/1.jpeg) ![<HOI4-Leader> 13](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/23.jpeg) ![<HOI4-Leader> 14](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/18.jpeg) ![<HOI4-Leader> 15](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/119.jpeg) ![<HOI4-Leader> 16](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/33.jpeg) ![<HOI4-Leader> 17](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/14.jpeg) ![<HOI4-Leader> 18](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/72.jpeg) ![<HOI4-Leader> 19](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/8.jpeg) ![<HOI4-Leader> 20](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/67.jpeg) ![<HOI4-Leader> 21](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/111.jpeg) ![<HOI4-Leader> 22](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/47.jpeg) ![<HOI4-Leader> 23](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/65.jpeg) ![<HOI4-Leader> 24](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/4.jpeg) ![<HOI4-Leader> 25](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/132.jpeg) ![<HOI4-Leader> 26](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/19.jpeg) ![<HOI4-Leader> 27](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/13.jpeg) ![<HOI4-Leader> 28](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/96.jpeg) ![<HOI4-Leader> 29](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/22.jpeg) ![<HOI4-Leader> 30](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/56.jpeg) ![<HOI4-Leader> 31](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/7.jpeg) ![<HOI4-Leader> 32](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/106.jpeg) ![<HOI4-Leader> 33](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/17.jpeg) ![<HOI4-Leader> 34](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/73.jpeg) ![<HOI4-Leader> 35](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/45.jpeg) ![<HOI4-Leader> 36](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/55.jpeg) ![<HOI4-Leader> 37](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/131.jpeg) ![<HOI4-Leader> 38](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/86.jpeg) ![<HOI4-Leader> 39](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/91.jpeg) ![<HOI4-Leader> 40](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/46.jpeg) ![<HOI4-Leader> 41](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/103.jpeg) ![<HOI4-Leader> 42](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/107.jpeg) ![<HOI4-Leader> 43](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/101.jpeg) ![<HOI4-Leader> 44](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/53.jpeg) ![<HOI4-Leader> 45](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/42.jpeg) ![<HOI4-Leader> 46](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/98.jpeg) ![<HOI4-Leader> 47](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/38.jpeg) ![<HOI4-Leader> 48](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/52.jpeg) ![<HOI4-Leader> 49](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/24.jpeg) ![<HOI4-Leader> 50](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/99.jpeg) ![<HOI4-Leader> 51](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/71.jpeg) ![<HOI4-Leader> 52](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/62.jpeg) ![<HOI4-Leader> 53](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/87.jpeg) ![<HOI4-Leader> 54](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/75.jpeg) ![<HOI4-Leader> 55](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/80.jpeg) ![<HOI4-Leader> 56](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/93.jpeg) ![<HOI4-Leader> 57](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/43.jpeg) ![<HOI4-Leader> 58](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/123.jpeg) ![<HOI4-Leader> 59](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/28.jpeg) ![<HOI4-Leader> 60](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/100.jpeg) ![<HOI4-Leader> 61](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/3.jpeg) ![<HOI4-Leader> 62](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/58.jpeg) ![<HOI4-Leader> 63](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/89.jpeg) ![<HOI4-Leader> 64](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/44.jpeg) ![<HOI4-Leader> 65](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/104.jpeg) ![<HOI4-Leader> 66](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/64.jpeg) ![<HOI4-Leader> 67](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/63.jpeg) ![<HOI4-Leader> 68](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/117.jpeg) ![<HOI4-Leader> 69](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/130.jpeg) ![<HOI4-Leader> 70](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/11.jpeg) ![<HOI4-Leader> 71](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/94.jpeg) ![<HOI4-Leader> 72](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/105.jpeg) ![<HOI4-Leader> 73](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/74.jpeg) ![<HOI4-Leader> 74](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/50.jpeg) ![<HOI4-Leader> 75](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/97.jpeg) ![<HOI4-Leader> 76](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/57.jpeg) ![<HOI4-Leader> 77](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/9.jpeg) ![<HOI4-Leader> 78](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/124.jpeg) ![<HOI4-Leader> 79](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/35.jpeg) ![<HOI4-Leader> 80](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/116.jpeg) ![<HOI4-Leader> 81](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/60.jpeg) ![<HOI4-Leader> 82](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/110.jpeg) ![<HOI4-Leader> 83](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/0.jpeg) ![<HOI4-Leader> 84](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/125.jpeg) ![<HOI4-Leader> 85](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/10.jpeg) ![<HOI4-Leader> 86](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/113.jpeg) ![<HOI4-Leader> 87](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/81.jpeg) ![<HOI4-Leader> 88](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/68.jpeg) ![<HOI4-Leader> 89](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/40.jpeg) ![<HOI4-Leader> 90](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/15.jpeg) ![<HOI4-Leader> 91](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/78.jpeg) ![<HOI4-Leader> 92](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/126.jpeg) ![<HOI4-Leader> 93](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/27.jpeg) ![<HOI4-Leader> 94](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/79.jpeg) ![<HOI4-Leader> 95](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/49.jpeg) ![<HOI4-Leader> 96](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/5.jpeg) ![<HOI4-Leader> 97](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/109.jpeg) ![<HOI4-Leader> 98](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/21.jpeg) ![<HOI4-Leader> 99](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/29.jpeg) ![<HOI4-Leader> 100](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/114.jpeg) ![<HOI4-Leader> 101](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/95.jpeg) ![<HOI4-Leader> 102](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/25.jpeg) ![<HOI4-Leader> 103](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/118.jpeg) ![<HOI4-Leader> 104](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/122.jpeg) ![<HOI4-Leader> 105](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/39.jpeg) ![<HOI4-Leader> 106](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/30.jpeg) ![<HOI4-Leader> 107](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/2.jpeg) ![<HOI4-Leader> 108](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/16.jpeg) ![<HOI4-Leader> 109](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/108.jpeg) ![<HOI4-Leader> 110](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/34.jpeg) ![<HOI4-Leader> 111](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/82.jpeg) ![<HOI4-Leader> 112](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/88.jpeg) ![<HOI4-Leader> 113](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/32.jpeg) ![<HOI4-Leader> 114](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/31.jpeg) ![<HOI4-Leader> 115](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/92.jpeg) ![<HOI4-Leader> 116](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/37.jpeg) ![<HOI4-Leader> 117](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/129.jpeg) ![<HOI4-Leader> 118](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/51.jpeg) ![<HOI4-Leader> 119](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/84.jpeg) ![<HOI4-Leader> 120](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/121.jpeg) ![<HOI4-Leader> 121](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/77.jpeg) ![<HOI4-Leader> 122](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/36.jpeg) ![<HOI4-Leader> 123](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/102.jpeg) ![<HOI4-Leader> 124](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/48.jpeg) ![<HOI4-Leader> 125](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/66.jpeg) ![<HOI4-Leader> 126](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/12.jpeg) ![<HOI4-Leader> 127](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/83.jpeg) ![<HOI4-Leader> 128](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/115.jpeg) ![<HOI4-Leader> 129](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/127.jpeg) ![<HOI4-Leader> 130](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/112.jpeg) ![<HOI4-Leader> 131](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/85.jpeg) ![<HOI4-Leader> 132](https://huggingface.co/sd-concepts-library/hoi4-leaders/resolve/main/concept_images/120.jpeg)
alicekwak/TN-final-multi-qa-mpnet-base-dot-v1
alicekwak
2022-11-02T23:06:04Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-02T23:05:53Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # alicekwak/TN-final-multi-qa-mpnet-base-dot-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('alicekwak/TN-final-multi-qa-mpnet-base-dot-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('alicekwak/TN-final-multi-qa-mpnet-base-dot-v1') model = AutoModel.from_pretrained('alicekwak/TN-final-multi-qa-mpnet-base-dot-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=alicekwak/TN-final-multi-qa-mpnet-base-dot-v1) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 675 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
bglick13/ddpm-butterflies-128
bglick13
2022-11-02T22:37:02Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-01T15:31:43Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/bglick13/ddpm-butterflies-128/tensorboard?#scalars)
bayartsogt/wav2vec2-xls-r-300m-mn-demo
bayartsogt
2022-11-02T22:06:29Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-02T19:53:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-mn-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-mn-demo This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9633 - Wer: 0.5586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.5564 | 6.77 | 400 | 2.8622 | 0.9998 | | 1.0005 | 13.55 | 800 | 0.9428 | 0.6614 | | 0.3018 | 20.34 | 1200 | 0.9611 | 0.5860 | | 0.1918 | 27.12 | 1600 | 0.9633 | 0.5586 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
osanseviero/test_sentence_transformers3
osanseviero
2022-11-02T21:57:44Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "dataset:flax-sentence-embeddings/stackexchange_xml", "dataset:s2orc", "dataset:ms_marco", "dataset:wiki_atomic_edits", "dataset:snli", "dataset:multi_nli", "dataset:embedding-data/altlex", "dataset:embedding-data/simple-wiki", "dataset:embedding-data/flickr30k-captions", "dataset:embedding-data/coco_captions", "dataset:embedding-data/sentence-compression", "dataset:embedding-data/QQP", "dataset:yahoo_answers_topics", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-02T21:57:39Z
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - flax-sentence-embeddings/stackexchange_xml - s2orc - ms_marco - wiki_atomic_edits - snli - multi_nli - embedding-data/altlex - embedding-data/simple-wiki - embedding-data/flickr30k-captions - embedding-data/coco_captions - embedding-data/sentence-compression - embedding-data/QQP - yahoo_answers_topics --- # sentence-transformers/paraphrase-MiniLM-L3-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L3-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L3-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L3-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-MiniLM-L3-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
osanseviero/test_sentence_transformers2
osanseviero
2022-11-02T21:53:25Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "dataset:flax-sentence-embeddings/stackexchange_xml", "dataset:s2orc", "dataset:ms_marco", "dataset:wiki_atomic_edits", "dataset:snli", "dataset:multi_nli", "dataset:embedding-data/altlex", "dataset:embedding-data/simple-wiki", "dataset:embedding-data/flickr30k-captions", "dataset:embedding-data/coco_captions", "dataset:embedding-data/sentence-compression", "dataset:embedding-data/QQP", "dataset:yahoo_answers_topics", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-02T21:53:19Z
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - flax-sentence-embeddings/stackexchange_xml - s2orc - ms_marco - wiki_atomic_edits - snli - multi_nli - embedding-data/altlex - embedding-data/simple-wiki - embedding-data/flickr30k-captions - embedding-data/coco_captions - embedding-data/sentence-compression - embedding-data/QQP - yahoo_answers_topics --- # sentence-transformers/paraphrase-MiniLM-L3-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L3-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L3-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L3-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-MiniLM-L3-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
Nerfgun3/NekoModel
Nerfgun3
2022-11-02T21:44:45Z
0
16
null
[ "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-02T09:00:49Z
--- language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m inference: false --- # Neko Model This model was trained on 100 Neko Girl Pictures ## Usage To use this model you have to download the file aswell as drop it into the "\stable-diffusion-webui\models\Stable-diffusion" folder Token: ```neko``` If it is to strong just add [] around it. Trained until 10000 steps Have fun :) ## Example Pictures <table> <tr> <td><img src=https://i.imgur.com/MpyeqMe.png width=100% height=100%/></td> <td><img src=https://i.imgur.com/wxzvHrL.png width=100% height=100%/></td> <td><img src=https://i.imgur.com/MuUnJY5.png width=100% height=100%/></td> <td><img src=https://i.imgur.com/XeDC8xA.png width=100% height=100%/></td> <td><img src=https://i.imgur.com/XmLTrEl.png width=100% height=100%/></td> </tr> </table> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the embedding commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
The-Fanta/distilbert-base-uncased-finetuned-cola
The-Fanta
2022-11-02T21:41:51Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T21:41:06Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: The-Fanta/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # The-Fanta/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5162 - Validation Loss: 0.4561 - Train Matthews Correlation: 0.4968 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5162 | 0.4561 | 0.4968 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.10.0 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/t4tclussy
huggingtweets
2022-11-02T21:39:21Z
104
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-02T21:36:47Z
--- language: en thumbnail: http://www.huggingtweets.com/t4tclussy/1667425132769/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1576359096504258563/vRp_mOiv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🎃🦇🪦spooky rat🎃🦇🪦</div> <div style="text-align: center; font-size: 14px;">@t4tclussy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🎃🦇🪦spooky rat🎃🦇🪦. | Data | 🎃🦇🪦spooky rat🎃🦇🪦 | | --- | --- | | Tweets downloaded | 3119 | | Retweets | 1463 | | Short tweets | 268 | | Tweets kept | 1388 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1rt9srp7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @t4tclussy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18rnibwz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18rnibwz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/t4tclussy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
dodge99/ppo-LunarLander-v2
dodge99
2022-11-02T21:28:02Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-02T21:27:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 207.28 +/- 90.34 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
SanDiegoDude/WheresWaldoStyle
SanDiegoDude
2022-11-02T20:52:47Z
0
7
null
[ "license:mit", "region:us" ]
null
2022-11-02T19:42:33Z
--- license: mit --- Hello! This is a 14,000 step trained model based on the famous Where's Waldo / Where's Wally art style. (I'm American so I named the style Waldo, if you're familiar with Wally instead, my apologies!) The keyword to invoke the style is "Wheres Waldo style" and I've found it works best when you use it in conjunction with real world locations if you want to ground it at least a little bit in reality. If you really want the Wally/Waldo look, be sure to include "Bright primary colors" in your prompt, and add things like "pastel colors" and "washed out colors" to your negative prompts. You can also control the amount of "Waldo-ness" by de-emphasizing the style in your prompt. For example, "(Wheres Waldo Style:1.0), A busy street in New York City, (bright primary colors:1.2)" results in the following image: ![00215-2022-11-02-(Wheres_Waldo_Style_1.0),_A_busy_street_in_New_York_City,_(bright_primary_colors_1.2).png](https://s3.amazonaws.com/moonup/production/uploads/1667421357913-6321f8e67bb41a713dacb197.png) While "(Wheres Waldo Style:0.6), A busy street in New York City, (bright primary colors:1.2) brings in some details about New York city like the subway entrance that you won't find at full strength style. ![00216-2022-11-02-(Wheres_Waldo_Style_0.6),_A_busy_street_in_New_York_City,_(bright_primary_colors_1.2).png](https://s3.amazonaws.com/moonup/production/uploads/1667421460002-6321f8e67bb41a713dacb197.png) One thing to keep in mind, if you try to just spit out a 2048 x 2048 image, it's not going to give you waldo, it's going to give you a monstrosity like this: ![00046-2022-11-02-Wheres_Waldo_style,_balboa_beach_boardwalk,_(bright_primary_colors_1.2).jpg](https://s3.amazonaws.com/moonup/production/uploads/1667421583948-6321f8e67bb41a713dacb197.jpeg) I've found the sweet spot for this model to be in the 512 x 512 to about a max of 640 x 960. Much beyond that and it starts to create big blobs like the example above. It does take pretty well to inpainting though, so if you create something interesting at 640 x 960, throw it in inpaint and start drawing in fun details (you may have to reeeeally de-emphasize the style in your inpaints to get it to give you what you want, just a heads up) Finally, one thing I've found that really helps give it the "waldo look" is using Aesthetics. I like to run an Aesthetics pass at a strength of .20 for 30 steps. It helps prevent the really washed out colors and adds the stripes that are so prevalent in Wally/Waldo comics. I've included the Waldo2.pt file if you want to download it and use it, it was trained on the same high quality images I used for the checkpoint dreambooth training. Here is a screenshot of my config I use for generating these images: ![Screenshot 2022-11-02 134246.png](https://s3.amazonaws.com/moonup/production/uploads/1667422123753-6321f8e67bb41a713dacb197.png) I hope you have fun with this! Sadly it won't actually generate a Waldo/Wally into the image (at least not one that you can generate on demand), but if you're going to all the trouble to inpaint a proper Waldo/Wally scene, you can do some quick post work to add Waldo/Wally in there somewhere! =) Here are sample images using this model: ![00200-2022-11-02-(Wheres_Waldo_style_0.7),_An_isometric_view_of_a_Big_Ben_in_London,_(bright_primary_colors_1.2).png](https://s3.amazonaws.com/moonup/production/uploads/1667420610547-6321f8e67bb41a713dacb197.png) ![00199-2022-11-02-(Wheres_Waldo_style_0.8),_An_isometric_view_of_a_Big_Ben_in_London,_(bright_primary_colors_1.2).png](https://s3.amazonaws.com/moonup/production/uploads/1667420615175-6321f8e67bb41a713dacb197.png) ![00194-2022-11-02-(Wheres_Waldo_style_0.8),_An_isometric_view_of_a_wagons_and_horses_in_the_old_west,_(bright_primary_colors_1.2).png](https://s3.amazonaws.com/moonup/production/uploads/1667420620165-6321f8e67bb41a713dacb197.png) ![00180-2022-11-02-(wheres_waldo_style_0.95),_An_isometric_view_of_a_boats_and_swimmers_in_the_ocean.png](https://s3.amazonaws.com/moonup/production/uploads/1667420645009-6321f8e67bb41a713dacb197.png) ![00169-2022-11-02-An_isometric_view_of_a_fantasy_medieval_village_surrounded_by_giants_in_colorful_clothing,_wimmel_style,_(wheres_waldo_style_0.5.png](https://s3.amazonaws.com/moonup/production/uploads/1667420652817-6321f8e67bb41a713dacb197.png) ![00164-2022-11-02-An_isometric_view_of_Washington_DC,_wimmel_style,_(wheres_waldo_style_0.4).png](https://s3.amazonaws.com/moonup/production/uploads/1667420655188-6321f8e67bb41a713dacb197.png) ![00162-2022-11-02-An_isometric_view_of_the_Alamo,_wimmel_style,_(wheres_waldo_style_0.4).png](https://s3.amazonaws.com/moonup/production/uploads/1667420658080-6321f8e67bb41a713dacb197.png) ![00161-2022-11-02-An_isometric_view_of_a__busy_street_corner_in_downtown_San_Diego,_wimmel_style,_(wheres_waldo_style_0.4).png](https://s3.amazonaws.com/moonup/production/uploads/1667420667433-6321f8e67bb41a713dacb197.png) ![00160-2022-11-02-An_isometric_view_of_a__busy_street_corner_in_downtown_San_Diego,_wimmel_style,_(wheres_waldo_style_0.5).png](https://s3.amazonaws.com/moonup/production/uploads/1667420671811-6321f8e67bb41a713dacb197.png) ![00155-2022-11-02-An_isometric_view_of_a__beach__boardwalk_in_San_Diego,_wimmel_style,_(wheres_waldo_style_0.89).png](https://s3.amazonaws.com/moonup/production/uploads/1667420677145-6321f8e67bb41a713dacb197.png) ![00158-2022-11-02-An_isometric_view_of_a__busy_street_corner_in_downtown_San_Diego,_wimmel_style,_(wheres_waldo_style_0.75).png](https://s3.amazonaws.com/moonup/production/uploads/1667420683081-6321f8e67bb41a713dacb197.png)
jayantapaul888/twitter-data-distilbert-base-uncased-sentiment-finetuned-memes
jayantapaul888
2022-11-02T20:16:58Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-31T14:50:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-data-distilbert-base-uncased-sentiment-finetuned-memes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-data-distilbert-base-uncased-sentiment-finetuned-memes This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2474 - Accuracy: 0.9282 - Precision: 0.9290 - Recall: 0.9282 - F1: 0.9282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3623 | 1.0 | 1762 | 0.3171 | 0.8986 | 0.8995 | 0.8986 | 0.8981 | | 0.271 | 2.0 | 3524 | 0.2665 | 0.9176 | 0.9182 | 0.9176 | 0.9173 | | 0.2386 | 3.0 | 5286 | 0.2499 | 0.9237 | 0.9254 | 0.9237 | 0.9239 | | 0.2136 | 4.0 | 7048 | 0.2494 | 0.9259 | 0.9263 | 0.9259 | 0.9257 | | 0.1974 | 5.0 | 8810 | 0.2454 | 0.9278 | 0.9288 | 0.9278 | 0.9278 | | 0.182 | 6.0 | 10572 | 0.2474 | 0.9282 | 0.9290 | 0.9282 | 0.9282 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
flamesbob/Sasu-Model
flamesbob
2022-11-02T19:07:13Z
0
0
null
[ "license:openrail", "region:us" ]
null
2022-10-30T20:19:43Z
--- license: openrail --- Token class word for this model is `sasu` using this will draw attention to the training data that was used and help increase the quality of the image. License This embedding is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: You can't use the embedding to deliberately produce nor share illegal or harmful outputs or content The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license You may re-distribute the weights and use the embedding commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here
flamesbob/rimu_model
flamesbob
2022-11-02T19:06:41Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-31T01:13:03Z
--- license: creativeml-openrail-m --- Token class word for this model is `rimu` using this will draw attention to the training data that was used and help increase the quality of the image. License This embedding is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: You can't use the embedding to deliberately produce nor share illegal or harmful outputs or content The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license You may re-distribute the weights and use the embedding commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here
huggingtweets/chaddraven-nickichlol-saware7
huggingtweets
2022-11-02T18:51:08Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-02T18:44:25Z
--- language: en thumbnail: http://www.huggingtweets.com/chaddraven-nickichlol-saware7/1667415027467/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1542731743328862210/g9ZgqOmK_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1587675160072491008/Vykq9cOY_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1550159744396042241/RT8UyMgT_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">nick & Chad & SW7</div> <div style="text-align: center; font-size: 14px;">@chaddraven-nickichlol-saware7</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from nick & Chad & SW7. | Data | nick | Chad | SW7 | | --- | --- | --- | --- | | Tweets downloaded | 3231 | 3174 | 3037 | | Retweets | 215 | 504 | 161 | | Short tweets | 663 | 1094 | 660 | | Tweets kept | 2353 | 1576 | 2216 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/22ya4o85/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chaddraven-nickichlol-saware7's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3m24xig1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3m24xig1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chaddraven-nickichlol-saware7') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
L-oenai/layoutxlm-finetuned-xfund-pt
L-oenai
2022-11-02T18:16:11Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "dataset:xfun", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-02T17:09:50Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - xfun model-index: - name: layoutxlm-finetuned-xfund-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutxlm-finetuned-xfund-pt This model is a fine-tuned version of [microsoft/layoutxlm-base](https://huggingface.co/microsoft/layoutxlm-base) on the xfun dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.10.0+cu111 - Datasets 2.6.1 - Tokenizers 0.13.1
allenai/scirepeval_adapters_prx
allenai
2022-11-02T17:29:49Z
9
0
adapter-transformers
[ "adapter-transformers", "adapterhub:scirepeval/proximity", "bert", "dataset:allenai/scirepeval", "region:us" ]
null
2022-10-28T00:08:19Z
--- tags: - adapterhub:scirepeval/proximity - adapter-transformers - bert datasets: - allenai/scirepeval --- # Adapter `allenai/scirepeval_adapters_prx` for malteos/scincl An [adapter](https://adapterhub.ml) for the `malteos/scincl` model that was trained on the [scirepeval/proximity](https://adapterhub.ml/explore/scirepeval/proximity/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("malteos/scincl") adapter_name = model.load_adapter("allenai/scirepeval_adapters_prx", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
AndreIchiro/swinv2-finetuned-eurosat
AndreIchiro
2022-11-02T17:27:53Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "swinv2", "image-classification", "generated_from_trainer", "dataset:imagefolder", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-01T00:41:29Z
--- tags: - generated_from_trainer datasets: - imagefolder model-index: - name: swinv2-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-finetuned-eurosat This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window16-256](https://huggingface.co/microsoft/swinv2-base-patch4-window16-256) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1